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We consider the problem of estimating the lifetime distributions of sur-
vival times subject to a general censoring scheme called "middle censor-
ing”. The lifetimes are assumed to follow a parametric family of distri-
butions, such as the Gamma or Weibull distributions, and is applied to
cases when the lifetimes come with covariatéeaing them. For any
individual in the sample, there is an independent, random, censoring in-
terval. We will observe the actual lifetime if the lifetime falls outside of
this censoring interval, otherwise we only observe the interval of cen-
soring. This censoring mechanism, which includes both right- and left-
censoring, has been called "middle censoring” (see Jammalamadaka and
Mangalam (2003)). Maximum likelihood estimation of the parameters
as well as their large sample properties are studied under this censoring
scheme, including the case when covariates are available. We conclude
with an application to a dataset from Environmental Economics dealing
with Contingent Valuation of natural resources.

Keywords: Middle censoring, Maximum likelihood estimators, Accelerated failure time model,

EM algorithm, Gamma distribution, Weibull distribution.
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1 Introduction

Our aim in this paper is to estimate the lifetime distribution or its complement, the survival func-
tion, for data that is subject to middle censoring. Middle censoring occurs when a data point
becomes unobservable if it falls inside a random interval. This is a generalization of left and right
censored data and is quite distinct from the case of doubly censored data. We consider two fami-
lies of distributions that are common to many applications, namely the Gamma distribution or the
Weibull distribution.

Middle censoring was first introduced by Jammalamadaka and Mangalam (2003) for non-
parametric estimation of the lifetime distributions, and was studied further in Jammalamadaka
and lyer (2004). Middle censored data was analyzed in lyer, Jammalamadaka, and Kundu (2008)
when the lifetimes are exponentially distributed, whereas Jammalamadaka and Mangalam (2009)
study such censoring in the context of circular data. Gamma and Weibull distributions are natural
and the most widely used choices for modelling lifetimes in many applications. Not only does
the consideration of these more general models extend the earlier results for the exponential dis-
tribution in lyer, Jammalamadaka, and Kundu (2008), but the current work also discusses how the
presence of covariates can be handled nicely in the form of Accelerated Failure Time (AFT) mod-
elling (see Section 3). We derive the maximum likelihood estimators for the parameters and show
how the computation of the MLEs can be done via the EM algorithm. We then establish their large
sample properties.

Let us denote the "actual” lifetimes of individuals byt, ---, t,, and not all of them are
observable. For each individual there is a random period of [fne;] for which the lifetime
of the i individual is unobservable. Thus, the actual lifetime is observeddf [£;, r;] and if

t € [¢;, ri] then only the interval is observed. Hence the observed data is given by:

(t, 1) ifti ¢ [6, 1]
(%, 6i) = (1.1)
([¢i, ri],0) otherwise

Based on observed data of this type, the goal is to estimate the lifetime distribution function. The
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lifetimes are assumed to be independent and identically distrilfutet) from an unknown dis-
tribution functionF (-). Additionally, the censoring intervalfl,.;, R(], ---, [Ln, R,], are assumed
to bei.i.d. from an unknown bivariate distribution functi@h(-, -). Finally, the lifetimes and the
censoring intervals are taken to be independent of each other, as is common in survival analysis.
In Section 2 we consider the Maximum Likelihood estimation of the parameters for these 2
models under middle censoring, discuss the EM algorithm needed for their computation, and es-
tablish asymptotic properties like consistency and asymptotic normality of these estimators. In
Section 3, we consider estimation under middle-censoring in the presence of covariates employing
Accelerated Failure Time modelling. Extensive simulations illustrate the robustness of these MLEs

even under heavy censoring.

2 Maximum Likelihood Estimation

The lifetimes are assumed to follow either a Gamma or a Weibull distribution whose respective

probability density functions are given by

_ b* a—1 bt
fi(tla, b) = F(a)t e fort>0, (2.2)
f,(tla, b) = abPt*texp[-b?t?] fort> 0, (2.3)

and @, b) € ® = [0, «0)%.The unknown censoring distributidd is then assumed to be supported
on [0, ©)2. The data can be re-arranged so that theffirstoservations are uncensored and the last
n, observations are censored. Then the respective log-likelihood functions for these two models

are given by

IXa, b) = amIn b-mnIn(C(a) + (a- 1)2 In(t) — bzl:ti
i=1 i=1

+ Y In[Fi(rla b) - Fi(ila b). (2.4)

i=n1+1

ACCEPTED MANUSCRIPT
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whereF(t| a, b) is the CDF of a Gamma(a, b) distribution.

ny n
12(a, b) = mIna+malnb+(a— 1)2 In(t;) - ba‘Z:tia
i=1 i=1

ni+np

+ > In (exp[-b1?] - exp[-b7r?)) (2.5)

i:n1+1
Let & = (a,b) denote the unknown parameter vector. The MLEf 6 is the value of the pa-
rameter which maximizes the function in (2.4), (2.5) respectively for the case of the Gamma and
Weibull distributions. We first discuss the large sample properties of these estimators followed by

computational aspects.

