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Abstract

The squamates (lizards and snakes) are close relatives of birds and mammals, with more

than 10,000 described species that display extensive variation in a number of important bio-

logical traits, including coloration, venom production, and regeneration. Due to a lack of

genomic tools, few genetic studies in squamates have been carried out. The leopard gecko,

Eublepharis macularius, is a popular companion animal, and displays a variety of coloration

patterns. We took advantage of a large breeding colony and used linkage analysis, synteny,

and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon

Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized

the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor

suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation

of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tracta-

ble genetic system and suggests that a tumor suppressor in melanocytes in humans can

also suppress tumor development in iridophores in lizards.

Author summary

The squamates (lizards and snakes) comprise a diverse group of reptiles, with more than

10,000 described species that display extensive variation in a number of important biologi-

cal traits, including coloration. In this manuscript, we used quantitative genetics and

genomics to map the mutation underlying white coloration in the Lemon Frost morph of

the common leopard gecko, Eublepharis macularius. Lemon Frost geckos have increased

white body coloration with brightened yellow and orange areas. This morph also displays

a high incidence of iridophoroma, a tumor of white-colored cells. We obtained phenotype

information and DNA samples from geckos in a large breeding colony and used genome

sequencing and genetic linkage analysis to localize the Lemon Frost mutation to a single
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locus. This locus contains a strong candidate gene, SPINT1, a tumor suppressor impli-

cated in human skin cutaneous melanoma. Together with other recent advances, our

work brings reptiles into the modern genetics era.

Introduction

Color-producing cells [1–5] contribute to animal coloration and patterns. Some cells, such as

melanocytes, produce pigments chemically. Others, such as iridophores, produce colors struc-

turally by making crystal platelets [6–9]. Iridophores are not present in mammals, but are

widespread in insects, fish, birds, amphibians and reptiles. Different types of iridophores can

lead to different colors, including blue [10,11], yellow [12], and white [13]. The size, morphol-

ogy and organization of guanine crystals, which form reflective platelets within the irido-

phores, are considered the mechanisms of different colors [12,14–16]. The form, number and

distribution of the iridophores determine coloration and patterning of the organism [11,17–

20]. We know little of the molecular mechanisms of guanine crystal regulation [21,22]. In con-

trast with well-studied melanocytes, there have been few molecular genetic analyses involving

iridophores. A recent study found that endothelin signaling regulates iridophore development

and proliferation in zebrafish [23]. In mammals, this pathway is required for melanocyte

development [24], suggesting that signaling pathways conserved in evolution can be adapted

to regulate different types of chromatophores.

Many reptile species (e.g., geckos, chameleons, snakes) are bred in captivity as companion

animals, and breeders have established morphs with unique colors and patterns [2]. The inher-

itance of different color morphs is usually carefully documented by breeders. The common

leopard gecko, Eublepharis macularius, is an especially attractive model to study the molecular

regulation of coloration because dozens of color and pattern morphs have been established

over the past 30 years of selective breeding. These morphs either intensify a particular color

(S1A–S1I Fig) or rearrange coloration patterns (S1J–S1L Fig).

Uncontrolled proliferation of iridophores can lead to iridophoroma. White-colored irido-

phoroma is common in many reptile species [25], including green iguanas [26], captive snakes

[27], bearded dragons [28] and veiled chameleons [29]. The genetic causes of iridophoroma in

these species are unknown. Recently, histopathological findings of iridophoroma were

reported in the Lemon Frost morph of leopard geckos [30]. This morph arose as a spontaneous

mutation in a female hatchling from a cross between two wildtype leopard geckos. The muta-

tion leads to increased white body coloration and brightened yellow and orange areas. The

Lemon Frost color morph provides a unique resource for uncovering genetic regulation of iri-

dophores and iridophoroma.

A draft leopard gecko genome assembly has been published, containing 2.02 Gb of

sequence in 22,548 scaffolds, with 24,755 annotated protein-coding genes [31]. Embryonic

development in ovo and blastema-based tail regeneration have also been staged and docu-

mented in great detail [32–34]. Here, we took advantage of these established resources and

used quantitative genetics to gain insight into the molecular regulation of white color and iri-

dophoroma in leopard geckos.

