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Comprehensive genomic profiles of small cell lung cancer

A full list of authors and affiliations appears at the end of the article.

Abstract

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest 

human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and 

RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had 

evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), 

revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors 

TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 
that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited 

kinase gene mutations, providing a possible therapeutic opportunity for individual patients. 

Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. 

Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly 

reduced the number of tumours and extended the survival of the mutant mice. Furthermore, 

neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first 

comprehensive study of somatic genome alterations in SCLC uncovers several key biological 

processes and identifies candidate therapeutic targets in this highly lethal form of cancer.

Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers, arises in 

heavy smokers, and the tumour cells express neuroendocrine markers. Although 

chemotherapy is initially effective in the treatment of SCLC, recurrence arises rapidly in the 

vast majority of cases, usually killing the patient within only a few months1. SCLC is rarely 
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treated by surgery and few specimens are available for genomic characterization. Previous 

studies applying mostly exome sequencing in a limited number of tumour specimens have 

revealed only a few recurrently mutated genes2,3.

We hypothesized that complex genomic rearrangements, which are undetectable by exome 

sequencing, might further contribute to the pathogenesis of SCLC and thus performed 

whole-genome sequencing of 110 human SCLC specimens (Supplementary Tables 1–4). 

One of the hallmarks of SCLC is the high frequency of mutations in TP53 and RB1 (refs 2–

7). As mice lacking Trp53 and Rb1 in the lung develop SCLC8,9, we also sequenced 8 of 

these murine SCLC tumours in order to identify mutations that may promote SCLC 

development following loss of Trp53 and Rb1 and that may overlap with such accessory 

genes in human SCLC10 (Supplementary Table 5).

Samples and clinical data

We collected 152 fresh-frozen clinical tumour specimens obtained from patients diagnosed 

with stage I–IV SCLC under institutional review board approval (Supplementary Table 1 

and Extended Data Fig. 1). The tumour samples were enriched for earlier stages and 

consisted of primary lung (n = 148) and metastatic tumours (n = 4) obtained by surgical 

resection (n = 132), biopsy (n = 4), pleural effusion (n = 1) or through autopsy (n = 15). We 

performed whole-genome sequencing on 110 of these tumours and their matched normal 

DNA. A total of 42 cases were excluded from the analysis because of insufficient quality or 

amount of DNA. Most of these 110 tumours were treatment-naive, with only five cases 

obtained at the time of relapse. We analysed transcriptome sequencing data in 71 of the 110 

specimens that had undergone genome sequencing and in 10 additional specimens. Finally, 

103 of the 110 genome-sequenced specimens and 39 additional specimens were analysed by 

Affymetrix 6.0 SNP arrays (Supplementary Table 1 and Extended Data Fig. 1). Eight tumour 

samples from preclinical SCLC mouse models were analysed by whole-exome sequencing 

(n = 6) or whole-genome sequencing (n = 2) (Supplementary Table 5).

Recurrent somatic alterations in SCLC

SCLC genomes exhibited extremely high mutation rates2,3 of 8.62 nonsynonomous 

mutations per million base pairs (Mb). C:G>A:T transversions were found in 28% of all 

mutations on average, a pattern indicative of heavy smoking (Fig. 1a and Supplementary 

Tables 2 and 3). The smoking history or clinical stage of the tumours did not correlate with 

the type and number of mutations (Extended Data Fig. 2). The median tumour content was 

84% (Extended Data Fig. 3a and Supplementary Table 2). By contrast, murine SCLC 

tumours showed a low number of somatic alterations (on average 28.5 protein-altering 

mutations per sample on average)10 (Supplementary Table 5).

In order to assess the amount of genetic heterogeneity of SCLC, we developed a 

subclonality score, which can be interpreted as the probability that an arbitrary point 

mutation in a randomly selected cancer cell is subclonal throughout the entire tumour 

(Methods). A reliable reconstruction of the subclonal architecture was possible in 55 of the 

cases (Extended Data Fig. 3b). A comparison to lung adenocarcinoma11 indicated a 
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threefold lower subclonal diversity in SCLC (P = 0.00023, Extended Data Fig. 3b), pointing 

to pronounced differences in the evolution of SCLC and lung adenocarcinoma12,13. In 

contrast to adenocarcinomas, the level of heterogeneity in SCLC did not correlate with 

clinical stage (Extended Data Fig. 2b).

We applied several analytical filters in order to identify mutations with a probable relevance 

in SCLC biology in the context of the high load of background mutations2 (Extended Data 

Fig. 1, Supplementary Table 6 and Methods). They include (I) analyses of significance 

determined by a comparison of observed and expected mutation rates followed by a 

correction for expressed genes, (II) a survey of regional clustering of mutations that may 

indicate mutational targeting of functionally enriched areas in tumour suppressors or proto-

oncogenes, (III) determination of genes that are enriched for likely damaging mutations, 

(IV) a comparison with genes whose biological relevance has been established in SCLC 

mouse models, and (V) a listing of genes with a likely therapeutic relevance or that are 

otherwise frequently affected by genetic alterations in human cancers (that is, genes in the 

Cancer Gene Census14 and COSMIC15 database).

Among the significantly mutated genes (I), (q-values < 0.05, Methods) were TP53 and RB1 
(refs 4–7), KIAA1211 and COL22A1, as well as RGS7 and FPR1, both of which are 

involved in G-protein-coupled receptor signalling (Fig. 1a).

Locally clustered mutations (II) are indicative of functional selection (P < 0.05, 

Supplementary Table 6, Methods)2,16. Of all genes, Fig. 1a lists those alterations that 

occurred in more than 8% of the samples, were otherwise affected by recurrent genomic 

rearrangements (Supplementary Table 4), or were mutated in Trp53−/−, Rb1−/− or Trp53−/−, 

Rb1−/−, Rbl2−/− SCLC tumours arising in mice8,9 (Supplementary Table 5). Confirming 

previous results and our analytical strategy, the histone acetyltransferase genes CREBBP and 

EP300 exhibited significantly clustered mutations and recurrent inactivating translocations 

(Fig. 1a and Extended Data Fig. 3c)2,3. Furthermore, significant mutation clustering 

occurred in genes with functional roles in the centrosome (ASPM, ALMS1 and PDE4DIP), 

in the RNA-regulating gene XRN1 and the tetraspanin gene PTGFRN; the latter was also 

mutated in murine SCLC (Extended Data Fig. 3c). The TP53 homologue TP73, which was 

also affected by recurrent somatic rearrangements (Fig. 1a), also showed clustered 

mutations.

In the group of significantly damaged genes (III) we also found TP53, RB1, CREBBP and 

COL22A1, further highlighting their likely biological relevance in SCLC. Additional 

inactivating mutations occurred in FMN2 and NOTCH1 (P < 0.01). NOTCH family genes 

were recurrently mutated with a pattern of frequent inactivation. Notch3 was also mutated in 

a Trp53−/−,Rb1−/−,Rbl2−/− mouse tumour (Fig. 1a, Supplementary Table 5 and Methods).

Of the genes with an established role in murine SCLC (IV), we confirmed PTEN10,17. RBL1 
and RBL2, which are closely related to RB1 (ref. 9), similarly exhibited inactivating 

translocations and mutations (Fig. 1a, Extended Data Fig. 3d and Supplementary Table 4). 

Mice with inactivation of Trp53, Rb1 and Rbl2 develop SCLC with shorter latency than 
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mice lacking Trp53 and Rb1 alone9, thus validating RBL2 as another accessory tumour 

suppressor in SCLC.

Given the lack of therapeutic options in SCLC, we sought mutations that are known 

oncogenic drivers in other cancers and sometimes associated with response to targeted drugs 

(V)14,15. Of these, we found mutations in four tumours with a potential therapeutic 

implication, including mutations in BRAF18, KIT19,20 and PIK3CA21 (Extended Data Fig. 

3e). Thus, genotyping of SCLC patients may reveal individual patients who might have a 

possible benefit from targeted therapeutic intervention.

