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Boolean implication analysis unveils 
candidate universal relationships in microbiome 
data
Daniella Vo1†, Shayal Charisma Singh2†, Sara Safa3† and Debashis Sahoo3,4,5* 

Background
In recent years, microbiome research has progressed rapidly, and there is an abundance 
of publicly available data. It is important to learn more about these microbes that are 
found in organisms and the environment, and the relationships between these microbes. 

Abstract 

Background:  Microbiomes consist of bacteria, viruses, and other microorganisms, and 
are responsible for many different functions in both organisms and the environment. 
Past analyses of microbiomes focused on using correlation to determine linear relation‑
ships between microbes and diseases. Weak correlations due to nonlinearity between 
microbe pairs may cause researchers to overlook critical components of the data. With 
the abundance of available microbiome, we need a method that comprehensively 
studies microbiomes and how they are related to each other.

Results:  We collected publicly available datasets from human, environment, and ani‑
mal samples to determine both symmetric and asymmetric Boolean implication rela‑
tionships between a pair of microbes. We then found relationships that are potentially 
invariants, meaning they will hold in any microbe community. In other words, if we 
determine there is a relationship between two microbes, we expect the relationship 
to hold in almost all contexts. We discovered that around 330,000 pairs of microbes 
universally exhibit the same relationship in almost all the datasets we studied, thus 
making them good candidates for invariants. Our results also confirm known biological 
properties and seem promising in terms of disease diagnosis.

Conclusions:  Since the relationships are likely universal, we expect them to hold in 
clinical settings, as well as general populations. If these strong invariants are present 
in disease settings, it may provide insight into prognostic, predictive, or therapeutic 
properties of clinically relevant diseases. For example, our results indicate that there is a 
difference in the microbe distributions between patients who have or do not have IBD, 
eczema and psoriasis. These new analyses may improve disease diagnosis and drug 
development in terms of accuracy and efficiency.

Keywords:  Boolean analysis, Microbiome, Invariants, Systems biology, Microbe 
interactions
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There is also a growing interest to find the connection between microbiomes and dis-
eases. Therefore, it is vital to efficiently analyze publicly available microbiome data 
focusing on microorganisms and their interactions with their host or environment.

Current research and its limitations

Current methods of analysis fundamentally use Pearson’s correlation coefficient to 
determine relationships within a microbiome, such as in co-occurrence networks [1]. 
However, correlation only identifies relationships whose distribution is linear. This 
method may only work for data in which there is a linear relationship between the two 
variables bypassing data that is not fundamentally linear. Past studies may deduce weak 
correlations due to its nonlinearity thereby resulting in an incomplete analysis that over-
looks critical components of the data. Additionally, there may be other types of relation-
ships that cannot be identified through the standard methods of linear analysis currently 
in use. Correlation is also symmetric because corr(x, y) is same as corr(y, x). Therefore, 
asymmetric relationships are not captured well using correlation analysis.

Some forms of research used Boolean analysis to find links between oral microbiomes 
and HIV-associated periodontists [2] and to find a metabolic network of interactions in 
the gut microbiome [3]. However, these methods tend to analyze smaller datasets, which 
may have reproducibility issues. Additionally, these studies focus on specific areas such 
as the mouth and gut microbiomes.

Boolean analysis is a more comprehensive approach

Instead of correlation-based analyses, we propose using Boolean analysis, a logi-
cal method to comprehensively study large amounts of microbiome data in order to 
determine dependencies between two variables. An overview of this methodology is 
described in Fig. 1. This method of Boolean implication analysis was successfully used 
to analyze relationships between genes to discover markers of blood stem cells [4], pro-
genitors and a branch point in B-cell and T-cell differentiation [5], and has been applied 
in the study of colon [6, 7], bladder [8], and prostate cancer [9]. Since this method of 
Boolean analysis was previously used on gene expression data, we want to demonstrate 
the universality of this method by analyzing pairwise microbe relationships.

