
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Hardware-Algorithm Co-design for Efficient and Privacy-Preserved Edge Computing

Permalink

https://escholarship.org/uc/item/4rz7q6zx

Author

Khaleghi, Behnam

Publication Date

2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rz7q6zx
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Hardware-Algorithm Co-design for Efficient and Privacy-Preserved Edge Computing

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Behnam Khaleghi

Committee in charge:

Professor Tajana Simunic Rosing, Chair
Professor Chung-Kuan Cheng
Professor Ryan Kastner
Professor Farinaz Koushanfar
Professor Jishen Zhao

2022



Copyright

Behnam Khaleghi, 2022

All rights reserved.



The dissertation of Behnam Khaleghi is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2022

iii



DEDICATION

To my wife, Fatemeh, for her unconditional love, care, and support.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Efficiency by Aggressive Energy Reduction of FPGA-based Designs 5
1.2 Efficiency by a New Learning Algorithm for Edge Applications . . 6

1.2.1 Exact and Approximate FPGA Implementation of HDC Infer-
ence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Highly-Efficient ASIC Design of HDC Learning and Inference 7
1.2.3 Preserving the Privacy of HDC-based Learning and Inference 8

Chapter 2 FPGA Energy Efficiency by Leveraging Thermal Margin . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . 14

2.2.1 FPGA Architecture . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Proposed Thermal-Aware Voltage Scaling Flow . . . . . . . 20
2.3.3 Proposed Thermal-Aware Energy Optimization Flow . . . . 28
2.3.4 Timing-Speculative Voltage Over-Scaling . . . . . . . . . . 30

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 Efficient FPGA Implementation of Hyperdimensional Computing by Ap-
proximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 HD Encoding Algorithms . . . . . . . . . . . . . . . . . . 41

v



3.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Proposed Method: SHEARer . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Approximate Encoding . . . . . . . . . . . . . . . . . . . . 44
3.3.2 SHEARer Architecture . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Software Layer . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 4 Efficient Learning Engine on Edge using Hyperdimensional Computing . 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Hyperdimensional Computing Background . . . . . . . . . . . . . 61

4.2.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 HDC Clustering . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Proposed HDC Encoding . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 GENERIC Encoding . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Accuracy Comparison . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Efficiency on Conventional Hardware . . . . . . . . . . . . 67

4.4 GENERIC Architecture . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Classification and Clustering . . . . . . . . . . . . . . . . . 70
4.4.3 Energy Reduction . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Classification Evaluation . . . . . . . . . . . . . . . . . . . 75
4.5.3 Clustering Evaluation . . . . . . . . . . . . . . . . . . . . . 76

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5 Private Learning and Inference with Hyperdimensional Computing . . . . 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Reversibility of HDC . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Encoding and Decoding . . . . . . . . . . . . . . . . . . . 83
5.3.2 Parameter Extraction . . . . . . . . . . . . . . . . . . . . . 85

5.4 Privacy-Preserved HDC Inference . . . . . . . . . . . . . . . . . . 88
5.5 Differentially Private HDC Training . . . . . . . . . . . . . . . . . 91

5.5.1 Differential Privacy (DP) . . . . . . . . . . . . . . . . . . . 92
5.5.2 Private One-pass Training . . . . . . . . . . . . . . . . . . 93
5.5.3 Private Iterative Training . . . . . . . . . . . . . . . . . . . 94
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The rapidly growing number of edge devices continuously generating data with real-time

response constraints coupled with the bandwidth, latency, and reliability issues of centralized

cloud computing have made computing near the edge indispensable. As a result, using Field-

Programmable Gate Arrays (FPGAs) at the edge, due to their unique capabilities that meet the

requirements of both high-performance applications and the Internet of Things (IoT) domain,

is becoming prevalent. However, designs deployed on these devices suffer from efficiency

gap versus custom implementations mainly due to the overhead associated with the FPGAs

reconfigurability. This problem is more pronounced in the edge domain, where most devices are

battery-powered. In the first part of this dissertation, we identify and overcome the challenges
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behind the power reduction of FPGA-based applications and propose techniques to lower their

energy consumption. Our approach exploits the pessimistic timing margin of the designs to tune

the voltage and improves the energy consumption by 66%.

An increasing number of edge applications rely on machine learning (ML) algorithms to

generate useful insights from data. While modern machine learning techniques – in particular

deep neural networks (DNNs) – can produce state-of-the-art results, they often entail substantial

memory and compute requirements that may exceed the power and resources available on

lightweight error-prone edge devices. Hyperdimensional Computing (HDC) is an emerging

lightweight and robust learning paradigm suited for the edge domain that copes with the memory

and compute overhead of conventional ML algorithms. The next part of the dissertation proposes

efficient FPGA-based and custom hardware implementations of HDC to enable intelligence on

devices with limited resources, strict energy constraints, and in noisy environments. The proposed

HDC algorithms and accelerators reduce the energy consumption by more than three orders of

magnitude compared to other ML solutions, with a comparable or better accuracy.

The last part of the dissertation seeks to resolve the privacy concerns of HDC that stem

from its reversible algorithm and pose challenges for HDC-based learning and inference. We

propose hardware- and communication-efficient techniques that improve the ‘inference’ privacy

of HDC by reducing the information of the transferred data while consuming less energy than

the non-private baseline. We then show that HDC ‘learning’ can meet tight privacy budgets

with negligible accuracy degradation. We also propose a hybrid CNN and HDC model for

differentially-private training over image data, which achieves comparable or better accuracy than

the state-of-the-art CNN-only methods with more than three orders of magnitude faster training.
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Chapter 1

Introduction

The growing number of computing devices and systems in the information age creates an

exploding amount of data every moment. There are already over 13 billion connected devices

of different sizes and computation power, from sensory edge devices to many-core servers,

producing or consuming around 3000 terabyte of data every second [4, 5]. Processing such an

unprecedented volume of data has exacerbated the energy and performance issues of current

processing systems caused by the failure of Dennard scaling [6] and the slowdown of Moore’s

law [7]. Notably, the growth of the edge devices, ranging from resource and energy-constrained

lightweight remote sensors carrying out simple data filtering to battery-powered self-driving cars

performing complex machine learning (ML) algorithms, have aggravated the bandwidth, latency,

and reliability challenges of offloading data to the cloud and made more efficient and robust

computing at the edge indispensable [8, 9].

A promising approach to address the energy and performance crisis is architectural

specialization [10], i.e., designing a custom accelerator tailored for particular application(s).

While an effective solution for ML and AI market, developing customized hardware is costly,

time-consuming, and hence not plausible for applications with limited use cases or continually
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evolving/updating ones. Accordingly, using Field-Programmable Gate Arrays (FPGAs), which

offer programmability while being more energy efficient than CPUs and GPUs [11, 12] is getting

more popular not only on cloud [13, 14, 15] but also at the edge [16, 17, 18]. However, the

reconfigurability of FPGAs causes non-negligible performance and energy gaps with the custom

ASIC counterparts [19, 20]. In addition, nowadays, more and more edge applications rely on ML

algorithms to generate useful insights from data [21, 22, 23]. While modern ML techniques – in

particular deep neural networks (DNNs) – can produce state-of-the-art results, they often entail

substantial memory and compute requirements that exceed edge devices’ resource and energy

limitations even if implemented on custom architectures [24, 25, 26, 27].

That being said, there is a pressing need to unfold more aggressive energy reduction

techniques on both the hardware and algorithm side while considering the reliability and privacy

concerns. In this dissertation, we seek orthogonal hardware and algorithm strategies to achieve

this goal. Given the FPGAs gaining traction in both data center and edge applications, in the first

part of this dissertation, we identify and overcome the challenges behind the power reduction

of FPGA-based applications and propose techniques to lower their energy consumption. The

second part of the dissertation focuses on alternative computing paradigms to address the resource

and energy demands of nowadays ubiquitous algorithms, i.e., machine learning. To this end, we

introduce hyperdimensional computing (HDC) as a lightweight and robust learning alternative and

propose efficient FPGA-based and custom ASIC implementations of HDC to enable intelligence

on devices with limited resources, strict energy constraints, and in noisy environments. We also

investigate and address the privacy challenges of HD computing.

Field-Programmable Gate Arrays (FPGAs): The key characteristics of FPGAs, such

as customizability based on the applications features, programmability to adopt new attributes,

and low latency by creating deep processing pipeline, have paved the way for these devices to

be deployed on data centers to either provide software as a service such as low-latency DNN

accelerator [14] and search engine [13] or used internally such as offloading host networking to
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hardware [15]. That being said, FPGAs are even more attractive at the edge. Compared to the other

commercial off-the-shelf alternatives such as microcontrollers, FPGAs offer versatile interfaces

to connect peripherals such as cameras and other types of sensors. The connectivity of FPGAs

also allows them to act as a support processing unit for sensory devices in the edge gateway [18].

The unrivaled computing power offered by FPGAs, together with their reconfigurability that

allows in-field upgrade, make them more advantageous for a manifold of edge applications

including but not limited to image and signal processing, communication within the Internet of

things (IoT) stack, smart energy controller system, and real-time heavyweight video analysis [18].

