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Abstract

People’s beliefs about everyday events are both of theoreti-
cal interest in their own right and an important ingredient in
model building—especially in Bayesian cognitive models of
phenomena such as logical reasoning, future predictions, and
language use. Here, we explore several recently used methods
for measuring subjective beliefs about unidimensional contigu-
ous properties, such as the likely price of a new watch. As
a first step towards a way of assessing and comparing belief
elicitation methods, we use hierarchical Bayesian modeling for
inferring likely population-level beliefs as the central tendency
of participants’ individual-level beliefs. Three different depen-
dent measures are considered: (i) slider ratings of (relative)
likelihood of intervals of values, (ii) a give-a-number task, and
(iii) choice of the more likely of two intervals of values. Our
results suggest that using averaged normalized slider ratings
for binned quantities is a practical and fairly good approxima-
tor of inferred population-level beliefs.

Keywords: subjective beliefs, hierarchical modeling,
Bayesian data analysis, Bayesian cognitive models

Motivation
When trying to understand observed behavior we readily as-
cribe beliefs and desires to fellow agents. This happens in-
tuitively, in folk psychology, but also in science. Scientific
ascription of latent mental states plays an important role in
many explanations of higher-order cognition: decision mak-
ing, reasoning, language use, etc. It is therefore vital to have
methods for validating explanatory mental state ascriptions.

A family of models where this is particularly pressing are
Bayesian models of cognition which seek to explain task be-
havior in a variety of domains as partially informed by what
participants believe about mundane events—their prior be-
liefs. Take interpretation of language. “That watch cost a
million dollars,” tends to be interpreted as hyperbole: convey-
ing affect rather than literal truth. Empirical data on whether
similar statements are understood as hyperbole can be ex-
plained well by a Bayesian model of utterance interpretation
(Kao, Wu, Bergen, & Goodman, 2014). This model assigns a
crucial role to an empirical measure of participants’ expecta-
tions about the likely or normal price of a watch—only when
the uttered price is sufficiently unlikely a priori will hyper-
bolic interpretation be possible. Other examples of domains
in which empirically successful models have included a mea-
sure of participants’ prior beliefs include making predictions

about everyday events (Griffiths & Tenenbaum, 2006), refer-
ential reasoning (Frank & Goodman, 2012), strength of prag-
matic enrichments (Degen, Tessler, & Goodman, 2015), or
quantifier interpretation (Schöller & Franke, 2015).

Many methods have been used to build prior distributions
used in Bayesian cognitive models. One method of getting at
subjective beliefs is to take actual frequencies as an approx-
imation to subjective beliefs (e.g. Griffiths & Tenenbaum,
2006). Unfortunately, frequency data may be unavailable
(e.g., one-shot events) or deviate from participants’ subjec-
tive beliefs in crucial respects.

Another common approach is to empirically measure sub-
jective beliefs by give-a-number tasks. The simplest version
would be this: being told that John just bought a new watch,
participants are asked for a single numerical estimate of its
price. This task is easy to comprehend and implement, but
a single number does not provide much information about
the subjective belief that it is a manifestation of. One solu-
tion is to infer which parameterized distribution best explains
the observed number choices, either at the individual level
(Manski, 2004) or at the population level (Tauber & Steyvers,
2013). More sophisticated give-a-number tasks give more in-
formation, but can be difficult to implement and analyze.

More complex elicitation methods include scoring rules
(Savage, 1971; Andersen, Fountain, Harrison, & Rutström,
2014; Schlag, Tremewan, & van der Weele, online first),
prominent in economics, and the iterated learning paradigm
(Lewandowsky, Griffiths, & Kalish, 2009). These methods
are powerful but difficult to implement, and often assume
very specific behavior from participants—such as optimal de-
cision making under perfect knowledge of the payoff scheme.

In sum, there is a tradeoff between simplicity of paradigms
and their information content. Ideally, we would like to have
an experimental method for measuring subjective beliefs that
(i) provides sufficient and reliable-enough information about
subjective beliefs to derive testable predictions from cognitive
models that rely on such information, (ii) is easy to under-
stand by participants, (iii) is easy to implement, and that (iv)
does not require sophisticated means of data analysis. More-
over, the ideal method would be (v) flexible enough to allow
inferred subjective belief distributions beyond standard pa-
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Item Bins ({min,
max} step; units)

Context sentence GAN question BH frame PC frame

coffee {<44, >200} 2;
degrees

X has just fetched
himself a cup of
coffee from the of-
fice vending ma-
chine.

What do you think the tem-
perature of his coffee is?

