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Abstract
Exposure to toxic heavy metals has been associated with the development of attention-deficit/hyperactivity disorder (ADHD). 
However, fewer studies have examined the associations between abnormal levels of essential trace metals and ADHD, and 
none have done so using saliva. We investigated whether salivary metals were associated with ADHD in adolescents aged 12 
from the Family Life Project (FLP) using a nested case–control study design that included 110 adolescents who met diagnos-
tic criteria for inattentive (ADHD-I), hyperactive-impulsive (ADHD-H), or combined type ADHD (ADHD-C) (cases) and 
173 children who did not (controls). We used inductively coupled plasma optical emission spectrophotometry to measure 
chromium, copper, manganese, and zinc in saliva samples. We employed logistic regression models to examine associations 
between quartile levels of individual metals and ADHD outcomes by subtype. Salivary copper levels were significantly 
associated with increased odds of any ADHD diagnosis (OR = 3.31, 95% CI: 1.08–10.12; p = 0.04) and with increased odds 
of ADHD-C diagnosis (OR = 8.44, 95% CI: 1.58–45.12; p = 0.01). Salivary zinc levels were significantly associated with 
increased odds of ADHD-C diagnosis (OR = 4.06, 95% CI: 1.21–13.69; p = 0.02). Salivary manganese levels were also 
significantly associated with increased odds of ADHD-C diagnosis (OR = 5.43, 95% CI: 1.08–27.27, p = 0.04). This is the 
first study using saliva to assess metal exposure and provide a potential link between salivary levels of copper, manganese, 
and zinc and ADHD diagnoses in adolescents. Public health interventions focused on metal exposures might reduce ADHD 
incidence in low-income, minority communities.
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Abbreviations
ADHD  Attention-deficit/hyperactivity disorder
ADHD-I  ADHD inattentive subtype
ADHD-H  ADHD hyperactive/impulsive subtype
ADHD-C  ADHD combined subtype
DSM-IV  Diagnostic and Statistical Manual of Mental 

Disorders Fourth Edition

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a neu-
rodevelopmental disorder that is characterized by age-inap-
propriate, persistent patterns of excessive inattentiveness, 
hyperactivity, and impulsivity that causes impairment across 
a variety of settings (i.e., school, work, home, etc.) [1]. 
ADHD is a complex disorder with both genetic and environ-
mental factors contributing to its susceptibility and risk [2, 
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3]. Current prevalence data report that 6.1 million children 
in the United States suffer from ADHD, while 2019 global 
prevalence data suggests 84.7 million people are affected 
worldwide [4, 5]. Despite ADHD standing as the most diag-
nosed mental disorder of childhood and adolescence, little 
is known about the disease etiology, particularly regarding 
the environmental impacts of metal exposures on ADHD 
symptoms and diagnosis [6].

The neurotoxic effects of heavy metals, such as mercury 
and lead, are well documented [7–11], but less is under-
stood about the potential impacts to ADHD risk conferred 
by other metals, some of which are required in the body at 
trace amounts (<0.01%) but can be toxic at sufficiently high 
levels. These trace metals, such as zinc, manganese, copper, 
iron, and magnesium, are essential for numerous biological 
and chemical processes, including regulating cellular home-
ostasis, acting as cofactors for many enzymes, and serving 
as antioxidant molecules [12]. Current epidemiologic inves-
tigations into the associations between bodily concentra-
tions of trace metals and ADHD remain inconclusive, but 
the emerging body of evidence suggests that either height-
ened or insufficient exposure to several essential metals can 
influence the odds of ADHD diagnosis and/or symptoms 
[13–18]. Most of these past studies have relied on metals 
quantified in blood, urine, or hair samples; however, no stud-
ies have attempted to investigate levels of metals in saliva in 
relation to behavioral function in children. Although some 
studies have revealed significant correlations between serum 
and saliva for certain metals, such as manganese and copper 
[2, 3], levels of other metals, such as zinc, cadmium, or lead, 
in saliva were not found to be significantly correlated with 
blood levels [19–21].

