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Abstract: Objective: Schistosoma mansoni (S. mansoni) infection is endemic in Ugandan

fishing communities. We investigated its potential impact on Hepatitis B (Hep B) vaccine

responses and its role in mediating the association between the gut microbiome and long-

term effectiveness of the vaccine. Methods: Participants were tested for S. mansoni infections

at baseline and received the Hep B vaccine at baseline, month 1, and month 6. Those with

infections were treated. Stool samples were collected at baseline and analyzed using 16S

rRNA sequencing. The Wilcoxon rank-sum test was used to compare alpha diversity

between groups. A linear regression model was applied to estimate the association between

one-year Hep B vaccine responses and the baseline gut microbiome by infection status,

adjusting for age and sex. Results: A total of 107 participants were included (44 from

the fishing community and 63 from the Kampala community). There was no significant

difference in microbiome composition by location or infection status at baseline or discharge.

In the linear regression analysis, S. mansoni infection (β = 1.24, p = 0.025) and a higher

alpha diversity (β = 0.001, p = 0.07) were associated with higher Hep B vaccine responses,

while older age was associated with a lower Hep B vaccine response (β = −0.06, p = 0.0013).

Conclusions: S. mansoni infection status before vaccination may modify the association

between the gut microbiome and Hep B vaccine response. Potential interventions could

focus on infection control as well as improving microbiome richness before implementing

vaccine programs in fishing communities.

Keywords: HBV vaccine; microbiome; S. mansoni infection

1. Introduction

Vaccine efficacy remains an area of concern in vaccine science. Increasing evidence

has shown that the microbiome modulates immune response [1–3]. The co-development

of the immune system and microbiome occurs during the first two years of life [1,4,5]. A

lack of microbial stimulation will lead to an underdeveloped immune system, as microbial
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stimuli drive key processes in the maturation of adaptive immune cells [6,7]. This interplay

between gut microbiota and the immune system may partially account for the variability in

vaccine response [8–11]. In humans, specific bacterial taxa have been linked to variations

in vaccine efficacy [10–12]. However, few studies have investigated the influence of the

gut microbiome on vaccine response, especially among adults [3]. For example, Actinobac-

teria were positively associated with adaptive immune responses to systemic vaccines

like the bacille Calmette–Guérin (BCG) vaccine, tetanus toxoid (TT) vaccine, Hepatitis

B virus (HBV) vaccine, and oral polio vaccine (OPV) in a study on Bangladeshi infants.

Conversely, the bacterial diversity and abundance of Enterobacteriales, Pseudomonadales, and

Clostridiales were associated with lower vaccine response, measured by vaccine-specific

T-cell proliferation [13].

The co-development of the gut microbiota and immune system makes it a beneficial

mutualistic relationship, allowing the host to maintain a balance between active immunity

and pathogens and vaccines [2,14]. Probiotics with specific strains have been shown to

modulate the gut microbiome and systemic immune response, and they provide a basis for

studies on vaccines in humans [15–17]. Oral treatment with Clostridium bacteria was shown

to promote the expansion of regulatory T-cells (Tregs) in the intestines of early-life mice,

conferring resistance to colitis and augmented immune response in adulthood [18]. A study

using germ-free or antibiotic-treated mice demonstrated impaired antibody responses to

influenza vaccines, which were restored through the oral dosing of a flagellated strain

of E. coli [19]. The use of microbiome modulation to boost vaccine response in humans

has yielded mixed results in previous clinical trials, but it shows potential for further

study [14,20–22].

In low- and middle-income countries, intestinal dysbiosis is associated with environ-

mental influences that can negatively impact vaccine efficacy, such as commonly occurring

undernourishment and gastrointestinal infections [2]. Schistosomiasis is a neglected tropi-

cal disease caused by infection with Schistosoma flatworms. Schistosoma mansoni (S. mansoni)

infection is endemic in Uganda, with a national prevalence of 25.6% [23]. Fishing com-

munities have a particularly high burden and socio-economic vulnerability to S. mansoni

infection, with approximately 51–57% of the population being infected despite door-to-

door treatment campaigns [24–27]. Treatment consists of a single oral dose of Praziquantel

(PZQ). S. mansoni infections impact the immune system and possibly enhance the virulence

of hepatrophic viruses [28]. While about half of schistosoma eggs are carried through the

bloodstream to the liver, the other half attach to the endothelium and migrate through the

intestinal tissues. These eggs release a mixture of enzymes and antigens, which promote

the recruitment of immune cells, the development of inflammatory infiltrates, and the

formation of tissue granulomas at the site of egg deposition within the intestinal wall [29].