His coffee was the fol-
lowing temperatures

The temperature of
his coffee is N de-
grees.

commute {0, >98} 7; min-
utes

X commuted to
work yesterday.

How many minutes do you
think she spent commuting
yesterday?

She commuted for the
following numbers of
minutes yesterday

She spent N min-
utes commuting.

joke {0, 14} 1; chil-
dren

X told a joke to 14
kids.

How many of the kids do
you think laughed?

The following number
of kids laughed

N of the children
laughed.

laptop {0, >7500} 500;
dollars

X bought a laptop. How much do you think it
cost?

The laptop cost the fol-
lowing numbers of dol-
lars

The laptop cost $N.

marbles {0, 14} 1; mar-
bles

X threw 14 marbles
into a pool.

How many of the marbles
do you think sank?

The following number
of marbles sank

N of the marbles
sank.

movies {0, > 210} 16;
minutes

X just went to the
movies to see a
blockbuster.

How many minutes long do
you think the movie was?

The movie was the
following numbers of
minutes long

The movie was N
minutes long.

TV {0, >43} 3;
hours

X watched TV last
week.

How many hours do you
think he spent watching TV
last week?

He watched TV for the
following numbers of
hours last week

He spent N hours
watching TV.

watch {0, >750} 50;
dollars

X bought a watch. How much do you think it
cost?

It cost the following
numbers of dollars

The watch cost $N.

Table 1: Experimental items. X was a randomly generated name (different on each trial). N was one of the bins.

rameterized distributions and (vi) would provide a good ap-
proximation of the central tendency or average of subjective
beliefs in a given population. The latter would allow using
one set of participants for measuring prior beliefs and another
for whatever other task is of interest, so as to avoid potential
cross-over effects.

A simple technique that seems to fit this bill is the binned
histogram task that has recently been used with apparent suc-
cess (e.g. Kao, Wu, et al., 2014; Kao, Bergen, & Goodman,
2014; Tessler, 2015; Schöller & Franke, 2015). Participants
adjust sliders to express (relative) subjective beliefs about
how likely it is that the value of an uncertain contiguous quan-
tity lies in some interval of possible values (a bin). E.g., to re-
port beliefs about a watch’s price, participants adjust sliders
whose endpoints are labelled “extremely likely” and “impos-
sible.” Each slider corresponds to one of 15 bins that partition
the range of plausible values (established by a pre-test), such
as “$0-$50”, “$50-$100”, etc. up to “$700-$750” and “more
than $750.” Each participant’s slider ratings are normalized
and the results averaged across participants. The resulting
mean slider ratings look like plausible population-level be-
liefs and give good results when fed into cognitive models
that predict task behavior based on prior expectations.

Explanatory success aside, the question remains whether
mean slider ratings measure what we would like them to.
Are these good approximations of a central tendency of par-
ticipants’ individual beliefs? Are these measures consistent
with participants’ behavior in other tasks, such as give-a-
number? To scrutinize the binned histogram task we address

these issues by collecting data in a within-subject paradigm
from three task types: (i) binned histograms, (ii) give-a-
number and (iii) paired comparisons. The latter asks par-
ticipants for a direct comparison of two bins from the binned
histograms task, and was included as a further consistency
check. We used a Bayesian hierarchical model to analyze this
data jointly. The model infers latent subjective beliefs, where
each subjective belief is, intuitively, a noisy perturbation of
a population-level belief. We find that mean a posteriori
population-level beliefs are approximated well by mean slider
ratings from the binned-histograms task, suggesting that this
may indeed be a sound and easy measure of what the crowd
believes. Moreover, the model is able to capture participants’
behavior in all three task types reasonably well, suggesting
that what mean slider ratings measure is what we think it is: a
population-level central tendency of latent subjective beliefs.

Experimental elicitation of prior beliefs
Participants, procedure and materials We recruited 20
self-reported English native speakers over Mechanical Turk
and collected responses for eight different items (listed in
Table 1) using the three different dependent measures men-
tioned above. Each participant rated each item using each
dependent measure. Trial order was randomized.

On give-a-number (GAN) trials, participants saw the con-
text sentence and GAN question for each item (see Table 1)
and provided one number by adjusting a slider with endpoints
labeled as the lowest and highest number for that item. Min
and max numbers are shown in Table 1 and were taken from
previous studies that had used these items (Degen et al., 2015;
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Schöller & Franke, 2015; Kao, Wu, et al., 2014). The se-
lected number appeared above the slider so participants knew
exactly what the value of the slider would be.

