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ABSTRACT

It is shown that in a2 symmetric two-level model, a sudden transition

from configuration-mixing to non-configuration-mixing state at a critical
"strength Gc is an artificial festure of the theory arising mainly from

~ the number fluctuation in the wave function. The variational method

taking the components of the BCS wave function with correct particle
number shows that such a sudden transition should not occur. The effect
of a L-quasi-particle component in thé number~conserving method is to
improve higher. order amplitudes of the wave function, to necessitate a
reduction of A, and to modify'the roles of the uw and v parameters. The
absence of a sudden transition is expected to have some bearing on the
question of whefher a discontinuous "Mottelson-Valatin effect" in the

nuclear rotational spectra does exist in nature.
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I. INTRODUCTION
Dietrich, Mang and Pradall developed a variational method in the

pairing model which should glve the best possible solutions of the BCS

form with projection of terms of proper particle number. This method

,(designated FBCS) was applied extensively to the actinide proton and

neutron systems by Mang, Poggenburg, and Rasmusseng. The FBCS method

consists of performing the variation on the u, and vy parameters after

1

- projection of fixed particle compohehts rather than before. This method

differs from the usual.prpjection method (PBCS)3 in the order in which
projection and variation are performed. /

It is well known that the conventional BCS method gives 6nLy trivial
solutions (no configuration mixing) for pairing force strength belov a
eritical force strength (denoted by'Gc) determined by Belyaev's inequalityh.
Two of the autﬁors (Rho. and Rasm.ussen)5 earlier studied two-level model
systems by means of the BCS and exact methods to gain insight into.the
apprdximations and validity of the BCS method. We now wish to extend |
that study to include the FBCS method. |

~In I, ve made the remark that the existence of Gc below which the BCS . .

* equation has only the itrivial solutions might be an artificial feature of

the theory,”and might be due to fluctuation of number of particles. We

show invﬁhe following that indeed the FBCS method in the two level case

gives a non-trivial (or configuration mixing) solution for all attractive

’:pairing force strengths. Nogami6 has -independently shown the same result

7

by a different method and Dietrich’ has provided in an unpublished paper

'7  an argument that the same conclusion should hold for general cases provided

interaction is attractive.
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In comparing the FBCS solutions with the exact ones, we find that

- the two methods yield in low-G limit exactly the same ratio cl/'co where

ci are the amplitudes with i-pair promoted to the upper level, but they

deviate in ci/co for 1 2. 1In order to match one more ratio cg/bo,

one is tempted to introduce an additional (independent) variational
parameter, say B, by adding a 4-quasi-particle éomponent. We demonstrate,
howevef, that it is not possible in the present model and framework to
match exactly the two quantities simuitaneously (though 02/0o may be

improved). We show further by a generalized variational calculation

:that cl/bo can always be made to match with the exact value independently

of what the parameter v turns out to be. As a consequence, the ground

state énergy in the low-G limit does not depend on the v-parameter up

. to third power of the coupling constant G. Thus unlike the FBCS

method ﬁhere the v-parameter (and hence A) is closely related to éon-
figuration mixing, v2 and A do not play significant roles in the
generalized FBCS method (GFBCS). This point is also discussed in a
paﬁer of Vaﬁtherin and Rh08 where the same phenomenon occurs in an

extended BCS theory without projection.

II.. EXISTENCE OF NON-TRIVIAL SOLUTIONS

Let us consider the system with two.levels of idéntical degehéracy 2

end with N = 2.0 nucleons or L2 pairs. This system seems sufficiently

complex to dring out the superfluidity properties of a real nuclear

system, but it is simple enocugh (owing to special symmetry) to yield exact

analytic solutions for the BCS equations and approximate analytic solutions

" for the FBCS equations in the low-G limit.



