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The stability and function of a microbial community depends on nutritional interactions
among community members such as the cross-feeding of essential small molecules
synthesized by a subset of the population. In this review, we describe examples of microbe–
microbe and microbe–host cofactor cross-feeding, a type of interaction that influences the
forms of metabolism carried out within a community. Cofactor cross-feeding can contribute
to both the health and nutrition of a host organism, the virulence and persistence of
pathogens, and the composition and function of environmental communities. By examining
the impact of shared cofactors on microbes from pure culture to natural communities, we
stand to gain a better understanding of the interactions that link microbes together, which
may ultimately be a key to developing strategies for manipulating microbial communities
with human health, agricultural, and environmental implications.
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INTRODUCTION
Life in the microbial world exists as a dynamic network of interac-
tions among microbes that fuels a complex web of interconnected
metabolisms (Faust and Raes, 2012). Ignorance of what microbes
gain via these interactions impedes our ability to cultivate the vast
majority of microbes (Leadbetter,2003; Tyson and Banfield,2005).
In addition, by failing to elicit a microbe’s full range of metabolic
responses to the presence of other organisms, the metabolic poten-
tial of microbes grown in isolation may not accurately reflect a
microbe’s ecological role (Moller et al., 1998; Traxler et al., 2013).
Three broad categories of nutritional interactions that govern a
microbe’s ability to carry out specific forms of metabolism within
a microbial community are illustrated in Figure 1.

The ability to compete for nutrients can determine whether
a microbe will be able to persist in a particular niche (Hibbing
et al., 2010; Johnson et al., 2012; Figure 1A). Specialized ability to
gain access to a limiting nutrient (for example, iron acquisition
via siderophore production) may give a microbe a competitive
advantage in colonization. In contrast, metabolic cooperation
between microbes engaged in syntrophic partnerships can allow
access to substrates that neither microbe could metabolize alone
(Figure 1B). For example, the presence of a partner that actively
consumes intermediates such as hydrogen (H2) allows secondary
fermentation of products such as propionate to become energet-
ically favorable (Sieber et al., 2012; Morris et al., 2013). Finally,
nutrient cross-feeding – the production of a molecule such as a
vitamin or amino acid that is used by both the producing organ-
ism and other microbes in the environment – relaxes the metabolic
burden on any one microbe in the community (Freilich et al., 2011;
Figure 1C). Given the complexity of microbial communities, each
form of nutritional interaction may have ripple effects on other
community members.

COFACTOR CROSS-FEEDING
In this review, we focus on cross-feeding of cofactors as a model
for nutritional interactions between microbes. While cofactor

cross-feeding is not necessarily mutualistic, the availability of
exogenously produced cofactors can have a profound impact
on a microbe’s mode of growth and metabolite production.
(Graber and Breznak, 2005; Pedersen et al., 2012). Examin-
ing cofactor cross-feeding can inform our understanding of the
scope and relevance of metabolic interdependences in microbial
communities.

CROSS-FEEDING OF HEME AND QUINONES ALLOWS LACTIC
ACID BACTERIA TO RESPIRE
A striking example of the impact of cofactor cross-feeding on
metabolism comes from studies of the lactic acid bacteria, (LAB).
Though LAB were long considered to be exclusively dependent
on fermentative growth, physiological changes in cultures grown
with heme led to the hypothesis that some LAB are capable of
aerobic respiration (Bryan-Jones and Whittenbury, 1969). Exam-
ination of sequenced environmental and host-associated LAB
predicts that the majority have the genetic capacity for respira-
tory growth if heme, and in some cases, quinones, are supplied.
The ability to respire in the presence of these cofactors are sup-
plied has been experimentally verified in several LAB. Respiratory
metabolism in LAB has been associated with increased growth
rate, long-term survival, and a variety of metabolic changes
that may impact other organisms in the environment (Peder-
sen et al., 2012). For example, in Lactococcus lactis (strains of
which are frequently isolated from plants) and a number of other
LAB, switching from fermentation to respiratory metabolism
leads to a decrease in the amount of lactic acid produced and a
large increase in the production of acetoin, a volatile compound
known to stimulate growth and induce the stringent response
in plants (Duwat et al., 2001; Ryu et al., 2003; Rudrappa et al.,
2010; Siezen et al., 2010; Jaaskelainen et al., 2013). In the oppor-
tunistic pathogen Streptococcus agalactiae, the ability to perform
respiratory metabolism in the presence of heme and quinones
enhances virulence and persistence (Rezaiki et al., 2008). Exam-
ples such as these, in which respiratory metabolism is determined
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FIGURE 1 | Nutritional interactions between microbes. Nutritional
interactions may shape a microbe’s metabolic capacity within a microbial
community. Three general categories of nutritional interactions are
illustrated. (A) Nutrient competition. The ability of a microbe to compete
for limiting nutrients such as iron (red triangles) may determine survival
and persistence within a particular niche. (B) Syntrophic metabolism. The

consumption of an intermediate or end product such as hydrogen (green
squares) by a partner organism allows an otherwise energetically
unfavorable reaction, for example, propionate (blue hexagons) to acetate
(orange circles) to support growth. (C) Nutrient cross-feeding. The
presence of a microbe that produces an essential nutrient such as folate
(yellow squares) enables auxotrophs to survive.

by the availability of exogenous cofactors, challenge our under-
standing of the metabolic capacity of microbes in their natural
environments.

