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Continental Drift and Speciation of the
Cryptococcus neoformans and
Cryptococcus gattii Species Complexes

Arturo Casadevall,a Joudeh B. Freij,a Christopher Hann-Soden,b John Taylorb

Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,
Baltimore, Maryland, USAa; University of California, Berkeley, Berkeley, California, USAb

ABSTRACT Genomic analysis has placed the origins of two human-pathogenic
fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans spe-
cies complex, in South America and Africa, respectively. Molecular clock calculations
suggest that the two species separated ~80 to 100 million years ago. This time
closely approximates the breakup of the supercontinent Pangea, which gave rise to
South America and Africa. On the basis of the geographic distribution of these two
species complexes and the coincidence of the evolutionary divergence and Pangea
breakup times, we propose that a spatial separation caused by continental drift re-
sulted in the emergence of the C. gattii and C. neoformans species complexes from a
Pangean ancestor. We note that, despite the spatial and temporal separation that
occurred approximately 100 million years ago, these two species complexes are
morphologically similar, share virulence factors, and cause very similar diseases. Con-
tinuation of these phenotypic characteristics despite ancient separation suggests the
maintenance of similar selection pressures throughout geologic ages.

KEYWORDS Cryptococcus neoformans, evolution, fungus

Cryptococcosis is a disease of humans and animals that is caused by Cryptococcus
spp. The disease is most frequent in individuals with impaired immunity, and there

are currently over a million cases worldwide (1). In recent years, most pathogenic
cryptococcal strains have been grouped within two species known as Cryptococcus
neoformans and C. gattii, but genomic analysis reveals a complex taxonomy such that
each of these taxa almost certainly includes numerous individual species (2). Given the
rapidly accumulating genomic information and concerns about nomenclature instabil-
ity, it was recently proposed that species complex nomenclature be used such that the
broad taxa C. neoformans and C. gattii will be referred to as the C. neoformans species
complex and the C. gattii species complex (3), a temporary expedient that we use in this
essay. Each of these species complexes potentially includes numerous species, but
those in each complex are more closely related to each other than to those across the
two complexes.

The same genomic studies that have shown great taxonomic diversity have also
provided important new insights into the evolution of the C. gattii and C. neoformans
species complexes. The research effort launched to understand the origins of the
C. gattii strains causing outbreaks among otherwise healthy humans in the Pacific
Northwest of Canada and the United States revealed that the best-studied lineage of
the C. gattii species complex has a center of genetic diversity that includes individuals
of both the a and � mating types in the rainforest of Northern Brazil (4–6). Subsequent
studies of additional Brazilian isolates suggest that an even more diverse population of
the C. gattii species complex may be found in more arid areas of northwest Brazil (7).
In contrast, in the C. neoformans species complex, the lineage known as VNB, or
VNII-AFLP1A, has a center of genetic diversity that again includes individuals of both
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the a and � mating types in the Botswana region of southern Africa (8). Consistent with
an African origin of C. neoformans var. grubii is an analysis of isolates in Southeast Asia
that reveals low genetic diversity (9). Consequently, the available genomic data place
the origins of lineages of the C. gattii and C. neoformans species complexes on two
different continents. Previously, molecular clock calculations based on an estimated
32% substitution of synonymous nucleotide positions in orthologous coding regions
and a neutral mutation rate of 2 � 10�9 substitutions per nucleotide per year
suggested that the two cryptococcal species complexes separated about 80 mil-
lion years ago (mya), with a range of 16 to 160 mya (10). We aligned 13.6 � 106

nucleotides of the genomes of C. neoformans species complex B-3501A and C. gattii
species complex WM276, finding that 15.54% were polymorphic, a value that grew to
17.4% after multiple substitutions were accounted for (11). Using the full range of
mutation rates estimated for coding regions in ascomycete filamentous fungi (0.9 �

10�9 to 16.7 � 10�9) (12), the divergence time would lie between 5.2 �106 and
96.7 �106 years ago, which encompasses the previous estimate. If the recently pub-
lished mutation rate measured experimentally in Saccharomyces cerevisiae, 1.6 � 10�10,
were used, the divergence would be pushed back to 544 � 106 years before the
present, which seems far too long ago (13, 14). Realizing that no substitution rate has
been estimated for Basidiomycota and cognizant of the strong difference between the
substitution rates estimated for filamentous Ascomycota and yeast, we have no basis on
which to dispute a divergence time of 80 � 106 to 100 � 106 years, which would lie
roughly in the middle of the Cretaceous period (145 to 65 mya).