On binned histogram (BH) trials, participants saw an
item’s context sentence and were asked to Please rate how
likely it is that Y (where Y came from the corresponding BH
frame in Table 1). They adjusted 15 continuous sliders, one
per bin, with five points labeled impossible, not very likely,
neutral, very likely, and extremely likely. Bins were deter-
mined by dividing the interval spanned by the item’s mini-
mum and maximum value into equally sized bins (Table 1).

On paired comparison (PC) trials, participants saw an
item’s context sentence and had to click on one of two op-
tions shown side by side – whichever one they thought was
more likely. Each option used the appropriate PC frame in
Table 1 and numbers were filled in by comparing the follow-
ing bins: 1 vs 2, 2 vs 6, 6 vs 11, 11 vs 14, and 14 vs 15.
Paired comparison trials always occurred as a block of five
trials, with order of comparisons randomized within block.

Results Fig. 1 shows mean slider ratings alongside the fre-
quencies of number choices in the give-a-number task. It
looks like the latter could be samples from the former, with
a tendency to modal choices. But some give-a-number re-
sults seem influenced by a tendency towards round or salient
numbers. E.g., in item coffee more than 40% of partici-
pants guessed that a coffee from the vending machine was
ca. 150◦F (bin 10). The results from the paired comparison
seem consistent with the mean slider ratings as well, albeit
not as straightforwardly as one might think. This is clearest
from the marbles case. While the mean slider ratings suggest
that bins 2, 6 and 11 were considered roughly equiprobable
on average, almost every participant chose the higher bin in
direct bin comparisons 2 vs 6 and 6 vs 11. A potential ex-
planation for this, which we will implement formally in the
data-generating model, is that the paired comparison condi-
tion invited participants to think about what they thought was
mostly likely the case (usually: bin 15 in the marbles case)
and to choose the bin that is closest to that.

Model
The data we would like to explain are: (i) the normalized
slider ratings si jk ∈ [0;1] of participant i ∈ {1, . . . ,20} for
item j ∈ {1, . . . ,8} and bin k ∈ {1, . . . ,15} from the binned
histogram task; (ii) the bins ni j ∈ {1, . . . ,15} in which partic-
ipant i’s number choice for item j was in the give-a-number
task; and (iii) the binary choices ci jl ∈ {0,1} of whether par-
ticipant i selected the higher bin for item j in the paired com-
parison task for each comparison l. There are two simpli-
fications in need of commenting. In (i), we focus on slider
ratings after normalizing for each participant, because we as-
sume that slider adjustments reflect relative, not absolute es-
timates of subjective beliefs. In (ii), we focus on bin choices,
not actual number choices, in order to avoid, as much as pos-
sible, considerations of salience of particular numbers, and
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(a) Red: proportion of bins corresponding to number choices on
give-a-number trials. Black: mean slider ratings on binned his-
togram trials.
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(b) Proportion of higher bin choices on paired comparison trials.
Figure 1: Average data. Bars are bootstrapped 95% CIs.

also because otherwise data from items with smaller domains
of plausible numbers would get more weight than data from
items with a wider range of number choices. (Future work
should investigate the relation to an explicit give-a-bin task.)

All three pieces of data are to be explained as functions
of subjective beliefs Pi j, with Pi jk being participant i’s belief
about the relative likelihood of bin k for item j. Each Pi j de-
fines a likelihood for our data, via appropriate link functions.
Variance in subjective beliefs is harnessed by a population-
level hyper-prior with central tendency Q j. The structure of
this model is pictured in Fig. 2.

To fill the structure in Fig. 2 with life, we need to spell out
three parameterized link functions, one for each task type,
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and the relation between population-level belief Q j and in-
dividual beliefs Pi j. Let’s start with the latter. The idea is
that Pi j are noise-perturbed variants scattered around Q j, with
some parameter w to determine how much perturbation we
should expect. To realize this, the model assumes that Pi j are
distributed according to a Dirichlet distribution with weights
given by wQ j:

Q j ∼ Dirichlet(1, . . . ,1) w∼ Gamma(2,0.1)
Pi j ∼ Dirichlet(wQ j)

The higher w, the more likely it is that Pi j is “close” to Q j.
The link function for the slider rating data uses a logit

transformation to project observed slider ratings si jk and la-
tent probabilities Pi jk, which are bound to lie between 0 and 1,
to the reals. The likelihood of logit-transformed observation
si jk is given by a Gaussian with standard deviation σ around
the logit-transformed predictor Pi jk. On top of that, there is a
parameter κ, the steepness of the logit transform of Pi jk, that
allows response likelihoods to capture end-point affinity for
κ > 1 (values of Pi jk close to 0 or 1 are likely mapped to 0 or
1) or end-point aversion for κ < 0 (values of Pi jk are likely to
be realized as more median), with a prior that expects κ = 1.