Multiple studies have shown that the resulting inflammation results in varied changes in

the alpha and beta diversity of the host microbiome compared to uninfected controls, sug-

gesting that there is likely a complex interplay between schistosomes, the gut microbiota,

and the inflamed host immune system [30].

Hepatitis B (Hep B), a life-threatening disease caused by HBV, is highly endemic in

Uganda, with a national prevalence of approximately 4.3%. The burden is substantially

higher among fishing communities (7%) compared to the global prevalence of 3.9% [31].

Transmission occurs through mucosal or percutaneous exposure to infected blood or other

body fluids [32]. Over 80% of individuals with chronic HBV are unaware of their sta-

tus, preventing them from accessing care and treatment interventions aimed at reducing

transmission [33]. Consequently, vaccination remains the most effective strategy for pro-

tecting populations against HBV. An estimated 52% of Ugandan adults remain infected

with HBV despite the incorporation of the Hep B vaccine into early childhood immu-
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nization programs [32]. Although the Hep B vaccine is effective, 5–10% of individuals

do not develop an immune response [34,35]. It has also been shown that Hep B-infected

individuals experience compositional changes in their gut microbiota relative to healthy

controls [36,37].

The risk of both Hep B and S. mansoni infection is high in Lake Victoria fishing

communities [31]. To better understand the relationship between S. mansoni infection, the

gut microbiome, and Hep B vaccination, we analyzed samples from a cohort of fisherfolk

participants in Uganda who were part of a simulated vaccine efficacy trial (SiVET). In

this trial, the ENGERIX-B Hep B vaccine, a well-established vaccine against Hepatitis B,

was administered to Hep B antigen-negative individuals with varying levels of exposure

to Schistosoma. At the conclusion of the SiVET trial, we conducted a follow-up study to

characterize the microbiomes of PZQ-treated individuals at pre- and post-immunization

time points, focusing on those with high and low serum worm burdens. We hypothesized

that alterations to the baseline composition of the microbiome due to S. mansoni infection

would be associated with long-term Hep B vaccine efficacy. This work aimed to investigate

a possible link between S.mansoni infection and the microbiome-related immune response to

Hep B immunization in order to inform vaccination practices among impacted communities

in low-income countries.

2. Materials and Methods

2.1. Study Design

This was a prospective observational study, where participants were enrolled as part

of a larger community-based simulated vaccine efficacy trial (SiVET) in Uganda. For

this study, healthy adult males and non-pregnant females aged 18–49 were enrolled from

two communities: a highly S. mansoni-burdened fishing community (Kigungu) [25] and

a low-S. mansoni-burden cohort from the Good Health for Women Project clinic located

in Kampala [38]. To prevent potential confounding from previous Hepatitis B exposure,

all study participants were required to provide negative Hep B surface antigen and core

antibody tests. The other inclusion criteria for this study included an ability to participate

and give written informed consent for the Hep B vaccine, a willingness to consent for

12-month follow-up after the first immunization, and that they be HIV-uninfected. The

first dose of the Hepatitis B vaccine, ENGERIX-B (GlaxoSmithKline Biologicals), was

administered within 6 weeks of pre-screening. Booster doses were provided one month

and six months after the initial injection. Doses were injected intramuscularly into the

deltoid muscle at a concentration of 20 ug/mL. Stool samples were collected at baseline and

six months post all doses (one-year follow-up). S. mansoni infection status was determined

by inspection of participant stool samples for the presence of schistosoma eggs. If stool

samples were considered positive, patients were treated with a single dose of 40 mg/kg

body weight (average 2.4 g) of praziquantel (PZQ) on D12, following the first dose of the

Hep B vaccine. Figure 1 illustrates the study design at baseline and discharge. PBMCs

and plasma were collected before vaccination at D0 and after one year of follow-up (D365).

Patient plasma was evaluated for serum schistosome-specific circulating anodic antigen

(CAA), a quantitative biomarker of S. mansoni infection.
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Figure 1. Study design and sample collection schedule. Sample collection is indicated with a 
checkmark.