Microbe normalized counts (in log2 scale) are first classified as either ‘low’ or ‘high’ 
using a threshold that is derived for each microbe species (Fig.  2a). An example of 
a Boolean implication rule is “if there is a high number of microbe A, then there will 
almost always be a low number of microbe B”, or A high → (implies) B low. There are six 
possible Boolean implication relationships: four asymmetric (A low → B low, A low → B 
high, A high → B low, and A high → B high) and two symmetric relationships (A equiv-
alent B, and A opposite B). A low → B low is asymmetric because it is different from 
B low → A low, and the same applies to other asymmetric Boolean implication rela-
tionships. The convention used in this paper is to write Boolean implications with the 
microbe on the x-axis first; however, there exists a contrapositive relationship for each 
asymmetric Boolean implication, which is obtained by stating the microbe on the y-axis 
first and inverting low values to high values, and vice versa. For instance, A high → B low 
is identical to B high → A low.
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Although our method of Boolean implication analysis has not been widely used in 
microbiology, a group of researchers attempted to use the method to perform anal-
ysis on microbiome data [10]. In their research, they analyzed environmental data 
from Visualization and Analysis of Microbial Population Structures (VAMPS) (http://

a

b

c

d

e

Fig. 1  Study design. The overview of the research process: a OTU tables were collected from publicly 
available microbiome datasets. b Tables were uploaded to Hegemon and all possible microbe pairs were 
plotted (using 4 plots as examples—the number of total plots is larger). c Boolean analysis was performed on 
all the plots. d The plots that passed the BooleanNet statistics tests were marked as candidate invariants for 
further analysis and validation. e Any of the determined candidates that can be validated in other datasets, 
represents a likely universal invariant (a rule between two microbes that holds between them, any time the 
pair are present together in any environment). *Note that this is just an example. A universal invariant can be 
any of the 6 possible Boolean relationship

http://vamps.mbl.edu/diversity/diversity.php
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vamps​.mbl.edu/diver​sity/diver​sity.php) and focused specifically on marine microbes. 
Their research differs from ours in the aspect of diversity as we want to determine 
relationships that are present in a broader range of microbiomes, including humans, 
animals, and the environment. While this research demonstrates the impact Boolean 
implication analysis will have on microbiome analysis, we want to incorporate a larger 
and greater variety of samples. By having a wider array of samples, we want to find 
microbe relationships that not only exist in the environment, but also in humans and 
animals.

Boolean methods have the potential to uncover universal invariants

Since Boolean implication analysis captures relationships that are often overlooked in 
the existing methods of analysis, we aim to uncover candidate invariants between pairs 
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Fig. 2  Boolean implication relationships represent diversity in microbiome data. All four types of Boolean 
relationships were found in our dataset. a Describes the StepMiner algorithm that creates thresholds for each 
microbe. Among all samples, the normalized counts (log2 scale) of a particular microbe are sorted, and a step 
function is fitted where the sharpest change between low microbe count and high microbe count takes 
place. The midpoint of the step position that minimizes the square error is chosen as the threshold (red line) 
for each respective microbe. A noise margin of ± 0.5 is considered around the threshold which is  ignored 
for Boolean analysis. b Depicts a log–log plot of the number of each type of relationship in the main dataset 
and the corresponding number of microbes that exhibit that specific relationship. Each of the four types of 
relationships found in our datasets are shown. Each point in the scatter plot corresponds to a sample, where 
the two axes represent the counts of each microbe. c high → low d low → low e high → high f equivalent. 
The remaining diagrams (g–j) show the correlation distributions according to the four Boolean implication 
relationships found in our datasets, with correlation on the x-axis and number of microbe pairs on the y-axis
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of microbes that are likely applicable to every microbe community. For example, if we 
find a recurring Boolean relationship between two microbe species in our large and 
diverse datasets, we expect this relationship to be a promising candidate invariant. This 
research includes more diverse datasets and a novel mathematical model compared to 
past studies, which helps produce stronger universal candidates.

The goal of this research is to comprehensively identify Boolean relationships that are 
likely universal. Through Boolean implication analysis, we will be able to determine can-
didate universal invariants within diverse microbe communities. Since these universal 
rules are expected to be robust, it can be translated to a clinical domain because funda-
mental rules should appear irrespective of diseases. These candidate universal invariants 
provide a basis in which scientists could use to determine how microbes are associated 
with diseases and make the process of identifying diseases easier because we expect 
these relationships to hold in the general population. Therapeutic use of microbes 
depends on their reproducibility in the general population, which makes our approach 
more suitable for discovering appropriate microbes.