Results

The Lemon Frost allele is a spontaneous semidominant mutation

A male leopard gecko carrying the lemon frost (lf) allele, Mr. Frosty (Fig 1A and 1B), was

crossed to 12 female leopard geckos of different genetic backgrounds. The F1 progeny, which
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were heterozygous for the lf allele, were backcrossed to the same maternal lines or intercrossed

to establish a colony of more than 900 animals (S2 Fig). Homozygous F2 intercross progeny

were named super Lemon Frost (Fig 1C). These homozygous mutants have an accentuated

color phenotype and thickened skin, which is most apparent in their eyelids (Fig 1C, red

arrow). Heterozygous Lemon Frost animals were also crossed to another mutant, Blizzard,

which is light yellow without other colors or patterns (Fig 1D). The homozygous Blizzard

Fig 1. The Lemon Frost mutant of the common leopard gecko, Eublepharis macularius. (A) wild type; (B) heterozygous mutant; (C)

homozygous mutant, with red arrow pointing to the eye lid; (D) blizzard mutant with minimal color; (E) Lemon Frost mutation (lf) on the

blizzard background; (F-H) segregation of the lf allele. Lemon Frost (LF) denotes heterozygotes for the mutation; super LF denotes homozygotes

for the mutation. All proportions are consistent with expectations for single-locus Mendelian inheritance (chi-square test p> 0.1).

https://doi.org/10.1371/journal.pgen.1009580.g001
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progeny carrying the lf allele displayed excessive white color in their heads and trunks, which

brightened Blizzard’s yellow color (Fig 1E). The lf allele also increased white color in the retina

(Fig 1E). The segregation pattern of Lemon Frost in pedigrees is consistent with single-locus

Mendelian inheritance (Fig 1F–1H). The lf allele is semidominant, as homozygous mutants

have more pronounced phenotypes than do heterozygotes (Fig 1B, 1C and 1F–1H).

The Lemon Frost allele leads to iridophoroma, with potential metastasis in

homozygous animals

Three heterozygous Lemon Frost animals were recently reported to develop iridophoroma

[30], a tumor of iridophores. Histopathological examination of the skin samples from homozy-

gous mutants with accentuated phenotypes showed large solid sheaths of round to polygonal

neoplastic cells that efface and expand the normal tissue architecture (S3 Fig). The cells have

abundant cytoplasm with bright brownish intracytoplasmic pigment. The nuclei are eccentric

and vary from round to fusiform. The white tumor masses stain dark with Hematoxylin and

Eosin (H&E), and remain brightly reflective under dark-field illumination (S4A and S4B Fig),

consistent with their nature as iridophores [10,35–38]. Imaging with Transmission Electron

Microscopy (TEM) showed that the lf allele led to both increased numbers of neoplastic irido-

phores and increased production of reflective platelets within each iridophore [22] (S4C Fig).

In addition to skin, other affected organs in homozygous mutants include liver, eye, and mus-

cle. The interpretation of the widespread neoplastic nodules is that the tumors are malignant

iridophoroma. The increased number of iridophores and increased production of reflective

platelets within the iridophores are the likely mechanisms of increased white color in the

Lemon Frost morph.

More than 80% of both male and female animals carrying the lf allele developed white

tumors 6 months to 5 years after birth. The tumors manifest as patches of white cells in the

skin, which are most evident on the ventral side of the animal (Fig 2A). The tumor skin can be

severely thickened and leathery (Figs 2B and S3). It is resistant to liquid nitrogen freezing, or

to Dounce homogenization, making RNA extraction infeasible. In severe cases in heterozygous

mutants, the tumors develop into skin protrusions (Fig 2C, left), which contain dense white

masses (Fig 2C, right). Tumors cover a greater fraction of the skin of homozygous mutants.

Surprisingly, these tumors rarely develop into skin protrusions as in heterozygous animals.

Instead, they manifest as well-demarcated, white, thickened patches on the ventral skin (Fig

2A), thickened layers of white masses all over the dorsal skin (Fig 2B), white, multifocal, vari-

ably sized, well-demarcated nodules in the liver, and patches of white cells in the oral cavity

(Fig 2D).

Linkage and association analysis in a breeding pedigree

To identify the genetic locus that regulates white color and tumor growth in Lemon Frost

mutants, we used restriction site-associated DNA sequencing (RAD-Seq) to genotype 188 ani-

mals from the breeding pedigree (Figs 3 and S2), including 33 super Lemon Frost (lf/lf), 116

Lemon Frost (lf/+), and 39 wild-type (+/+) individuals. We identified a total of 14,857 variants

covering 2,595 scaffolds of the genome assembly. To map the Lemon Frost locus, we tested the

effect of allelic dosage at each marker on white coloration of the geckos in a standard semi-

dominant association mapping framework, accounting for population structure through the

use of marker-based relatedness. We used a p-value threshold of 7.09e-5 (Methods) to control

the false positive rate at 1%. Forty-eight markers on 31 scaffolds were significantly associated

with white coloration (S1 Table). The top two association signals corresponded to scaffolds

6052 and 996.
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Synteny analysis and homozygosity mapping

Because the gecko genome assembly is highly fragmented, we used synteny to examine

whether the 31 scaffolds associated with coloration belong to a single genomic interval.