Across these five categories, mutations in CREBBP, EP300, TP73, RBL1, RBL2 and 

NOTCH family genes were largely mutually exclusive (Fig. 1a), suggesting that they may 

exert similar pro-tumorigenic functions in the development of SCLC. We did not observe 

significant correlations of global mutational signatures (for example, predominance of 

C:G>A:T transversions) with the mutational status of these genes (Extended Data Fig. 2b). 

Furthermore, mutations in these genes were not significantly associated with the total 

number of mutations, overall survival or other clinical parameters (Extended Data Fig. 4). 

The mutation status of 22 of the most frequently mutated genes was confirmed in an 

independent data set (Methods and Supplementary Table 7).

By analysing somatic copy number alterations, we confirmed previously known genomic 

losses within 3p pointing to focal events on 3p14.3–3p14.2 (harbouring FHIT5) and 3p12.3–

3p12.2 (harbouring ROBO1 (ref. 22)) (Fig. 1b, Extended Data Fig. 5a and Supplementary 

Table 8)5,22,23. FHIT expression was also reduced in cases with focal deletions (Extended 

Data Fig. 5b). In addition to homozygous losses in the CDKN2A locus (Extended Data Fig. 

5c), amplification of the MYC family genes5, MYCL1, MYCN and MYC, as well as of the 

tyrosine kinase gene, FGFR1 (refs 2, 24), and IRS2 were recurrent genomic events (Fig. 1b). 

Focal IRS2 amplifications occurred in 2% of the cases (Extended Data Fig. 5d, e).

Universal inactivation of TP53 and RB1

Inactivating mutations in TP53 and RB1 have been shown to affect up to 90% and up to 65% 

of SCLC, respectively2–7. By contrast, our whole-genome sequencing analyses revealed that 

both genes were altered in all but two cases that exhibited signs of chromothripsis25 (Figs 1 

and 2). TP53 and RB1 alterations were mostly inactivating (Supplementary Table 9 and 

Extended Data Fig. 6a). Missense mutations in TP53 affected the functionally critical DNA 

binding domain, while RB1 was frequently altered by complex genomic translocations. 

Many mutations in RB1 occurred at exon–intron junctions, which caused protein-damaging 

splice events as confirmed by transcriptome sequencing (Extended Data Fig. 6b–e and 

Supplementary Tables 10 and 11). In the 108 tumours without chromothripsis, TP53 and 

RB1 had bi-allelic losses in 100% and 93% of the cases, respectively. Inactivating events 

included mutations, translocations, homozygous deletions, hemizygous losses, copy-neutral 

losses of heterozygosity (LOH) and LOH at higher ploidy (Fig. 2a, Extended Data Fig. 6 

and Supplementary Table 9). Loss of CDKN2A occurred in cases with both bi-allelic 

inactivation of TP53 and RB1 and hemizygous loss of RB1 (Fig. 2a). Although emerging 

data supports a continuum model of inactivation of tumour suppressors across multiple 

George et al. Page 4

Nature. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancers, TP53 and RB1 follow the classical discrete ‘two-hit paradigm’ pattern of Knudson-

type tumour suppressors in SCLC26,27.

The two tumours affected by chromothripsis displayed a similar pattern of massive genomic 

rearrangements between chromosomes 3 and 11 (Fig. 2b and Extended Data Fig. 7a), but 

lacked shared fusion transcripts in the transcriptome sequencing data, suggesting that a 

particular fusion is not a common target (Extended Data Fig. 7b and Supplementary Table 

12). Of the genes on chromosomes 3 and 11, CCND1 (encoding cyclin D1) was retained 

(Fig. 2b and Extended Data Fig. 7a) resulting in significant CCND1 overexpression in both 

tumours, but not in the other SCLC specimens (Fig. 2c, d and Supplementary Table 13). 

Immunohistochemistry confirmed high expression of cyclin D1 and a lack of nuclear Rb1 

(Fig. 2e, Extended Data Fig. 7c). There were fewer proliferating Ki67-positive cells in these 

two cases. As cyclin D1 negatively regulates Rb family proteins28, these findings suggest 

that chromothripsis in cases with wild-type RB1 may compensate for genomic loss of RB1.

Together, our findings provide evidence for the notion that complete genomic loss of both 

TP53 and RB1 function is obligatory in the pathogenesis of SCLC.

Oncogenic genomic events affecting TP73

We analysed the genome sequencing data for the presence of clustered chromosomal 

breakpoints that may indicate a common biological target (Supplementary Table 14)29 and 

found 5 major clusters affecting RB1, as well as regions on chromosomes 1, 3 (3q26), 6 

(affecting CDKAL1) and 22 (Fig. 3a). Breakpoints in chromosome 22 caused inactivating 

translocations of TTC28 (Extended Data Fig. 8a)30. Breakpoints also clustered downstream 

of the L1HS retrotransposon in SCLC, further supporting a role for this element in 

cancer31,32, (Extended Data Fig. 8b). Breakpoints on chromosomes 3, 6 and 22 did not result 

in changes of expression of the affected genes (Supplementary Table 10).

By contrast, genomic breakpoints affecting chromosome 1 clustered precisely in the TP73 
locus in 7% of the cases (n = 8). To our surprise, several breakpoints were recurrently 

located in introns 1, 2 and 3 of TP73. In two cases, breakpoints led to complex 

intrachromosomal rearrangements (Extended Data Fig. 8c and Supplementary Table 4), 

while the majority of breaks caused intragenic fusions and, thus, exclusion of either exon 2, 

or exons 2 and 3, which were all somatic (Fig. 3b and Extended Data Fig. 8d). Some 

rearrangements were copy-neutral events, while others occurred on the background of copy 

number gains (Extended Data Fig. 8e). One tumour sample revealed genomic exclusion of 

exon 10 (Fig. 3b). Analyses of transcriptome sequencing data confirmed that these 

rearrangements created the N-terminally truncated transcript variants p73Δex2 and 

p73Δex2/3, as well as p73Δex10 (ref. 33) (Fig. 3c, d and Supplementary Table 11). Genomic 

validation and comparative profiling of transcript variants confirmed that p73Δex2/3 were 

not naturally occurring splice variants in SCLC and were only found in cases with genomic 

rearrangements (Fig. 3d and Supplementary Table 11). Some tumours expressed p73Δex2, in 

which we failed to identify genomic rearrangements (Supplementary Table 11).
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p73Δex2 and p73Δex2/3 lack a fully competent transactivation domain and are known 

tumour-derived variants of TP73 (ref. 33). p73 with N-terminal truncations has dominant 

negative functions on wild-type p73 and p53, and is a confirmed oncogene in vivo34,35. 

p73Δex10 results in an early stop codon; C-terminal truncations can similarly exert 

dominant-negative effects on wild-type p73 (ref. 33).

Altogether, TP73 was somatically altered by mutations and genomic rearrangements in 13% 

of the cases (Fig. 1 and Extended Data Fig. 8c–e). To our knowledge, this is the first study 

describing p73Δex2/3 variants to emerge as a consequence of precise genomic 

rearrangements.

Tumour suppressive roles of Notch in SCLC

In an unsupervised hierarchical clustering analysis of transcriptome sequencing data 

(Methods), we observed two major clusters of SCLC tumours (Fig. 4a and Extended Data 

Fig. 9a). The majority (77%, n = 53/69) of tumours exhibited high expression of the 

neuroendocrine markers CHGA (chromogranin A)1 and GRP (gastrin releasing peptide)5, 

had high levels of DLK1 (ref. 36), a non-canonical inhibitor of Notch signalling36, and 

ASCL1, a lineage oncogene of neuroendocrine cells whose expression is inhibited by active 

Notch signalling (Extended Data Fig. 9b)37,38. The remaining cases (23%, n = 16/69) also 

expressed SYP (synaptophysin) or NCAM1 (CD56), thus confirming that all tumours were 

of the typical SCLC subtype1 (Extended Data Fig. 9c). Furthermore, no significant 

difference in the distribution of the major known SCLC mutations (for example, TP53, RB1 
or CREBBP) existed between the two transcriptional subtypes (Extended Data Fig. 9a). 