2.2. Circulating Anodic Antigen (CAA) Assay

Worm burden was quantified using a circulating anodic antigen (CAA) assay, which 
measures Schistosoma-derived antigens in the bloodstream. CAA levels serve as a direct 
indicator of living worm presence, reflecting ongoing infection and associated worm bur-
den. Analysis to determine active S. mansoni infection was carried out on Day 0, prior to 
the first vaccination, using frozen serum samples and techniques described previously 
[25]. A calibration curve for establishing CAA cutoff levels and sample quantification was 
created using CAA concentration standards and negative serum controls. Participant 
samples were then evaluated using either the SCAA500 diagnostic method with a detec-
tion limit of 3 pg/mL or the SCAA20 test format with a 30 pg/mL detection threshold for 
low-volume samples. CAA lateral flow strips were incubated overnight in wells contain-
ing 20 µL of concentrated patient sample and analyzed the following day using an Upcon 
plate reader (Labrox Oy, Turku, Finland). The flow control signals (FC) of the individual 
strips were used to normalize the test line signals (T; relative fluorescent units, peak area), 
and the results were expressed as a ratio value (R = T/FC).

2.3. Hepatitis B Antibody Testing

Serum samples were assayed for three markers of HBV infection during study 
screening to confirm a Hep B-negative status prior to vaccination and to differentiate ac-
tive infection from past exposures. Hep B surface antibody (anti-HBs) testing was per-
formed using the Cobas e 411 analyzer (Roche Diagnostics, Mannheim, Germany), using 
a cutoff value of 10 IU/L. Hep B core antibodies (anti-HBc) were tested for using the 
VIDAS anti-HBc Total II kit (BioMérieux SA, Marcy-l'Étoile, France), and Hepatitis B sur-
face antigen (HbsAg) was tested for using the VIDAS HbsAg Ultra kit (BioMérieux SA, 
Marcy-l’Étoile, France). Both kits were run on a MinVidas analyzer (BioMérieux SA, 
Marcy-l’Étoile, France). During subsequent follow-up visits, only the anti-HBs antibody 
was assayed.

2.4. Microbiome Analysis Using 16S rRNA Sequencing

Microbial DNA was extracted from participant stool samples. The V4 hypervariable 
regions of the 16S rRNA gene were amplified using barcoded universal primers and PCR. 
Amplified DNA was purified, quantified, and pooled using the 300 bp paired-end 
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2.2. Circulating Anodic Antigen (CAA) Assay

Worm burden was quantified using a circulating anodic antigen (CAA) assay, which

measures Schistosoma-derived antigens in the bloodstream. CAA levels serve as a direct

indicator of living worm presence, reflecting ongoing infection and associated worm burden.

Analysis to determine active S. mansoni infection was carried out on Day 0, prior to the

first vaccination, using frozen serum samples and techniques described previously [25]. A

calibration curve for establishing CAA cutoff levels and sample quantification was created

using CAA concentration standards and negative serum controls. Participant samples

were then evaluated using either the SCAA500 diagnostic method with a detection limit of

3 pg/mL or the SCAA20 test format with a 30 pg/mL detection threshold for low-volume

samples. CAA lateral flow strips were incubated overnight in wells containing 20 µL of

concentrated patient sample and analyzed the following day using an Upcon plate reader

(Labrox Oy, Turku, Finland). The flow control signals (FC) of the individual strips were

used to normalize the test line signals (T; relative fluorescent units, peak area), and the

results were expressed as a ratio value (R = T/FC).

2.3. Hepatitis B Antibody Testing

Serum samples were assayed for three markers of HBV infection during study screen-

ing to confirm a Hep B-negative status prior to vaccination and to differentiate active

infection from past exposures. Hep B surface antibody (anti-HBs) testing was performed

using the Cobas e 411 analyzer (Roche Diagnostics, Mannheim, Germany), using a cutoff

value of 10 IU/L. Hep B core antibodies (anti-HBc) were tested for using the VIDAS anti-

HBc Total II kit (BioMérieux SA, Marcy-l’Étoile, France), and Hepatitis B surface antigen

(HbsAg) was tested for using the VIDAS HbsAg Ultra kit (BioMérieux SA, Marcy-l’Étoile,

France). Both kits were run on a MinVidas analyzer (BioMérieux SA, Marcy-l’Étoile, France).

