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We reformulate the continuous-space Schrödinger equation in terms of spin Hamiltonians. For the
kinetic energy operator, the critical concept facilitating the reduction in model complexity is the idea of
position encoding. A binary encoding of position produces a spin-1/2 Heisenberg-like model and yields
exponential improvement in space complexity when compared to classical computing. Encoding with a
binary reflected Gray code (BRGC), and a Hamming-distance-2 Gray code (H2GC) reduces the model
complexity down to the XZ and transverse Ising model, respectively. For A qubits BRGC yields 2A posi-
tions and is reduced to its 2-local form with O(A) ancillary qubits. H2GC yields 2A/2+1 positions with
O(A2) three-local penalty terms. We also identify the bijective mapping between diagonal unitaries and
the Walsh series, producing the mapping of any real potential to a series of k-local Ising models through
the fast Walsh transform. Finally, in a finite volume, we provide some numerical evidence to support the
claim that the total time needed for adiabatic evolution is protected by the infrared cutoff of the system.
As a result, initial state preparation from a free-field wave function to an interacting system is expected
to exhibit polynomial time complexity with volume and constant scaling with respect to lattice discretiza-
tion for all encodings. For H2GC, if the evolution starts with the transverse Hamiltonian due to hardware
restrictions, then penalties are dynamically introduced such that the low-lying spectrum reproduces the
energy levels of the Laplacian. The adiabatic evolution of the penalty Hamiltonian is therefore sensitive
to the ultraviolet scale. It is expected to exhibit polynomial time complexity with lattice discretization, or
exponential time complexity with respect to the number of qubits given a fixed volume.

DOI: 10.1103/PRXQuantum.3.020356

I. INTRODUCTION

The understanding of many physical problems requires
obtaining Schrödinger equation solutions for the system
under study. In this work, we develop techniques to solve
it with adiabatic quantum computing. A typical classical
computing choice for numerically solving the Schrödinger
equation is to pick a discrete basis in which to express
the Hamiltonian. Then, one diagonalizes the resulting
matrix, either completely, or for very large problems, uses

*chiachang@berkeley.edu
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author(s) and the published article’s title, journal citation, and
DOI.

techniques such as the Lanczos algorithm to find low-lying
eigenstates and eigenvalues. The discrete basis can, for
example, be comprised of the states of a harmonic oscil-
lator, or some other exactly solvable Hamiltonian. Other
useful basis choices are a discrete position, or momen-
tum basis. As a first step, we focus on a simple version
of the problem: a one-body system with a local potential in
a D-dimension periodic position basis.

− �2

2M
∇2ψ(x)+ V(x)ψ(x) = Eψ(x). (1)

For simplicity of notation, throughout this paper, we work
in natural units, � = c = 1. We discretize the equation on
a lattice with spacing a and N positions in each of the D
directions. Then, up to a discretization error proportional
to a, the Laplacian becomes an N × N matrix, which acts
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on the discretized wave function ψ(am):

∇2ψ(x) ≈ 1
a2 (Lψ)(an)

= 1
a2

⎡
⎣

⎛
⎝ ∑

m∈N (n)

ψ(am)

⎞
⎠ − 2Dψ(an)

⎤
⎦ , (2)

with N (n) indicating the set of immediate neighbors of
the discrete point n. Here, we use L to denote the dimen-
sionless part of the Laplacian. The discrete Schrödinger
equation then follows as

(Hψ)(an)= − 1
2Ma2 (Lψ)(an)+ V(an)ψ(an)= Eψ(an).

(3)

The next step is to encode the positions in states of
qubits (spins). One choice of encoding in use is to asso-
ciate position i with a set of qubits [1,2]. In each position,
the value of the function is given by a fixed-point repre-
sentation of the qubits. The advantage of such an encoding
is that the solution is diagonal in the computational basis,
and is implementable with quantum annealers available
today. However, the number of qubits is comparable to
the number of classical bits required to solve the same
problem.

Alternatively, one can associate positions with A-body
qubit states in the computational basis and identify each
basis state’s amplitude with the wave function at the corre-
sponding point. Such an association produces a lattice with
2A sites, yielding an exponential improvement in space
complexity. This approach appears in circuit-based quan-
tum algorithms [3], specifically associating the state of
qubit i with the value of bit i of the position index. Bit i of a
number is the coefficient of 2i in the base-2 representation
of the number.

In this work, we explore the advantages of other encod-
ing possibilities which yield simpler spin Hamiltonians. A
first encoding choice uses the binary reflected Gray code
(BRGC) to represent the sequence of positions, with the
bits of the code having the same connection to the qubit
states as before. This option requires only the σ x

i σ
z
j oper-

ators, in addition to the σ x
i and σ z

i σ
z
j operators in the

transverse-field Ising model, and has the key advantage
of allowing the Laplacian matrix be reduced to a 2-local
form with O(A) number of auxillary qubits. The BRGC
encoding preserves the maximum 2A lattice sites that can
be generated from A qubits. Gray codes are proposed for
encoding ladder states in d-level systems to simplify rais-
ing and lowering operators in gate-based quantum com-
puting [4]. In Ref. [5] this idea is applied to finding the
ground-state energy of a deuteron in a harmonic oscilla-
tor basis with a simulated variational quantum eigensolver

(VQE). Here, we extend the application of BRGC to map
the Schrödinger equation, in any dimension, to the XZ
model.

A second Gray code, which we call a Hamming-
distance-2 Gray code (H2GC), introduces an alternative
mapping of the Schrödinger equation requiring only the
transverse-field Ising model, i.e., containing only two-
body σ z

i σ
z
j and one-body σ x

i couplings. The mapping
retains an exponential number of valid lattice sites asso-
ciated with A bit codes in the sequence, while the invalid
codes are nulled using an O(A2) number of 3-local penalty
terms. As a result, the H2GC formulation is polynomially
equivalent to BRGC while reducing the complexity of the
spin model.

For the examples in this work we consider a single par-
ticle moving in D dimensions. In general, the extension to
m particles moving in d spatial dimensions is equivalent to
D = md. If each of the D dimensions is discretized into N
lattice points, one needs log2(N

D) = D log2(N ) qubits to
represent the entire discretized lattice.

In this work, we treat all particles as being distinguish-
able, i.e., particles with Boltzmann statistics. In quantum
chemistry, one often starts from a potential energy surface
of atoms and studies the atoms directly without tracking
the dynamics of the electrons [6,7]. In this case, Boltz-
mann statistics gives an accurate description of molecules
when identical particles, e.g., the hydrogen nuclei in the
molecule malonaldehyde C3H4O2, are not too close in
the ground-state wave function. For example, the tunnel-
ing splitting energy and the quantum momentum distri-
bution can be computed accurately with sampling tech-
niques assuming Boltzmann statistics [8,9]. In problems
like these, our method offers a direct way to efficiently
compute the ground-state wavefunction of molecules with
adiabatic quantum computing. Particles with bosonic or
fermionic statistics are important and natural extensions,
but are beyond the scope of this work.

For the convenience of the reader, the notation used
throughout this work is defined in Sec. I A. In Sec. II
we provide the mapping of the discretized Laplacian to a
k-local Hamiltonian, in binary, BRGC, and H2GC codes
in Secs. II A, II B, and II C, respectively. Then, we pro-
ceed to describe the mapping of the local potential to any
Gray code in Sec. III. Having provided all the necessary
steps for encoding the Hamiltonian, in Sec. IV we provide
various simulations of quantum adiabatic computation of
the ground state. Specifically, in Sec. IV A we study a
BRGC encoded S-wave nucleon potential that reproduces
the deuteron binding energy. In Sec. IV B we focus on
a two-dimensional quartic and quadratic set of potentials
activated in different time intervals to study both initial
state preparation and time evolution of the system. We
also provide an example of the H2GC code with a har-
monic oscillator potential in Sec. IV C. We conclude with
a summary of our results in Sec. V.
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A. Notation and definitions

Before we begin our discussion, the notation used
throughout the paper is defined here for clarity.

First, we define a bijection between binary bits and qubit
states. Spin up will be associated with a bit value of 0 or
|0〉, and spin down with a bit value of 1 or |1〉. Basis states
of an A-body qubit system are therefore associated with
an A-bit binary string with the usual interpretation as an
integer in a base-2 representation. For matrices and vectors
over the basis, we order the entries according to the inte-
ger value of the corresponding state’s bit string. Let 1 be
the 2 × 2 identity matrix, and σ x, σ y , and σ z be the Pauli
matrices:

σ x =
[

0 1
1 0

]
, σ y =

[
0 −i
i 0

]
, σ z =

[
1 0
0 −1

]
. (4)

The set {1, σ x, iσ y , σ z} forms a basis of 2 × 2 real matri-
ces. Thus, any real matrix of size 2A × 2A has a unique
tensor product decomposition with these four matrices.

Throughout the paper, for a matrix M of size 2A × 2A, or
an array V of size 2A, the indices will be denoted by square
brackets: M [k, m] is the (k, m) element of M and V[k] is the
kth element of V. Subscripts of operators denote the qubit
index. When we index qubits, we start from 0 and count
from the right. For example,

σ z
1 = 1 ⊗ 1 ⊗ σ z ⊗ 1 (5)

means that σ z is acting on qubit 1, while the tensor product
of the three identity operators explicitly states that we are
working in a Hilbert-space of four qubits. In the subscript
notation, the dimension of the Hilbert space is unspecified,
and is explicitly stated if necessary (e.g., when we provide
explicit examples).

For multiqubit operators such as the Laplacian, we
explicitly list all indices in the subscript. For example, we
label a three-qubit Laplacian operator acting on qubits 0,
1, 2 as

L(3,bin)
0...2 . (6)

Additionally, the superscript “bin” denotes that the Lapla-
cian is expressed in binary order. In this work, we also
derive the Laplacian in “BRGC” and “H2GC” forms for
the binary reflected Gray code and the Hamming-distance-
2 Gray code.

For convenience in what follows we define qubit (spin)
projection operators

P0 = 1 + σ z

2
=

[
1 0
0 0

]
, P1 = 1 − σ z

2
=

[
0 0
0 1

]
,

(7)

where P0 projects onto |0〉 (spin up) and P1 onto |1〉 (spin
down) for a single qubit. Raising and lowering operators

on a spin are defined as

σ+ = σ x + iσ y

2
= σ xP1 =

[
0 1
0 0

]
,

σ− = σ x − iσ y

2
= σ xP0 =

[
0 0
1 0

]
.