We compared the gecko scaffolds to homologous regions of several vertebrate species with

chromosome-scale genome assemblies: green anole [39], chicken [40] and human [41]. We

Fig 2. Tumor growth and metastasis in the Lemon Frost mutant. Designations are homozygous mutant (lf/lf); heterozygous

mutant (lf/+); wild type (+/+). (A) tumors in ventral skin; (B) thick layers of white tumor cells (lf/lf) vs. normal white cells (+/+);

(C) outgrowth of white tumor cells (lf/+); (D) metastasis of white tumor cells in the liver and oral cavity. Red arrows: white colored

tumor cells. Arrowhead in B: normal white cells.

https://doi.org/10.1371/journal.pgen.1009580.g002
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Fig 3. Localization of the Lemon Frost mutation. (A) p-value for association with white color and (B) linkage disequilibrium for 28 markers syntenic to chicken

chromosome 5 (red, ordered by synteny), 4 markers syntenic to chromosome 7 (cyan), and 16 markers without synteny information (green). Randomly selected markers

that are not associated with white color (purple). (C) A schematic of the region showing synteny and gene annotation. (D) Fraction of markers showing expected allele

frequency pattern in pools, plotted for 10kb windows along scaffold 996. The four windows with the highest fraction are marked by asterisks and span the location of the
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found that 17 of the 22 scaffolds that have synteny information (including scaffolds 6052 and

996) correspond to one region on chicken chromosome 5, human chromosome 15, and green

anole chromosome 1 (Fig 3A–3C and S1 Table). Three additional scaffolds also have synteny

to the green anole chromosome 1. The remaining two scaffolds without synteny to the green

anole chromosome 1 were more weakly associated with coloration. The 28 markers on these

17 scaffolds are in linkage disequilibrium (Fig 3B), which decays with distance when markers

are ordered by synteny (Fig 3B). These results indicate that a single genomic region is associ-

ated with the Lemon Frost phenotype, as expected for a new mutation with a Mendelian segre-

gation pattern.

To narrow down the location of the causal gene within this genomic region, we used whole

genome sequencing and homozygosity mapping. We pooled DNA from 25 super Lemon Frost

genomes (lf/lf), 63 Lemon Frost genomes (lf/+), and 71 wildtype geckos (+/+) and sequenced

each pool to 30x coverage. We reasoned that the lf mutation in Mr. Frosty and its flanking vari-

ants should form a haplotype that would be found in the super Lemon Frost pool with 100%

frequency, in the Lemon Frost pool with 50% frequency, and would not be seen in the wildtype

pool. We scanned the genome in 10 kb windows and measured the fraction of heterozygous

variants from Mr. Frosty that followed this expected pattern in the pools (S2 Table). This statis-

tic was highest for a window on scaffold 996 (S2 Table and Methods), the main candidate scaf-

fold from statistical mapping (S1 Table). The expected frequency pattern was observed for 20

of 22 variants in this window (630-640kb on scaffold 996). Four of the top six intervals fall in

the region from 570kb to 640kb on scaffold 996, with the signal decaying with distance away

from this region (Fig 3D and 3E). The linkage between this region and Lemon Frost was repli-

cated in an independent 3-generation backcross between Mr. Frosty and a Sunburst Tangerine

morph (Fig 4 and S3 Table). These results indicate that scaffold 996 contains the Lemon Frost

mutation.

SPINT1 is a strong candidate gene for the Lemon Frost phenotype

The genomic interval spanning positions 570kb-640kb on scaffold 996 contains a single gene,

SPINT1. SPINT1 (serine peptidase inhibitor, Kunitz type 1), also known as hepatocyte growth

factor activator inhibitor type 1 (HAI-1), is a transmembrane serine protease inhibitor

expressed mainly in epithelial cells [42–44]. It is the only gene in the larger associated region

reported to be a suppressor of epithelial cell tumors in model organisms and in humans

[42,45–56]. Because the breeding and transmission data indicate that the lf allele arose from a

single spontaneous mutation, we reasoned that a mutation disrupting SPINT1 causes the over-

proliferation of white-colored skin cells in Lemon Frost geckos.

The Lemon Frost SPINT1 allele differs from the reference genome assembly at two posi-

tions in the exons, as well as at 147 positions in the introns and the 3’UTR (S4 Table). This

large number of variants is a consequence of differences in genetic background between Mr.

Frosty’s parents and the non-Lemon Frost individual used to generate the reference, and

makes it challenging to identify the causal mutation. Both differences in the coding sequence

of SPINT1 are synonymous. Notable differences in non-coding regions include 7 large

insertion/deletions (indels) in the introns and a 13-nucleotide insertion in the 3’UTR

(CAAGTGTATGTAT). Indels in introns and promoters of SPINT1 have been reported to

lead to loss of SPINT1 function in fish and mice [51,52,56].

gene SPINT1. Windows with fewer than 5 variants were not plotted (dashed red lines). (E) Genome-wide distribution of the fraction of markers showing expected allele

frequency pattern in pools for all 10 kb windows. The 4 highest windows on scaffold 996 (red arrows) marked in D are among the 6 highest windows in the entire genome.

https://doi.org/10.1371/journal.pgen.1009580.g003
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We used BLASTn to examine whether some of the non-coding differences between the ref-

erence and the Lemon Frost SPINT1 alleles are located in well-conserved vertebrate sequences.