During subsequent follow-up visits, only the anti-HBs antibody was assayed.

2.4. Microbiome Analysis Using 16S rRNA Sequencing

Microbial DNA was extracted from participant stool samples. The V4 hypervari-

able regions of the 16S rRNA gene were amplified using barcoded universal primers

and PCR. Amplified DNA was purified, quantified, and pooled using the 300 bp paired-

end protocol, as described previously [39]. Samples were then sequenced on the Illu-
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mina MiSeq platform. Read quality from sequencing was assessed using a standardized

bioinformatics pipeline from the NIH Human Microbiome Project’s standard operating

procedures [40–42]. Operational taxonomic units (OTUs) were clustered according to the

Greengenes database [43,44]. Taxonomic classification was conducted using UTAX via

USEARCH [45], a high-throughput sequence analysis tool integrated into QIIME [43,44,46],

an open-source microbiome bioinformatics platform. Jensen–Shannon distances between

pairs of community states were computed for each sample and grouped hierarchically using

Ward linkage to cluster vectors of phylotype proportions into community state types [47].

2.5. Statistical Analysis

All statistical analyses were performed using R Statistical Software (v4.4.1), and the

R packages phyloseq (v1.48.0) and microbial (v0.0.21). Four alpha diversity metrics were

used to evaluate the gut microbiome: Chao1 and the abundance-based coverage estimator

(ACE), both of which measure community richness, and the inverse Simpson and Shannon

indices, which measure community diversity. Wilcoxon rank-sum tests were used for the

statistical evaluation of alpha diversity between non-S. mansoni-infected (NI) vs. infected

individuals with CAA levels greater than 3 pg/mL. Beta diversity distance was visualized

using Bray–Curtis Principal Coordinate Analysis (PCoA). The linear regression model’s

outcome variable was Hep B effectiveness vs. Chao1 alpha diversity, adjusted for infection

status at baseline. Infection status was a mediating factor between microbiome diversity

and the long-term effectiveness of the vaccine. Bivariate analyses were used to test the

difference in alpha diversity by infection status and by location. Linear regression analyses

were adjusted for age and sex, and paired t-tests were used to evaluate the significance of

the association.

2.6. Ethical Approval

This study received ethical approval from the Uganda Virus Research Institute Re-

search Ethics Committee, reference number GC/127/15/07/439, and the Uganda National

Council of Science and Technology, reference number HS 1850, approved on 2 July 2016.

Documented written informed consent was obtained from all participants before taking

part in any study procedures.

3. Results

We recruited a total of 113 study participants. Six participants were excluded due to

having an unknown or unclear infection status. The final analysis included 107 participants

recruited at baseline, with 63 (59%) from the Kampala site and 44 (41%) from the fishing

community (see Table 1). There was no significant difference in age by site or infection

status (p = 0.261). Over half of the participants [58%, 62/107] completed the three-dose

Hepatitis B vaccine treatment, with all samples available, including plasma and stool

samples for gut microbiome analysis. The mean age of the two communities was 28.1 years,

with the majority being female (70%). Approximately 42 individuals (39%) had S. mansoni

infection at baseline. There was a significant difference by sex (p < 0.001) and infection

status (p < 0.001) at baseline between the two sites. These two variables were adjusted for

as covariates in the regression model.
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Table 1. Characteristics of the participants from Kampala site and Fishing Community site.

Baseline
Characteristic

Full Sample Kampala Fisherman

n (%) n (%) n (%) p-Value 1

Age Category (years)
15–25 39 (36) 24 (38) 15 (34) 0.261
26–35 51 (48) 27 (43) 24 (55)
36+ 16 (15) 12 (19) 4 (9)
No age given 1 (1) 0 1 (2)

Mean age (SD) 28.1 (5.9) 28.0 (6.3) 28.2 (5.3)
Gender <0.001

Female 75 (70) 63 (100) 12 (27)
Male 31 (29) 0 31 (71)
Not given 1(1) 0 1 (2)

S. mansoni Infection <0.001
Yes 42 (39) 8 (13) 34 (77)
No 65 (61) 55 (87) 10 (23)

Total 107 63(59) 44 (41)