Results
Many universal Boolean relationships were uncovered using the proposed method of 
Boolean implication analysis. These pooled datasets are comprised of a variety of envi-
ronmental, animal, and human samples. A main dataset was used to perform Boolean 
analysis for approximately 365 million microbe pairs and we discovered about 27 mil-
lion relationships (Fig. 2b) with a high statistical significance (false discovery rate (FDR) 
of 2.3 × 10–4). We also used three pooled independent datasets to validate these rela-
tionships (with FDRs of 3.3 × 10–4, 4.4 × 10–4 and 2.1 × 10–4 respectively), and found 
approximately 330,000 relationships that were consistent throughout all four datasets. 
We present some relationships in Figs. 2 and 3 that have a superior BooleanNet statis-
tics (S, p) with higher independence statistic (S), lower error rate (p) and an underlying 

(See figure on next page.)
Fig. 3  Boolean implications reveal strong patterns in diverse biological and environmental conditions. 
Analysis of scatter plots with various experimental conditions using metadata files that provided additional 
information about the samples. Section 1: green represents environmental samples (plants, water, soil, 
etc.) and red indicates animal samples (humans, animals). a Polynucleobacter (145533) low → Candidatus 
Xiphinematobacter (786420) low; this relationship is only present in environmental microbiomes due to the 
lack of red samples in the plot. b Polynucleobacter (3071019) high → Bacteroides uniformis (197072) low; 
this relationship suggests Polynucleobacter is mainly present in the environment, and Bacteroides uniformis 
is mainly present in animals. Section 2: c and d have the same microbes on the axes Staphylococcus aureus 
(446058) and Corynebacterium (1000986), but different regions of the body plotted: skin (dark blue) and 
feces (green). c shows the relationship S. aureus low → Corynebacterium low holds for the skin region. d 
shows the relationship using fecal samples, and there is no clear relationship that can be determined from 
this. Section 3: Pink represents Crohn’s Disease (CD), teal represents Ulcerative Colitis (UC), and light gray 
represents neither disease. e The relationship Actinomyces (12574) high → Lachnospiraceae (4469576) low 
is shown, with higher counts of Lachnospiraceae in CD, and higher counts of Actinomyces in UC. f shows 
the relationship Streptococcus (4467992) high → Lachnospiraceae (4469576) low, with higher counts of 
Lachnospiraceae in CD, while higher counts of Streptococcus in UC. Section 4: Magenta represents eczema, 
blue represents psoriasis, and beige represents neither skin condition. g The relationship Acinetobacter 
johnsonii (4482374) low → Corynebacterium (361600) low is shown. Patients with psoriasis tend to have 
higher counts of Corynebacterium than patients with eczema. h The relationship Ruminococcaceae 
(4346675) high → Anaerococcus (927089) low is shown. Patients with psoriasis tend to have higher counts of 
Anaerococcus, while patients with eczema tend to have higher counts of Ruminococcaceae 
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biological relevance. Figure  2 is mainly used to present the possible types of Boolean 
relationships found in microbiomes while Fig. 3 displays some of the biological proper-
ties associated with certain microbes.

Boolean implication relationships are conserved across environments and species

The high → low Boolean implication shows a high count of Akkermansia muciniphila 
(Operational Taxonomic Unit (OTU) ID 4306262) implying a low count of Strameno-
piles (OTU ID 4350498) (Fig. 2c). The contrapositive relationship also holds (Strameno-
piles high → A. muciniphila low). A. muciniphila is a human gut bacterium linked to 
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preventing obesity, diabetes, and inflammation [11] and Stramenopiles is found in 
aquatic environments, mostly made up of algae [12]. Since these two microbes are rarely 
found in similar environments, it makes sense that when one microbe’s frequency is 
high, the other is low. This logic is consistent with the high → low Boolean relationship 
found.

The graph in Fig. 2d displays a strong low → low relationship, showing that when Poly-
nucleobacter (OTU ID 145533) is low, Candidatus Xiphinematobacter (OTU ID 786420) 
is also low. This relationship is confirmed in other studies which found Polynucleobacter 
makes up a large portion of freshwater bacterioplankton [13] and Candidatus Xiphin-
ematobacter is a known nutrient supplier to nematodes, which are abundant in fresh-
water environments [14]. It is presumable that a low count of Polynucleobacter indicates 
an environment that does not contain freshwater; therefore, it is unlikely that the count 
of Candidatus Xiphinematobacter is high, further confirming this low → low Boolean 
implication.

