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ABSTRACT OF THE DISSERTATION 
 
 
 

Genetic mapping, inference and prediction 

across diverse human populations 

 

 

by 
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Professor Bogdan Pasaniuc, Chair 

 

 

Genome-wide association studies have revolutionized our understanding of genetic influences on 

common diseases and complex traits. However, the majority of discoveries have been limited to 

individuals of European ancestry, leading to a data collection bias that disproportionately under-

samples non-European populations. This bias leads to missed discovery opportunities and 

differential prediction accuracy across sub-populations defined by genetic ancestry and 

socioeconomic factors. Although datasets with diverse genetic ancestry backgrounds are 

increasingly available, existing analytical tools often fail to account for the heterogeneity present 
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in these datasets. Here, I introduce new computational and statistical methods for genetic 

mapping, inference, and prediction across diverse human populations. First, I investigate the 

power of genetic mapping approaches in populations with diverse genetic ancestry backgrounds. 

Second, I explore the inference of genetic architecture, estimating the cross-ancestry sharing of 

genetic effects. Third, I examine genetic prediction, quantifying differential polygenic scoring 

accuracy by contexts and developing an approach to account for such differences.  
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1 Introduction 

Complex traits and common diseases are influenced by both genetic and environment factors1,2. 

While environments change over time and are challenging to comprehensively measure, an 

individual’s genetic information is largely unchanged throughout lifetime. With the substantially 

decreasing DNA sequencing cost3, integration of genetic information is becoming a cost-effective 

approach towards precision medicine, tailoring medical prevention and treatment according to 

unique profile of each individual4. 

Genome-wide association studies (GWAS), a representative approach for genetic mapping that 

links candidate genetic factors to disease status, have been fruitful over the past two decades5–7. 

For example, a CRISPR-based drug, Casgevy, was recently approved by FDA as the first gene 

therapy for treating sickle cell disease – the corresponding drug target gene BCL11A was initially 

discovered in GWAS of fetal hemoglobin levels dating back to 20078,9. Broadly, the success rate 

of drug targets with genetic support from GWAS is more than two times greater than those 

without10,11. In addition to prioritizing individual disease-associated genetic variants, polygenic 

scores aggregating effects of multiple disease-associated genetic variants, have become a 

powerful tool to predict disease risk12, inform groups of individuals most likely to benefit from 

treatment13, as well improving clinical practice, including adjustment for genetic component of lab 

value14. The use of genetic data will continue to inform drug development, and change how we 

practice medicine incorporating personalized information. 

The above achievements have largely been established within individuals of European ancestry 

due to historical data collection bias disproportionally under-sampling individuals of non-European 

ancestry15. As GWAS have detection power for variants with sufficient amount of variation within 
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a sample, such bias is missing important discovery opportunities16. For example, genetic variants 

in gene SLC16A11 are rare in European but common in Native American and East Asian ancestry 

backgrounds. And their link to type 2 diabetes would be otherwise missed if GWAS were 

performed in Europeans only17. Moreover, existing polygenic scoring methods have differential 

prediction accuracy across ancestry groups18–20 – disease risk predicted by such models are not 

as accurate in other ancestry groups compared to Europeans. Other than genetic ancestry, 

individual-level contexts including age, sex, or socioeconomic status also impact accuracy21. 

To realize the promise of precision medicine for everyone, the field has put significant efforts to 

collect genetic data samples that are representative of the world populations16,22–24. However, 

existing analytical tools often fail to capture the heterogeneity and diversity present in these 

datasets. Key questions remain regarding the computational and statistical methodologies for 

genetic mapping, inference and prediction across diverse populations. In Chapter 2, I study the 

power of genetic mapping approaches in populations with diverse genetic ancestry backgrounds 

(a version is published in Nature Genetics25). In Chapter 3, I study the inference of genetic 

architecture, quantifying the sharing of genetic effects across ancestry backgrounds (a version is 

published in Nature Genetics26). In Chapter 4, I study genetic prediction, where I quantify 

differential polygenic scoring accuracy by contexts and for which I develop an approach to 

account (a version is available as a preprint27). Central to these works is the development of new 

data-driven approach for modeling and accounting for the diversity of genetic ancestry and 

context backgrounds across human populations. 
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2 On powerful GWAS in admixed populations 

2.1 Introduction 

Improving statistical power for GWAS in admixed populations is imperative, as more and larger 

genomic studies in admixed populations are desperately needed to accelerate genomic medicine 

and reduce health inequities28. Recently, Atkinson et al.29 introduced a statistical framework 

(Tractor) for GWAS in admixed populations (e.g., African Americans) that corrects for population 

structure through the use of local ancestry and concluded that GWAS in admixed populations 

increases discovery power over traditional GWAS only in the presence of allelic effect-size 

heterogeneity by ancestry; a decrease in power is expected when allelic effects at tested variants 

are similar across ancestries. We wish to clarify that Atkinson et al.’s conclusion is specific to their 

particular choice of statistical association test that prioritizes allelic effect-size heterogeneity by 

ancestry and does not hold for other existing tests for GWAS in admixed populations. Existing 

association tests attain increased power over traditional GWAS in admixed populations, even 

when the causal variant has similar allelic effects across ancestries30–32. Therefore, GWAS in 

admixed populations increases power for discovery over homogeneous populations in either 

scenario—similar or different ancestry-specific allelic effects. 

Powerful GWAS in admixed populations when causal variant has similar allelic effects across 

ancestries is performed either through explicit modeling of the relationships between allelic and 

local-ancestry effects32–35 or implicit inclusion of the admixture signal in tests that do not correct 

for local ancestry30,36. In all approaches, population structure is appropriately controlled by 

correcting for global ancestry30. The gain in power stems from differentiation of causal-allele 

frequencies by ancestry that induces heterogeneity in the standardized ancestry-specific effects, 
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which in turn induces a local-ancestry effect on the trait. Therefore, larger power gains over 

traditional GWAS are expected for causal variants with higher degrees of frequency differentiation 

between ancestral populations30,32. Most importantly, by using such tests, GWAS in African 

American individuals attain superior power relative to GWAS in ancestrally homogeneous 

populations such as Europeans or Africans30–32. Therefore, when allelic effects are similar across 

ancestries, correcting for local ancestry is expected to impair statistical power for GWAS 

discovery as compared to global ancestry adjustment36 and is more useful as a localization tool 

in post-GWAS fine-mapping30. 

2.2 Results 

We use simulations to compare the test proposed by Atkinson et al. (Tractor) to existing methods 

for GWAS in admixed populations when causal allelic effects are similar across ancestries31. 

Starting from 1000 Genomes genotypes37, we simulated 40,000 admixed individuals assuming 

admixture fractions of 80% African and 20% European followed by 7 generations of random 

mating (Figure 1A). We simulated a phenotype with 10% prevalence under the Tractor logistic 

model with a single causal variant with the same allelic effect across ancestries29; variability in 

causal variant frequencies across ancestries induce heterogeneity by ancestry in the marginal 

standardized effects. We compared the following tests for disease mapping in admixed 

populations: ATT (Armitage trend test with correction for global ancestry); ATT-Logit (logistic 

regression with genotypic effects only; this test is similar to that used by the PAGE study36); ADM 

(case-only admixture mapping); ADM-Logit (case-control admixture mapping; similar to the M1 

model of Atkinson et al.); SNP1 (association conditioned on local ancestry; similar to the M2 model 

referred to as “traditional GWAS” in Atkinson et al.); MIX (combined case-only admixture and SNP 

case–control association)32; SUM (sum of case–control SNP association and case-only admixture 
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association); and Tractor (logistic regression assuming independent effects across ancestries 

with correction for local ancestry)29. All tests correct for global ancestry; SUM and Tractor are 2-

degrees-of-freedom (dof) tests while all others are 1-dof tests. 

First, we find that all tests appropriately control false positive rates under the null hypothesis 

(Supplementary Fig. 1). Second, as previously reported, we find that 1-dof methods that only 

correct for global ancestry (ATT, ATT-Logit, MIX) attain superior power over methods that correct 

for both global and local ancestry (SNP1/Tractor-M2). As expected, a larger gain in power is 

observed at SNPs with higher frequency differentiation by ancestry. Since SNP1 and Tractor-M2 

are analogous to disease mapping in ancestrally homogeneous populations (see refs30,32), it 

follows that admixed populations can offer increased power for disease mapping as compared to 

ancestrally homogeneous populations. For example, when OR=1.2 for a causal variant uniformly 

drawn from the genome, in a GWAS of 4,000 cases and 4,000 controls, ATT and MIX yield ~27% 

power compared to 25% for SNP1/Tractor-M2 and 20% for Tractor (Figure 1A). A larger gain in 

power is observed at causal variants with frequency differentiation greater than 0.2 between 

ancestries (28% of all variants), where we observe a power of 43% for MIX, 33% for 

SNP1/Tractor-M2, and 26% for Tractor (Figure 1A). Tractor has reduced power in these 

simulations as it requires some degree of heterogeneity in allelic effects to improve power (e.g., 

more than 60% difference in allelic effects when frequency is fixed across ancestries29). Similar 

results were observed at other effect sizes or when the causal variant is untyped and missing 

from the data, thus confirming that GWAS in admixed populations outperforms traditional GWAS 

when the causal variant has similar allelic effects across ancestries (Figure 1A, Supplementary 

Figs. 2-3). 
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Next we analyzed GWAS data of real lipid phenotypes - total cholesterol (TC) and low-density 

lipoprotein cholesterol (LDL) - in individuals of African–European ancestries within UK Biobank 

(N=4,327, Data availability). We focused on four well-known regions containing GWAS signals for 

lipid traits (LDLR, APOE, PCSK9, SORT1). Similar to simulations, we observe that the association 

with correction for genome-wide ancestry only (ATT) yields the strongest signal, followed by tests 

that correct for both local and global ancestry (SNP1). Tractor, which also models heterogeneous 

effects, yielded the weakest association signal (Table 1). For example, at the LDLR region ATT 

attains P = 2.3e-10 followed by 2.76e-10 for SNP1 and 1.64e-09 for Tractor (Figure 1B). Notably, 

averaging across the four regions, Tractor yields ~11% decreased effective sample size 

compared to ATT. For an extensive evaluation of admixture-aware tests at risk regions under 

strong admixture peaks, we refer to ref32. 

2.3 Discussion 

In conclusion, GWAS in admixed populations attain improved power for discovery over 

homogeneous populations in either scenario—similar or different ancestry-specific allelic 

effects—thus further supporting the need for larger genomic studies in such populations. Here, 

we show that disease mapping in admixed populations is well powered when allelic effects are 

similar across ancestries, whereas Atkinson et al. showcase the power gains from 2-dof tests in 

the presence of effect-size heterogeneity by ancestry29,30,32. Since the true extent of heterogeneity 

in causal allelic effects across ancestries is currently unknown38–42, we recommend careful 

consideration of the balance between expected allelic effect-size heterogeneity across ancestries 

and association power when selecting a statistical test for GWAS in admixed populations. A 

further consideration should be given to linkage-disequilibrium induced heterogeneity at tagging 

variants which occurs even when causal allelic effects are similar across ancestries29,30,32; in this 
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scenario there is an expected loss of power due to imperfect tagging, although preliminary results 

suggest that the loss in power is small particularly when genotype imputation is employed 

(Supplementary Fig. 3, also see Table 2 of ref30,32). Properly aligned statistical tests will enable 

novel discoveries in admixed populations that have long been understudied and underserved. 

https://github.com/bogdanlab/tractor-response
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2.4 Figures 

 

Figure 2.1 Power of GWAS tests in simulations and in real data. 

(A) Comparison of power of GWAS tests in admixed populations in simulations. The boxplots 

denoted “All” represent distributions of power estimates from 50 simulation replicates and 3,000 

B

A
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causal SNPs uniformly drawn from the set of all SNPs (150,000 points per boxplot), while 

“Differentiated” restricts to the subset of SNPs (904 out of 3,000) with absolute allele frequency 

difference > 0.2 between Europeans and Africans (45,200 points per boxplot). For box plots, the 

central lines correspond to the medians. The boxes represent the first and third quartiles of the 

points. Whiskers represent the minimum and maximum points located within 1.5 × interquartile 

range (IQR) from the first and third quartiles, respectively. Here, we present results for an odds 

ratio (OR) of 1.2; additional results, including null simulations, can be found at Supplementary Fig. 

2. (B) − log!"(𝑝) of SNP associations with LDL in the LDLR locus. The SNP with the strongest 

Tractor association p-value is framed and enlarged. Results at other considered GWAS regions 

for lipids (APOE, PCSK9, SORT1) show similar patterns (Table 1). 

2.5 Tables 

Trait Locus ATT SNP1 Tractor 

TC APOE 30.6 30.3 (-1.0%) 28.9 (-5.6%) 

LDL APOE 50 49.8 (-0.5%) 47.5 (-5.1%) 

TC LDLR 8.3 8.2 (-0.9%) 7.6 (-8.4%) 

LDL LDLR 9.6 9.6 (-0.8%) 8.8 (-8.9%) 
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TC PCSK9 9.4 8.5 (-9.9%) 7.7 (-18.3%) 

LDL PCSK9 9.6 9.4 (-1.3%) 8.5 (-10.9%) 

TC SORT1 5.1 5.0 (-0.9%) 4.3 (-15.7%) 

LDL SORT1 7.1 7.1 (-0.5%) 6.3 (-11.7%) 

Average relative difference -2.0% -10.6% 

 

Table 2.1 -log10 P-values association statistics for the top Tractor SNP at known risk loci.  

We considered three GWAS tests with correction for: global ancestry (ATT); global and local 

ancestry (SNP1); global and local ancestry while allowing for heterogeneous effects (Tractor). 

Index SNP was selected based on the strongest Tractor association p-value. Relative differences 

to the ATT score are shown in parentheses and the last line.  
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3 Causal effects on complex traits are similar for common 

variants across segments of different continental 

ancestries within admixed individuals 

3.1 Introduction 

Large-scale genotype-phenotype studies are increasingly analyzing diverse sets of individuals of 

various continental and sub-continental ancestries16,22,43,44. A fundamental open question in these 

studies is to what extent the genetic basis of common human diseases and traits are 

shared/distinct across different ancestry populations and its impact to genetic discovery and 

prediction45–49. For example, it is unclear how much of the low polygenic score portability can be 

attributed to differences in genetic causal effects across ancestries18,45,50. Hence, understanding 

the role of ancestry in variability of causal effect sizes has tremendous implications for 

understanding the genetic basis of disease and portability of genetic risk scores in personalized 

and equitable genomic medicine16,18,50–52. 

The standard approach to estimating similarity in causal effects across ancestries has focused on 

cross-population analyses (typically at continental level) in which effect sizes estimated by large-

scale genome-wide association studies (GWAS) are compared across continental-level ancestry 

groups45–48,53,54. Such studies have found significant differences, albeit with modest magnitude, of 

causal effects in cross-continental comparisons. However, a main drawback of such studies is 

the differences in definition of environment/phenotype across such broad units of ancestry that 

can reduce the observed similarity; for example, the low estimated similarity in causal genetic 
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effects for Major Depressive Disorder across Europeans and East Asians may be attributed to 

different diagnostic criteria in the two populations48,55. 

As an alternative to studying populations across different continents, causal effects similarity by 

ancestry can also be studied within recently admixed populations. Recently admixed individuals 

have the unique feature of having their genomes as mosaic of ancestry segments (local ancestry) 

originating from the ancestral populations within the past few dozen generations; for example, 

African American genomes are comprised of segments of African and European ancestries within 

the past 5-15 generations31. Unfortunately, admixed populations are vastly under-represented in 

genomic studies15, partly because of the lack of understanding of how the genetic causal effects 

vary across ancestries25,29,31,50,56,57. For example, heterogeneity of marginal effects (which is 

estimated in GWAS single variant scan and can tag effects from nearby variants due to linkage 

disequilibrium (LD)) for a few traits and loci has been reported58–61, but it remains unknown 

whether this reflects true difference in causal genetic effects or confounding due to different allele 

frequencies and/or LD by ancestry. Recent work54 have reported evidence of causal effect 

heterogeneity for SNPs in regions of European ancestries comparing individuals of European 

versus African American ancestries; however, these studies focused on cross-population 

comparisons instead of comparing effects across local ancestries within admixed populations. 

Estimating the magnitude of similarity in causal effects across ancestries is important for all 

genotype-phenotype studies in admixed populations from mapping to polygenic prediction, 

particularly within methods that allow for effects to vary across local ancestry segments25,29,56,57. 

In this work, we quantify the similarity in the causal effects (i.e., change in phenotype per allele 

substitution) across local ancestries within admixed populations; such similarity can be defined 

as the correlation of ancestral causal genetic effects 𝑟#$%&' = Cor[𝛽#(), 𝛽*+)] across African (𝛽#()) 
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and European (𝛽*+) ) local ancestries. We develop a method that leverages the polygenic 

architecture of complex traits to model all variants (GWAS-significant and non-significant); this 

approach is accurate and robust across a wide range of realistic simulated genetic architectures. 

We also investigate regression-based approaches that use marginal effects of SNPs prioritized 

in GWAS risk regions. Through simulation studies, we find regression-based methods can yield 

deflated estimates of similarity (i.e., inflated heterogeneity) especially for highly polygenic traits. 

We analyze complex traits in African-European admixed individuals in Population Architecture 

using Genomics and Epidemiology (PAGE)16 (24 traits, average N = 9K), UK Biobank (UKBB)43 

(26 traits, average N = 4K), and All of Us (AoU)44 (10 traits, average N = 20K); there are 38 unique 

traits in total. We find causal effects are largely consistent across local ancestries within admixed 

individuals (through meta-analysis across 38 traits, estimated correlation of 𝑟#$%&'= 0.95, 95% 

credible interval [0.93, 0.97]). In addition, we find the heterogeneity in marginal effects exhibited 

at several trait-locus pairs can be explained by multiple nearby causal variants within a region, 

consistent with our simulation studies. Our results suggest that the causal effects are largely 

consistent across local ancestries within African-European admixed individuals, and this 

motivates future genetic analysis in admixed populations that assume similar effects across 

ancestries for improved power. 