2.1 Large-sample properties of the MLEs

Our approach in this section is similar to that of Jammalamadaka and Mangalam (2009). Recall
that the censoring mechanism is independent of the lifetime distributions. Conditional on the

censoring intervalf r), define the censoring probability by

(6, 6,1) = P(T € (6,1)) = f[ taedt =12 (2.6)

Let 6, denote the true value of the parameter. For convenience, we will work with the pardimeter

replaced byc!. Define the functions

(6, 6,r) = -aln(c) — In(T@)) + f In (t*1e7/°) f1(tl6p)dt
te(e.r)
+ p1(6o, £, 1) In ( f ta‘le‘t/cdt), (2.7)
4
%6,6,r) = In@) -aln(c) + f In (1<) fo(t|6o)dt
te(4,r)

I
+ Pa(6o, €,1) In ( f ta‘le‘ta/cadt) (2.8)
4
Define the function

hi(6) = f G0, 6,r)dGE,r),  i=12 (2.9)

ACCEPTED MANUSCRIPT
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Lemma 2.1 Fori = 1,2, we havetli () — hi(6), Pg,—a.s.

Proof. Fork =1, 2,..., define the sequences of random variables

Ik
X¢ = —aln(c) — In (T (a)) + 6k In (tk‘le‘tk/c) +(@1-6)In (f ta‘le‘t/cdt), (2.10)
4%
1%
X2 = In(@) — aln(c) + 6 In (tk‘le‘t?/ca) +(1-6)In ( f ta‘le‘ta/cadt) . (2.11)
lk

The above two sequences are i.i.d. with mb&#) i = 1, 2 respectively undep,,. The result thus
follows from the law of large numbers.
The following Lemma is a restatement of Lemma 3.3 in Jammalamadaka and Mangalam

(2009).

Lemma 2.2 If £ and r are two distinct arbitrary points irff0, o), then g(0,¢,r) < gi(6o,?,r)
i =1,2, for all § € ® with equality holding only whea = 6.

Theorem 2.3 If the identifiability condition
P(6o) = Py (T € (L,R)) < 1,
holds, therd — 6y, Py,—a.s.

Proof. From Lemma 2.2, it follows that;(6) < h;(6p) for all 6 € ® with equality holding only
wheno = 6,.
Fix e > 0 suficiently small such that < ¢y and restrict the range afto (e, o). By integrating

over the full range of the second integrals in (2.7), 2.8), we get
0:(0, ¢, 1) < (=aln(c) — In ('(@)))(1 — pa(bo, £, 1)) + U6, £, 1),
020, ¢,1) < (In(a) — aln(c))(1 — p2(bo, €, 1)) + (6, £, 1),

whereu, v are the first integrals on the right in (2.7), (2.8) respectively. Under the identifiability

condition, pj(6o, ¢,1) < 1 on a set of positiv& measure. Henceg;(0, £, r) and hencdy (f) — o as

ACCEPTED MANUSCRIPT
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6] = o0 in [0, 00) X [€, ), for i = 1,2. LetQ} be the set oP,, measure 1 whergli (6) — h(6),
i = 1,2. The argument below holds for bath= 1,2 and hence we suppress the indekix any
w € Q. If én -+ 6, then there is a subsequenggethrough Whichén — 6, = (a1, by), where
(a1, b1) € [0, o0] X [€, o0].

If |61] < oo, then from Lemma 2.lniklnk(énk) — h(6y). However,n—lklnk(énk) > 2o (6o) = h(6o)
leading to the conclusion thkf6;) > h(6y), thus contradicting Lemma 2.2.

If 164] = oo, thenly (8n,) = limg_g, h(6) = —co. Again, 21, (fn,) = =ln, (60) — h(6o) leading to
a contradiction.