Boolean relationships confirm some known biological properties

A strong high → high relationship was found is between Corynebacterium (OTU ID 
1062356) and Staphylococcus aureus (OTU ID 4446058) (Fig. 2e). Corynebacterium and 
S. aureus species both reside in the nose trail and skin microbiota of humans. S. aureus 
can be pathogenic and can cause infections. Studies have shown that Corynebacterium 
spp. and S. aureus reside together, indicating that they are positively correlated [15]. In 
addition to being positively correlated, the Corynebacterium high → S. aureus high rela-
tionship reveals that it is also possible to have a low count of Corynebacterium and a 
high count of S. aureus.

An example of a symmetric relationship is shown in Fig. 2f, where Corynebacterium 
(OTU ID 1062356) is equivalent to Corynebacterium (OTU ID 282360). Corynebacte-
rium are a family of Gram-positive bacteria with a large number of known species which 
are of interest in the medical field [16]. However, the specific species of these Corynebac-
terium are not stated in the GreenGenes database. Further analysis could determine the 
specific Corynebacterium species which would allow us to confirm this symmetric rela-
tionship. Although the specific species in the database are unknown, there is a symmet-
ric relationship between the two species such that as the count of one species increases 
so does the other.

Microbes yield different Boolean implications in environmental versus animal samples

In the next two examples in Section 1 of Fig. 3, green represents environmental sam-
ples and red represents both human and animal samples. Figure  3a shows the rela-
tionship Polynucleobacter (OTU ID 145533) low → Candidatus Xiphinematobacter 
(OTU ID 786420) low. The abundance of green samples suggests that this relationship 
is mainly present in environmental microbiomes and is not typically present in animal 
microbiomes. As stated previously, Polynucleobacter makes up a large portion of fresh-
water bacterioplankton [13], while Candidatus Xiphinematobacter tends to be found in 
soil samples [17], meaning they are both environmental microbes and are not typical 
microbes found in humans or animals.
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Figure 3b presents the relationship Polynucleobacter (OTU ID 3071019) high → Bac-
teroides uniformis (OTU ID 197072) low. This Boolean relationship suggests that Poly-
nucleobacter is mainly present in the environmental microbiome while Bacteroides 
uniformis mostly exist in the animal microbiome. Previous studies have shown that 
Bacteroides uniformis is one of the main bacterial species of the human gut microbiome 
[18].

Different body regions affect the presence of microbes relationships

In Section 2 of Fig. 3, both plots show the relationship between Staphylococcus aureus 
(OTU ID 446058) and Corynebacterium (OTU ID 1000986) but in different regions 
of the human body. While Fig. 3c suggests that S. aureus and Corynebacterium have a 
low → low relationship in the skin region, based on Fig. 3d, there is no specific Boolean 
relationship between these two microbes when they are present in human feces. Specific 
regions may have differing relationships due to the proclivity microbes have towards one 
region versus another.

Boolean implications using disease‑specific microbes is promising in potential diagnosis

Inflammatory bowel disease (IBD) is a gastrointestinal disorder that is currently diffi-
cult to treat, but treatments using the gut microbiome have been proposed [19]. The 
relationship Actinomyces (OTU ID 12564) high → Lachnospiraceae (OTU ID 4469576) 
low (Fig. 3e) specifically highlights samples from patients that either have Crohn’s Dis-
ease (CD), Ulcerative Colitis (UC), or neither (No IBD). There tends to be a higher 
proportion of Lachnospiraceae in patients with CD than UC, and a higher proportion 
of Actinomyces in patients of UC versus CD. The relationship Streptococcus (OTU ID 
4467992) high → Lachnospiraceae (OTU ID 4469576) low (Fig. 3f ) also highlights dif-
ferences between samples of IBD patients. A similar trend of a higher proportion of 
Lachnospiraceae in CD patients and a higher proportion of Streptococcus in UC patients 
appears with these microbes.