Saliva has many advantages as an alternative biofluid to 
blood, as it non-invasive and easy to collect, does not require 
trained personnel or immediate processing, and samples can 
be collected in any setting. Saliva also allows for regular or 
routine sampling over time, which could be important for 
individuals with high risk for behavioral or neurological dis-
orders. Yet, despite emerging studies implicating saliva as a 
reliable indicator of environmental exposure to metals [21], 
only one study has examined salivary metal levels in a pedi-
atric population of ADHD cases, and that study exclusively 
investigated the impact of salivary mercury on ADHD risk 
[22]. The United States Environmental Protection Agency 
has not developed regular standards for appropriate levels of 
metals; hence, the dearth of research on this topic could be 
due to, in part, the fact that no permissible limits or guide-
lines yet exist for salivary metal levels [23].

Since saliva biomarker exposure assessment might prove 
useful as a non-invasive, cost-effective tool for evaluat-
ing ADHD risk in adolescents, the goal of this study was 
to investigate the associations between salivary metals on 

ADHD risk and also consider different subtypes of the 
disorder.

Methods

Participants: This study was reviewed and approved by the 
Office of Human Research Ethics at the University of North 
Carolina (UNC IRB (#07-0646; #16-2751)) and involves 
subjects recruited as part of the Family Life Project (FLP), 
a prospective, population-based longitudinal study that 
began in 2003. This project consists of adolescents and 
their caregivers, followed from birth in predominantly low-
income, non-metropolitan counties in Pennsylvania and in 
North Carolina. A detailed characterization of the sampling 
plan and study has been provided elsewhere [24]. This study 
uses data and specimens collected from home visits when 
adolescents were 12 years of age, with parents or primary 
caregivers providing consent. Family income-to-needs ratio 
was assessed at this visit using a parent/caregiver report of 
total household income and the number of adults and chil-
dren in the household. The sample size of those that received 
home visits was n = 893; however, only n = 508 of those 
adolescents provided a saliva sample with a volume >1 mL, 
given that ~0.8 mL volume was required to run the metal 
panel quantification. Participants in this nested case–control 
study were selected from the 508 adolescents that provided 
adequate saliva samples and adequate information for clas-
sification according to the ADHD diagnostic criteria below, 
resulting in total sample size of this nested case–control 
study is n = 283.

Diagnostic procedures: Trained research assistants 
administered the Diagnostic Interview Schedule for Chil-
dren (DISC-IV), a fully structured diagnostic instrument that 
included criteria according to the Diagnostic and Statistical 
Manual of Mental Disorders (4th ed.; DSM-IV; American 
Psychiatric Association, 2013), to the primary caregiver 
of target adolescents. Scoring adheres to the DSM-IV and 
includes past month (embedded current) and past year diag-
noses, as well as impairment scores, based on six impairment 
domains and three levels of severity. The predominantly 
Inattentive Type of ADHD (ADHD-I) included individuals 
with six or more symptoms of inattention and fewer than six 
symptoms of hyperactivity-impulsivity; the predominantly 
Hyperactive-Impulsive Type (ADHD-H) included individu-
als with six or more symptoms of hyperactivity-impulsivity 
and fewer than six symptoms of inattention; the Combined 
Type (ADHD-C) is defined by six or more symptoms on 
both dimensions. Non-ADHD controls are defined as ado-
lescents that displayed either no ADHD symptoms or only 
one symptom of either ADHD-I or ADHD-H type to avoid 
potential misclassification bias.
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Saliva sample collection: Unstimulated whole saliva sam-
ples were collected from adolescents using the passive drool 
method during the 12-year visit to participants’ homes [25]. 
At the time of collection, samples were frozen at −20 °C and 
then transferred to the Institute for Interdisciplinary Salivary 
Bioscience Research at the University of California, Irvine, 
for archiving at −80 °C until used. At the time of use, saliva 
samples were thawed and centrifuged (5000g; 10 min; 4 °C) 
to remove insoluble material and cellular debris. Superna-
tants were collected and used for other assays separate from 
the current study. For the current study, samples with at least 
0.8 mL of saliva remaining were used, to allow for enough 
volume to run the metal analysis.