(8)

The variable A indicates the number of qubits in the
system.

Readers who do not speak binary as a first or second lan-
guage are highly encouraged to read Appendix B, which
summarizes the various binary representations used in this
work and their related Walsh functions, which are the foun-
dation of our construction of arbitrary real potentials. We
make substantial use of Karnaugh maps [10] in describ-
ing the construction of the H2GC Laplacian. Karnaugh
maps are used in boolean circuit minimization and we
include a brief introduction biased towards our applica-
tion in Appendix D. Additionally, for readers who would
enjoy a more in-depth overview of orthogonal functions
and Gray codes, there are many textbooks available in the
literature (e.g., Ref. [11]).

II. CONSTRUCTION OF THE LAPLACIAN

In this section, we present the mapping of the discrete
Laplacian to k-local Hamiltonians. The simplest form of
the discrete Laplacian is given by the nearest-neighbor
finite-difference method,

∂2

∂x2 f (x) = 1
a2

[f (x + a)+ f (x − a)− 2f (x)] , (9)

where a is the lattice spacing. In operator form, the dimen-
sionless part of the discrete Laplacian is a tridiagonal
matrix with additional nonzero entries in the ends of
the antidiagonal due to periodic boundary conditions. For
example, a one-dimensional (1D) lattice with 23 lattice
sites has a binary encoded Laplacian operator given by

L(3,bin)
0...2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where we drop the −2 down the main diagonal. In the
context of Hamiltonian evolution, the main diagonal con-
tributes a global time-dependent phase and a shift of the
eigenvalues by a constant while leaving the eigenvec-
tors unchanged. Note that the full Laplacian operator is
(1/a2)L.
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The results can be generalized to the multidimensional
case since contributions in different dimensions are inde-
pendent. For example, in two dimensions with Ax qubits in
the x direction, Ay qubits in the y direction, and indepen-
dent of the position encoding, we have

L(Ax ,Ay )
0...(Ax−1),Ax ...(Ax+Ay−1) = L(Ax)

0...(Ax−1) + L(Ay )
Ax ...(Ax+Ay−1).

(11)

The inexpensive addition of multiple dimensions means
that the Laplacian, with Boltzmann statistics, scales lin-
early with the number of particles. In general the encoding
for a D-dimensional lattice is given by layers of one-
dimensional codes. An explicit example of two dimensions
with four lattice positions in x and eight in y (32 sites in
all), encoded in binary with the leading two qubits for x
and last three qubits for y is

y
x 0 1 2 3 4 5 6 7

0 00000 00001 00010 00011 00100 00101 00110 00111
1 01000 01001 01010 01011 01100 01101 01110 01111
2 10000 10001 10010 10011 10100 10101 10110 10111
3 11000 11001 11010 11011 11100 11101 11110 11111

A two-dimensional example on a larger lattice is imple-
mented and analyzed in Sec. IV B.

In the following sections, we first present the mapping in
binary encoding in Sec II A, which requires the full Pauli
basis, the derivation of the BRGC Laplacian in Sec. II B,
which maps to the XZ model, and the H2GC Laplacian in
Sec. II C, which maps to the transverse Ising model.

A. The Laplacian matrix in the binary encoding

Let L(A,bin) be the Laplacian matrix of 2A lattice points
with periodic boundary condition in one dimension. When
A = 3, for example, L(3,bin) is given by Eq. (10). We define
the operator

C(A)0...A−1 =
A−1∏
i=0

σ+
i +

A−1∏
i=0

σ−
i .

Then one obtains a recursive formula for L(A,bin):

L(A,bin)
0...A−1 = L(A−1,bin)

0...A−2 − C(A−1)
0...A−2 + σ x

A−1C(A−1)
0...A−2

= L(A−1,bin)
0...A−2 + (σ x

A−1−1)
( A−2∏

i=0

σ x
i P0

i +
A−2∏
i=0

σ x
i P1

i

)
(12)

starting from the two-site Laplacian with periodic bound-
ary conditions

L(1)0 = 2σ x
0 . (13)

We emphasize that L(1)0 is the same for all codes and is the
starting condition for all recursive formulas presented in
this work. As a reminder, the first term in Eq. (12) does not
include the index A − 1 and, therefore, there is an implied

identity operator on this index, as shown in Eq. (5). The
same convention is applied throughout the paper.

Figure 1 gives a graphical derivation of Eq. (12) for A =
3. The sum of projection operator products can be seen to
be picking out the ends of the 2A−1 position subregions.
Then, the σ x operators add the new green dashed contri-
butions in, and subtract the old red dotted contributions
out.

The σ x
i part of the correction generates many copies of

the product σ x
0σ

z
0 = −iσ y

0 , so the Laplacian includes all

0  0  0  0    1  1  1  1

0  0  1  1    0  0  1  1

0  1  0  1    0  1  0  1

position:    0  1  2  3    4  5  6  7

remove

qubit 2:

qubit 1:

qubit 0:

add

0

x

0

x
1

x L 2,bin 

0

x
1

x P
0

0P
1

0  P
0

1P
1

1 
0

x
1

x
2

x P
0

0P
1

0  P
0

1P
1

1 
FIG. 1. The three-qubit binary encoded Laplacian is con-
structed from the two-qubit Laplacian and two corrections. The
columns under the position index line are the position encod-
ing in qubit states. For example, position state 4 in the second
subblock is encoded as 100 in qubit states specified below posi-
tion index 4. The horseshoe shaped lines with arrows indicate
the symmetric contributions between neighboring positions. The
first three row of lines show the contributions inherited from
L(2,bin), including contributions shown as red (dotted) lines that
are excess in the A = 3 context. The excess contribution is
removed by term −σ x

0 σ
x
1

(
P0

0P0
1 + P1

0P1
1

)
. The green (dashed)

lines indicate the two contributions not provided by L(2,bin) that
are added by the term to the right. The corrections are shown next
to the red and green lines.
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three Pauli matrices if expanded. In conjunction with the
potential, this mapping uses the entire Pauli basis. Cur-
rent quantum annealers can only evolve qubit systems
from the transverse-field Hamiltonian to the classical Ising
model [12]. While hardware improvements may be devel-
oped to handle couplings of other Pauli products, such as
XZ, in the near future, one expects that it will still han-
dle only Hamiltonians composed of terms with small Pauli
support [13].

In adiabatic quantum computing, if the target Hamilto-
nian is classical, i.e., diagonal in the computational basis,
the reduction of multiqubit to two-qubit interactions is well
understood [14]. In Eq. (12), however, the operator is non-
diagonal in the computational basis on most of the sites,
making the method in Ref. [14] not applicable. In Sec. II B,
we introduce the BRGC encoding of the Laplacian, which
allows for reduction with O(A) qubits to a 2-local form.
This is an important advantage of a BRGC encoding over
the binary one.

B. The Laplacian matrix in the binary reflected Gray
encoding

As explained in the previous section, the tensor-product
decomposition of the Laplacian matrix in the binary encod-
ing has the undesirable σ y terms. Thus, it is natural to ask
whether it is possible to find a position encoding so that the
tensor-product decomposition of the Laplacian is simpler.
We show that the BRGC encoding of position, matching
position x to the qubit state specified by the xth member of
the BRGC, achieves a dramatic simplification.

An implementable qubit or spin Hamiltonian in current
quantum annealers is the sum of transverse fields:

H x =
A−1∑
i=0

σ x
i . (14)

For a system with A qubits, H x contains 2A−1A symmet-
ric couplings between qubit states differing in one bit. By
symmetric, we mean that H x couples, for example, qubit
states 000 to 001 and 001 to 000. Each of these symmet-
ric couplings will give rise to two 1s in H x expressed in the
tensor products of the A qubits. We call the symmetric cou-
pling a connection between the qubit states. Note that the
Laplacian matrix couples consecutive positions. Thus, if
the A-body qubit states are ordered so that the consecutive
states differ only in the state of one qubit, then the rep-
resentation of H x in the ordering contains all the nonzero
elements of the Laplacian matrix [15]. Gray codes, well-
known in signal processing, have this property [16–18].
We give a short review below.

1. Gray encoding

Any Gray encoding (reflection-based or not) of the
positions guarantees that neighboring bit strings differ in

exactly one bit. Gray code is an alternate compact binary
encoding of integers 0 to 2A−1 into A bits. For example,
the standard binary encoding of the numbers from 0 to 3
is 00, 01, 10, 11. The binary encoding is convenient for
arithmetic, but neighboring numbers have varying num-
bers of bit differences. For neighborhood operators like
the Laplacian we would like to minimize the bit differ-
ence between nearby points. Gray code does this, resulting
in neighboring points differing in only one bit in their
code. If we are working in a periodic space, this prop-
erty is preserved with a one bit difference between the
first and last point. The most common Gray code is the
binary reflected Gray code, which can be constructed by
induction on A. For the base case, A = 1, we encode {0, 1}
as {0, 1}. For larger A we concatenate the codes for the
A − 1 case to the reflected (or reversed order) codes for
the A − 1 case. We then add a most significant bit of 0 to
the first half and a 1 to the second half. For A = 2, this
procedure yields {00, 01, 11, 10}, and for A = 3 it yields
{000, 001, 011, 010, 110, 111, 101, 100}.

In general, for an encoding G, let the encoding func-
tion G(n) denote the integer that the nth bit string of G
represents in binary. When we have a specific encoding
function, we explicitly use its code name to denote it. For
example,

BRGC(0)=0, BRGC(1)=1, BRGC(2)=3, BRGC(3)=2,

BRGC(4)=6, BRGC(5)=7, BRGC(6)=5, BRGC(7)=4.

To transform a matrix M between different encodings, we
view the matrix as intrinsically defined with respect to the
A-body qubit states. Because the qubit states are ordered
differently in different encodings, the matrix transforma-
tion is induced by the encoding function G. The encoding
function for the binary encoding is the identity map, and
therefore M is just M . For the M in encoding G, we define

M (A,G)[G(k), G(m)] ≡ M (A,bin)[k, m]. (15)

For simplicity, we also denote the nth bit string of G with
G(n).