Certain microbes seem to be related to skin conditions, such as eczema and psoria-
sis. The relationship Acinetobacter johnsonii (OTU ID 4482374) low → Corynebacterium 
(OTU ID 361600) low shows how patients with psoriasis tend to have higher counts of 
both A. johnsonii and Corynebacterium than patients with eczema and patients with 
neither skin condition. In looking at another relationship, Ruminococcaceae (OTU ID 
4346675) high → Anaerococcus (OTU ID 927089) low, it is clear that patients with psori-
asis have higher counts of Anaerococcus, while patients with eczema have higher counts 
of Ruminococcaceae, with both having minimal amounts of the other microbes. Our 
method of Boolean implication analysis attempts to provide a mathematical model of 
identifying candidate universal invariants. This will enable the determined microbiome 
properties to apply in almost all states, and hopefully provide treatments for such dis-
eases to be universally successful.

Discussion
Boolean implication analysis can be used to comprehensively determine micro-
bial relationships, which can then be used to build abstract versions of biological sys-
tems. Understanding and simulating biological systems has always been the goal of 
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researchers, but current analysis has not met that objective with simplified symmetric 
analysis and smaller volume of datasets. Relationships between microbes and diseases 
have always been evident, so our research intends to build the foundation of the biologi-
cal system.

Correlation versus Boolean implication analysis

In a correlation-based analysis, we found that most of the microbe pairs that exhib-
ited an asymmetric Boolean relationship had a weak correlation. As expected, equiva-
lent Boolean relationships (which are symmetric relationships) typically contain highly 
correlated microbes. Figure 2g–j depicts the distribution of correlation values for each 
of the four Boolean relationships found in our dataset. It was rare to find asymmetric 
microbe pairs that yielded a strong correlation which further highlights the shortcom-
ings of analyses based on correlations. This reinforces the observation that studying 
these relationships may result in a more comprehensive and complete analysis.

Our results reveal that Boolean analysis is a promising method for analyzing different 
microbiomes. After analyzing more than 400 diverse datasets consisting of over 100,000 
samples, we uncovered candidate invariants that held in all our datasets, which is con-
sistent with our hypothesis. However, only four of the six Boolean implication relation-
ships were found in the datasets: low → low, high → low, high → high, and equivalent. 
The other two relationships, opposite and low → high, did not appear in the datasets 
because in these two relationships, the low, low quadrant is sparse. A sparse low, low 
quadrant means both microbes cannot exist in low amounts at the same time. Due to the 
diverse nature of microbes, we believe that it should be rare for the low, low quadrant to 
be sparse which justifies the lack of low → high and opposite relationships in our results.

Boolean analysis unveils differences in microbe interactions due to environment, body site, 

and disease

Environmentally distinct microbes exhibit relationships such as A. muciniphila 
high → Stramenopiles low because A. muciniphila is present in the human gut [11] while 
Stramenopiles is present in aquatic environments [12]. Boolean analysis also highlighted 
the dichotomies in different body sites, as some relationships are present in certain 
regions of the body, but not in others. The S. aureus (OTU 4446058) low → Corynebac-
terium (1000986) low relationship observed in skin samples is supported by biological 
research [15] but is not present in fecal samples. Boolean analysis allows us to see where 
a clinically relevant relationship might occur in the body. The relationships A. johnso-
nii low → Corynebacterium low and Ruminococcaceae high → Anaerococcus low reveal 
that samples from eczema and psoriasis were clustered in certain regions of the graph. 
Although there has been research to detect microbial diversity on the skin, experts still 
cannot agree on a universal method of using microbes to diagnose psoriasis in patients 
[20]. Using the clustered regions from eczema and psoriasis-specific relationships, scien-
tists would be able to define healthy and diseased ranges for microbial frequencies which 
is promising for disease diagnosis.

Scientists can develop therapeutics targeting diseases like IBD using relationships 
such as Actinomyces high → Lachnospiraceae low and Streptococcus high → Lachno-
spiraceae low. Numerous studies show that there is a decreased amount of Clostridiales 
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(Lachnospiraceae is in the class Clostridiales) in patients with Irritable Bowel Syndrome 
(IBS) [19, 21–23], but there is limited information about IBD. Although there have been 
studies showing a connection between Actinomyces and infections [24], studies have not 
compared the amount of Actinomyces to IBD. However, our results suggest that Clostrid-
iales and Actinomyces are connected to UC and CD. There is no previous research sug-
gesting there is a connection between Streptococcus and IBD, indicating a need for more 
research to determine if this relationship has any disease-identifying properties. Rela-
tionships like these might have only been discovered using methods that consider asym-
metry like Boolean implication analysis which might explain why no studies can confirm 
such relationships.