Theorem 2.4 Let X, be the dispersion ((% %) i = 1,2, where X is defined in (2.10), (2.11).
Under the identifiability condition given in Theorem 2.3, we haf@@, — 6,) = Nx(0,Z(6)),

whereZ(6) = [’(0)] “Z.(6)[ (6)] .

Proof. The proof is fairly straightforward (see for example the proof of Theorem 3.2 in

Jammalamadaka and Mangalam (2009)) and so we omit it.

2.2 Computation of the MLEs

To compute the ML estimators, we need to maximize equations (2.4) in case of the Gamma distri-
bution and (2.5) if the underlying distribution is Weibull. We first describe the EM algorithm and
address the issue of convergence of the algorithm for a much wider class of distributions than the
ones considered in this paper. Computation of the MLE when the lifetimes are distributed accord-
ing to the Weibull distribution using the EM algorithm has been considered in Kundu and Pradhan
(2014).

Suppose thaty, - - -, Xn,5 (Ing+1, Mg+1) s> (Inj4nys Tnyeny) 1S the observed middle-censored data
from a continuous exponential family distribution wkiparameters, namely they have probability

density function

k
f (X46) = h(3) c(9) exp[Z W, (6)v, (x)], (2.12)

ACCEPTED MANUSCRIPT
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whereh (x), vj (X), c(¢), and w (¢) are continuous functions. Note that= (¢, - - , ¢) is ak

dimensional vector of parameters. This results in the following complete log-likelihood:

M

k
1(9) =nloglc(@)]+ ) {Iog[h(ti)] £ W @)V, (ti)}
j=1

i=1

ni+ny

+ {Iog[h(t ]+ Zw, ONIC )} (2.13)

i=n+1
We wish to solve for the MLE o$, which will be done by implementing the EM algorithm. More
specifically, we will find the initial estimates f@r = (¢4, - - - , ¢x) from the uncensored data, and

the estimates ap will be updated using the following procedure:
e Step 1. Suppose thatj) = (41, -+, d)j) IS the j™" estimate
e Step 2: Computd; by calculatingE [Ti|a <Ti<b, ¢= ¢>(,-)]

e Step 3: Solve Equation (2.13) with tHg’s imputed for the censored observations for its

maximum and seh;.1) as the values that maximizes that equation.
e Step 4: Repeat until convergence criteria is met
We are now ready to prove that this algorithm does indeed converge.

Theorem 2.5Let X, -+, Xy, (Ing+1, Fngs1) >+ > (Iny+nps Mpeny) » D€ the observed middle-censored

data from a continuous exponential family distribution

k
f (x1¢) = h(x) c(9) explz w; (6)t (%

=1

such that {xX), t; (x), c(¢), and w; (¢) are all continuous functions. Then the EM algorithm will

converge for this data.

Proof. The result follows by an application of the second theorem in Wu (1983) on the EM

algorithm. Note that the complete log-likelihood is proportional to

ni+np

N k k
1(9) = nloglc@)]+ >, > w@t0)+ >, > w(@®)t )
i=1 J:]_

i=m+1 j=1

ACCEPTED MANUSCRIPT
8



Downloaded by [University of California Santa Barbara] at 12:32 31 March 2016

ACCEPTED MANUSCRIPT

Also, observe that

b k
E[tj(x)I¢". a < x <b|= f tj (%) h(x) c(¢) exp[z w; (7)1 (%) | dx
g j=1
is a continuous function. Thus
N k
E [l (plcomplete datp¢”, censored dathe n log[c(¢)] + Zw,— (#) t; (%)
i=1 ]:l

ni+ny

+ ZVW)E t (X)16°, a < % < b

i=m+1 j=1
is a continuous function in bothandg*. Thus by Theorem 2 of Wu (1983), it follows that the EM
algorithm will converge. We now move on to specific examples.
We first consider the case of the Gamma distribution. In this case the log-likelihood can be

written as

(@, /) = amInb-n.In(['(a)) + (a- 1)2 In(t) - bzllti
i=1 i=1

ni1+ny

+ Y In[F(rla b)- F(ia b)] (2.14)

i:n1+1
where and-(t| a, b) is the CDF of a Gamma(a, b) distribution. We now need the conditional expec-

tations for the incomplete data in order to use the EM algorithm. The two necessary expectations

are

E[TIL<T <R] = J tiigt™ e (2.15)
Fi(Ria b) - Fa(Lla, b)

EInTIL<T <R = J it gt e (2.16)