We found that intron 1 has>90% sequence identity to Gekko japonicus and>80% sequence

identity to Zootoca vivipara. Intron 8 has>80% sequence identity to Saurodactylus brosseti.

The 3’ UTR has 79% identity to Gekko japonicus. We also found that human SPINT1 introns

1/2 and the 3’ UTR are the most conserved non-coding regions of the gene among 100

Fig 4. The lemon frost allele in a backcross. (A) We genotyped 7 progeny with the Lemon Frost phenotype and 6 wild type progeny from the third generation of

a backcross of Mr. Frosty to the Sunburst line for markers in the SPINT1 region and observed a consistent inheritance pattern. (B) Sequencing chromatogram of a

heterozygous animal (lf/+) at an insertion marker. (C) Sequencing chromatogram of a homozygous animal (+/+) at the same insertion marker.

https://doi.org/10.1371/journal.pgen.1009580.g004
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vertebrates by PhyloP analysis [57–59], with conservation scores that are comparable to those

for exons 8 and 10. The ENCODE candidate cis-regulatory elements (cCRE) analysis showed

that introns 1/2 and the 3’ UTR are the major regions with multiple candidate enhancers

[57,60]. Similar results were obtained for the mouse SPINT1 gene. These observations suggest

that some of the 22 sequence variants in intron 1 or 20 variants in the 3’ UTR of the leopard

gecko SPINT1 may be functionally important.

Sequencing of RNA extracted from normal gecko skin and from skin peripheral to tumors

in homozygous mutants confirmed that SPINT1 is expressed in this tissue (S5 Fig). However,

we did not observe a significant difference between homozygous mutants and wildtype geckos

in SPINT1 mRNA levels or splicing patterns. This result suggests that the putative causal muta-

tion in SPINT1 may alter translation or protein activity, rather than transcription. Alterna-

tively, the mutation might reduce SPINT1 expression only in tumors, which are refractory to

RNA extraction as noted above.

Discussion

Several lines of evidence support our hypothesis that a defect in SPINT1 causes iridophoroma

in Lemon Frost geckos. First, SPINT1 function is dosage-dependent, consistent with our

observation that Lemon Frost is a semi-dominant phenotype. In humans, carcinoma tissues

in vivo and carcinoma-derived cell lines in vitro have reduced SPINT1 on the cell membrane

[61,62] through enhanced shedding of the extracellular domain or decreased mRNA or protein

expression. Reduced expression of SPINT1 has been associated with a negative prognosis of

human Skin Cutaneous Melanoma (SKCM) [45] and pancreatic ductal adenocarcinoma [46].

Knockdown of SPINT1 expression by siRNA in cancer cell lines led to increased invasion or

metastasis [47,62,63]. Second, loss of SPINT1 function in fish and mice leads to tumor forma-

tion in epithelial cells. In mice, homozygous deletion of SPINT1 leads to disrupted placental

basement membranes and embryonic lethality [52,54]. Rescued mosaic animals developed

scaly skin with hyperkeratinization [55]. Intestine-specific deletion of SPINT1 leads to

increased tumor growth of intestine epithelium [48]. Increased expression of SPINT1 in the

skin abrogated matriptase-induced spontaneous skin squamous cell carcinoma [64]. In zebra-

fish, reduced expression led to hyperproliferation of basal keratinocytes [51] and enhanced

proliferation of epithelial cells [56]. Furthermore, SPINT1 deficiency was used to establish a

disease model for Skin Cutaneous Melanoma (SKCM) in zebrafish [45]. In all three studies in

zebrafish, skin inflammation was observed. Third, insertions in introns [51,52] and promoters

[56] have caused loss of SPINT1 function. Together with our genetic localization of the lf locus

to SPINT1, these lines of evidence make this gene a very strong candidate for the Lemon Frost

phenotype.

Molecular genetics in reptiles is not well established due to long reproductive cycles and

challenges in laboratory breeding. Early work focused on careful documentation of patterns of

inheritance [2,65]. Molecular studies have examined sequence variants in a candidate pigmen-

tation gene, melanocortin-1 receptor, and their association with melanic or blanched pheno-

types in different species and ecological niches [66–73]. Recent work in the wall lizard [74] and

the corn snake [75] used a similar sequencing-based approach to our study to identify the

molecular basis of coloration polymorphisms in these species. Successful use of CRISPR-

Cas9-mediated gene editing to mutate the tyrosinase gene has been reported in the lizard

Anolis sagrei [76]. Although this species is only distantly related to the leopard gecko, this

advance offers promise that targeted studies of the role of SPINT1 mutations in the Lemon