Limitations of Boolean implication analysis

One of the limitations of Boolean analysis is that the data focuses on the stronger rela-
tionships making the analysis less noisy and weaker relationships are lost in the process. 
Further analysis might prove whether these weaker relationships have significance, but 
this method focuses on the stronger relationships. A second limitation is that we only 
analyzed datasets downloaded from Qiita that were processed using the GreenGenes 
database [25]. However, the latest version of GreenGenes was published in 2013, which 
may not include the most up to date information involving microbiome taxonomy. Addi-
tionally, since we are not limiting the scope to microbiomes found in a specific region, 
but focusing on microbes found universally in humans, animals, and the environment, 
we could be excluding compelling relationships that are only found in specific regions. 
Future studies using this method of Boolean analysis can be done to focus on these 
specific regions to provide better insight into particular microbiomes, such as the gut 
microbiome.

Conclusions
The lack of comprehensive analysis of microbiome data created a need for more exten-
sive approaches. Boolean implication analysis presents a solution that incorporates both 
symmetric and asymmetric relationships. Our results show that some biological proper-
ties were confirmed by Boolean analysis. For example, it is proven that the Corynebac-
terium and S. aureus species reside together and are positively correlated, which is 
consistent with the high → high relationship found. Our results also show that differ-
ent microbiomes affect the presence of microbe relationships on a broader scope, such 
as environmental versus animal samples, and on a smaller scope, such as various body 
sites. Boolean implication analysis is promising in terms of potential disease diagnosis 
including IBD. We found that higher frequencies of certain microbes seem to be associ-
ated with either CD or UC.

Each implication is believed to be a universal candidate because it holds in all the 
datasets we analyzed. These microbe relationships can be validated in the lab by gen-
erating and sequencing additional samples to confirm these relationships. Future work 
also includes building a Boolean implication network to further analyze how microbe 
implications are connected to each other. A Boolean implication network with the can-
didate microbe invariants may help in developing better models for biological systems. 
Our research also helps determine strong properties of biological systems and future 
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research on this topic provide novel directions in understanding how these systems 
work. Invariants help formulate new theories that may provide more effective diagnostic 
and therapeutic applications.

Methods
Data collection

We extracted pre-processed OTU tables along with the corresponding metadata from 
Qiita [26], a microbiome database and study management platform. Qiita uses third party 
plugins including QIIME (Quantitative Insights Into Microbial Ecology) (http://qiime​.org/) 
or QIIME 2 (https​://qiime​2.org/) to process microbial 16S rRNA sequences of each study, 
which are contributed by users on this platform. Qiita classifies the microbes using the 
GreenGenes database and generates OTU tables. OTU tables display the counts of all the 
microbe species present in every sample. Each study and the corresponding raw count data 
comes from different individuals and institutions, which makes our analysis comprehensive. 
The metadata includes information about the samples, such as location and sample identi-
fication. For easier analysis of the collected data, we separated the downloaded studies from 
QIITA and pooled them into four independent datasets. We performed our main analysis 
on one of the pooled datasets and used the other three datasets for validation. In Additional 
file 1: Table S1, we specify all the studies used and which pooled dataset it belongs to (main, 
validation datasets 1, 2 or 3). Data from the main dataset is presented in the figures unless 
explicitly stated otherwise. The data from the OTU tables and metadata are transformed 
using a log2 scale and were subsequently uploaded onto a web-based tool for analyzing big 
data called Hegemon [7, 8, 27–29].

