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Abstract

We developed a connectionist architecture that accounts
for the systematicity in the sequential ordering of speech
act categories. That is, to what extent can the category
of speech act n+1 be successfully predicted given speech
acts 1 through n? Three connectionist architectures
were contrasted: Elman's recurrent network, a single-
entry backpropagation network, and a double-entry
backpropagation network. The recurrent network fit the
speech act sequences in naturalistic conversation betier
than the backpropagation networks. Most of the
systematicity was captured by the network’s use of 2 to
3 prior speech acts of context.

Introduction

How predictable is human conversation? Imagine a
typical exchange with an acquaintance you have not
seen in awhile.

Person 1: "Hello, how have you been?"

Person 2:  "I'm fine, How have you been
doing?"

Person 1: "Pretty good.”

Person 2: "That's good."

Predictable exchanges like this demonstrate the
systematicity inherent in conversation. This
systematicity can be studied at either a syntactic level,
i.e., the order of speech act categories, or at a deeper
semantic level that takes into account the world
knowledge, beliefs, and goals of the speakers. We
concentrated exclusively on the systematicity inherent
in the ordering of the speech act categories. That is, 1o
what extent is the next speech act category in a
conversation predictable?

This research was funded by Office of Naval Research
grants N00014-90-J-1492 and N00014-92-J-1826.

There have been extensive debates on what speech act
categories are necessary to comprehensively cover the
range of human speech acts (D'Andrade & Wish, 1985).
A useful set of categories would not only be
theoretically grounded, but also empirically adequate in
the sense that judges can agree on the assignment of
categories. D'Andrade and Wish's (1985) system
satisfies these two important constraints. Our speech
act categories included many of D'Andrade and Wish's
categories and a few of our own. Table 1 lists and
defines each of the speech act categories. Table 1 also
presents the a posteriori likelihood that each speech act
category occurred in the naturalistic conversations in our
COrpus.

The primary goal of this research is to develop and
test models that capture the predictability in sequences
of speech act categories. Each model predicts the
category of the next speech act (n+l), given the
sequence of previous speech act categories (1 ton). We
investigated different connectionist architectures in
capturing this systematicity. We adopted a
connectionist model because these models are able to
induce the structure and systematicity that exists in the
data.

There has been some previous research on
sequential predictions. For example, Schegloff and
Sacks (1973) analyzed adjacency pairs in which all the
systematicity can be explained by the previous speech
act. One common adjacency pair would be the
[Question then Reply-to-question] sequence. Other
researchers have specified longer sequences. Mehan
(1979) identified a three-part sequence: [Question then
Reply-to-question then Evaluation]. Clark and Schaefer
(1989) identified even longer sequences: [Quesuon, then
Counter-question, then Reply-to-counter-question, then
Reply-to-original-question]. Although these sequences
and structures have been identified, researchers have not
assessed the extent to which this predictability is
captured in normal conversation.
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Table 1:

Speech Act Categories

Speech Act Definition Example A Posteriori
Distribution
Question (Q) Interrogative or information seeking | How does this piece fit].207
expression that is not an indirect | here?
request.
Reply to Question (RQ) Response that specifically answers | Yes, I'm fine. .141
a previous question.
Directive (D) Request signaled by imperative | Give me the blue piece. .040
form.,
Indirect Directive (ID) Regquest in non-imperative form. Can you open the door? .015
Assertion (A) Report about some state of affairs | The risograph machine is| .403
that could be true or false. broken.
Evaluation (E) An expression of sentiment. That stinks! .031
Verbal Response (R) Spoken acknowledgment of the| Uh-huh. .069
previous speech act.
Nonverbal Response (N) Unspoken acknowledgment of the | (Head nod) .026
previous speech act.
Juncture (J) Lengthy pause in conversation. (Pause) .069

Connectionist Models Of Predicting
Speech Act Categories

We investigated three connectionist architectures: (1)
Elman's recurrent network (Elman, 1990), (2) a single-
entry backpropagation network that uses one prior
speech act in making its prediction, and (3) a double-
entry backpropagation network that uses two prior
speech acts. The details of each model are covered in
this section.