UCRL-16550

3

Taking the separation of the two levels (denoted by h for the
A highef level and £ for the lower level) to be €, we wriﬁe the Hamiitonian
~in two forms: A

+ ot ' '
Z' szm 2 Zz (‘[/Z“t Q/L-'n G’S—Hn' a‘Sm’

IW} Wi e . .
=€ L% 5,007 = 6 [Sp105.0 +5.005.0 ]
+ S OS0) £ S,R)S- ()]
| : (1)
where Cﬁ'amd @, are the fermion creation and annihilation operators
respectively, and
. 'T
5’4—(’{) = Z (’Luw -

R ipYe
.‘..
CS_) = LS

and S (’{) - J- L; l 2 ht 1ILL »~C€'{-4tt .ai_'"l’s
*M)o L

o are the quasi-spin operators introduced'in,l.
The set of BCS equations with the Hamiltonian given above was solved

in I end the "critical force strength" was found to be

%" Ja

- o (2)
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Now using Eq. (2.9) of Dietrich et. a.ll, the expression for ‘totel energy

for Eq. (1) in FBCS method can be written as

E = ”’é‘”{ 2. (2g, ) R(«x) -(TZ 4 et R, u,s)}

° %
0(1/,
. (3)
vhere the."residuum function" R is defined 'byg
e .é..% ';T ( 2 2 )
Ro - - et ‘{ Uy .Uy )
! dz W
R)n(@’" " N /((, U;_<1.>
2 \ AN
K% 4
(k)

and where the contour of integration may be any path around the ‘origin._

-~ In Egs. (3) and (%), n is the number of pairs and N the total number of

 orbitals (magnetic substates).

The trial wave function corresponding to Eq. (3) is given by

sz < = W (+22q.,.@ ‘) Io)
0 ~ e

Y

= C‘ _Fn % 11_ Qa‘%!) E’VO;' S-.-(K') u"] \(5)}

S (el Y
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where C 1s the normalization constent proportional to Rg . We have

replaced the contour integral by an equivalent opera’cion-Pn projecting

‘out the components with n peir. In the last line of Eq. (5), we have

madé use of the relation
'S ot | | b e
L—CK’] lo) = [A'.IZK(QK-O"'(\K—MDJ 1K)

(6)

‘where ‘k}) is an‘eigenstate of 8 (kX}E.

Using the symmetry properties of the system (same degenéracy etc.) and

Eq. (4), one can verify that the condition

BIN19)= 22

implies

(n

' This relation holds exactly even vwhen a four quasi-particle component -

is added.

With the relations of Eq. (7), Eq. {3) becomes

E = R {n(e-m—m W RR) — 0. (6 +GQ) ¥ R )

Ve : :

‘. 2.2 2 2 2 : (8) |
~260XwW (v=-u") R, (%zz)}
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. "We are mainly interested in ‘the 1limit G0, and hence we can expand

the R functions in powei's of x = u2 /vg. Keeping terms up to quadratic

in x, we have

B=2a’ G —é‘ruz—dj =268 - (evi) 2}

(9
The minimization of Eo de’cemipes the x:
L SE. '
52\(27' 3X = 2{6"6(\!{2%).} X"(“r =0
or
xX= (T/Q{G —G(&xt)} | o)
' ° - {10

First we notice that x is linear in G and consequently the energy Eq. (9)

is valid up to third power in G,

o= — €2 {|+27 +223 +4000F ] + 0G57)

_ (11)
Next Bq. {10) shows that a_non-ti'ivial vsélution with x > 0 obtains

in the FBCS method for ai.l G > 0. The solution also has the proper per-

~turbation theoretical limiting dependence of configuration mixture on

pairing force strength. The apparent singularity in the solution at

€ = G(Q-1) is a consequence of our retaining only terms quadratic in x

 for Eq. (9). Equation (10) is velid only if G <<§ . The FECS

solution which minimizes Eq. (8) behaves properly in the limit of

large G where both PBCS and ¥BCS approach the exact solutions.
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IIY. COMPARISONS WITH EXACT SOLUTIONS

Exact solutions are obtained by the quasi-spin method as described
in I and come from the diagonalization of a tri-diagonal matrix of
dimensionality(_Q +l). We have obtained variational solutions to the

complete FBCS energy expression of Eq. (8) using the computer program

‘of Mang, Poggenburg, and Resmussen®.

Specifically we study the system with Q= L, =5 and orbital

separation € = 1 MeV., The error in the ground state energy is plotted

in Fig. 1 against pairing force strength for several variational methods.
There are the ordinary BCS, PBCS and FECS which also have been studied
numerically on large systems, but without benefit of knowing the exact

solutions, by Mang, Poggenburg and Rasmussen. A fourth method is a

PBCS retaining a vLL self-energy term, which has been often dropped but

carefully examined in some calculations of Lande.lo Note that all

methods except FBCS make the same error below the critical pairing
strength Gc = % = 0,1 MeV; this results because projectién of fixed
particle component from a trivial solution does not modify the wave

functions.