3.2 Results 

Overview 

We start by describing the statistical model we use to relate genotype to phenotypes in two-way 

admixed individuals; we focus on two-way African-European admixture because their local 

ancestries can be accurately inferred (Methods; see Discussion for extension to other admixed 
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populations). For a given individual, at each SNP 𝑠, we denote number of minor alleles from 

maternal and paternal haplotypes as 𝑥,,. , 𝑥,,/ ∈ {0,1} and local ancestries as 𝛾,,. , 𝛾,,/ ∈ {afr, eur}. 

Denoting 𝕀(⋅) as the indicator function, we define the local ancestry dosage as allele counts from 

each of ancestries; e.g., ℓ, = 𝕀C𝛾,,. = afrD + 𝕀C𝛾,,/ = afrD for African (similarly for European). For 

modeling convenience, we use variables that encode the genotypes conditional on local 

ancestries 𝑔,,#(), 𝑔,,*+)	 as the allele counts specific to each of local ancestries: 𝑔,,#() ≔

𝑥,,.𝕀C𝛾,,. = afrD + 𝑥,,/𝕀(𝛾,,/ = afr) (similarly for 𝑔,,*+)). The phenotype of an admixed individual 

is modeled as a function of allelic effect sizes that are allowed to vary across ancestries: 

𝑦 =JC𝑔,,#()𝛽,,#() + 𝑔,,*+)𝛽,,*+)D + 𝐜0𝜶 + 𝜖,
1

,2!

(1) 

where 𝛽,,#(), 𝛽,,*+) are the causal effects at SNP 𝑠, 𝑆 is the total number of causal SNPs in the 

genome, 𝐜, 𝜶 are other covariates (e.g., age, sex, genome-wide ancestries) and their effects, and 

𝜖  is the environmental noise. 𝛽,,#(), 𝛽,,*+)  are usually referred as allelic effects: change in 

phenotype with each additional allele. This is in contrast with standardized effects defined as 

change in phenotype per standard deviation increase of genotype where genotypes at each SNP 

𝑠 are standardized to have unit variance45,62. We refrain from using standardized effects in this 

work due to complexities arising from different ancestries yielding different ancestry-specific 

frequencies for the same SNP45 (Methods). 

Our goal is to estimate the similarity in the causal effects across local ancestries in admixed 

populations (Figure 1); the similarity can be evaluated across all genome-wide causal SNPs that 

are common across ancestries in a form of cross-ancestry genetic correlation45,48 (for consistency 

with previous works we use “genetic correlation” to refer to correlation of genetic effects across 
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ancestries): 𝛽,,#(), 𝛽,,*+)  are modeled as random variables following a bi-variate Gaussian 

distribution parametrized by 𝜎34, 𝜌3, denoting the variance and covariance of the effects:  

Q
𝛽,,#()
𝛽,,*+)

R ∼ 𝒩UV00W , 𝜏,
4 ⋅ Y

5!"

1
6!
1

6!
1

5!"

1

Z[ , 𝑠 = 1,… , 𝑆, (2)

where 𝜏,  are variant-specific parameters determined by the genetic architecture assumption 

(Methods). Under this model, the genome-wide causal effects correlation is defined as 𝑟#$%&' ≔

6!
5!"

; 𝑟#$%&' = 1 indicates same causal effects across local ancestries, while 𝑟#$%&' < 1 indicates 

differences across ancestries. To estimate 𝑟#$%&', given the genotype and phenotype data for a 

trait, we calculate the profile likelihood curve of 𝑟#$%&', obtained by maximizing the likelihood of 

model defined by Equations (1) and (2) with regard to parameters 𝜎34 and environmental variance 

for each fixed 𝑟#$%&' ∈ [0,1]. We assume 𝑟#$%&' > 0 a priori both because that causal effects will 

unlikely be negatively correlated across ancestries and to reduce 𝑟#$%&'  search space for 

reducing computational cost; we have also performed real data analyses to verify this assumption 

(see below). We obtain the point estimate, credible interval and perform hypothesis testing 

𝐻": 𝑟#$%&' = 1 either for each individual trait using the trait-specific profile likelihood curve, or for 

meta-analysis across multiple traits using the multiplication of the likelihood curves across multiple 

traits (analogous to inverse variance weighted meta-analysis; Methods). 

We organize next sections as follows. First, we show that our proposed approach provides 

accurate estimation of 𝑟#$%&' in extensive simulations. Second, we show 𝑟#$%&' is very close to 1 

in real data of African-European admixed individuals from PAGE, UKBB and AoU. Third, we 

replicate our findings using methods that use GWAS summary data (marginal SNP effects at 

GWAS significant loci). Finally, we investigate pitfalls of methods22,53,54,63 that use marginal SNP 
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effects showing inflated heterogeneity; we find that Deming regression is the only approach robust 

enough to quantify 𝑟#$%&' from marginal GWAS effects in admixed individuals. 

Polygenic method for radmix is accurate in simulations 

We performed simulations to evaluate our proposed polygenic method using real genome-wide 

genotypes. We simulated phenotypes using genotypes and inferred local ancestries with N=17K 

individuals and 𝑆=6.9M SNPs (with MAF > 0.5% in both ancestries in PAGE data set; we omitted 

population-specific rare SNPs to reduce estimation variance; Methods). Phenotypes were 

simulated under a range of genetic architectures with a frequency-dependent causal effects 

distribution64,65, and varying proportion of causal variants 𝑝7#+8#9, heritability	ℎ34, and true 𝑟#$%&' 

(Methods). We used 𝑝7#+8#9  = 0.1% in our main simulations (to simulate a typical polygenic 

complex trait66). When estimating 𝑟#$%&', we either used all SNPs in the imputed genotypes that 

were used to simulate phenotypes, or restricted to HapMap3 (HM3) SNPs67 to simulate scenarios 

where causal variants are not perfectly typed in the data (Methods). 

Our method produced accurate point estimates and well-calibrated credible intervals of 𝑟#$%&' 

across a range of simulation settings (Figure 2a, Supplementary Table 1 and 2). We first evaluated 

our method in simulations with a realistic range of ℎ34  = 0.1, 0.25, 0.5 and 𝑟#$%&' = 0.9, 0.95, 1.0. 

When using the imputed SNPs for estimation, results were approximately unbiased (average and 

maximal relative biases across simulation settings were -0.42%, -1.8% respectively). Credible 

intervals of 𝑟#$%&' meta-analyzed across simulations approximately cover true 𝑟#$%&': for the most 

biased setting (ℎ34  = 0.1, 𝑝7#+8#9  = 0.1%, 𝑟#$%&'  = 0.95), 95% credible interval = [0.915, 0.948]. 

When using the HM3 SNPs for estimation, there was a consistent but small downward bias 

(Figure 2a; average and maximal relative biases were -1.0%, -2.0% respectively). This small 
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downward bias was due to imperfect tagging that some of the causal SNPs were not included in 

the HM3 SNPs. Nonetheless, the magnitude of bias using either imputed or HM3 SNPs was small, 

indicating our method was accurate and robust to imperfect tagging. We next performed 

simulations to investigate the potential bias in estimating 𝑟#$%&' due to omitting population-specific 

rare variants. We re-applied our methods using SNPs with MAF > 1%, MAF > 5% in both 

populations (in addition to the default MAF>0.5%) to the same simulated data. We observed 

downward bias in estimated 𝑟#$%&' as more stringent MAF threshold was used and more SNPs 

were filtered out in estimation procedure. For example, the mode of the estimation was 0.966 

when methods were applied with MAF > 5% in simulation of 𝑟#$%&' = 1.0  (Figure 2b and 

Supplementary Table 3). This indicates omitting population-specific rare variants can lead to 

downward bias (see Discussion). We also investigated the impact of prior assumption of 𝑟#$%&': 

we applied a revised methodology that allows for −1 ≤ 𝑟#$%&' ≤ 1 and we found that estimated 

𝑟#$%&'  were highly consistent when assuming 0 ≤ 𝑟#$%&' ≤ 1  (default method) versus when 

assuming −1 ≤ 𝑟#$%&' ≤ 1 (Figure 2c). 

We performed several secondary analyses. We determined our method remained accurate at 

other simulated 𝑝7#+8#9 (Supplementary Table 2; 𝑝7#+8#9 ranging from 0.001% to 1%) and broader 

range of simulated 𝑟#$%&'  (Supplementary Table 4; 𝑟#$%&'  ranging from -0.5 to 1). In null 

simulations (𝑟#$%&' = 1), we determined the false positive rate of hypothesis test 𝐻": 𝑟#$%&' = 1 

was properly controlled for most simulation settings, and was only slightly inflated when HM3 

SNPs were used, and/or extremely low 𝑝7#+8#9  was simulated. In simulations with 𝑟#$%&'  < 1, 

power to detect 𝑟#$%&'  < 1 increased with increasing ℎ34 and decreasing 𝑟#$%&'	(Supplementary 

Table 1 and 2). In addition, we found heritability can be accurately estimated in these simulations 
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(Supplementary Table 5 and 6; Methods). In summary, our method can be reliably used to 

estimate 𝑟#$%&'. 

Causal effects are similar across local ancestries 

We applied our polygenic method to estimate 𝑟#$%&' within African-European admixed individuals 

in PAGE16 (24 traits, average N=9296, average fraction of African ancestries=78%), UKBB43 (26 

traits, average N=3808, average fraction of African ancestries = 59%), and AoU44 (10 traits, 

average N= 20496, average fraction of African ancestries = 74%) (see Methods). Meta-analyzing 

across 38 traits from PAGE, UKBB, AoU (60 study-trait pairs), we observed a high similarity in 

causal effects across ancestries (𝑟̂#$%&'= 0.95, 95% credible interval= [0.93, 0.97]). Results were 

highly consistent across data sets despite different ancestry compositions (PAGE:	𝑟̂#$%&'= 0.90 

[0.85, 0.94], UKBB: 𝑟̂#$%&' = 0.98 [0.91, 1], AoU: 𝑟̂#$%&'= 0.97 [0.94, 1]) as well as across traits 

(Figure 3a, Table 1, Supplementary Table 7). Height was the only trait that had significant 𝑟̂#$%&' <

1 (after Bonferroni correction; nominal 𝑝 = 4.3 × 10:; < 0.05/38; meta-analyzed across three 

datasets; Table 1) albeit with high estimated 𝑟̂#$%&' = 0.936	[0.89, 0.97]. Estimates of the same 

traits across datasets were only weakly correlated (Extended Data Figure 1), suggesting similar 

causal effects by ancestry consistently across traits (true 𝑟#$%&' ≈ 1 for all traits). 

We performed several secondary analyses. Similar to previous simulation studies, we determined 

prior assumption of 𝑟#$%&' had minimal impact to results: estimated 𝑟#$%&' of 24 traits in PAGE 

were highly consistent when assuming 0 ≤ 𝑟#$%&' ≤ 1 (default method) versus when assuming 

−1 ≤ 𝑟#$%&' ≤ 1 (Extended Data Figure 2). Such consistency between the two methods again 

indicates similar genetic causal effects across local ancestries (𝑟#$%&' ≈ 1) and that estimation is 

robust to choices of statistical prior on 𝑟#$%&'. Our results were robust to different assumption of 
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effects distribution (Extended Data Figure 3 and Supplementary Table 8), consistent with previous 

work68. Results were also robust to the SNP set used in the estimation (Extended Data Figure 3 

and Supplementary Table 8), and criterion of the included admixed individuals (Extended Data 

Figure 4). Additionally, an alternative formulation of method assuming different variance 

component by ancestry did not outperform our default method assuming same variance 

component by ancestry (Extended Data Figure 5 and Supplementary Table 9; Supplementary 

Note). 

Next, we contrasted 𝑟#$%&' to trans-continental genetic correlations of (1) European vs. African 

and (2) European vs. East Asian (Figure 3b; Methods). We determine a much higher similarity 

across local ancestries within admixed populations (𝑟̂#$%&' = 0.95, 95% credible interval [0.93, 

0.97]) as compared to trans-continental correlations of African vs. European within UK Biobank 

(𝑟̂*+):#() = 0.50, meta-analysis across 26 traits, 95% confidence interval [0.43, 0.56]) and East 

Asian (Biobank Japan) vs. European (UK Biobank)48 (𝑟̂*+):*#8  = 0.85, meta-analysis across 31 

traits, 95% confidence interval [0.83, 0.87]) (Supplementary Table 10). Overall, our results are 

consistent with 𝑟#$%&'  being less susceptible to heterogeneity due to differences in 

phenotyping/environment in trans-continental comparisons. 

We sought to replicate high 𝑟#$%&'  using regression-based methods that leverage estimated 

ancestry-specific marginal effects at GWAS loci (Methods). Specifically, we used the following 

marginal regression equation (restricting Equation (1) to each GWAS SNP 𝑠): 𝑦 = 𝑔,,*+)𝛽,,*+)
(=) +

𝑔,,#()𝛽,,#()
(=) + 𝐜0𝜶 + 𝜖  (we distinguish marginal effects 𝛽(=)  from causal effects 𝛽 ; Methods). 

Across 60 study-trait pairs, we detected 217 GWAS significant clumped trait-SNP pairs and we 

estimated the ancestry-specific marginal effects for each SNP (Figure 3c, Supplementary Table 

11). We determined the estimated marginal effects are largely consistent by local ancestry at 
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these GWAS clumped SNPs via Deming regression slope69 of 0.82 (SE 0.06) (applied to  𝛽,,*+)
(=)p ∼

𝛽,,#()
(=)p ; Deming regression properly accounts for uncertainty in both dependent and independent 

variables; Methods). Mean corpuscular hemoglobin (MCH)-associated SNPs at 16p13.3 drove 

most of the differences by ancestry: Deming regression slope was 0.93 (SE 0.04) on the rest of 

193 SNPs after excluding 24 MCH-associated SNPs; MCH-associated SNPs also have the 

strongest heterogeneity in marginal effects by ancestry (using HET test for effects heterogeneity 

at each SNP32; Supplementary Table 11; Methods). By performing statistical fine-mapping 

analysis, we found there are multiple conditionally independent association signals at MCH-

associated and other loci with heterogeneity by ancestry (Extended Data Figure 6; Supplementary 

Note). In fact, the MCH-associated loci locate at a region harboring alpha-globin gene cluster 

(HBZ-HBM-HBA2-HBA1-HBQ1) known to contain multiple causal variants70. These results 

suggest that, similar to causal effects, marginal effects at GWAS loci are also largely consistent 

by local ancestry across multiple traits, with the exception of 16p13.3 loci for MCH in our study, 

where multiple large-effect causal variants drive some extent of heterogeneity by ancestry in 

marginal effects. 

Pitfalls of using marginal effects to estimate heterogeneity 

Next, we focused on thoroughly evaluating methods that use marginal effects at GWAS significant 

variants to estimate heterogeneity. Marginal effects are frequently used to compare effect sizes 

across populations or across studies22,53,54,63 and enjoy popularity for their simplicity and 

requirement of only GWAS summary statistics (estimated effect sizes and standard errors). 

We first note that heterogeneities in marginal effects can be induced due to different LD patterns 

across ancestries even when the underlying causal effects are identical, especially when multiple 
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causal variants are nearby in the same LD block (Figure 4). We investigate the extent of 

heterogeneity by ancestry that can be induced in simulations with identical causal effects across 

ancestries, due to (1) local ancestry adjustment; (2) unknown causal variants coupled with 

ancestry-specific LD patterns; (3) highly polygenic genetic architectures with multiple causal 

SNPs within the same LD block; (4) standard errors in estimated marginal effects across 

ancestries. Our following simulations were based on real imputed genotypes from African-

European individuals in PAGE data (17K individuals, average fraction of African ancestries = 

78%). 

Regressing out local ancestry can deflate the observed similarity in causal effects across 

ancestries. We first discuss the use of local ancestry in the heterogeneity estimation, which is a 

unique and important component to consider when studying admixed populations. We used 

simulations to investigate the role of local ancestry adjustment using three main approaches: (1) 

ignoring local ancestry altogether (“w/o”); (2) including local ancestry as covariate in the model 

(“lanc-included”); (3) regressing out the local ancestry from phenotype followed by heterogeneity 

estimation on residuals (“lanc-regressed”) (Methods). First, in null simulations with identical 

causal effects (ratio of 𝛽*+): 𝛽#() = 1), we observed that ignoring local ancestry or including local 

ancestry as covariate yielded well-calibrated HET tests; in contrast, regressing out the local 

ancestry effect induced inflated HET test statistics (Figure 5 and Supplementary Table 12). Next, 

in power simulations with varying amount of heterogeneity (defined as ratio of 𝛽*+): 𝛽#()), including 

local ancestry in the covariate significantly reduced the power of HET test of up to 50% at high 

magnitude of heterogeneity (Figure 5 and Supplementary Table 12) (see more details in 

Supplementary Note). Thus, with respect to local ancestry, we recommend either not using it or 
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including it as a covariate in the model and not regressing out its effect prior to heterogeneity 

estimation as that will bias heterogeneity estimation. 

Having investigated the role of local ancestry adjustment, we next turn to heterogeneity estimation 

for GWAS SNPs. We focused on investigating properties of HET test and Deming regression in 

null simulations with identical causal effects across ancestries (𝛽*+): 𝛽#() = 1). Since the true 

causal variants are usually uncertain, we investigated each method either at the true simulated 

causal variants or at the LD-clumped variants (Methods). 

Uncertainty in which variants are causal can deflate the observed similarity in effects by 

ancestry. We first performed simulations with single causal variant: we randomly selected 1 SNP 

as causal in each simulation. Evaluated at the causal SNPs (Methods), we found that HET test 

and Deming slope were well-calibrated (Figure 6a-c; Extended Data Figure 7; Supplementary 

Table 13). However, evaluated at the clumped variants, as a more realistic setting (because 

causal variants need to be inferred), we found HET test became increasingly mis-calibrated with 

increased ℎ34, while Deming slope remained relatively robust (with an upward but not statistically 

significant trend with increasing ℎ34). Ordinary least squares (OLS) slope had bias even when 

evaluated at causal variants because of its ignorance of the standard errors in the estimated 

effects (Methods and Supplementary Note); such bias became smaller with increased ℎ34. 