Salivary metal analysis: Levels of metals in saliva were 
measured using Inductively Coupled Plasma Optical Emis-
sion Spectrometry (ICP-OES) (Avio200; Perkin Elmer, 
Waltham, MA, USA) using the radial viewing window 
[26]. All glassware was treated with 10% (volume/volume; 
v/v) HNO3 before use and then rinsed with deionized water. 
Samples were diluted 1:7 in 2% HNO3. Metal output was 
normalized to the internal standard, 0.1% Yttrium, and com-
pared to standard curves generated for each metal, which 
were prepared from stock solutions of 1000 ppm. The ICP-
OES was operated with argon carrier flow rate of 0.5 L/min, 
plasma gas flow rate of 15 L/min, sample flow and elusion 
rate of 1.51 L/min, and peristaltic pump speed of 100 rpm. 
The following suitable wavelengths were selected for each 
element: chromium (267.716), copper (327.393), manganese 
(257.610), and zinc (206.200). The analytical detection lim-
its for all biomarkers are based on repeated measurements 
of procedural blanks on four separate analysis days. The 
lowest level of detection for each metal was the following: 
chromium (0.14  µg/L), copper (0.45  µg/L), manganese 
(0.07 µg/L), and zinc (0.18 µg/L).

Statistical analysis: SAS® Version 9.4 (Cary, NC) and 
IBM® SPSS® Statistics (version 25 for Windows; BM 
Corp., NY, USA) were used for all data analysis. Salivary 
metal data were first tested for normal distribution using 
QQ-plots and histograms and for potential outliers using 
boxplots. Metal data were not normally distributed, nor 
did log-transformation improve normality. Further testing 
of potential outliers utilized statistical measures of influ-
ence (i.e., Pearson residuals, delta chi-squares, delta devi-
ances, delta-betas, leverage diagnostics, predicted prob-
ability diagnostics, C and CBAR) to determine if individual 
observations should be deleted from final regression models. 
Potentially influential outlier observations were deleted in 
a piecewise manner to evaluate changes in odds ratio (OR) 
estimates. The deletion of potential outliers did not result 
in significant changes to OR estimates, and therefore, no 
individual observations were omitted from the final models. 
Associations between salivary metal levels and participant 
characteristics were determined using Kruskal–Wallis and χ2 

tests. Comparison of participant characteristics by case–con-
trol status for all subtypes were performed using χ2 and 
Mann–Whitney tests. Differences in metal concentrations 
by ADHD diagnosis status were determined by performing 
Mann–Whitney tests.

To estimate the associations between ADHD diagnostic 
status and salivary metal levels, we calculated odds ratios 
(ORs) with 95% confidence intervals (CIs) by performing 
a series of logistic regression analyses, with consideration 
of specific ADHD diagnostic subtypes. However, the low 
sample size (n = 12) of the ADHD-H case group did not 
allow for logistic regression analyses to be performed sepa-
rately for this diagnostic subtype. Therefore, logistic regres-
sion results are presented only for the following three case 
subtypes: (1) total ADHD cases; (2) ADHD-I; (3) ADHD-
C. In each logistic regression analysis, binary diagnostic 
variables (where ‘0’ indicates control, ‘1’ indicates case) 
were regressed against salivary metal level quartiles. This 
series of logistic regression analyses examines the associa-
tions for the three aforementioned ADHD outcomes with 
all four metals of interest, separately. Salivary metal levels 
were examined as categorical variables based on quartile 
levels, whereby the distribution of salivary metal concentra-
tions within the entire analytic sample was used to determine 
quartile boundaries. Specifically, quartiles were created by 
dividing the salivary metal data into four groups, with each 
quartile group representing 25% of the total distribution. We 
utilized the first quartile group as the reference group across 
all logistic regression analyses. This approach allows us to 
compare the odds of each ADHD diagnostic subtype status 
across different levels of salivary metal concentrations, using 
the first quartile group for comparison. For all analyses, α 
was set to a significance level of 0.05.

