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ABSTRACT Amazonian soil microbial communities are known to be altered by land-use 
change. However, attempts to understand these impacts have focused on broader 
community alterations or the response of specific microbial groups. Here, we recovered 
and characterized 69 soil bacterial and archaeal metagenome-assembled genomes 
(MAGs) from three forests and three pastures of the Eastern Brazilian Amazon and 
evaluated the impacts of land conversion on their genomic features. Pasture MAGs 
had significantly higher GC content (64.9% vs 60.2%), genome size (4.0 vs 3.1 Mbp), 
and number of coding sequences (4,058 vs 3,306) compared to forest genomes. 
Taxonomically, MAGs belonged to eight phyla; however, most (90%) had low similarity 
to previously known species, indicating potentially novel taxa at multiple levels. We 
also observed that the functional profiles associated with biogeochemical cycling and 
carbohydrate-active enzyme genes were impacted by forest conversion, with pasture 
MAGs exhibiting a notably higher number of both gene groups. Together, these data 
constitute the largest single-sourced genomic data set from upland soils of the Brazilian 
Amazon to date and increase the known MAG richness in these soils by 78%. Our data, 
therefore, not only add to a neglected yet emerging field but, importantly, highlight that 
land-use change has drastic impacts on the genomic characteristics and functional traits 
of dominant soil microbes.

IMPORTANCE The Brazilian Amazon is facing unprecedented threats, including 
increasing deforestation and degradation, which together impact half of the original 
forest area. Soil microorganisms are sensitive indicators of land-use change, linked to 
a rise in microbial methane emissions and antibiotic-resistance genes in the Amazon. 
However, most Amazonian soil microbes remain unknown, and little attention has 
been given to their genomes. Using sequencing and bioinformatics, we recovered 
and characterized 69 soil bacterial and archaeal genomes (metagenome-assembled 
genomes). These abundant members of the microbial communities diverged across 
forests and pastures in terms of taxonomic and functional traits. Forest conversion favors 
organisms with specific genomic features — increased GC content, genome size, and 
gene number — selecting for microorganisms that can thrive under altered conditions. 
Our paper helps us understand the intricate relationships between microbes and the 
environment, which are crucial pieces of information for comprehensive soil health 
assessments and future policy formulation.

KEYWORDS Amazon rainforest, deforestation, land-use change, microbial ecology, 
soil microbiology, bacteria, archaea, metagenomics, metagenome-assembled genomes, 
genomic characteristics

H ome to more than half of bacterial and fungal species, soils are Earth’s most 
biodiverse habitat (1). Yet, this often-unknown diversity and its contribution to 

critical soil ecosystem services remain unclear. The recovery of metagenome-assembled 
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genomes (MAGs) has expanded our knowledge of terrestrial microbes (2); however, 
studies on soil MAGs from tropical areas remain scarce despite the high diversity 
and importance of these ecosystems. For instance, only four studies have recuperated 
soil MAGs from Brazilian Amazon uplands — obtained through consortia cultivation (3) 
or direct DNA extraction from the field (4) and controlled experiments (5, 6), comprising 
a total of 88 genomes from 24 metagenomes. These studies collectively suggest that a 
large pool of novel taxa exists in these understudied areas of continental proportions, 
but their genomic features and functional traits have yet to be described and under­
stood.

Understanding Amazonian soil microbial diversity and function has never been more 
urgent. The Amazon faces escalating pressure from anthropogenic actions, including 
land-use change and degradation that, combined, impact half of the original forest area 
(7, 8). Forest conversion alters the physical and chemical properties of Amazonian soils 
and their archaeal and bacterial communities, with significant implications for human 
health and greenhouse gas cycling (9). In particular, the transformation of these areas 
into pastures is now recognized to change methane microbial communities and create a 
sink-to-source shift in Amazonian soils (9, 10). Not surprisingly, a large number of studies 
have focused on land-use impacts at a community level using amplicon sequencing and 
read-based metagenomics (as reviewed in reference [10]). While useful for understand­
ing the overall impacts of human perturbations, these approaches overlook genomic 
features crucial for assessing the relationship between microbes and their environment 
(11). Besides, to date, a large fraction of Amazonian soil microbial communities is still 
unknown to us (6).