1 Chi-Square p-value.

3.1. Microbiome Composition Analysis

Figure 2 depicts the abundance plots at the phylum level by location and infection

status at both baseline and D365. There was no significant difference in microbiome com-

position at the phylum level. Firmicutes and Bacteroidetes were the primary phyla present

for all study groups, followed by proteobacteria. Welch’s two-sample t-test indicated

no significant difference between infection statuses at baseline in terms of the Shannon

(p = 0.24), Chao 1 (p = 0.30), ACE (p = 0.16), and inverse Simpson (p = 0.12) indices. Similarly,

there was no significant difference at discharge regarding the Shannon (p = 0.07), Chao 1

(p = 0.98), ACE (p = 0.99), and inverse Simpson (p = 0.08) indices.

We also used a paired t-test to determine whether there was a significant change

in the microbiome between baseline and 12-month exit. No significant differences were

observed by infection status using any of the above alpha diversity measures. Figure 3

includes a box plot comparing alpha diversity measures by infection status over time.

None of the comparisons indicated significance, as all p-values were greater than 0.05. The

microbiome at baseline and exit were relatively stable for the participants at both sites

and by infection status. Figure 4 presents the Bray–Curtis measure for beta diversity by

infection status at baseline and at discharge. We did not observe significant differences or

patterns of beta diversity by infection status. At both baseline and discharge, there was no

clear separation or diversity pattern by infection status for all measures, indicating that the

microbial communities are not significantly different.
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We also used a paired t-test to determine whether there was a significant change in 
the microbiome between baseline and 12-month exit. No significant differences were ob-
served by infection status using any of the above alpha diversity measures. Figure 3 in-
cludes a box plot comparing alpha diversity measures by infection status over time. None 
of the comparisons indicated significance, as all p-values were greater than 0.05. The mi-
crobiome at baseline and exit were relatively stable for the participants at both sites and 
by infection status. Figure 4 presents the Bray–Curtis measure for beta diversity by infec-
tion status at baseline and at discharge. We did not observe significant differences or pat-
terns of beta diversity by infection status. At both baseline and discharge, there was no 
clear separation or diversity pattern by infection status for all measures, indicating that 
the microbial communities are not significantly different.

 

Figure 3. Box plot of alpha diversity (Shannon, Chao1, ACE, and inverse Simpson) at baseline and 
at discharge (month 12).
Figure 3. Box plot of alpha diversity (Shannon, Chao1, ACE, and inverse Simpson) at baseline and at

discharge (month 12).
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3.2. Regression Model

We modeled the log-transformed Hep B vaccine antibody level at discharge, which

was six months after the three-dose vaccination series, including baseline alpha diversity,

infection status, and their interaction, while adjusting for age and sex. Age was negatively

associated with the six-month antibody level after vaccination (p = 0.001), as shown in

Table 2. Females exhibited higher antibody levels compared to males, though this asso-

ciation was not significant. However, infection status was significantly associated with

antibody levels (p = 0.02). For participants infected with S. mansoni, baseline alpha diversity

measures were associated with lower six-month antibody levels after vaccination, even

though treatment was provided before vaccination. In contrast, for participants who were

not infected, baseline alpha diversity measures were associated with higher six-month

antibody levels after vaccination. The interaction between infection status and alpha diver-

sity was not significant (Figure 5). Overall, baseline alpha diversity, infection status, their

interaction, age, and sex accounted for 25% of the variation in antibody levels six months
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after the three-dose Hep B vaccination series. Included in the supplementary materials are

plots of the regression analysis using other alpha diversity measures. Though the trend

remains somewhat similar, infection status is not significant using the Shannon (Figure S1),

ACE (Figure S2), or inverse Simpson (Figure S3) indices.

Table 2. Regression analysis of Hep B vaccine antibody levels.