StepMiner algorithm

To classify a relationship, thresholds are first determined for each microbe using the Step-
Miner algorithm. The StepMiner algorithm [30] is a tool that helps identify stepwise transi-
tions (either step-up or step-down transitions) calculated using sum-of-square errors. After 
the data is normalized, steps are defined as the sharpest change between low microbe count 
and high microbe count. In order to fit a step function, the StepMiner algorithm computes 
the average of the values on both sides of the step for all possible step positions. The mid-
point of the step position that minimizes the square error is chosen as the threshold for 
each respective microbe. The step is placed at the largest jump from low values to high val-
ues and sets the threshold at the point where the step crosses the original data. The microbe 
counts are normalized and transformed into log2 scale before Boolean analysis. Microbe 
counts (in log2 scale) are further classified as either ‘high’, ‘low’, or ‘intermediate’. If t is the 
microbe count threshold, levels above t + 0.5 are ‘high’, levels below t – 0.5 are ‘low’, and 
levels between t – 0.5 and t + 0.5 are ‘intermediate’. Points in the intermediate region are 
ignored because these points might appear on either side of the threshold due to noise.

Boolean implication analysis

There are six possible Boolean implications: symmetric (opposite and equivalent) or asym-
metric (low → low, low → high, high → low, high → high). The asymmetric relationships 
are determined by checking if one of the four quadrants in the scatter plot is significantly 
sparse compared with other quadrants. If A low → B low and A high → B high are both 

http://qiime.org/
https://qiime2.org/
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sparsely populated, then A is equivalent to B. If A high → B low and A low → B high are 
both sparsely populated, then A is opposite to B. The BooleanNet statistic tests [27] deter-
mine whether there is a Boolean relationship between A and B. Consider the relationship A 
low → B high. First, test if the microbe counts in the sparse quadrant are significantly less 
than the expected counts in an independence model. Let a00, a01, a10, and a11 represent the 
quadrants in which the microbe counts of A and B are low and low, low and high, high and 
low, and high and high, respectively.

Second, the observed values in the sparse quadrant are not ideal for Boolean impli-
cation formula. They are assumed to be erroneous points for the purpose of analysis 
only as was described previously in the context of gene expression analyses [27]. How-
ever, these points may or may not be erroneous from a real biological point of view. We 
wanted to discover the general trends of Boolean implication relationships with such a 
strong assumption. A maximum likelihood estimate of this error rate is then computed:

If both tests succeed, the low-low quadrant is considered sparse, so the implication A 
low → B high is true. An implication is considered significant if the S statistic is greater 
than 3 and the error rate is less than 0.1. Microbe relationships that pass both of these 
tests are now considered candidate invariants.

The OTU tables are then uploaded onto Hegemon to visualize the Boolean relation-
ships on scatter plots for comparing two microbes against each other. In each graph, 
one microbe species’ counts (using OTU ID A) is plotted on the x-axis, and another 
microbe species’ counts (OTU ID B) is plotted on the y-axis. Each data point represents 
a sample and the counts are plotted on a log–log scale. Using the graphs constructed 
on Hegemon, we can visually confirm if a Boolean implication relationship, determined 
using the BooleanNet statistics, is present.

total = a00 + a01 + a10 + a11

numberofAlowcounts = nAlow = (a00 + a01)

numberofBlowcounts = nBlow = (a00 + a10)

expected =

(

nAlow

total
×

nBlow

total

)

× total = (a00 + a01)×
(a00 + a10)

total

observed = a00

S statistic =
expected − observed

√

expected

error rate =
1

2
(

a00

a00 + a01
+

a00

a00 + a10
)
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Metadata analysis

We used a Hegemon function that calculates the differential analysis for specific factors 
in the metadata using t-tests in R software framework (R version 3.4.4—2018–03-15). 
We then selected the OTU IDs that had higher mean differential values and higher –
log10(p) values. After the list of potential IDs were generated, we visually confirmed on 
Hegemon whether certain factors such as environment versus animal or body site affects 
the microbe counts.

Computation of false discovery rate

To evaluate the significance of the Boolean implication relationships found, we com-
puted the FDR for each of the pooled datasets by randomly permuting the counts for 
each microbe independently 10 times and determining the Boolean relationships for this 
randomized dataset using the method described above. The FDR is the ratio of the aver-
age number of Boolean relationships in the randomized dataset to the original dataset.

Correlation analysis

Correlation analysis was conducted on a subset of 500 microbes from the main dataset. 
The Pearson correlation coefficients and Boolean relationships for each pair of microbes 
were calculated to compare these two methods of analysis. The package “pearsonr” from 
the python library “scipy.stats” was used to perform the calculations.
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