Frost phenotype will become possible.
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Most of our knowledge about molecular and cellular regulation of iridophores derives from

work in zebrafish [11,13,17,19,23,77–85]. Interestingly, few cases of iridophoroma have been

reported in zebrafish [86]. Our data suggest that an evolutionarily conserved gene, SPINT1,

regulates the proliferation of white iridophores in the leopard gecko. Increased production of

reflective platelets in Lemon Frost iridophores is a novel finding that warrants further investi-

gation, for instance by manipulating SPINT1 expression. The tumor suppressor function of

SPINT1 establishes a potential link between iridophoroma and regulation of white coloration

in reptiles. Our work suggests that cancer genes can play as important a role in iridophores as

they do in melanocytes and melanoma [87], and that Lemon Frost leopard geckos may serve

as a disease model to study Skin Cutaneous Melanoma.

Methods

Ethics statement

All activities involving animals included in this manuscript were approved by the University of

California, Los Angeles (UCLA) Institutional Animal Care and Use Committee, approval

number: ARC #2018–035 (6/19/2018~6/18/2021).

Gecko maintenance and experimental procedures

Leopard geckos were acquired from a commercial breeder. Housing conditions at UCLA

included: room temperature of 70–80 F, cage temperature of 72–95 F, room relative humidity

between 30–60%, and a 12:12 hours light cycle. A heating pad was provided at one side of the

cage to establish a temperature gradient. Animals were singly housed in polycarbonate cages

with cardboard lines (Techboard) at the bottom, water was provided in bowls inside the cage,

and PVC pipe pieces and plastic plants were offered as environmental enrichment. Geckos

were fed 2–6 fresh crickets and 2–4 mealworms three times per week.

Geckos were euthanized with an intracoelomic injection of sodium pentobarbital (Eutha-

sol) at a dose of 100–200 mg/Kg. Immediately after euthanasia, a necropsy was performed,

including external examination, body and organ weighing, gross assessment of normal and

abnormal tissues, and tissue collection for histopathology processing and assessment. Normal

and abnormal tissues were fixed in 10% formalin, embedded in paraffin, sectioned, and stained

with H&E for pathologic evaluation.

Phenotyping

Lemon Frost and super Lemon Frost phenotypes were scored by experienced breeders who

used visual inspection to determine an increase in white color of the body, eye, and belly com-

pared to normal wildtype animals. The Lemon Frost mutation increases the white base color

of the gecko over its entire body. This results in an overall brightening of white, yellow, and

orange colors of the gecko. The effects of the mutation can also be observed in a whitening of

the eyes and in white color spreading down the sides onto the belly. Pictures were taken for

each animal to document the phenotypes.

Genotyping

Genomic DNA was extracted from fresh tail tips with Easy-DNA gDNA purification kit

(K180001, ThermoFisher), or from the saliva with PERFORMAgene (PG-100, DNAgenotek).

Genomic DNA extracted from saliva was further purified with ethanol precipitation before

genotyping assays. DNA libraries for whole genome sequencing were prepared with Nextera

DNA Library Prep Kit (FC-121-1031, Illumina). Libraries for RADseq were prepared
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according to the procedures of Adapterama III [88] with few modifications. Libraries were

sequenced on a HiSeq 3000 (Illumina).

Only scaffolds larger than 5kb in the draft genome assembly were used as a reference. RAD-

seq reads and Whole Genome Sequencing (WGS) reads were aligned to the leopard gecko

draft genome [31] with bwa mem (version 0.7.17) [89]. Variants for WGS were identified with

GATK (version 4.1.4.1) [90]. Variants for RADseq were identified with Stacks (version 2.41)

[91,92]. All variants were filtered with VCFtools (version 0.1.14) [93]. First, variants had to be

are bi-allelic and heterozygous in Mr. Frosty. The ratio of the reads for the two alleles was

required to be in the range 0.4–0.6. Second, only high-quality variants were used in homozy-

gosity mapping or statistical mapping (DP> = 30, GQ> = 30).

Transcriptome sequencing

Skin tissue samples around 6mm in diameter were taken from the ventral side of the geckos

after anesthetization with 1–5% isoflurane. As tumor tissues are refractory to RNA extraction,

flanking tumor-free tissue samples were taken for homozygous Lemon Frost animals. All sam-

ples were homogenized with TissueRuptor in buffer RLT immediately after collection. Lysates

were immediately frozen on dry ice until all tissues were collected from animals. Then all

lysates were centrifuged for 5 minutes at 13,000 rpm to remove debris. Supernatants were

taken to fresh tubes, and mRNA was extracted according to the procedures of RNeasy Fibrous

Tissue Mini Kit (74704, QIAGEN).

Libraries of extracted mRNA were prepared with RNA HyperPrep kit (KAPA) and

sequenced on a HiSeq 3000 (Illumina). RNA-seq reads were mapped to the leopard gecko

draft genome [31] using HISAT2 with default parameters. Identification of alternative and dif-

ferential splicing events was performed using JuncBase [94]. Gene expression was compared

using Sleuth [95] after RNA transcript abundance was quantified using Kallisto [96].