In Fig. 2 is plotted vZ vs. G. Notice that FECS method always

h
gives a larger vi than BCS (more properly_EBCS) with the vh terms. The
BCS method without the vL'L terms gives a rapidly rising v2 which crosses

h
slightly over FBCS at G =~ 0.1li. Thus the curious cusp in the error curve

for PBCS in Fig. 1 occurs near this cross-over, and, of course, FBCS and

PBCS solutions and energy value errors are identical at the cross-over.
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Let us now see how well the various amplitudes of the exact wave
function are matched by the FBCS method. There are (2 +1 (=6) ampli-.
‘udes Cy through ¢, in the wave funétion, corresponding to components
with zero through Jﬁ_(:S) pairé in the upper level and,'respectively,
L2 through zero pairs in the lower. In I we showed that the ratio
ci/co are easiest to compare with BCS-type wave functions. In Fig. 3

is plotted the comparison of cl/bo for FBCS and exact solutions. The

- two solutions are indistinguishable below G % 1.5 GC but for higher G

values the FBCS sliphtly overshoots the exact solution. Figure 4 shows
the "second-order" ampliﬁude ratio ce/bo. Here there is a slight over-
shoot by FBCS for G 2 1.5 Gc, but the second order émflitude is pro=-
gressively underestinated as one goes to weaker & than 1.5 Gc' The error
is sbout 50% at G = G_ and a factor of two at G = 0.5 G_. We do not
plot the higher-order ratios c3/ho, ch/bo’ etc., but we have checked

c /bovand find it a few percent low at G = 1.9 G_ and almost a factor of
four low at G = G .

Let us examine briefly the nature of the error in cz/b by using a
simple perturbatlon theory. From Eq. (20) of I, we derive generally
that the first two off-diagonal matrix elements in the Hamiltonian matrix
for degeneracies () in higher and lower level are - _ QG and 42(_1L-1)G.
Thus by first orﬁer perturbation theory the ratio of amplitude of one

pair promoted to the higher level (cl) to the amplitude of zero pairs

- promoted (co) is

Gr—?o (c)« =03 + 00 | (12)'
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vhere { is defined by ¢ = G/2¢. By second order perturbation method,

we have the ratio ce/bo,

Qi CE) o 2 3
(13)
From Eq. (10),_we have
. kA .
/9 /_g__)g Low o _
G0 =/~ (irao'x =3 .
(1k)
Now using Eq. (5) and (13), we obtain for the FBCS theory
Glao ) oA
(15)
" in agreement with the exact result BEg. (12). However, for the second
'ofder ratio, we get
_ A\
G0 ( *FBes S .
(16)

" Thus in the low-vorce limit the FBCS variational wave function gets

Cl/co correct and is a factor of two low on the second order amplitude.
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| In fact, no wave function of projected BCS product type can simultaneocusly
match both cl/co and cg/co in the low-G region. The FBCS method in this
"case minimizes the energy of the system By using its single degreé of
freedom to closely match cl/bo, which is ;arger than ce/'co and more signi-
ficant in.determing the total eﬁergy. Chasman,ll for instance, has been
able to obtain lower energy values in his iterative-variational approach
by introducing more degrees of freedem than in the BCS methods in the
form of factors correcting on the average the higher-order amplitudes with
respect to lower-order amplitudes. Thus in order to improve on the
second-order component, we are tempted to introduce one more variational
parameter B in addition to v by adding a four-quasi-particle (projected)

wvave function to the FBCS function.
IV. EFFECT OF L4 -QUAST -PARTICLE COMPONENTS

There has been considerable study of improvements to BCS wave functions
via the random-phase approximation (RPA) treatment of interactions be-
tween quasiparticles.12 The emphasis has been mainly on the effect of
- ground state correlations on excited states. Frequently the RPA.method :
is applied ﬁé quadfupole-quadrupole force component, admixing, L, 8, 12 etc;
" quasi~-particle components into the ground stgte, In.our work here, we

shall not consider effects of force components in addition to the pairing
forece in Hamiltonlan. =Even with the pure pairing forece alone, there

remain the residual terms Hho’ H22, and H_, in the quasi-particle

31
 Hamiltonian. It seems worth exploring whether introduction of terms of
h-quasi-particle forms might naturally provide extra variational parsmeters

to improvg further the FBCS wave functions in the low G region. So far
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. as we know, such higher order corrections to fixed-particle-number

(projected) wave functions have not been studied heretofore, although

& few studiesl3 have been made to incorporate such corrections to

ordlnary BCS wave function in 1nfln1te systems, as well as in finite

systems. The latter studies have been primerily concerned with their

- effect on the energy gap.