We evaluated for potential confounding by sex, race, 
state of residence, body mass index, and income-to-needs 
ratio through regression model adjustment and subsequently 
assessing the impact of covariate adjustment on OR esti-
mates. Logistic regression models were adjusted for sex, 
race, state of residence, body mass index, and income-
to-needs-ratio when indicated, as determined by sizable 
changes in OR estimates when variables were included in 
the crude model.

Results

Salivary metals and adolescent/family 
characteristics

Table 1 reports adolescent characteristics for each case 
group and the control group. ADHD cases, across all 
groups, and the control group, differed by sex, with case 
groups consisting of a greater proportion of males. ADHD 
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cases, across all case groups, and the control group did 
not significantly differ by race, state of residence, BMI, 
or income-to-needs ratio (Table 1).

The median levels and ranges for each metal in saliva 
across case and controls groups are shown in Table 2. 
A comparison of the median level of chromium in the 
controls (5.33 µg/L) with the median level of the ADHD-
H case group (7.20 µg/L) highlights a significant dif-
ference between the two groups for this metal. For the 
ADHD-C group, significantly higher median levels com-
pared to controls were observed for both copper (8.46 vs. 
4/80 µg/L) and zinc (34.7 vs. 22.67 µg/L). No other dif-
ferences in median salivary metals were observed across 
the diagnostic groups (Table 2).

Salivary metals and ADHD risk

We next investigated the relationship between salivary met-
als and ADHD diagnosis in a nested case–control design. 
Salivary metals were compared according to quartiles (Sup-
plementary Table 1), including all cases and controls, with 
the first quartile serving as the reference. Table 3 presents 
the results of the logistic regression analyses that examined 
total ADHD cases as the main outcome. Salivary copper 
showed the strongest association with ADHD diagno-
sis odds, as adolescents with salivary copper levels in the 
second, third, and fourth quartiles showed 1.84 (95% CI: 
0.61–5.56), 2.99 (95% CI: 0.98–9.13) and 3.31 (95% CI: 
1.08–10.12) times greater odds, respectively, of any type 
ADHD compared to adolescents with copper levels in 
the first (reference) quartile. Assessing only the ADHD-I 

Table 1  Characteristics of FLP 
subjects by case–control status

ADHD-I ADHD inattentive subtype, ADHD-H ADHD hyperactive/impulsive subtype, ADHD-C ADHD 
combined subtype

Variable Mean ± SD or N %

Controls
(N = 173)

ADHD—total
(N = 110)

ADHD-I
(N = 65)

ADHD-H
(N = 12)

ADHD-C
(N = 33)

Age (years) 13.20 ± 0.60 13.13 ± 0.50 13.17 ± 0.56 13.06 ± 0.44 13.08 ± 0.39
Sex
Male 84 (48.5%) 78 (70.9%) 45 (69.2%) 4 (33.3%) 25 (75.8%)
Female 89 (51.5%) 32 (29.1%) 20 (30.8%) 8 (66.7%) 8 (24.2%)
Race
Non-black 102 (59.0%) 58 (52.7%) 36 (55.4%) 6 (50.0%) 16 (48.5%)
Black 71 (41.0%) 52 (47.3%) 29 (44.6%) 6 (50.0%) 17 (51.5%)
Body Mass Index 23.28 ± 6.21 24.06 ± 6.34 25.07 ± 6.98 23.46 ± 4.98 22.28 ± 5.05
Income-to-needs ratio 2.22 ± 1.94 1.72 ± 1.53 1.93 ± 1.77 1.69 ± 1.26 1.29 ± 0.92
Area of residence
North Carolina 96 (55.5%) 63 (57.3%) 39 (60.0%) 7 (58.3%) 17 (51.5%)
Pennsylvania 77 (44.5%) 47 (42.7%) 26 (40.0%) 5 (41.7%) 16 (48.5%)

Table 2  Case–control comparison of median salivary metal levels

An asterisk (*) indicates a p value <0.05 for Mann–Whitney U test comparing median levels between cases and controls
A result in bold font indicates a p value <0.01 for Mann–Whitney U test comparing median levels between cases and control
The differences in N for certain metals are due to samples that fell below the detection limits of the instrument for that metal