High polygenicity can deflate the observed similarity in effects by ancestry. Next, we 

performed simulations where multiple causal variants locate nearby within the same LD block 

(typical for polygenic complex traits71,72; Methods). In this scenario, marginal GWAS effects could 

tag multiple causal effects thus potentially inflating the observed heterogeneity (Figure 4c). In 

simulations, we varied the number of causal SNPs from 0.25 to 4.0 per Mb to span most polygenic 
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architectures. In contrast to simulations with a single causal variant, all three methods (HET test, 

Deming slope, OLS slope) were biased in the presence of multiple nearby causal variants; the 

mis-calibration/bias increased with number of causal variants per region. And LD clumping did 

not alleviate the mis-calibration/bias (Figure 6d-f). Such mis-calibrations occurred irrespective of 

sample size (Extended Data Figure 8), or simulated heritability ℎ34 (Supplementary Table 14). 

In summary, we find that methods for heterogeneity-by-ancestry estimation based on marginal 

GWAS SNP effects are susceptible to inflated estimates of heterogeneity. HET test is susceptible 

to false positives when causal variants are unknown. Deming regression was robust in scenarios 

with low polygenicity, however, was susceptible to inflated estimates of heterogeneity for highly 

polygenic traits; the inflated estimates can be explained by differential tagging of causal effects 

across ancestries among causal SNPs. OLS slope had bias because it did not account for 

uncertainty in estimated effects. We also performed additional simulations with less than identical 

causal effects (𝛽*+): 𝛽#() ≠ 1) and broader range of per-SNP ℎ34  and we determined Deming 

regression was robust to quantify the heterogeneity level at the marginal effects in simulations of 

different 𝛽*+): 𝛽#(), ℎ34 (Extended Data Figure 9, Supplementary Table 15). 

3.3 Discussion 

In this work, we developed a polygenic method that model genome-wide causal effects to complex 

traits of admixed individuals. We determined causal effects are largely similar across local 

ancestries in analysis of 53K African-European admixed individuals across 38 complex traits in 

PAGE, UKBB, AoU. In addition to causal effects, we also replicated such consistency-by-ancestry 

for marginal effects at GWAS loci. We highlighted realistic simulation scenarios where regression-
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based methods using marginal effects can report false heterogeneity when causal effects are 

identical across ancestries. 

Our study has several implications for future genetic study of admixed populations, and more 

broadly of ancestrally diverse individuals. First, reduced accuracy of polygenic score has been 

observed in African-European admixed populations with increasing proportion of non-European 

ancestries56; our results suggest the causal effects difference has limited contribution to such 

reduced accuracy. Second, there have been recent work on incorporating local ancestry in 

statistical modeling of admixed populations, e.g., in association testing29, polygenic score56,57, 

based on the hypothesis that effects may differ across ancestries. Our results indicate the largely 

consistent causal effects across local ancestries (and also marginal effects at most GWAS loci). 

The robustness of our results to imperfect tagging also suggests that imperfect tagging induce 

limited effects heterogeneity across local ancestries, once SNPs are properly modeled in a 

polygenic model. The small heterogeneity-by-ancestry at causal effects or marginal effects 

suggest that association tests that do not model heterogeneity-by-ancestry should be preferred 

in most cases25,29 for improved statistical power for association. On the other hand, including local 

ancestry in association models could be useful in correcting for LD induced by admixture30 and 

lead to improved causal effect estimation. Full consideration of incorporating local ancestry in 

statistical models should also take into account the extent of confounding and heterogeneity in 

the data73. Third, our study further motivates studies of ancestrally diverse individuals to identify 

population-specific risk variants that cannot be investigated due to being rare in European 

individuals; for example, inclusion of individuals with diverse populations could further disentangle 

causal from tagging effects thus increasing the power of heterogeneity-by-ancestry estimation. 

More importantly, larger and robust trans-ancestry studies may allow for the examination of 
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differential causal effects on a locus-by-locus basis, in addition to the genome-wide approach as 

presented in this work. 

Our results add to the existing literature to further delineate sources of causal effects differences. 

Previous works have shown moderate causal effects differences across trans-continental 

populations45,46,48,63, with part of differences being induced by heterogeneity in the definition of 

environment/phenotype across continental ancestries. Similarly, a recent work54 concluded 

differences between causal effects in European local ancestries within African American admixed 

individuals and that in European American individuals. Our results showcase that if environments 

are well controlled (as is the case for genetic variants across local ancestries within admixed 

populations), causal effects are highly similar across genetic ancestries, agreeing with a recent 

study finding similar effects across ancestries at level of gene expression in controlled 

environments74. Moreover, our results suggest that local epistatic interaction, if any, does not lead 

to large causal effects differences across genetic ancestries. By contrasting the high genetic 

correlation within admixed populations and the low genetic correlation across continental 

populations, our results support the hypothesis that different environments modify the genetic 

effects to complex traits (gene-by-environment interaction) across populations. 

We note several limitations and future directions of our work. First, we have analyzed SNPs with 

MAF ≥	0.5% in both ancestries. We excluded population-specific SNPs (with MAF < 0.5% in one 

of the ancestries) because these SNPs provide little information for estimating 𝑟#$%&', since effects 

for these SNPs are estimated with large noises. We used simulations to show that omitting these 

rare variants could lead to downward bias in 𝑟#$%&'  estimation because of population-specific 

tagging of shared causal variants (Supplementary Note). However, it remains possible that causal 

variants themselves are rare and population-specific, and upward bias in the estimation of 𝑟#$%&' 
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may be present. While in this work we focused on estimating 𝑟#$%&' for common variants, future 

work with larger sample sizes is needed to further investigate the impact of population-specific 

causal SNPs to 𝑟#$%&'  estimation. Second, we have considered two-way African-European 

admixed individuals. Several practical considerations remain before applying this method to other 

admixed populations such as three-way admixture: local ancestries are typically inferred with 

larger errors75 and this should be accounted for in statistical modeling (it may be possible to 

incorporate posterior probabilities in estimated local ancestries to obtain calibrated estimates); 

additional parameters need to be estimated (e.g., three pairwise correlation parameters across 

ancestries for three-way admixture populations). We note that our methods can be readily applied 

to these populations when reliable local ancestry calls can be obtained. Third, our modeling can 

be extended to estimate correlations in causal effects stratified by functional annotation categories 

and we leave that as future work. Fourth, our polygenic method requires individual-level genotype 

and phenotype; if not available, we found Deming regression may be applied to evaluate 

heterogeneity with caution: in our simulation, Deming regression was the only method robust to 

most scenarios except for high polygenicity. In our analysis of marginal effects, we found LD 

clumping can produce cluster of SNPs that were nearby and likely dependent with each other, as 

a combined result of multiple causal variants within a region and long-range LD in admixed 

populations. Such dependence may induce bias for methods like Deming regression, highlighting 

the need for improved methods of identifying conditionally independent SNPs in admixed 

populations. Fifth, we have meta-analyzed three publicly available studies of PAGE, UKBB, AoU 

with large cohort of African-European admixed individuals. Such meta-analysis with greatly 

increased total sample size enabled us to derive the conclusion of the high similarity in causal 

effects by local ancestry across a broad range of traits. However, our estimates for each individual 

trait were still associated with large standard errors and can be further improved by analyzing 
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more individuals. Additional limitations are discussed in the Supplementary Note. Despite these 

limitations, our study has shown that causal effects to complex traits are highly similar across 

local ancestries and this knowledge can be used to guide future genetic studies of ancestrally 

diverse populations. 

3.4 Methods 

Ethical approval 

This research complies with all relevant ethical regulations. Ethics committee/IRB of Population 

Architecture using Genomics and Epidemiology (PAGE) gave ethical approval for collection of 

PAGE data. Ethics committee/IRB of UK Biobank gave ethical approval for collection of UK 

Biobank data (https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). 

Approval to use UK Biobank individual-level in this work was obtained under application 33297 at 

http://www.ukbiobank.ac.uk. Ethics committee/IRB of All of Us gave ethical approval for collection 

of All of Us data (https://allofus.nih.gov/about/who-we-are/institutional-review-board-irb-of-all-of-

us-research-program). Approval to use All of Us controlled tier data in this work was obtained 

through application at https://www.researchallofus.org. 

Statistical model of phenotype for admixed individuals 

For individual 𝑖 = 1,… ,𝑁 and SNP 𝑠 = 1,… , 𝑆, we denote 𝑥?,,,. , 𝑥?,,,/ as number of minor alleles 

at maternal and paternal haplotypes, respectively. We denote corresponding local ancestries as 

𝛾?,,,. , 𝛾?,,,/ ∈ {1,2} (we focus on two-way admixture here, e.g., ‘1’ and ‘2’ denote African and 

European ancestries for African-European admixture). Then we use 𝑔?,,,!, 𝑔?,,,4 to encode allele 

counts that are specific to each local ancestry: 
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𝑔?,,,! ≔ 𝑥?,,,.𝕀C𝛾?,,,. = 1D + 𝑥?,,,/𝕀C𝛾?,,,/ = 1D;				𝑔?,,,4 ≔ 𝑥?,,,.𝕀C𝛾?,,,. = 2D + 𝑥?,,,/𝕀C𝛾?,,,/ = 2D, 

where 𝕀(⋅) denotes the indicator function. Denoting causal allelic effects as 𝛃!, 𝛃4 ∈ ℝ1  for two 

ancestries, we model the phenotype of each individual 𝑦?  as 

𝑦? = 𝐜?0𝛂 +JC𝑔?,,,!𝛽,,! + 𝑔?,,,4𝛽,,4D + 𝜖? ,				𝑖 = 1,… ,𝑁
1

,2!

 

where 𝐜? ∈ ℝ@ , 𝜶 ∈ ℝ@  denote 𝐶  covariates (including all ‘1’ intercepts) and their effects. 𝜖? 

denotes environmental noise. By further aggregating 𝑔?,,,!, 𝑔?,,,4 into matrices 𝐆! ∈ {0,1,2}A×1 and 

𝐆4 ∈ {0,1,2}A×1 for ancestry 1 and 2, and 𝐜? into 𝐂 ∈ ℝA×@, Equation (1) becomes 

𝐲 = 𝐂𝛂 + 𝐆!𝛃! + 𝐆4𝛃4 + 𝛜	 (3)

We pose the following distribution assumptions 𝛃!, 𝛃4 and 𝛜  

Q
𝛽,,!
𝛽,,4

R ∼ 𝒩 ~V00W , 𝜏,
4 ⋅ �

𝜎34/𝑆 𝜌3/𝑆
𝜌3/𝑆 𝜎34/𝑆

�� , 𝑠 = 1,… , 𝑆							𝜖? ∼ 𝒩(0, 𝜎C4),				𝑖 = 1,… ,𝑁 (4)

where 𝜎34 denotes variance of effects for both populations, 𝜌3 denotes covariance for similarity of 

effect sizes by ancestry, and 𝜎C4 denotes the variance for environments. 𝜏, denote SNP-specific 

parameters (fixed a priori) for effect sizes distribution (see “Specifying 𝜏,   under different 

heritability models” below). We define correlation of causal genetic effects as 𝑟#$%&' =
6!
5!"
. 𝑟#$%&' =

1  indicates 𝛽,,! = 𝛽,,4  for all variants 𝑠 = 1,… , 𝑆,  i.e., causal effects are the same across 

ancestries; 𝑟#$%&' < 1 indicates differences in causal effects across ancestries. 

Calculating and filtering by ancestry-specific allele frequencies. For each SNP 𝑠 , we 

calculated MAF as 𝑓, ≔
∑ (3#,%,&E3#,%,")'
#(&

4A
. We also calculated ancestry-specific MAF as 
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∑ 3#,%,&'
#(&

∑ F𝕀HI#,%,)2!JE𝕀HI#,%,*2!JK'
#(&

, ∑ 3#,%,"'
#(&

∑ F𝕀HI#,%,)24JE𝕀HI#,%,*24JK'
#(&

 for ancestry 1 and 2. For a SNP 𝑠 with close-to-

zero for either of the ancestry, its effect 𝛽, will be estimated with very large noise. Therefore, we 

used SNPs with MAF > 0.5% in both ancestries in analyses.  

Specifying 𝝉𝒔  under different heritability models. 𝜏,  can model the coupling of SNP effects 

variance with MAF, local LD or other functional annotations. Commonly used heritability models 

include GCTA76, Frequency-dependent64,65, LDAK77, and S-LDSC78 models. While heritability 

model is important to estimate heritability and functional enrichment of heritability68,79,80, genetic 

correlation estimation, the main focus of this study, has shown to be robust to different heritability 

model68. In this work, we mainly used the frequency-dependent model for both simulations and 

real data analyses (where 𝜏,4 ∝ [𝑓,(1 − 𝑓,)]M ; 𝑓,  is the MAF of the SNP 𝑠  and 𝛼 = −0.38  is 

estimated in a meta-analysis across 25 UK Biobank complex traits65). For real data analysis, we 

additionally used GCTA model for estimation and found results are robust to heritability models 

(Extended Data Figure 3). 

Alternative choice of genotype normalization by ancestry. We discuss an alternative choice 

of normalization by ancestry, in which we have two parameters 𝜏,,! and 𝜏,,4 separately for two 

ancestries for each SNP. For example, 𝜏,,!4 ∝ !
N%,&H!:N%,&J

, 𝜏,,44 ∝ !
N%,"H!:N%,"J

 parametrizing effects 

distribution  

Q
𝛽,,!
𝛽,,4

R ∼ 𝒩 ~V00W , �
𝜏,,!4 ⋅ 𝜎34/𝑆 𝜏,,!𝜏,,4 ⋅ 𝜌3/𝑆

𝜏,,!𝜏,,4 ⋅ 𝜌3/𝑆 𝜏,,44 ⋅ 𝜎34/𝑆
�� , 𝑠 = 1,… , 𝑆 

This implies that effects per genotype standard deviation is being modeled (ref.5 termed this as 

correlation of allelic impact). While genetic correlation estimation is robust to genotype 
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standardization (Supplementary Table 8; refs.45,68), we recommend modeling allelic effects via 

same 𝜏, across ancestries (as used in our default method). 

Evaluation of genome-wide genetic effects consistency 

We discuss parameter estimation and hypothesis testing in Equations (3) and (4). Marginalizing 

over random effects 𝛃!  and 𝛃4 in Equation (3), the distribution of 𝐲 is 

𝐲 ∼ 𝒩~𝐂𝛂, 𝜎34
𝐆!𝚻𝐆!0 + 𝐆4𝚻𝐆40

𝑆
+ 𝜌3

𝐆!𝚻𝐆40 + 𝐆4𝚻𝐆!0

𝑆
+ 𝜎C4𝐈�. 

Where 𝚻 is a diagonal matrix with (𝚻),, = 𝜏,4. By denoting 𝐊! =
𝐆&𝚻𝐆&+E𝐆"𝚻𝐆"+

1
, 𝐊4 =

𝐆&𝚻𝐆"+E𝐆"𝚻𝐆&+

1
, 

and 𝜌3 = 𝜎34 ⋅ 𝑟#$%&', the distribution of 𝐲 is simplified as 

𝐲 ∼ 𝒩C𝐂𝛂, 𝜎34(𝐊! + 𝑟#$%&'𝐊4) + σC4𝐈D. (5)	 

The maximum likelihood estimates of (𝛂, 𝜎34, 𝑟#$%&', 𝜎C4) can be found by directly maximizing the 

corresponding likelihood function 𝐿C𝛂, 𝜎34, 𝑟#$%&', 𝜎C4D. However, the constraint that the correlation 

parameter 𝑟#$%&' should be small than 1 cannot be easily incorporated here. Instead, we use the 

profile likelihood 𝐿Q(𝑟#$%&'): = max
H𝛂,5!",5,"J

𝐿C𝛂, 𝜎34, 𝑟#$%&', 𝜎C4D  and perform grid search of 𝑟#$%&'  to 

maximize profile likelihood (similar to ref.65): for each candidate 𝑟#$%&', we compute 𝐊! + 𝑟#$%&'𝐊4, 

and solve (𝛂, 𝜎34, 𝜎C4) for the single variance component model in Equation (5) using GCTA62 

(v1.94.0beta). In practice, we calculate profile likelihood 𝐿Q(𝑟#$%&') for a predefined set of 𝑟#$%&' =

0.00, 0.05,… ,1.00	(𝑟#$%&' ∈ [0,1] is a reasonable prior assumption here; we alternatively used an 

extended range of 𝑟#$%&' = −1,−0.95,… , 0.95, 1.0 in simulation studies (Supplementary Table 4) 

and real data analyses (Extended Data Figure 2)). We use natural cubic spline to interpolate pairs 
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of �𝑟#$%&', 𝐿Q(𝑟#$%&')� to get a likelihood curve of 𝑟#$%&'. Then we obtain the estimated 𝑟̂#$%&' 

using the value that maximize the likelihood curve, and credible interval by combining the 

likelihood curve with a uniform prior of 𝑟#$%&' ∼ Uniform[0,1] and calculating the highest posterior 

density interval as credible interval. To perform the meta-analysis across independent estimates, 

we obtain the joint likelihood by calculating the product of likelihood curves across estimates (or 

equivalently, the sum of log-likelihood curves), and similarly calculate the estimate and credible 

interval.  

Evaluation of genetic effects consistency at individual variant with marginal effects 

Parameter estimation and hypothesis testing. We use a model between individual SNP and 

phenotype by restricting Equation (1) to the SNP of interest 𝑠, as 

𝑦? = 𝐜?0𝛂 + �𝑔?,,,!𝛽,,!
(=) + 𝑔?,,,4𝛽,,4

(=)� + 𝜖? ,				𝑖 = 1,… ,𝑁, 

or in vector form, 

𝐲 = 𝐂𝛂 + 𝐠,,!𝛽,,!
(=) + 𝐠,,4𝛽,,4

(=) + 𝛜 (6) 

where 𝐂, 𝐠,,!, 𝐠,,4, 𝛜  contain 𝐜? , 𝑔?,,,!, 𝑔?,,,4, 𝜖?  for all individuals 𝑖 = 1,… ,𝑁 , respectively. We 

distinguish marginal effects 𝛽,,!
(=), 𝛽,,4

(=) in Equation (6) from causal effects 𝛽,,!, 𝛽,,4	in Equation (1): 

marginal effects tag effects from nearby causal SNPs with taggability as a function of ancestry-

specific correlation between the focal SNP and nearby causal SNPs. Therefore, heterogeneity in 

marginal effects by local ancestry can be induced even if causal effects are the same (see 

extensive simulation in Results and more details in Supplementary Note). We estimate 𝛽,,!
(=), 𝛽,,4

(=) 

using least squares (jointly for 𝛽,,!
(=), 𝛽,,4

(=)) and perform hypothesis testing of 𝐻": 𝛽,,!
(=) = 𝛽,,4

(=) with 
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a likelihood ratio test by comparing Equation (6) to a restricted model where the allelic effects are 

the same 𝛽,
(=) = 𝛽,,!