F2(Rla, b) - Fa(Lla, b)
The above equation does not have a closed form solution and so we solve numerically to obtain the
solution. This can be used in the E-Step in the EM algorithm, and then the pseudo log-likelihood

will be

ni+ny

") = aninb-nIn(I'(a)) + (a—1) iln t) + Z In (t)
i=1

i:n1+l

ACCEPTED MANUSCRIPT
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—b[i t + nfz ti*] (2.17)
i=1

i:n1+1
where thet’s are found using Equations 2.15 & 2.16.
Thus the EM Algorithm can be set up as follows. Chooaebjo to be the MLE of the

uncensored data. Update the estimates with the following steps:
e Step 1: Suppose thad,(b)(; is the j™" estimate
e Step 2: Comput&;" using equation (2.15) & 2.16 witha( b) = (a, b);
e Step 3: Solve equation (2.17) for its maximum and agbj;.1) as that maximum
e Step 4: Repeat until convergence criteria is met

Since there is no explicit form for the MLE’s of a Gamma distribution, the maximum must either
be solved iteratively or with a built-in numerical solver.
The same procedure works for the case of the Weibull distribution. We rehalaslb while

carrying out the simulations. In this case the log-likelihood for the Weibull lifetimes is given by

Ny ny
@ b) = miha+minb+@-1)) In(t)-b>
i=1 i=1

ny1+ny

+ Z In (exp[-bl?] — exp[-br?]) (2.18)

i:n1+1
The desired conditional expectations are given by
R -
fL t2ab 1 exp[-bt?] dt
exp|-bl2| - exp|-br?]

E[TIL<T <R = (2.19)

[ Intab e exp[-b ] dt
exp|-bl2| - exp|-br?|

E[NTIL<T <R] = (2.20)
This will lead to the following pseudo log-likelihood

n1+nNy

(&, b) o« nlna+ninb+(a-1) iln(ti)+ Z In (t)
i=1

i:n1+l

ACCEPTED MANUSCRIPT
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o3 S o] @21
i=1

i:n1+1

The rest of the procedure is identical to the previous case.

3 Accelerated Failure Time Models

In this section we will consider the problem of ML estimation of the parametergpeparameter
Accelerated Failure Time (AFT) model where the baseline distribution is exponential, gamma or
Weibull distributed. The AFT models are known to be more robust to the estimation of covariate
effects (e.g. see Keiding and Andersen (1997)), and are more easy to interpret than hazard rates.
For instance in a clinical trial where mortality is the endpoint, one could translate the result as a
certain percentage increase in future life expectancy on the new treatment compared to the baseline.

As before suppose the middle censored data is in the form

tl’ cee, tnl’ (In1+1, rn1+1) L, (|n1+n2, rn1+n2)

Associated with each observation is an observed vef;togpresenting the covariates. The ML

estimation is done as earlier using the EM algorithm, which requires the conditional expectation
of the unobserved data given that it falls in a particular interval. As before, the convergence of
the EM algorithm is a consequence of the continuity of the log-likelihood function. The respec-
tive probability density function of the observations for the three models, namely the exponential,

Gamma and Weibull are given below:

f(tZ a) = exp[@TZi] exp{—a exp[@TZi] t}, t>0, (3.22)
_ 1 a-1 —

f(tlZ ab) = r@ (b exp[—HTZ])at exp[—b exp[—HTZ] , t>0, (3.23)

f(tiZ.a,b) = a (b exp[ad’z|) t** exp[- (b explad’z|) ],  t>0. (3.24)

ACCEPTED MANUSCRIPT
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4 Simulation Study

To illustrate and validate the procedure, we simulate data under the assumption that the left end
point and the length of the censoring intervals are independent and exponentially distributed with
parameters andg respectively. For each sample sizeN = 1000 samples were simulated. Each
sample was then censored, and the EM algorithm was applied to the censored dadaantlie
estimates reported are the average value oNtke1000 estimates obtained.

See Table 1 for the results of these simulations when the lifetimes are from a Gamma distri-
bution. The romCensoredn the table provides the smallest proportion of censoring and largest
proportion of censoring in thd = 1000 simulated samples. The simulation results for the Weibull
case are summarized in Table 2. The estimates for the Weibull model also appear to converge very
well. The procedure performs reasonably well even with a large proportion of censored observa-
tions.