Effect Estimate SE
95% CI

p
LL UL

Intercept 3.773 0.629 2.514 5.031 0
Chao1 0.001 8 × 10−4

−0.000 0.003 0.076
Infected (yes) 1.241 0.538 0.164 2.317 0.025
Age (years) −0.057 0.017 −0.091 −0.023 0.001
Sex (female) 0.389 0.313 −0.237 1.015 0.218

Chao1 × Infection status −0.002 0.001 −0.004 0.0004 0.113

Multiple R2 0.25

Adjusted R2 0.19

Note. SE = standard error; CI = confidence interval; LL = lower limit; UL = upper limit.
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4. Discussion

In this study, we evaluated the role of the microbiome and S. mansoni infection status

in the response and effectiveness of the Hep B vaccine. We worked with two infections si-

multaneously: S. mansoni infection (treated) and the immune response to the Hep B vaccine,

measured by antibody levels. No significant differences in the microbiome composition

were observed at any given time point or location. Our model suggests that S. mansoni

infection status and age are important for the long-term effectiveness of the intravenous

Hep B vaccine. Though our study did find an interaction between Chao1 alpha diversity

and Hep B antibody level that differed by infection status, the results were not statistically

significant (p = 0.08). The chao1 index accounts for rare or underrepresented species that

might otherwise be missed in samples with a lower sequencing depth. Given this and the

borderline significance of our results, the baseline microbiome may have still played a role

in the long-term effectiveness of the Hep B vaccine, differing by S. mansoni infection status
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even when treatment was provided before vaccination. Detecting this relationship more

definitively may require deeper and more robust sequencing.

Our results are in line with growing evidence linking the intestinal microbiome to

immune function and vaccine efficacy, but the mechanism of this linkage remains unclear.

Existing research highlights a complex, bidirectional relationship; for example, a longi-

tudinal cohort study of COVID-19 vaccines found that F. prausnitzii was associated with

strong and sustained antibody responses following mRNA vaccination, while E. coli was

linked to slower antibody decay after adenoviral vaccination [48]. Similarly, a randomized

clinical trial on the MucoRice-CTB cholera vaccine found that those who responded to

vaccination exhibited increased gut alpha diversity compared to non-responders and that

neutralizing antibodies against diarrheal toxins were generated in a microbiota-dependent

manner [49]. In contrast, a separate study of cholera vaccination in Bangladesh found no

direct correlation between gut diversity and most immune responses, though individuals

with higher levels of Clostridiales and lower levels of Enterobacterales were more likely to

develop a memory B cell response [50]. These and other findings suggest that while the

gut microbiota can influence vaccine-induced immune responses and vaccination itself

can alter the microbiome, identifying the specific microbiome features that correlate with

vaccine effectiveness remains a key challenge [7]. The fundamentally dynamic nature of

the human microbiome and geographic differences in baseline composition and diversity

complicate these studies, and more work is needed to make causal connections [51,52].

Regardless of the role of the microbiome, our results clearly identified that S. mansoni

infection status impacts long-term Hep B vaccine efficacy. Chronic helminth infections

have previously been associated with a hyporesponsive immune system and have been

hypothesized to contribute to reduced vaccine efficacy in sub-tropical regions [53]. A

potential mechanism of S. mansoni immune modulation is the elevation of T-regulatory

cells and the suppression of T-helper cells and adaptive immune response, which can

improve after treatment with praziquantel [54,55]. A recent study investigating measles

immunization and schistosomiasis among Ugandan pre-school children, which found that

S. mansoni infection was associated with an impaired immune response that improved with

praziquantel treatment [56], is consistent with our results.

In this study, S. mansoni infection was treated with praziquantel (PZQ). Patients from

villages or those with previous infections may occasionally need higher doses due to PZQ

resistance, which can develop among S. mansoni populations. Although PZQ resistance

is relatively low among Ugandan fishing communities, intensive PZQ use in these areas

due to the recurrence of the infection necessitates an alternative drug to treat S. mansoni, as

already noted in the literature [57–59]. This study provides evidence that treating S. mansoni

infection before immunization may be beneficial, as infection status may have a lasting

impact on the effectiveness of vaccination. We did not evaluate the biological mechanisms

underlying how certain infection statuses might interact with the immune system through

microorganisms that influence antibody-level development after vaccination. Further

investigation is needed to explore the effects of infections, such as S. mansoni, on immune

response and systemic health.