logit(si jk)∼ Norm(logit(Pi jk,κ),σ)

σ∼ Gamma(0.0001,0.0001) κ∼ Gamma(5,5)

The link function for number choice data treats each bin
ni j as a draw from a categorical distribution where the prob-
ability of bin k is proportional to exp(aPi j), i.e., a soft-max
choice from Pi j. The higher parameter a, the more likely ni j
is the mode of Pi j. For a→ 0, all bins become equiprobable.

ni j ∼ Categorical(exp(aPi j)) a∼ Gamma(2,1)

Finally, consider the link function for bin comparisons.
We are interested in the likelihood with which participant i
selects the higher bin for item j in bin comparison condition
l. Suppose l is about comparing the lower bin bl to the higher
bh. Perhaps the most natural approach would be to link the
likelihood of choosing bh over bl to the difference between
Pi jbh and Pi jbl . However, as discussed above, this does not
appear to be what participants were doing. Indeed, a model
that implements this idea blatantly fails to capture the relevant
regularities in the data. Another plausible link function is to
assume that what matters is the distance to the mode of Pi j:
soft-max prefer the bin that is closer to the mode of Pi j; select
randomly if both bins are equally far from the prototype.1

ci jl ∼ Bern((1+ exp(2b(1− phigh
i jl )))−1) b∼ Gamma(2,1)

phigh
i jl =


2 if mode(Pi j) is closer to higher

bin of l than to lower bin
1 if equal distance
0 otherwise

1(1+ exp(2b(1− x)))−1 =
exp(bx)

exp(bx)+exp(by) if x = 2− y.

Q jk w

Pi jk κ, σ a b

si jk ni j ci jl

bin k ∈ {1, . . . , 15}

item j ∈ {1, . . . , 8}

subject i ∈ {1, . . . , 20}

Figure 2: The data-generating model as a probabilistic graph-
ical model, following conventions of Lee and Wagenmakers
(2015). Shaded nodes are observed, white nodes are latent
variables. Square nodes represent categorical, round nodes
continuous variables. Boxes indicate scope of indices.

Inference

The model was implemented in JAGS (Plummer, 2003).
50,000 samples were obtained from two chains with a thin-
ning rate of 2 after a burn-in of 100,000 that ensured conver-
gence according to R̂ (Gelman & Rubin, 1992).

Means and bounds of 95% high-density intervals (HDIs)
of the posteriors for model parameters are in Table 2. Poste-
rior credible levels of w allow for a limited amount of slack
around Q j. Values for κ indicate that, on average, partici-
pants had no preference for or against extreme slider ratings.
Relatively high values of a indicate that participants, on av-
erage, had a strong tendency to choose modal values in the
give-a-number task.

w κ σ a b

lower 14.65 0.98 0.26 22.04 1.11
mean 15.55 0.99 0.28 27.43 1.27
upper 16.48 0.99 0.31 32.95 1.42

Table 2: Summary statistics for posteriors on parameters

Posterior estimates of Q j are the most relevant. Fig. 3
shows their means with their 95% HDIs, alongside the mean
slider ratings. The latter provide a very good approxima-
tion of the inferred population-level beliefs. Inspection of
posteriors of individual Pi j shows that there is ample varia-
tion between participants. Still, the way the model suggests
we should think about harnessing the individual Pi js under
a population-level central tendency is closely approximated
by mean slider ratings. Although the match is not perfect,
it is good enough to say that the latter are a practical way
of approximating what the crowd believes despite individual
differences.
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Figure 3: Means of posteriors over Q j in black with gray area
indicating 95% HDIs. Red: mean slider ratings.

Model criticism
Inferences based on the model are only as reliable as the
model itself is plausible. Model criticism is therefore im-
portant. Fig. 4 shows posterior predictive checks at the
population-aggregate level for all of our three task types. For
the binned histogram task, posterior predictions are spot-on.
For the give-a-number task, some of the data is surprising de-
spite the model being trained on this very data. This could
have various reasons: (i) the give-a-number data does not
have a huge influence on the posterior likelihood, (ii) num-
ber choices may be influenced by saliency and/or roundness
of numbers after all (and thus, not accurately reflect the true
beliefs Q j). Finally, there is one condition in the paired com-
parison task that the model definitely got wrong. This is the
choice of what is more likely: that one or that none of 14 mar-
bles thrown into a pool would sink. The model predicts that
almost everybody should answer that it is more likely that one
marble sank. But that is not what we observe. It may be that
participants revise beliefs about “normality” of the marbles,
while holding on to an assumption that all marbles behave in
the same way (Degen et al., 2015).