Also examined was the goodness of fit of the estimated model. To study this, a sample of
sizen=100 was created from a Gamma distribution. Using the aforementioned process, these data
were middle-censored, resulting in twenty-five percent of the data being censored. The MLEs
were calculated using the proposed EM algorithm. The empirical CDF of the uncensored data
and fitted CDF are given in Figure 1. The two curves appear to be very similar. Furthermore, a
Kolmogorov Smirnov test was performed using the fitted Gamma distribution and uncensored data
which yielded a p-value of 0.433 indicating no lack of fit.

A simulation study was performed to illustrate the usefulness of the approach outlined above
for the AFT models. Simulations were carried out in R udiL000 replications with a common
sample size oh=100. The censoring mechanism is the same as used previously. Specifically, the
left endpoint of the censored interval is Exponentially distributed with mean 1; the length of the
censored interval is also Exponentially distributed with mean 1. Three covariate values were used.
The first two covariateZ; & Z,, were generated from a Binomial distribution with one trial and

probability of success equal to 0.5. The third covaridtewas generated from a Standard Normal

ACCEPTED MANUSCRIPT
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distribution. Similar to Pan (1999), three cases for the true covatiggets were considered. They

ared = (1,1, 1),0 = (1,0,0), andd = (0, 0, 1). These three cases were chosen since they
represent the case where all covariates have an effeat,evhere only one Bernoulli covariate

has an &ect, and where only the Normally distributed covariate hadfgece In the exponential

case, between 7% to 36% of the observations were censored, between 9% and 42% in the case of
the Gamma distribution and between 8% and 40% in the Weibull case. Table 3, 4 and 5report the
results from these simulations. The MLE’s of all the parameters in all cases are very close to the
actual value, and the mean-squared errors are also small.

Finally we evaluate the theoretical convergence to normality of the estimators via simulations.
For this purpose, we simulaté = 100 samples of size = 100 each from the Gamma AFT and
Weibull AFT models described in the previous paragraph. We compute the MLESs for the samples
in the usual fashion. The Q-Q plots of the estimated values for the shape and scale parameters, and
first and third elements af are displayed in Figures 2 and 3. These plots seem to indicate a fairly

good fit to normality.

5 Data Analysis

To highlight the usefulness of the methods developed in the previous sections, we will now consider
a dataset from Environmental Economics. The data studied is from a Contingent Valuation study
conducted by Cecilia Hakansson from Sweden and Katja Parkkila from Finland in 2004. People
in Finland were asked how much they were willing-to-pay (WTP) to increase the salmon stock in
a particular river basin. Participants were allowed to either give an exact amount that they were
WTP or provide an interval which contained their WTP if they preferred.

A total of 205 Finnish subjects provided data for their WTP and income. Of the 205 responders,
57 gave intervals, thus 27.8% of the data is middle censored. We fit a Weibull AFT model to this
data, using equation (24) with 1 covariate. The fitted values for thisaare1.2407,b = 0.0149,

6 = —0.1610. To transform the parameter value onto the WTP scale, we must Iook[@q exp

ACCEPTED MANUSCRIPT
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0.8513. In this dataset, this means that people with higher incomes have a lower WTP.

6 Conclusion

In conclusion, we prove that the maximum likelihood estimates from a large family of distribu-
tions will converge in the case of middle censoring, and we give their large sample properties.
Additionally, we also consider the case of parametric models with the presence of covariates and
again provide the large sample properties of these estimators. In both cases, simulation studies are
presented illustrating the usefulness and accuracy of these methods.

The MLE's of the regression céigcients are very close to the true value in all cases, but the
MLE’s of the parameters from the Gamma distribution are slighffy dgain, in all cases, the
mean-squared errors are small for all parameters excepf;fer Table 5 reports the results from
these simulations. The MLE’s of the regressionficents are very close to the true value in the
case of equalféects of all covariates, but the estimates are slightly when only one covariate has an
effect. The MLE’s of the parameters from the Weibull distribution are fairly goodahut was
consistently underestimated. Again, in all cases, the mean-squared errors are quite small for all the
parameters, demonstrating that the estimation procedures work well. Finally, this methodology is
very flexible and applicable to manyftérent areas of research, as demonstrated by the Contingent

Valuation example.
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Table 1: Numerical Results for Gammaa 2, b = 1) Lifetimes

