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Abstract

Visualization and statistical regression of compiled datasets is emerging as a pow-

erful tool in understanding and screening the design space of materials properties,

rapidly providing insights that would not be readily gained from studies of individual

systems. We describe here, the curation and analysis of a database of polymer Li+ elec-

trolyte conductivity performance, manually extracted from the published literature.

We focus on solid, dry polymer electrolytes without additives. Data was extracted

from 65 publications, resulting in 655 unique polymer–anion–salt concentration en-

tries and 5225 individual conductivity data points to create an interactive database:

PEDatamine.org. Visualization of the collective dataset suggested that individual fea-

tures, other than the activation energy, are poor predictors of conductivity performance

across the wide range of polymer chemistries, Li salts, and salt concentrations exam-

ined. The Meyer-Neldel rule suggesting a correlation between the conductivity prefac-

tor and activation energy is shown to hold universally for both Arrhenius and Vogel-

Fulcher-Tammann representations. Statistical regression techniques were employed

to extract the most important features relevant in determining Li+-ion conductivity.

These include polymer molecular weight, glass transition temperature, existence of

electronegative heteroatoms in the monomer, and anion size. However, experimental

features can be omitted from the regression model without impacting predictive perfor-

mance, reinforcing the importance of monomer electronegativity, hydrogen bonding,

and anion molecular bulk.
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Introduction

A significant body of work over the past half-century has focused on the improvement of

ionic conductivity of solid polymer electrolytes.1–3 Solid polymer electrolytes are poten-

tially safer, more mechanically robust, and more chemically stable than the organic liquid

electrolytes currently employed in electrochemical energy storage devices. However, their

conductivity performance is at least an order of magnitude below the required target for

practical applications.4 While several reviews have been published on various classes of

polymer electrolytes, there has not so far been a large-scale analysis of published data, to

extract fundamental understanding and design principles.

There exist in the literature, several studies of specific polymer electrolyte families

that attempt to develop design principles, but it is unclear whether what is learned is

applicable to a broader range of polymer chemistries. For example, while the importance

of low polymer Tg and intermediate ligand density has been studied in optimizing ionic

conductivity in imidazole side-chain grafted polysiloxanes,5 other studies have compared

polymers with low and high Tg and shown that the Tg is less important than other chemical

features of the polymer.6,7 Thus, while detailed studies across a single polymer families are

important for determining design rules associated with the specific polymer chemistry, salt

identity, processing conditions, etc., it is possible that a study across a broader range of

polymer electrolyte materials could reveal design rules or insights not otherwise foreseen.

Data visualization and machine learning have recently gained prominence in materials

science for improving understanding and predicting new compounds in a variety of appli-

cations ranging from thermoelectrics,8–10 to inorganic battery materials,11–15 to electronic

materials,16–18 to other functional materials.19–21 Polymers have also been the recent sub-

ject of recent data-driven discovery, including the prediction of polymer glass transition

temperature, Tg,22–24 exploration of new polymer electrolytes,25–27 and prediction of gas

diffusion in membranes.28

Data visualization on its own can be immensely powerful, both to extract trends in ag-
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gregate data that may have been missed in smaller studies, as well as to highlight impor-

tant gaps in published literature that should be corrected.29–31 The addition of machine or

statistical learning techniques can aid in situations where more complicated relationships

exist between descriptors and the quantity of interest; in such cases simpler visualizations

do not readily show trends.32

While data mining, visualization and machine learning are powerful tools in their abil-

ity to help advance materials discovery and optimization, they also have limitations in

their applicability. The first is that data extraction from the published literature is cur-

rently a labor-intensive manual process for many materials studies, as data exist usually

within figures in publications, rather than in pre-existing databases. While natural lan-

guage processing will no doubt aid in future efforts, current studies generally rely on

manual extraction and require domain knowledge to parse important features from each

study. Data quality can also restrict the impact of data mining efforts; many studies do

not report all relevant processing parameters, materials characteristics, and measurement

conditions.33 The limited size that can be manually extracted of many of the datasets also

creates questions of data reproducibility, as it is more challenging to spot clear outliers

in sparse datasets. A small number of entries and a large number of possible descriptors

can also significantly impede machine or statistical learning techniques, which can suffer

from severe over-fitting either due to the small size of the dataset or the lack of relevant

descriptors reported in the original studies.

In spite of these limitations, data visualization and simple statistical analysis can still

provide insight into the state and future direction of solid polymer electrolytes. We there-

fore set out to curate a database of polymer electrolytes for the visualization and statistical

learning of features that may be important predictors of ionic conductivity performance.

The work-flow followed in this study is shown in Figure 1. This study is limited to solid

polymer Li+-electrolytes without solvent or other additives, and includes a database com-

piled from 65 publications with 655 unique polymer-anion-salt concentration entries and
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Figure 1: The visualization study included manual extraction of data from relevant litera-
ture, calculation of relevant chemical descriptors, manual visualization using Python and
a custom webpage, and statistical regression implemented using the Python Scikit-Learn
library.

5225 conductivity data points. While the dataset includes a mixture of crystalline and

amorphous systems, with a wide range of polymer chemistries and some varying polymer

architectures (i.e. linear versus branched), it does not cover block copolymers, electrolytes

with additives, or single-ion conductors. The scope is thus limited to lithium-based poly-

mer + salt systems.

We find that no single parameter, other than the measured activation energy, ade-

quately correlates with ionic conductivity performance over the entire range of polymers

compiled in this study. While some correlations exist for specific chemical identities, such

as Tg in a range of carbonate-ether copolymers, most polymer families do not actually

show strong trends with any of the features previously predicted to influence conductivity

behavior. Meanwhile, we confirm the universality of the previously-reported Meyer-Neldel

rule, or compensation effect, for the broad range of polymer electrolytes examined in this

study.34–36 The Meyer-Neldel rule observes a linear relationship between activation energy

and the logarithm of the pre-exponential factor and has been observed for many activated

hopping processes in materials science. Importantly, we show that a strong Meyer-Neldel
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correlation does not translate to the ability to predict conductivity from activation energy

alone, since small errors in activation energy have an exponential effect on conductivity.