(=) = 𝛽,,4
(=): 

𝐲 = 𝐂𝛂 + C𝐠,,! + 𝐠,,4D𝛽,
(=) + 𝛜 (7) 

Marginal effects-based methods for estimating heterogeneity. We describe details of 

marginal effects-based methods to estimate heterogeneity with input from a set of estimated effect 

sizes 𝛽,,!
(=)p,𝛽,,4

(=)p and corresponding estimated standard errors se(𝛽,,!
(=))p , se(𝛽,,4

(=))p  for a set of SNPs. 

Pearson correlation: by calculating the Pearson correlation of 𝛽,,!
(=)p,𝛽,,4

(=)p across SNPs. Pearson 

correlation does not model errors in estimated effects, therefore is expected be smaller than 1 

and decreases with increasing error magnitude. 

OLS regression slope: by regressing 𝛽,,!
(=)p ∼𝛽,,4

(=)p  ( 𝛽,,!
(=)p  as dependent variable, 𝛽,,4

(=)p  as 

independent variable) or 𝛽,,4
(=)p ∼𝛽,,!

(=)p. It does not model errors in independent variable. Moreover, 

it assumes homogeneous errors in dependent variable across SNPs. Therefore, it is susceptible 

to these error terms and notably results can vary when one exchange the regression orders81 

(𝛽,,!
(=)p ∼𝛽,,4

(=)p  vs. 𝛽,,4
(=)p ∼𝛽,,!

(=)p ; e.g., 𝛽,,!
(=)p  and 𝛽,,4

(=)p  are associated with different standard errors 

when being estimated in an admixed population with different ancestry proportion). 

Deming regression slope: obtained with Deming regression69 of 𝛽,,!
(=)p,𝛽,,4

(=)p  and estimated 

standard errors se(𝛽,,!
(=))p , se(𝛽,,4

(=))p . Deming regression models heterogeneous error terms in both 

independent and dependent variables, therefore is more robust than Pearson correlation and OLS 

regression. Specifically, given a set of data and estimated standard errors C𝑥? , 𝑦? , 𝜎S,? , 𝜎T,?D, 𝑖 =
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1,… , 𝑛  (we use a different set of notations for simplicity), Deming regression optimizes the 

following objective function to obtain estimated intercept 𝛼 and slope 𝛽: 

min
M,U

V&,…,V-
X#,…,X-

J�
𝜖?4

𝜎T,?4
+
𝛿?4

𝜎S,?4
� ,

Y

?2!

 

subject	to: 𝑦? + 𝜖? = 𝛼 + 𝛽(𝑥? + 𝛿?),				𝑖 = 1,… , 𝑛. 

Standard errors of 𝛼, 𝛽 can be obtained with bootstrapping. Notably, Deming regression slope 

produce symmetric results with different regression orders (the obtained slope 𝛽 will be reciprocal 

to each other). However, Deming regression can still produce biased results when the standard 

errors 𝜎S,? , 𝜎T,? are mis-specified81. 

False positive rate of the HET test, as described above in “Parameter estimation and hypothesis 

testing”. It is expected to be well calibrated under the null, because its derivation as a likelihood 

ratio test. Similar to Deming regression, HET test properly models heterogeneous standard errors. 

Genotype data processing 

PAGE genotype. We analyzed 17,299 genotyped individuals self-identified as African American 

in PAGE study1. These individuals were from 3 studies: Women’s Health Initiative (WHI) 

(N=6,820), Multiethnic Cohort (MEC) (N=5,325) and the Icahn School of Medicine at Mount Sinai 

BioMe biobank in New York City (BioMe) (N=5,154). See more details in ref.16. The genotypes 

were imputed to the TOPMed reference panel and we retained well-imputed SNPs with imputation 

R2 > 0.8 and MAF > 0.5%. We further retained variants with ancestry-specific MAF > 0.5% in both 

ancestries. This resulted in ~6.9M variants and 17,299 individuals in our analysis. 
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UK Biobank genotype. We analyzed individuals with African-European admixed ancestries in 

UK Biobank. We first inferred the proportion of ancestries for each individual in UK Biobank using 

SCOPE82 (https://github.com/sriramlab/SCOPE; version Dec. 9th 2021) supervised using 1000 

Genomes Phase 3 allele frequencies (AFR, EUR, EAS, SAS). We retained 4,327 African-

European admixed individuals with more than 5% of both AFR and EUR ancestries, and with less 

than 5% of both EAS and SAS ancestries. We retained well-imputed SNPs with imputation R2 > 

0.8 and MAF > 0.5%. We further retained variants with ancestry-specific MAF > 0.5% in both 

ancestries. This resulted in ~6.6M variants and 4,327 individuals in our analysis. 

AoU genotype. We analyzed individuals with African-European admixed ancestries in AoU. We 

first performed principal component analysis of all 165,208 individuals in AoU microarray data 

(release v5) joint with 1,000 Genomes Phase 3 reference panel. Then we identified 31,375 

individuals with African-European admixed ancestries (with at least both 10% European 

ancestries and 10% African ancestries, and who was within 2×normalized distance from the line 

connecting individuals of European ancestries and African ancestries in 1,000 Genomes 

reference panel; Supplementary Note). For these individuals, we performed quality control using 

PLINK283 (v2.0a3) with –-geno 0.05 -–max-alleles 2 -–maf 0.001, and statistical 

phasing using Eagle284 (v2.4.1) with default settings. We retained variants with ancestry-specific 

MAF > 0.5% in both ancestries. This resulted in ~0.65M variants and 31,375 individuals in our 

analysis. For AoU, we chose to use microarray data instead of whole genome sequencing data 

because microarray data of AoU contained more individuals and analyzing microarray data 

reduced the computational cost. 

Local ancestry inference. We performed local ancestry inference using RFMix85 

(https://github.com/slowkoni/rfmix; v2) with default parameters (8 generations since admixture). 

https://github.com/sriramlab/SCOPE
https://github.com/slowkoni/rfmix
https://github.com/
https://github.com/slowkoni/rfmix
https://github.com/slowkoni/rfmix
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We used 99 CEU individuals and 108 YRI individuals from unrelated individuals in 1,000 Genome 

Project Phase 386 as our reference populations, similar to previous works85,87. We used HapMap3 

SNPs67 in inference, and then interpolated the inferred local ancestry results to other variants in 

both PAGE and UK Biobank data sets. The accuracy of RFMix for local ancestry inference has 

been validated for African-European admixed individuals29 (e.g., ~98% accuracy for simulations 

with a realistic demographic model for African American individuals). We performed additional 

analyses using PAGE African American individuals to assess the robustness of local ancestry 

inference using an alternative set of reference data. We used all European and African individuals 

in 1,000 Genomes project (excluding African Caribbean in Barbados (ACB) and African Ancestry 

in SW USA (ASW) because they were admixed). We determined a high consistency of 98.9% for 

the inferred local ancestry using reference data of CEU/YRI or all European/African individuals. 

We used the inferred local ancestry for both simulation study and real data analysis described 

below. 

Simulation study 

We describe methods for simulations that corresponds to each section of the Results. 

Pitfalls of including local ancestry in estimating heterogeneity. We first describe strategies 

of including local ancestry in estimating heterogeneity. 

For “lanc included”, we follow common practices29–31,88 to use a local ancestry term ℓ, (defined 

above) in Equation (1): 

𝑦 = ℓ,𝛽,,9#Z7
(=) + 𝑔,,!𝛽,,!

(=) + 𝑔,,4𝛽,,4
(=) + 𝐜0𝛂 + 𝜖, 

where 𝛽,,9#Z7
(=)  denotes the effect of local ancestry. 
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For “lanc regressed”, we use 𝑦 = ℓ,𝛽,,9#Z7
(=) + 𝑔,,!𝛽,,!

(=) + 𝑔,,4𝛽,,4
(=) + 𝜖. We first estimate  𝛽,,9#Z7

(=)p  in 

the regression of 𝑦 ∼ ℓ,𝛽,,9#Z7
(=) , and then estimate 𝛽,,!

(=), 𝛽,,4
(=)  in regression of �𝑦 − ℓ,𝛽,,9#Z7

(=)p �∼

𝑔,,!𝛽,,!
(=) + 𝑔,,4𝛽,,4

(=). 

To assess the impact of including local ancestry term when applying HET test, we randomly 

selected 1,000 SNPs on chromosome 1 from PAGE genotype. We simulated traits with single 

causal SNP. For each SNP, we simulated quantitative trait with the given single causal SNP with 

varying 𝛽*+): 𝛽#() = 1.0,1.05,1.1,1.15,1.2. We scaled 𝛽*+), 𝛽#() such that the causal SNP explained 

the given amount of ℎ34. For each SNP, simulations of 𝛽*+), 𝛽#() and environmental noises were 

repeated 30 times. We then applied different strategies of including local ancestry to these 

simulations and obtained p-value of HET testing 𝐻": 𝛽*+) = 𝛽#(). We additionally included the top 

principal component as a covariate throughout. We evaluated the distribution of FPR or power of 

HET test by sub-sampling without replacement: we drew 100 random samples, each sample 

consisted of 500 SNPs, randomly drawn from the pool of 1,000 SNPs and 30 simulations; such 

sampling accounts for the randomness from both the environmental noises and SNP MAF. We 

calculated FPR or power for each sample of 500 SNPs, obtained empirical distributions of FPR 

or power (100 points each), and then calculated the mean and SE (using empirical standard 

deviation) from the empirical distribution. 

Simulations with single causal variant. We performed simulations with single causal variant to 

assess the properties of methods based on estimated marginal effects. We randomly selected 

100 regions each spanning 20 Mb on chromosome 1 (120K SNPs per region on average, SD 6K). 

For each region, the causal variant located at the middle of the region; it had same causal effects 

across local ancestries and was expected to explain a fixed amount of heritability (0.2%, 0.6%, 



 

 
 

 

37 

1.0%); the sign of the causal effect and environmental noises were randomly drawn 100 times. 

We evaluated 4 metrics at both causal variants and clumped variants; clumped variants were 

obtained with regular LD clumping (index 𝑝 < 5 × 10:[, 𝑟4 = 0.1, window size = 10 Mb) using 

PLINK (v1.90b6.24): --clump --clump-p1 5e-8 --clump-p2 1e-4 --clump-r2 0.1 -

-clump-kb 10000. We used a 10Mb clumping window to account for the larger LD window 

within admixed individuals; other parameters were adopted from ref.89. We found that when the 

simulated ℎ34  was large, LD clumping can result in multiple SNPs because the secondary SNPs 

can reach 𝑝 < 5 × 10:[	when we applied a commonly-used 𝑟4 = 0.1 threshold. Therefore, for 

each region, we either retained only the SNP with strongest association (matching the simulation 

setup of a single simulated causal variant), or retained all the SNPs from clumping results. Similar 

as above, we evaluated the distribution of 4 metrics by sub-sampling without replacement: we 

drew 100 random samples, each sample consisted of 500 regions (each region has 1 causal 

SNP), randomly drawn from the pool of 100 regions and 100 simulations; such sampling 

accounted for the randomness from both the environmental noises and SNP MAF. We then 

calculated the mean and SE from the 100 random samples. 

Simulation with multiple causal variants. We performed simulations with multiple causal 

variants. We simulated multiple causal variants randomly distributed on chromosome 1 (515,087 

SNPs). We drew ncausal = 62, 125, 250, 500, 1000 causal variants to simulate different level of 

polygenicity, such that on average there were approximately 0.25, 0.5, 1.0, 2.0, 4.0 causal 

variants per Mb. We fixed the heritability explained by all variants on chromosome 1 as ℎ34  = 2.5%, 

5%, 10%, 20%. We performed sub-sampling without replacement to estimate the average and 

standard errors of 4 metrics (each sample consisted of 1,000 SNPs, randomly drawn from SNPs 

across 500 simulations). We found that when the simulated ℎ34  was small (ℎ34  = 2.5%, 5%), 
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because the limited sample size in our data (n=17,299) for PAGE data, very few SNPs reach 𝑝 <

5 × 10:[	in these simulations and consequently standard errors are very large and results cannot 

be reliably reported. Therefore, we chose to report results only from ℎ34 = 10%, 20% in 

Supplementary Table 14. 

Genome-wide simulation for evaluating our polygenic method. We performed simulations to 

evaluate our polygenic method in terms of parameter estimation of 𝑟#$%&' and hypothesis testing 

𝐻": 𝑟#$%&' = 1 using real genome-wide genotypes. We simulated quantitative phenotypes using 

genotypes and inferred local ancestries from PAGE data set. The phenotypes were simulated 

under a wide range of genetic architectures varying proportion of causal variants 𝑝7#+8#9 , 

heritability ℎ34 , and true correlation 𝑟#$%&' , and a frequency dependent effects distribution for 

causal variants: in each simulation, we randomly drew 𝑝7#+8#9 proportion of causal variants. Given 

the set of causal variants, we simulated quantitative phenotypes based on Equations (3) and (4). 

The environmental noises were then simulated according to the desired heritability ℎ34. 

Real data analysis 

Phenotype processing. For PAGE, we analyzed 24 heritable traits in PAGE based on ref.16. For 

UK Biobank, we analyzed 26 heritable traits based on heritability and number of individuals with 

non-missing phenotype values, following ref.90. For All of Us, we analyzed 10 heritable traits, 

including physical measurement and lipid phenotypes, which were straightforward to phenotype 

and have large sample sizes. Physical measurement phenotypes were extracted from Participant 

Provided Information in AoU dataset. Lipid phenotypes (including LDL, HDL, TC, TG) were 

extracted following https://github.com/all-of-us/ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_analyses, 

including extracting most recent measurements per person, and correcting value with statin usage. 

https://github.com/all-of-us/ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_analyses
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These traits included both quantitative and binary traits and it was previously shown that genetic 

correlation methodology can be directly applied to binary traits91. For each trait, we quantile 

normalized phenotype values. We included age, sex, age*sex, and top 10 in-sample principal 

components (and “study center” for PAGE) as covariates. We quantile normalized each covariate 

and used the average of each covariate to imputed missing values in covariates. 

Genome-wide genetic correlation estimation. We calculated 𝐊!, 𝐊4 matrices in Equation (5) 

using either imputed SNPs and HapMap3 SNPs (for PAGE and UKBB), or microarray SNPs (for 

AoU). We used either frequency-dependent or GCTA heritability models via specifying 𝜏,4. 𝐊!, 𝐊4 

matrices were separately calculated for individuals within PAGE, UKBB, AoU studies. For each 

given 𝑟#$%&', we used GCTA62 (v1.94.0beta) to fit a single variance component model with the 

calculated 𝐊! + 𝑟#$%&'𝐊4  using gcta64 --reml --reml-no-constrain. We additionally 

included the causal signals at Duffy SNP (rs2814778) in 1q23.2 as covariates for analysis of white 

blood cell count and C-reactive protein because of the known strong admixture peak92,93. 

Specifically, we used the local ancestries of SNP closest to Duffy SNP in our data as proxies for 

Duffy SNP (Duffy SNP itself is not typed or imputed in our data). The local ancestries are valid 

proxies of Duffy SNP because Duffy SNP is known to be highly differentiated across ancestries 

(alternate allele frequency is 0.006 vs. 0.964 in ref.86) and therefore local ancestries are highly 

correlated with the Duffy SNP. We excluded closely related individuals in the analysis (< third-

degree relatives; using ref.94 with plink2 --king-cutoff 0.0884). We note that our meta-

analysis credible interval across traits can be anti-conservative (i.e., the actual coverage 

probability is less than the nominal coverage probability) because we did not account for the 

genetic correlation across traits. 



 

 
 

 

40 

Individual trait-SNP analysis. We evaluated effects consistency at individual SNPs that were 

significantly associated with each trait. First, we performed GWAS and LD clumping with the same 

parameters described above. Even though LD clumping was performed using stringent 

parameters, we found cluster of clumped SNPs that were likely dependent with each other as a 

combined result of multiple causal variants within a region the long-range LD in admixed 

populations (Supplementary Table 11; Discussion). For each clumped trait-SNP pair, we 

estimated ancestry-specific effects and standard errors. 

Statistical fine-mapping analysis. We performed fine-mapping analysis to each trait-SNP pair 

with significant heterogeneity by ancestry using SuSiE95 (v0.12) (for PAGE and UKBB, for which 

we used genotype data with high SNP density). For each trait-SNP, we included all imputed SNPs 

in 3Mb window. We ran SuSiE with individual-level genotype and phenotype (covariates were 

regressed out of genotype and phenotype), using default settings with maximum number of 10 

non-zero effects. We obtained posterior inclusion probability and credible sets. 

Statistics and reproducibility 

We analyzed three publicly available datasets of PAGE, UK Biobank and All of Us and sample 

sizes were determined from these studies. We did not use randomization or blinding. We focused 

on analyzing individuals with admixed African-European ancestries and individuals with other 

genetic ancestries were not included in analyses of this work. We replicate our findings across 

these three independent datasets. 
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3.5 Figures 

 

Figure 3.1 Concepts of estimating similarity in the causal effects across local ancestries.  

(a) For a given trait, with phased genotype (paternal haplotype at the top and maternal haplotype 

at the bottom) and inferred local ancestry (denoted by color), we investigate whether 𝛽,,#() ≈

𝛽,,*+)	across each causal SNP 𝑠. (b) We focus on estimating the genome-wide correlation of 

genetic effects across ancestries 𝑟#$%&' = Cor[𝛽#(), 𝛽*+)], which is the regression slope (orange 

line) of ancestry-specific causal effects. For reference, the grey dashed line corresponds 𝛽#() =

𝛽*+). 