COFACTOR CROSS-FEEDING IN THE TERMITE GUT:
Treponema primitia AS BOTH A DONOR AND RECIPIENT OF
COFACTORS
Investigations of the termite gut-associated bacterium Treponema
primitia illustrate the complex web of interactions that can exist
within a host’s microbiota. T. primitia contributes to the host’s
nutrition by producing acetate, the major carbon and energy
source for the termite, by consuming H2 and CO2, which are
generated as waste products by cellulolytic protists. The process
of homoacetogenesis requires folate, yet T. primitia is incapable of
synthesizing this cofactor (Graber and Breznak, 2004). Given that
insects are not known to synthesize folate, and the folate content
of the termite’s diet is very low, T. primitia’s folate requirements
must be fulfilled by other members of the termite gut microbiota.
L. lactis and Serratia grimesii isolated from the termite gut were
identified as candidates for this role, as both bacteria secrete 5-
formyltetrahydrofolate, the dominant folate compound found in
the gut, at levels capable of supporting T. primitia growth in vitro
(Graber and Breznak, 2005).

T. primitia is likely to function as a donor of cofactors as
well as a recipient. Cofactors produced by T. primitia enhance
the growth of another important member of the termite gut
microbiota, Treponema azotonutricium, which supplements the
host’s nitrogen-poor wood diet through nitrogen fixation (Graber
et al., 2004). In co-culture, T. primitia and T. azotonutricium
achieve higher growth rates and yields than either species grown
in isolation. RNA-seq data suggest that in addition to inter-
species hydrogen transfer between the two organisms, growth
enhancement seen in T. azotonutricium may also be influenced by
the production of the cofactors biotin, pyridoxal phosphate and
co-enzyme A by T. primitia (Rosenthal et al., 2011). These find-
ings undoubtedly represent only a small fraction of the complex

interactions between members of a very diverse microbiota and
provide clues about how microbes that are essential to a host’s
nutritional status support and are supported by other members of
the microbial community.

MODELS OF COFACTOR CROSS-FEEDING: CORRINOID
SHARING IN MUTUALISTIC PAIRS AND MICROBIAL
COMMUNITIES
Of the many documented examples of nutrient cross-feeding,
one group of cofactors, the corrinoids, has been particu-
larly informative for understanding cross-feeding mechanisms.
Corrinoid-dependent reactions function in diverse metabolic pro-
cesses across all three domains of life, yet corrinoids are produced
solely by a subset of prokaryotes. While the majority of bacte-
ria (75%) are predicted to encode corrinoid-dependent enzymes,
at least half of these lack the ability to produce corrinoids de
novo (Rodionov et al., 2003; Zhang et al., 2009). As such, corri-
noid cross-feeding is prevalent and may reflect the advantage of
acquiring these complex cofactors from the environment rather
than by de novo biosynthesis which requires approximately 30
enzymatic steps (Roth et al., 1996; Warren et al., 2002; Zhang
et al., 2009). The availability of corrinoids and corrinoid pre-
cursors can have profound effects on a microbe’s metabolism
and its ability to occupy a specific niche (Matthews, 2009). For
instance, the ability to utilize ethanolamine as a sole carbon
and nitrogen source relies on the corrinoid-dependent enzyme
ethanolamine ammonia lyase, which converts ethanolamine into
ammonia and acetaldehyde (Garsin, 2010). In enterohemor-
rhagic Escherichia coli, ethanolamine utilization – enabled by
corrinoid cross-feeding – provides a competitive advantage for
colonization and persistence in the bovine intestine, a main
reservoir for this pathogen (Bertin et al., 2011; Kendall et al.,
2012). Ethanolamine utilization is also important in other human
pathogens that rely on exogenously produced corrinoids or corri-
noid precursors including Listeria monocytogenes and Enterococcus
faecalis (Joseph et al., 2006; Del Papa and Perego, 2008; Garsin,
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2010). The mechanism by which corrinoids are released from
corrinoid-producing microbes into the environment is unclear.
As yet, no active means of corrinoid export has been identi-
fied.