Here, we used genome-based metagenomics to recover and characterize novel soil 
MAGs from the Amazon rainforest. We investigated how forest-to-pasture conversion 
impacts the genomic features and the taxonomic and functional traits of these most 
abundant microbial community members. From 36 soil metagenomes collected in three 
forests and three pastures of the Eastern Brazilian Amazon (State of Pará), we obtained 
69 MAGs through read assembly and binning: 26 from forests and 43 from pastures 
(Supplemental text; Tables S1 to S5). Based on MIMAG standards (12), quality-controlled 
MAGs are medium- (≥50% completeness and <10% contamination) and high-quality 
drafts (>90% completeness and <5% contamination) (Fig. 1A). Overall, pasture MAGs 
had higher GC% (P = 0.01, mean of 64.9% vs 60.2%) and size (P = 0.004, mean of 4.0 
vs 3.1 Mbp) than forest MAGs (Fig. 1E and F), but no significant correlation (P > 0.05) 
was found between both features. Together, these results not only represent the largest 
single genomic data set from upland soils of the Brazilian Amazon to date but also 
indicate genomic alterations of soil microbial communities in response to deforestation 
in the tropics.

GC content is highly influenced by the environment (13), and land conversion 
has been shown to reduce the abundance of short metagenomic sequences that are 
low-GC% (from 30% to 55%) in Western Amazonian soils (10). Considering the substantial 
methodological differences (read- vs genome-based metagenomics) and geographical 
distance between the sites of our studies (>1,000 km), this may represent a general 
microbial response to Amazonian forest-to-pasture conversion. Pastures in the Amazon 
are established and maintained through forest clearing and burning (9, 10), and results 
from coniferous forests have revealed that fire-impacted soil microbial communities 
have higher GC%, a trait linked to enhanced thermal stability (14). Pasture soils are 
also more exposed to higher temperatures and direct sunlight, and taxa resistant to UV 
irradiation (such as Actinomycetota members, which dominated our pasture commun­
ities [Fig. 1B]) seem to have a greater GC% than UV-sensitive microorganisms (15). 
Although not significant, predicted growth conditions also revealed that our pasture 
MAGs have higher minimum (22.7°C vs 22.1°C), optimal (36.3°C vs 35.6°C), and maximal 
(43.8°C vs 42.9°C) temperatures than those present in forests (Table S10). In addition, 
compared to aquatic and host-associated ecosystems, terrestrial microorganisms have 
larger genomes, reflecting the greater environmental fluctuations they experience (such 
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as temperature changes) (16). This is also observed for ubiquitous taxa, which con­
tain a higher proportion of genes linked to environmental adaptation (17). Thus, we 
hypothesize that generalist microorganisms with larger genomes may have an adaptive 

FIG 1 Summary of the MAGs found in forest and pasture soils. (A) Completeness (%) and contamination (%) of each medium- and high-quality MAG. 

(B) Taxonomic classification at the phylum level. (C) GC content (%) and (D) genome size (bp) distributed across phyla. (E) GC content (%), (F) genome size (bp), 

and (G) number of predicted coding sequences (CDSs) of forest and pasture MAGs. Pasture MAGs had higher GC content (P = 0.01), size (P = 0.004), and CDSs (P = 

0.004) than forest MAGs.
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FIG 2 Genes found in forest and pasture soil MAGs using hidden Markov models. (A) Non-metric multidimensional scaling (NMDS) and (B) Venn diagram of 

biogeochemical cycling genes (microTrait). (C) NMDS and (D) Venn diagram of CAZy genes. (E) Profile of microTrait genes related to the nitrogen, methane, and 

sulfur cycles.
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advantage in pasture soils. Interestingly, Wilhelm et al. (18) observed that soils with 
higher health are associated with smaller genome sizes.