Metal Medium (range)

Controls (µg/L) ADHD—total (µg/L) ADHD-I (µg/L) ADHD-H (µg/L) ADHD-C (µg/L)

Chromium 5.33 (1.67–11.66)
N = 173

5.19 (1.25–13.45)
N = 110

4.88 (1.25–9.68)
N = 65

7.20* (4.05–9.11)
N = 12

5.27 (2.20–13.45)
N = 33

Copper 4.80 (2.24–48.07)
N = 78

5.79 (2.35–434.22)
N = 58

5.47 (2.39–434.22)
N = 32

11.36 (4.26–16.29)
N = 4

8.46* (2.35–29.46)
N = 22

Manganese 1.86 (0.40–15.42)
N = 78

2.19 (0.47–19.09)
N = 58

1.66 (0.47–18.06)
N = 32

3.01 (0.53–7.18)
N = 4

2.62 (0.50–19.09)
N = 22

Zinc 22.67 (6.23–457.92)
N = 173

26.05 (1.12–236.03)
N = 110

20.56 (1.12–178.50)
N = 65

33.22 (9.60–66.09)
N = 12

34.70* (10.23–236.03)
N = 33
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subtype (Table 4), no salivary metal was associated with 
increased or decreased odds of an ADHD-I diagnosis.

Finally, we assessed the association between salivary met-
als and adolescents with combined type ADHD (Table 5). 
The odds of combined type ADHD among adolescents in 
the fourth quartile of salivary copper exposure were 8.44 
times that of the reference group (95% CI: 1.58–45.12). We 
also observed that the odds of combined type ADHD among 
adolescents in the fourth quartile of salivary manganese 
exposure were 5.43 times that of the reference group (95% 
CI: 1.08–27.27). Lastly, we found that the odds of com-
bined type ADHD among adolescents in the fourth quartile 
of salivary zinc exposure were 4.06 times the odds of those 
in the first quartile reference group (95% CI: 1.21–13.69) 
(Table 5). Figure 1 summarizes the ORs of each salivary 
metal, comparing the fourth quartiles to the first quartile 
reference group.

Discussion

The aim of this study was to examine the associations 
between essential trace metals quantified in saliva and 
ADHD outcomes in a subsample of adolescents from the 

FLP cohort at 12 years of age. This is the first study to our 
knowledge that utilizes salivary samples to measure levels 
of trace elements in adolescents with ADHD. Our results 
demonstrate significant associations between salivary cop-
per, manganese and zinc levels with diagnoses of ADHD.

We found a significant near fourfold increased odds of 
a diagnosis of any type of ADHD for those adolescents 
with copper levels in the highest quartile compared to those 
with copper levels the lowest quartile, after adjustment for 
sex. These odds more than doubled (OR = 8.44, 95% CI: 
1.58–45.12) when only the ADHD-C group was consid-
ered, after adjustment for income-to-needs ratio. Although 
the ADHD-C subtype was small (n = 33), this robust effect 
likely contributes to the increased odds when all subtypes 
are considered. These findings are consistent with previous 
studies using urine and hair samples that reported higher 
copper levels in ADHD cases compared to healthy controls 
[14, 27]. One particular study [27] showed that the odds 
ratios of ADHD increased approximately 12-fold for chil-
dren with urinary copper in the fourth quartile compared 
to the lowest quartile of urinary copper. However, another 
study reported that deficiencies in copper levels as measured 
in hair samples were observed in ADHD cases compared to 

Table 3  Odd ratios (OR) and 95% confidence intervals (CI) for total 
ADHD cases in association with salivary metals

An asterisk (*) indicates a univariate final model
Two asterisks (**) indicates the model is adjusted for sex

N (cases) N (controls) Any Type 
ADHD—OR (95% 
CI)

p value

Chromium (Cr)*

1st quartile 31 38 Reference N/A
2nd quartile 25 46 0.67 (0.34, 1.32) 0.24
3rd quartile 22 49 0.55 (0.28, 1.10) 0.09
4th quartile 31 40 0.95 (0.49, 1.85) 0.88
Copper (Cu)**