Reviewing the geography of planet Earth at the time that the cryptococcal species
complexes separated places us at a geologic time dominated by the breakup of the
supercontinent Pangea. This breakup formed the minor supercontinent of west Gond-
wana, which subsequently broke up to generate the current continents of South
America and Africa. The breakup of west Gondwana began in the Early Cretaceous,
about 130 mya, and Africa was separate from South America by approximately 100
mya. However, dinosaur fossil data suggest that some land connections between Africa
and South America existed as late as 95 mya (15). The details of the breakup of west
Gondwana leading to the formation of the South Atlantic are lost in time, but the
process is thought to have occurred gradually over tens of millions of years. Although
the time estimates for the divergence of the cryptococcal species complexes and the
separation of the South American and African continents both have tremendous
uncertainty, we are struck by the coincidence of the time scales of both processes and
the ancient geographic juxtaposition of the regions now posited as regions of origin.
On this basis, we hypothesize that the C. gattii and C. neoformans species complexes
emerged following continental drift events that resulted in the physical separation of
a Pangean cryptococcal ancestor population that occupied a discrete region of the
supercontinent Pangea, a region that subsequently became parts of South America and
Africa (Fig. 1). Given the modern association of Cryptococcus species with birds,
particularly invasive rock doves (16), it might be thought that continental rafting would
have scant effect on the distribution of the fungus given the potential for the aerial
transport of fungal isolates across great distances. Although birds evolved from dino-
saurs in the Early Cretaceous, the major radiation of modern birds occurred after the
end of the Cretaceous at 65 mya, and on the basis of the phylogeny of birds, the
radiation of the clade that includes the rock dove occurred after 25 mya (17). Never-
theless, it is possible that there was an association between the primordial Cryptococcus
ancestor and early birds, which could have allowed the intercontinental transport of
isolates during the early phases of the Pangean breakup, when the continents were
much closer than they are today and thus prevented species isolation until more recent
epochs. Such intercontinental transport of isolates by birds, wind, ocean currents, or
even another animal would account for estimates of a more recent separation of the
Cryptococcus complex species. One can imagine scenarios where intercontinental
transport mechanisms prevented isolation of the primordial Cryptococcus ancestor for
millions of years following continental separation until increasing continental distance
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created conditions for spatial isolation. Hence, the wide difference between estimates
of the separation time of the C. gattii and C. neoformans species complexes, which
include significantly more recent dates than the separation of Africa and South Amer-
ica, could still be reconciled with a precipitating event associated with the breakup of
Pangea. Furthermore, we note that the suggested speciation event is very different
from the current situation, where lineages of both complexes occur simultaneously in
diverse geographic regions throughout the globe. We propose that continental drift
was the initial trigger of speciation and that the current geographic distribution of the
two cryptococcal species complexes is the result of subsequent introduction and
dispersal events, including anthropomorphic causes, such as the global dispersal of
Columbia livia (rock dove or pigeon) from its Mediterranean origin in recent centuries
(16).

One of the remarkable aspects of the two cryptococcal species complexes is how
similar they are with regard to virulence factors despite their distant separation in time.
For example, the two cryptococcal complex species complexes share such virulence-
associated phenotypes as polysaccharide capsules (18), thermotolerance of mammalian
temperatures (18), melanin production (18), urease (19, 20) and phospholipase (21, 22)
activities, intracellular replication (23, 24), nonlytic exocytosis (25, 26), and inositol
production (27). Although it is possible that these phenotypes evolved independently,
the fact that they are not shared, or rarely shared, by other closely related species
supports the view that they evolved in the common ancestor of both the C. neoformans
and C. gattii species complexes. For example, a survey of heterobasidiomycetous yeasts
found that only Cryptococcus podzolicus had a capsule and was capable of making
melanin (28). Both cryptococcal species complexes have been isolated from tree
hollows (29), and we note that their current and past locations are near forested
equatorial regions. Strains of both cryptococcal species complexes have been shown to
be facultative intracellular pathogens capable of replicating in mammalian macro-
phages. For C. neoformans, the intracellular pathogenic strategy in macrophages and
amoebae has been shown to be uncannily similar, which led to the proposal that the
capacity for animal virulence arose from selection pressures in the environment that

FIG 1 Representation of the supercontinent of Pangea with outlines of the present continents. The red
circle denotes the proposed biogeography of the Pangean ancestor of both the C. gattii and C. neofor-
mans species complexes. Also shown are the two supercontinents that came together to form Pangea,
Laurasia and Gondwana (separated by a dashed blue line). This map was designed by tracing an outline
of the supercontinent of Pangea via a Google Image search. The organization of subcontinents (Laurasia
and Gondwana) is based on reference 47.
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included predaceous phagocytic cells such as those now found in amoebae and slime
molds (30, 31). Strains of both cryptococcal species complexes have been shown to
interact with amoebae, which they can exploit for growth under certain circumstances
(30, 32). Given that the origins of both fungi and amoebae occur in deep Earth time and
that the closest outgroup to the kingdom Fungi is that of nucleariid amoebae (33), the
ancestors of these two groups of eukaryotes could have been interacting even before
the emergence of multicellular life forms. Consequently, we hypothesize that the
remarkable similarities between the two cryptococcal species complexes with regard to
their distinctive encapsulated morphology and shared virulence factors is a conse-
quence of similar selection pressures, which continued after the breakup of West
Gondwana.