Statistical regression techniques reveal that the most important features for the prediction

of conductivity are polymer molecular weight (MW), glass transition temperature (Tg), ex-

istence of electronegative heteroatoms in a monomer, and anion size. However, these fea-

tures are not determinant, since the removal of experimental features (including molecular

weight and Tg) still allows for adequate performance prediction, emphasizing the ability

to obtain adequate performance predictions without the need for experimental parameter

inputs. Furthermore, efforts to limit data leakage in statistical learning by grouping the

entries by polymer and anion identity results in poor model performance, and illustrates

the difficulty in using such models for the prediction of previously unexplored polymer

electrolytes. This underscores the general interdependence of features and complexity of

polymer electrolyte conductivity prediction.

Methods

The data used for this work was manually extracted from the literature.5–7,37–98 Publi-

cations were selected from two major reviews,1,2 as well as from additional literature

searches. Data was restricted to solid polymer electrolytes without additives, where the

reported conductivity and characterization did not immediately look suspect. Random

copolymers were included, but block copolymers were excluded due to the existence of ad-

ditional factors complicating conductivity response, such as the possibility for self-assembly

into more complex morphologies which affects conductivity on a volumetric basis. The lit-

erature provides a wide range of conductivity performance, but is likely skewed towards

specific materials classes (e.g. many more studies on ether-based polymers than other

polymers). Attempts were made to keep the distribution of polymer chemistries as even

as possible, though over half of all polymers examined here incorporated ether functional
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Figure 2: Distribution of polymeric functional groups and anions in entries included for
visualization data and statistical learning data. (a) Functional groups extracted in this
study include ethers, carbonates, esters, amides, and others. (b) Many Li-based salts were
studied, with the highest prevalence for TFSI− and CF3SO−

3 . (c) Entries extracted for
statistical regression shift the distribution of functional groups to lower ether contents. (d)
Upon dataset trimming for statistical regression, the prevalence of TFSI− anions increased.
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groups; the fraction of entries for the various functional groups and Li salt identities is

shown in Figure 2.

Conductivity values and Tg values published in figures were extracted using WebPlot-

Digitizer.99 Additional descriptors, such as polymer molecular weight, processing condi-

tions and salt concentrations were extracted from the text, tables or figures. For pro-

cedures with multiple drying or processing steps, the most rigorous (highest vacuum or

temperature) processing step was included. When no drying vacuum was mentioned, it

was assumed that no vacuum was used. For electrolyte concentration series where some

Tg values were provided but others were omitted, the Tg versus salt concentration data was

interpolated to extract approximate Tg values for intermediate salt concentrations. Elec-

trolyte conductivity as a function of temperature data was fit to Arrhenius (Equation 1) and

Vogel-Fulcher-Tammann (VFT) conductivity functions. For VFT fitting, two methods were

used. The first kept T0 as a fit parameter (Equation 2), while the second set T0 = Tg − 50,

when Tg was provided (Equation 3).

σ = A exp

(
−Ea

kBT

)
(1)

σ = AT− 1
2 exp

(
−B

T − T0

)
(2)

σ = AT− 1
2 exp

(
−B

T − Tg + 50

)
(3)

After data retrieval, Python scripts were developed to clean and organize the data for

visualization and statistical regression. An approximate polymer molecular weight was ex-

tracted as an additional column which was either the number-averaged molecular weight

(Mn), when provided, or the weight-averaged molecular weight when Mn was not pro-

vided; if no molecular weight was provided, the column was left blank. The solvent used

for the processing steps was listed by its boiling point. In addition to the features extracted
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from the publications, chemical descriptors were calculated based on the polymer and an-

ion identity. The MORDRED library100 was used to calculate polymer and anion descriptors

after manual input of the monomer and anion structure in SMILES format. BigSMILES

notation has been suggested for use with polymer systems,101 but is not yet compatible

with Python libraries such as MORDRED and was therefore not used in this study. For

some monomer structures, manual correction of number of hydrogen bond donors and

acid groups was necessary due to the implicit addition of hydrogens to dangling bonds

(e.g. C-O becomes C-OH). For the PF−
6 anion, many MORDRED ExtendedTopochemical

Atom parameters were not calculable because the bonding count to the central atom is

greater than 4; for these values, the average of that column for all the other anions was

substituted. Only a subset of the full list of chemical descriptors were calculated using

MORDRED; those parameters that are expected to most influence physical and electronic

structure were included. A list of the descriptors manually collected and used for visualiza-

tion can be found in Table 1; the subclasses of descriptors calculated using the MORDRED

library are Polarizability, HydrogenBond, RotatableBond, VdwVolumeABC, Weight, Acid-

Base, AtomCount, ExtendedTopochemicalAtom, and KappaShapeIndex.

Table 1: List of manually collected descriptors.

Polymer characteristics Processing/Performance characteristics Salt characteristics
Polymer functional groups Conductivities at 0 ◦C to 125 ◦C Anion identity
Polymer Li+ t+ Salt concentration
SMILES comonomer 1 VFT/Arrhenius prefactors (Li:functional group)
SMILES comonomer 2 VFT/Arrhenius activation energies
Comonomer percentage Li+ diffusion coefficient
Tg Viscosity
Tg w/out salt Storage modulus
Is crystalline? Young’s modulus
Tm Solvent used
Mn or Mw Drying temp
-D Drying vacuum
Chain architecture

The data was then visualized using MatPlotLib102 and Seaborn in Python, as well as
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using Plotly and Dash as a webpage.103 The webpage includes pages for visualization of

data trends, conductivity plotting, a view of the correlation matrix of the descriptors used

in the statistical regression portion of the study, and links to the curated dataset as well as

the original paper DOIs. This webpage is accessible to the larger community for additional

exploration of dataset trends.