Thus, although all SCLC tumours shared the most frequent mutations as well as key 

neuroendocrine markers, the majority had a gene expression pattern suggestive of low Notch 

pathway activity (high levels of ASCL1 and DLK1).

Mutations affected NOTCH family genes in both human and murine SCLC (Fig. 1a and 

Supplementary Table 5). The mutations did not cluster significantly in any individual 

domains, but frequent damaging mutations occurred in the extracellular domain (Fig. 4b and 

Extended Data Fig. 10a), suggesting that NOTCH may be a tumour suppressor in SCLC. 

Overall, the NOTCH family was affected by genomic alterations in 25% of human SCLC 

(Fig. 1).

Based on these observations and emerging evidence that activation of Notch signalling may 

inhibit the expansion of neuroendocrine tumour cells39,40, we examined the consequences of 

Notch pathway activation in Trp53;Rb1;Rbl2 conditional triple-knockout (TKO) mice9.We 

crossed Rosa26Lox-stop-Lox-Notch2ICD (LSL-N2ICD) mice that conditionally express an 

activated form of Notch2 (Notch2 intracellular domain, N2ICD) to TKO mice and found a 

significant reduction in the number of tumours that arose in the presence of N2ICD (P < 

0.001; Fig. 4c). Similar results were obtained upon activation of Notch1, reflecting a general 

inhibition of SCLC initiation by active Notch signalling (Extended Data Fig. 10b). The 

recombination efficiency of an innocuous inducible reporter allele (Rosa26mT/mG) by Cre 

was much greater than that of the N2ICD allele, providing further support for a strong 

negative selection against active Notch signalling during SCLC development (Extended Data 
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Fig. 10c–e). Importantly, the inhibitory effects of Notch observed in the early stages of 

tumorigenesis correlated with a prolongation of survival of the mutant mice expressing 

N2ICD (Fig. 4d). Similarly, ectopic expression of N1ICD in both mouse and human SCLC 

cell lines significantly inhibited their growth (Fig. 4e and Extended Data Fig. 10f).

SCLC tumours in TKO mice showed typical patterns of neuroendocrine differentiation with 

high expression of synaptophysin and Ascl1. Consistent with the notion that Notch regulates 

neuroendocrine differentiation in SCLC, overexpression of N2ICD resulted in the 

upregulation of Hes1 and abrogated expression of neuroendocrine markers (Extended Data 

Fig. 10g). Similarly, N1ICD induced upregulation of Notch targets (for example, Hes1, 
Hey1, Hey2) in murine SCLC cells (Fig. 4f, Extended Data Fig. 10h and Supplementary 

Table 15), as well as gene expression signatures consistent with cell cycle inhibition 

(Extended Data Fig. 10i). Ectopic expression of N1ICD inhibited cell cycle progression in 

murine and human SCLC cell lines (Extended Data Fig. 10j, k). This cell cycle inhibition is 

reminiscent of what has been seen in other contexts where Notch activation acts as a tumour 

suppressor41,42.

Altogether, our analyses involving genome and transcriptome sequencing of human and 

murine SCLC tumours, as well as studies in genetically manipulated mice, identify and 

validate Notch as a tumour suppressor and master regulator of neuroendocrine 

differentiation in SCLC.

Discussion

Here we provide a comprehensive analysis of somatic genome alterations in SCLC, 

identifying many novel candidate genes, some of which may have therapeutic implications. 

Such alterations with immediate therapeutic consequences are rare but present in SCLC (for 

example, in BRAF or KIT), suggesting that individual patients may benefit from genotyping 

and subsequent targeted kinase inhibitor therapy. We further discovered recurrent expression 

of p73Δex2/3 in SCLC and established a genetic mechanistic basis for this oncogenic 

variant. TP73Δex2/3 has recently been demonstrated to function as an oncogene34,35 and 

therapeutic options were identified to restrict p73-dependent tumour growth in vivo, 

including in Trp53-deficient tumours35. Given the frequent occurrence of genomic TP73 
alterations in SCLC, such approaches may potentially be promising in SCLC tumours. Our 

results furthermore provide proof for universal bi-allelic inactivation of TP53 and RB1, 

thereby establishing these two genes as obligatory tumour suppressors in SCLC.

Our genomic analyses also identified NOTCH family genes as tumour suppressors and 

master regulators of neuroendocrine differentiation in SCLC, and we validated this finding 

in vivo in a pre-clinical mouse model of this disease. Our observations may thus provide an 

initial link between Notch and the neuroendocrine phenotype in SCLC. In contrast to the 

involvement of TP73 and NOTCH family genes (Fig. 5), the functional role of most of the 

other newly discovered genes (for example, KIAA1211, COL22A1, ASPM, PDE4DIP or 

PTGFRN) is much less clear. Although our analytical filters support their involvement in the 

tumour pathogenesis, functional experiments will be required to clarify their biological role.
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In summary, we have provided the first, to our knowledge, comprehensive genomic analysis 

of SCLC, implicating several previously unknown genes and biological processes (Fig. 5) in 

the pathogenesis of this disease as possible targets for more efficacious targeted therapeutic 

intervention against this deadly cancer.

Online Content Methods, along with any additional Extended Data display items and 

Source Data, are available in the online version of the paper; references unique to these 

sections appear only in the online paper.

METHODS

Human lung tumour specimens

The institutional review board of the University of Cologne approved this study. We 

collected and analysed fresh-frozen tumour samples of 152 SCLC patients, which were 

provided by multiple collaborating institutions as fresh-frozen tissue specimen, frozen 

sections or as genomic DNA extracted from fresh-frozen material (Extended Data Fig. 1). 

Human tumour samples were obtained from patients under IRB-approved protocols 

following written informed consent.

The fresh-frozen SCLC samples were primary tumours diagnosed as stage I–IV tumours, 

and snap-frozen after tissue sampling. All tumour samples were pathologically assessed to 

have a purity of at least 60% and no extensive signs of necrosis. Additionally, these tumour 

samples were reviewed by at least two independent expert pathologists and the diagnosis of 

SCLC was histomorphologically confirmed by H&E staining and immunohistochemistry for 

chromogranin A, synaptophysin, CD56 and Ki67. Matching normal material was provided 

in the form of EDTA-anticoagulated blood or adjacent non-tumorigenic lung tissue 

(Supplementary Table 1). The matched normal tissue was confirmed to be free of tumour 

contaminants by pathological assessment. Furthermore, tumour and matching normal 

material were confirmed to be acquired from the same patient by short tandem repeat (STR) 

analysis conducted at the Institute of Legal Medicine at the University of Cologne 

(Germany), or confirmed by subsequent SNP 6.0 array and sequencing analyses. Patient 

material was stored at −80 °C.

Whole-genome sequencing was performed on 110 SCLC fresh-frozen tumour samples and 

matched normal material. Additionally, we analysed RNA-seq data of 81 SCLC primary 

tumours (Extended Data Fig. 1 and Supplementary Table 1), among which 20 cases were 

previously published2,43. Furthermore, we studied the copy-number alterations of a total of 

142 fresh-frozen tumour specimen by Affymetrix SNP 6.0, among which 74 cases were 

described before44.

Clinical correlation studies were performed with the study cohort of 110 SCLC patients 

considering age of diagnosis, gender, tumour stage, surgery, treatment with 

chemotherapeutics, smoking status, smoking history and overall survival (Extended Data 

Figs 2 and 4 and Supplementary Table 1). The median follow-up time for this cohort of 110 

SCLC patients was 69 months, and 31% of the patients were alive at the time of last follow-

up (Extended Data Fig. 2a and Supplementary Table 1). Smoking status was available for 
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88% (n = 97) of the patients; 63% (n = 69) reported a smoking history amounting to a 

median of 45 pack-years. Patients with a known smoking history were further 

subcategorized to heavy smokers (>30 pack-years), average smokers (10–30 pack-years) and 

light/never smokers (<10 pack-years).