 

Figure 3.2 Results of genetic correlation 𝑟#$%&' estimation in genome-wide simulations.  
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Simulations were based on 17K PAGE individuals and 6.9M genome-wide imputed variants with 

MAF > 0.5% in both ancestries. We fixed the proportion of causal variants 𝑝7#+8#9 as 0.1% and 

varied genetic correlation 𝑟#$%&'  = 0.90, 0.95, 1.0. (a) Impact of using HapMap3 or imputed 

variants in estimation. We varied simulated genome-wide heritability ℎ34= 0.1, 0.25, 0.5. (b) Impact 

of selecting common variants at different MAF thresholds in estimation. ℎ34 was fixed to 0.25 and 

imputed variants at different MAF thresholds were used in estimation. (c) Impact of prior 

assumption in estimation. ℎ34 was fixed to 0.25 and imputed variants were used in estimation. For 

each simulated genetic architecture, we plot the mode and 95% credible interval based on the 

meta-analysis across 100 simulations (Methods). Numerical results are reported in Supplementary 

Table 1-4 (including results for other 𝑝7#+8#9, 𝑟#$%&'). 
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Figure 3.3 Similarity of causal effects and marginal effects across local ancestries meta-analyzed 

across PAGE, UKBB, AoU.  

(a) We plot the trait-specific estimated 𝑟#$%&'  for 16 traits. For each trait, dots denote the 

estimation modes; bold lines and thin lines denote 50% / 95% highest density credible intervals, 

respectively. Traits are ordered according to total number of individuals included in the estimation 

(shown in parentheses). These traits are selected to be displayed either because they have the 

largest total sample sizes, or because the associated SNPs of these traits exhibit heterogeneity 

in marginal effects (see the panel on the right). We also display the meta-analysis results across 

60 study-trait pairs (38 unique traits). Numerical results are provided in Table 1. (b) Comparison 

of 𝑟#$%&' (n=38 traits) to meta-analysis results from trans-continental genetic correlation of African 

vs. European (n=26 traits) and East Asian vs. European (n=31 traits). Point estimates and 95% 

confidence intervals are denoted using triangles and lines. (c) We plot the ancestry-specific 

marginal effects for 217 GWAS significant clumped trait-SNP pairs across 60 study-trait pairs. 

Trait-SNP pairs with significant heterogeneity in marginal effects by ancestry (𝑝\]^< 0.05/217 via 

HET test) are denoted in color (non-significant trait-SNP pairs denoted as black dots; some black 

dots with large differences across ancestries were not significant because of the large standard 

errors in estimated effects). Numerical results are reported in Supplementary Table 11. Point 

estimates and 95% confidence intervals for Deming regression slopes of 𝛽,,*+)
(=)p ∼𝛽,,#()

(=)p  are 

provided either for all 217 SNPs (red), or for 193 SNPs after excluding 24 MCH-associated SNPs 

(blue). MCH, mean corpuscular hemoglobin. RBC, red blood cell. CRP, C-reactive protein. LDL, 

low density lipoprotein cholesterol. HDL, high density lipoprotein cholesterol. TC, total cholesterol. 

BMI, body mass index. WHR, waist to hip ratio. 
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Figure 3.4 Induced heterogeneities in marginal effects across local ancestries.  

(a) Illustrations that different LD patterns across local ancestries can induce differential tagging 

between a causal SNP and a tag SNP in (b) or another causal SNP in (c). LD strengths between 

the two SNPs are indicated both in the thickness of arrows and in the color shades of ‘*’ elements 

in LD matrices. (b) Example of single causal SNP with no heterogeneity. Causal effects are the 

same across local ancestries, and the estimated marginal effects at causal SNP will be also very 

similar with sufficient sample size. However, because of differential tagging across local 

ancestries, the estimated marginal effects evaluated at the tag SNP are different. (c) Example of 

multiple causal SNPs with no heterogeneity. Causal effects for both SNPs are the same across 

local ancestries. In this example, the correlation between the 2 causal variants is higher for 

genotypes in African local ancestries than those in European local ancestries. Therefore, African 

ancestry-specific genotypes tag more effects, creating different ancestry-specific marginal effects 

at each causal SNP. 
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Figure 3.5 Pitfalls of including local ancestry in estimating heterogeneity.  

In each simulation, we selected a single causal variant and simulated quantitative phenotypes 

where these causal variants explain heritability ℎ34  = 0.6%; we also varied ratios of effects across 

ancestries 𝛽*+): 𝛽#(). (a) False positive rate in null simulation 𝛽*+): 𝛽#()= 1.0. (b) Power to detect 

𝛽*+) ≠ 𝛽#() in power simulations with 𝛽*+): 𝛽#()> 1. We did not include “lanc regressed” because it 

is not well-calibrated in null simulations. We plot the mean and 95% confidence intervals, 

calculated via 100 random sub-samplings with each sample consisting of 500 SNPs (Methods). 

Numerical results are reported in Supplementary Table 12. 
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Figure 3.6 Mis-calibration of HET test / Deming regression / OLS regression in simulations with 

𝑟#$%&' = 1.  

(a-c) Simulations with single causal variant. Each causal variant had the same causal effects 

across local ancestries and each causal variant explained a fixed amount of heritability (0.2%, 

0.6%, 1.0%). (a) False positive rate (FPR) of HET test. (b) Deming regression slope of 𝛽*+)
(=)p ∼

𝛽#()
(=)p. (c) OLS regression slope of 𝛽*+)

(=)p ∼𝛽#()
(=)p . Numerical results are reported in Supplementary 

Table 13. (d-f) Simulation with multiple causal variants. We simulated different level of 

polygenicity, such that on average there were approximately 0.25, 0.5, 1.0, 2.0, 4.0 causal 

variants per Mb. Causal variants had same causal effects across local ancestries. The heritability 
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explained by all causal variants was fixed at ℎ34 = 10% . (d) FPR of HET test. (e) Deming 

regression slope of 𝛽*+)
(=)p ∼𝛽#()

(=)p . (f) OLS regression slope of 𝛽*+)
(=)p ∼𝛽#()

(=)p . 95% confidence 

intervals were based on 100 random sub-samplings with each sample consists of 1,000 SNPs 

(Methods). 
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3.6 Tables 

Trait N 𝒓̀𝐚𝐝𝐦𝐢𝐱 mode 95% credible interval(s) p-value 𝒉𝒈𝟐b  

BMD 1668 0.000 [0.00, 0.78] 0.012 0.34±0.16 

Neuroticism 3044 1.000 [0.36, 1.00] 1 0.36±0.11 

Education years 3324 0.000 [0.00, 0.94] 0.4 0.055±0.075 

MCHC 3650 0.228 [0.00, 0.87] 0.061 0.21±0.092 

Type 1 diabetes 3767 0.381 [0.00, 0.95] 0.77 -0.033±0.016 

HLR count 3852 1.000 [0.07, 1.00] 1 0.12±0.086 

RBC distribution width 3925 1.000 [0.27, 1.00] 1 0.28±0.087 

Lymphocyte count 3935 1.000 [0.00, 0.60] [0.66, 1.00] 1 0.13±0.086 

Monocyte count 3935 0.972 [0.26, 1.00] 0.82 0.3±0.087 

MCH 3948 0.829 [0.07, 1.00] 0.36 0.2±0.076 

RBC count 3948 1.000 [0.37, 1.00] 1 0.31±0.09 

Hypothyroidism 4063 1.000 [0.05, 1.00] 1 0.046±0.07 
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PR interval 4071 0.844 [0.08, 1.00] 0.36 0.22±0.084 

QRS interval 4078 1.000 [0.07, 1.00] 1 0.12±0.082 

Asthma 4079 1.000 [0.15, 1.00] 1 0.21±0.087 

Ever smoked 4083 0.764 [0.04, 0.98] 0.31 0.17±0.082 

QT interval 4089 0.920 [0.07, 1.00] 0.69 0.16±0.083 

HbA1c 5353 0.954 [0.08, 1.00] 0.77 0.19±0.078 

Cigarettes per day 6995 0.999 [0.08, 1.00] 1 0.097±0.047 

Fasting insulin 7753 1.000 [0.21, 1.00] 1 0.13±0.044 

eGFR 7978 0.805 [0.16, 1.00] 0.09 0.19±0.046 

C-reactive protein 8321 0.995 [0.82, 1.00] 0.94 0.28±0.046 

Fasting glucose 9646 0.695 [0.00, 0.93] 0.27 0.064±0.035 

Coffee consumption 11587 0.982 [0.10, 1.00] 0.9 0.074±0.03 

Platelet count 12545 0.783 [0.20, 0.98] 0.025 0.19±0.038 

White blood cell count 12755 0.931 [0.70, 1.00] 0.26 0.23±0.036 
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Type 2 diabetes 18630 0.897 [0.49, 1.00] 0.23 0.12±0.024 

Hypertension 20744 0.929 [0.30, 1.00] 0.45 0.08±0.027 

LDL 21979 0.958 [0.70, 1.00] 0.55 0.14±0.046 

HDL 22039 0.961 [0.82, 1.00] 0.46 0.22±0.057 

Triglycerides 22494 0.843 [0.54, 0.98] 0.012 0.18±0.027 

Total cholesterol 22555 0.818 [0.50, 0.97] 0.007 0.18±0.039 

Heart rate 28764 0.980 [0.82, 1.00] 0.74 0.099±0.015 

WHR 36756 0.973 [0.86, 1.00] 0.55 0.12±0.015 

Diastolic blood pressure 43787 1.000 [0.90, 1.00] 1 0.077±0.024 

Systolic blood pressure 43788 1.000 [0.88, 1.00] 1 0.071±0.013 

BMI 49521 0.974 [0.92, 1.00] 0.33 0.22±0.02 

Height 49605 0.936 [0.89, 0.97] 0.00043 0.4±0.014 

Meta analysis  0.947 [0.93, 0.97] 8.7 × 10()  

Table 3.1 Genome-wide genetic correlation across 38 complex traits for African-European 

admixed individuals in PAGE, UKBB, AoU.  
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For each trait, we report number of individuals, posterior mode and 95% credible interval(s) for 

estimated 𝑟#$%&' , nominal one-sided p-value for rejecting the null hypothesis of 𝐻": 𝑟#$%&' = 1 

(unadjusted for multiple testing; Methods), and estimated heritability and standard error. Meta 

analysis results performed across 38 traits are shown in the last row. Traits are ordered according 

to number of individuals. For each trait, we perform meta-analysis across studies if the trait is in 

multiple studies (Methods). Lymphocyte count has two credible intervals because of the non-

concave profile likelihood curve, as a result of small sample size. BMD, bone mineral density. 

HLR, high light scattering reticulocytes. MCHC, mean corpuscular hemoglobin concentration. 
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4 Calibrated prediction intervals for polygenic scores across 

diverse contexts 

4.1 Introduction 

Accurate prediction of complex diseases/traits integrating genetic and non-genetic factors is 

essential for a wide range of fields from agriculture to personalized genomic medicine. The 

genetic contribution to traits is typically predicted using polygenic scores (PGS) that summarize 

the joint contribution of many genetic factors96–99. A critical barrier in PGS use is their context-

specific accuracy – their performance (and/or bias) varies across genetic ancestry18,56,100–102, age, 

sex, socioeconomic status and other factors103–105. This prevents equitable use of PGS across 

individuals of all contexts18,99,106.  

PGS use large-scale genome-wide association studies (GWAS) to estimate linear prediction 

models of traits based on genetic variants; these models are then used for new data that often 

has different context characteristics from the GWAS training data (e.g., different distributions of 

genetic ancestry, social determinants of health)96,97,107.  Even when testing data is similar to 

training data, genetic effects themselves can vary by contexts (e.g., due to genotype-environment 

interaction, across age108, sex109, genetic ancestry45,48,54,110) thus leading to differential PGS 

performance (as traditional PGS do not model such interactions). Furthermore, when genetic 

effects are unknown, allele frequency, linkage disequilibrium and differential tagging of true latent 

genetic factors can also lead to context-specific accuracy of PGS-based predictions50,103,108.  

To account for PGS accuracy variability, we propose to incorporate context-specificity using trait 

prediction intervals that vary across contexts. Trait prediction intervals denote the range 
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containing true trait values with pre-specified confidence (e.g., 90%). They provide a natural 

approach to model variability in PGS accuracy – narrower prediction intervals correspond to 

contexts where PGS attains higher accuracy – that can then be utilized in PGS-based 

predictions103,111,112. As an example, consider the case of two individuals with the same PGS-

based predictions for low-density lipoprotein cholesterol (LDL) of 180 mg/dL. If the two individuals 

have different contexts (e.g., sex) that are known to impact PGS accuracy (e.g., R2=0.1 in men 

vs. 0.2 in women), their prediction intervals will also vary (e.g., 180 ± 40 mg/dL vs. 180 ± 10 

mg/dL). In this example, the second individual is more likely to meet a decision criterion of 

LDL>160 mg/dL for clinical intervention. 

To achieve calibration across all contexts, we propose a statistical framework (CalPred) that 

jointly models the effects of all contexts on PGS accuracy leveraging calibration data. The key 

assumption is that new target individuals for whom PGS-based predictions will be employed have 

similar distribution of contexts as calibration data. This is motivated by precision health efforts that 

created EHR-linked biobanks of patients from the same medical system in which PGS-based 

predictions will be implemented in the future113–116; in this context the assumption is that the 

biobank is representative of future patients entering the same medical system.  

First, we analyze data from two large-scale biobanks (UK Biobank43 and All of Us24) to find 

pervasive impact of context on PGS accuracy across a wide range of traits. All considered traits 

(N=72) have at least one context impacting their accuracy103,105. Socio-economic contexts have 

similar magnitudes of impact on PGS accuracy as genetic ancestry; for example, PGS accuracy 

varies by up to ~50% for individuals across “education years” context averaged across all 

considered traits in All of Us. Socio-economic contexts have greater impact on PGS accuracy in 

All of Us, a more diverse dataset, as compared to UK Biobank. Our results can be used to identify 
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important contexts to account for when implementing PGS-based prediction in diverse 

populations. 

Second, we use simulations and real data analysis to find that CalPred provides calibrated 

predictions across individuals of diverse contexts. For quantitative traits, CalPred jointly models 

the impact of genetic ancestry, age and sex and other social determinants of health. In LDL 

prediction, prediction intervals need adjustment by up to ~40% across contexts to achieve 

calibration. Context-specificity of PGS prediction varies across traits and the studied population; 

for example, prediction intervals for education years need adjustment by 94% in All of Us versus 

10% in UK Biobank, reflecting the more diverse distribution of education years and other social 

determinants of health in All of Us. For disease traits, incorporating context information is critical 

for calibrated predicted probability. In All of Us, PGS-based type 2 diabetes (T2D) predictions 

ignoring “annual household income” are mis-calibrated across income groups, while incorporating 

income in the model leads to calibrated predictions. Overall, our approaches provide a path 

forward to developing and applying PGS for human trait predictions across diverse contexts. 

4.2 Results 

Overview 

We incorporate context-specific accuracy in PGS-based predictions using prediction intervals 

varying across contexts to maintain calibration: the true phenotype is contained within the 

prediction interval at a pre-specified probability (e.g., 90%; Fig. 1a). Naturally, as accuracy varies 

by context, the interval width needs to vary adaptively to maintain calibration (Fig. 1b). For 

illustrative purpose we distinguish among three types of prediction intervals (Fig. 1c). First, 

standard errors of PGS weights can be used to estimate prediction intervals that do not vary 
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across contexts and/or individuals; these types of intervals are calibrated only when target 

perfectly matches training which is hard to achieve in practice. Second, prediction intervals can 

be estimated empirically using a calibration dataset while ignoring context96,117–121; these types of 

intervals are robust to mismatches between training and testing, but are mis-calibrated in 

particular contexts due to the variability of PGS accuracy. Third, prediction intervals that vary 

across contexts can be estimated using a calibration dataset by empirically quantifying the impact 

of each context on prediction accuracy; context-specific prediction intervals are adaptive and 

robust across contexts albeit at the expense of a more complex statistical model and larger 

calibration data that spans all contexts.  

We distinguish three categories of datasets when calibrating predictions. Training data, used to 

perform GWAS and PGS weights estimation, often involves meta-analysis of multiple datasets 

where additional context adjustment is impractical due to data access limitations or unmeasured 

context variables. Calibration data is used to calibrate PGS with respect to trait-relevant contexts. 

For example, EHR-linked biobanks within medical systems are generated in part to calibrate PGS-

based predictions before any clinical implementation. Testing data refers to new individuals for 

which the calibrated prediction models will be employed (e.g., patients within medical systems 

not currently involved in EHR-linked biobanks). Motivated by clinical implementation of PGS-

based predictions in medical systems where EHR-linked biobanks already exist, here we focus 

on leveraging calibration data to estimate context-specific prediction intervals. In this scenario it 

is natural to use existing EHR-linked biobanks as approximation for future patients within the 

same medical system; therefore, our approach assumes that calibration and testing data are from 

similar populations. For example, UCLA ATLAS biobank113 contains data of UCLA Health patients 

that can be used to calibrate PGS-based predictors for future visits of UCLA patients. Our 

approach does not require training and calibration data to match in contexts (Discussion). 
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Context-specific prediction intervals are implemented with two components: (1) context-specific 

mean 𝑦�? = 𝔼[𝑦?|𝐜?] as a function of context 𝐜? for each individual i; we also include PGS-Context 

interaction terms (PGSxC) to model varying PGS slope across contexts in this work; (2) context-

specific variance 𝔼[(𝑦? − 𝑦�?)4|𝐜?] = expC𝐜?0𝛃5D, where 𝐜?  denotes contexts including age, sex, 

socioeconomic factors and top principal components as major axes of genetic ancestry and 𝛃5 

quantifies the unique impact of each context on variation of the prediction interval accounting for 

other contexts (Methods). Denoting prediction standard deviation (SD) as σ�? = �expC𝐜?0𝛃�5D, 90% 

prediction intervals can be derived as (𝑦�? − 1.645 × σ�? , 𝑦�? + 1.645 × σ�?). Our approach builds upon 

existing models for heteroscedasticity in probabilistic forecasting122–126. Existing works incorporate 

variable residual variances across different subsets of data (i.e., contexts in our case) in addition 

to modeling prediction mean in standard regression analysis. Within genetics literature, such 

models have been used to detect genotypes associated with phenotype variability (vQTL)127–129. 