After visualization, the dataset was pruned further for statistical regression analysis.

Ordinal categorical features such as crystallinity and vacuum strength used for the dry-

ing procedure were converted into sequential numbers, while chain architecture was con-

verted to arrays using one-hot encoding. When no explicit electrolyte drying temperature

was provided, 25 ◦C was assumed; when no drying time was provided, a nominal time of

8 h was entered for the dataset used for statistical learning.

Many features were dropped from the initial data set to optimize for a maximum num-

ber of entries while still including the most relevant features expected to contribute to

conductivity performance. This feature selection was necessary since many entries had

missing values for many features. Dataset manipulation and regression techniques were

implemented in Python using the Scikit-Learn library.104 After removing all entries with

missing values, the dataset was split into a training and a test set, with 20% of the entries

(55 entries) in the test set. Highly correlated features (with a correlation > 0.99) were

dropped from the features list, after which recursive feature elimination on the training

data using a random forest algorithm and 5-fold cross-validation further reduced the num-

ber of features to an optimized amount. The final dataset used for statistical regression

had 271 entries and 36 features. The target property for prediction was chosen as the

base-10 logarithm of the total ionic conductivity at 60 ◦C, as this was the temperature at

which the most entries recorded conductivity (389 entries from the original 655, or 60%

reporting). The reduction from 389 to 271 entries is due to other missing features such as

Tg and approximate molecular weight.

We then used machine learning models implemented in Scikit-Learn to explore feature
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importances in predicting conductivity performance. A pipeline was constructed for data

manipulation and fitting − this includes standardizing then normalizing the data before

fitting the data with the appropriate regression model. A simple dummy regressor was

compared to ridge regression, random forest regression, gradient boosting regression and

extra trees regression models. These models were chosen as they enable extraction of

feature importances. Grid search and 5-fold cross-validation were used on the training

data to optimize model hyper-parameters for each algorithm, taking care to set the random

state for reproducible cross-validation splits for each algorithm. Mean squared error was

used as the scoring criterion. The hyperparameters were tuned using grid search to select

the best parameters for each algorithm.104

Once the hyperparameters were selected, the different algorithms were compared

against each other, again using 5-fold cross-validation. Averaged mean squared error,

averaged mean absolute error and averaged R2 were all evaluated as scoring criteria. All

algorithms were then re-trained on the entire training dataset and the top 10 most impor-

tant features were compared between the models. The random forest algorithm performed

best on the cross-validated training data in all metrics and is discussed herein, while the

other models are discussed in the Supplementary Information. Lastly, the trained random

forest model was evaluated on the test dataset.

In addition to a randomized dataset splitting into test, train and validation sets,

grouped splitting was also attempted using Scikit-Learn’s GroupShuffleSplit and Group-

KFold. This splitting eliminates any data leakage between the train and validation or test

sets for the groupings that were selected. Groupings were done by polymer type, as well as

polymer+anion, which eliminates the possibility of that electrolyte combination occurring

in both the training and validation/test datasets just at a different salt concentration or

different processing conditions. Feature reduction using correlations and recursive feature

elimination, pipeline construction, model hyperparameter tuning, and model fitting was

repeated as before except with the additional constraint of using grouped splits for train-
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test split and cross-validation. Performances were compared between models, but were

too low to motivate further model exploration.

Results and Discussion

The goal of this study is to explore trends in conductivity performance over the vast array

of published work on solid polymer electrolytes. Through a combination of data min-

ing, visualization, and statistical regression techniques, we have attempted to extract the

most important features and predictors of ionic conductivity in additive-free polymer elec-

trolyte systems (Figure 1). We began by selecting publications containing solid polymer

electrolyte conductivity data, with an attempt to explore the performance from a repre-

sentative range of polymers/functional groups found in the literature. After manual data

extraction, the dataset was cleaned using Python, and additional descriptors for polymer

and anion identity were calculated using the MORDRED library.100 The full dataset was

used for manual and web-assisted visualization of trends, while a smaller cleaned data set

with the removal of rows and columns containing empty values was used for subsequent

statistical regression analysis.

In an effort to limit the data mining study to a data subset that is feasible for manual

collection, the scope of this study includes polymer-salt electrolytes without additives such

as plasticizers, ionic liquids or inorganic fillers. While a much broader set of studies on

polymer electrolytes have been published since the discovery of the ion-conducting proper-

ties of poly(ethylene oxide) in the 1970s,105 our approach explores fundamental ion trans-

port mechanisms in polymers − once additives are mixed into the polymer electrolyte,

ion transport mechanisms can alter substantially, reducing the ability to draw cohesive

conclusions from a single subset of studies.

For this study, 655 polymer-anion-salt concentration samples (‘entries’) from 78 poly-

mers and 65 publications were selected from reviews and primary literature for data ex-
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traction and examination. Each entry contains conductivity data spanning multiple tem-

peratures, resulting in 5225 total conductivity points. Trimming the dataset for statistical

learning reduced these numbers to 271 entries from 50 polymers. Figure 2 shows the

distribution of polymer classes and anions of the data examined in this study for data

visualization (a,b) and statistical learning (c,d). Some polymers contained more than

one functional group, either due to co-polymerization or because the monomer contained

multiple functional groups − the visualizations here show the percentages for each func-

tional group, such that polymers with multiple functional groups will contribute to each

functional group percentage. For data visualization, functional groups listed in the ‘Other’

category include phosphazene (14 entries, 1.64%), phenyl (12 entries, 1.41%), sulfonyl (5

entries, 0.59%) and carbonyl (4 entries, 0.47%). The anions included in the ‘Other’ cate-

gory include MPSA− (6 entries, 0.92%), AlCl−4 (6 entries, 0.92%), N(SO2C2F5)− (4 entries,

0.61%), I− (4 entries, 0.61%), SCN− (2 entries, 0.31%) and FSI− (1 entry, 0.15%).