Our MAGs spanned both bacterial (64 MAGs) and archaeal (5 MAGs) domains, 
representing 8 phyla and 13 classes (Fig. 1B through D; Table S6). Actinomycetota 
dominated pasture communities, while Acidobacteriota were reduced, as previously seen 
in other studies (10). Eremiobacterota were unique to forests, while Chloroflexota and 
Dormibacterota were found only in pastures. Amazonian forest soils are typically more 
acidic (9, 10), favoring the acid-tolerant phylum Eremiobacterota, with members that 
prefer soil pH below 6 (19), which was confirmed by our growth condition predictions 
(mean optimum pH = 5.4; Table S10). In fact, pasture MAGs have slightly higher pH 
requirements than forest genomes (not significant; optimum pH, 5.79 vs 5.75; maximum 
pH, 7.64 vs 7.39). Chloroflexota were also exclusively detected in Amazonian pasture soils 
under different moisture regimes (6), with the Ktedonobacteria class present across both 
studies. Ktedonobacteria possess high genome plasticity, enabling rapid adaptation to 
environmental shifts (20). Interestingly, all soil forest MAGs and most pasture MAGs could 
not be fully classified at the species, genus, and order levels (46, 15, and 1, respectively) 
by GTDB-Tk (release R08-RS214) (21), suggesting possible novel taxa. Average nucleotide 
identity (ANI) analysis, however, revealed that some of these genomes may belong to the 
same species (10 MAG pairs have an ANI ≥ 95% between themselves) (Table S7).

The observed variations in genome size across our forest and pasture sites can 
also influence gene diversity and functional versatility (22). Although no significant 
differences (P > 0.05) were observed for coding density (mean of 89.6% for pasture 
vs 88.2% for forest), the number of predicted coding sequences in pasture MAGs was 
significantly higher (P = 0.004, mean of 4,058 vs 3,306) than in forest genomes (Fig. 1G), 
a feature strongly correlated with genome size (R = 0.99, P < 0.001). Land-use change 
also impacted the functional traits of dominant soil microbes across land uses (PERMA­
NOVA based on Jaccard distance), including genes related to biogeochemical cycling 
(microTrait, F1,67 = 2.079, R2 = 0.03, P = 0.007) (23) and carbohydrate-active enzyme 
families (CAZy, F1,67 = 2.164, R2 = 0.031, P = 0.004) (24) (Fig. 2; Tables S8 and S9). Pasture 
MAGs exhibited a notably higher number of both gene groups per MAG (microTrait, P 
= 0.005, mean of 21 vs 16; CAZy, P = 0.015, mean of 53 vs 38), traits also positively 
correlated with genome size (microTrait, R = 0.68, P < 0.001; CAZy, R = 0.6, P < 0.001). 
Similarly to our previous findings (6), several marker genes of critical biogeochemical 
processes were also found in MAGs, such as those related to the carbon, nitrogen, 
and sulfur cycles (Fig. 2E). Forests possess a higher relative abundance of organisms 
harboring denitrification-related genes, an association formerly discussed in references 
(10) and (25). Interestingly, although most MAGs were recovered from pastures, the 
genes nrfA and nrfH were uniquely found in forest genomes. These are associated 
with nitrite reduction in dissimilatory nitrate reduction to ammonium — an important 
nitrogen pathway in terrestrial ecosystems, which can decrease leaching losses and 
limit substrate availability for denitrification, thus reducing nitrous oxide emissions (26). 
Using a microarray (GeoChip) technology, Paula et al. (25) showed that the presence 
and abundance of the nrfA gene were highly correlated with primary forest soils in the 
Western Amazon.

Our findings provide much-needed data about the microbial diversity and function­
ality in Amazonian soils — an environment that plays critical roles in global change 
scenarios. These genomic insights, therefore, not only enhance our understanding of 
the intricate relationships within this ecosystem but also provide crucial knowledge for 
comprehensive soil health assessments as well as effective sustainable management and 
conservation practices.
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