Primary findings on somatic mutations were further studied in a second independent cohort 

consisting of 112 SCLC cases. This validation cohort refers to the exome sequencing data of 

28 fresh-frozen SCLC primary tumours and 9 SCLC cell lines2,3 which were re-analysed in 

this present study (Supplementary Table 7). Additionally, we performed targeted sequencing 

on 8 fresh-frozen and 67 formalin fixed paraffin embedded (FFPE) samples from SCLC 

patients (Supplementary Table 1).

Mouse SCLC models and tumour samples

Mice were maintained according to practices prescribed by the NIH (Bethesda, MD) at 

Stanford’s Research Animal Facility, accredited by the Association for the Assessment and 

Accreditation of Laboratory Animal Care (AAALAC). The Trp53;Rb1 double-knockout 

(DKO) and the Trp53;Rb1;Rbl2 triple-knockout (TKO) mouse models for SCLC have been 

previously described8,9. Mice were bred onto a mixed genetic background composed of 

C57BL/6, 129/SvJ and 129/SvOla. SCLC tumours were induced in 8-week-old mice by 

intratracheal instillation with 4 × 107 plaque-forming units (p.f.u.) of adenovirus expressing 

the Cre recombinase (Ad-Cre, Baylor College of Medicine, Houston, TX).

Whole-genome and whole-exome sequencing was performed on 8 murine SCLC tumours 

isolated from DKO and TKO mice. Primary tumours and metastases were dissected, snap-

frozen, and stored at −80 °C. The material was pathologically confirmed to have a tumour 

content of at least 90%. The respective tail tissue was similarly processed and served as a 

normal reference for 6 tumour samples (Supplementary Table 5). Average mutation rates 

were calculated for cases with tumour-normal pairs (n = 6).

SCLC tumours expressing the activated intracellular domain (ICD) of Notch1 (Notch1 ICD, 

N1ICD) and Notch2 (Notch2 ICD, N2ICD) were analysed in mouse models. 

Rosa26Lox-stop-Lox-Notch1ICD (LSL-N1ICD) or Rosa26Lox-stop-Lox-Notch2ICD (LSL-N2ICD) 

mice were obtained from Spyros Artavanis-Tsakonas and Exelixis. These mice are similar to 

recently published Rosa26+/LSL-Notch3ICD mice45. Rosa26+/LSL-N1ICD or Rosa26+/LSL-N2ICD 

mice were crossed with TKO mice. TKO or TKO;Rosa26+/LSL-NICD mice were infected 

with Ad-Cre at week 8 and their survival was monitored. The sample size was chosen based 

on our experience with these mouse models of cancer (a minimum of 3–5 mice usually 

ensures statistical significance if the phenotypes are robust). We used both males and 

females in these experiments, littermates served as controls. Tumour initiation was studied 

three months after Ad-Cre instillation. The lungs were fixed and tumour burden was 

quantified using ImageJ software. To control for the efficiency of deletion, we also crossed 

TKO mice to Rosa26mT/mG reporter mice46. For all tumour quantifications, the investigator 

was blinded to the genotypes when the H&E pictures were taken, and during the 

quantification of tumour number and area. No samples or animals were excluded from the 

analyses, and no randomization was performed.
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DNA and RNA extractions

Nucleic acids were extracted from fresh-frozen tissue specimen which were processed to 

15–30 sections each of 20 µm thickness at a cryostat maintaining a temperature of −20 °C 

(Leica). In the case of FFPE samples, 6–10 sections of 10 µm thickness were prepared.

DNA was extracted from fresh-frozen tissues, EDTA blood, or FFPE samples using the 

Gentra Puregene DNA extraction kit (Qiagen) following the protocol of the manufacturer. 

DNA isolates were hydrated in TE-buffer and confirmed to be of high molecular weight 

(>10 kb) by agarose gel electrophoresis. Genomic DNA from fresh-frozen samples with 

evident signs of degradation were excluded from further sequencing studies.

For RNA extractions, tissue sections were first lysed and homogenized with the Tissue Lyzer 

(Qiagen). Subsequent RNA extractions were performed with the Qiagen RNAeasy Mini Kit 

according to the instructions of the manufacturer. The RNA quality was assessed at the 

Bioanalyzer 2100 DNA Chip 7500 (Agilent Technologies) and samples with a RNA 

integrity number (RIN) of over 7 were further analysed by RNA-seq.

Next-generation sequencing

All sequencing reactions were performed on an Illumina HiSeq 2000 instrument (Illumina, 

San Diego, CA, USA).

Whole-genome sequencing—Whole-genome sequencing was performed with DNA 

extracted from fresh-frozen tumour and normal material. Short insert DNA libraries were 

prepared with the TruSeq DNA PCRfree sample preparation kit (Illumina) for paired-end 

sequencing at a minimum read length of 2 × 100 bp. Human DNA libraries were sequenced 

with the aim to obtain a coverage of minimum 30× for both tumour and matched normal. 

Murine DNA libraries of tumour and matched normal were both sequenced to a coverage of 

25×.

Whole-exome sequencing—Whole-exome sequencing was performed on fresh-frozen 

tissue specimen from mice. The enrichment for the exome was performed with the 

SureSelectXT Mouse All Exon kit (Agilent) following the protocol of the manufacturer. The 

exon-enriched libraries were subjected to paired-end sequencing with a read-length of 2 × 

100 bp. Both tumour and normal material was sequenced to a minimum coverage of 60×

RNA-sequencing—RNA-sequencing (RNA-seq) was performed with RNA extracted 

from fresh-frozen human tumour tissue samples. cDNA libraries were prepared from 

poly(A) selected RNA applying the Illumina TruSeq protocol for mRNA. The libraries were 

then sequenced with a 2 × 100 bp paired-end protocol to a minimum mean coverage of 30× 

of the annotated transcriptome.

Targeted enrichment sequencing—Targeted enrichment sequencing was performed on 

human FFPE and fresh-frozen tumour and normal specimen for the purpose of validating 

genome alterations in an independent cohort. The custom probe design was constructed with 

SureDesign (Agilent Technologies) enriching for the exons of 22 genes of interest. DNA 

libraries were prepared with the SureSelect XT reagent kit according to the manufacturer’s 
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instructions (Agilent Technologies) and sequenced with the aim to obtain a coverage of at 

least 200×.

Dideoxy sequencing for validation of somatic alterations

If available, RNA-seq or exome sequencing was used to validate somatic mutations 

determined by genome sequencing. Alternatively, dideoxynucleotide chain termination 

sequencing (Sanger sequencing) was performed to validate mutations, genomic 

rearrangements, and chimaeric fusion transcripts. Primer pairs were designed to amplify the 

target region encompassing the somatic alteration. The PCR reactions were performed either 

with genomic DNA, whole-genome amplified DNA or cDNA. The amplified products were 

subjected to Sanger sequencing and the respective electropherogram was analysed with 

Geneious (http://www.geneious.com).

Copy number analysis by Affymetrix SNP 6.0 arrays

Human DNA extracted from fresh-frozen tumour specimen was hybridized to Affymetrix 

Genome-Wide Human SNP array 6.0 following the manufacturer’s instructions. The signal 

intensities were processed to analyse for chromosomal gene copy number data. Raw copy 

number signals and segmented copy number data were computed following the procedure 

described previously24.

The raw, unsegmented copy number signals were used to analyse for significant copy 

number alterations applying the method CGARS47. Significant amplifications were 

determined with the upper quantiles 0.25, 0.15, 0.1, and 0.05; deletions were computed in 

reference to the 0.25 lower quantile. The significance threshold was set at a q-value of 0.05 

(Supplementary Table 8).