Pathology

Complete postmortem examination was performed, and representative tissue samples were

obtained. All tissues obtained at necropsy were preserved in 10% neutral-buffered formalin

solution for up to 5 days before being processed and embedded in paraffin. All tissues were

sectioned at 5 μm, and routinely stained with Hematoxylin and Eosin.

Statistical mapping

Biallelic markers with minor allele frequency of less than 5% and with fewer than 10 individu-

als called as homozygous for both the reference and alternative alleles were excluded from

mapping and kinship matrix construction. A kinship matrix was calculated using the function

A.mat with default parameters from the rrBLUP [97] R package. Phenotype was encoded as 0

for wild type, 1 for Lemon Frost, and 2 for super Lemon Frost. Association statistics between

this phenotype vector and marker genotypes were computed using the function gwas2 in the

NAM [98] R package using a linear mixed model with a random effect of kinship to control

for population structure. The effective number of tests was computed to be 141.1 based on the

procedure of Galwey et al [99]. A family-wise error rate significance threshold was calculated

as 0.01/141.1 or p<7.09e-5.

Homozygosity mapping

Pooled animals and Mr. Frosty were sequenced to ~30x coverage on a HiSeq 3000 (Illumina).

Variants were identified with GATK and filtered with VCFtools. Biallelic heterozygous
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variants from Mr. Frosty, including indels, were used as markers to localize the Lemon Frost

mutation. Allele ratios (AF) were calculated by dividing the read count of alternative alleles by

the sum of the counts of reference alleles and alternative alleles. Variants closely linked to the

Lemon Frost mutation are expected to have AF between 0.4 and 0.6 in the Lemon Frost pool

and in Mr. Frosty, AF > 0.85 in the super Lemon Frost pool, and AF < 0.15 in the wildtype

pool. The number of variants meeting these criteria was counted for every 10kb genome inter-

val. The fraction of such variants among all variants heterozygous in Mr. Frosty within the

interval was then calculated. Intervals with fewer than 5 variants were excluded because they

could not provide statistically meaningful results.

Transmission electron microscopy

Dissected skin tissues were fixed in 2.5% glutaraldehyde and 4% formaldehyde in 0.1 M

sodium cacodylate buffer overnight at 4˚C. After being washed in PBS, samples were post-

fixed in 1% osmium tetroxide in 0.1M sodium cacodylate, and dehydrated through a graded

series of ethanol concentrations. After infiltration with Eponate 12 resin, the samples were

embedded in fresh Eponate 12 resin and polymerized at 60˚C for 48 hours. Ultrathin sections

of 70 nm thickness were prepared, placed on formvar-coated copper grids, and stained with

uranyl acetate and Reynolds’ lead citrate. The grids were examined using a JEOL 100CX trans-

mission electron microscope at 60 kV, and images were captured by an AMT digital camera

(Advanced Microscopy Techniques Corporation, model XR611).

Supporting information

S1 Fig. Coloration and pattern diversity of the common leopard gecko, Eublepharis macu-
larius. (A) wild type; (B) black night; (C) variant of black night; (D) granite snow; (E) gem

snow; (F) white knight; (G) sunburst tangerine; (H-I) variants of sunburst tangerine; (J) red

stripes; (K) bold stripes; (L) rainbow.

(TIF)

S2 Fig. Breeding pedigree of the Lemon Frost mutation. Mr. Frosty, the original carrier of

the spontaneous Lemon Frost mutation, was bred to 12 female geckos from different genetic

backgrounds. F1s carrying the lf allele were bred among themselves or back to their female

parent, producing the second generation of animals heterozygous or homozygous for the lf
allele. Blue: lf/lf; green: lf/+; red: +/+. Dashed line: same individual/line.

(TIF)

S3 Fig. Histopathology of skin tumors. (A) Thick layers of white tumor tissue (star) infiltrat-

ing white skin (arrow). (B) Skin biopsies organized and fixed in a paper roll for sectioning. (C)

H&E staining of the skin sections. Arrow: skin; star: infiltrated tumor mass. (D) H&E staining

of the skin sections showing normal skin cells and neoplastic cells (star). Neoplastic cells have

eccentric and condensed nuclei.

(TIF)

S4 Fig. Potential metastasis of iridophoroma. (A) In normal skin, cell nuclei are oval and

perpendicular to the skin surface. In Lemon Frost skin, cell nuclei are flat, elongated and paral-

lel to the skin, reminiscent of epithelial-to-mesenchymal transition. (B) Iridophoroma in the

liver, stained dark in H&E sections. In dark field imaging, iridophores are bright white. Such

iridophores invade blood vessels in the tissue (red arrows). (C) In TEM imaging, white tumor

skins in super LF are filled with abundant iridophores with excessive brightly reflective crystals

(Tumor). In normal skin, iridophores are much fewer and have less crystals (Normal).