1st quartile 8 25 Reference N/A
2nd quartile 15 19 1.84 (0.61, 5.56) 0.28
3rd quartile 16 18 2.99 (0.98, 9.13) 0.05
4th quartile 18 15 3.31 (1.08, 10.12) 0.04
Manganese (Mn)*

1st quartile 17 16 Reference N/A
2nd quartile 11 23 0.45 (0.17, 1.21) 0.11
3rd quartile 11 23 0.45 (0.17, 1.21) 0.11
4th quartile 19 15 1.19 (0.46, 3.12) 0.72
Zinc (Zn)*

1st quartile 25 45 Reference N/A
2nd quartile 25 45 1.00 (0.50, 2.00) 1
3rd quartile 26 45 1.04 (0.52, 2.07) 0.91
4th quartile 34 37 1.65 (0.84, 3.25) 0.14

Table 4  Odd ratios (OR) and 95% confidence intervals (CI) for 
ADHD, inattentive subtype, in association with salivary metals

An asterisk (*) indicates a univariate final model
Two asterisks (**) indicates the model is adjusted for sex
Three asterisks (***) indicates the model is adjusted for BMI

N (cases) N (controls) Inattentive Type 
ADHD—OR & 
95% CI

p value

Chromium (Cr)*

1st quartile 22 38 Reference N/A
2nd quartile 15 46 0.56 (0.26, 1.23) 0.15
3rd quartile 13 49 0.46 (0.21, 1.03) 0.06
4th quartile 14 40 0.60 (0.27, 1.35) 0.22
Copper (Cu)**

1st quartile 6 25 Reference N/A
2nd quartile 9 19 1.48 (0.42, 5.17) 0.54
3rd quartile 10 18 2.69 (0.76, 9.50) 0.13
4th quartile 6 15 1.53 (0.39, 6.00) 0.55
Manganese (Mn)**

1st quartile 13 16 Reference N/A
2nd quartile 5 23 0.31 (0.09, 1.11) 0.07
3rd quartile 6 23 0.39 (0.12, 1.32) 0.13
4th quartile 8 15 0.76 (0.23, 2.51) 0.65
Zinc (Zn)***

1st quartile 19 45 Reference N/A
2nd quartile 18 45 1.17 (0.53, 2.59) 0.71
3rd quartile 15 45 0.89 (0.40, 2.01) 0.79
4th quartile 13 37 0.91 (0.39, 2.11) 0.82
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controls [28]. Yet, another study using whole blood sam-
ples did not detect significant differences between copper 
levels among ADHD cases and healthy controls [18]. One 
consideration is that the two above studies examined popula-
tions that were either entirely Egyptian or Han Chinese and 
included cases and controls aged 6–16 years of age, while 
participants in our study were approximately 50% Black and 
all approximately 12 years of age. Hence, factors related to 
genetics and age might account for some of the differences 
observed in previous studies.

While the role of copper in ADHD pathogenesis is 
still not explicitly understood, this metal is crucial for the 
catalysis of numerous enzymes (e.g. tyrosinase, dopamine 
hydroxylase, copper/zinc superoxide dismutase) linked to 
the developmental disorder [14]. Further, copper has been 
shown to cause damage in dopaminergic neurons throughout 
the substantia nigra by accelerating the production of free 
radicals and impairing antioxidant defenses [29]. Therefore, 
high levels of copper could lead to dopamine oxidation and 
copper-mediated neurotoxicity, offering one possible expla-
nation for why increasing copper levels might be associated 
with increased risk for ADHD [14].