Data processing

The raw sequencing reads of human and mouse samples acquired from whole-genome, 

whole-exome or targeted enrichment sequencing were aligned to the respective human 

(NCBI37/hg19) or mouse reference genome (NCBI37/mm9). The alignment was performed 

with the BWA aligner48 (version 0.6.1-r104). Concordant read-pairs were identified as 

potential PCR duplicates and were subsequently masked in the alignment file. The quality of 

the sequencing data was determined and is summarized in Supplementary Table 2.

The whole-genome sequencing data of human samples was analysed for purity and ploidy 

with methods previously described2 (Extended Data Fig. 3a and Supplementary Table 2).

Somatic mutations and copy number alterations were determined with our in-house analysis 

pipeline2,49. The calling of somatic mutations in human samples was further improved by 

filtering the identified variant against the sequencing data of more than 500 normal samples 

(including exome or genome sequencing data). Additionally, an estimation of human DNA 

library contamination was implemented to enhance sensitivity and specificity of mutation 

calling.

George et al. Page 11

Nature. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.geneious.com


Analysis of significantly mutated and biologically relevant genes

The significance of recurrently mutated genes was analysed for the whole-genome 

sequencing data set of 110 human SCLC samples (Extended Data Fig. 1a).

As previously described2, the analysis first estimated the background mutation rate for each 

gene and corrected for its expression by referring to the RNA-seq data of 81 human primary 

SCLC tumour specimen analysed in the present study. The analysis included those genes 

which had FPKM values (fragments per kilobase of exon per million fragments mapped) of 

over 1 in at least 50 samples. Following corrections for the occurrence of synonymous 

mutations, significantly mutated genes were determined with q-values of < 0.05 (Fig. 1a, 

Extended Data Fig. 1a (filter I) and Supplementary Table 6).

Mutations that cluster within a gene are defined as a mutational hotspot similar to our 

previously described method2. Here we used an analytical derivation of the test statistics, 

rather than resampling. To this end, the mutated positions are rescaled to lie within zero and 

one (using the protein length). Under the null hypothesis of having no particular mutational 

hotspot, the rescaled mutated positions are uniformly distributed between zero and one, thus 

its expected value is 0.5. We therefore chose the final statistics as sum over the modulus of 

the rescaled position minus 0.5. This allows that the distribution under the null hypothesis 

can analytically be calculated; hence, also the P values. The analysis was calculated for 

genes that were significantly mutated in at least 5% of the samples with P < 0.05 (Fig. 1a, 

Extended Data Fig. 1a (filter II) and Supplementary Table 6). In order to further filter for the 

genes of relevance, subsequent analysis considered those genes recurrently mutated in more 

than 8% (n > 8) samples. The called genes were scored for their relevance by either 

analysing recurrent translocations affecting these genes (Supplementary Table 4) or by 

comparison with the mouse SCLC mutation data to identify alterations in common genes 

(Supplementary Table 5).

Additionally, recurrent mutations were scored for the accumulation of clearly damaging 

mutations in which splice site, frameshift and nonsense mutations were considered as 

damaging mutations. Here, we restricted the aforementioned significance analysis only to 

this class of mutations (by restricting the background mutation rate only to damaging 

mutations) and determined significance at P < 0.01 (Fig. 1a, Extended Data Fig. 1a (filter 

III) and Supplementary Table 6).

Genetic alterations were further scored for their relevance by comparison with genes that 

were functionally characterized in genetically engineered mouse models (GEMM) for 

SCLC9,10, or by comparing somatic mutations in SCLC with mutations in other cancer types 

reported in the Cancer Gene Census14 and in COSMIC (catalogue of somatic mutations in 

cancer)15 (Fig. 1a, Extended Data Fig. 1a (filter IV and V) and Supplementary Table 6). 

Additionally, the sequencing data of mouse SCLC specimen was used to identify alterations 

in common genes.

Analysis of subclonal architecture

To determine the subclonal architecture from genome sequencing data, we first computed 

the cancer cell fraction (CCF; that is, the fraction of cancer cells carrying a particular 
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mutation) of each called somatic point mutation. To this end, we first estimated the tumour 

purity, absolute copy numbers, and subclonal copy number changes using our previously 

described method2 and computed for each mutation the expected allelic fraction under 

clonality assumption. The quotient between the observed allelic fraction of a mutation with 

its corresponding expected allelic fraction then yields the CCF. To assess the clonal and 

subclonal populations we next identified distinct clusters in the CCF profile and assigned 

each mutation to the cluster of highest probability. In order to provide a measure for the 

subclonal architecture, we proposed the following score:

where i = 0 represents the clonal population, i = 1,…,nc the subclonal populations; φi is the 

CCF of each population (thus, φ0 ≈ 1), and mi is the number of mutations assigned to 

cluster i. This subclonality score can be interpreted as the probability that a randomly 

selected mutation present in a single cancer cell is subclonal throughout the entire tumour.

As a low sequencing depth limits the robust identification of subclonal populations, we 

computed the genome-wide average contribution of a single mutated read to the CCF. For a 

given tumour purity p, average ploidy π, and mean coverage c, this measure is given by:

The smaller the average increase of CCF per read, the more accurately the subclonality score 

can be determined since more subclonal mutations can be called from the sequencing data. 

In this study, the most limiting factor for assessing the subclonal diversity is the relatively 

low sequencing depth (35× on average). We therefore used this measure to select the 

samples that are suitable for a reliable calculation of the subclonality score. To this end, we 

systematically scanned from the average increase of CCF per read form large to small values 

and detected the point of the most prominent change in the distribution of the subclonality 

score (Supplementary Table 2).

Analysis of genomic breakpoints

Genomic rearrangements were reconstructed from the whole-genome sequencing data of 

110 human SCLC samples following the procedure as previously described2,49. The 

genomic rearrangements called from each tumour sample were further filtered against a 

library of 110 normal genomes to thus minimize the detection of false-positive 

rearrangements. Genomic breakpoints of SCLC candidate driver genes are listed in 

Supplementary Table 4.

The genomic breakpoints of all samples were mapped to their chromosomal locations and 

recurrent breakpoints clustering within the range of 100 kb were identified with a similar 

approach described previously29 (Supplementary Table 14).
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Processing and analysis of RNA-seq data

RNA-seq data was processed as previously described2,49 to detect chimaeric transcripts and 

to determine the transcriptional abundance of annotated transcript variants. In brief, paired-

end RNA-seq reads were mapped to the human reference genome (NCBI37/hg19) using 

GSNAP. Potential chimaeric fusion transcripts were identified by discordant read pairs and 

by individual reads mapping to distinct chromosomal locations. The sequence context of 

rearranged transcripts was reconstructed around the identified breakpoint and the assembled 

fusion transcript was then aligned to the human reference genome to determine the genes 

involved in the fusion.

Cufflinks was used to determine the expression levels of annotated transcripts referring to 

unique paired-end reads which align within the expected mapping distance. The expression 

is represented as FPKM values (Supplementary Table 10).

Transcript splicing analysis

RNA-seq data was used to analyse for alternative splicing events of TP53, RB1 and TP73 
caused by exon skipping or intron retention (Supplementary Table 11). The paired-end reads 

were mapped to the reference genome (hg19) using STAR mapper. In reference to the 

annotation of exon junctions provided from UCSC genes and RefSeq the following 

parameters were applied: ref 1, options:–alignIntronMin 20,–alignIntronMax 500000,–

outFilterMismatchNmax 10, and–chimSegmentMin 10. The coordinates of reads potentially 

crossing exon boundaries were derived from the respective “SJ.out.tab” file and compared to 

the reference annotation. Subsequently, junction read counts were assigned to all transcripts 

containing the respective exon combination. If the exon combination is novel, read counts 

were assigned to those transcripts sharing one of the exons contributing to the novel 

junction. For subsequent analyses the transcript with the highest number of junction read 

counts was used as a reference. Additionally, for exon combinations unique to alternative 

transcripts a representative transcript was selected based on total read counts. The read 

counts of each exon junction were normalized to the reads per kilobase per million mapped 

reads (RPKM) per sample. These expression values were further normalized per gene by 

dividing by the average expression of the exons of the reference transcript. Potentially novel 

exon combinations were rejected if the average expression of the reference transcript was <2 

or if their expression were <10% of the reference transcript expression.