Trimming the dataset for statistical learning led to an improvement in the distribution

of functional groups, but weighted the anion choice heavily towards TFSI− (see Figure

2c,d). For statistical learning, functional groups listed in the ‘Other’ category include acry-

lates (6 entries, 1.56%), alcohols (4 entries, 1.04%), and carbonyls(4 entries, 1.04%). The

anions listed in the ‘Other’ category include N(SO2C2F5)− (4 entries, 1.48%), BF−
4 (4 en-

tries, 1.48%), SCN− (2 entries, 0.74%) and FSI− (1 entry, 0.37%). While this imbalance

may lead to difficulties in the prediction capability for statistical learning models, this is

unavoidable due to the lack of complete literature data for many publications.

Data quality and completeness is a continuous concern in scientific research, and was

an issue for many of the manuscripts examined for data extraction for this study. In both

older and more recent literature, instances of missing processing parameters (polymer-salt

mixing solvent, drying procedures, etc.), polymer properties (molecular weight, disper-

sity), and electrolyte properties (glass transition temperature, lithium transport number)

were prevalent and limited the scope of the current study. This is a commonly-discussed
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issue in materials data-mining and machine learning studies, where the ability to draw

conclusions based on published data is hindered by the limited knowledge of the large

number of factors that can affect material performance.22,33 To balance data completeness

and overall data quantity, all data was included for the manual visualization component of

the study, while a subset of relevant features were selected for statistical learning. Further,

the low overall quantity of data, relative to fields where statistical regression and machine

learning have been traditionally applied, prevents easy visualization of outliers. In this

work, an attempt was made to filter studies with questionable data quality (i.e. lack of

reasonable drying conditions for polymers, suspect impedance spectroscopy curves, etc.),

but more work should be done in carefully and systematically characterizing processing

parameters for polymer electrolytes in order to validate and explore the conclusions pre-

sented here.

Data visualization

The large body of fundamental studies on polymer ion transport mechanisms suggests

some key features that are likely to show predictive trends in ionic conductivity perfor-

mance. These include the polymer electrolyte glass transition temperature (Tg),106–108 con-

ductivity activation energy,109 anion size and electrostatic interaction with the Li+,110,111

polymer dielectric constant,112–117 and salt concentration.86,118,119

Plotting some of these features against the electrolyte ionic conductivity at 60 ◦C reveals

the danger in focusing on singular design metrics for universal performance improvements

(Figure 3). While some features show reasonable correlation to the ionic conductivity (e.g.

Arrhenius activation energy, Ea), all features still exhibit significant scatter in conductivity

performance. That is, for a single value of Tg, Ea or other feature, the reported ionic

conductivities still vary by multiple orders of magnitude. This underscores the difficulty of

extracting a single feature or electrolyte descriptor that can be used to predict or explain

conductivity performance.
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Figure 3: Scatter plots showing the lack of correlation between most features and the total
ionic conductivity at 60 ◦C. Some correlation exists for Tg and activation energy (Ea).

A commonly discussed polymer characteristic that is expected to influence conductiv-

ity performance is polymer Tg.5,106–109 From a fundamental perspective, the local polymer

segmental relaxation/re-arrangement time rather than the bulk Tg is expected to govern

ion mobility by affecting ion hopping rates through the rubbery polymer electrolyte.109

This arises due to the complexation of Li+ ions by solvation sites along the polymer chain,

resulting in strongly correlated motion between the mobile ions and local polymer seg-

ments.120 While anions are typically not directly solvated by the polymer chains, they are

still dependent on segmental motion creating hopping pathways for anions through the

polymer melt. Many studies use Tg as a proxy for more local dynamics due to the generally

strong correlation between the polymer Tg and segmental relaxation dynamics. Individ-

ual studies on polymers ranging from polyethers111 to sidechain-grafted imidazoles5 have

shown that a lower polymer Tg generally improves the ionic conductivity for rubbery poly-

mer electrolytes. In the case of PEO, the effect of local segmental dynamics in determining
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ionic conductivity has been directly determined using quasi-elastic neutron scattering.106

On the basis of such individual studies, lowering polymer Tg is a common design strategy

cited in the literature in the search for higher-performance polymer electrolytes.1,3

Figure 4: Tg is not a good predictor for ionic conductivity at 60 ◦C for all polymer classes;
(a) while a lower Tg leads to higher conductivities for polymers with carbonate and ether
functional groups, there is no trend for (b) pure polyethers, and a slightly positive trend
for (c) pure polycarbonates.

As Figure 4 shows, the glass transition temperature is not the sole indicator of ionic

conductivity performance in most polymer electrolyte classes. Copolymers based on car-
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bonate and ether functional groups seem to show a clear trend with Tg, while the more

general class of purely ether-based polymers shows no clear trend with Tg. Interestingly,

polymers with only carbonate functional groups even seemed to show slight reversal of

the expected conductivity trend with Tg, though the limited data for this family makes

drawing broad conclusions challenging. However, the lack of a clear universal trend in

conductivity with polymer Tg also underscores the difficulty in attempting to find proxies

for fundamental parameters expected to control ionic conductivity.

While a correlation between ionic conductivity and segmental motion is fundamentally

expected for many rubbery polymers, additional factors are likely affecting the universality

of this Tg-conductivity relation. The ether and carbonate polymer families are more likely

to be semi-crystalline, which might play a role in the importance and applicability of Tg as

a metric. It is also possible that differences in processing parameters (e.g. solvent identity,

drying time, measurement conditions) is affecting the reproducibility of trends seen in

individual studies. This is especially likely for polymers such as polyethers which easily

absorb water and whose processing parameters were not rigorously controlled in early

studies.