5. Limitations

This study has several limitations. These included significant loss during follow-up,

the limited availability of true negative controls (i.e., unexposed individuals living in

parasite-endemic fishing villages), and a lack of data on potential lifestyle confounders

(i.e., diet, smoking, alcohol use). Participants were only screened for HIV, so there is still

a risk of confounding due to co-infection with other common diseases such as malaria

or tuberculosis.
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The fishing community had high mobility during the one-year follow-up of the

study [60,61], with most people moving out due to economic challenges, especially among

females [62–64]. Despite the limited sample size, we were still able to demonstrate the

necessity of infection control and the importance of maintaining a balanced gut microbiome,

which can benefit long-term vaccine effectiveness. S. mansoni infection is very common

in the fishing community, with infection and reinfection occurring frequently. It was al-

most impossible to find individuals who were not infected with S. mansoni at the time of

Hepatitis B vaccine initiation in this area. The purpose of this study was to evaluate the

association of this infection with, as well as its impact on, the microbiome and the long-term

effectiveness of the vaccine. We collected lifestyle variables such as diet, alcohol use, and

other factors that may impact the long-term effectiveness of the vaccine. However, we did

not include them in this analysis due to inconsistencies and to avoid a further reduction

in sample size and statistical power. We aim to emphasize a global-level analysis and an

overall evaluation of the importance of future interventions targeting S. mansoni infection in

this community.

The Kampala cohort (Good Health for Women cohort), set up between 2008 and

2009, was established to recruit women involved in high-risk sexual behavior, resulting

in a gender imbalance by design [65]. The aim was to better understand the dynamics

of HIV/STI infection to inform future HIV prevention intervention trials in this group.

Studies have documented high rates of HIV and STIs among women involved in high-

risk behaviors, and the prevalence of STIs in the cohort, including HIV, is high (37%).

As HBV is transmitted both sexually and non-sexually, it is plausible that this cohort of

high-risk women may not account for a wide range of exposure risks that are present

in fishing communities [66–68]. In both fishing communities and high-risk cohorts of

women, sexual transmission is a potential dominant route of transmission for HBV [69].

The findings here should be interpreted considering variations in sex distribution and

background characteristics.

The Chao1 index indicated differences in rare and underrepresented species, but our

sequencing depth was insufficient to evaluate species-level variations, as 16S data are only

reliable up to the genus level. This index is an overall alpha diversity measure based on the

abundance of singletons (species found only once) and doubletons (species found twice) in

a sample [70,71]. Given the limited sample size in this study and critiques in the literature of

the Chao1 index regarding low-abundance classes, we did not analyze this aspect in detail

to avoid misleading results. The findings here suggest that future large-scale studies should

investigate rare species that may impact the effectiveness of the vaccine. Nevertheless, this

study provides a foundation suggesting that certain rare species may influence vaccine

effectiveness in the long term. Longer and more in-depth studies are needed to investigate

the role of species-level variations on vaccine effectiveness, particularly under different

infection statuses. Additionally, this study evaluated a population in Uganda, where Hep

B infection and S. mansoni infection are highly prevalent.

6. Conclusions

This study evaluated a population in Uganda, where Hepatitis B and S. mansoni infec-

tions are highly prevalent. We suggest that vaccine programs should consider addressing

infection status and microbiome richness before implementing longer-dose vaccination

schedules. In this study, we provided treatment for S. mansoni infection before initiating

the Hep B vaccination, adhering to ethical regulations. This approach underscores the

importance of conducting health and wellness checks prior to immunization. The complex

interplay between the microbiome and vaccine efficacy could be influenced by parasitic

infection status. While potential environmental, social, and behavioral factors were not
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considered, these findings provide valuable insights for future studies. For example, di-

etary interventions to optimize baseline microbiome status and the treatment of infections,

particularly in areas with a high prevalence of infections and malnutrition, may improve

the effectiveness of Hep B vaccine antibody levels. This study provides a foundation, sug-

gesting that certain rare species of bacteria may influence vaccine effectiveness in the long

term. Longer and more in-depth studies are needed to investigate the role of species-level

variations in vaccine effectiveness, particularly under different infection statuses.

Supplementary Materials: The following supporting information can be downloaded at https://www.

mdpi.com/article/10.3390/vaccines13040375/s1, Figure S1: Relationship between Hep B level and

alpha diversity at baseline by infection status, Shannon Index; Figure S2: Relationship between Hep B

level and alpha diversity at baseline by infection status, ACE Index; Figure S3: Relationship between

Hep B level and alpha diversity at baseline by infection status, inverse Simpson
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