(TIF)
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S5 Fig. SPINT1 expression in gecko skin. SPINT1 mRNA reads from transcriptome sequenc-

ing were aligned to the genome and visualized in IGV. Top 3 rows show samples from homo-

zygous mutants. Bottom 3 rows show samples from wild type geckos. Skin tissue adjacent to

the tumors was used in the mutants. Peaks mark SPINT1 exons. The last exon on the right is

transcribed together with the 3’UTR.

(TIF)

S1 Table. Scaffolds associated with Lemon Frost phenotype.

(XLSX)

S2 Table. Candidate Lemon Frost mutations on SPINT1.

(XLSX)

S3 Table. Genotyping results of the backcross.

(XLSX)

S4 Table. Candidate and background mutations in homozygosity mapping.

(XLSX)
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C., et al. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation

in zebrafish. eLife 3, e05125, https://doi.org/10.7554/eLife.05125 (2014). PMID: 25535837

21. Kimura T., Takasaki M., Hatai R., Nagai Y., Uematsu K., Oaki Y., et al. Guanine crystals regulated by

chitin-based honeycomb frameworks for tunable structural colors of sapphirinid copepod, Sapphirina

nigromaculata. Sci Rep 10, 2266, https://doi.org/10.1038/s41598-020-59090-4 (2020). PMID:

32042000

22. Morrison R. L., Frost-Mason S. K. Ultrastructural analysis of iridophore organellogenesis in a lizard,

Sceloporus graciosus (Reptilia: Phrynosomatidae). J Morphol 209, 229–239, https://doi.org/10.1002/

jmor.1052090209 (1991). PMID: 1960736
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80. Krauss J., Astrinidis P., Astrinides P., Frohnhöfer H. G., Walderich B., Nüsslein-Volhard C. transparent,

a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required

for iridophore survival. Biol Open 2, 703–710, https://doi.org/10.1242/bio.20135132 (2013). PMID:

23862018

81. Fadeev A., Krauss J., Singh A. P., Nusslein-Volhard C. Zebrafish Leucocyte tyrosine kinase controls iri-

dophore establishment, proliferation and survival. Pigment Cell Melanoma Res 29, 284–296, https://

doi.org/10.1111/pcmr.12454 (2016). PMID: 26801003

82. Singh A. P., Nusslein-Volhard C. Zebrafish stripes as a model for vertebrate colour pattern formation.

Curr Biol 25, R81–R92, https://doi.org/10.1016/j.cub.2014.11.013 (2015). PMID: 25602311

83. Cooper C. D., Erickson S. D., Yin S., Moravec T., Peh B., Curran K.Protein Kinase A Signaling Inhibits

Iridophore Differentiation in Zebrafish. J Dev Biol 6, https://doi.org/10.3390/jdb6040023 (2018). PMID:

30261583

84. Irion U., Nusslein-Volhard C. The identification of genes involved in the evolution of color patterns in

fish. Curr Opin Genet Dev 57, 31–38, https://doi.org/10.1016/j.gde.2019.07.002 (2019). PMID:

31421397

85. Lewis V. M., Saunders L. M., Larson T. A., Bain E. J., Sturiale S. L., Gur D., et al. Fate plasticity and

reprogramming in genetically distinct populations of Danio leucophores. Proc Natl Acad Sci U S A 116,

11806–11811, https://doi.org/10.1073/pnas.1901021116 (2019). PMID: 31138706

86. Masahito P., Ishikawa T., Sugano H. Pigment cells and pigment cell tumors in fish. J Invest Dermatol

92, 266S–270S, https://doi.org/10.1111/1523-1747.ep13076602 (1989). PMID: 2654300

87. Yang K., Oak A. S. W., Slominski R. M., Brozyna A. A., Slominski A. T. Current Molecular Markers of

Melanoma and Treatment Targets. Int J Mol Sci 21, https://doi.org/10.3390/ijms21103535 (2020).

PMID: 32429485

88. Bayona-Vasquez N. J., Glenn T. C., Kieran T. J., Pierson T. W., Hoffberg S. L., Scott P. A. et al. Adap-

terama III: Quadruple-indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD). PeerJ 7, e7724,

https://doi.org/10.7717/peerj.7724 (2019). PMID: 31616583

89. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics

25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009). PMID: 19451168

90. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., et al. The Genome Analy-

sis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome

Res 20, 1297–1303, https://doi.org/10.1101/gr.107524.110 (2010). PMID: 20644199

91. Catchen J., Hohenlohe P. A., Bassham S., Amores A., Cresko W. A. Stacks: an analysis tool set for

population genomics. Mol Ecol 22, 3124–3140, https://doi.org/10.1111/mec.12354 (2013). PMID:

23701397

92. Catchen J. M., Amores A., Hohenlohe P., Cresko W., Postlethwait J. H. Stacks: building and genotyping

Loci de novo from short-read sequences. G3 (Bethesda) 1, 171–182, https://doi.org/10.1534/g3.111.