2. The recursive formula for the Laplacian matrix

In the case of the Laplacian, L(bin) is tridiagonal, but
L(A,BRGC) is not. As explained above, L(A,BRGC) should be
closer to H x than L(A,bin). For example, when A = 2,

L(2,bin) =

⎡
⎢⎣

0 1 2 3

0 0 1 0 1
1 1 0 1 0
2 0 1 0 1
3 1 0 1 0

⎤
⎥⎦ bin−−−−→

to BRGC

⎡
⎢⎣

0 1 3 2

0 0 1 1 0
1 1 0 0 1
3 1 0 0 1
2 0 1 1 0

⎤
⎥⎦

=
1∑

i=0

σ x
i = H x = L(2,BRGC).

020356-5
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In the Gray encoding, the 2A connections between adja-
cent positions in the Laplacian matrix are generated by H x,
but there are 2A−1A − 2A = 2A−1(A − 2) extra connections
that must be suppressed. We suppress the extra contribu-
tions by multiplying by a sum of projection operators on
one or more bits. The projection operators are the sim-
plest if they represent a projection onto a lower dimension
subspace of the 2A binary hypercube.

With a BRGC encoding of the positions, the Laplacian
has a recursive decomposition that follows the recursive
definition of the BRGC itself. Because the two sub-blocks
are reflections of each other with leading 0 and 1 bits
added, we know precisely the codes at the sub-block
boundaries. The outer codes are all zero except for the
leading bit. The inner codes are zero except for the two
leading bits being 01 and 11. All corrections required to
construct the larger A-bit Laplacian from the A − 1 bit
Laplacian take place in the subspace of the four codes
and are restricted to that subspace by a simple projection
operator.

The base case is the one-qubit Laplacian of Eq. (13). We
emphasize, however, for A = 2, the neighbor contributions
to the Laplacian operator are

L(2,BRGC)
0,1 = σ x

0 + σ x
1 , (16)

which we again recognize as the transverse Hamiltonian
acting on qubits 0 and 1. For larger A we have

L(A,BRGC)
0...A−1 = L(A−1,BRGC)

0...A−2 + (
σ x

A−1 − σ x
A−2

) A−3∏
i=0

P0
i . (17)

The reduction to a 2-local form of the projector product
is addressed in Sec. II B 3. For L(A,BRGC), the decomposi-
tion of all projectors result in an additional O(A) ancillary
qubits and 2-local terms. A graphical derivation of Eq. (17)
is given in Fig. 2. A more detailed derivation is given in
Appendix C. In this construction, it is clear that since pro-
jection operators contain only constants and σ z operators,
and that no products of Pauli matrices are taken that act on
the same qubits, that each iteration will not introduce either
σ y or products of σ x. Since the base case Eq. (16) has no
σ y operators or σ x products, this property is preserved for
all A.

Figure 2 shows how the added and subtracted terms cor-
rect the 1D Laplacian L(2,BRGC) to make L(3,BRGC). All the
required corrections take place in the subspace defined by
the lower A − 2 qubits being zero. The trailing product
of projection operators in Eq. (17) implements the projec-
tion onto that subspace. In a system with A qubits, L(A−1)

makes extra 2A−1 periodic contributions, shown as red
dotted lines, which must be removed, as well as missing
contributions connecting the ends of the two 2A−1 length
sub-blocks, shown as dashed green lines, that must be
added.

0  0  0  0    1  1  1  1

0  0  1  1    1  1  0  0

0  1  1  0    0  1  1  0

position:    

remove

qubit 2:

qubit 1:

qubit 0:

add

0

x

1

x

0  1  2  3    4  5  6  7


2

x P
0

0

1

x P
0

0

L 2,BRGC 

FIG. 2. The three-qubit BRGC Laplacian is constructed from
the two-qubit Laplacian and two corrections. The columns under
the position index line are the position encoding in qubit states.
For example, position state 4 in the second sub-block is encoded
as 110 in qubit states. The horseshoe-shaped lines with arrows
indicate the symmetric contributions between adjacent positions
with σ x

0 generating the first row and σ x
1 the second and third rows.

The third row, drawn as a red (dotted) line, is an excess contri-
bution generated by σ x

1 in the A = 3 context and is removed by
−σ x

1 P0
0. The last row, drawn with green (dashed) lines, shows

the missing sub-block end contributions between positions pairs
{0, 7} and {3, 4}, which are added with term σ x

2 P0
0.

3. Reduction to the 2-local form

One can immediately see that the correction terms in
each iteration of Eq. (17) are simple, containing none of the
XX couplings appearing in L(bin). In particular, in Eq. (17),
the nondiagonal operator σ x

i appears just once each term.
Thus, one can reduce the shared product of A − 2 projec-
tion operators P0

i into a single qubit, for which the classical
method in Ref. [14] applies. This gives the 2-local Lapla-
cian containing XZ couplings. It is important to note that
the number of ancillary qubits required is a linear func-
tion of A, preserving the exponential improvement over
classical computing. See Appendix A for the reduction of
L(A,BRGC) to a 2-local Hamiltonian.

C. The Laplacian matrix in the Hamming-distance-2
Gray encoding

The advantage of a Gray encoding of position is that
neighboring positions always differ in a single bit flip,
meaning that H x automatically generates the neighbor
contributions to the Laplacian. The Hamming distance
between two codes is defined to be the number of bit
differences between them. The existence of pairs of nonad-
jacent positions of Hamming distance 1 requires the use of
projection operators to eliminate the associated unwanted
contributions. This motivates a second Gray code sequence
that we call a Hamming-distance-2 Gray code sequence.
With H2GC any two codes in the sequence that are not
sequential neighbors are at least Hamming distance 2 from
each other. Finding the longest such sequence is known
as the snake-in-a-box problem; optimal sequences are
unknown for large A. However, lower-bound constructions

020356-6



IMPROV. SCHRÖDINGER EQ. W/ GRAY CODE FOR AQC PRX QUANTUM 3, 020356 (2022)

00
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3,2
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1,0

01

11
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FIG. 3. The Karnaugh map of the A = 4 base case for recur-
sive H2GC construction. The sequence is illustrated with a solid
line and passes through eight codes. The remaining eight unused
codes are covered by a 2-local term on the bottom, and a pair of
3-local terms indicated by vertical ovals.

show that the sequence length grows exponentially [19],
as does the number of omitted codes. These longest-length
H2GCs are quite irregular and would have large and com-
plex penalty Hamiltonian contributions for the excluded
codes.

We now demonstrate a recursive regular construction
of an H2GC sequence in which the length grows slightly
slower, as n = 2A/2+1, but with an efficient implementation
of the penalty Hamiltonian. We begin with an A = 4 con-
struction with sequence length 8 as a base case, illustrated
in Fig. 3 on the Karnaugh map.

The recursive step builds the A + 2 qubit sequence from
two copies of the A-qubit sequence. The first step is the
removal of a link in the cycle for A, exposing two ends
that will be used to join the two copies in a larger cycle
via codes in the upper-right subspace of Fig. 4. For A = 4
we choose code a3,2,1,0 = 0001 to remove, as the required
penalty term is only 2-local. For larger A we choose one
of the codes in the upper-right subspace previously used
to join two subsequences. A 3-local penalty term suffices
to cover the opened code without overlapping the H2GC
sequence. For A = 4, this is obvious, and for larger A, the
links between the A − 2 sequence copies are isolated in a
subspace encoded by aA+1,A = 01 (a5,4 = 01 in the figure)
and a single variable suffices to distinguish the two link
codes in the subspace, which can be seen in the upper right
a5,4 = 01 subspace of Fig. 4.

We then make two copies of the A sequence associating
one with a code of aA+1,A = 00 and the other with a code of
aA+1,A = 11. In doing so, all existing penalty terms extend
over all four values of the new qubits, and are therefore
preserved unchanged for the A + 2 sequence.

The penalty cover for the bottom-left subspace, which
the sequence does not enter, is completed by a single
2-local term that depends only on the two new qubits.
The upper-right subspace has two drill-through sequence
members added that complete the new H2GC cycle. The

11

a
4

a
5

0 1

0

1

00 01 11 10 00 01 11 10

00

01

10

11

00

01

10

a
3,2

a
1,0

FIG. 4. The Karnaugh map for the recursive construction of
the cycle for (A + 2) qubits creates two copies of the A qubit
cycle with a gap, isolated by a difference of both new qubits.
Solid ovals are the original penalty cover extended over the two
new qubits. The upper right subspace contains the two codes used
to connect the copies into a new cycle. They are referred to as
drill-through codes because they connect the subsequent copies
through the isolating layer represented by the upper-right sub-
space. The additional penalty cover for the upper right subspace
is a set of large subcubes, each covering half the subspace. Code
values for a3,2 and a1,0 should be applied across the entire figure.

penalty cover for the unused part of the upper-right sub-
space is completed by (A − 3) 3-local terms, each includ-
ing one subspace qubit having the same value for both
drill-through codes, with the penalty term carrying the the
opposite value for the qubit, and a code of 01 for the new
qubits. It would be (A − 2) 3-local terms, but the inherited
penalty terms will already cover 1/4 of the subspace, seen
in the bottom row of the subspace. At larger A, the pre-
existing coverage comes from the lower-left subspace of
the A − 2 sequence.

The upper-left and lower-right subspaces are themselves
distance-2 sequences because they are derived from the
known good sequence on A qubits. All members of the
upper left and lower right differ in both of the new qubits.
The drill-through codes in the upper right differ in one
bit with the adjacent sequence member in the upper-left
and lower-right subspace, and must differ in an additional
bit with any other sequence member in the upper left or
lower right. And last, the two drill-through codes differ
by two bits from each other by construction. We con-
clude therefore that the constructed sequence is a H2GC
sequence.

The construction of the (A + 2) sequence, adds (A − 2)
3-local terms to the penalty Hamiltonian. Therefore, the
number of 3-local terms grows quadratically with A. A
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reduction to 2-local requires at most (some ancillary qubits
may be shared) (A − 2) additional ancillary qubits.