Additionally, ion transport in some polymer electrolytes may follow mechanisms dif-

ferent from the proposed segmental dynamics-assisted ion motion. For example, polymer

electrolytes with high Tgs and rigid backbones are expected to follow a more solid-like

conductivity mechanism in which local re-arrangements are less important, and ions hop

through pre-existing pathways in the rigid structure.1,93,109,121 While such a mechanism is

not expected for most polymers reported here, the possibility for conductivity mechanisms

spanning these two extremes is also important to consider. Intermediate mechanisms of

ion transport can be described by dynamic percolation theory,122–125 in which both the ion

hopping and segmental re-arrangement timescales are relevant to consider. In the first

extreme, ion hopping is much faster than segmental re-arrangement, and a solid-like con-

duction mechanism is observed. The other extreme results in a liquid-like mechanism,
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where segmental re-arrangements dominate the conduction behavior. The continuum be-

tween these two extremes suggests that perhaps both segmental re-arrangements − possi-

bly explained by Tg − and ion hopping − governed by functional group identity, polymer

structure, etc. − are important for conductivity performance, thus resulting in a greater-

than-expected spread in conductivity vs. Tg data. Dynamic percolation theory is likely

linked to related discussions suggesting that fragility of glass formation, rather than Tg be

used as a proxy for ionic conductivity performance due to the strong decoupling between

ion motion and Tg that can result.66,121

Anion identity has also been suggested to correlate with conductivity performance in in-

dividual polymer studies,110,111 but does not provide a strong prediction of ionic conductiv-

ity in the aggregated data set (Figure 3d). Anion size and polarity affects salt dissociation

within the polymer, the extent of polymer matrix plasticization, and anion hopping mo-

bility. However, it is likely that anion effects are overwhelmed by a range of other factors

that are known to affect ion mobility, such as polymer polarity, cation solvation ability, salt

concentration, and ion aggregation. This underscores the realization that many features

work in concert to influence ionic conductivity, resulting in sometimes limited information

gained from a single descriptor.

A simple correlation between activation energy and Arrhenius (or VFT, see SI) pre-

factor exists for the entire range of polymers examined in this study (Figure 5a) and

follows the form

ln(A) = mEa + b (4)

Known as the Meyer-Neldel rule, isokinetic relationship, or compensation effect,34–36,126

this correlation is expected to be a very general result for all systems with large activation

energy.35 Indeed, it has been shown to hold for activated ion transport processes in a num-

ber of inorganic and organic materials, including poly(ethylene oxide) following Arrhenius

temperature dependence,126 and single-ion conducting polymers with VFT behavior.34 A

similar relationship holds for small gas molecule diffusion through both glassy or rubbery
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Figure 5: (a) Arrhenius activation energy correlates strongly with conductivity pre-factor,
confirming the generality of the Meyer-Neldel rule. (b) Arrhenius activation energy corre-
lates somewhat with ionic conductivity, though outliers and data spread exist.
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polymer membranes.127 In these materials, the slope, m, of the correlation was found to

be independent of both gas and polymer type, while there was some change in correlation

intercept, b, between rubbery and glassy polymers.

The microscopic understanding of this correlation has been described in terms of the

connection between activated hopping energy (enthalpy) and the number of pathways that

are available for hopping (entropy).35,126 In gas diffusion, it was suggested that the similar

slope of the natural logarithm of diffusion coefficients versus diffusion activation energy

indicates diffusion mechanism to be invariant with gas identity or polymer identity within

either rubbery or glassy polymers.127 This universality also exists for both Arrhenius and

VFT conductivity fits for the wide range of polymer functional groups, salt identities and

salt concentrations of the lithium-conducting solid polymer electrolytes examined in this

study, similarly suggesting that chemical environment (e.g. solvation functional group,

anion identity, etc.), as well as differences in Tg or crystallinity do not appreciably affect

the mechanism of ion transport through polymer electrolytes. Interestingly, this holds even

for the small number of rigid or high Tg polymer systems included in this study, where the

reported ionic conductivities occurs well below Tg.

Many interpretations of Arrhenius or VFT fitting of conductivity data attribute signif-

icance to both the resulting activation energy (energy barrier for ion transport) and the

prefactor, which is most often used to compare relative mobile ion concentrations between

samples. A standard derivation of the Arrhenius conductivity equation suggests the pref-

actor is a combination of both the number of mobile ions as well as a diffusion prefactor

which depends on the vibrational attempt frequency and structural parameters. Since the

correlation between activation energy and prefactor has been shown to hold for both dif-

fusion equations as well as conductivity equations, it is likely that the correlation observed

in the case of conductivity stems directly from the connection between diffusion prefac-

tor and activation energy, rather than ion concentration. Thus, while it has previously

been suggested that the strong correlation between these two parameters negates the pos-
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sibility of optimizing for easy ion transport (low activation energy) and high mobile ion

concentration simultaneously,34 it is possible that instead this correlation only highlights

the connection between activation energy and attempt frequency, rather than mobile ion

content. The origins of the prefactor-activation energy correlation for the conductivity

equation could be probed more directly using other techniques, such as solid-state NMR,

that can quantify either mobile ion content or ion hopping attempt frequency.

While it is tempting to argue that the strong correlation between activation energy

and prefactor should enable conductivity prediction from activation energy calculations,

Figure 5b emphasizes that activation energy does not universally predict conductivity per-

formance. Thus, the Meyer-Neldel correlation is somewhat deceptive in its utility, since

a given activation energy still shows a large spread in conductivity performance. This is

likely explained by the exponential nature of the activation energy, resulting in significant

changes in ionic conductivity given only small fluctuations in Ea.

The visualization results discussed above emphasize the difficulty in determining uni-

versal predictors for conductivity performance in additive-free solid polymer electrolytes.

While we have discussed a few of the likely important features in the text above, we

emphasize that additional features describing anion and polymer properties (including

un-characterized or un-reported features such as ion aggregation structure) are likely to

play a role in determining conductivity performance. For those descriptors that are doc-

umented, we now turn towards statistical regression techniques to extract more complex

relationships between the various features and the total conductivity performance.