Elman's Recurrent Network

The first speech act network consists of the recurrent
architecture developed by Elman (1990). Elman's
recurrent network keeps an encoding of all previous
input and is able to use this information to induce the
structure underlying temporal sequences. The use of
prior context makes the Elman network quite suitable
for the task of discovering the systematicity in a
temporal ordering of speech acts.

The Elman model consists of four layers of nodes,
as shown in Figure 1. The four layers include the input
layer, the hidden layer, the context layer, and the output
layer. The input layer uses local representation, i.c.,
there is a node for each possible speech act category.
There are two participants in the conversation, each
with eight possible speech act categories, so there are
16 total speech act categories. These 16 possible
speech acts, plus the juncture, yield 17 speech act
categories that the input layer can encode. Since local
representation is used, a single input (speech act n) is
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sent into the network simply by activating the
corresponding input node. For example, suppose
person 1 asked a question. This would be represented
by activating the Q1 node on the input layer of the
network.

The output layer contains the network's predictions
for speech act n+1. Output items have activation in
direct proportion to the degree to which the network
predicts them.

Output Layer

[EEEEREEEEEEEEEEEE]

Fixc:l/comsponding weights of 1

I Hidden Units
N

(B EEBEEEEE EEEE EE )

Input Layer

Figure 1: Elman's Recurrent Network




For example, if Q1 were used as input, the RQ2 node
would probably be highly activated becausc it is person
2's answer to the question.

The Elman network differs from the normal
backpropagation networks because it has a context layer
that keeps track of previous inputs. This context layer
allows the Elman network to induce temporal sequences
(Elman, 1990; Cleeremans, Servan-Schreiber, &
McClelland, 1989). The context layer stores the
activations of the hidden layer from the previous time
step. Since the activations of the hidden layer depend
on the previous input (speech act n) along with the
activation of the context layer, the hidden layer is
receiving information about the present input along
with information about past inputs. This combination
of the input with the context layer is subsequently
copied to the context layer, allowing the network to
store its encoding of history in the context layer.

There was a total of 440 connections that were
allowed to vary in the weight space. There were 170
connections between the input layer and the hidden
layer, given that there were 17 input nodes and 10
hidden unit nodes. Similarly there were 170
connections from the hidden layer to the output layer.
The final 100 connections linked the 10-node context
layer to the 10-node hidden layer. It should be noted
that there are 10 connections from the hidden layer to
the context layer that are fixed at 1.0.

Single and Double Backpropagation Networks

The single-entry backpropagation network is a
simplification of the Elman network. It has only three
clusters of nodes: an input layer, a hidden layer, and an
output layer. There is no context layer in the single-
entry backpropagation network to encode previous
information. There were 340 connections in this
network. This model uses only the previous speech act
(speech act n) to predict the category of the next speech
act (speech act n+1). Some speech act theories identify
predictability that is contained in adjacent pairs of
speech acts. The single-entry backpropagation model
would capture this systematicity.

The double-entry backpropagation network is a
slight expansion of the single-entry backpropagation
network. The double-entry network has an expanded
input layer that takes two speech act categories as input.
In this model, speech act n-1 and speech act n are used
to predict speech act n+1. There were 510 connections
in this network.

Goodness of Prediction Indices

Goodness of prediction (GOP) indices measure the
extent to which the model is correctly predicting the
category of the next speech act (n+1). There are two
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different GOP indices: maximal activation and above-
threshold.

The maximal activation GOP index considers only
the output node with the highest activation to be the
network's prediction for speech act n+1. The maximal
activation GOP index measures the probability that the
predicted speech act actually occurs in the data, over and
above the basc rate of the speech act category. The
GOP index is computed as shown in formula 1.

Maximal Activation GOP index =

(Hit Rate - Base Rate) / (1 - Baserate) (1)
In the above calculation, hit rate was the probability
(over many observations) that the theoretically predicted
category matches the actual category. The base rate
likelihood was the probability that the speech act would
be predicted on the basis of its a posteriori distribution
(see Table 1).