A key observation is that the Hamiltonian for the system
now takes the form

A−1∑
i=0

σ x
i + A(t)Q

∑
p ∈ penalty terms

p + B(t)V.

With the penalty strength, Q, set to O(1/a), the spuri-
ous degrees of freedom decouple from the theory. For
the decomposition of the potential, the prohibited basis
states are then “don’t cares,” a term from Boolean logic
minimization, meaning that the value of V(c) for the pro-
hibited codes may be adjusted to a value that simplifies the
decomposition of V.

In this Hamiltonian, all terms are either just σ x or prod-
ucts of σ z (from the expansion of the projection operators),
and therefore map to the k-local transverse Ising model.
The set of projection operators can be decomposed to a 2-
local form using intermediate qubits with penalty terms as
is discussed in Appendix A, which then further maps the
Schrödinger equation to a 2-local transverse Ising model.
The simple form of the H2GC Laplacian raises the pos-
sibility of applying this technique with existing hardware
systems.

One strategy for evolving to the H2GC Laplacian is to
first turn on the penalty via A(t) and later to turn on V via
B(t). We provide a demonstration of the time evolution of
the H2GC Hamiltonian in Sec. IV C.

Alternatively, since the ground state of the H2GC Lapla-
cian operator is known, one can imagine initializing a
future quantum computer with this a priori known (and
therefore “trivial” in the context of the quantum adiabatic
theorem) ground state. Specifically, at first approximation,
the n valid sites the ground-state wave function are given
by the normalization coefficient, while the invalid sites are
then set to zero such that

�(t = 0, x) = 1/2(A+2)/4 ∀x ∈ {H2GC(i)},
�(t = 0, x) = 0 ∀x /∈ {H2GC(i)},

where {i ∈ Z|0 ≤ i < 2A/2+1}. Corrections to this ideal
ground state are polynomially suppressed by the strength
of the penalty coefficient. The exact form of higher-order
correction terms will depend on the penalty cover as shown
in Fig. 4 and is beyond the scope of the current work. The
time evolution would then depend only on the intermediate
ground-state gap induced by V as its contribution is turned
on, and importantly, be protected by the IR cutoff of the
system, which we discuss in more detail in Sec. IV.

III. POTENTIAL DECOMPOSITION

We demonstrate the method of mapping any local, real
potentials sampled at N = 2A lattice sites in D dimensions.

The potential matrix is diagonal and spanned by the prod-
uct of A-body σ z

i interactions yielding the complete Walsh
basis in encoding G:

WG
n = (σ z)bit(G(n),A−1) ⊗ · · · ⊗ (σ z)bit(G(n),0)

=
0⊗

i=A−1

(σ z)bit(G(n),i), (18)

where G(n) is the nth bit string in G. Note that bit(s, A − 1)
is the most significant, i.e., the leftmost, bit of s, and
bit(s, 0) is the rightmost bit. Independent of the encoding,
the Walsh functions are bijectively mapped to the set of
k-local Ising models with k ≤ A, and, indeed, any local
potential can be represented in this fashion. This conclu-
sion can be reached by recognizing the Walsh basis as the
digitized version of the Fourier series. While the focus of
this work are quantum adiabatic compuations, we would
like to emphasize that this bijection reduces the problem of
constructing the minimal depth quantum circuit for a given
error tolerance, for an arbitrary diagonal unitary operator
eif (x̂), to that of finding the minimal length Walsh-series
approximation of the exponent f (x) [20]. Details of the
Walsh basis and their relationship to the Ising model and
Fourier series are provided in Appendix B.

Typically, given a local potential V(x) in the continuum,
its discrete version Vbin[m] is an array obtained through
sampling the continuum at successive lattice spacings a:

Vbin[m] = Vcont.(ma). (19)

In order to correctly evaluate the Schrödinger equation
however, one must encode the position of the discretized
potential in the same encoding G as the Laplacian operator
L(A,G),

VG[G(m)] = Vbin[m], (20)

For example, if we want to solve the Schrödinger equation
in BRGC with L(A,BRGC), then a two-qubit potential will
take the form

VBRGC[0] =VBRGC[BRGC(0)] = Vbin[0],

VBRGC[1] =VBRGC[BRGC(1)] = Vbin[1],

VBRGC[2] =VBRGC[BRGC(3)] = Vbin[3],

VBRGC[3] =VBRGC[BRGC(2)] = Vbin[2],

because the positions [0, 1, 2, 3] are encoded in BRGC
as [00, 01, 11, 10] and reinterpreted as binary numbers to
[0, 1, 3, 2] in the same way the Laplacian is encoded.

After being encoded, the potential can then be expanded
in WG

n . Typically, the inner product with each basis ele-
ment is taken, resulting in a series expansion. However, in
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practice, this is computationally expensive as, for N = 2A,
O(N 2) operations are required. To speed up the decom-
position, the fast Wash-Hadamard transform (FWHT) is
employed to reduce the complexity to O(N log(N )) opera-
tions. This transform expands any real potential in WG

n to a
given order.

As a consequence of the various codes available, the
FWHT is also representation dependent. However, the
chosen representation in this case is immaterial and yields
only a remapping of the Walsh functions. In particular,
given a system of A qubits, one obtains the same set of
basis operators. For example, if one works in the binary
representation, what is labeled Wbin

2 will simply be bijec-
tively remapped to WBRGC

3 as discussed in Appendix B,
while the resulting k-local Ising model stays unchanged.
In this paper, we use the sequency ordered transformation
FWHTseqA [21,22] because the subscript label in WseqA

n can
be interpreted as the sequency [23] of the basis function
and is therefore the choice that mimics the Fourier-series
mode expansion.

In summary, the steps of mapping the potential to the
qubit or spin Hamiltonian are (1) discretize the potential
to a given lattice, (2) map the potential array to the same
code as the Laplacian, (3) decompose the mapped potential
using FWHT, (4) map the resulting series expansion to the
k-local Ising model.

A. Potential coarse graining

While the FWHT reduces the complexity of decompo-
sition, the cost still scales exponentially with respect to
the number of qubits. To further reduce the setup cost,
we opt to employ coarse-graining methods. If the features
of the potential are on a scale that is much larger than
the lattice spacing, then one expects a low-mode expan-
sion to be a sufficient representation of the potential. As
a result, given a coarse-graining scale aCG ≥ a, the com-
plexity of the FWHT becomes O(N CG log(N CG)) where
N CG = (L/aCG)D in D dimensions can be exponentially
smaller than the original lattice. Such a strategy allows one
to decouple the setup cost from the lattice size for a suitable
potential.

In this work we explore two coarse-graining strategies:
averaging and decimation. In both cases, we define the
coarse-grained lattice, N CG = 2ACG

where ACG < A.
In averaging, we block average the potential between a

given interval. This approach has the benefit of obtaining
exactly the same coefficients as in the complete expan-
sion with the high-sequency modes ACG < r ≤ A set to
zero, serving as a low-pass filter. Therefore, for suitable
potentials, averaging introduces only a series truncation
error that is well behaved, in the sense that the coefficients
of higher-sequency contributions are at least polynomially
suppressed. If we have the functional form of the potential,
one can analytically compute the indefinite integral and

construct averages for the result, and would be computa-
tionally cheap to carry out. If the potential does not have an
analytic form, one would require sampling at all grid loca-
tions making the computational complexity of averaging
O(2A), and can become prohibitively expensive.

One approach to coarse-grain potentials without analytic
forms is to sample only N CG equidistant points through
decimation. Unlike averaging however, decimation intro-
duces an uncontrolled error in the values of the coefficients
in addition to the series truncation error. Multiple coarse-
graining scales will need to be studied to numerically
demonstrate that decimation is under control. Neverthe-
less, the computational cost of decimation can be made
negligibly small for any potential.

B. Example: S-wave deuteron potential

As an illustration, in Fig. 5(a), we plot both the poten-
tial and its low mode expansions from both strategies. We
construct a simple S-channel smooth hard core plus well
nucleon-nucleon potential that roughly mimics the form of
the well-known Argonne v18 potential [24]. The height of
the hard core and the depth of the well are tuned to repro-
duce the deuteron binding energy in infinite volume. The
potential has the functional form

VNN (r) = Ecoree−(r/Rcore)4 − Ewelle−(r/Rwell)
4
, (21)

where E and R are free parameters tuned to experimen-
tal data parameterizing the height and radius of the core
(r � 0.3 fm) and well (r � 0.3 fm). Details of the free
parameters are given in Fig. 5(a).

As demonstrated, the Walsh expansion is a very effec-
tive representation in both approaches. The difference
between averaging and decimation decreases rapidly as
ACG increases. The difference from the continuum poten-
tial is summarized in Fig. 5(b), where the L1-normed error
per degree-of-freedom is shown to decrease exponentially
given a linear increase in ACG.

The potential is encoded in the BRGC representation for
this example. Once encoded, it is then expanded by the
aforementioned FWHTseqA . As an illustration, we provide
the Walsh expansion for the averaging scheme depicted in
Fig. 5 for ACG = 4,

VNN
discretize−−−−→ Vbin

NN
BRGC−−−→ VBRGC

NN

=129
3∑

i=0

Wseq4
i + 129

7∑
i=4

Wseq4
i

+ 135
10∑

i=8

Wseq4
i + 135

13∑
i=11

Wseq4
i ,

where, for brevity, we round to integer values in the
decomposition. Since we have the functional form of
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FIG. 5. (a) The S-wave potential Eq. (21), with parameters in
the inset tuned to reproduce the deuteron binding energy (solid
black line), and the respective discretized potentials on coarse-
grained lattices. The inset graph enlarges into the bottom of the
well near r = 0.5 fm to show how the discretization approxi-
mates the potential there. (b) The L1-normed error per degree of
freedom (DOF) of the coarse-grained potential as a function of
the number of qubits used to represent the coarse-grained lattice.
As ACG increases, the L1-normed difference from the continuum
potential exponentially decreases.

the potential given by, Eq. (21), the averaging can be
performed analytically.