Statistical regression analysis

Statistical regression and machine learning present appealing opportunities to uncover

trends and connections in datasets that are not immediately apparent to humans. This is

generally the case when many of the expected and possibly important features do not seem

to strongly correlate with the property of interest (e.g. conductivity), as was discussed
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above. A general trade-off exists between model prediction capability and interpretabil-

ity; simple models are easily interpretable but often do not achieve the same prediction

capability compared to more complex models.32 Since the goal of the statistical regres-

sion implementation in this instance is to extract important descriptors, relatively simple

regression models were chosen.

Many features that were included in the manual visualization portion of the study were

dropped for the statistical regression. Most were dropped due to lack of data for many of

the polymer entries. However, we also chose to drop the activation energy and prefactor

terms from Arrhenius or VFT fits. Due to the strong correlation between the activation

energy and conductivity prefactor, once one of the two parameters is known, the other is

easily estimated (see discussion above and Figure 5a). These two parameters are the only

values needed to calculate conductivity at any temperature using the Arrhenius or VFT

equations. In effect, the activation energy fully describes the conductivity at any tempera-

ture. We therefore chose to remove these features from the statistical regression to avoid

data leakage between the features and the target prediction value, the ionic conductivity.

Highly correlated features (with correlation factors above 0.99) were also removed from

the feature list to improve the interpretability of feature importances. Lastly, recursive fea-

ture elimination was used to optimize the total number of features used during learning,

in an attempt to reduce the propensity for overfitting.

A random forest statistical regression analysis enables the extraction of electrolyte,

monomer and anion features that are most important for calculating conductivity per-

formance (Figure 6a). The electrolyte characteristics include the approximate molecular

weight of the polymer, the approximate Tg of the electrolyte, the salt concentration, and

whether the electrolyte is crystalline. The approximate Tg uses the Tg of the electrolyte,

where provided, and otherwise substitutes the Tg of the pure polymer without salt added.

Based on the discussion above, this is expected to be a good indicator of performance

for some functional groups, while for others the trend was less clear. However, the pre-
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Figure 6: (a) Top ten electrolyte features extracted from trained random forest regressor
including experimental features ranks approximate Tg and polymer approximate molec-
ular weight highest, followed by salt concentration, monomer characteristics such as the
presence of heteroatoms, and anion size. (b) Re-training the random forest regressor us-
ing a feature set without experimental parameters still indicates the importance of anion
size, salt concentration, and monomer electronegative atoms, but also includes measures
of monomer hydrogen bonding, as well as complexity including branching and composite
indices.

vious analysis was using only Tg as a predictor, while in the regression models Tg is one

of multiple features that is aggregated to predict performance. Equally important is the

approximate molecular weight of the polymer electrolyte, which is the number-averaged

molecular weight where provided, and otherwise the weight-averaged molecular weight.

Previous studies have suggested molecular weight is an important factor for oligomeric

systems, while it ceases to be important above a threshold value.128 This was attributed

to the link between polymer molecular weight and Tg at low molecular weights. In this

dataset, it is likely that the approximate molecular weight feature is used as a composite

proxy for a range of correlated features. While the approximate molecular weight shows

only very weak correlation to other features included in the random forest model (see SI),

it is likely more highly correlated with features that were previously eliminated in the re-

cursive feature reduction. This is confirmed below when experimental features such as the

molecular weight are eliminated from the random forest model, resulting in comparable

performance.

Electrolyte salt concentration is also included in the top ten important features, sug-

gesting that in conjunction with polymer Tg and molecular weight, it can play an important
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role in conductivity performance. While the random forest feature importance does not

provide information on the sign of the weighting of salt concentration, ridge regression can

(see SI). Ridge regression suggests a small positive correlation between salt concentration

and ionic conductivity. Many studies exploring the role of salt concentration at relatively

low concentrations have shown that conductivity is nonmonotonic with salt concentration,

reaching a maximum at intermediate salt concentration.56,118 At higher salt concentrations

(e.g. over 50 wt%), another improvement in conductivity seems to occur;1 the sign of the

coefficient for ridge regression possibly emphasizes the higher overall conductivities seen

at very high salt concentrations.

Monomer features also contribute to the ionic conductivity performance, and include

measures of the presence of electronegative and heteroatoms and of monomer complexity.

Heteroatoms play an important role in salt dissociation, ion solvation and ionic conduction,

and thus it is unsurprising that they dominate the monomer feature importance. However,

the importance of heteroatom optimization for improved Li+, rather than total, conductiv-

ity is not determined here because the performance metric observed in this study is total

ionic conductivity.

For important anion characteristics, the measure of anion size (molecular bulk, ‘alpha’)

plays the largest role and is the feature of third most importance, while oxygen atom count

and number of hydrogen bonding acceptors are somewhat important but not ranked within

the first ten features. Individual studies have shown that larger anions (e.g. TFSI−) disso-

ciate more readily and result in higher ionic conductivity compared to smaller anions (e.g.

ClO−
4 );129 while the general aggregate data does not show a strong trend in conductivity

versus ion identity, statistical regression confirms anion size importance on conductivity

performance.

A random forest regression procedure completed without the use of experimental fea-

tures shows similar performance, suggesting that the uncertainty associated with measur-

ing experimental parameters other than the ionic conductivity can be eliminated. The
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new top ten most important features are shown in Figure 6b, while the similar train-

ing/validation scores are shown in the SI. While the mean validation errors do increase,

the increase is rather small, implying that other electrolyte features provide reasonably

identical predictive capability. This analysis points towards a simplified procedure for data

extraction, as it suggests that experimental processing parameters and features such as the

solvent and conditions used for polymer-salt mixing, molecular weight and polymer Tg are

less important than is suggested by the initial regression analysis discussed above.

The most important parameters relating to ionic conductivity performance as extracted

from statistical regression on this new feature set still focus on salt concentration, anion

molecular bulk, and comonomer heteroatom count, confirming the importance of those

parameters. The most important features also include a measure of the monomer branch-

ing coefficient, which can be seen as a proxy for monomer complexity or size, and may

relate to the monomer free volume or the propensity for the polymer to crystallize.