Sixteen distinct corrinoids with structural differences in the
lower ligand have been identified and the array of corrinoids
that can serve as cofactors differs from organism to organism
(Barker et al., 1960; Renz, 1999; Hibbing et al., 2010; Yi et al.,
2012). Given that microbial communities have been found to
contain multiple corrinoids (Allen and Stabler, 2008; Girard
et al., 2009; Men et al., 2014), how do corrinoid-dependent
microbes acquire the specific corrinoids that function in their
metabolism? As described below, some organisms form mutu-
alisms with corrinoid-producing partners. Others may selectively
import corrinoids from the environment or modify imported
corrinoids or corrinoid precursors intracellularly (Figure 2).

EXAMPLES OF SPECIFIC MUTUALISTIC INTERACTIONS
INVOLVING CORRINOIDS
Phytoplankton are of great ecological importance in their roles
in the global carbon cycle, as primary producers in the marine
food web, and occasionally as producers of toxins in harmful algal
blooms (HABs). Half of eukaryotic algal species are predicted to
require exogenously produced corrinoids for growth (Croft et al.,
2005; Helliwell et al., 2011). Algal corrinoid requirements can be
fulfilled via symbiotic relationships with corrinoid-producing bac-
teria that colonize the algal surface (Croft et al., 2005; Grant et al.,
2014). The availability of corrinoids may play an important role
in the occurrence of HABs, as corrinoid auxotrophy is especially
prevalent among HAB species (Tang et al., 2010).

Symbiotic relationships can also be fueled by cross-feeding
of products of corrinoid-dependent enzymes. Genomic studies
of the cicada endosymbiotic bacteria, Hodgkinia cicadicola and

FIGURE 2 | Microbial strategies for fulfilling corrinoid requirements.

Microbes employ various strategies to obtain specific corrinoids from
environments that contain a variety of corrinoids and corrinoid precursors.
The structure of cobalamin, a corrinoid with the lower ligand 5,6-
dimethylbenzimidazole (boxed) is shown, as are the structures of the three

classes of lower ligand bases of other corrinoids. Specific strategies for
obtaining corrinoids are illustrated with representative bacteria listed in
parentheses. (A) Corrinoid transport in Bacteroides thetaiotaomicron.
(B) Cobinamide salvaging in Escherichia coli. (C) Corrinoid remodeling in
Dehalococcoides mccartyi. (D) α-ribazole salvaging in Listeria innocua.
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Sulcia muelleri, indicate that the ability to produce a corrinoid is
vital for maintaining this tripartite symbiosis (McCutcheon et al.,
2009). H. cicadicola and S. muelleri together produce essential
amino acids that are cross-fed between the co-symbionts and pro-
vided to the host. The burden of methionine production rests
on H. cicadicola, which devotes 7% of its 144 kb genome to cor-
rinoid biosynthesis because the methionine synthase it encodes
requires a corrinoid cofactor. Interestingly, the corrinoid biosyn-
thesis pathway in H. cicadicola is incomplete, and lacks genes
involved in the production of precursors common to the biosyn-
thesis of corrinoids as well as other tetrapyrroles such as heme
(McCutcheon et al., 2009). We speculate that H. cicadicola may
acquire tetrapyrrole precursors from the host, completing a loop
between organisms which allows maintenance of the symbiotic
relationship.

STRATEGIES USED BY BACTERIA THAT SCAVENGE
CORRINOIDS AND THEIR PRECURSORS FROM
ENVIRONMENTAL SOURCES
The ability of bacteria to selectively transport specific corrinoids
has been largely unexplored, yet may play an important role in
ensuring that bacteria acquire the specific corrinoids that func-
tion in their metabolism. The corrinoid transporter – BtuBFCD
in gram negative bacteria, and BtuFCD in gram positive bacte-
ria - allows bacteria to import corrinoids from the environment
(Figure 2A) and is present in an estimated 76% of bacterial
genomes (Zhang et al., 2009). A recent study of the human gut
microbiome found that many bacteria encode multiple copies of
the BtuBFCD corrinoid transporter, and that the three homologs
of the outer membrane transporter BtuB encoded by the model gut
bacterium Bacteroides thetaiotaomicron, though apparently redun-
dant, have distinct preferences for different corrinoids (Degnan
et al., 2014). The presence of multiple corrinoid transport systems
with different affinities for specific corrinoids may allow bacteria
to fine-tune their responses to the array of corrinoids present in
the environment.