Here, we build on such methods towards modeling PGS variable accuracy across contexts. 

Widespread context-specific PGS accuracy across populations 

Although PGS accuracy has been shown to vary across selected traits and contexts18,103–105, its 

pervasiveness remains unclear. We analyzed two large-scale biobanks in the UK and US (UK 

Biobank and All of Us) comprising >600K individuals spanning a wide range of contexts. We 

trained PGS for 72 traits in individuals previous annotated as “White British”43 (WB) from UK 

Biobank and evaluated these PGSs in independent testing data from UK Biobank and All of Us. 

We focused on 11 contexts that span genetic ancestry, sex, age, and socio-economic factors 

such as educational attainment (Methods). We used relative ΔR2 to quantify the impact of context 

to PGS accuracy defined as 
h./0	2345.467
" :h8/../9	2345.467

"

h:66
" , where 𝑅[8+j8*k]4  denotes R2 between PGS 
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and residual phenotype computed in a given range of the context variable (top/bottom quintile for 

continuous contexts; binary subgroups for binary contexts). We found widespread context-

specific PGS accuracies across all traits and contexts studied (Fig. 2, Supplementary Fig. 1 and 

2, Supplementary Table 1 and 2; Methods).  

Context-specific accuracy in UK Biobank 

All 72 traits had at least one context impacting their accuracy in UK Biobank data; 264 (out of 792) 

PGS-context pairs had significant variable accuracy (p < 0.05 / (72 × 11); Methods). Overall, 

genetic ancestry had the most widespread impact on PGS accuracy: 70 of 72 traits had significant 

differences in PGS accuracy, with an average relative ΔR2 of -46% between top and bottom PC1 

quintiles (Supplementary Fig. 3). Socioeconomic contexts also significantly impacted PGS 

accuracy; PGS accuracy significantly differed for 62 traits, with an average relative ΔR2 of -23% 

between top and bottom deprivation index quintiles. The direction of context’s impact depended 

on the trait being studied. For example, age significantly impacted 20 traits; rather than 

consistently increasing or decreasing accuracy, an older age led to increased accuracy for 14 

traits (e.g., high-density lipoprotein cholesterol and white blood cell count in Fig. 2; HDL and WBC) 

and to decreased accuracy for 6 traits (e.g., LDL). 

The widespread context-specificity remained when testing data was matched to training data by 

genetic ancestry (Fig. 2). 21 (out of 72) PGSs had at least one context significantly impacting their 

prediction accuracy; 42 PGS-context pairs had significant variable accuracy (p < 0.05 / (72 × 11)). 

We replicated previously reported variable PGS accuracy in WB individuals for diastolic blood 

pressure, body mass index, education years across contexts of sex, age and deprivation index103. 
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As an example, LDL was significantly impacted by six contexts in WB individuals, with age having 

the strongest impact (relative ΔR2 was more than 100% between top and bottom age quintiles). 

Next, we studied the unique impact of each context on variable PGS accuracy within CalPred 

model jointly accounting for all contexts (Methods, Fig. 2cd). Context contribution to variable 

accuracy conditional on all other contexts was quantified with 𝛽5 , where larger absolute 𝛽5 

indicated more substantial variation in accuracy along a context variable (Methods). In general, 

effects of contexts to traits were largely independent. For example, both PC1 and deprivation 

index significantly impacted PGS accuracy for a range of traits in the joint model, indicating both 

had a unique contribution to variable PGS accuracy. We also found examples showing otherwise: 

the impact of “wear glasses” context on LDL accuracy can be explained by its correlation with age 

(Extended Data Fig. 1), while other contexts independently contributed to variable LDL accuracy. 

These results indicated the importance of jointly considering all measured contexts to correctly 

assess the unique contribution of each context. We found that contexts including sex, age, income, 

and deprivation index had comparable impact on accuracy as genetic ancestry (Fig. 2ef). The 

distribution of estimated effects of 𝛽5  suggested predominantly higher prediction accuracy for 

individuals with higher income and lower deprivation indices; this can be partly explained by 

different context distribution PGS training data: WB individuals had higher income and lower 

deprivation indices compared to the rest of the UK Biobank130 (Extended Data Fig. 2). We noted 

two context-trait pairs with large differences between single-context and combined-context 

analysis results even within UK Biobank white British individuals (sex-BMI and sex-WHR). This is 

because single-context analysis uses population-level R2 focusing on the predictive power of only 

PGS while combined-context analysis assesses the impact of context on phenotypical residual 

variance (Supplementary Note). 
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Context-specific accuracy in All of Us 

We next turned to All of Us, a diverse biobank across the US comprising more than 245K 

participants (Supplementary Fig. 3 and Extended Data Fig. 3). Due to challenges in phenotype 

matching across biobanks, we restricted the analysis to 12 PGS and 11 contexts matching the 

UK Biobank analyses (Methods). All PGS had at least one context impacting their accuracy (Fig. 

3, Supplementary Table 3 and 4). 89 PGS-context pairs were significant when considering all 

individuals, and 61 PGS-context pairs were significant when restricting to individuals with self-

reported race/ethnicity (SIRE) as “White” (“White SIRE”) (p < 0.05 / (12 ×  11); Methods). 

Prediction of cholesterol and LDL were similarly impacted by a broad range of contexts. Prediction 

of education years was impacted by contexts including age, BMI, employment, income, both when 

considering all individuals and considering “White SIRE” sample, consistent with that 

socioeconomic contexts influence PGS of socio-behavioral traits such as education103,131,132.  

Interestingly, socioeconomic contexts had greater impact on context-specificity in All of Us as 

compared to UK Biobank. For example, years of education context significantly impacted 9 out of 

11 traits with average relative ΔR2=50%, as compared to 2 out of 71 traits with average relative 

ΔR2=0.2% in UK Biobank (averaging across traits other than education years itself). This may be 

explained by larger variation of education years in the US and/or education being more correlated 

with social determinants of health in the US compared to the UK. When restricting analysis to 

subset of individuals with more homogenous genetic ancestry, the impact of contexts of education 

years and income level was attenuated but remained significant; this is consistent with variable 

PGS accuracy across socioeconomic contexts being partially accounted for through their 

correlation with genetic ancestry (Extended Data Fig. 4). 
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For completeness we also evaluated PGSs for height133 and LDL134 derived from multi-ancestry 

meta-analyses from PGS Catalog135 (Fig. 3). We found that multi-ancestry PGSs did not alleviate 

widespread context-specific accuracy. Higher income, education years, better employment, or 

lower BMI predominately led to higher prediction accuracy across traits (Fig. 3ef). We formally 

compared and determined an overall consistency for fitted 𝛽5 coefficients across populations and 

biobanks (Supplementary Fig. 4). We determined that variable R2 across contexts was not solely 

driven by differences of phenotype variance in context strata: context-specific R2 can result from 

differences in either phenotypic variance or PGS predictiveness, and the extent attributed to either 

component varied by each context-trait pair (Supplementary Fig. 5). We further verified that 

context-specificity patterns remained significant when context variables themselves were 

regressed out from the initial GWAS for PGS training (Supplementary Fig. 6). 

CalPred is calibrated across contexts in simulations 

Having shown that context-specificity of PGS accuracy is pervasive across traits and biobanks, 

we next turned to CalPred to estimate context-specific prediction intervals accounting for context- 

and trait-specific variable accuracy (Methods). We performed simulations to evaluate calibration 

of CalPred in the presence of gene-by-context interactions109,136. For quantitative traits, we 

simulated individuals in two contexts with different heritability and an imperfect genetic correlation 

(the first context is used to train PGS; Methods; Fig. 4a). Due to genetic heterogeneity, PGS 

weights derived in the first context were not portable to the second context, producing a biased 

phenotype-PGS regression slope and prediction intervals with deflated coverage. With CalPred, 

prediction mean was calibrated via PGSxC terms; prediction interval lengths were adjusted to 

reflect different prediction precision across two contexts. For disease traits, we simulated 

individuals in two contexts under a liability threshold model with different disease prevalence and 
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an imperfect genetic correlation (Fig. 4b; Methods). We first predicted disease probability with a 

logistic regression model for all individuals in both contexts, using PGS weights derived from the 

first context. As expected, this model ignoring context information was mis-calibrated overall in 

each context. By incorporating PGS, PGSxC interaction and context variables, we determined 

disease risk predictions were then calibrated within and across contexts. We also simulated other 

scenarios of gene-context interactions for both quantitative and disease traits, and verified that 

our framework produced calibrated predictions (Extended Data. Fig. 5 and 6). 

We next evaluated CalPred in simulations where prediction accuracy varies across contexts 

similar to real data18,100,103 (Fig. 5; Methods). We assessed calibration of prediction intervals both 

at the overall level and within each context subgroup (Methods). First, generic prediction intervals 

without context-specific adjustment had severe over-/under-coverage within each context 

subgroup stratified by PC1, age, or sex. As expected, bias of coverage tracked closely with 

accuracy across contexts. Second, CalPred context-specific prediction intervals were calibrated 

across contexts, by incorporating context-specific prediction accuracy in the interval estimation. 

We also performed simulations to find CalPred performance depended on calibration sample size 

Ncal>500 for accurate model fitting, and it is important to select an appropriate set of contexts in 

calibration (Extended Data Fig. 7). Parameter estimation of 𝛃5  was accurate with correctly-

specified model and remained robust in model mis-specification scenarios (Supplementary Fig. 

7). Overall, simulation results demonstrated that CalPred produces well-calibrated prediction 

intervals when contexts are measured and present in the data, and highlighted the importance of 

comprehensive profiling of relevant context information. 

CalPred yields calibrated context-specific predictions 
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We applied CalPred to produce context-specific prediction intervals for a wide range of 

quantitative traits across UK Biobank and All of Us. We first performed several analyses in All of 

Us to investigate best practices to model quantitative traits. We examined effects of PGS, context 

variables, and PGSxC for trait prediction and found that PGS had the largest contribution in 

explaining trait variation (cross-trait average standardized effects with magnitudes of 0.23 

compared to 0.22 of sex and 0.14 of BMI, the second and third largest contributors). PGSxC had 

significant contributions but with smaller effects than those from context variable themselves 

(Extended Data Fig. 8). Notably, inclusion of PGS substantially increased inter-individual variation 

in prediction SD, suggesting that PGS is an important source of variation in prediction accuracy 

across individuals (Extended Data Fig. 9). PGSxC and VbyC components had additive 

contribution in improving model fitting, indicating they modeled independent aspects of traits 

(Supplementary Fig. 8-10). 

We next focus on LDL, an important risk factor of cardiovascular disease134. Calibration by context 

is particularly important because LDL prediction accuracy was impacted by many contexts, with 

largest impact from age (Fig. 2 and 3). We modeled prediction mean using PGS together with 

age, sex, and genetic ancestry, and modeled context-specific prediction intervals using the set of 

contexts in Fig. 2 and 3 (Methods). LDL prediction accuracy decreased with age (R2=18% in 

youngest quintile vs. R2=11% in oldest quintile; Fig. 6a). Generic prediction intervals were mis-

calibrated with coverage of 93% and 86% for youngest and oldest quintiles instead of the nominal 

level of 90%. In contrast, context-specific prediction intervals had the expected 90% coverage 

across all considered contexts. This resulted from varying prediction interval length by context, 

with a wider interval compensating for lower prediction accuracy. For example, as CalPred 

estimated a positive impact of age to prediction uncertainty (𝛽5=0.15; p<10-30), individuals in 
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youngest/oldest age quintiles had average prediction standard deviation (SD) of 27.4 vs. 34.3 

mg/dL (25% difference; Supplementary Fig. 11; Methods). These findings were replicated in All 

of Us and in other traits (Supplementary Fig. 12 and 13), where R2 varied across contexts and 

context-specific prediction intervals achieved well-calibration across contexts providing per-

individual accuracy metrics (Supplementary Fig. 14). Next, we sought to examine the joint 

contribution of all considered contexts to variable prediction SD (instead of separately considering 

age, PC1 or sex; Fig. 6b). Context-specific accuracy was more pronounced by ranking individuals 

by prediction SD accounting for impact of all contexts (prediction SD ranged approximately from 

20 mg/dL to 45mg/dL; Fig. 6b): we detected a 44% difference comparing individuals in bottom 

and top deciles of prediction SD (25.2 mg/dL vs. 36.5 mg/dL; Fig. 6c; Supplementary Fig. 15 and 

16). This implied that individuals in top prediction SD decile (characterized by contexts of male, 

increased PC1 and age; see Fig. 2c) needs to have prediction interval widths increased by 44% 

compared to those in bottom decile. 

Extending analysis accounting for all contexts to all traits in UK Biobank and All of Us, we 

determined a widespread large variation of context-specific prediction intervals across traits (Fig. 

7 and Supplementary Fig. 17). Average differences between top and bottom prediction SD deciles 

across traits were 30% and 47%, respectively for UK Biobank and All of Us. The trait with the 

highest prediction SD difference was the average mean spherical equivalent (avMSE), a measure 

of refractive error, that was impacted the most by "wear glasses" context. Individuals who wore 

glasses had a much higher PGS-phenotype R2 than those who did not, likely due to the reduced 

variation in avMSE phenotypes among individuals who did not wear glasses. Comparing across 

the two datasets, BMI, LDL, and cholesterol were more heavily influenced by context than 

average, while diastolic blood pressure and HDL were less impacted, suggesting trait-specific 

susceptibility to context-specific accuracy. There were cases where context-specificity of the 
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same trait was drastically different across datasets. For example, prediction SD differences for 

predicting education years was 94% in All of Us versus 10% in UK Biobank. This disparity likely 

reflected the more diverse distribution of education years and other social determinants of health 

in the US population sampled in All of Us (Fig. 2 and 3). Such differences between datasets also 

highlight that context-specificity can be population-specific and the need to consider 

characteristics of different populations in calibration. 

We next investigated disease risk prediction for four well-powered heritable diseases: type 2 

diabetes (T2D)137, coronary artery disease (CAD)138, prostate cancer (PrCA)139, breast cancer 

(BrCA)140 (Extended Data Fig. 10). We first considered a baseline model using logistic regression 

to predict disease probability with PGS, age, sex, BMI, top 10 PCs as predictors (Methods). We 

evaluated calibration of predicted disease risk – whether predicted probability aligns with 

observed disease rate. While baseline model predictions were calibrated at an aggregate level, 

they were mis-calibrated within specific contexts (Fig. 8a). For example, among individuals with 

a predicted T2D risk of approximately 30% (25%-35%, N=4,662), the observed proportion with 

T2D was 30.9% (S.E.=0.7%). However, this proportion varied significantly with individual’s 

“annual household income”: 32.7% (S.E.=2.0%) in the lowest income bracket (N=562) had T2D, 

compared to only 18.1% (S.E.=2.3%) in the highest income bracket (N=271); T2D risk was 

consistently under-estimated for individuals of lower income and over-estimated for individuals 

with higher income. The discrepancy suggests that a baseline model ignoring disease-relevant 

contexts produces severely mis-calibrated probability estimates. We then used a logistic model 

to incorporate contexts including “annual household income” together with their interaction with 

PGS, to find that predicted disease risk was calibrated at the overall level and also within each 

income group; modeling variance by context for disease liability achieved similar calibration (Fig. 

8b, Supplementary Fig. 18 and 19); we discussed reasons explaining their similar performances 
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(Methods). Overall, our results emphasize the importance of incorporating contexts into 

probability risk calibration to achieve calibrated predictions across all considered contexts. 

4.3 Discussion 

Our work adds to the literature of PGS-based prediction as follows. We show that context-specific 

accuracy of PGS is highly pervasive across traits and biobanks with socioeconomic contexts often 

having larger impact than genetic ancestry18,19,103,105,112. We introduce CalPred to estimate 

context-specific prediction intervals. Compared with other PGS calibration approaches, CalPred 

incorporates context information leveraging a calibration dataset (Supplementary Note). For 

quantitative traits, CalPred provides a framework to quantify individualized context-specific 

generalizability/portability of a given PGS to be leveraged in downstream analyses. Prediction 

intervals can be interpreted as a reference range accounting for each individual’s contexts 

(including age, sex, and genetic variation via PGS). They provide individual-level uncertainty 

metrics improving PGS applications. For example, they can be used to identify individuals having 

PGS-based predictions with exceedingly high uncertainty and inform cases when it is not 

appropriate to report polygenic scoring results because of the high instability. For disease traits, 

we found models which overlooked context information resulted in mis-calibrated disease 

probability predictions in the presence of gene-context interactions. Such miscalibrations are 

problematic if they lead to over-/under-diagnosis for individuals across socioeconomic context 

groups. To address this, proper incorporation of context variables and PGSxC interactions in 

PGS-based predictions led to calibrated predictions across contexts. 

We note several limitations of our work. First, we motivated our approach for clinical 

implementation using continuous biomarkers; we focused on LDL as an example continuous lab 
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value with clinical application. Other biomarkers to consider could be prostate-specific antigen 

(PSA) currently employed for patient stratification for biopsies and prostate cancer diagnosis. 

Recent work has highlighted incorporating genetically predicted PSA levels improves clinical utility 

by reducing unnecessary biopsies and improving detection of aggressive form of prostate 

cancer14. Therefore, lab values form a useful system for prediction method development that may 

have clinical implications; actual clinical utility requires thorough implementation considering 

clinical decision processes, and we leave that as future work. Second, CalPred requires 

calibration data that matches in distribution with the target data, including both distribution of 

contexts and their impact to traits. Otherwise, there may be bias in target samples 

underrepresented in calibration data. Meanwhile, we note that PGS weights do not need to be 

derived from the same population as the target population. For example, in this work, PGS weights 

trained in white British individuals from UK Biobank achieved expected calibration in All of Us. 