The facts that the C. neoformans and C. gattii species complexes are likely to have
diverged in the Cretaceous and share so many phenotypes associated with virulence
have interesting implications for their Pangean ancestor and for the origin of virulence
in fungi. First, it must have shared the virulence phenotypes now found in C. gattii and
C. neoformans, which implies that it was encapsulated, made melanin, possessed
numerous enzymes that can damage host cells, and had the capacity for intracellular
replication in animal and environmental phagocytic cells. Second, since cryptococcosis
can occur in reptiles (34) and the Cretaceous was remarkable for its reptilian mega-
fauna, the Pangean ancestor could have been pathogenic for some animals at the time.
Third, the capacity of cryptococcal species for virulence must have existed in the
ancient past. Since fungal and amoebal evolutionary lineages predate the appearance
of animals and interactions between these organisms, such as predation of fungi by
amoebae, may have selected for traits that accidentally enabled a capacity for mam-
malian virulence, it is conceivable that fungi with the potential to be pathogenic in
metazoans existed before the latter appeared. A thorough phylogenetic and pheno-
typic study of C. gattii and C. neoformans and close relatives in the Filobasidella and
Kwoniella clades, many of which had been isolated from insect guts or frass, concluded
that ancestors of the human pathogens had the abilities to grow at 30°C, produce a
capsule, and produce melanin (35). It seems likely, therefore, that the ancestors of the
pathogenic Cryptococcus species had the capacity for animal virulence, which was
passed on to the descendant species. An origin of virulence in Cryptococcus complex
species in deep time could help explain the remarkable nonspecificity of their patho-
genic potential, given their capacity for virulence to vertebrates (18), insects (36, 37),
nematodes (38), amoebae (30), and plants (39). This scenario differs from the situation
with two groups of Ascomycota, Onygenales (40) and Clavicipitales (41), where virulence
emerged independently. Interestingly, in the case of Clavicipitales, the animal-parasitic
species may have evolved from mycoparasitic ancestors. Relatives of the pathogenic
Cryptococcus species in the Tremella clade are also mycoparasitic, but it appears likely
that this trait was not exhibited by the ancestor of the C. gattii and C. neoformans
species complexes (35).

Coming back to continental drift and its ability to change the continuity of land
masses and isolate species or bring them together, in addition to Cryptococcus species,
this phenomenon has been used to explain the biogeography of many land species,
including animals and plants and their associated microbes. Continental drift has been
used to interpret the biogeography of many pathogenic microbes, including gemini-
viruses (42), trypanosomes (43), and the conifer root rot fungus Heterobasidion anno-
sum (44). Here we extend that reasoning to the human-pathogenic cryptococcal
species complexes and note with great interest the congruence of molecular and
geologic scales and the glimpse they provide into the origins of fungal virulence. We
are fully aware that we are just beginning to sample the genetic diversity of the fungal
world and that as additional data are accrued, the current hypothesis may be further
supported, require modification, or be abandoned. In associating cryptococcal specia-
tion with continental drift, the most uncertain estimates are those of the divergence of
the C. neoformans and C. gattii complex lineages. To improve the estimate of the time
of divergence of the two Cryptococcus lineages would require either a measured
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mutation rate for Cryptococcus spp. or a solid geologic calibration for at least one node
on a phylogenetic tree that includes the two Cryptococcus species, neither of which is
available at the present time.

Our goal in formulating this hypothesis is to stimulate thought and discussion about
the mechanisms driving fungal speciation and the origins of fungal virulence that will,
we hope, promote further experimental work. In this regard, we note that the hypoth-
esis already suggests new lines of inquiry. For example, if continental drift did indeed
trigger the speciation of the C. neoformans and C. gattii complexes, then there may be
a great level of spatial difference between individual cryptococcal lineages among
different continents, which could be revealed by careful geographic environmental
sampling. Also, the hypothesis suggests that the current distribution of C. neoformans
and C. gattii complex strains should be viewed as resulting from a layering of strains
descending from ancient ancestors with more recent dispersal events. In this regard,
the occurrence of C. neoformans and C. gattii hybrids (45) could represent descendants
of ancient mating events or recent crosses following the introduction of strains that
retained the capacity for sexual reproduction. In this regard, the hypothesis provides a
new conceptual approach to understanding their origin. For example, if these hybrids
are the result of ancient mating events, these strains should be more prevalent in areas
of Africa and South America that remained connected or physically related for the
longest time. Finally, we hope that the hypothesis stimulates more research into the
mutation rates of the cryptococcal complex species and into the nascent field of
paleomycology. With regard to the latter, fungi from the Cretaceous have been found
in amber (46) and a search for yeast related to Cryptococcus in amber combined with
advanced DNA and protein sequencing techniques could provide important informa-
tion to support, modify, or refute the proposed hypothesis.
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