Differential expression for outlier studies

Differential gene expression analysis was performed to compare the transcriptional profile of 

the two chromothripsis cases (S02297 and S02353) with other non-chromothripsis SCLC 

cases and to thus identify outliers in the expression profile. The expression was analysed by 

computing z-scores for all samples referring to the RPKM values and using the R function 

‘scale’; RPKM values smaller than 3 were set to 0. In order to prioritize for genes 

differentially expressed in the two samples S02297 and S02353, genes were ranked by their 

respective z-scores. Statistical testing was performed for genes on Chr 3 and Chr 11, 

respectively. The P values were then combined from the two samples using Fisher’s method 

and corrected for multiple hypothesis testing by using the Benjamini–Hochberg approach. 
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Differentially expressed genes with a P < 0.05 and q-values <0.01 are provided in 

Supplementary Table 13.

Unsupervised expression clustering

Unsupervised clustering was performed with RNA-seq data of 69 SCLC cases for which 

matching genome sequencing data was available (Fig. 4a and Extended Data Fig. 9a). As 

expression values are approximately following log-normal distribution, we transformed raw 

FPKM of each transcript by log2(1 + FPKM). The resulting expression scores were then 

searched for a high and low expression characteristic over the samples. To this end, 

expression scores of each transcript were divided into two states using k-means clustering. 

To prevent an accumulation of artificial signals, only transcripts with at least 6 samples in 

each state and having a state-averaged fold change larger than 3 are considered for further 

analysis. A t-test is then computed between the two states of the remaining transcripts and 

corrected for multiple hypothesis testing using the false discovery rate framework. Next, 

transcripts having a q-value smaller than 0.01 were selected. For genes with multiple 

transcript variants, the transcript with the smallest q-value was chosen as representative 

transcript. Then, invariant genes were removed (having a standard deviation across all 

samples <2). To improve clustering, only genes that share a similar pattern of the two states 

in at least 6 other genes are finally selected (using a Fisher’s exact test with a significance 

threshold of 10−6). Using the determined list of transcripts/genes, hierarchical clustering 

(Euclidean distance, complete linkage) was performed on the raw expression scores.

IRS2 amplification FISH assay

A fluorescence in situ hybridization (FISH) assay was used to detect and confirm IRS2 
amplifications at the chromosomal level. We performed a signal detection approach, with 

two probes on chromosome 13: the reference probe is located on the centromeric region of 

chromosome 13 (Empire Genomics, Art.Nr.: CHR13-10-GR) and was labelled with green 5-

fluorescein dUTP to produce a green signal; the target probe is located on the IRS2 locus 

spanning 13q33.3–34 and was labelled with biotin to produce a red signal using the 

CTD-2083015 BAC clone (Life Technologies, CA, USA). As previously described24, slides 

of FFPE and fresh-frozen samples of tumour tissues were prepared, stained and analysed at a 

fluorescence microscope (Zeiss, Jena, Germany) with a 63× oil immersion objective. A non-

amplified nucleus showed one red target signal for every corresponding green reference 

signal, with a red/green ratio of 1:1 (Extended Data Fig. 5e). High-level amplifications were 

determined for at least 10 red signals. In some cases the red signals were observed as 

clusters in the cells. At least 100 nuclei per case were evaluated.

Immunohistochemistry

Immunohistochemistry was performed on human tumour FFPE samples to analyse for the 

protein expression of Rb, cyclin D1, p53, p14 (ARF), and p16. The staining was performed 

with the BenchMark XT automated immunohistochemistry slide staining system (Roche). 

The following antibodies and conditions were applied: Rb (C-15) rabbit polyclonal (Santa 

Cruz; FFPE retrieving conditions: 60 min at pH 6.0; dilution: 1:500; incubation: 60 min, 

37 °C); Cyclin D1 clone SP4 rabbit monoclonal (Microm France; FFPE retrieving 

conditions: 90 min at pH 8.4; dilution: 1:200; incubation: 60 min, 37 °C); p53 clone DO7 
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mouse monoclonal (Dako; FFPE retrieving conditions: 60 min at pH 8.4; dilution: 1:25; 

incubation: 60 min, 37 °C); p14ARF clone 4C6/4 mouse monoclonal (Cell Signaling; FFPE 

retrieving conditions: 60 min, water-bath 98 °C at pH 6.0; manual immunohistochemistry 

staining with Novolink Max polymer detection system (Leica); dilution: 1:4,000; incubation: 

overnight, 4 °C); p16 INK4 Ab-7 clone PO7 mouse monoclonal (Neomarkers; FFPE 

retrieving conditions: 60 min at pH 8.4; dilution: 1:800; incubation: 60 min, room 

temperature).

For immunohistochemistry on mouse tumour FFPE samples, sections were permeabilized 

for antigen retrieval by microwaving in a citrate-based antigen unmasking solution (Vector 

Laboratories). The following antibodies were used: GFP (Invitrogen; A11122; dilution: 

1:400), RFP/Tomato (Rockland Immunochemicals; 600-401-379; dilution: 1:500), Notch2 

(Cell Signaling; 5732; dilution: 1:200), Hes1 (Cell Signaling; 11988; dilution: 1:200), Ascl1 

(BD Biosciences; 556604; dilution: 1:200) and Synaptophysin (Neuromics; MO20000; 

dilution: 1:200). Sections were developed with DAB (Vector Labs) and counterstained with 

haematoxylin.

Cell lines, tissue culture and transfections

Mouse (KP1) and human (NJH29, NCI-H82 and NCI-H187) SCLC cell lines were grown in 

RPMI-1640 media supplemented with 10% bovine growth serum (BGS) (Fisher Scientific) 

and penicillin-streptomycin-glutamine (Gibco), as described before50. KP1, NJH29 were 

generated at Stanford. NCI-H82 and NCI-H187 were purchased from ATCC. These cells 

grow as suspension spheres or aggregates in culture. All cell lines were maintained at 37 °C 

in a humidified chamber with 5% CO2. All cell lines tested negative for mycoplasma 

infection. For transient expression of Notch ICD, cells were trypsinized and transfected with 

either MigR1-IRES-GFP (Ctrl) or MigR1-Notch1-ICD-IRES-GFP (NICD) using 

Lipofectamine 2000 (Life Technologies). The plasmids were gifts from W.S. Pear 

(University of Pennsylvania, Philadelphia). Then 48 h after transfection, cells were 

trypsinized and resuspended in phosphate-buffered saline (PBS) containing 10% BGS and 1 

µg ml−1 7-aminoactinomycin D (Life Technologies) that labels dead cells. Live GFP+ cells 

were then sorted for subsequent experiments using a BD FACSAria fluorescence-activated 

cell sorting (FACS) machine.

Gene expression and microarray analysis

Gene expression and microarray analyses were performed with the mouse cell line KP1 

transiently transfected with MigR1-IRES-GFP (Ctrl) or MigR1-Notch1-ICD-IRES-GFP 

(N1ICD).

Then 1 × 105 GFP+ cells were sorted and the RNA isolated using the AllPrep DNA/RNA 

micro kit (Qiagen). RNA quality assessment using the 2100 Bioanalyzer (Agilent) as well as 

the subsequent cDNA preparation steps for microarray analysis were performed at the 

Stanford Protein and Nucleic Acid (PAN) facility using the GeneChip Mouse Gene 2.0 ST 

Array (Affymetrix). For gene expression analysis, the Robust Multichip Average (RMA) 

Express 1.0.4 program was used for background adjustment and quantile RMA 

normalization of the 41,345 probe sets encoding mouse genome transcripts. Linear models 
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for microarray data (LIMMA) was used to compare Ctrl or N1ICD samples on RMA 

normalized signal intensities. Only genes with an adjusted P value of 0.05 or less were 

considered as significantly differentially expressed. A total of 769 probes accounting for 760 

genes were significant, and the expression levels of these genes were represented as a 

heatmap using the heatmap.2 function in R. The analysis was performed in triplicates. A list 

of significant genes is provided in Supplementary Table 15.