The resulting potential decomposition to the k-local
Ising model is

H BRGC
V = 129

(
I + σ z

3 + σ z
3σ

z
2 + σ z

2

)

+ 129
(
σ z

2σ
z
1 + σ z

3σ
z
2σ

z
1 + σ z

3σ
z
1 + σ z

1

)

+ 135
(
σ z

1σ
z
0 + σ z

3σ
z
1σ

z
0 + σ z

3σ
z
2σ

z
1σ

z
0 + σ z

2σ
z
1σ

z
0

)

+ 135
(
σ z

2σ
z
0 + σ z

3σ
z
2σ

z
0 + σ z

3σ
z
0 + σ z

0

)
,

which can be obtained by inspection from the bijec-
tive map between the Walsh functions and the k-local
Ising model. The k-local terms can be decomposed to a
binary tree of ancillary qubits constructed with 2-local
terms [14,20] and in Appendix A. We comment that
the deuteron potential requires a relatively large basis to

describe because the 2 GeV hard core is δ-function-like,
and poses a challenge for series-expansion methods.

IV. ADIABATIC QUANTUM-COMPUTING
SIMULATIONS

Adiabatic quantum computation (AQC) solves for the
ground state of a complex Hamiltonian by starting from
the known ground state of a trivial Hamiltonian and adi-
abatically evolving the initial Hamiltonian to the final
target [25–27]. AQC is an alternative paradigm for real-
izing universal quantum computation. Quantum annealing
hardware is the closest to an implementation of AQC. It
solves problems where the initial Hamiltonian is the trans-
verse field, and the final Hamiltonian is restricted to be
a 2-local Ising model. One goal of this work is to tailor
our algorithm to be implemented with as few extensions
to existing hardware as possible in the hope that new gen-
erations of hardware will incorporate them. In particular,
the application of BRGC eliminates the necessity of σ y . It
requires only the addition of a 2-local XZ coupling. The
application of H2GC allows simulations to proceed via the
transverse Ising model and in principle, could be imple-
mented today if the transverse field were allowed to persist
throughout the evolution.

In this section we simulate the following time-dependent
Hamiltonian:

H(s) = L + B(s)V, (22)

�(0) = (|↑〉+ |↓〉)⊗A , (23)

where L is the Laplacian defined in Sec. II. Here, a = L/2A

is the lattice spacing and V is the potential from Sec. III.
The time dependence comes from B(s), whose argu-

ment s is a dimensionless coefficient with normalized
evolution time s = t/T with total evolution time T such
that s ∈ [0, 1]. The initial wave function �(0) is an equal
superposition state in any encoding of the Laplacian. In
particular, the ground state of L for binary encoding and
BRGC is exactly the same as the transverse Hamilto-
nian H x = ∑

i σ
x
i , which is seen to be the zero-frequency

plane-wave solution. It follows that adiabatic evolution to
H(1) prepares the qubits into the ground state of a given
quantum system, which becomes the starting point for a
time-dependent Schrödinger simulation.

In Ref. [25] the authors compare quantum and statisti-
cal annealing for the transverse Ising model using three
annealing schedules; linear, square root, and the loga-
rithmic form. They found that the logarithmic annealing
schedule keeps the wave function closest to the instan-
taneous ground state (with the largest overlap). In this
work, we chose the schedule based on recent developments
in understanding adiabatic schedules [28,29]. Following
Ref. [29], we employ a schedule with vanishing gradients
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at the boundary,

B(s) =
∫ s

0 exp
(

−1
s′(1−s′)

)
ds′

∫ 1
0 exp

(
−1

s′(1−s′)

)
ds′

(24)

for all simulations presented in this work. Additional opti-
mizations to the schedule warrant further investigation
[30–32], but are beyond the scope of this work.

The total evolution time T can be roughly estimated
from the IR cutoff of the theory given by the box size.
In particular, the energy gap between the ground state and
first excited state of the free field equation with periodic
boundary conditions is

δE = (2π)2

2mL2 � 1/T, (25)

where m is the (reduced) particle mass, and L is the length
of the finite box. In the examples below, we find set-
ting T to be approximately 2 orders of magnitude longer
than 1/δE is sufficient to evolve the system adiabatically.
We note that there exist proofs of rigorous bounds for
the quantum adiabatic theorem [28,33], but when applied
to examples discussed later in this section, the rigorous
bounds overestimate the required time by several orders of
magnitude when compared to both Eq. (25) and observa-
tions from the corresponding numerical simulations. Addi-
tional investigation of tighter theoretical adiabatic bounds
for Hamiltonian simulation is important but beyond this
work’s scope.

In the other extreme, the UV cutoff is regularized by
the lattice spacing and given by 1/a. The critical role of
the UV cutoff in the application of the H2GC Laplacian is
discussed in Sec. IV C.

All simulations have been performed with QbSim, a
quantum bit simulator. QbSim performs real or imaginary

time simulation of qubit systems where the Hamiltonian is
expressed as

H(t) =
∑

i

Bi(t)Hi. (26)

The Bi(t) functions are scalar weight functions implement-
ing time dependence. The Hi components are expressed as
sums of products of Pauli matrix operators and composites
like projection operators Pvi . A Python integration is used
to configure the simulation and access the system’s evolv-
ing state as time is advanced. A higher-order Dyson series
expansion with automatic step size control generates the
state evolution. Calculations take place in a fully parallel
way. With GPU acceleration, runtimes are reasonable for
20+ qubit systems. We intend to write a separate document
describing QbSim, and make it available for broader use.

In the sections that follow, we continue the discussion
of the S-wave deuteron potential mapped using BRGC as a
time-independent application, followed by an example of a
time-dependent calculation in two dimensions for a quartic
potential in BRGC, and conclude with a simple harmonic
oscillator mapped to H2GC.

A. Example: S-wave nucleon potential with BRGC

We simulate quantum adiabatic evolution for the poten-
tial discussed in Sec. III. The grid size is chosen to be
N = 27 based on the results displayed in Fig. 5. The S-
wave potential is fitted to reproduce the deuteron binding
energy with a reduced mass of 469.14 MeV, and vanishes
at a distance r ≈ 5 fm. Because the system is weakly bound
it extends much further in radius. The box size is set to
L = 20 fm to properly represent the interacting system’s
ground state.

In Fig. 6 we show the evolution of the system as a func-
tion of total evolution times ranging from (1 MeV)−1 to
(50 keV)−1. Given a lattice box size of 20 fm, the lowest
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FIG. 6. Adiabatic evolution from a free particle to the interacting system with the S-wave potential of Sec. III. (a) Overlap with the
true ground state and expectation of the interacting Hamiltonian as a function of total evolution time. (b) The ground-state energy as a
function of total evolution time. The dashed black line marks the physical deuteron binding energy of −2.2 MeV.
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nonzero momentum state is approximately a 4-MeV exci-
tation above the ground state. We observe that at a total
evolution time of (100 keV)−1 recovers the ground state
at the end of the evolution with 98% probability, and at
(50 keV)−1 the probability increases to 99.97%. These
values are roughly 2 orders of magnitude longer than the
estimate of Eq. (25).

While changes in the schedule will affect the result, we
observe numerical evidence for physical systems that the
IR cutoff of the theory sets the scale for adiabatic evolution.
As a result, for a physical system, the total evolution time
required for adiabatic state preparation is expected to scale
polynomially with the box size, while exhibiting constant
scaling with respect to the lattice discretization, which gov-
erns the ultraviolet cutoff. This claim is further supported
by studying the instantaneous energy spectrum during the
evolution as shown in Fig. 7. We observe throughout the
entire evolution that the ground-state to the first excited-
state energy gap remains of the same scale as the IR
cutoff, only subject to small changes even when the sys-
tem is undergoing the nontrivial change of introducing a
2-GeV hard-core potential. The fundamental reason why
the energy gap is so well protected, even against significant
changes in the potential, is that the kinetic energy is quan-
tized within a finite box. This is a significantly different
situation than the typical quantum annealing application,
in which the transverse field is progressively switched off
during the evolution.

A classical determination of the ground state is more
challenging than one might expect. Because of the large
difference in scale between the hard-core height and the
binding energy, numerical differential equation solvers are
unstable, requiring extra precision and care to find the
ground states. A more straightforward technique is to pick
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FIG. 7. (Top) The instantaneous spectrum during the adiabatic
evolution for the first five states. At s = 0, the free-field Lapla-
cian has a twofold degeneracy for periodic boundary conditions.
The NN potential lifts the degeneracy afterwards. (Bottom) The
energy gap between the first excited state and ground state as a
function of evolution time s. The dashed red line is calculated
from Eq. (25), yielding the infrared cutoff.

a large discrete basis such as more than O(100) states in a
harmonic oscillator basis or a similar number of points in
a discrete position basis. One then takes matrix elements
in that basis and diagonalizes. The large basis is required
to simultaneously resolve the spatially tiny hard core and
represent the wave function at the long-range associated
with the small binding energy. The runtime of partial diag-
onalization with techniques like the Lanczos algorithm is
a function of N , the number of basis states, and the num-
ber c of matrix-vector product iterations required, taking
O(cN 3) for a dense matrix. In contrast, with the position
encoding here, A = 7 qubits yield N = 128 basis states.

B. Example: two-dimensional quartic potential with
BRGC

In the section we demonstrate the ability to evaluate
potentials beyond one dimension. The example performs
adiabatic evolutions in two stages. Starting from the free
particle Hamiltonian, we first evolve the system into a
quartic potential as an example of initial state preparation,
followed by the introduction of an additional quadratic
potential,

V(quartic)(x, y) = V4(x2 + y2)2,

V(quadratic)(x, y) = −V2(x2 + y2),
(27)

where, V4 = 10 MeV and V2 = 100 MeV. As a conse-
quence of turning on the quadratic potential, the ground-
state wave function, which was originally centered around
the origin deforms into a ring.

The effective mass is set to m = 1 GeV in a box that is
L = 10 fm long in each direction. We opt for N = 26 lat-
tice points per dimension (for a total of 12 qubits) yielding
a lattice spacing of a ∼ 0.15 fm resulting in a UV cutoff
of approximately 1.3 GeV. Correspondingly, the IR cutoff
is approximately 8 MeV given the box size and particle
mass. As a result, we set the evolution time of going from
free field to the quartic potential as T1 = (50 keV)−1, while
T2 = (100 keV)−1 is used as the evolution time for ramp-
ing up the quadratic potential. For purposes of separating
the two parts of the evolution, we normalize the evolution
time of the first half to s1 ∈ [0, 1], which governs the initial
state preparation of the interacting system with a quartic
potential. In the second part of the simulation, s2 ∈ [1, 1.5]
the quadratic potential is turned on gradually.