Therefore, more and more applications in the IoT era can be implemented on FPGAs, with the

need for utmost energy efficiency [16, 17, 18]. However, the reconfigurability of FPGAs, while

appealing, imposes energy overhead. This, together with slowed shrinking of supply voltage [28],

have pushed the high-end family of these devices to a point they consume power comparable to

processors [29]. All in all, more aggressive power reduction approaches for FPGAs have become

indispensable.

Hyperdimensional Computing (HDC): Hyperdimensional Computing (HDC) is a novel

brain-inspired learning paradigm based on the observation that brains perform cognitive tasks

by mapping sensory inputs to high-dimensional neural representation [30, 31, 32, 33, 34, 35]. It

enables the brain to carry out simple, low-power, error-resilient, and parallelizable operations, all

in hyperspace. Such characteristics of HDC make it appealing for a wide variety of applications,

particularly the edge domain, with devices with tight resource and energy constraints working in

noisy environments. HDC uses a deterministic encoding to map the raw input data to points in

hyperspace, represented by vectors with thousands of dimensions. For random vectors H⃗1 and

H⃗2, the sum vector S⃗ = H⃗1 + H⃗2 is more similar to H⃗1 and H⃗2 than any other random vector. This

concept is leveraged to represent sets in hyperspace. Vectors of the same category are bundled

by vector addition to create a class vector. To classify a query, the input is encoded in the same

fashion and compared with the class vectors to find the most similar label.
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Despite the simplicity of the HDC algorithm, its bit-level massively parallel operations do

not accord well with general-purpose processors such as CPUs and GPUs due to, e.g., memory

latency and data movement of large vectors and the fact that these devices are over-provisioned

for majorly binary operations of HDC. FPGA-based implementation can provide a great extent of

flexibility, high degree of parallelism, and bit-level granularity of operations that significantly

improves the effective allocation of resources and hence the performance. Nevertheless, while

appealing for a large body of edge use cases, FPGAs suffer from large form-factor and leakage

power, as well as power overhead associated with its reconfiguration capability. These drawbacks

hinder the deployment of FPGAs in extremely energy/area-constrained use cases such as wearable

devices and ultra-low-power sensory devices and call for custom HDC circuits. However, previous

attempts on custom HDC accelerators support a limited number of applications, achieve low

accuracy, and mainly do not support training [36, 37, 38, 39, 40].

Additionally, the simple encoding techniques that HDC benefits from are reversible to the

original data. That is, the original data can be reconstructed from the encoding vectors with a good

estimate. It poses serious privacy concerns to data. First, in certain applications of HDC, such as

federated learning or cloud-hosted inference [41, 42], offloading the encoded data jeopardizes

privacy since an untrustworthy server or communication link can reconstruct the original data.

Second, as the HDC model is a superposition of vectors, small changes in the training data can

reveal the statistics of particular encoded vectors from which the raw data can be retrieved. It is

more problematic than DNNs, wherein the model is realized by backpropagation and non-linear

operations that somewhat obfuscate the training details [43].

In the rest of the introduction, we give an overview of the contributions of this dissertation

to tackle the aforementioned challenges.
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1.1 Efficiency by Aggressive Energy Reduction of FPGA-based

Designs

FPGA devices are continuously evolving to meet the high computation and performance

demand for emerging applications. As a result, cutting-edge FPGAs are not as energy efficient

as conventionally presumed, and therefore, aggressive power-saving techniques have become

imperative. The clock rate of an FPGA-mapped design is set based on worst-case conditions

to ensure reliable operation under all circumstances. This usually leaves a considerable timing

margin that can be exploited to reduce power consumption by scaling voltage without lowering

clock frequency. There are hurdles for such opportunistic voltage scaling in FPGAs because (a)

critical paths change with designs, making timing evaluation difficult as voltage changes, (b)

each FPGA resource has a particular power-delay trade-off with voltage, (c) data corruption of

configuration cells and memory blocks further hampers voltage scaling.

Chapter 2 details the proposed techniques to reduce the power and energy consumption

of FPGA-based designs. To this end, we propose incorporating thermal-aware voltage scaling

in the FPGA design flow. We first obtain the temperature-delay-voltage correlation of FPGA

resources within the supported temperature range. Then, we statically (i.e., offline) estimate the

thermal distribution of applications to obtain the available timing headroom, for which voltages of

different power rails can be efficiently determined based on the characterized library. For further

effectiveness, we also propose online (i.e., dynamic) voltage adaptation based on the response of

thermal sensors. The proposed methods consider the voltage-temperature feedback loop and the

separate power rails of specific resource types to yield maximum power efficiency. Thereafter,

we leverage the aforementioned proposed flow to explore the energy consumption, whereby we

trade-off the performance and power consumption to achieve the minimum energy point. This

is desirable for a majority of edge and IoT applications for which total energy consumption is

of the utmost concern. Experimental results over a set of industrial benchmarks indicate up to
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36% power reduction with the same performance and 66% total energy saving when energy is the

optimization target.

Our approaches mentioned above are deterministic, as they guarantee timing closure.

Nonetheless, many use cases, such as image processing and machine learning applications, can

tolerate a certain level of computation errors, which allows voltage over-scaling. However, it needs

an examination of applications under these non-ideal conditions to get a glimpse of produced

error in the output. Accordingly, we propose a primary FPGA simulation framework to be able to

evaluate an FPGA-mapped design under voltage-scaling, i.e., when the delay of resources varies.

Using the proposed framework, we map demonstrative machine learning applications into FPGA

fabric and examine the impact of voltage over-scaling on extra power gain versus accuracy drop.

This yields an additional ∼15% power reduction compared to our original (non-invasive) voltage

scaling.

1.2 Efficiency by a New Learning Algorithm for Edge Appli-

cations

1.2.1 Exact and Approximate FPGA Implementation of HDC Inference

The primary appeal of HD computing lies in its amenability to implementation in modern

hardware accelerators. Because the HD representations are simply long Boolean vectors, they

can be processed extremely efficiently in highly parallel platforms. Particularly, FPGA-based

implementations can provide a high degree of parallelism and bit-level customization of operations

that significantly improves the effective resource utilization and hence the performance. The

principal challenge of HD computing – and the focus of this chapter – lies in designing good

encoding schemes that (1) represent the data in a format suitable for learning and (2) are efficient

to implement in hardware. In general, the encoding phase is the most expensive stage in the HD
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learning pipeline. Existing encoding methods require generating vectors in full integer-precision

and then ex-post quantizing to {±1}. While this accelerates the associative search phase, it does

not address encoding, which is the primary source of inefficiency.

In Chapter 3, we propose novel techniques to compute the encodings in an approximate

manner that saves a substantial amount of resources with an insignificant impact on accuracy.

Of independent interest is our novel FPGA implementation that achieves striking performance

through massive parallelism with low power consumption. Approximate encodings entail models

to be trained in a similar approximate fashion. Thus we also develop a software emulation to

enable users to train desired HD models. Our software framework enables users to explore

the trade-off between the degree of approximation, accuracy, and resource utilization (hence

power consumption) by generating a pre-compiled library that correlates approximation schemes

and FPGA resource utilization and power consumption. We show that our procedure leads to

performance improvement of 15.7× and energy savings of up to 301× compared to state-of-the-art

encoding methods implemented on GPU.

1.2.2 Highly-Efficient ASIC Design of HDC Learning and Inference

Unleashing the potential of HDC is contingent on the underlying hardware. Conventional

processing platforms such as CPUs and GPUs are incapable of taking full advantage of the

highly-parallel bit-level operations of HDC. FPGA platforms, while appealing for HDC, cannot

be utilized in the domains that require small form-factor and extremely low power and energy

consumption such as tiny wearable devices. While this makes custom HDC engines crucial,

existing HDC encoding techniques do not cover a broad range of applications to make a custom

HDC design capable of running varied applications without the need for expensive FPGA-like

reconfigurability plausible.

In Chapter 4, we propose GENERIC (highly efficient learning engine on edge using

hyperdimensional computing) for highly efficient and accurate trainable classification and cluster-
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ing. Our primary goal is to make GENERIC compact and low-power to meet year-long battery-

powered operation, yet fast enough during training and burst inference, e.g., when it serves as an

IoT gateway. To this end, we first propose a novel HDC encoding that yields high accuracy in

various benchmarks. Such a generic encoding is fundamental to developing a custom yet flexible

circuit and avoiding otherwise expensive configurable (FPGA-like) platforms. Then we perform

a detailed comparison of HDC and various ML techniques on conventional devices and point

out the failure of these devices in unleashing HDC advantages. To our knowledge, it is the first

detailed comparison of the accuracy and efficiency of different HDC and ML techniques. Using

the proposed encoding, we develop the GENERIC flexible architecture that implements accurate

HDC-based trainable classification and clustering. GENERIC benefits from extreme energy reduc-

tion techniques such as application-opportunistic power gating, on-demand dimension reduction,

and error-resilient voltage over-scaling.