We also detected significant associations with zinc, 
mainly in relation to the ADHD-C subtype. Not only were 
median levels of salivary zinc higher in adolescents with 
ADHD-C, but further, we observed a statistically signifi-
cant fourfold increase in the odds for ADHD-C diagnosis in 
adolescents with zinc levels in the highest quartile compared 
to the first quartile reference group, after adjustment for sex 
and BMI. These findings of increased odds for ADHD-C 
are consistent with one report showing higher levels of zinc 
in blood from children with ADHD compared to children 
without ADHD [30]. However, although ADHD subtypes 
were not explored, several other studies utilizing hair, urine, 
or blood samples found lower levels of zinc in children with 
ADHD compared to healthy controls [14–18]. Conflicting 
results might also be due to differences in control group 
definitions across studies, as previous research studies in 
this field have utilized healthy control groups, consisting 
of children confirmed as free of other severe medical disor-
ders and not currently using any supplements or influential 
drugs [14–18]. Other studies have suggested that the copper/
zinc ratio might be relevant to ADHD. For example, studies 
have shown that the serum copper/zinc ratio was correlated 
with teacher-rated scores for inattention, while another study 
reported higher serum copper/zinc ratios in ADHD children 
compared to the control group [15, 16].

Though median levels of manganese were not signifi-
cantly different between cases and controls, we observed 
significantly increased odds of an ADHD-C diagnosis in 
adolescents with manganese levels in the highest quartile 
compared to the first quartile, after adjustment for race 
and income-to-needs ratio. This finding is consistent with 

Table 5  Odd ratios (OR) and 95% confidence intervals (CI) for 
ADHD combined type in association with salivary metals

An asterisk (*) indicates the model is adjusted for income-to-needs 
ratio and race
Two asterisks (**) indicates the model is adjusted for income-to-needs 
ratio
Three asterisks (***) indicates the model is adjusted for sex and BMI

N (cases) N (controls) Combined Type 
ADHD—OR & 
95% CI

p value

Chromium (Cr)*

1st quartile 8 38 Reference N/A
2nd quartile 7 46 0.62 (0.20, 1.96) 0.42
3rd quartile 8 49 0.68 (0.22, 2.10) 0.5
4th quartile 10 40 1.03 (0.34, 3.17) 0.95
Copper (Cu)**

1st quartile 2 25 Reference N/A
2nd quartile 5 19 4.32 (0.73, 25.74) 0.11
3rd quartile 5 18 2.91 (0.49, 17.19) 0.24
4th quartile 10 15 8.44 (1.58, 45.12) 0.01
Manganese (Mn)*

1st quartile 3 16 Reference N/A
2nd quartile 5 23 1.39 (0.28, 6.96) 0.69
3rd quartile 5 23 1.67 (0.33, 8.52) 0.54
4th quartile 9 15 5.43 (1.08, 27.27) 0.04
Zinc (Zn)***

1st quartile 4 45 Reference N/A
2nd quartile 4 45 0.77 (0.17, 3.45) 0.74
3rd quartile 10 45 2.17 (0.61, 7.64) 0.23
4th quartile 15 37 4.06 (1.21, 13.69) 0.02

Fig. 1  Summary of the odds ratios and 95% confidence intervals for 
ADHD in association with salivary metal levels
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other studies using blood and hair. For example, one study 
observed significantly higher levels of blood manganese 
in children with ADHD compared to controls [30], while 
another study found that children with hair manganese levels 
>3 μg/g had significantly higher scores on the ADHD Index 
subscale of the Revised Conner’s Teachers Rating Scale, 
compared to children with low levels of hair manganese 
[31]. Further, a recent meta-analysis of four case–control 
studies also observed significantly greater peripheral man-
ganese levels in ADHD cases compared to controls [32].

Another study investigated manganese exposure based on 
levels found in drinking water. This study found that manga-
nese in drinking water was associated with an increased haz-
ards of the ADHD-I subtype, though not with the ADHD-C 
subtype [33]. These studies were carried out in an entirely 
Danish population, whereby our study consisted of ~50% 
Black children; hence, the difference in biofluid used to 
measure manganese exposure and the difference in racial 
composition of the cohort could explain why our study 
detected increased odds of ADHD-C, rather than ADHD-
I. Other research studies have highlighted that blood and 
urinary manganese levels differed across race and were sub-
stantially higher among minority participants compared to 
non-Hispanic whites, as well as higher among residential 
areas with higher financial strain [34, 35]. These studies sup-
port adjustment for race and income-to-needs ratio when 
assessing the association between salivary manganese and 
ADHD diagnoses. Despite consistent findings, more stud-
ies are needed measuring manganese via saliva to assess 
for ADHD outcomes. While two previous studies have col-
lected salivary manganese measures, neither study focused 
on ADHD outcomes [36, 37].