Posterior predictive checks indicate that the trained model
captures patterns of answers at the aggregate population level
well. To have a more fine-grained measure of model fit, we
also looked at posterior predictive p-values (Gelman, Car-
lin, Stern, & Rubin, 2014) at the level of participants and
items. We look at the binned histograms task, because this is
our main focus here and population-level posterior predictive
checks for BH revealed no systematic deviance. Fixing a par-
ticipant and an item, observations and replicates are probabil-
ity vectors of length 15. In a first analysis, we used the mean
of these probability vectors as a test statistic. The minimum
posterior predictive p-value over all 20 (participants) times 8
(items) cases was 0.13, suggesting that the means of observed
si j are non-surprising to the trained model. In a second analy-
sis, we used entropy as a test statistic. Two cases gave poste-

● ● ● ●

●

●
● ●

● ●

●
●

●
●

●● ● ● ●

●

● ● ●
● ●

●
●

●
●

●

●

●

●
● ●

●
● ●

●
● ● ●

● ● ●

●

●

● ● ●
●

●
●

●
● ● ●

● ● ●

●

● ● ● ● ●
● ●

● ● ● ●
●

● ●

●

● ● ● ● ●
● ●

● ● ● ●
●

● ●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
●

●
●

●
●

●

●

●
● ● ●

● ● ● ●
●

●
●

●
●

●

●

●
● ● ●

●
●

●
●

●
●

●
●

●
● ●

● ● ● ●

●
●

● ●
●

●
●

●
●

● ●
● ● ● ●

●
●

●
● ● ●

●

●
● ● ● ● ● ● ●

● ● ●
● ● ●

●

●
● ● ● ● ● ● ●

coffee commute

joke laptop

marbles movies

tv watch

0.05

0.10

0.05

0.10

0.02
0.04
0.06
0.08
0.10

0.00
0.05
0.10
0.15
0.20

0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15

0.05

0.10

0.15

0.025
0.050
0.075
0.100
0.125

4 8 12 4 8 12
bin

sl
id

er
 r

at
in

g

(a) Binned histogram task.
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(b) Give-a-number task.
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(c) Paired comparison task.
Figure 4: Posterior predictive checks for aggregate data. Red
lines give empirical observations. Black lines are means of
posterior predictive samples, gray areas are 95% HDIs.
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rior predictive p-values lower than 0.05. These were from the
two participants who gave a very extreme slider rating for the
“marbles” item, basically assigning all “mass” to the last bin.
What this suggests is that the model can cope reasonably well
also with individual-level data, but, somewhat unsurprisingly,
has problems accounting for “extreme” choices, given that the
population-level hyper-prior on Pi j will lead to shrinkage.

Conclusion
The data and model presented here suggest that mean slider
ratings are consistent with other measures of subjective be-
lief, namely from give-a-number and paired comparison
tasks. Future research should evaluate whether this holds for
other possible measures of subjective beliefs as well, such as
iterated-learning or scoring-rule tasks.

There are aspects of the data that the model does not cap-
ture well, but there are also natural explanations for these dis-
crepancies. It therefore does not seem implausible that par-
ticipants’ latent beliefs could have generated the data from all
three task types roughly in the way assumed by the model’s
link functions, with each subjective belief being an expression
of a population-level central tendency. If that is so, then mean
slider ratings from the binned histogram task are a practical
and reliable approximation of what the crowd believes.

Future research should investigate whether and how our re-
sults can be extended to other types of uncertain variables.
Here, guided by the needs of many previous Bayesian cog-
nitive models, we focused on uncertainty about unidimen-
sional contiguous variables. It remains to be seen whether the
binned histogram task can be applied to higher-dimensional
variables, like joint prior beliefs over, say, height and weight
of an individual or, more abstractly, different dimensions of
a multi-dimensional property like intelligence. Another chal-
lenge lies in devising means of eliciting prior expectations
about properties that do not have clear and familiar measure
terms that can be used to label bins—again like intelligence.

Finally, another aspect that our model has ignored so far
are potential individual differences in the way subjective be-
liefs Pi j generate responses. It is not unlikely that there is
individual variation in at least some link function parameters,
such as κ, which expresses end-point attraction or end-point
aversion in the binned histograms task. A detailed investiga-
tion of such individual-level differences must be left to future
work. Still, we believe that the model presented here is an im-
portant first step towards finding reliable and practical means
of measuring what the crowd believes.

Acknowledgments
MF’s work was supported by the Institutional Strategy of the
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