We implemented GENERIC using 14 nm technology. The design occupies only 0.30 mm2

area and consumes 90 µW static and 3.94 µW/MHz dynamic power. Comparison of GENERIC with

the state-of-the-art HDC implementations reveals GENERIC improves the classification accuracy

by at least 3.5% over existing HDC techniques and 6.5% over conventional ML techniques

(e.g., support-vector machines, random forest, and multilayer perceptron). Compared to the

most efficient baseline ML algorithm (random forest), GENERIC improves the inference energy

consumption by 530×, and training energy by 1590× with 8.2% higher accuracy. Such a tiny

form-factor and power draw of our design enables uninterrupted use of HDC in a very wide-range

of IoT applications including wearables and remote sensors that otherwise would require network

access (and associated peripherals) and battery replacement.

1.2.3 Preserving the Privacy of HDC-based Learning and Inference

One of the unique advantages that HDC offers is facilitating federated learning, where

distributed edge devices can simply offload the encoded vectors and a central aggregator creates
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the unified model by just adding up the vectors and returning the aggregate model. Federated

learning by HDC significantly reduces the transmission costs, requires less computation power,

and can cope with unreliable network due to the error tolerance of HDC [41]. In addition, in

certain cases that the memory of a very tiny sensory device might not fit the HDC model, vectors

can be offloaded to an adjacent device, gateway or cloud for inference. Since HDC uses simple

encoding techniques, as we shown in Chapter 5, these encoded vectors can be decoded to the

original data with a good estimate, which raises privacy concerns to data since an untrustworthy

server or communication link can reconstruct the original data. Second, as the HDC model

(classes) is a superposition of vectors, small changes in the training data can reveal the statistics

of particular encoded vectors from which the raw data can be retrieved. It is more problematic

than DNNs, wherein the model is realized by backpropagation and non-linear operations that can

obfuscate the training details.

In Chapter 5, we investigate the inference and training privacy of HDC. We show that

although HDC operations are reversible, we can leverage its noise resiliency for private training

and inference. Specifically, we make the following novel contributions. First, for different HDC

encoding techniques, we show that encoding parameters can be extracted by using adversary

inputs and observing the encoded vector. Then, using these extracted (or already known) parame-

ters, we introduce techniques to decode the original data from the encoded vectors for various

encodings. The decoded data have relatively low mean squared error (MSE) versus the original

data. To tackle this reversibility challenge, we propose hardware- and communication-efficient

techniques to enhance the inference privacy of HDC by reducing the information of the transferred

data. To this end, we use hardware-friendly (regular) local sparsification of the encoded vectors

that eliminates all but the maximum value of consecutive vector embeddings. Our approach,

implemented on FPGA, reduces both encoding and communication energy (by transferring the

index of the maximum element only). Thereafter, the chapter targets privacy-preserved training of

HDC based on the concept of differential privacy. We propose private one-pass (suited for online
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and federated learning) as well as iterative learning of HDC. We show that privacy-preserved

HDC training, in particular one-pass learning, can meet tight privacy budgets with a similar

accuracy to the non-private models. Finally, we propose privacy-preserved HDC models for

image classification, namely Privé-HDnn (HD + neural network), which combines a pre-trained

CNN feature extractor and a trainable HDC classifier for private training on the target dataset.

By using a constant CNN trained on public dataset and private training of HDC only, we get

around the sensitivity of CNNs to noise injection while extracting complex features for HDC to

tackle its challenge on image data. Experimental results show Privé-HDnn can achieve a similar

or better (by up to 5.8%) accuracy compared to CNN-only approaches, with 9.2–1231× faster

training, while offering other advantages such as few-shot learning due to the capability of HDC

in learning from fewer data.
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Chapter 2

FPGA Energy Efficiency by

Leveraging Thermal Margin

In the previous chapter, we explained that the programmability and performance balance

of FPGAs have paved the way for these devices to a variety of heavy data center applications

such as search engines, machine learning, and networking [13, 14, 15] to name a few. Other key

characteristics of FPGAs, such as easy interfacing with peripherals and integration with soft and

hard processors, have also made the lower-end families of devices popular in less heavy edge

workloads [16, 17, 18]. Unfortunately, the resource overhead associated with the programmability

of devices has caused an energy efficiency gap between the designs implemented on FPGAs versus

the ASIC counterparts. In this chapter, we dig into some roots of this inefficiency and mitigation

challenges and elaborate on our approach to reduce the energy consumption of FPGA devices,

both data center class and lower-end devices. We propose a systematical approach to leverage

the available thermal headroom of FPGA-mapped designs for power and energy improvement

by tuning the voltage level. By comprehensively analyzing the timing and power consumption

of FPGA building blocks under varying temperatures and voltages, we propose a thermal-aware
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voltage scaling flow that effectively utilizes the thermal margin to reduce power consumption

without degrading performance. We show that the proposed flow can be especially employed

for energy optimization as well, whereby power consumption and delay are compromised to

accomplish the tasks with minimum energy.

2.1 Introduction

The prevalence of computation-intensive workloads with high-performance requirements

such as machine learning (ML) and data center applications [13, 14, 15, 44] accompanied

with the advance of technology node have persuaded the FPGA vendors to integrate more

resources with boosted clock rate in state-of-the-art FPGAs [45]. This, together with slowed

shrinking of FPGAs supply voltage [28], have pushed these devices to a point they consume power

comparable to CPUs [29]. Beside data center applications, there are prevailing energy-constrained

applications at the edge, implemented in more low-end FPGAs, with the need for extreme energy

efficiency [16, 17].

As FPGAs already employ a manifold of device-level optimization to throttle power

consumption [46], more aggressive power reduction techniques are gaining traction. These tech-

niques generally build upon the conservative timing margin (dg) that is considered to compensate

reliability threats in deep-nano technologies; while an FPGA-mapped design is able to deliver an

actual clock period of dVnom at nominal voltage Vnom, in practice, STA (static timing analysis) tools

report an operating clock delay of dVnom +dg to make up for uncertainties such as voltage fluctu-

ations, degradation, temperature, etc. [29]. The aforementioned aggressive techniques exploit

this available timing headroom to reduce supply voltage of FPGAs down to Vlow for which the

actual clock period dVlow becomes equal or close to dVnom +dg (leaving no margin for guardbands).

Thus, the device still delivers the original performance at a lower voltage. Note that aggressive

voltage scaling techniques are different from conventional DVFS (dynamic voltage and frequency
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scaling) that concurrently tunes the frequency and voltage based on per-task performance demand

of applications.

Although lowering the supply voltage of processors and ASIC devices has been known

to be an effective power saving technique [47, 48, 49], there are limited studies presenting

voltage scaling in FPGAs. Voltage scaling (in particular, aggressive and performance-aware

one) in FPGAs is challenging mainly because: (a) Critical Path (CP) in an FPGA is design-

dependent, which makes timing probing difficult under voltage scaling, especially considering the

impact of temperature. Therefore, in contrast to ASIC designs, a set of precalibrated stand-alone

sensory circuits, e.g., ring oscillators and CP monitors [48] cannot accurately correlate the sensor

frequency with all varying CPs. (b) FPGA architectures are heterogeneous, comprising soft-fabric

(i.e., programmable logic and routing resources), DSP cores, memory blocks (BRAM), etc. These

building blocks are tightly coupled, and each has a particular power/delay relation with supply

voltage. Considering the separate voltage rails provided for certain components, i.e., Vbram, Vcore,

and Vio that can be regulated separately, finding efficient voltage points becomes design-dependent

and challenging. In other words, in multi-supply devices, multiple voltage combinations can

lead to the target dVnom +dg boundary, while only one tuple yields minimum power. This makes

speculative voltage decrement no more efficient. (c) Scaling the voltage of FPGAs is also

constrained by the data corruption of configuration and memory SRAM cells. In addition, as we

will discuss in this chapter, reducing the voltage of configuration cells unexpectedly increases

FPGA power consumption in certain cases, calling for cautious analysis.

We leverage the pessimistic thermal-induced timing slack to scale down FPGA operating

voltage for power saving while tackling the aforementioned challenges as follows.

(1) We propose to incorporate thermal-aware voltage scaling in the FPGA design flow. We

first obtain the temperature-delay-voltage correlation of FPGA resources within the supported

temperature range. Then, we statically estimate the thermal distribution of applications to obtain

the available timing headroom, for which voltages of different power rails can be efficiently
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determined based on the characterized library. For further effectiveness, we also suggest online

(i.e., dynamic) voltage adaptation based on the response of thermal sensors. The proposed

methods consider the voltage-temperature feedback loop and the separate power rails of specific

resource types to yield maximum power efficiency.

(2) We leverage the proposed flow of (1) to explore the energy consumption, whereby we trade-off

the performance and power consumption to achieve the minimum energy point. This is desirable

for a majority of edge and IoT applications for which total energy consumption is the utmost

concern.

(3) Our approaches mentioned in (1) and (2) are deterministic, as they guarantee timing closure.