In contrast to obtaining specific corrinoids through selec-
tive transport, the ability to remodel corrinoids (that is, to
remove the lower ligand of an imported corrinoid and attach
a preferred lower ligand in its place) can enable microbes to
make use of many different corrinoids present in a commu-
nity (Gray and Escalante-Semerena, 2009). For instance, our
recent work showed that Dehalococcoides mccartyi, which has
an obligate requirement for exogenously produced corrinoids as
cofactors in the reductive dehalogenation of the common ground-
water pollutants tetrachloroethene (PCE) and trichloroethene
(TCE), is restricted to the use of just three benzimidazolyl cor-
rinoids (Maymo-Gatell et al., 1997; He et al., 2007; Yi et al., 2012).
However, if an appropriate benzimidazole lower ligand base is
supplied, D. mccartyi can fulfill its corrinoid requirements by
remodeling other corrinoids (Figure 2C; Yi et al., 2012). Since
benzimidazolyl corrinoids represent only a fraction of the corri-
noids present in a community containing D. mccartyi, the ability
to remodel corrinoids may be essential to its survival in the
environment (Men et al., 2014). Corrinoid remodeling is also
performed by some bacteria capable of producing a corrinoid
de novo (Gray and Escalante-Semerena, 2009), and has been

observed in the human gut, where examination of fecal corri-
noid profiles before and after ingestion of cobalamin suggests
that at least some members of the gut microbiota are engaged
in active modification of exogenous corrinoids (Allen and Stabler,
2008).

In addition to importing complete corrinoids (i.e., those con-
taining a lower ligand), some microbes are capable of importing
corrinoid precursors from the environment and carrying out the
remaining biosynthetic steps to produce a complete corrinoid.
For example, though E. coli is incapable of de novo corrinoid
biosynthesis, it possesses the ability to take up cobinamide (a
corrinoid precursor that lacks a lower ligand) and convert it to
a complete corrinoid through a process known as cobinamide
salvaging (Figure 2B; Di Girolamo and Bradbeer, 1971; Raux
et al., 1996; Escalante-Semerena, 2007). In contrast, Listeria spp.
encode a nearly complete corrinoid biosynthesis pathway, but
apparently lack the genes necessary for lower ligand activation,
a step that must be completed before the lower ligand can be
attached. Listeria innocua was shown instead to rely on the cblT
encoded transporter to take up activated lower ligands such as α-
ribazole from the environment, which it then phosphorylates and
attaches to produce a complete corrinoid (Gray and Escalante-
Semerena, 2010; Figure 2D). CblT homologs have been identified
in a variety of human pathogens including L. monocytogenes and
Clostridium botulinum (Gray and Escalante-Semerena, 2010).

Microbes that produce corrinoids de novo can also be affected
by the presence of corrinoid precursors. Guided biosynthesis, the
process of controlling which corrinoid a microbe produces by
providing an excess of a particular lower ligand base, can be a
useful tool for determining the specific corrinoids required in dif-
ferent metabolic pathways (Stupperich et al., 1987; Keller et al.,
2013). For example, in Sporomusa ovata, which produces phenolyl
corrinoids, the addition of benzimidazoles and their subsequent
incorporation into benzimidazolyl corrinoids inhibits growth to
different degrees on substrates that require a corrinoid-dependent
methyltransferase for utilization (Stupperich and Konle, 1993;
Mok and Taga, 2013). We have detected free lower ligand bases
in a variety of environmental samples, which raises the ques-
tion of whether the production of a free lower ligand base by
one organism is capable of affecting the corrinoid production of
another; that is, whether guided biosynthesis occurs in nature.
Evidence from our recent study of the corrinoid and lower lig-
and profiles in a TCE-dechlorinating community containing D.
mccartyi suggests that this indeed may be the case (Men et al.,
2014).

CORRINOIDS AS LYNCHPINS OF MICROBIAL COMMUNITY
DYNAMICS?
Given that the majority of bacteria depend on corrinoids
for their metabolism, and that only a fraction of available
corrinoids may be suitable for use by a particular organ-
ism, could it be possible to manipulate microbial commu-
nities by targeting corrinoid-dependent metabolism? Recent
work has shown that manipulation of the composition of a
TCE-dechlorinating community can result in a shift in cor-
rinoid composition, and conversely, that the addition of a
corrinoid causes a dramatic shift in marine algal community
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composition (Koch et al., 2011; Men et al., 2014). With grow-
ing interest in developing methods for targeted manipulation
of microbial communities to benefit human health and the
environment, the utility of altering the composition and/or
metabolism occurring in microbial communities via corrinoid
supplementation or guided biosynthesis deserves further inves-
tigation.

CONCLUSION
From obligate requirements for exogenously supplied cofactors in
T. primitia and D. mccartyi to unlocking cryptic modes of growth
in LAB, examples of cofactor cross-feeding provide a glimpse
into the impact of nutritional interactions on individual species
as well as entire communities. Cofactor cross-feeding undoubt-
edly deserves further examination; one need look no further than
the vitamin amendments required for microbes growing in pure
culture to obtain examples of nutrients that must be supplied
by other organisms in their natural environment. Advances in
imaging mass spectrometry and multiple “omics” approaches, in
combination with pure culture studies of individual microbes and
defined consortia, bring us closer to understanding the molecu-
lar details of metabolic interactions at new levels (Nakanishi et al.,
2011; Phelan et al., 2012).
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