In Fig. 8(a), we show the time-dependent energy of
the system. Due to the long evolution time, we observe
that the system reaches the correct ground state for the
quartic potential at s = 1. The system then proceeds with
the addition of a quadratic potential and reaches its new
ground-state energy. Figure 8(b) shows the evolution of
the low-lying spectrum of the system. Similar to the
deuteron example in Sec. IV A, we observe that the min-
imum energy gap stays well protected by the IR cutoff.
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FIG. 8. (a) Instantaneous energy of the time-evolved wave
function as a function of evolution time s. The dashed line labeled
by E(quartic)

0 shows where the ground-state energy of the sys-
tem with the quartic potential lies. The dashed line labeled by
E(quartic+quadratic)

0 shows where the ground-state energy lies with
the addition of the quadratic potential. (b) (Top) The energy spec-
trum of the first five eigenstates of H(s), and (bottom) energy gap
between the ground state and the first excited state as functions of
evolution time. The dashed red line is calculated from Eq. (25),
yielding the infrared cutoff.

Additionally, in Fig. 9 we show snapshots of the wave
function at s = 1 and s = 1.5, illustrating the phase tran-
sition effects. The wave function can, in principle, be
obtained through repeated measurements of the qubits at
the end of the evolution.

C. Example: harmonic oscillator with H2GC

In this section, we perform a calculation using the H2GC
Laplacian. The final target potential is that of the simple
harmonic oscillator

V(x) = 1
2

mx2. (28)

In this example, we work in dimensionless units for sim-
plicity, setting the particle mass m to 10 to confine low-
lying states to the box and avoid finite volume effects.
We work in a symmetric box ranging from L = [−1, 1].
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0
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8

10

y
(f

m
)

s = 1

0 2 4 6 8 10
x (fm)

s = 1.5

FIG. 9. The probability density from the instantaneous wave
function at s = 1 of the quartic potential, and s = 1.5 with the
addition of a quadratic potential.

With A = 8, H2GC has 32 valid codes, yielding a lat-
tice spacing of a = 2/32 = 0.0625. As a result, the IR
cutoff is (2π)2/2mL2 = 0.4934, and the UV cutoff is 16.
Because the Laplacian matrix is multiplied by 1/Ma2 in
the Schrödinger equation, we use the scale U ≡ 1/Ma2

to measure the penalty strength Q needed to suppress the
invalid codes in H2GC.

Our time-evolution strategy keeps the transverse-field
constant during evolution using the schedule function
defined in Eq. (24) to introduce the penalty Hamiltonian,
followed by a second delayed schedule to introduce the
harmonic oscillator potential. Figure 10(a) shows the time-
dependent weight B(s) for the three different contributions
to the Hamiltonian. The total time required for adiabatic
evolution can be roughly estimated by considering the
dynamics of two stages: (1) transverse Hamiltonian to
H2GC Laplacian and (2) H2GC Laplacian to the harmonic
oscillator system.

Given a system of qubits in the ground state of the
Laplacian operator, the evolution time required to turn
on the harmonic oscillator potential follows the reasoning
from previous sections and is some multiple (e.g., 100×)
the IR scale, which in this example still holds. However,
the physics governing the adiabatic evolution to the H2GC
Laplacian from the transverse Hamiltonian is dominated
by the UV cutoff, and must therefore scale as a function
of U. This is because the penalty Hamiltonian coefficient
needs to be many orders of magnitude above the UV scale
to preserve the Laplacian’s eigenspectrum. As a result, the
penalty Hamiltonian significantly ramps up as a function of
s and requires a commensurate amount of evolution time.
In simulations, we set the evolution time of the first stage
to equal the penalty Hamiltonian coefficient. Applying this
logic, the time complexity of adiabatically evolving from
the transverse Hamiltonian to the H2GC Laplacian scales
exponentially poorly with the number of qubits, since the
lattice spacing approaches the continuum exponentially
quickly due to the exponential growth of the length of the
H2GC code. Nevertheless, the H2GC Laplacian provides
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FIG. 10. (a) The time-dependent coefficient Bx(s) for the
transverse Hamiltonian H x, BQ(s) for the penalty Hamiltonian
Q

∑
c P(c), and BV(s) for the potential. (b) The ground-state

eigenvector of H(s) for when (solid line) s = 0 and the system is
governed by H x, (dashed line) s = 0.5 when the system is the
H2GC Laplacian, and (dotted line) s = 1 where the harmonic
oscillator potential is present.

a way to implement the Schrödinger equation on hardware
very similar to systems available today, with the additional
requirement to retain the contribution of the transverse
field throughout the whole evolution.

For a better understanding of what is happening to the
wave function, we provide the ground-state eigenvectors
obtained from direct diagonalization in Fig. 10(b). We
observe that when H(s) is the transverse Hamiltonian, the
ground state is the properly normalized superposition state.
With eight qubits, the normalization factor is

√
1/28 =

0.0625, as indicated by the solid black line. When the
penalty Hamiltonian is fully engaged, the H2GC Lapla-
cian will be in its zero-energy ground state. When properly
normalized over 32 positions, we see a constant wave func-
tion at

√
1/32 = 0.177 as shown by the dashed line. After

introducing the harmonic oscillator potential, the wave
function becomes the expected Gaussian, as demonstrated
by the dotted line.

One can further infer the dynamics of the system by
studying the time-dependent spectrum of the system shown

in Fig. 11(a). In a system of eight qubits, we observe that
the system exhibits an eightfold degeneracy in the first
excited state, as is expected from the transverse Hamil-
tonian. We plot the ninth (dashed odd state) excited state
to confirm there are no additional degeneracies. When the
penalty Hamiltonian is introduced, the eightfold degener-
acy evolves into the expected tower of twofold degenera-
cies for the Laplacian operator in a periodic box.

Figure 11(b) further demonstrates why the prohibited
codes must be cleanly gapped from the rest of the sys-
tem. In this plot, we show the time-dependent energy
gap between the ground state and first excited state. We
expect that the free-field Laplacian has a gap given by the
IR cutoff, while deviations from the red line arise only
from interactions with the potential. After increasing the
penalty coefficient to 100U, the H2GC Laplacian starts to
reproduce the expected gap within 1% [Fig. 11(b)].
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FIG. 11. (a) The time-dependent energy spectrum of H(s) of
the first ten states for a system of eight qubits. The solid lines
denote even-numbered states (0, 2, 4, 6, 8), and dashed lines
label odd-numbered states (1, 3, 5, 7, 9). (b) The time-dependent
energy gap between the first excited state and ground state as a
function of evolution time s and strength of the penalty coeffi-
cient Q. The dotted, dashed, and solid lines denote progressively
stronger penalty coefficients, set relative to the U scale. The
dashed red line is calculated from Eq. (25), yielding the infrared
cutoff.
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D. Example: He atom with two electrons

For a final demonstration we include an example
with two independent particles. We work in units of
electronvolts (eV) and nanometers (nm). We model two
electrons, distinguished by spin, around a helium nucleus
at the origin in a periodic three-dimensional volume b =
0.128 nm on each side. The volume size is approximately
4 times the Bohr radius rb = 0.031 nm found from an
effective central charge of approximately 1.69 due to par-
tial shielding by the other electron. Each electron spatial
direction is BRGC encoded with three qubits for a total
of 18 qubits (262144 basis states) and the the multiparticle
Laplacian is implemented following Eq. (11), summing the
Laplacian on the first nine with that of the last nine qubits.
A bare Coulomb potential would yield an infinite sum over
periodic images, so a Yukawa potential (in natural units)

V(r) = Z1Z2α
e−r/b

r + rE
(29)

is used for the interactions between the electrons and
between the nucleus and electrons. The parameters Z1
and Z2 are the charges for particle 1 and 2, respectively,
where Z = −1 for the electrons and Z = +2 for the helium
nucleus. The parameter α ∼ 1/137 is the fine-structure
constant, and rE = 1.6 fm is the helium-nucleus charge
radius. Contributions from neighboring periodic images
are included but suppressed by the exponential in the
Yukawa potential.

We first use Lanczos diagonalization to solve for the
ground state, yielding a total binding energy of 74.5
eV versus the experimental value of approximately 79
eV. Given the small number of qubits, the eigenvalue is
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FIG. 12. The time-dependent energy gap for H(s) given by
Eq. (22) (black solid line), where the two-particle Yukawa poten-
tial in three dimensions Eq. (29) is used. The corresponding
energy gap of the free-field system given by Eq. (25) (dotted red
line) differs from the gap at H(0) with a correction of O(a2) at
leading order, and is visible due to the relatively coarse lattice
spacing used in this example.
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FIG. 13. The radial electron density obtained with AQC for
T ∼ 1/δE (dotted blue) and T ∼ 100/δE (solid red), compared
to the density obtained by diagonalization (green histogram) for
the He atom, where δE is the energy gap between the ground
state and first excited states of the free-field solution.

sensitive to the volume size as well as the inclusion of
an exponential factor in the potential and a close match
is not expected. We then evolve with AQC from the initial
transverse state with H0 = T to H = T + V.

Figure 12 shows the time-dependent energy gap
between the ground state and first excited state. The dot-
ted red line is the IR cutoff predicted by Eq. (25) given
by a 0.128-fm box. Due to the coarse discretization used in
this example, the IR cutoff predicted in the continuum limit
differs (inconsequentially for our purposes) by approxi-
mately 5% from the gap of the discretized Laplacian. More
importantly, we observe that the time-dependent energy
gap is again, protected by the IR cutoff and therefore
is expected to retain polynomial time complexity with
respect to increasing system size.

In Fig. 13 we compare the density determined by AQC
to that determined from diagonalization. We observe that
when a total evolution time of 100× the IR cutoff is used
for AQC, the electron density reproduces the result from
exact diagonalization within a fraction of a percent. We
highlight here the observation that the adiabatic bound of
O(100/δE) is consistent with all other examples presented
in this work.