Iet us first construct a trial wave function for our two-level system.
A generalization to more realistic cases will be obvious. We consider

the 4-quasi-particle component built up by creating two quasiparticles

"each'in the upper and lower levels.lu The wave function for such a state

looks like

Am O<,Q O<-Rm o(,/’ﬂw —E‘ ( uk‘ + Uk Q:MKQ;&?.()‘O>

Mo

_ + t+ + +
= ( ul_QgM(, Q{r.{ql - Q_Z ) ( u& @d”; QA""L - 'Ui) —”— (L{K'f‘ K@km QI@’? )/0)
' ) -{rm.)m_l
(17)

"Where.a's are here quasi-particle operators. For our calcuiation, it

is more éppropriate to write the wave function Eq. (17) in a coupled

répresentation vhere each of the pair of quasiparticles is coupled to.

total angular momentum zero. . From the second form 6f Eq. (5), we have

(unnormalized)

a | | N e
¢ = '_Cg_l S0 - £l 15S.@) —%aj Z W0 019
. N=0. v

() 5 ) @
_(u ooz 22 2) o
=L %‘o(m Aou=3av" +0 ) G0 Gl 19

(18)
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where
Y,
Ch@= (B st

and where use has been made of the relations (7). For convenience, we

also write down Eq. (5) in the same notation

| Q.
NORRS
gDoz ¢ (uv) 27 § B Jth) 10D )
| AN =0 (19)

2 .
Now introducing x =%3 , and projecting out the components N + A' = (0,

we get

(20)

Eo :N.Erz <¢o+/5(?4~> :‘J\f% K) 12D
v : | | A=o

where

L Q
_N”?“-— % K;’

<0 )

Kyz Kalx, g = {@x ~/3(Ax+7\—m1} 4 (f)
snd | 1) is defined by - |
v. \2) = a2 \ |
2 z ’
- S@T0 = [T ) = Faar) ),
RO = CRea) ),
CS@M =G ).

- (21)
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Now if wé designate as cn(h) the emplitude of n pairs promoted in f}LQL,

‘we obtain from Eq. (20)

C@H 2.
== - £l~m—ox])

@)

an.d- | Ci -2(9'1—()>< (._ == x] (22)

il

_ o - S
‘ On:thg other hand, we»obtaln from -lgz(tg

So-ox,

(=4

O

and C.
R QLY ><

o

(23)
Thus explicitly

A=A { (=px) 1) + [ox -Bli-(@0x) ] 9-4)

o LEEe e -0 T o

(20a>
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A standard v-ariatioﬁal treatment minimizing the energy with respeci
to x and ;‘3 will be presented in the next section. Let us see whether,
given the two degrees of freedom x and B, we can find x and B values to
match in the low G ‘limi‘o the amplitude ratios 'cl/co-and c2/co to the
exact vaiues. |

The conditions to be satisfied are for the first order amplitude

ratio 2
QX -~ =) X '
pl-eog o
[— o |
(2k)
and for the second-order amplitude ratio
(-0 9_
o — zjﬁ(ﬂ—»)X[f*--——X:( ' 5
= Qo) +---
| /j) o -~ (25)

In Egs. (24) and (25), we have neglected higher order terms on the right
hand side. .Thus retaining only the lowest power terms in x and p on the

left (for G—>0), we obtain

'-QX—/% //t ‘QS (2ka)

IZ(J?J) zﬁx(ﬂ—{) JZ(JZ—OS

(252)

»”
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By a trivial computation, one can see that there exists no real and non-

negative x satisfying Eqs. (24) and (25) (x is in fact complex). Therefore

the extra degree of freedom is not sufficient to fix cl/co and cg/bO

simultaneously. However a variastional calculation with the addition of

- the h~quasi—particlé component improves the ratio cg/bo. .This improve~

ment can be seen in the following way: +the left hand side of Eq. (25)

as a function of x {:with p satisfying Eq. (QMiJ has the maximum *—;lalﬂ)g’

\for the value X = ;3 S Now if B satisfies Eq. (2k), the ground state

energy E) (end its derivative) is expected to be a 'smooth function of x

in the neighborhood of the extremum point, and to satisfy from the

| variational principle

E) (x):Z B act Tor all x , B (262)
d &(x)) o - - | |
v .= | 6b).
adx VA ) | (26b)
(26c)

E (xx33) £ E,

e

We shall see in the next section that Eg. (24) follows from the con-

2
- dition - 95 4p) O. Thus we expect that c /c pe %‘\Q@q){‘ vhich is

P

certainly an improvement over the FBCS velue' Eq. (16) .