Nonetheless, many use-cases such as image processing and machine learning applications can

tolerate a certain level of computation errors, which gives an opportunity for voltage over-scaling.

However, it needs an examination of applications under these non-ideal conditions to get a glimpse

of produced error in the output. We propose a primary FPGA simulation framework to be able to

evaluate an FPGA-mapped design under voltage-scaling, i.e., when the delay of resources vary.

Using the proposed framework, we map demonstrative machine learning applications into FPGA

fabric and examine the impact of voltage over-scaling on extra power gain versus accuracy drop.

2.2 Background and Related Work

2.2.1 FPGA Architecture

Figure 2.1 illustrates the architecture of conventional tile-based FPGAs. The architecture

comprises tiles of logic clusters (a.k.a CLBs or slices) that bind together using the configurable

switch boxes (SBs) and connection blocks (CBs) to implement larger functions. Each logic

CLB consists of N (e.g., N = 10) K-input look-up tables (LUTs) each of which is capable to

implement Boolean expressions up to K variables. SB multiplexers are located in the intersection

of horizontal and vertical channels (wire tracks) to enable connectivity and bending of nets.
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Figure 2.1: Tile-based FPGA architecture (left), and building blocks (right) [1].

These multiplexers are also responsible for connecting outputs of logic resources (LUTs, FFs,

carry chain, etc.) to global routing, i.e., to horizontal and vertical channels. Analogously, CB

multiplexers pass the selected global wires into the logic clusters. Specific FPGA columns are

repetitively dedicated to Block RAMs and DSP cores. The majority of logic and routing resources

have a multiplexer-like structure, mainly implemented as two-stage multiplexers that have been

shown to provide optimal area-delay efficiency [50]. These resources often drive large loads,

especially the global routing resources that have a high number of long fanout wires, so are

augmented with large output buffers to improve performance.

2.2.2 Related Work

While many previous studies have attempted to reduce FPGA power dissipation by

power-gating, conventional DVFS, configurable dual supply voltage, control of signal levels,

architectural innovations, etc. [51], there are limited number of works that leverage the available
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timing margin to reduce voltage without scarifying performance. Authors of [52] explore the

timing headroom of FPGA-mapped designs by gradually reducing the voltage (keeping the

frequency fixed) until observing the error. They detect the error by inserting a shadow register

per each CP with a phase-shifted clock to detect the data mismatch caused by voltage reduction.

As there are a huge number of CP and near-CP paths in a large synthesis-flattened design, the

area and power overhead of this technique can be excessive. Also, measuring the slack in this

technique depends on capturing the signal traversing the CP, while the CP may not be controllable

at the runtime. Furthermore, the introduced capture registers cannot be used for paths that head

to hard blocks such as BRAM. The study in [53] addresses the latter issue by replicating such

paths and inserting an end-point proxy register (instead of the hard block) where an error-detector

circuitry checks timing violations. However, the error-detector itself imposes delay, so a timing

error raised in the original CP might propagate into the memory before being detected.

In [54], the authors propose a two-step self-calibrating voltage scaling scheme by ex-

ploiting the available timing slack of thermal margin. CPs of a design are extracted by using

the STA tool and are then implemented on the FPGA fabric. Afterward, for different values of

temperature and core voltage (T and Vcore), the maximum frequency is obtained by gradually

increasing it until error is observed by the implemented error-detection circuit. This approach

does not consider the thermal distribution within the chip [55] where a CP may experience varied

temperature in reality. This either results in timing violation by ignoring the parts of CP that

resides in hot (hence, slower) tiles, or gives non-optimal results if a related thermal margin is

considered. In addition, the STA tool reports the CPs according to worst-case condition while

CPs might change at lower temperatures. Thus a larger number of near-CP paths need to evaluate

which makes the entire process further cumbersome. BRAM and soft-logic voltage rails also

are not separately considered, so the minimum employed voltage will be limited by the one that

violates the timing first.

Finally, recent work in [56] examines the voltage scaling of FPGA BRAMs. The authors
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showed that up to 39% of BRAM voltage can be reduced without observing any error. Though it

is promising in reducing the power of BRAMs by one order of magnitude, a trial-and-error based

approach does not guarantee correct functionality as it is infeasible to examine all the inputs.

Moreover, the overall efficiency is limited to power of BRAMs.

Aforementioned techniques are all speculative as they decrease the voltage until observing

error. This overlooks errors that emerge gradually due to violating the guardbands (e.g., timing

error as a result of degradation [57]) or may arise abruptly due to voltage transients [29]. Recently,

work in [29] showed a margin over 36% is needed for voltage transients as a result of load

transients, and this margin is already considered in STA tools. Nevertheless, as voltage transients

occur infrequently, the speculative voltage scaling methods do not take them into consideration,

which will lead to timing violation at certain conditions. Our voltage scaling approach is different

from previous studies as we incorporate it in the FPGA design flow by characterizing the resources

during FPGA architecting. This eliminates the arduous task of voltage-timing speculation and

guarantees timing. Our method precisely considers the correlation of temperature, delay, voltage,

and power of resources and separate power rails of soft-fabric and memories, so it yields maximum

efficiency by setting the optimal core and BRAM voltages as well as accurately estimating the

timing according to the thermal distribution of the blocks. Finally, over-scaling of voltages needs

timing simulation to observe the impact of timing violations. We enable it by our novel FPGA

simulation flow.

2.3 Proposed Method

2.3.1 Preliminary

FPGA flow is different from conventional standard-cell based design of ASICs, thus we

first elaborate the setup of experiments used in the rest of the chapter before detailing the proposed

method.
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• Power and Delay. We use circuit-level simulations to obtain the delay and power

of FPGA resources. For this end, we use the latest version of COFFE [58] that generates

and characterizes an accurate netlist of FPGA resources according to the given architectural

description using comprehensive circuit-level HSPICE simulations. Besides the description of

the target FPGA architecture, COFFE also requires technology process of transistors, for which

we use 22nm predictive technology model (PTM) [59]. COFFE also generates and evaluates the

memory blocks of FPGA and has been shown to have a suitable delay and exact area match with

commercial FPGAs [60]. Similar to configuration SRAM cells, the core of the memory blocks

(i.e., eight-transistor dual-port SRAM cells) is implemented by 22nm high-threshold low-power

transistors [61], which throttles their leakage power by two orders of magnitude. As we will show

in the rest of this chapter, our simulations show a similar power trend to commercial FPGAs.

COFFE does not model DSP blocks. We thus develop the DSP HDL code based on the

Stratix IV description [62] and characterize it using Synopsys Design Compiler with NanGate

45nm open cell library [63]. Then we scale the results to 22nm based on measuring scaling

factors of a selected set of cells at 45nm and 22nm technologies. Based on PrimeTime report, the

developed DSP consumes 4.6mW at 250MHz, which is comparable to a 28nm DSP that dissipates

5.6mW at the same frequency [64]. To characterize the delay and power of programmable

resources at different temperature and voltages, we sweep the parameters of COFFE-generated

netlists in HSPICE simulations. For DSP, we create a set of standard-cell libraries using NanGate

netlists by the means of Synopsys SiliconSmart so we could characterize the DSP at different

operating conditions.

• FPGA Flow. We use VTR 7.0 (Verilog-to-Routing) [65] toolchain that enables defining

a customized FPGA architecture and place and route the benchmarks. We use FPGA architecture

parameters similar to Intel Stratix devices [66, 1] in COFFE and VPR1 placement and routing,

which is summarized in Table 2.1. COFFE uses these parameters to generate SPICE netlist and

1VPR (Versatile Place and Route) is the P&R tool in VTR toolchain.
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Table 2.1: FPGA architecture parameters used in COFFE
Parameter Value Parameter Value
K 6 SBmux size 12
N 10 CBmux size 64
Channel tracks 240 localmux size 25
Wire segment length 4 Vcore,Vbram 0.8V,0.95V
Cluster global inputs 40 BRAM 1024×32bit

area and delay report, which are then fed into VTR to place and route the benchmarks. K and N

are the size of LUTs and number of logic blocks in a cluster (see Figure 2.1), which are chosen to

be 6 and 10 in accordance to Intel devices. Estimating the power consumption of applications

(for both thermal simulation and power saving estimation) needs also their signal activity, for

which we use ACE 2.0 [67]. We modified VPR to enable timing analysis at different scenarios

using the characterized libraries.