V. SUMMARY AND CONCLUSION

The Schrödinger equation remains one of the founda-
tional blocks of our understanding of quantum systems.
One common method of solving this equation is by dis-
cretization in a selected basis and it has found wide
applications in classical computations. We introduced the
concept of encoding in the association of positions with
A-body qubit states in the computational basis. Such an
association provides an exponential improvement in space
complexity, and encoding further reduces the Hamilto-
nian complexity. With the limitations of current adiabatic
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quantum computers in mind, we demonstrate the power of
Gray encoding in simplifying the spin Hamiltonian repre-
sentation. With a BRGC encoding of positions, we mapped
the Schrödinger equation with a real, local potential to the
XZ model, and through H2GC we further simplified it to
a transverse Ising model while maintaining an exponential
improvement in space complexity and a quadratic count
of 3-local penalty terms for unused codes. These advan-
tages also apply to the implementation of ladder operators.
More specifically, with H2GC, the generic Schrödinger
equation with a local potential discretized on 2A/2+1 points
is equivalent to a transverse Ising model on A qubits and a
quadratic in A count of 3-local penalty terms.

In both BRGC and H2GC cases, we employed the
FWHT to efficiently encode the potential as an Ising
Hamiltonian and showed that coarse-graining techniques
could further reduce the computational cost of encoding.

Through numerical simulations, we discovered that the
system’s adiabatic evolution is stable due to the infrared
cutoff associated with finite volume. By borrowing tech-
niques successfully used in lattice QCD computations with
finite range interactions, e.g., Luscher’s method [34], for
extracting infinite volume results from finite volume ones,
we can envisage performing quantum calculations in finite
volume and benefiting from the polynomial time scaling
associated with finite volume for computing observables.

For all codes, evolution from a free field to an interacting
system exhibits polynomial time complexity with volume
and constant scaling with respect to lattice discretization.
For H2GC, if the evolution begins with the transverse
Hamiltonian followed by the introduction of penalties to
keep the low-lying spectrum of the Laplacian intact, the
time evolution will initially be sensitive to the ultravio-
let scale. This sensitivity will give rise to polynomial time
complexity with lattice discretization.
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APPENDIX A: PROJECTION OPERATOR
PRODUCT REDUCTION

Current hardware topology requires the qubit or spin
Hamiltonian to have 2-local interactions. For Eq. (17), for-
tunately, there is a known method [14] to replace a product
of P0

i s to the projection operator of a single qubit while
keeping the low-lying spectrum of the Hamiltonian, at the
expense of adding ancillary qubits [35]. Because each iter-
ation of the recursion formula shares all but one projection
operator with its predecessor, the ancillary bit cost is linear
in A. We include a brief discussion of the construction of
the reduction.

To reduce the correction terms to 2-local, it is suffi-
cient to reduce the product of projection operators to the
projection operator of a single ancillary qubit. If we can
reduce two qubits to one, then a tree or chain of such
reductions will suffice. We construct the 2-to-1 reduction
by adding qubit a along with a penalty contribution to
the Hamiltonian. To replace P0

i P0
j , for example, a penalty

is added when P0
a �= P0

i P0
j . The penalty is shown for all

states of qubits a, i, and j in Table I. We use a Karnaugh
map, shown in Fig. 14, to visualize the adjacencies and
assist in minimizing the implementation of the penalty
Hamiltonian.

The resulting penalty Hamiltonian is

Hpen = Q
[
P1

a + σ z
a

(
P1

i + P1
j

)
+ P1

i P1
j

]
. (A1)

All pieces of this penalty contribution are 2-local.
To reduce a collection of projector products to 2-local,

an efficient heuristic is to rank projector pairs by the num-
ber of existing products in which they appear. Then, the
highest-ranked such pair is processed, producing a new
qubit, and the projector on the new qubit replaces the pair
in every product in which it appears, repeating the process
until completion. This process is a well-known heuristic
for reducing collections of multi-input boolean and gates.
The pair’s tree height can also be included as a negative

TABLE I. A diagonal penalty Hamiltonian for reducing the
product of two-qubit projection operators p0

i and p0
j to a sin-

gle qubit labeled q that is 0 when the original qubits are both
0. The Q indicates a sufficient penalty to remove violators from
the low-lying states, not a specific value.

a P0
a i j P0

i P0
j Hpen

0 1 0 0 1 0
0 1 0 1 0 Q
0 1 1 0 0 Q
0 1 1 1 0 Q
1 0 0 0 1 Q
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0
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FIG. 14. Penalties from Table I appear here as nonzero values
in the center of the cells, which will be multiplied by Q. Contribu-
tions are shown as ovals with +1 or −1 indicating the coefficient
for the contribution. The sum of such values for all ovals cover-
ing the center of a cell totals to the penalty value of the cell. When
restricted to the first row, P1

i + P1
j generates the two ovals in the

row. The same contribution with the opposite phase is needed in
the bottom row, shown with green dashed ovals. σ z

a

(
P1

i + P1
j

)

generates all four contributions. A value of 1 is added in the bot-
tom row with P1

a , leaving only cell 1/11 needing a correction,
which is provided by P1

i P1
j . This process leaves cell 0/11 with a

larger than needed but acceptable penalty of 3Q.

contribution in the ranking to avoid long chains of ancillary
qubits.

APPENDIX B: REVIEW OF THE ORTHOGONAL
FUNCTIONS

1. Walsh series

The tensor product space of Pauli σ z matrices form a
complete basis for real-valued functions and is analogous
to a digitized Fourier series expansion. This can be under-
stood by recognizing that there is a one-to-one mapping
of the σ z tensor products to the Walsh series, which we
discuss in this section.

a. Walsh and Rademacher functions

Before defining the Walsh functions, let us first intro-
duce the Rademacher functions Rn, which are the basic
building blocks of the basis states. The functions Rn are
defined as

Rn(t) = sign sin(2n+1π t), (B1)

where t spans the unit interval, and n is the set of natural
numbers starting from zero. We can immediately inter-
pret Rn as the set of periodic step functions with integer
frequencies as enforced by periodic boundary conditions.

In an encoding G, the Walsh functions are constructed
from the Rademacher functions such that

WG
0 ≡1, (B2)

WG
n =	niRni , (B3)

where the set {ni} is composed of the positional indices of
the nonzero bits in G(n). The bit-string representation of
n is read from left to right. For example, if G(n) = 110,
then {ni} = {0, 1}, and the corresponding Walsh function
is R0(t)R1(t). By definition, WG

0 corresponds to the zero-
frequency mode in all encodings. For a more concrete
discussion, we list the first 23 integers in binary, BRGC,
sequency, and H2GC encoding

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
3
4
5
6
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

bin−→
rep

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000
001
010
011
100
101
110
111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000
001
011
010
110
111
101
100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000
100
110
010
011
111
101
001

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0000
0001
0011
0111
1111
1110
1100
0100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B4)

int bin BRGC seq3 H2GC

The binary order is also called the Hadamard order in the
literature, the BRGC order follows from Gray code dis-
cussed in Sec. II B 1, sequency order is also called the
Walsh order in the literature and is just the reflection of
the BRGC order for a given number of bits, and finally
the H2GC sequence is discussed in Sec. II C and is used
to encode the Laplacian with the transverse Ising model
Hamiltonian.

b. Binary order

The Walsh functions Wbin
n in binary order are denoted

by a superscript bin. Following Eq. (B4), we give the
first three Walsh functions in binary order to illustrate the
construction

1 → 001 ∴ Wbin
1 = R2,

2 → 010 ∴ Wbin
2 = R1,

3 → 011 ∴ Wbin
3 = R1R2.

c. Binary reflected Gray order

An alternative way to order the Walsh functions is to
map the sequence to BRGC, and is the computational
ordering for the XZ-model mapping of the Schrödinger
equation. We use the notation WBRGC

n to denote the Gray-
ordered Walsh function. Following Eq. (B4), the first three
Walsh functions in Gray order are

1 → 001 ∴ WBRGC
1 = R2,

2 → 011 ∴ WBRGC
2 = R1R2,

3 → 010 ∴ WBRGC
3 = R1.
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d. Sequency order

The sequency order is analogous to the Fourier-series
mode expansion, and was the version originally employed
by Walsh [36]. In this order, each function has one more
zero crossing than the previous function and the set alter-
nates between even and odd functions sequentially. From
this perspective, it is very similar to the Fourier series and
the concept of frequency is replaced by sequency. The list
of sequency bit strings are obtained by performing a bit
reversal on the BRGC bit strings. Due to bit reversal, the
sequency order mapping is dependent on the total size of
the system A. We use the notation WseqA

n to denote the
sequency-ordered Walsh functions for an A (qu)bit sys-
tem. Following Eq. (B4), the first three Walsh functions
in sequency order for a 3-bit system are

1 → 100 ∴ Wseq3
1 = R0,

2 → 110 ∴ Wseq3
2 = R0R1,

3 → 010 ∴ Wseq3
3 = R1.

As a result, low-mode expansions can be computed succes-
sively one contribution at a time given the above sequency
order. In Sec. III we suggest using a combination of
coarse graining and the fast Walsh transform (similar to
the Fourier version) in order to gain a substantial com-
putational speed up when series expanding arbitrary real
functions. Therefore, this discussion of the sequency order-
ing is meant to give better intuition for the Walsh series,
and are important when discussing the series expansion for
potentials. The Walsh functions in the sequency order are
also given by the rows of the Hadamard matrix,

H(2k) =
(

H(2k−1) H(2k−1)

H(2k−1) −H(2k−1)

)
,

H(21) =
(

1 1
1 −1

)
.

(B5)

Then, Wbin
n = nth row of H(2k).

e. Mapping to the Pauli basis

For a system of A qubits, the first 2A Rademacher func-
tions have an exact mapping to the diagonal of the 1-local
σ z Hamiltonian, Rn → σ z

A−1−n. The first three Rademacher
functions are shown in Fig. 15 along with the correspond-
ing 1-local Hamiltonian for a system of three qubits.