MTT cell viability assay

Sorted GFP+ cells were seeded at 1 × 104 per well in 96-well plates. The MTT reagents 

(Roche) were added on days 0, 2, 4, 6 and 8 for mouse SCLC cell lines or on days 0, 2, 4 

and 6 for the human SCLC cell line NJH29. The absorbance wavelength was 570 nm with a 

reference wavelength of 650 nm.

EdU incorporation assay

Transfected cells were treated with 10 µM EdU (5-ethynyl-2′-deoxyuridine) (Life 

Technologies) for 3 h before trypsinization for FACS. 1 × 105 live, GFP+ cells were sorted 

and labelled with EdU using the Click-iT EdU Pacific Blue flow cytometry assay kit (Life 

Technologies). Cells were then run through the BD FACSAria to analyse for per cent EdU 

incorporation.

Data reporting

No statistical methods were used to predetermine sample size.
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Extended Data

Extended Data Figure 1. Genomic analyses in SCLC tumours
a, Schematic detailing the genomic study and number of samples as well as various steps of 

analyses for the identification of candidate genes in SCLC. b, Illustration of the number of 

samples analysed in this study.
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Extended Data Figure 2. Clinical molecular-correlation analyses
a, Survival analysis of SCLC patients based on clinical stage and treatment options (surgery 

and/or chemotherapy). Statistical significance was determined by log-rank test. b, Analyses 

of clinical stage and smoking status and the respective effect on number and type of 

mutations, as well as mutational subclonality in tumours. Statistical significance was 

determined by Kruskal–Wallis analysis.
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Extended Data Figure 3. Genomic characterization of SCLC tumours
a, Purity and ploidy determined in SCLC tumours by whole-genome sequencing presented 

as dot density plots showing median and the interquartile range (IQR) b, Subclonal 

architecture of SCLC in comparison to lung adenocarcinoma (AD). Whole-genome 

sequencing data of SCLC and of adenocarcinoma (n = 15)11 was analysed for the presence 

of subclonal populations using clustering of the derived cancer cell fraction (CCF) of all 

single nucleotide mutations. To compare the emerging subclonal structure, we derived a 

subclonality score that takes into account the CCF of each subpopulation as well as its 
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mutational burden (see Methods). In order to prevent the low sequencing coverage (35 × for 

SCLC and 63 × for AD) from causing a systematic underrepresentation of the subclonal 

diversity in the mutation calls, we computed the contribution of a single read to the CCF on 

genome-wide average. After systematically determining a threshold within the average 

increase of CCF per read values (see Methods for details), we determined the group of 

samples for which a reliable estimation of the subclonality score is not possible (grey area). 

The subclonality scores of the remaining SCLC cases were then compared to those of the 

adenocarcinoma cases (P = 0.000232; Mann–Whitney test). c, Schematic representation of 

candidate genes with significant clustering of mutations in respective protein domains. 

Somatic mutations and genomic translocations are mapped to the respective protein regions. 

Hotspot mutations are highlighted in red. d, e, Genomic alterations in the RB1 family 

proteins p107 (RBL1) and p130 (RBL2) (d), and in KIT and PIK3CA (e). Somatic 

mutations in therapeutic target genes are listed and mapped to the protein domains of KIT 
and PIK3CA. Mutations with potential therapeutic implications are highlighted in red.

Extended Data Figure 4. Clinical molecular-correlations of significantly mutated genes
a, Survival analysis of SCLC patients based on the status of CREBBP/EP300, TP73 or 

NOTCH alterations. Statistical significance was determined by log-rank test. b, Analysis of 

CREBBP/EP300, TP73 and NOTCH alterations and their effect on clinical and genetic 

parameters. Statistical significance was analysed by multinomial logistic regression.
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Extended Data Figure 5. Significant somatic copy number alterations in SCLC
a, Deletions of the chromosomal arm 3p point to the 3p14 (FHIT) and 3p12 (ROBO1) locus. 

b, Expression analyses of genes encoded on the 3p14.3–3p14.2 and 3p12.2–3p12.2 locus. 

Histogram displaying the expression of samples with focal deletions (blue) and samples 

without any copy number alterations (white). Mean and standard error of the mean is plotted 

for each gene in each group. Significant differences were determined by Mann–Whitney 

test; *P < 0.05; **P < 0.01. c, d, Focal deletions of the CDKN2A (c) and focal 

amplifications of IRS2 (d) were found on chromosome 9 and 13, respectively. The copy 
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number (CN) states were computed from SNP array (SNP 6.0) and from whole-genome 

sequencing (WGS) data. The samples are sorted according to their amplitude of deletions or 

amplifications. e, Amplifications of IRS2 were determined by FISH analysis. IRS 
amplifications were quantified based on the ratio of red signals (IRS2-specific probe) to 

green signals (centromere probe for chromosome 13). Lymphocyte spreads and SCLC 

tumours without detectable IRS2 amplifications served as negative controls. Scale bar, 100 

µm.

George et al. Page 23

Nature. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 6. TP53 and RB1 alterations in SCLC
a, Distribution of somatic mutations in TP53 and RB1 according to the colour panel 

provided. b, c, Complex genomic rearrangements in RB1 showing homozygous deletions of 

exon 1 (b) or inversions within the RB1 gene (c). d, e, Annotated silent or missense 

mutations in RB1 occur at intron-exon junctions resulting in alternative splicing, intron 

retention (d) or exon skipping events (e). The coverage at the respective exon junctions is 

quantified as RPKM values. Sample S02194 is not holding any mutations at intron–exon 

junctions and is displayed as an example for unaltered splicing of RB1.
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Extended Data Figure 7. Chromothripsis in human SCLC
a, Circos plot of the chromothripsis sample S02353 showing intra- and interchromosomal 

rearrangements between chromosome 3 and 11. The integral copy number state (iCN) is 

plotted as a heatmap and assigned to the respective chromosomal regions. The chromosomal 

context of CCND1 (on chromosome 11) is highlighted. b, Circos plots displaying fusion 

transcripts identified in the SCLC chromothripsis cases (Supplementary Table 12) are 

represented as blue (S02297) or red (S02353) lines for genes located on chromosome 3 and 
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11. c, Immunohistochemistry staining for p53, p14 (ARF) and p16 on FFPE material of the 

chromothripsis sample S02297. Original magnification, ×400.

Extended Data Figure 8. Recurrent genomic translocations in SCLC
a, Recurrent genomic translocations (n = 14) affecting chromosome 22 are illustrated as a 

Circos plot highlighting the respective rearrangements as red connecting lines. b, 

Breakpoints in chromosome 22 map to intron 1 of TTC28 and cluster downstream of the 

LINE1 (L1Hs) retrotransposon. Each arrow indicates the sample and the respective 

chromosomal position the segment translocates to. c, Schematic representation of the TP73 
locus (hg19) describing complex intrachromosomal rearrangements of TP73 identified for 

S02397 and S02243. Recurrent somatic mutations identified in Fig. 1a are mapped to the 

respective exons. d, Validation of somatic TP73 translocations. Genomic regions involved in 
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the TP73 rearrangements were amplified in matched normal (N) and tumour (T) samples. 

The expected band size is indicated in brackets. The respective PCR products were subjected 

to Sanger sequencing to confirm the genomic breakpoint. e, Copy-number state of the TP73 
gene in samples involved in genomic translocations.