The above-threshold GOP index assesses the
network’s performance when allowed multiple
predictions. All output nodes that exceed a threshold
activation level are considered theoretical predictions for
n+1. The GOP index is computed in the same manner
as formula 1. However, in this case, hit rate is
probability that the actual output is among the set of
theoretically predicted categories, and the base rate is the
sum of the a posteriori probabilities of all the predicted

speech acts.

Simulation Details

Data Set

The data used in the simulation was taken from
videotaped conversations of second and sixth graders
(Sell, et al., 1991). Dyads of second and sixth graders
were observed in three different tasks: a question
answering task (akin to 20 questions), freeplay, and a
puzzle task. The children were further segregated
according to how well they knew each other. Relations
included mutual friends, acquaintances, and unilateral
friends (where child A considers B a friend, but not vice
versa). There were 18 different subject groups and 5
subjects per group: 3 (type of relation) x 2 (age) x 3
(task). Therefore, there were 90 10-minute dyadic
conversations altogether. These conversations were
segmented into sequences of the 17 speech act categories
(see Table 1). The juncture category was a special
category used to reset context when there was a new
conversation, when there was a long pause in a
conversation (5 or more seconds), or when the speech
was incomprehensible. The agreement between a pair
of judges in assigning speech acts to categories was
moderate (overall kappas of .82, .76, and .74 for the
question task, puzzle task, and free time task,
respectively).



Training the Networks

The data taken from the children's conversations formed
temporal sequences of speech acts. The 90 individual
conversations provided an overall sequence of 16657
speech acts. A 17-bit binary string was uscd to locally
represent the particular speech act. Once the data was
transformed into the appropriate local encoding, each
network was trained on 12 passes through the data set.
Each connectionist architecture then underwent eight
different training runs, with different random sets of
initial weights.

Results and Discussion

Which Model Best Explains the Data?

Table 2 segregates the maximal activation and the
above-threshold analyses. Within each of these, there is
the GOP index score, the hit rate, and the base rate.

When considering the maximal activation GOP
index there were significant differences among the three
networks, F(2,23)=257.94, p<.05. Follow up tests
revealed that both the recurrent and the double-entry
backpropagation networks perform significantly better
than the single-entry backpropagation networks.
According to the data, a single speech act of context is
not enough to capture all of the systematicity in the
data.

When analyzing the above-threshold GOP index,
where multiple predictions are allowed, again there were
significant differences among the networks
F(2,23)=227.56, p<.05. The recurrent network
performed significantly better than both
backpropagation networks. The two GOP indices
together indicate that the recurrent network is best able
to accommodate the systematicity inherent in the
sequence of speech act categories.

TABLE 2
Goodness of Prediction (GOP) Scores For
Three Network Architectures

Backpropagation

Recurrent Single- Double-
Network Entry Entry
Maximal Activation Analysis
GOP Index .289 .268 .292
Hit Rate 375 357 379
Base Rate 122 .122 122
Above Threshold Analysis
GOP Index 376 322 .367
Hit Rate .565 523 .554
Base Rate .304 .295 .296
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How Much Context is Needed?
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Figure 2: Goodness of Prediction Index
Based on Number of items of Context

We examined how much of the context is made use of
in the recurrent network. We varied the number of
items of context that was fed into the recurrent network.
Figure 2 plots the GOP indices as a function of the
number of context items considered. The results
indicate that only 2 to 3 items of context are made use
of by the recurrent network. Given that the recurrent
network is expected to unpack most or all regularities in
the data, we conclude that only three speech acts of
context capture any systematicity; any information
further back has a very small impact on the prediction
of speech act categories.

What is an Ideal Threshold?