Removing experimental features still enables adequate expected conductivity calcula-

tions for both the training and test datasets (see SI). The R2, root mean squared error

and mean absolute error are 0.71, 0.59 and 0.40, suggesting that on average the test data

was predicted to be within 6 times the actual conductivity value. There are a few outliers

within the data, but this error is within expected noise of conductivity measurements given

the widely varying processing parameters and data quality that could not be accounted for

in the data analysis due to lack of publication information.

Critically, the dataset and statistical regression models explored in this study cannot

be used for novel polymer electrolyte performance prediction. Once the dataset splitting

between train, validation and test is done by grouped polymer-anion entries, model per-

formance drops precipitously (Figure 7). This splitting eliminates leakage of information

between the training and validation or test sets, such as the generally similar performance

of a single polymer-anion system. This underscores the inability of the models to predict

polymer electrolyte performance for polymer-anion combinations that they have not pre-
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Figure 7: (a) Model performance on a test dataset with polymers not seen during training
drops significantly compared to the ungrouped train-test split. (b) Actual versus predicted
conductivity performance for the grouped random forest model reveals outliers for test
dataset, emphasizing the failure of the model to accurately predict performance for new
polymer chemistries.
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viously seen during training. Recursive feature elimination in this case removes all but

seven features to use for model training − these are approximate Tg, approximate molecu-

lar weight, the log10 of lithium to functional group ratio (salt concentration), comonomer

2 measure of heteroatoms (‘eta F’), comonomer 2 molecular graph complexity (‘eta RL’),

comonomer 2 measure of electronegative atom count (‘epsilon 1’), and anion number of

hydrogen bond acceptors. The R2 fit for the test dataset is 0.58 (and 0.37 for the five-

fold cross-validation performance), indicating poor predictive capability. Thus, while the

simple models examined here perform reasonably well at understanding and predicting

performance when the polymer and anion identity is shared between the training and test

sets, once the test set has significantly different characteristics compared to the training

set, the models explored here struggle to recover predictive understanding. This suggests

that perhaps the learnings obtained from a subset of polymer-anion combinations do not

apply to other polymers or anions, and aligns well with the visualization results presented

in Figure 4, where the Tg–conductivity trends of different polymer families can vary widely.

The low performance of the models trained on grouped data emphasizes that such mod-

els should not be used to predict new polymer chemistries that are not related to those

polymer-anion electrolyte combinations explored within the training data.

Conclusions

The curation and analysis of aggregated polymer electrolyte data from the literature pro-

vides insight both into the applicability of design rules across a large range of polymer

classes, as well as into the difficulties and uncertainties associated with data quality and

quantity. While studies on individual polymer families show correlations between Tg, anion

size, and ionic conductivity, the aggregated data has much weaker trends in most features

known or expected to control ion conduction. statistical learning on the aggregated data

corroborates the importance of features such as Tg, monomer electronegative atom count,
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and anion size. However, the models explored here are highly susceptible to overfitting,

and show only small reductions in performance when experimental features such as Tg

and processing conditions are left out. This suggests a highly correlated network of fea-

tures from which no single feature dominates the landscape. While the ability to calculate

conductivity performance without the need for additional experimental parameters opens

opportunities for simplified data extraction and analysis in future conductivity datasets,

these simple models can not be used for predictive purposes in cases where the polymer

or anion is altered from those used in the training dataset, as was shown when constrain-

ing train-validation-test splittings to occur along polymer-anion groups. This emphasizes

that the prediction and design of novel high performance polymer electrolytes is a chal-

lenging task that is not captured by the simple models or range of features explored in

this study. Because of the relative lack of trends in existing databases, it is possible that

other features such as processing metrics that are not commonly reported may be impor-

tant in controlling ionic conductivity in these polymer systems. Future work in the field of

polymer electrolytes must therefore focus on data quality and completeness.

Figure 8: Screenshot of the interactive website created for interactive visualizations, tem-
perature plotting, feature correlations, and access to the curated data spreadsheet and
literature DOIs. The website can be found at PEdatamine.org.

The work included herein is not an exhaustive analysis of the curated data; the compi-
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lation of an open-access polymer electrolyte database and web-based visualization enables

interactive data analysis by other researchers for continued analysis and exploration (Fig-

ure 8, https://PEdatamine.org). The visualizations page allows a user to plot any two

features against each other to explore possible trends and correlations. Further manipu-

lation is available through color, as well as through specific filter drop-down menus that

allow a user to limit the scope of the plotted data to a specific polymer family, publication

DOI, salt identity, etc. The ability to explore trends from a specific feature in a sub-set

of the extracted data aids in forming an understanding of possible correlations within a

polymer family, etc., that might not translate across the entire spectrum of studied poly-

mer electrolytes. Additional pages in the site allow a user to explore the raw conductivity

data (with the ability to plot the data in Arrhenius, VFT, and temperature formats), feature

correlations, and links to access the compiled data spreadsheets and original papers ref-

erenced in this study. We hope that such open-access web-based visualization will enable

additional trends to be explored by other researchers in the field, further expanding the

utility of the curated experimental database.
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Python scripts

All Python scripts and data files can be accessed at

https://github.com/nschauser/PolymerElectrolyte.

Data visualization website

All of the data presented in the work can be visualized on https://PEdatamine.org.