(a, B) (1,1) (0.5,0.5) (0.5,2) (1.25,0.75)
n
50 aest 2.1150 2.0914 2.1245 2.1062
b est 0.9980 0.9982 0.9757 0.9880
MSE a 0.2084 0.1805 0.2064 0.1868
MSEDb 0.0453 0.0479 0.0479 0.0438
Censored (0.08).44)| (0.040.50)| (0.040.44)| (0.140.50)
100| aest 2.0676 2.0665 2.0534 2.0562
b est 0.9882 0.9814 0.9935 0.9959
MSE a 0.0962 0.0904 0.0856 0.0944
MSEDb 0.0239 0.0237 0.0232 0.0255
Censored (0.13).40)| (0.130.43)| (0.080.31)| (0.200.47)
500| aest 2.0144 2.0135 2.0013 2.010
b est 0.9960 0.9963 0.9968 0.9989
MSE a 0.0153 0.0159 0.0147 0.0168
MSEb 0.0046 0.0049 0.0045 0.0050
Censored (0.19.33)| (0.230.36)| (0.140.25)| (0.250.39)
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Table 2: Numerical Results for Weibudl& 2, b = 1) Lifetimes

(@, B) 1,1) (0.5,05) | (0.51) | (1.250.75)
n
50 | aest 1.9273 1.9635 1.9659 1.8799
best 1.1211 1.1504 1.1000 1.1569
MSEa | 0.0952 0.0905 0.0667 0.1172
MSEb | 0.0716 0.0730 0.0500 0.1038
Censored (0.12).54)| (0.100.44)| (0.060.40)| (0.160.60)
100| aest 2.0275 2.0305 2.0417 1.9930
best 1.1015 1.1386 1.0859 1.1193
MSEa | 0.0107 0.0098 0.0102 0.0160
MSEb | 0.0391 0.0416 0.0224 0.0508
Censored (0.19).47)| (0.140.39)| (0.100.33)| (0.220.56)
500 aest 2.0008 2.0024 2.0042 2.0002
best 1.0414 1.1032 1.0468 1.0639
MSEa | 0.00016 | 0.00048 | 0.00084 | 0.00004
MSEb | 0.01076 | 0.02344 | 0.01040 | 0.02004
Censored (0.26).39)| (0.190.32)| (0.150.26)| (0.340.47)
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Table 3: Numerical Results for Exponential AFT Model
a 61 6> 0

True \alue 1 1 1 1
MLE 1.0334| 1.0003| 0.9979| 0.9961
MSE 0.0367| 0.0465 | 0.0464| 0.0115

True Value 1 1 0 0
MLE 1.0318| 1.0139| 0.0018| 0.0078
MSE 0.0395| 0.0478 | 0.0452| 0.0123

True \alue 1 0 0 1
MLE 1.0445]| -0.0065| 0.0035| 0.9985
MSE 0.0422| 0.0468 | 0.0453| 0.0110
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Table 4: Numerical Results for Gamma AFT Model

a b 61 6 0

True Value 2 1 1 1 1
MLE 2.2761| 0.8961| 1.0005| 1.0021| 1.0012
MSE 0.1927| 0.0415| 0.0238| 0.0227 | 0.0057

True \alue 2 1 1 0 0
MLE 2.3025| 0.8842| 1.0102| -0.0092| 0.0009
MSE 0.2146| 0.0421| 0.0225| 0.0236 | 0.0058

True \alue 2 1 0 0 1
MLE 2.2383| 0.9166| 0.0022| 0.0115| 0.9986
MSE 0.1641| 0.0377| 0.0230| 0.0208 | 0.0060
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Table 5; Numerical Results for Weibull AFT Model

a b 61 6, 03

True Value 2 1 1 1 1
MLE 1.8582| 1.0556| 1.0452 | 1.0579| 1.0502
MSE 0.0303| 0.0411| 0.0190| 0.0218| 0.0081

True \alue 2 1 1 0 0
MLE 1.9251| 1.0796| 1.1554 | -0.0094| 0.0040
MSE 0.0197| 0.0470| 0.0431 | 0.0245 | 0.0066

True \alue 2 1 0 0 1
MLE 1.8714| 0.9847| -0.0136| 0.0008 | 1.1471
MSE 0.0277| 0.0457| 0.0319| 0.0319| 0.0275
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Figure 1. Goodness of Fit using the Gamma distribution
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Figure 2: Q-Q Plot of MLEs from Gamma AFT model

Normal Q.Q Plot

ACCEPTED MANUSCRIPT
23



Downloaded by [University of California Santa Barbara] at 12:32 31 March 2016

ACCEPTED MANUSCRIPT

Figure 3: Q-Q Plot of MLEs from Weibull AFT model

Normal Q.Q Plot
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