• Thermal Simulation. We use HotSpot 6.0 [68] for thermal simulations. Inputs of

HotSpot are device floorplan, power trace (or average power values), and device configuration

parameters. For the floorplan file, we divide the device floorplan into a two-dimensional array of

FPGA tiles with the areas reported by COFFE. We assume CLB tiles are square, and the heights

of DSP and memory blocks are 4× and 6× of CLB tiles [65]. Number of tiles and location of

each tile can be obtained from the placement and routing outputs reported by VPR. Leakage and

dynamic power of each tile is obtained based on the current temperature and activities of resources

of the tile. Finally, for the HotSpot configuration file, we change the parameters according to

validated FPGA parameters in [69]. We adjust the convective resistance to concur with an

effective thermal resistance (θJA) of contemporary FPGAs, i.e., we tune r convec such that when

the total power of given power trace is set to 1 Watt, the reported temperature by HotSpot equals

θJA. We examine the efficiency of the proposed technique by using a typical θJA of 2°C/W as in

today’s Intel and Xilinx devices (e.g., Virtex 7 and Stratix V) [64, 70], and a pessimistic thermal

resistance of 12°C/W , corresponding to their mid-size devices (such as Spartan-7 or Artix-7) with

still airflow.
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Table 2.2: Specifications of the benchmarks.
Benchmark Domain LUT BRAM DSP
boundtop Ray Tracing 3,132 1 0
ch intrinsics Memory Init 459 1 0
LU8PEEng Math 26,288 45 8
LU32PEEng Math 87,852 168 32
mcml Medical Physics 106,348 159 30
mkDelayWorker32B Packet Processing 6,128 164 0
mkPktMerge Packet Processing 389 15 0
mkSMAdapter4B Packet Processing 2,124 5 0
or1200 Soft Processor 3,136 2 1
raygentop Ray Tracing 2,631 1 9

Benchmarks. We select our benchmarks from VTR repository that belong to a wide

variety of applications (vision, math, communication, etc.), contain single- and/or dual-port

memory blocks as well as DSP blocks, with an average of over 23,800 6-input LUTs (maximum

over 106K). Table 2.2 summarizes the characteristics of these benchmarks.

2.3.2 Proposed Thermal-Aware Voltage Scaling Flow

•Motivation. Figure 2.2 gives a perception on how temperature margin can be leveraged

for power reduction. This figure is obtained using the experimental setup explained in the previous

subsection. Numbers were not in the same range, so we normalized each one to its base value at

100°C and 0.8V for the sake of clear illustration. According to Figure 2.2(a), although FPGA

timing analysis reports the worst-case to ensure timing meets in all scenarios [71], in practice,

resources have a smaller delay at lower temperatures. For instance, at 40°C, delay of switch box

(×— SB) is 0.85× of its delay at worst-case temperature2. This gap can be utilized for voltage

reduction. Based on Figure 2.2(b), 0.68V is the point wherein this margin is fully utilized,

i.e., delay of 40°C increases by 1
0.85× and becomes equal to delay at worst-case temperature.

Eventually, Figure 2.2(c) reveals this 120mV reduction of voltage shrinks the switch box power

down by 32%. As mentioned before, memory block comprises of low-threshold transistors, so

2We assume an upper-bound of 100°C for junction temperature [62].
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Figure 2.2: Different behavior of different FPGA resources under varying temperature and
voltages.

uses a different power rail with a voltage higher than datapath (core) transistors. Other non-

memory resources show a ∼V 2 relation with voltage while BRAM observes a more dramatic

power reduction as voltage scales. As is evident from the figure, different resources exhibit

different delay behavior as temperature and voltage change. This stems from different sizing of

transistors, input slope, output capacitance, etc., as detailed in previous works [72, 49].

We can get several insights from Figure 2.2 and above discussion.

(a) Replica circuits such as ring oscillators used to correlate the temperature/voltage with fre-

quency of ASICs are not a viable solution to track timing because, in FPGAs, CPs are design-

dependent and made from different types and count of resources. Apparent from Figure 2.2(a)

and (b), designs bounded by routing (SB) have a totally different performance behavior compared

to logic (LUT) bounded ones when temperature or voltage changes, so a set of representative

paths fails to resemble all paths accurately.

(b) Previous studies rely on worst-case reported paths to check the timing (or to insert error

detectors) while lowering the voltage. Nonetheless, from Figure 2.2(a) and (b) we can infer a

non-CP path may become CP at lower temperature or voltage. For instance, LUT delay severely

increases at lower voltages, so the delay of LUT-bounded paths can exceed originally reported

SB-bounded paths. This signifies cautious timing analysis in voltage scaling.

(c) More importantly, even if timing analysis of an FPGA-based design were possible under
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arbitrary (T, V) pairs, efficient voltage scaling would be still challenging because, as shown in

Figure 2.2(c), resources enjoy differently from voltage reduction. For instance, memory block

shows better power saving as voltage scales, while, on the contrary, its delay also increases more

under voltage scaling. Thus, for a certain timing headroom, there is a trade-off between power

gain and increase of delay (i.e., use up of margin) when there are multiple power rails. This

justifies why temperature-voltage-delay correlation and voltage-power libraries are indispensable

for a reliable and efficient thermal-aware voltage scaling.

• Thermal-Aware Voltage Scaling Flow. Taking the above-mentioned insights into

consideration, in the following we present our voltage scaling algorithm as the core of our energy

efficiency technique, and then further elaborate it by exemplifying case-studies. Algorithm 1 can

be either simply integrated into the current FPGA flow stack (i.e., in the original timing analysis

step), or attached as an additional step. In either case, it relies on a pre-characterized library of

delay and power, as detailed in Section 2.3.1. If Algorithm 1 is used as an additional step, then it

needs to get the post place and route netlist (e.g., in XDL format [73] that is generated for Xilinx

FPGAs). Other inputs of the algorithm are maximum temperature surrounding the FPGA board,

and sample inputs or activities (we further discuss it later).

FPGA thermal estimation usually relies on a single total power and ambient temperature

value to estimate the junction temperature [64], however, we divide the target FPGA into a grid of

m×n tiles, for m and n being the number of FPGA rows and columns. It improves the accuracy

of thermal estimation and helps to catch potential hotspot regions, where the blocks have higher

delay than the rest of the board, hence need fine-grained timing analysis for both accuracy and

efficiency (i.e., to avoid under- or over-estimation of timing). dworst is the delay that conventional

one-size-fits-all timing analysis T of FPGA reports under nominal memory and core voltages

and maximum temperature [71] while also considers some margin for reliability issues such as

voltage transients [29]. Thus dworst is the target delay that our algorithm attempts to deliver with

lower voltages. One drawback of previous voltage scaling approaches [52, 54] is they invade
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Algorithm 1: Thermal-Aware Voltage Selection
Input: netlist: Placed and routed design
Input: Tamb: Ambient temperature
Input: −→α : Input activities / sample inputs

1
−→
T m×n = [Tamb, · · · ,Tamb] // m,n : FPGA grid size

2
−→
∆T m×n = [∞, · · · ,∞]

3 dworst = T (netlist,Tmax,Vcoremax ,Vbrammax)

4 while ∥
−→
∆T∥∞ > δT do

5 min
Vcore, Vbram

−→
P lkg(

−→
T ,Vcore,Vbram) +

6
−→
P dyn(netlist,−→α , fworst ,Vcore,Vbram)

7 s.t. T (netlist,
−→
T ,Vcore,Vbram)≤ dworst

8
−→
T old =

−→
T

9
−→
T = HotSpot(

−→
P lkg +

−→
P dyn)

10
−→
∆T =

−→
T −−→T old

11 return Vcore,Vbram

this reliability margin when they speculatively reduce the voltage until observing an error in

the output, as the error does not show up in regular conditions. The core of the algorithm is

a loop where, based on previously obtained temperature for each tile (set to Tamb initially), it

finds the (Vcore,Vbram) pair that minimizes the power while watches over the delay of candidate

pair to not exceed dworst . In the first iteration of the algorithm, it explores all |Vcore|× |Vbram|

pairs. In the next iterations, execution time can be significantly reduced by limiting the search to

the boundaries of the previous solution, making subsequent iterations O(1). Note that in both

timing analysis and power calculation (lines 5−7), each tile has its own activity and potentially

different temperature, so we use vectors of length m×n to store the values associated with each

tile. Temperature affects the leakage power and delay of the tile resources, while activity affects

the dynamic power. Hence,
−→
T is passed to

−→
P lkg calculation and timing (T ) analysis, while

−→
α is passed to

−→
P dyn to estimate dynamic power at dworst (clock cycle will be always dworst).

Finally, the power values are imported in a thermal simulator to update temperatures of tiles.

This procedure repeats until reaching a steady-state temperature. For thermal simulation in our
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experiments we use HotSpot 6.0 [68], with setup already detailed in Section 2.3.1.

• Static and Dynamic Implementations. Static implementation of the proposed tech-

nique is straightforward as both core and memory voltages are determined during the configuration

of design, whether by incorporating Algorithm 1 in original timing analysis of FPGA, or using it

as a post-routing addendum. As the voltages remain fixed in the field operation, the algorithm

needs to consider the corner case of the programmed design, i.e., the highest temperature it

might reach. A noteworthy point here is that activities of internal nodes of a design do not

linearly correspond to activities of primary inputs. In Figure 2.3, when signal activity factor (α)

of benchmarks inputs increases from 0.1 to 1, activity of internal nodes (averaged over all 10

benchmarks) increases from 0.05 to ∼0.27, which is significantly less than α = 1 considered

for primary inputs. In addition, in some blocks such as DSP, the increase in activity of primary

inputs does not necessarily translate to increase of power. As can be seen from Figure 2.3, DSP

power increases by only around 37% when its inputs activities raise from 0.1 to 0.3, then its

power saturates until α ∈ [0.3,0.7], and declines thereafter. This behavior of power is because

the frequently changing inputs offset each other more often (e.g., when both inputs of an XOR

function change in a clock, its output remains the same). All in all, by caring for the worst-case

input activity, the proposed static scheme guarantees reliable operation at corners without overly

pessimistic activity estimation, though the ambient temperature needs to consider maximum

possible.