Data visualization

Figure S.1: (a) VFT activation energy correlates with conductivity pre-factor, confirming
the generality of the Meyer-Neldel rule. (b) VFT activation energy correlates somewhat
with ionic conductivity, though more outliers and data spread exist compared to the Ar-
rhenius Ea.
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The activation energies extracted from conductivity-vs-temperature plots for the vari-

ous collected data suggests a correlation between the Arrhenius activation energy and the

conductivity, with a much weaker trend for VFT-based pseudo-activation energies (Figure

1b). Activation energy represents an estimate of the enthalpic contribution to the hopping

barrier for ion mobility through the polymer matrix. Thus, it is perhaps unsurprising that

a lower energy barrier for motion generally results in higher overall conductivity perfor-

mance. What is surprising, is that the Arrhenius Ea provides a stronger correlation than the

pseudo-activation energy obtained from VFT fits. Most polymer electrolyte performance

extracted in this study was better represented in VFT format compared to Arrhenius. How-

ever, since the conductivity of most samples is measured over a relatively small tempera-

ture range, Arrhenius and VFT fits are generally not widely variant from each other, which

could explain the relatively strong trend between Arrhenius activation energy and con-

ductivity. Nevertheless, the VFT activation energy parameter exhibited a larger spread in

values obtained through the fitting program, and does not provide as clear of a trend in

conductivity performance. One possible explanation is the increase in fitting parameters

for a full VFT equation, resulting in greater uncertainty of the obtained fit values. It is also

possible that the more exact fit provided by the VFT equation captures experimental error

inherent across the spread of publications, while the Arrhenius fitting essentially smoothes

out uncertainty and error.
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Statistical regression analysis

Figure S.2: Model performance in terms of (a) root mean square error, (b) mean absolute
error and (c) R2 for training and validation data during 5-fold cross-validation. Random
forest model performance is best in all performance metrics.
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Figure S.3: Random forest regression models trained on feature set that includes experi-
mental parameters compared to one without experimental parameters show similar per-
formance.

Figure S.4: Top ten most important features extracted from (a) Ridge regression, (b) Ran-
dom Forest regression, (c) Gradient Boosting regression and (d) Extra Trees regression
models trained on the training dataset using the 36 features including experimental pa-
rameters. (b) is the same as Figure 6b in the main text.
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Figure S.5: Ordered feature importance for all 36 features for the ridge regression model,
which shows both positive and negative correlations. Salt concentration (log Li:functional
group) shows a positive correlation while Tg shows negative correlation.
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Figure S. 6: A correlation matrix of the 36 features used for statistical regression show
generally weak correlations, though some monomer features are still correlated with each
other, possibly slightly affecting feature importance rankings. The numbered features are
described in Table 1
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Table 1: Features chosen through recursive feature elimination for stastistical regression,
numbered for easier reference in Figure 6.

Feature
number

Feature Descriptions

1 approximate MW (kDa)
2 approximate Tg

3 log Li:functional group log molar salt concentration
4 drying time (h)
5 drying vacuum ‘high’, ‘regular’, ‘none’
6 crystalline? is the electrolyte crystalline?: ‘yes’, ‘no’, ‘n/a’
7 Comonomer1 ETA epsilon 1 measure of electronegative atom count
8 Comonomer1 ETA eta F functionality index - presence of heteroatoms
9 Comonomer1 AETA eta BR averaged branching index, ring count
10 Comonomer1 AETA eta RL averaged local reference alkane composite index
11 Comonomer1 ETA shape y shape index describes size and shape of monomer
12 Comonomer1 AETA dBeta averaged measure of relative unsaturation content
13 Comonomer AETA beta averaged valence electron mobile count
14 Comonomer AETA eta L averaged local composite index, bonded interactions
15 Comonomer1 AETA beta ns averaged nonsigma contribution to valence electron

mobile count
16 Comonomer1 AETA eta F averaged functionality index - presence of heteratoms
17 Comonomer1 ETA psi 1 hydrogen bonding propensity
18 Comonomer1 ETA epsilon 5 measure of electronegative atom count
19 Comonomer1

ETA dEpsilon C
measure of electronegativity contribution

20 Comonomer AETA eta FL averaged local functionality index - presence of het-
eroatoms

21 Comonomer1 AETA eta averaged measure of electronegativity
22 Comonomer2 AETA eta B averaged branching index
23 Comonomer2 AETA eta FL averaged local functionality index - presence of heter-

atoms
24 Comonomer2 AETA eta F averaged functionality index - presence of heteratoms
25 Comonomer2 ETA shape p shape index describes size and shape of monomer
26 Comonomer2 nHBAcc number hydrogen bond acceptors
27 Comonomer2 ETA dAlpha B count of hydrogen bond acceptor atoms/polar surface

area
28 Comonomer2 ETA dBeta measure of relative unsaturation content
29 Comonomer2 AETA dBeta averaged measure of relative unsaturation content
30 Comonomer2 ETA epsilon 1 measure of electronegative atom count
31 anion ETA eta L local composite index, bonded interactions
32 anion AETA eta averaged measure of electronegativity
33 anion ETA shape x shape index describes size and shape of monomer
34 anion AETA alpha average core count of a non-hydrogen vertex
35 anion nO number of oxygen atoms
36 anion nHBAcc number hydrogen bond acceptors
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Figure S. 7: Random forest actual versus calculated conductivity performance at 60 ◦C
when experimental features are included in the model. Similar to Figure S.8, where exper-
imental features were removed for training.

Table 2: Cross-validated performance of all tested models when implementing polymer-
anion grouped train-validation-test splitting.

Metric Dummy Ridge Random Forest Gradient Boosting Extra Trees
Train
Root Mean Squared Error 1.12 0.80 0.24 0.11 0.14
Mean Absolute Error 0.94 0.62 0.17 0.08 0.09
R2 0 0.49 0.95 0.99 0.99
Validation
Root Mean Squared Error 1.13 0.92 0.89 0.89 0.83
Mean Absolute Error 0.94 0.72 0.65 0.67 0.62
R2 −0.02 0.32 0.37 0.36 0.44
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Figure S.8: Model performance for calculating conductivity on both the training and test
datasets can be best visualized by plotting actual versus calculated conductivity for the
optimized random forest regression model trained without experimental features. Most
data falls within half an order of magnitude of the expected values, with a few outliers,
especially for the test dataset.

S. 10