Note that an improvement on éa/bo necessitates a renormalization of

~ uw and v and in fact reduces x by sbout 30% (therefore a reduction of A),

This is consistent with the nuclear matter calculation, though the re-

13 It should be emphasized

that while configuration mixing is effecti#ely increased, vi = u2 is

decreased. In fact we shall show later that the expectation value of the
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number operator Ni is independent of v2 in the low G regibn, differing

thus from the ordinary FBCS method.

V. VARIATIONAL METHOD

In this section, we show that in the 1ow-G'limit, the staxionarity

condition of Eh vith respect to B is equivalent to the condition necessary

. for matching cl/éo to the exact value, and that thé energy Eh(x)'is inde-

pendent of x up to the thirdvpower in {. In so doing, we assume that x
behaves linearly in § in the low-G limit.

The trial wave function .is given by Eq. (20), and the relevant

15

matrix elements of the Hamiltonian Eq. (l)'are given by

QULS® -S@ID) = -2) +
OIS@S ) =222 27
(2 ma)s_(& IA) = D+R-A=7,

Z’ K)K O's, (Q)S,(«ﬁ) D) = K}.K);-H ({2 MQH)

:)

%’ K)K) X l.s-(&)&(z) ) = z;:; K Kya Q=3+

(27)

Consequently we have

o XX

E0p) = - _L>; Ky | 7fZ {[em @) + G(ﬂa_ -2 )j K,

282 (@) Ky Ky b -
) | J | (28)

with the understanding that K, = O for A O.
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Now varying Eq. (28) with respect to p and solving for it by e@md-

ing the resulting equation in powers of § and x, one finds

B= 0% + 0¥ -2a@-x>(§ +3% - 1) + 005

e

- (29)

Comparing with Eq. (24), we see that Eq. (29) is exactly the same 'as

Eq. (24) except fof one term proportional to §2. The sbsence of such a

term in Eq. (24) is‘ obviously due to taking only the term linear in { on

the right h_arid side , and that term should be included in order to be

consistent up to second order in {., Thus we have shown that cl/co matches

the exact value independently of x values. As a consequence of this

result, the energy El& with B satisfying Eq. (29) is independent of x

‘up to third power of ¢ in low-G limit. The second order amplitude (two-

pair promoted component) contributes in ({Eol H [L_E 0) only the terms of

O(§h) and hence up to O(§3), only the first and second components in

Eq. (20a) contribute. But B satisfies Eq. (29) and therefore E), is a
16 '

constant™ : i.e., .

v Eh(x) = const + O(x3§) + 0(x2§2) + ete. o (30)‘

- Expanding in powers of {, we have

By (x) = a+bg+ ct2+ a3+ 06D + ... (3D
- It is clear from our discussion that if we neglect terms of o(¢ ),

E [Eq.. (ll)] and E, should be the same; i.e.,

a= - Q,
‘ b= -26Q,
c = =2€ g>_2,

e 0¥ Q). e

. -1
fl
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Let us consider the occupation probability of a pair for a magnetic-

substate v (in the upper or lover level) which is defined by

. ﬂcv = (€] (@,0,) aya-y | AE,)

 In the FBCS theory, it is given byl

—

z 2 P\l‘ (v)
§; U '“%{3'" |
°. o (33)

-

 where the R function is used for compéctness and also to exhibit the

similarity in form to the ordinary BCS theory. The coefficient vﬁ is a

function of u and v factors, and thus f3 is a function of x. Therefore

x is closely related to configuration mixing. But in GFBCS.[;analogously
_ 2 : .

to (AéEoz H Pifo):lfv does not depepq upon x {up to the third power in {)

due to the condition Eq. (29). Therefore here x does not play the same

role (the amount of configuration mixing) as in the FBCS.