The proposed thermal-aware voltage scaling scheme can be implemented online (dy-

namic) to avoid pessimistic assumption on the temperature bound. Instead of thermal simulation,

online scheme reads the junction temperature using on-board sensors available on all contem-

porary FPGAs. For instance, Intel devices already contain temperature sensing diodes (TSD)

with instantiatable IP cores having their own internal clock source that can output the junction

temperature with a resolution of 10 bits in 1,024 clock cycles (i.e., 1ms) [74]. Therefore, during

the configuration of each design, we create a look-up table with temperature T as its keys and
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Figure 2.3: Activity of benchmarks nodes for different activities of primary inputs (left/blue),
and DSP power at different activities of its inputs (right/red).

(Vcore,Vbram) as the values that minimize the power for that T . Optimal (Vcore,Vbram) of each

temperature can be obtained in the same way explained above for the static approach. Reading the

temperature with steps of few milliseconds is large-enough to allow on-chip voltage regulators

(such as Intel on-the-fly regulators) to adjust the voltage [75], and yet is small enough to avoid

temporal heat-up mismatch that takes orders of seconds [76]. The sensed junction temperature

can be directly used as VID (voltage identification) for the programmable integrated voltage

regulator to adjust the voltage with the pre-loaded values [75]. A thermal margin (e.g., 5°C)

might be considered to account for the error of TSDs and potential spatial thermal gradients [77].

• Case-study. To elaborate our method, we use mkDelayWorker benchmark with 6,128

LUTs and 164 memory blocks that VPR mapped it to a 92× 92 grid device due to its high

BRAM demand, with a frequency of 71.6 MHz. Our simulations show the device consumes

a leakage power of 0.367mW at 25°C (considering all used and unused resources), while the

closest Intel device (Stratix V 5SGSD3) is 1.5× in size with a power of 0.646mW. This 1.76×

power ratio is acceptable considering the size difference and more advanced technology we use

in our simulations (22nm versus 28nm).

Figure 2.4 shows the results of our static voltage scaling scheme on mkDelayWorker

benchmark. We assume ambient (near-board) temperature range from 0°C up to 85°C as pre-

vious studies have shown that board temperature of datacenter FPGAs can reach up to ∼70°C.
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Figure 2.4: Outputs of Algorithm 1 for mkDelayWorker benchmark under different ambient
temperatures.

Figure 2.4(a) shows that, moving from 0°C to 85°C, generally both Vcore and Vbram increase

towards their nominal 0.8V and 0.95V values to meet timing in worst-case junction temperature.

Small fluctuations of BRAM voltage at certain points is to yield maximum power saving. For

instance, at 30°C, Vcore, Vbram = (0.73,0.79) while at 25°C, Vcore, Vbram = (0.72,0.82), however,

we expected BRAM voltage to be lower for 25°C. This is because actually the 10mV reduction

of Vcore at 25°C is worth the 30mV increase of Vbram; as we examined, it resulted in a power

of 410mW while experiments showed that the other combination (0.73, 0.79) would consume

420mW (> 410mW). It indicates preciseness of our technique in determining most efficient

voltage pairs for a given Tamb.

Figure 2.4(b) compares the total power consumption of the proposed technique and

baseline. Each curve shows the lower and upper bound of the power, where lower bound

corresponds to α = 0.1 and upper bound corresponds to maximum dynamic power consumption,

i.e., α = 1.0. As explained above and showed in Figure 2.3, power does not increase linearly

with activity (i.e., upper bound of power is not 10× of lower bound) because leakage power is

independent of activity and also activities of internal nodes are not linearly correlated with primary

inputs activity. As expected, lower temperatures have more power saving as there is more margin

to reduce voltages. Also, although the proposed method optimizes the voltages according to

worst-case activity, our method still significantly improves power when activity is low. Note that
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the baseline has fixed voltages; however, it also consumes less leakage power in lower temperature

so its total power also reduces in lower temperatures. It is noteworthy that in our experiments

we observed the leakage power has an exponential relation of e0.015T with temperature, which is

comparative to e0.017T we derived for Intel devices [70]. The junction temperature of baseline

exceeded 100°C when ambient temperature reaches 85°C. Thus, Figure 2.4(b) and (c) are limited

to 85°C.

Finally, Figure 2.4(c) shows the upper (α = 1.0) and lower (α = 0.1) bounds of increase

in junction temperature of device tiles for different ambient temperatures (and corresponding volt-

ages). Higher activity consumes more dynamic power hence has a higher impact on temperature.

There is a close correlation between Figure 2.4(b) and (c) as steady-state junction temperature is

correlated to total power, especially when design activity is uniform. Please note that overlapping

(almost) of lower bound of the proposed method with upper bound of the baseline is haphazard

and specific to this benchmark.

• Algorithm Runtime. For all of our benchmarks, the flow converges in less than

6 iterations. At low Tamb values, due to weak temperature-leakage feedback, the algorithm

converges in 2–3 iterations. On a typical desktop system, the first iteration takes less than 12

seconds, and in subsequent iterations the algorithm limits the search space to the boundary of

the current solution, making each iteration less than 4 seconds. Thermal simulation takes ∼2.5

seconds of each iteration. Table 2.3 shows the details of the static voltage scaling algorithm. At

first round, voltages are set to (0.74,0.92). The resultant power increases the temperature by 5.82°

C, which increases the delay (tightens the margin) and leakage. Thus, the second iteration changes

the voltages to (0.75,0.90) for timing closure. The increase of temperature in the first iteration

also considerably increases the (leakage) power, from 485mW to 558mW. The temperature then

starts converging; hence the subsequent voltage and power changes are insignificant.

• Discussion. We do not change the voltages of other power rails such as auxiliary

supply voltage (Vaux) and I/O voltage (Vio) as they enable interfacing with other devices and have
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Table 2.3: Iterations of Algorithm 1 on mkDelayWorker at Tamb = 60° C.
Iter. Vcore(mV ) Vbram(mV ) Power (mW ) Tjunct(°C) Time (s)
1 740 920 485 65.82 10.9
2 750 900 558 66.69 3.1
3 750 910 564 66.76 3.1
4 750 910 564 66.77 3.1
5 750 910 564 66.77 3.1

relatively low power consumption. We also do not touch the voltage of configuration SRAM cells

as they use high-threshold mid-oxide transistors with two orders of magnitude less leakage [61].

In addition, we observed that reducing the voltage of SRAM cells causes voltage drop in pass-gate

based multiplexer structure of resources, which increases the leakage power of buffers due to

non-ideal voltage at their input.

2.3.3 Proposed Thermal-Aware Energy Optimization Flow

While performance is the major concern of high-end FPGA designs, total energy usage is

a primary concern of battery-backed and IoT applications. The goal of optimal energy exploration

is to find the voltage(s) Vopt and clock period dopt , for which E(Vopt ,dopt) = P(Vopt ,dopt)×dopt

is minimum, where E(Vopt ,dopt) is the design energy consumption rate operating with Vopt and

clock dopt . To obtain the Vopt and clock period dopt , clearly, the operating voltage Vopt must be

able to deliver the clock period of dopt to avoid timing violations. Second, the design must operate

with maximum possible frequency for the given voltage. Otherwise, if the clock period is set to

α ·dopt (α > 1), total energy becomes:

E(Vopt ,α ·dopt) =
(
Plkg(Vopt)+

Pdyn(Vopt)

α

)
×α ·dopt

= (αPlkg(Vopt)+Pdyn(Vopt))dopt > (Plkg(Vopt)+Pdyn(Vopt))dopt

That is, scaling the clock by α scales the dynamic power by 1
α

, but since the execution time also

scales by α, the total consumed dynamic energy remains the same. Nonetheless, the leakage

28



Algorithm 2: Thermal-Aware Energy Optimization
Input: netlist: Placed and routed design
Input: Tamb: Ambient temperature
Input: −→α : Input activities / sample inputs

1 Emin = ∞

2 for ∀ Vcore, ∀ Vbram do
3

−→
T n×n = [Tamb, · · · ,Tamb]

4
−→
∆T n×n = [∞, · · · ,∞]

5 while ∥
−→
∆T∥∞ > δT do

6 dmax = T (netlist,
−→
T ,Vcore,Vbram)

7
−→
P total =

−→
P lkg(

−→
T ,Vcore,Vbram) +

8
−→
P dyn(netlist,−→α ,dmax,Vcore,Vbram)

9
−→
T old =

−→
T

10
−→
T = HotSpot(

−→
P lkg +

−→
P dyn)

11
−→
∆T =

−→
T −−→T old

12 if dmax×∑i
−→
Pi < Emin then

13 Emin = dmax×∑i
−→
Pi

14 Vcoremin =Vcore

15 Vbrammin =Vbram

16 return Vcoremin ,Vbrammin

power is independent of the clock period. Thus, the leakage energy scales by α. Therefore, for a

given voltage (which we aim to find the best one), the clock period needs to be minimum possible

to minimize total energy.