It follows immediately that given a system of A qubits,
the set of 2A, k-local Ising-like Hamiltonians are bijectively
mapped to the first 2A Walsh functions. For example, in a
system of three qubits, the n = 4 Walsh function in binary

−1

0

1
R0

σz
2

−1

0

1
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σz
1
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x

−1
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1
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FIG. 15. The first three Rademacher functions.

order is given by

Wbin
4 = R2 → σ z

0 = 1 ⊗ 1 ⊗ σ z (B6)

and in Gray order as

WBRGC
4 = R0R1 → σ z

2σ
z
1 = σ z ⊗ σ z ⊗ 1 (B7)

and in Walsh order as

Wseq3
4 = R1R2 → σ z

1σ
z
0 = 1 ⊗ σ z ⊗ σ z. (B8)

In general, given a binary representation for an integer
n, the 1s and 0s map, respectively, to tensor products of σ z

and 1. Figure 16 shows the first seven Walsh functions in
sequency order and highlights the connection to sine and
cosine functions with increasing frequency.

2. Fast Walsh-Hadamard transform

In analogy with the Fourier series, the Walsh functions
in a given order form an orthonormal basis for the vector
space of functions defined on [0, 1]. As already touched
upon, differently from the Fourier series, there are many
versions of the Walsh series depending on how the func-
tions are ordered and sequency most closely resembles the
concept of frequency with each subsequent element in the
series increasing the number of zero crossings by one. The
expansion can be performed through the inner product,

f (x) =
∑

n

anWn(x),

an =
∫ 1

0
f (x)Wn(x).

(B9)

On a discretized domain of N = 2A equally spaced grid
points, the Walsh-Hadamard transform can be easily real-
ized from Eq. (B5),

f (W) = 1
2A H

(
2A)

f , (B10)
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FIG. 16. The first seven Walsh functions in sequency order.

where the real function, f = {f (xi)}2A−1
i=0 , has been eval-

uated at the grid points. This transformation requires N 2

operations, just like the discrete Fourier transform (DFT),
and indeed is equivalent to a multidimensional DFT of size
2A [37]. In practice, one opts for an efficient implemen-
tation like the fast Fourier transform (FFT) [38]. This is
achieved by the FWHT, which requires N log(N ) opera-
tions. Through the decades, various fast algorithms have
been developed, which automatically return the expansion
in a given order. As an illustration, here we provide the
decompostion in binary order for a sequence of four grid
points by matrix partitioning techniques [39], where

4

⎛
⎜⎜⎝

f (W,b)(x0)

f (W,b)(x1)

f (W,b)(x2)

f (W,b)(x3)

⎞
⎟⎟⎠ = H(4)

⎛
⎜⎝

f (x0)

f (x1)

f (x2)

f (x3)

⎞
⎟⎠

=
(

H(2) H(2)
H(2) −H(2)

) ⎛
⎜⎝

f (x0)

f (x1)

f (x2)

f (x3)

⎞
⎟⎠

partitions to

4
(

f (W,b)(x0)

f (W,b)(x1)

)
= H(2)

(
f1(x0)

f1(x1)

)

= H(2)
(

f (x0)+ f (x2)

f (x1)+ f (x3)

)
,

4
(

f (W,b)(x2)

f (W,b)(x3)

)
= H(2)

(
f1(x2)

f1(x3)

)

= H(2)
(

f (x0)− f (x2)

f (x1)− f (x3)

)

which can be further partitioned into

4f (W,b)(x0) =f2(x0) = (f1(x0)+ f2(x1)) ,

4f (W,b)(x1) =f2(x1) = (f1(x0)− f2(x1)) ,

4f (W,b)(x2) =f2(x2) = (f1(x2)+ f2(x3)) ,

4f (W,b)(x3) =f2(x3) = (f1(x2)− f2(x3)) .

APPENDIX C: DERIVATION OF EQ. (17) IN
TENSOR PRODUCT NOTATION

We start from the recursion formula of L(A,bin) in
Eq. (12):

L(A,bin) = 1 ⊗ (L(A−1,bin) − CA−1)+ σ x ⊗ CA−1. (C1)

We follow the notation in Sec. II B 1. For an integer
N = 2A, the encoding function, GA, of BRGC is a per-
mutation of (0, 1, 2, . . . , N − 1). It is defined inductively
G1 = (0, 1). For A > 1, the first half of GA is GA−1, and
the second half of GA is GA−1 reversed in order and then
added by 2A−1. For example, G2 is (0, 1) concatenated with
(1 + 2, 0 + 2), which is (0, 1, 3, 2). In particular,

GA(0) = 0

GA(2A − 1) = 2A−1 + GA(0) = 2A−1

GA(2A−1 − 1) = 2A−2

GA(2A−1) = 2A−1 + GA(2A−1 − 1) = 2A−1 + 2A−2

. (C2)

Let the matrix transformation in Eq. (15) be denoted by GA:

L(A,BRGC) ≡ GA(L(A,bin)). (C3)

To derive a formula for L(A,BRGC), we first note that GA(1 ⊗
M ) = 1 ⊗ GA−1(M ) if M is invariant under the reflection
permutation, (A − 2, A − 3, . . . , 0), and that L(A−1,bin) and
CA−1 both enjoy this invariance. Thus,

L(A,BRGC) = 1 ⊗ L(A−1,BRGC) − 1 ⊗ GA−1(CA−1)

+ GA(σ
x ⊗ CA−1). (C4)

To compute GA(CA), note that (CA)ij is nonzero if (i, j ) =
(0, 2A − 1) or (2A − 1, 0). Thus, GA(CA) is nonzero at
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(0, 2A−1) and (2A−1, 0). For example, for A = 2,

G2(C2) =

⎡
⎢⎣

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎦ = σ x ⊗ P0, (C5)

where P0 = (1 − σ z)/2 is a z-projection matrix. It is easy
to see that, for general A,

GA(CA) = σ x ⊗ (P0)⊗(A−1). (C6)

To compute GA(σ
x ⊗ CA−1), we note that (σ x ⊗ CA−1)ij is

nonzero at (i, j ) = (2A − 1, 0), (0, 2A − 1), (2A−1, 2A−1 −
1), and (2A−1 − 1, 2A−1). According to Eq. (C2), this
means that GA(σ

x ⊗ CA−1) is nonzero at (2A−1, 0),
(0, 2A−1), (2A−1 + 2A−2, 2A−2), and (2A−2, 2A−1 + 2A−2).
For example, for A = 3,

G3(σ
x ⊗ C2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= σ x ⊗ 1 ⊗ P0. (C7)

For general n, we see that

GA(σ
x ⊗ CA−1) = σ x ⊗ 1 ⊗ (P0)⊗(A−2). (C8)

Thus, we obtain

L(A,BRGC) = 1 ⊗ L(A−1,BRGC) + (σ x ⊗ 1 − 1 ⊗ σ x)

× ⊗(P0)⊗(A−2), (C9)

where the base case is L2 = 1 ⊗ σ x + σ x ⊗ 1.

APPENDIX D: INTRODUCTION TO KARNAUGH
MAPS

Karnaugh maps [10] are a tool for visualizing binary
hypercubes with dimension ≥ 3. A common use of them
in classical boolean circuit design is as an aid in minimiza-
tion of boolean functions as a sum of products or a product
of sums. The cells in a Karnaugh map represent the cor-
ners of a binary hypercube in a way that makes it easy
to visually identify subcubes of the complete hypercube.
Figure 17 shows a Karnaugh map for a function of four
variables. Subcubes are important because they can also be
specified as a boolean product of boolean literals (a literal
is a boolean variable or its complement) for variables that

00

00 01 11 10a
3,2

a
1,0

01

11

10

1 1

1 1

1 1

10

0

1

0 0 0 0

1

0

α

β

γ
δ

FIG. 17. A Karnaugh map on four input variables. The 16 cells
correspond to the corners of a dimension-four binary hypercube,
each of which is associated with specific values of the input vari-
ables. The input values can be read from the left of the row and
the opt of the column the cell is in. Each cell contains the boolean
function value for the input state of the cell. The greek letter
labels have been added for the discussion but are not normally
part of a Karnaugh map. The leftmost 1 under the label α is in a
cell with input values 0100. Note that the column and row input
values follow the sequence 00, 01, 11, 10, which has the property
that visually adjacent cells differ in the value of only one input
variable. We also consider the right-hand edge to be adjacent to
the left-hand edge and the bottom edge to be adjacent to the top
edge.

do not change in the subcube. In the quantum-computing
context the parallel specification is a product of projec-
tion operators on the qubits whose values are constant in
the subcube. In Fig. 17 there are four groups indicated
with labels α, β, γ , and δ. Each of these groups is a sub-
cube of the full four-variable hypercube. We can write a
simple product expression for each group. Note that the
bar over variables is a standard way to indicate a boolean
complement

α = ā3a2, β = a2a0, γ = a3a0, δ = a3ā2a1. (D1)

In using a Karnaugh map for optimization of a sum of
products one first finds the set of maximal subcubes con-
taining only 1s. The indicated groups are maximial because
removal of any variable from their product expression
would enlarge them to include a cell with a 0. Next, a sub-
set of the subcubes are selected such that every 1 is inside
one of the selected subcubes. In this example subcube β
is unnecessary because all the contained 1s are covered by
subcubes α and γ , which is easily checked by examination
of the Karnaugh map. The complete boolean function f is
then

f = ā3a2 + a3a0 + a3ā2a1. (D2)
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5
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0

1
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00
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00

01

10

a
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a
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FIG. 18. A Karnaugh map on six input variables. One should
regard the submaps as separate pieces of paper stacked up in
the order a5,4 = 00, 01, 11, 10, in clockwise order. The top and
bottom sheets are adjacent because of periodicity. A cell is con-
sidered adjacent to the cell in the sheet above or below it in
addition to adjacencies in the four-variable map. As an exam-
ple, a two-variable subcube with four cells can be formed from
the collection of the lower-right cells of all four submaps, with
inputs a3,2,1,0 = 1010 or a3ā2a1ā0.

In our quantum-computing application to penalties the sum
operation is a numeric sum instead of a boolean sum (also
known as a boolean or). For penalties however, we do not
care about the exact penalty value and two terms of the
same sign may both contribute without harm, giving the
same character as the boolean sum.

The simple Karnaugh map in Fig. 17 can be extended
to more variables in a hierarchical way. Figure 18 shows a
six-input map, which can be thought of as a two-variable
map with each cell containing a four-variable map. An
eight-input map can be constructed as a four-variable map
with each cell being in turn a four-variable map.
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