An important parameter in the simulation was the
threshold we selected for the above-threshold analysis.
The findings rely on the value picked for the threshold.
We wanted a threshold value that would maximize
goodness-of-prediction, while also making a reasonable
number of predictions. A network that predicted 16
possible categories for speech act n+1 would be
undiscriminating and therefore not useful. In deciding
on the threshold, we tested the network at various
thresholds and recorded the GOP indices. We then
divided these GOP indices by the average number of
output categories that were above threshold (assigning a
minimum value of 1 for number of categories). This
adjusted above-threshold GOP index matched both our
criteria. We wanted to maximize the GOP indices while
also keeping the number of predictions at a low
number. At thresholds of .05, .10, .15, .20, and .25 we
found adjusted GOP indices of .122, .184, .214, .221,
and .177. We ended up choosing a threshold of .18



which had a maximum adjusted GOP index of .221.
This threshold also limited the network to predicting an
average of 1 or 2 speech act categories, which seemed
reasonable.

What Conditions Influence GOP Indices?

Our conversations involved three variables: age of
speakers, context of conversation, and rclationship
between speakers. We examined factors that could
influence the GOP indices. We selected the recurrent
network that best fit the data and used the network to
compute maximal activation GOP indices for each of
the 90 individual conversations. We then assessed the
variability among these conversations and analyzed
which factors best accounted for GOP index scores. We
found that context was the only significant predictor of
GOP indices. The GOP indices were .38, .07, and .18
for the 20 questions task, puzzle task, and freeplay,
respectively, F(2,72)= 50.09, p<.05. The F-scores for
Age and Relationship were both non-significant
(F < 1). We also did not find any significant
interactions.

Technical Assumptions

We performed a number of auxiliary analyses that
assessed technical assumptions behind our architectures.
To assess our choice for the number of hidden units and
context units, we varied the number of nodes in the
hidden layer. The above-threshold GOP indices were
.363, .376, .376, .384, .383 when there were 6, 8, 10,
12, and 14 hidden nodes, respectively. Clearly, the
number of hidden units did not affect the GOP index
very much.

In an attempt to find the amount of training needed,
we trained the network at various number of epochs, up
to 35 passes through the corpus of 16657 speech act
categories. The network's performance appeared to
asymptote within 10 passes through the data.

We used the split-half transfer technique to test
generalization. We randomly assigned half of each
conversation to a training set and the other half to a
transfer set. The network was then trained on the items
in the training set. After training, GOP indices were
recorded for network performance on both the training
and transfer sets. The GOP index scores for the training
set were exactly the same as the GOP index scores for
the transfer set. The network performed as well on new
data (not previously trained) as on the training items.
Therefore, the network clearly achieved generalization.

Some Network Regularities

The network's activations and patterns of prediction
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were examined for any consistent regularities. Two of
the most pervasive adjacency pairs discovered were the
[Question then Response-to-question] pair and the
[Assertion then Assertion] pair, The Response-to-
question output node only received activation when
preceded by a question from the opposite person. When
this occurred, the output node had the highest average
activation awarded by the network. The Response-to-
question was correctly predicted 89% of the time. The
Assertion also received high activation when preceded
by an Assertion by either party. Assertions were
correctly predicted 59% of the time.

General Discussion

There were a number of findings in this study. First,
Elman's recurrent network performed better than both
backpropagation networks in accounting for the data.
The backpropagation networks in this paper only used a
context of two items at most. The context layer of the
recurrent network appears to enable the network to
utilize context further back than two items. However,
the context analysis (Figure 2) suggests that not much
information is gained after three items of context. It
appears that only 2 or 3 items of context are utilized in
predicting speech act categories. These findings fit with
current theories that have specified regularities for 3
items of context or less. For example, Schegloff and
Sacks' (1973) adjacency pair analysis contains one item
of context. Mehan's (1979) Question-Answer-
Evaluation triplet contains two items of context, while
Clark and Schaefer's Question Counter-question
example contains 3 items of context.

We are currently in the process of comparing the
recurrent connectionist network's performance to other
computational models: an Augmented Transition
Network (ATN) designed similarly to Stevens and
Rumelhart's (1975) ATN for English sentences, and a
production system model (Anderson, 1983; Kieras &
Bovair, 1984).
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