That being said, we derive the new Algorithm 2 that looks for the (Vcore, Vbram) pair that

achieves minimum power-delay product as the energy metric whilst also exploits the temperature

headroom for further efficiency. Clearly, having the temperature-delay-voltage and voltage-power

characterization is vital for the reliability and efficiency of the proposed flow. Having Algorithm 1

already explained, understanding the Algorithm 2 is straightforward. Essentially, it looks for all

(Vcore,Vbram) pairs, and as reasoned above, finds the maximum frequency considering thermal

margin. In contrast with the voltage scaling flow, Algorithm 2 exploits the available thermal

margin to maximize the frequency for a candidate voltage, rather than lowering the voltage for a

fixed frequency. Thermal simulation (line 10) is again crucial as changing the frequency (line 6)
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changes the power and hence temperature.

Algorithm 1 was performing thermal simulation for the best (Vcore,Vbram) at each iteration

and we observed that, in the worst case, it converges in less than eight iterations. However,

Algorithm 2 needs to explore all |Vcore| × |Vbram| combinations and perform several thermal

simulations under each. It could take up to several hours for large benchmarks. We enhanced it by,

first, skipping a (Vcore,Vbram) combination if its energy in the initial loop (i.e., before involving

temperature-delay feedback of line 10) was larger than the already found optimum. In addition,

we also considered a small temperature margin of 0.1°C, so we could avoid the thermal simulation

of cases with power within 0.1
θJA

range of a previously obtained case. These optimizations reduced

the average runtime on benchmarks by two-order of magnitude (from 72 minutes to 49 seconds)

with virtually no impact on the solution.

2.3.4 Timing-Speculative Voltage Over-Scaling

Timing speculation has been shown to provide opportunistic power reduction in applica-

tions that can inherently tolerate a certain amount of error. Examples are: (a) image processing

circuits such as DCT/IDCT where small drop of PSNR (Peak Signal to Noise Ratio) might not be

perceived by human [78]. (b) Deep Neural Networks (DNNs) because of their pooling layers that

filter out a significant portion of intermediate results and also the stochastic nature of the gradient

descent [79] (c) light-weight alternatives of DNNs such as the brain-inspired computing that

performs the main machine learning applications by using inexpensive operations on hypervectors

that can bear a certain amount of inaccuracy [80], etc. Timing-speculative voltage over-scaling is

orthogonal to the thermal-aware voltage reduction with the opportunity of violating the timing for

more significant power saving.

Timing-speculative voltage scaling requires post P&R simulation of the targeted design

with the timing data at the scaled voltage to estimate the incurred inaccuracy. In standard-cell

design approaches, timing speculation can be realized by generating the same cell library under
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scaled voltages or providing multiple operating condition modes at the same library. Thus, the

synthesized design can be simulated using the new timing data. Nonetheless, to the best our

knowledge, there is no FPGA framework for post place and route (timing) simulation, particularly

under varying voltages.

By taking advantage of our characterization libraries, we build our simulation framework

upon the Verilog-to-Routing (VTR) [65] project explained in Section 2.3.1. Figure 2.5 demon-

strates the proposed post P&R simulation framework. The flow begins with synthesis (using

ODIN [81]) and technology mapping (using Berkeley ABC [82]) of the HDL description to BLIF

format that can be imported to the VPR P&R tool [65]. Architectural description of the target

FPGA needed by VPR can be hand-written or auto-generated by COFFE [58]. VPR generates a

.net file that describes the placement information of resources, and a .route file that provides

the routing information of design nets. Finally, we developed a Python-based tool to analyze

VPR outputs and instantiate the FPGA’s utilized components using primitives similar to Xilinx

syntax in Verilog HDL. The generated file is augmented with the delay of the resources obtained

by parsing the VPR outputs. It is noteworthy that all configurable multiplexers (SBs, CBs, etc.)

are programmed in a place and routed design, so we could simplify their functionality as a buffer

just to incorporate their delay information. VPR’s placement output (.net) does not include a

functional description. Thus, we retrieve the configuration of LUTs from the technology-mapped

BLIF. Similarly, BLIF files do not contain BRAMs initialization, so we read them back from the

original HDL file. To make the voltage over-scaling efficient, we utilize the proposed thermal-

aware voltage scaling as follows. For a given timing rate (e.g., 1.1× of original clock), we change

the timing condition of Algorithm 1 (line 7) to meet the new constraint (1.1× of dworst). Hence,

the obtained over-scaled voltages are optimal for that allowed amount of violation. We repeat it

for different timing violation rates. In Section 2.4 we report the additional power saving granted

by speculative voltage-scaling.
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Figure 2.5: The proposed simulation flow for FPGA-mapped applications, enabling speculative
voltage scaling.
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Figure 2.6: Power reduction and voltages for 40°C and 65°C board temperatures.

2.4 Experimental Results

• Power Reduction. Figure 2.6 demonstrates the power reduction using the proposed

flow of Algorithm 1. The flow finds the optimum core and memory voltage pair (Vcore and Vbram)

assuming highest inputs activity (α) to guarantee it satisfies temperature corners. In practice,

however, the input activity range might be lower. Therefore, for the obtained optimal voltages, we

assumed a varying activity α ∈ [0.1,1.0] and calculated the power reduction for the entire range.

Therefore, Figure 2.6 demonstrates a range of power saving. The right axis of this figure also

shows the optimal Vcore and Vbram voltages for each benchmark. In several benchmarks, the paths

containing memories were significantly shorter than critical paths. For instance, in LU8PEEng, the
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Figure 2.7: Range of energy savings at 65°C (left axis), and corresponding optimal voltage values
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critical path is 21× longer than the longest BRAM path. For these paths, Vbram is reduced down

to 0.55V, which we set as the lowest voltage level before device crashes [56]. In Figure 2.6(a)

we considered a device operating at Tamb = 40°C with θJA = 12°C/W , and in Figure 2.6(b) as

considered more high-end device operating at 65°C with θJA = 2°C/W (see Section 2.3.1 for details

of experiments). The opportunity of power saving reduces in higher temperatures. At 40°C,

the average power saving of 10 benchmarks is 28.3%−36.0% (depends on activity), while at

65°C it becomes 20.0%−25.0%. We observed up to 9.2°C increase in the junction temperature

of the baseline, which reduced to 5.9°C in the proposed method due to consuming less power.

Benchmarks have different power reduction and optimal voltages based on the resources on

critical paths (that determine the voltage scaling limit), used resources, the activity of nodes, etc.

Comparing Figure 2.6(a) and (b) also reveals how differently the voltages of benchmarks need

to be adjusted moving from 40°C to 65°C: raygentop needs boosting both voltages by 20mV,

or1200 needs only +20mV of core rail, and mkPktMerge needs 80mV increase of memory rail

with 10mV reduction of core voltage, suggesting the necessity of dynamic implementation (see

Section 2.3.2) for best efficacy.

• Energy Reduction. Figure 2.7 shows the range of energy reduction (left axis) of each

benchmark using the proposed energy optimization flow at 65°C. The points (×, ◦, ▲) correspond
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to the right axis and show the optimal voltage values and frequency ratio. Remember that the

goal of our energy minimization flow was to find out the minimum energy consumption point

(power-delay product) by compromising the delay and power, so the delay has been increased

by 1
0.37 = 2.7× while the overall consumed energy is improved by 44%− 66% depending on

input activities. There are obvious differences with optimal points of power and energy reduction

flows. Unlike the power flow, here, Vbram of above-mentioned benchmarks (e.g., LU8PEEng)

have not been shrunk down to 0.55V because the delay of their critical paths is also increased,

hence the memory voltage cannot be freely reduced. The ranges of energy savings are also more

stretched (e.g., in mkPktMerge) because in higher activities, memory dynamic energy becomes

the dominant contributor to total energy consumption, hence, throttling its energy becomes

worthwhile even considering the increased delay. As it can be seen in the figure, its Vcore is

reduced to 0.64V while in power reduction flow (Figure 2.6(b)) it could be reduced to 0.91V

because the clock delay must have been remained fixed.

• Speculative Voltage Over-Scaling. We chose LeNet [83] as a classic CNN for hand-

written digit recognition and implemented as a systolic array architecture [84]. Its relatively

small size makes the timing simulation computationally tractable. We also selected another

machine learning algorithm based on computing with hyperdimensional (HD) [85] vectors to
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detect two face/non-face classes among 10,000 web faces of a face detection dataset (FACE)

from Caltech [86]. Figure 2.8 shows the result of thermal-aware voltage over-scaling. Initially

CP delay is 1× of original clock, meaning that no timing violation is allowed and the ∼34%

power reduction is because of thermal-aware voltage scaling. Thereafter, we allow up to 40%

violation of CP delay, where accuracy drop becomes noticeable at 1.2× of the original clock.