VI. CONCLUDING REMARKS

Although the model we have studied is perhaps an oversimplified
one, it has, however, many features that are relevant in realistic
systems. In this paper, we have confined our attentiqn mainly to low

pairing-force strength region; We heve seen in I that in the high-G

‘region all the approximations (ordinary BCS, PBCS, and FECS) approaéh

. the exact results. Physically important region is of courée the inter-

mediate region which has been neglected in our studies (though considered
in our numerical calculations) for the sole reason that ahalytic solutions

are not available.
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There is nevertheless a justification for studying the _low—G

limit. Besides gaining an insigh‘c.into the pairing theory. per se, it has
also a physical significance connected with the Mottelson-Valatin (MV)
effect in the rotational speéfra of nuclei.r( ‘The Mottelson-Valatin
argument goes as fc;llows: Coriolis forces in r‘o’;ational nuclei act
in opposite directions to the pairing force and tend to decouple ‘the
time-reversed pairs. This effectively reduces the pairing sti'ength , and
 as the angular frequéﬁcy w increases, there is a certain critical point
W, at which the BCS gap ec_ﬁzations have only trivia.l solutions. The
resulting discontinuity in rotational energy EAE = E(wc-'é) - E(wc+5).
where & is an infir_xitesimal quaﬁtitﬂ has been sought experimentally,
" and not fdund.

As calculated by Chan and Valatinls, the -solution_ of the BCS
equations in the presence of Coriolis forc;e gives a smaller discontinuity
of the rotationél energy than does the Mottelson-Valatin coupling con-
stant argument. Though w, comes out to be higher than MV estimate, it

| still does exist; i.e., —?—&A—L(-Oi)w - ® =0 . Qualitatively the two results
are equivalent. | |

The decrease of pairing correlation.with iricreasing rotational
veiocity undouvbtedly occurs, 'bﬁt we would stress that there should be
no disbontinuity. On the basis of dur studies, we clearly see that the
discéntinui’cy is an artificlel feature of the BCS method, va.n.d that this

. _ vunrealistic fea‘m_re is removed in the FBCS procedures - a gradual c‘ontj__nu-
ous decrease of supérfluidity with increasing rotational angular momentum
would_;be reproduced by the FBCS variationai me’_chod'. This résult was also |
obtaine_d numerically in realistic systems by Mang, Poggenbﬁrg', and

. 2
Rasmussen.
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The addltion of h-quasi-partlcle components in a generalized ’
variational method (GFBCS) gives a further improvement, but does not
qualitatively alter our conclusion. The latter feature is, however, not
the case if the projection  procedure is not'employed. Vautherin and
Rh08 have studied the effect of adding a h-quaéifparticle_component to
the ordinary BCS weve fﬁnction as a trial wave function. This is an
extended BCS theory without projection (GBCS). They have found that A goes
to zero'aﬁ G;Z-Gc, where G; an§ Gc are the critical-force constants in the
GBCS and BCS methods respectively, end that in genefal AL ABCS' How-
ever the configuration mixing in the upper level does not vanish completely
at the critical point. For example, the occupation probability in tﬁe
upper level.(Ng} remains non-zero even though A = 0, and goes to zero
as G > 0. There is a very small discontinuity of (Nh> at G; , but it .is
aimost smeafed out. Thus even'within the BCS framework, a more cerreet
- treatment wili not exhibit as sharp a discontinuity in the.MV effect as
esserted by'Mottelson, Valatin and Chan.l7’ 18
Finally we emphasize that A in an extended theory (i e., GFBCS)
is not dlrectly related to odd-even mass differences or a physical

" energy gap (as it is in the BCS theory).
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FIGURE CAPTIONS

Error in the ground state energy for various variational methods, as
deduced by comparison with exact solutions. The BCS critical force
strength is indicated by an arrow. _gzh = Jﬁlz =5, N=10, €= MeV.

v2 for the upper level (vi) fbr the BCS and FBCS methods.

‘(lh_=‘(2.ﬂ = 5, N: 10, € = 1MeV.

The first order amplitude ratio cl/'co for the FBCS and exact

solutions calculated with _Q n = gzz =5, N ='lO,‘€ = 1MeV.

The second order amplitude ratio ce/bo_for_the FBCS and exact

solutions calculated with n Qg = 5, N = 10, € = 1MeV.
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