000240 (2011). PMID: 22384329

93. Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. The variant call format

and VCFtools. Bioinformatics 27, 2156–2158, https://doi.org/10.1093/bioinformatics/btr330 (2011).

PMID: 21653522

94. Brooks A. N., Yang L., Duff M. O., Hansen K. D., Park J. W., Dudoit S., et al. Conservation of an RNA

regulatory map between Drosophila and mammals. Genome Res 21, 193–202, https://doi.org/10.

1101/gr.108662.110 (2011). PMID: 20921232

95. Pimentel H., Bray N. L., Puente S., Melsted P., Pachter L. Differential analysis of RNA-seq incorporating

quantification uncertainty. Nat Methods 14, 687–690, https://doi.org/10.1038/nmeth.4324 (2017).

PMID: 28581496

PLOS GENETICS Genetics in reptiles

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009580 June 24, 2021 18 / 19

https://doi.org/10.1073/pnas.2003724117
http://www.ncbi.nlm.nih.gov/pubmed/33020272
https://doi.org/10.1016/j.celrep.2019.07.089
https://doi.org/10.1016/j.celrep.2019.07.089
http://www.ncbi.nlm.nih.gov/pubmed/31461646
https://doi.org/10.1371/journal.pgen.1003561
http://www.ncbi.nlm.nih.gov/pubmed/23737760
https://doi.org/10.1002/dvdy.20513
https://doi.org/10.1002/dvdy.20513
http://www.ncbi.nlm.nih.gov/pubmed/16110504
https://doi.org/10.1002/dvdy.10334
http://www.ncbi.nlm.nih.gov/pubmed/12889058
https://doi.org/10.1242/bio.20135132
http://www.ncbi.nlm.nih.gov/pubmed/23862018
https://doi.org/10.1111/pcmr.12454
https://doi.org/10.1111/pcmr.12454
http://www.ncbi.nlm.nih.gov/pubmed/26801003
https://doi.org/10.1016/j.cub.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/25602311
https://doi.org/10.3390/jdb6040023
http://www.ncbi.nlm.nih.gov/pubmed/30261583
https://doi.org/10.1016/j.gde.2019.07.002
http://www.ncbi.nlm.nih.gov/pubmed/31421397
https://doi.org/10.1073/pnas.1901021116
http://www.ncbi.nlm.nih.gov/pubmed/31138706
https://doi.org/10.1111/1523-1747.ep13076602
http://www.ncbi.nlm.nih.gov/pubmed/2654300
https://doi.org/10.3390/ijms21103535
http://www.ncbi.nlm.nih.gov/pubmed/32429485
https://doi.org/10.7717/peerj.7724
http://www.ncbi.nlm.nih.gov/pubmed/31616583
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1111/mec.12354
http://www.ncbi.nlm.nih.gov/pubmed/23701397
https://doi.org/10.1534/g3.111.000240
https://doi.org/10.1534/g3.111.000240
http://www.ncbi.nlm.nih.gov/pubmed/22384329
https://doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pubmed/21653522
https://doi.org/10.1101/gr.108662.110
https://doi.org/10.1101/gr.108662.110
http://www.ncbi.nlm.nih.gov/pubmed/20921232
https://doi.org/10.1038/nmeth.4324
http://www.ncbi.nlm.nih.gov/pubmed/28581496
https://doi.org/10.1371/journal.pgen.1009580


96. Bray N. L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat

Biotechnol 34, 525–527, https://doi.org/10.1038/nbt.3519 (2016). PMID: 27043002

97. Endelman J. B. Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP.

The Plant Genome 4, 250–255, https://doi.org/10.3835/plantgenome2011.08.0024 (2011).

98. Xavier A., Xu S., Muir W. M., Rainey K. M. NAM: association studies in multiple populations. Bioinfor-

matics 31, 3862–3864, https://doi.org/10.1093/bioinformatics/btv448 (2015). PMID: 26243017

99. Galwey N. W. A new measure of the effective number of tests, a practical tool for comparing families of

non-independent significance tests. Genet Epidemiol 33, 559–568, https://doi.org/10.1002/gepi.20408

(2009). PMID: 19217024

PLOS GENETICS Genetics in reptiles

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009580 June 24, 2021 19 / 19

https://doi.org/10.1038/nbt.3519
http://www.ncbi.nlm.nih.gov/pubmed/27043002
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1093/bioinformatics/btv448
http://www.ncbi.nlm.nih.gov/pubmed/26243017
https://doi.org/10.1002/gepi.20408
http://www.ncbi.nlm.nih.gov/pubmed/19217024
https://doi.org/10.1371/journal.pgen.1009580