The role of manganese in ADHD development is still 
being understood, but research highlights that, although this 
metal is beneficial for its antioxidative properties at low con-
centrations, manganese is neurotoxic at high concentrations 
[38]. At high levels, manganese has been shown to accumu-
late in dopaminergic neurons in basal ganglia nuclei, which 
could affect dopamine neurotransmission [38]. Therefore, 
high levels of manganese exposure could lead to altered 
dopaminergic activity, which could explain why increas-
ing levels of salivary manganese could be associated with 
increased odds of ADHD diagnosis [38].

Levels of trace metals in the body can be affected by 
both genetic and environmental factors. Environmental fac-
tors include geographical location, metal contamination in 
the soil, water or air, and socio-economic factors related 
to diet, dietary supplements, oral health, obesity, or smok-
ing [39, 40]. Our previous studies have found correlations 
between salivary levels of copper, manganese and zinc and 
the nicotine metabolite, cotinine, in a younger subgroup 
(7 years) of children from the FLP cohort [41] suggesting 
that environmental tobacco smoke might represent a source 

of metal exposure. Additionally, a recent study characterized 
different sources of environmental exposures to metals and 
evaluated the ability of different biofluids to reflect these 
exposures [22]. Results showed that levels of chromium, 
copper, manganese and lead in soil, dust and air could be 
differentially revealed in blood, hair, nails, and saliva [22]. 
Further, the state of oral health in children might affect metal 
levels in saliva. Previous studies have investigated relation-
ships between salivary metals and dental caries in children, 
albeit with mixed results [15, 16, 42]. One study reported a 
positive correlation between tooth decay in children and sali-
vary copper and zinc [15], although another study observed 
a negative relationship between dental caries and salivary 
copper [16]. Other studies showed no associations with den-
tal caries and salivary zinc, iron, or manganese [16, 42]. 
Dietary supplements may also be a source of trace metals 
in children. Importantly, mixed messaging over dietary sup-
plements could lead to overuse of supplements resulting in 
high levels in the body [43]. One drawback of the current 
study is the lack of state-specific environmental exposure 
data (i.e., soil metal levels, presence of metal industries near 
residence, air quality data, etc.) and lifestyle factor data, spe-
cifically nutritional, dental, and dietary information, which 
could allow for significant confounding factors to account 
for the significant associations detected.

Although our study cohort consisted of a large Black 
adolescent population, the lack of a multiethnic study pop-
ulation limits the generalizability of the presented results. 
Given the above discussion of the influence of race-ethnicity 
on various neurophysiological studies of a similar nature, 
our study’s findings may be specific to the racial composi-
tion of our cohort. Therefore, caution should be exercised 
when extrapolating our results to populations with differ-
ent racial compositions, specifically when considering the 
applicability of metal exposure in estimating ADHD risk 
among adolescents. Future research efforts should build on 
the results of this study, which highlight saliva as a useful 
biofluid for environmental exposure assessments in minority 
adolescent populations in the United States, by including 
more diverse racial and ethnic populations when investigat-
ing ADHD risk factors in adolescents.

In summary, this is the first study to examine associations 
between levels of metals measured in saliva samples and 
ADHD outcomes. This study is also strengthened by the 
consideration of ADHD by diagnostic subtypes, in particular 
the ADHD-C subtype which includes adolescents exhibit-
ing both hyperactive and inattentive symptoms. Nonethe-
less, more prospective studies are needed with larger sample 
sizes to determine the direction and temporality of metal 
exposure and ADHD development, as well as to examine 
how exposure to these metals might impact ADHD risk in 
other racial populations. Such large-scale prospective stud-
ies should also include a variety of dietary, nutritional, and 



3098 European Child & Adolescent Psychiatry (2024) 33:3091–3099

environmental exposure variables to better control for the 
various confounding factors that might drive vulnerability 
of ADHD burden after contact with these trace elements at 
levels abnormal for the human body.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00787- 024- 02381-2.
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