Extended Data Figure 9. Transcriptome profile of human SCLC tumours
a, Unsupervised hierarchical clustering of transcriptome sequencing data of 69 SCLC 

specimens as described in Fig. 4a. Each sample is annotated for the genomic alterations 
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described in Fig. 1. Black filled boxes describe the presence of a genomic event. b, 

Expression values of CHGA, GRP, ASCL1 and DLK1 (FPKM) are represented as dot 

density plots for the subgroups identified in (a). Red lines highlight the median value for 

each group. c, Expression values of the neuroendocrine markers SYP (synaptophysin) and 

NCAM1 (CD56) plotted as scatter plots for all SCLC samples. Green lines indicate 

thresholds for no expression (FPKM<1).

Extended Data Figure 10. Notch is a tumour suppressor in SCLC regulating neuroendocrine 
differentiation
a, Somatic mutations identified in NOTCH3 and NOTCH4 are mapped to the protein 

domains. Damaging mutations are highlighted in red. Mutations found in murine SCLC 

tumours are highlighted in blue. b, Quantification of tumour lesions and per cent tumour 

area to lung in TKO (n = 5) and TKO;N1ICD (n = 4) mice 3 months after Ad-Cre 

instillation. Statistical significance was determined by two-tailed unpaired Student’s t-test. c, 

Representative immunohistochemistry for GFP or tdTomato in lungs from 
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TKO;Rosa26mT/mG mice approximately 6 months after tumour induction. Left scale bar, 500 

µm; right and middle: scale bar, 50 µm. d, Representative immunostaining for Notch2 in 

lungs from TKO;Rosa26N2ICD mice approximately 6 months after tumour induction. Left 

scale bar, 500 µm; right scale bar, 50 µm. e, Quantification of the per cent recombination at 

the Rosa26 locus in TKO;Rosa26mT/mG (n = 6) and TKO;Rosa26N2ICD mice (n = 10; two-

tailed unpaired Student’s t-test). f, Cell viability assay of the human SCLC cell line NJH29 

transfected with a N1ICD (Notch1) expression plasmid or empty vector control (Ctrl) (3 

independent biological replicas with 3 technical replicas each). Fold growth was normalized 

to day 0; representative images were taken on day 6. Scale bar, 50 µm. g, 

Immunohistochemistry staining in FFPE embedded tissues of TKO and TKO;N2ICD mice. 

Scale bar, 50 µm. h, Quantitative RT–PCR validation of Notch1 induction and the 

expression of common Notch target genes after N1ICD transfection in murine SCLC cells 

(three biological replicas; two-tailed paired Student’s t-test). i, Mouse SCLC cells 

transfected with control or N1ICD (Notch1) were analysed 48 h later by gene expression 

microarrays. Gene Set Enrichment Analysis (GSEA) was performed on these data; selected 

significant gene sets are displayed. j, k, EdU analysis of mouse (j) and human (k) SCLC 

cells (three independent biological replicas with three technical replicas each; two-tailed 

paired Student’s t-test). *P < 0.05; **P < 0.01; ***P < 0.001. Data are represented as mean 

± s.d.
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Figure 1. Genomic alterations in small cell lung cancer
a, Tumour samples are arranged from left to right. Alterations of SCLC candidate genes are 

annotated for each sample according to the colour panel below the image. The somatic 

mutation frequencies for each candidate gene are plotted on the right panel. Mutation rates 

and type of base-pair substitution are displayed in the top and bottom panel, respectively. 

Significant candidate genes are highlighted in bold (*corrected q-values < 0.05, †P < 0.05, 

‡P < 0.01). The respective level of significance is displayed as a heatmap on the right panel. 

Genes that are also mutated in murine SCLC tumours are denoted with a § symbol. Mutated 

cancer census genes of therapeutic relevance are denoted with a + symbol. b, Somatic copy 

number alterations determined for 142 human SCLC tumours by single nucleotide 

polymorphism (SNP) arrays. Significant amplifications (red) and deletions (blue) were 

determined for the chromosomal regions and are plotted as q-values (significance < 0.05).
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Figure 2. Universal bi-allelic inactivation of TP53 and RB1 in human SCLC
a, Alterations of TP53 and RB1 were determined based on whole-genome sequencing data 

of 108 SCLC cases. Samples are plotted from left to right. Alleles A and B are represented 

for each case and colour-coded according to the somatic alteration. The integral copy 

number (iCN) state of each allele is plotted; hemizygous losses are annotated as loss of 

heterozygosity (LOH), copy-neutral LOH or LOH at higher ploidy. Samples retaining allele 

A and B show alterations on both alleles (bi-allelic alterations). b, Circos plot of case 

S02297 showing intra- and interchromosomal translocations between chromosome 3 and 11. 
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The copy number state of the respective chromosomal regions (iCN) is plotted as a heatmap. 

The genomic context of CCND1 (on chromosome 11) is highlighted. c, Significantly 

differentially expressed genes encoded on chromosome 11 are analysed in both 

chromothripsis cases in comparison to all other tumours. Positive and negative z-scores 

show upregulation and downregulation of genes, respectively (P < 0.05; *q-value < 0.05). d, 

Distribution of CCND1 expression over 81 SCLC samples. Chromothripsis cases are 

highlighted in red. e, Haematoxylin and eosin (H&E) and immunohistochemistry staining 

for cyclin D1 and Rb1 for sample S02297. Original magnification, ×400.

George et al. Page 37

Nature. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Recurrent rearrangements generating oncogenic variants of TP73
a, Genomic breakpoints identified by whole-genome sequencing were mapped to their 

chromosomal locations. Recurrent breakpoints (n > 6 samples) are highlighted in colours. b, 

Schematic representation of the TP73 locus (hg19) illustrating intragenic translocations. 

Coding and non-coding regions of the annotated exons are shown as black and white boxes, 

respectively. c, Schematic representation of exons encoding p73, p73Δex2, p73Δex2/3 and 

p73Δex10. d, Exon skipping events were assessed in the transcriptome data of samples with 

genomic translocations resulting in p73Δex2, p73Δex2/3 and p73Δex10 transcript variants. 
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S02139 served as a reference sample without TP73 alterations. The expression of 

uncommon exon combinations is highlighted in red.
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Figure 4. Notch is a tumour suppressor and a key regulator of neuroendocrine differentiation in 
SCLC
a, Unsupervised expression analysis of human SCLC tumours. Tumour samples are arranged 

in columns and grouped by the expression of differentially expressed genes (rows). 

Expression values are represented as a heatmap; yellow and blue indicate high and low 

expression, respectively. b, Schematic representation of NOTCH1 and NOTCH2. Somatic 

mutations are mapped to the respective protein domains. Damaging and missense mutations 

are highlighted in red and black, respectively. c, Representative H&E images of lungs from 

Trp53;Rb1;Rbl2 triple-knockout (TKO) or TKO;N2ICD (Notch2) mice collected 3 months 

after Ad-Cre instillation. Scale bar, 1 mm. Tumours were quantified for each genotype (n = 

8). Statistical significance was determined by two-tailed unpaired Student’s t-test. d, 

Survival analysis of TKO (n = 7, median survival = 210 days) and TKO;N2ICD (n = 8, 

median survival = 274 days) mice. Statistical significance was determined by log-rank test. 

e, Cell viability assay of the murine SCLC cell line KP1 transfected with a N1ICD (Notch1) 

expression plasmid or empty vector control (Ctrl) (3 independent biological replicas with 3 

technical replicas each). Fold growth is normalized to day 0; representative images were 

taken on day 8. Scale bar, 50 µm. Statistical significance was determined by two-tailed 

paired Student’s t-test. f, Mouse SCLC cells were transfected with control or N1ICD and 

analysed 48 h after transfection by gene expression microarrays. The heatmap describes 

differentially expressed genes in control or N1ICD-transfected cells (n = 3, each); red and 

green indicate high and low expression, respectively. *P < 0.05; **P < 0.01; ***P < 0.001. 

Data are represented as mean ± s.d.
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Figure 5. Signalling pathways recurrently affected in SCLC
Red and blue boxes denote genes with activating and inactivating alterations, respectively. 

Deep blue boxes highlight the bi-allelic inactivation of TP53 and RB1. Genes found 

expressed at high levels are shown in red font.
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