The calibration process can incorporate differences across PGS training and target population 

into context-specific prediction intervals. Third, comprehensive profiling of context information is 

fundamental in applying calibration and interpreting results. In our simulation studies, missing 

contexts prevent proper calibration of PGS. In our T2D analysis, “annual household income”, 

instead of a causal context, may be a proxy to other contexts such as diet and physical exercise 

that are more directly relevant to T2D. We advocate standardized and comprehensive profiling of 

contexts across biobanks to quantify the role of contexts to PGS accuracy. Relatedly, GWAS data 

collection needs to prioritize diversity not only in genetic ancestry, but also across social-economic 

contexts. Fourth, we found limited improvement of model fitting when including PGS in VbyC and 

therefore did not include PGS because model interpretation is more straightforward when 

prediction variance is solely a function of contexts. However, it is technically valid to include PGS 

in VbyC as genetic contexts may modify prediction precisions. Fifth, context-specific accuracy 
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can arise due to biological genetic effects differences across contexts such as GxAge and GxSex, 

or because of statistical differences of MAF/LD patterns contributing to a substantial proportion of 

PGS performance differences across genetic ancestry. Disentangling various aspects driving 

context-specific accuracy is an ongoing research direction103,109,136. Sixth, this work has primarily 

focused on the impact of PGS on the variability of prediction intervals across contexts. However, 

it is important to note that variable accuracy of other predictors and variable phenotypic variance 

also contribute to our findings. The results presented here regarding variable prediction accuracy 

should be attributed to the collective impact of all predictors, rather than solely to PGS. While we 

have determined the substantial contribution of PGS to variable accuracy, further quantifying the 

relative contributions of each predictor is an important future direction. 

4.4 Methods 

Ethical approval 

This research complies with all relevant ethical regulations. Ethics committee/IRB of UKBB gave 

ethical approval for collection of UKBB data (https://www.ukbiobank.ac.uk/learn-more-about-uk-

biobank/about-us/ethics). Approval to use UKBB individual level in this work was obtained under 

application 33297 at http://www.ukbiobank.ac.uk. Ethics committee/IRB of AoU gave ethical 

approval for collection of AoU data (https://allofus.nih.gov/about/who-we-are/institutional-review-

board-irb-of-all-of-us-research-program). Approval to use AoU controlled tier data in this work was 

obtained through application at https://www.researchallofus.org. 

Constructing calibrated and context-specific prediction intervals 
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We first provide an overview of CalPred framework. CalPred takes as input pre-trained PGS 

weights, genotype, phenotype and contexts to train a calibration model producing calibrated and 

context-specific prediction intervals for target individuals. We consider a calibration dataset with 

Ncal individuals. For each individual i=1, …, Ncal, we have genotype vector 𝐠? ∈ {0,1,2}. with M 

SNPs, and phenotype 𝑦?. Using pre-trained PGS weights for a given trait 𝛃3 ∈ ℝ., we calculate 

PGS in calibration data with 𝐠?0𝛃3. PGS and other contexts including age, sex, genetic ancestry 

and socioeconomic factors, compose each individual i’s contexts 𝐜? 	(all ‘1’ intercepts are also 

included). Phenotypes are modeled as  

𝑦? = 𝒩C𝜇(𝐜?), 𝜎4(𝐜?)D, 𝑖 = 1,… ,𝑁7#9	 

𝜇(𝐜?) = 𝐜?0𝛃m , 𝜎4(𝐜?) = expC𝐜?0𝛃5D. 

There are two main components: 

• 𝜇(𝐜?) = 𝐜?0𝛃m models the baseline prediction mean using predictors of PGS, contexts, as 

well as PGSxContext interaction terms (PGSxC). 

• 𝜎4(𝐜?) = expC𝐜?0𝛃5D  models context-specific variance of 𝑦  around prediction mean. 

Differential prediction accuracy across contexts lead to variable variance around 

prediction mean across contexts. The use of exp	(⋅) is to ensure that the variance term >= 

0. PGSxC terms are not included for ease of interpretation. 

We estimate 𝛃m , 𝛃5  leveraging calibration data using restricted maximum likelihood for linear 

model with heteroskedasticity56 (statmod v1.5.057). Individual-specific predictive distribution 

𝒩C𝜇̂(𝐜?) = 𝐜?0𝛃�m , 𝜎4¡(𝐜?) = exp	(𝐜?0𝛃�5)D	can be generated for any target individual 𝐜?  using the 
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fitted 𝛃�m , 𝛃�5 . The corresponding 𝛼 -level prediction interval (e.g., 𝛼=90% for 90% prediction 

interval) is  

V𝜇̂(𝐜?) − Φ:! �1 − M
4
� 𝜎�(𝐜?), 𝜇̂(𝐜?) + Φ:! �1 − M

4
�𝜎�(𝐜?)W , where Φ:!  is the inverse cumulative 

distribution function of a standard normal distribution (e.g., Φ:! �1 − M
4
� = 1.645  for 90% 

prediction interval). With moderate sample size for calibration data (e.g., Ncal>500 as validated in 

our simulation studies), such models can be estimated with high precision. 

Quantile normalization for non-normal phenotype distribution. In the above, we have 

assumed that prediction intervals can be modeled as a Gaussian distribution, which may not be 

valid for every phenotype. For robust implementation in real data, we apply a transformation 

function 𝑄(⋅)  to 𝑦  with ranked-based inverse normal transformation such that 𝑄(𝑦)  follows a 

normal distribution; 𝑄(𝑦) can then be modeled using methods described above. Fitted prediction 

intervals can then be transformed back into the original 𝑦 space using 𝑄:!(𝑦). 

Model for disease trait within the liability threshold model. CalPred model can be extended 

for disease traits. We first use CalPred to model continuous disease liability 𝑦9&#j =

𝒩C𝜇(𝐜), 𝜎4(𝐜)D, and then integrate out scenarios where disease liability is above the threshold 

𝑃(𝑦 = 1) = ΦC𝑦9&#j > 0D = Φ�m(𝐜)
5(𝐜)

�,  where Φ(⋅)  is a link function used in logistic or probit 

regression. Intuitively, this maps the continuous liability into disease risk while accounting for 

liability uncertainty. Disease trait probability can be alternatively modeled using a logistic 

regression model 𝑃(𝑦 = 1) = ΦC𝐜0𝛃9op&8k&7D. In real data analysis (Fig. 8 and Supplementary Fig. 

19), we did not observe substantial improvement of CalPred model over logistic linear model. To 

explain this, comparing logistic regression model 𝑃(𝑦 = 1) = ΦC𝐜0𝛃9op&8k&7D with CalPred model 
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𝑃(𝑦 = 1) = Φ�m(𝐜)
5(𝐜)

�, we note that 𝐜0𝛃9op&8k&7 can be seen as first-order terms in Taylor expansion 

approximating m(𝐜)
5(𝐜)

. Therefore, our observation is explained by the fact that linear logistic 

regression model is a good approximation of CalPred disease model. 

Quantifying context-specific R2 of PGS 

We quantify context-specific prediction accuracy (R2) of PGS, that is, to what extent PGS have 

variable prediction accuracy across contexts (including age, sex, genetic ancestry, 

socioeconomic factors that can influence traits58). Identification of contexts contributing to variable 

prediction accuracy is important in constructing calibration model. For each pair of context and 

trait in a population, we calculated prediction accuracy R2 between PGS 𝑦�?  and covariate-

regressed phenotypes 𝑦? (phenotypes for each trait were regressed out of age, sex, age*sex and 

top 10 PCs; this adjustment is to better separate the contribution of PGS) across each subgroup 

of individuals defined by contexts. We summarized results using relative differences of R2 across 

context groups to baseline R2 calculated across all evaluated individuals (differences between two 

classes for binary contexts; differences between top and bottom quintiles for continuous contexts). 

We calculated Spearman’s R2 between point predictions and covariate-regressed phenotypes 

𝑅4(𝑦�, 𝑦) within each context subgroup. We also calculated the baseline Spearman’s R2 denoted 

as 𝑅#994  across all individuals regardless of contexts. We summarized the results for each pair of 

trait and context using the “relative ΔR2” defined as h;</30&
" :h;</30""

h:66
" . We assessed statistical 

significance of Δ𝑅4 across context subgroups by testing the null hypothesis 𝐻": Δ𝑅4 = 0 using 

1,000 bootstrap samples of Δ𝑅4 (in each bootstrap sample, the whole dataset was resampled 

with replacement and ΔR2 were then re-evaluated). Statistical significance was assessed using 

two-sided p-values comparing the observed ΔR2 to the bootstrap samples of ΔR2.  
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Relationship between CalPred model and R2. Population-level metrics such as R2 can be 

derived from the model as a function of 𝛃5  and distribution of 𝐜? . Suppose 𝑦 = 𝑦� + 𝑒, 𝑒 ∼

𝒩(0, exp(𝐜0𝛃5)), where 𝑦, 𝑦�, 𝑒 denote phenotypes, point predictions and residual noises. We 

have 

𝑅4(𝑦, 𝑦�) = 𝑅4(𝑦� + 𝑒, 𝑦�) =
Var[𝑦�]

Var[𝑦�] + Var[𝑒]
 

Holding Var[𝑦�] as fixed, 𝑅4(𝑦, 𝑦�) is a function of Var[𝑒], which is determined by the distribution of 

𝐜  and values of 𝛃5 . This indicates a correspondence between 𝛃5  and 𝑅4(𝑦, 𝑦�).  Therefore, 

estimated 𝛃5 can also be used as a metric to quantify context-specific accuracy (as used in Fig. 

2 and 3). While relative ΔR2 is easier to interpret, it assesses the marginal contribution of each 

context separately and require discretization of continuous contexts. Meanwhile, 𝛽5 in CalPred 

model jointly account for all contexts in parametric regression, and therefore can quantify the 

unique distribution of each context to variable accuracy. On the other hand, even with constant 

prediction interval length (constant Var[𝑒]), variable 𝑅4  can result from variable Var[𝑦�] across 

context groups. While CalPred focuses on modeling Var[𝑒] as a function of contexts to represent 

variable R2, Var[𝑦�] can change across contexts. For example, Var[𝑦�] can vary with contexts if 𝑦� =

PGS × 𝛽89oq* and the slope 𝛽 varies as a function of context. Such variable slope term can be 

modeled with variable slope terms in prediction mean 𝑦� (Supplementary Note). 

Real data analysis 

We analyzed a diverse set of contexts and traits in UK Biobank and All of Us (1) to quantify the 

extent of context-specific prediction accuracy; (2) to evaluate context-specific prediction intervals 

via CalPred for quantitative traits; (3) to evaluate probability prediction for disease traits. 
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Polygenic score weights. Polygenic scores were trained on 370K individuals in UK Biobank that 

were assigned to “white British” cluster and 1.1M HapMap359 SNPs. For each trait, we performed 

GWAS using PLINK2 (v2.0a3) plink2 --glm with age, sex and top 16 PCs as covariates. We 

estimated PGS weights using snp_ldpred2_auto in LDpred260 (bigsnpr v1.8.1) with GWAS 

summary statistics and in-sample LD matrix. These PGS weights were applied to target 

individuals in both UK Biobank and All of Us to obtain individual-level PGS. To train PGS weights 

for All of Us individuals, we overlapped 1.2M SNPs in All of Us quality-controlled microarray data 

to 12M SNPs in UK Biobank imputed data to obtain a set of 0.8M SNPs present in both datasets. 

Then we trained and applied PGS weights using these shared SNPs in UK Biobank to All of Us 

individuals. This procedure improves PGS accuracy in All of Us by ensuring all SNPs with non-

zero weights to present in the data. 

UK Biobank dataset. We analyzed 490K genotyped individuals (including both training and 

target individuals). We used 1.1M HapMap359 SNPs in all analyses. All UK Biobank individuals 

are clustered into sub-continental ancestry clusters based on top 16 pre-computed PCs (data-

field 22009 in ref.28 as in ref.6). This procedure assigned 410K individuals into “white British” 

cluster. A random subset of 370K “white British” individuals to perform GWAS and estimate PGS 

weights (see above); we trained PGS weights starting with individual-level data to avoid overlap 

of sample between training and target data. For evaluation, we used the rest of 120K individuals 

with genotypes, phenotypes and contexts (including individuals from both ~40K “White British” 

individuals and ~80K other individuals). We focused on analyzing 72 traits with R2>0.05 in 40K 

WB target individuals and/or biological importance). We followed https://github.com/privefl/UKBB-

PGS/blob/main/code/prepare-pheno-fields.R and ref.6 to preprocess trait values (e.g., log-

transformation and clipping of extreme values). For each trait, we quantile normalized phenotype 

https://github.com/privefl/UKBB-PGS/blob/main/code/prepare-pheno-fields.R
https://github.com/privefl/UKBB-PGS/blob/main/code/prepare-pheno-fields.R
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values; when performing calibration, phenotype quantiles were calculated based on calibration 

data and then used to normalize target data. We analyzed 11 contexts representing a broad set 

of socioeconomic and genetic ancestry contexts, including binary contexts (sex, ever smoked, 

wear glasses, drinking alcohol) and continuous contexts (top two PCs, age, BMI, income, 

deprivation index, and education years). We note that income and education years have been 

processed into 5 quintiles in the original data of UK Biobank. 

All of Us dataset. We analyzed 245K genotyped individuals with diverse genetic ancestry 

contexts (short read whole genome sequencing data in release v7). We retained 1.2M SNPs from 

microarray data after quality control using PLINK2 (v2.0a3) with plink2 --geno 0.05 --chr 

1-22 --max-alleles 2 --rm-dup exclude-all --maf 0.001. We used microarray 

data because it contains more individuals and can be analyzed with low computational cost. All 

individuals with microarray data were used in the evaluation. We analyzed 10 heritable traits, 

including height, BMI, WHR, diastolic blood pressure, systolic blood pressure, education years, 

LDL, cholesterol, HDL, triglyceride; they are straightforward to phenotype and have large sample 

sizes. Physical measurement phenotypes were extracted from Participant Provided Information. 

Lipid phenotypes (including LDL, HDL, TC, TG) were extracted following https://github.com/all-of-

us/ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_analyses, including 

procedures of extracting most recent measurements per person, and correcting for statin usage. 

For each trait, we quantile normalized phenotype values; when performing calibration, phenotype 

quantiles were calculated based on calibration data and were then used to normalize target data. 

We included age, sex, age*sex, and top 10 in-sample principal components as covariates in the 

model. We also quantile normalized each covariate and used the average of each covariate to 

impute missing values in covariates. We analyzed 11 contexts, including binary contexts (sex) 

https://github.com/all-of-us/ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_analyses
https://github.com/all-of-us/ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_analyses
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and continuous contexts (top two PCs, age, BMI, smoking, alcohol, employment, education, 

income, number of years living in current address). 

Population descriptor usage. We explain our usage choices of population descriptor, including 

the use of top two PCs to capture genetic ancestry/similarity and the use of “white British” in 

analyses of UK Biobank and “white SIRE” in analyses of All of Us. We use the top two PCs 

computed across all individuals in UK Biobank or in All of Us, respectively, to capture the 

continuous genetic ancestry variation in each dataset. While these two PCs provide major axes 

of genetic variation (Supplementary Fig. 3), we acknowledge that top two PCs alone are not 

sufficient to fully capture all variation in the entire population. We used discretized PC1 and PC2 

subgroups to calculate population-level statistics such as 𝑅4  while we acknowledge that the 

underlying genetic variation is continuous. In UK Biobank, we intended to analyze a set of 

individuals with relatively similar genetic ancestry to perform GWAS and derive PGS. We used a 

set of individuals previously annotated with “white British” that were identified using a combination 

of self-reported ethnic background and genetic information having very similar ancestral 

backgrounds based on PCA results28. In All of Us, we selected a set of individuals with self-

reported race/ethnicity (SIRE) being “white”, to study how PGS have different accuracy across 

environmental contexts in such a sample defined by SIRE. Noting that SIRE is not equivalent to 

genetic ancestry, the contrast of results from UK Biobank and All of Us helps understand how 

genetic and non-genetic factors impact PGS accuracy in a group of individuals defined by SIRE 

or genetic ancestry. 

Evaluating context-specific prediction intervals. For quantitative traits, noting that prediction 

mean and standard deviation are 𝜇̂(𝐜), 𝜎�(𝐜) for a target individual with contexts 𝐜, we evaluate 

prediction intervals with regard to phenotypes 𝑦  using metrics of (1) prediction accuracy: 



 

 
 

 

75 

𝑅4(𝜇̂(𝐜), 𝑦) ; (2) coverage of prediction intervals: evaluating Pr «𝑦 ∈ V𝜇̂(𝒄?) − 𝛷:! �1 −

M
4
� 𝜎�(𝒄?), 𝜇̂(𝒄?) + 𝛷:! �1 − M

4
�𝜎�(𝒄?)W® ≈ 𝛼, i.e., whether prediction intervals cover true phenotypes 

with pre-specified probability of 𝛼. Both metrics are evaluated both across all individuals, and 

within each context subgroup. We generated and evaluated context-specific intervals in both UK 

Biobank and All of Us. Prediction mean includes predictors of PGS, age, age*sex, age2, top 10 

PCs, and contexts in Fig. 2 and 3. Prediction variance includes predictors of age, sex, PC1, PC2, 

and contexts in Fig. 2 and 3. For each trait, we performed evaluation by repeatedly randomly 

sampling 5,000 individuals as calibration data, and 5,000 individuals as target data (as described 

in “Constructing calibrated and context-specific intervals”). 

Evaluating disease probability predictions. For disease traits, denoting binary disease status 

as 𝑦 and predicted probability as 𝑝̂(𝐜), we evaluate calibration of disease probability. For each 

predicted probability bin ¯𝑝9or, 𝑝s&ps° , we examine whether the observed disease prevalence 

𝑃 V𝑦 = 1|𝑝̂(𝐜) ∈ ¯𝑝9or, 𝑝s&ps°W is approximately equal to Q6/=EQ>4;>
4

. Calibration is evaluated for all 

individuals, and for each context subgroup. 

We analyzed four well-powered disease trait GWAS in All of Us: type 2 diabetes (T2D)50,61, 

coronary artery disease (CAD)51, prostate cancer (PrCA)52, breast cancer (BrCA)53. We predict 

disease probability using four models by incrementally adding complexity. (1) “Baseline”: logistic 

regression using PGS, age, age2, sex, age*sex, top 10 PCs, BMI, BMI2 as predictors; (2) 

“Baseline+C”: with additional context predictors of smoking, alcohol, employment, education, 

income, number of years living in current address; (3) “Baseline+C+PGSxC”: with additional 

PGSxContext interaction terms; (4) “Baseline+C+PGSxC (VbyC)”: with additional context-specific 

variance as a function of contexts. 
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Simulation studies of context-specific calibration 

We performed simulations for both quantitative and disease traits with gene-context interactions. 

Simulations of quantitative traits with gene-context interactions. For quantitative traits, we 

evaluated CalPred under three common scenarios of gene-context interactions in two contexts. 

Denoting genetic and environmental components in two contexts as 𝐺!, 𝐺4, 𝐸!, 𝐸4, these three 

scenarios include: (1) imperfect genetic correlation: Cor[𝐺!, 𝐺4] < 1 , Var[𝐺!] = Var[𝐺4]  and 

Var[𝐸!] = Var[𝐸4]; (2) varying genetic variance: Cor[𝐺!, 𝐺4] = 1, Var[𝐺!] ≠ Var[𝐺4] and Var[𝐸!] =

Var[𝐸4]; (3) proportional amplification of genetic and environmental components: Cor[𝐺!, 𝐺4] = 1, 

Var[𝐺!] ≠ Var[𝐺4], Var[𝐸!] ≠ Var[𝐸4], while ratios between G and E are the same across contexts: 

t#)[u&]
t#)[v&]

= t#)[u"]
t#)[v"]

. Across three scenarios, PGS weights derived in the first context were applied in 

both contexts. We evaluated the bias in prediction mean and coverage of prediction intervals. 

Simulations of disease traits with gene-context interactions. For disease traits, we performed 

simulations with gene-context interactions in two contexts under a liability threshold model. These 

three scenarios include: (1) imperfect genetic correlation; (2) varying genetic variance; (3) varying 

disease prevalence where 𝐺!, 𝐸! and 𝐺4, 𝐸4 are simulated using the same model but the disease 

prevalence is different across contexts. PGS weights derived in first context were applied to 

individuals in both contexts. We fit four regression models using different sets of predictors across 

all individuals: (1) y ~ PGS; (2) y ~ PGS + Context; (3) y ~ PGS + PGSxContext; (4) y ~ PGS + 

PGSxContext + Context. We note that logistic and probit regression models produced similar 

results. 

Simulations of quantitative traits with multiple contexts. We simulated PGS point 

predictions 𝑦� and phenotype values 𝑦 to simulate traits with variable prediction accuracy across 
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genetic ancestry, age, and sex. We started with real contexts from UK Biobank individuals not 

used for PGS training (see section “Real data analyses”). We quantile normalized each context 

so they had mean 0 and variance 1. Such simulations preserved the correlation between contexts. 

Given these processed contexts, we simulated point predictions 𝑦� using a normal distribution 𝑦� ∼

𝒩(0,1), and we simulated phenotypes 𝑦 with: 

𝑦 ∼ 𝒩(𝑦�, exp³𝛽5," +J𝛽5,w × 𝑐
w

µ, 

where 𝛽5," denoted the baseline variance of 𝑦, and 𝛽5,w was the effect of context 𝑐 to the variance 

of 𝑦. “Σw” enumerated over PC1, age, sex. This procedure simulated different variance of 𝑦 around 

𝑦� for individuals with different contexts, as observed in real data. We first selected 𝛽5," such that 

𝑅4(𝑦, 𝑦�) = 30% for individuals with average contexts (∑ 𝛽5,w × 𝑐w = 0). We simulated data with 

variable variances: we set 𝛽5,#p* = 0.25, 𝛽5,8*' = 0.2, 𝛽5,xy! = 0.15 . These parameters were 

manually chosen to match observed variable R2 in real data. In each simulation, we randomly 

sampled Ncal=100, 500, 2500, 5000 individuals used for estimating the calibration model and Ntest 

= 5000 individuals for evaluation. New point predictions and phenotypes 𝑦�, 𝑦 were simulated in 

each simulation. And we quantified prediction accuracy and coverage of prediction intervals in 

each simulation replicate. 

Statistics and reproducibility 

We analyzed two publicly available datasets of UK Biobank and All of Us, and sample sizes were 

determined in these studies. We did not use randomization or blinding. No data was excluded 

from the analyses. We replicated our findings across these two independent datasets. 



 

 
 

 

78 

4.5 Figures 

 

 

Figure 4.1 Calibrated and context-specific prediction intervals via CalPred.  

(a) Calibration of prediction intervals. We consider a set of individuals with the same point prediction 

(shaded area in the left panel, dashed horizontal line in the right panel). Each dot denotes an 

individual’s phenotype value. Intervals with proper-coverage cover the true phenotype at pre-specified 

probability of 90%; intervals with over-coverage are incorrectly wide; intervals with under-coverage 

are incorrectly narrow. (b) Context-specific calibration of prediction intervals. We consider two 

subpopulations in different contexts (e.g., female and male). Context 1 has lower prediction accuracy 
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and therefore wider variation around the mean, while context 2 has higher prediction accuracy and 

therefore narrower variation around the mean. Context-specific intervals vary by context, providing 

intervals with proper coverage in each context. (c) Different approaches for prediction intervals of 

PGS-based models. All approaches start with a set of predefined PGS weights derived from existing 

GWAS. “No calibration”: prediction intervals can be calculated using analytical formula without 

calibration data. However, these intervals are not guaranteed to be well-calibrated. “Generic 

calibration”: these methods do not consider context information; they produce generic prediction 

intervals that are constant across individuals. “Context-specific calibration”: these methods leverage a 

set of calibration data to estimate the impact of each context to trait prediction accuracy; the estimated 

impact can then be used to generate prediction intervals for any target individuals matching in 

distribution with calibration data. 
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Figure 4.2 Widespread context-specific PGS prediction accuracy in UK Biobank.  

(a-b) Heatmaps for context-specific PGS accuracy for all and WB individuals. Each row denotes a 

context and each column denotes a trait; the squared correlation between PGS and residual 

phenotype (R2) is shown in parentheses. Heatmap color denotes the PGS-phenotype relative ΔR2 

(defined as !!"#$%&
' "!!"#$%''

!())
' ), where 𝑅[$%&$'(]*  represents 𝑅* computed in a given range of the context 

variable. For continuous contexts, relative ΔR2 denote differences of top quintile minus bottom quintile; 

for binary contexts (including sex, smoking, wear glasses, alcohol), relative ΔR2 denote differences of 

male minus female, smoking minus not smoking, wearing glasses minus not wearing glasses, drinking 

alcohol minus not drinking alcohol (these orders were arbitrarily chosen). Numerical values of relative 
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R2 differences are displayed for PGS-context pairs with statistically significant differences (multiple 

testing correction for all 10×11 PGS-context pairs in this figure; two-sided p < 0.05 / (10×11)). ‘*’ are 

displayed for PGS-context pairs with nominally significant differences (multiple testing correction for 

11 contexts; two-sided p < 0.05 / 11). (c-d) Heatmaps of effects to prediction accuracy in CalPred 

model (estimated 𝛽+ ). Colormaps were inversed to those of (a-b) to reflect that positive 𝛽+ 

corresponds to lower prediction accuracy and vice versa. (e) Distribution of estimated 𝛽+  in the 

CalPred model for each context across traits. (f) Number of significantly impacted traits by each 

context (two-sided p < 0.05 / (72×11)). 
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Figure 4.3 Widespread context-specific PGS prediction accuracy in All of Us.  

(a-b) Heatmaps for context-specific PGS accuracy for all and white SIRE individuals. Each row 

denotes a context and each column denotes a trait; overall R2 is shown in parentheses. Heatmap color 

denotes relative ΔR2: differences of top quintile minus bottom quintile for continuous contexts and 

difference of male minus female for binary context of sex. Numerical values of relative R2 differences 

are displayed for trait-context pairs with statistically significant differences (multiple testing correction 

for all 12×11 PGS-context pairs in this figure; two-sided p < 0.05 / (12×11)). ‘*’ are displayed for PGS-

context pairs with nominally significant differences (multiple testing correction for 11 contexts; two-

sided p < 0.05 / 11). (c-d) Heatmaps of estimated 𝛽+ in CalPred model. (e) Distribution of estimated 

𝛽+ in CalPred model for each context across traits. (f) Number of significantly impacted traits by each 

context (with two-sided p < 0.05 / (12×11)). 
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Figure 4.4 Simulation studies with gene-context interactions.  

(a) quantitative traits. We simulated traits for individuals in two contexts with 0.7 cross-context 

genetic correlation and heritability=0.5/0.4 respectively in two contexts. PGS weights were trained in 

the first context and applied in the second context. We showed results for predictions in the second 

context using four combinations of approaches to model prediction mean (using PGS or PGS+PGSxC) 

and prediction variance (with or without modeling variance by contexts; VbyC). We did not simulate 

effects of context variables to phenotype and therefore results using “PGS+C” and “PGS+C+PGSxC” 

would yield same results as “PGS” and therefore not included. Blue dashed line denotes the best fit 

to data; red dashed line denotes model predictions; red error bar denotes the CalPred 90% prediction 

interval for individual at top 5% quantile of PGS. Prediction interval coverage was evaluated within 

data in top PGS decile. Additional details can be found in Extended Data Fig. 5 and Methods. (b) 

disease traits. We simulated diseases for individuals in two contexts under a liability threshold model 

with 0.5 heritability, 0.7 cross-context genetic correlation and disease prevalence=10%/20% 

respectively in two contexts. Disease probability was predicted using four sets of predictors: (1) PGS; 

(2) PGS and context variables (PGS+C); (3) PGS and PGSxContext interactions (PGS+PGSxC); (4) 

PGS, context variables and PGSxContext interactions (PGS+C+PGSxC). Modeling variance as 

function of contexts (VbyC) led to similar results. Error bars denote observed disease proportions and 

their 95% confidence intervals for each predicted probability bin (n=2000 individuals for each error 

bar). Additional details can be found in Extended Data Fig. 6 and Methods. 
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Figure 4.5 Simulation studies with multiple contexts.  

Simulations were performed to reflect scenarios where individuals have variable prediction accuracy 

by genetic PC1, age, and sex. For each simulation, we first trained a calibration model using a random 

set of 5,000 training individuals and then evaluated resulting prediction intervals on 5,000 target 

individuals (Methods). (a) Prediction R2 between 𝑦 and 𝑦% in simulated data both at the overall level, 
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and in each context subgroup. (b) Coverage of generic vs. context-specific 90% prediction intervals 

evaluated in each context subgroup. Generic intervals were obtained by applying CalPred without 

context information; context-specific intervals were obtained by applying CalPred together with context 

information. (c) Average length of generic vs. context-specific prediction standard deviation (SD) in 

each context. Each box plot contains R2/coverage/average length evaluated across 100 simulations 

(n=100 points for each box), the center corresponds to the median; the box represents the first and 

third quartiles of the points; the whiskers represent the minimum and maximum points located within 

1.5× interquartile range from the first and third quartiles, respectively. 

 

 

Figure 4.6 CalPred PGS calibration of LDL in UK Biobank.  

(a) Top panel: Prediction R2 between phenotype and point predictions (incorporating PGS and other 

covariates) in each subgroup of individuals stratified by context (R2 evaluated across all individuals is 

0.147). Middle panel: Coverage of generic vs. context-specific 90% prediction intervals evaluated in 
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each context subgroup. Generic intervals were obtained by applying CalPred without context 

information; context-specific intervals were obtained by applying CalPred together with context 

information. Bottom panel: Average length of generic vs. context-specific 90% prediction intervals in 

each context. Each box plot contains R2/coverage/average length across 30 random samples with 

each sample of 5,000 training and 5,000 target individuals (n=30 points for each box). (b) Ordered 

LDL prediction SD in unit of mg/dL. Gray lines denote prediction SD obtained with random sample of 

5,000 training and applied to 5,000 target individuals. Red line denote prediction SD obtained from all 

individuals. (c) Box plots of results in (b) from individuals of LDL prediction SD quantile of 0-10%, 45-

55%, 90-100% (n=110K individuals in total). For box plots in both (a) and (c), the center corresponds 

to the median; the box represents the first and third quartiles of the points; the whiskers represent the 

minimum and maximum points located within 1.5× interquartile ranges from the first and third quartiles, 

respectively. 

 

Figure 4.7 Variation of prediction standard deviation (SD) accounting for all contexts.  
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Relative difference of prediction SD between top and bottom prediction SD deciles (90-100% vs. 0-

10%) for all traits in UK Biobank (a) and All of Us (b). Traits are ranked by prediction SD. The difference 

is calculated with the median prediction SD within decile of individuals with highest prediction SD s,- 

and decile of individuals with lowest prediction SD 𝑠,-. using (/*&"/*&+
/*&+

− 1+ × 100%. avMSE, average 

mean spherical equivalent; SHBG, sex hormone binding globulin; LDL, low-density lipoprotein 

cholesterol; WHR, waist-hip ratio; BMI, body mass index; CRP, C-reactive protein; BP, blood pressure; 

WBC, white blood cell count; HDL, high-density lipoprotein cholesterol; TG, triglycerides. 

 

Figure 4.8 Calibration of T2D risk prediction across income groups.  

We compared four models for predicting T2D across all individuals in All of Us. “Baseline”: logistic 

regression model with PGS, age, sex, BMI, top 10 PCs as predictors; “Baseline+C”: logistic regression 

model additionally including smoking status, drinking, employment, income, current address years and 
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VbyC”: additionally modeling variance by contexts within a liability threshold model. The dataset was 

evenly split into training and testing datasets. (a) Observed proportion versus predicted probability of 

T2D for lowest and highest income groups. Error bars denote the observed proportions and their 95% 

confidence intervals (number of total individuals shown in legend). (b) Observed proportion of 

individuals with T2D among individuals predicted with a predicted T2D risk of approximately 30% 

(25%-35%) for baseline and calibrated models stratified by annual household income. Error bars 

denote the observed proportions and their 95% confidence intervals (number of individuals for each 

error bar is shown in parenthesis). ‘*’ and ‘**’ denote statistical significance levels for deviations from 

the 30% predicted risk, with ‘*’ indicating p<0.05 and ‘**’ denoting p<0.01, respectively (two-sided 

tests). 
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5 Conclusion 

This dissertation has introduced new methodologies for genetic mapping, inference and prediction 

across diverse human populations. Chapter 2 highlights the importance of selecting appropriate 

statistical procedures for genetic mapping in individuals of diverse genetic ancestry to maximize 

discovery power; Chapter 3 demonstrates that genetic effects are shared across genetic ancestry 

backgrounds when environmental confounding is properly accounted for; Chapter 4 characterizes 

the pervasive context-specific accuracy of polygenic scoring methods and shows that accounting 

for such will improve portability across contexts. Together, these findings form a cohesive 

foundation for the field to develop genetically-informed precision medicine that benefits everyone. 

Chapter 2 and 3 collectively suggest that the biological effects of genetic variation are largely 

consistent across ancestry backgrounds. This finding has significant implications for future 

sample collection strategies in genetic studies. Including genetic samples from individuals of 

diverse genetic ancestry can more efficiently capture additional genetic variants that are rare in 

European but common in other genetic ancestry groups, leading to a higher yield of new 

discoveries within the same research budget141. Of particular interest are individuals of admixed 

ancestry, who inherit genetic variants from multiple ancestral populations. As the biological effects 

are shared across populations, drugs and treatments developed based on data from one ancestry 

group are likely to portable to other populations, even though the corresponding genetic variants 

have different frequencies across populations. 

In Chapter 4, I have highlighted the widespread differential performance of polygenic scores 

across context groups. Such context-specific accuracy of PGS is highly pervasive across traits 

and biobanks; socioeconomic contexts often having larger impact than genetic ancestry. I 
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introduce a new approach, CalPred, to estimate context-specific prediction intervals, providing a 

framework to quantify individualized context-specific generalizability/portability of a given 

polygenic score. CalPred equips practitioners with a personalized metric of reliability and a clear 

understanding of associated confidence levels for each prediction, aiding the application and 

responsible deployment of polygenic scores across diverse cohorts. Furthermore, this work 

highlights the importance of comprehensive profiling of context information in future studies to 

account for and mitigate the portability issues associated with polygenic scores. 

Genetics and genomics research has made rapid progress over the past decades and has great 

potential to be implemented our medical and clinical practices. In realizing such transition, two 

major challenges have emerged that need to be addressed. First, how to account for the diverse 

backgrounds in both genetic ancestry and context distribution across human populations? Second, 

how to integrate the vast amount of information available for each individual, together with their 

genetic and genomics data? The approaches introduced here can be applied to the growing 

amount of genetic data from diverse populations to tackle these challenges. By leveraging 

diversity in genetic and context backgrounds, these methods improve discovery power (Chapter 

2), dissect the level of genetic effects sharing across ancestry backgrounds while accounting for 

environmental confounding (Chapter 3), and can be applied across all individuals incorporating 

the differential performance of polygenic scores across contexts for predictive analyses (Chapter 

4). These methodologies serve as a foundation for building a more inclusive and effective 

framework for precision medicine that can improve health outcomes for all individuals, regardless 

of their genetic ancestry or socioeconomic background. 

Moving forward, I anticipate significant advancements in incorporating additional information 

sources and developing computational models that directly interface with clinical applications. 
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This will involve fully exploiting personal health status measurements, including rare genetic 

variants, multi-omics data (e.g., transcriptomics, proteomics, and metabolomics) and 

comprehensive environmental factor profiling (e.g., lifestyle, diet, and exposure to pollutants). 

Integration of these diverse data modalities, together with new analytical tools that accurately 

model their additive and interaction effects, will provide a holistic view of an individual's health, 

enabling accurate risk assessments, personalized treatment strategies, and targeted preventive 

measures. For the successful transition of genetic research into clinical application, it is important 

to identify clinically relevant evaluation metrics and designing simple, implementable measures 

for informed decision-making based on a patient's genetic profile and other relevant health 

information. To conclude, I am hopeful that the increasing data availability from diverse 

populations and modalities, coupled with the development of novel analytical approaches, such 

as those presented in this thesis, will pave the way for precision medicine with more personalized 

and effective healthcare solutions. 
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