This tolerance is because DNNs are intrinsically error-tolerant (e.g., allow quantization of weights

down to 3 bits in the LeNet [87]). Similarly, previous studies of HD have shown an accuracy drop

of merely 4% when up to 30% of the vectors bits are flipped (i.e., noisy) [80] mainly because

orthogonality of vectors, making them discernible under error. Based on Figure 2.8, when voltage

over-scaling increases the CP delay to 1.35× of the clock period, errors start spiking. At this point,

by respectively 3% and 0.5% accuracy drop, LeNet and HD powers are reduced by 48% and 50%,

which means additional 15% and 16% improvement compared to our original voltage-scaling

(with ∼34% improvement for both) in which CP delay does not exceed clock period.

2.5 Conclusion

In this chapter, we introduced the inefficiencies caused by the pessimistic timing margin

employed on FPGA-based designs. We also discussed why coping with this issue on FPGAs, due

to the reconfigurability of these devices and using various types of resources, is significantly more

challenging compared to ASICs. We then proposed systematic power and energy optimization

techniques by characterizing FPGA resources to utilize the thermal headroom. While keeping

the performance intact, the voltage scaling flow determines the optimal voltages of designs

based on their thermal distribution and can be implemented statically with fixed voltage(s) or

dynamically using programmable voltage regulators at highly varying ambient temperatures. Our

proposed energy optimization flow compromises the delay and power to seek the optimal point

that minimizes total consumed energy. Finally, we proposed a timing simulation framework
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that provides further power saving opportunities by making the impact of voltage over-scaling

observable.

FPGA devices are nowadays popular on both data center and edge applications. Hence,

addressing the energy efficiency of these devices impacts a wide variety of application domains.

Nevertheless, nowadays, more and more applications rely on heavy machine learning algorithms

such as DNNs to gain useful insight from data. While such machine learning techniques can

produce state-of-the-art results, they entail substantial memory and compute requirements that

exceed the energy, power, and resource (area) overhead of many edge applications. In the next

chapter, we discuss how we can bring the learning capability to the edge, particularly in domains

with extremely tight resource and energy constraints.

Chapter 2, in part, is a reprint of the material as it appears in “FPGA Energy Efficiency by

Leveraging Thermal Margin” by Behnam Khaleghi, Sahand Salamat, Mohsen Imani, and Tajana

Rosing which appears in IEEE International Conference on Computer Design (ICCD), 2019. The

dissertation author was the primary investigator and author of this paper.
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Chapter 3

Efficient FPGA Implementation of

Hyperdimensional Computing by

Approximation

In the previous chapter, we proposed a systematic approach to lower the power and energy

consumption of FPGA devices, which impacts a wide variety of application domains in different

levels of the computing stack, from edge to cloud. However, nowadays, many applications rely

on machine learning algorithms to gain useful insight from data. The efficacy of these algorithms

is usually correlated with their compute and power requirements. In this context, DNNs often

stand out as they can produce state-of-the-art results. Nonetheless, the resource requirement and

energy consumption of DNNs are far beyond the limitations of many edge devices. Therefore, in

the rest of the dissertation, we focus on a new and efficient learning paradigm, hyperdimensional

computing (HDC), and propose efficient hardware and algorithm designs for HDC to bring

affordable learning to the edge. To this end, in this chapter, we introduce HD computing and
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propose efficient FPGA implementations. Particularly, we propose approximate yet accurate

architectures that reduce resource utilization by more than 80% and facilitates implementing

HDC on very low-end FPGAs.

3.1 Introduction

The growing number of edge devices creates an exploding amount of data every moment.

Applications running on edge devices nowadays rely more and more on machine learning (ML)

algorithms to generate useful insights from data. While modern machine learning techniques

such as deep neural networks can produce state-of-the-art results, they entail substantial memory

and compute requirements that can exceed the resources available on most of edge devices. Thus,

there is a pressing need to develop novel machine learning techniques that provide accuracy and

flexibility while meeting the tight resource constraints of edge devices.

Hyperdimensional computing – HD for short – is an emerging paradigm for machine

learning based on evidence from the neuroscience community that the brain “computes” on

high-dimensional, distributed, representations of data [30, 88, 89, 90, 91, 32, 31]. In HD, the

primitive units of computation are high-dimensional vectors of length dhv sampled randomly

from the uniform distribution over the binary cube {±1}dhv . Typical values of dhv are in the

range 5-10,000. Because of their high-dimensionality, any randomly chosen pair of points will

be approximately orthogonal (that is, their inner product will be approximately zero). A useful

consequence of this is that sets can be encoded simply by summing (or “bundling”) together their

constituent vectors. For any collection of vectors P,Q,V their element-wise sum S = P+Q+V

is, in expectation, closer to P,Q and V than any other randomly chosen vector in the space.

Given HD representations of data, this provides a simple classification scheme: we simply

take the data points corresponding to a particular class and superimpose them into a single

representation for the set. Then, given a new piece of data for which the correct class label is
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Figure 3.1: Encoding and training in HD.

unknown, we compute the similarity with the hypervectors representing each class and return

the label corresponding to the most similar one. More formally, suppose we are given a set of

labeled data X = {(xi,yi)}N
i=1 where x ∈ Rdiv corresponds to an observation in low-dimensional

space and y ∈ C is a categorical variable indicating the class to which a particular x belongs. In

general, HD classification proceeds by generating a set of “class hypervectors” which represent

the training data corresponding to each class. Then, given a piece of data for which we do not

know the correct label – the “query” – we simply compute the similarity between the query and

each class hypervector and return the label corresponding to the most similar. This process is

illustrated in Figure 3.1.

Suppose we wish to generate the class hypervector corresponding to some class k ∈ C .

The prototype can be generated simply by superimposing (also called “bundling” in the literature)

the HD-encoded representation of the training data corresponding to that particular class [30, 92]:

Ck = ∑
i s.t. yi=k

enc(xi) (3.1)

where enc : Rdiv →{±1}dhv is some encoding function which maps a low-dimensional signal to a

binary HD representation. Then, given some piece of “query” data xq for which we do not know
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the correct label we simple return the predicted label as:

k⋆ = argmax
k∈C

δ(enc(xq),Ck) (3.2)

where δ is an appropriate similarity metric. Common choices for δ include the inner-product/cosine

distance – appropriate for integer or real valued encoding schemes – and the hamming distance

– appropriate for binary HD representations. This phase is commonly referred to in literature

as “associative search”. Despite the simplicity of this “learning” scheme, HD computing has

been successfully applied to a number of practical problems in the literature ranging from opti-

mizing the performance of web-browsers [93], to DNA sequence alignment [94, 95], bio-signal

processing [96], robotics [97, 98], and privacy-preserved federated learning [42].

The primary appeal of HD computing lies in its amenability to implementation in modern

hardware accelerators. Because the HD representations (e.g. φ(x)) are simply long Boolean

vectors, they can be processed extremely efficiently in highly parallel platforms like GPUs,

FPGAs and PIM architectures. The principal challenge of HD computing – and the focus of this

dissertation – lies in designing good encoding schemes which (1) represent the data in a format

suitable for learning and (2) are efficient to implement in hardware. In general, the encoding phase

is the most expensive stage in the HD learning pipeline – in some cases taking up to 10× longer

than training or prediction [99]. Existing encoding methods require generating hypervectors in

full integer-precision and then ex-post quantizing to {±1}. While this accelerates the associative

search phase, it does not address encoding which is the primary source of inefficiency.

In this work, we propose novel techniques, dubbed SHEARer (highly-efficient hyper-

dimensional computing by software-hardware enabled Multifold approximation) to compute

the encodings in an approximate manner that saves a substantial amount of resources with an

insignificant impact on accuracy. Of independent interest is our novel FPGA implementation

that achieves striking performance through massive parallelism with low power consumption.
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Approximate encodings entail models to be trained in a similar approximate fashion. Thus we

also develop a software emulation to enable users to train desired HD models. Our software

framework enables users to explore the tradeoff between the degree of approximation, accuracy,

and resource utilization (hence power consumption) by generating a pre-compiled library that

correlates approximation schemes and FPGA resource utilization and power consumption. We

show our procedure leads to performance improvement of 104,904× (15.7×) and energy sav-

ings of up to 56,044× (301×) compared to state-of-the-art encoding methods implemented on

Raspberry Pi 3 (GeForce GTX 1080 Ti).

3.2 Background and Motivation

3.2.1 HD Encoding Algorithms

The literature has proposed a number of encoding methods for the multitude of data

types which arise in practical learning settings. We here focus on a method from [30, 36, 92]

which we refer to as “ID-vector” based encoding. This encoding method is widely used (see for

instance: [36, 96, 100, 101]) and works well on both discrete and continuous data. We focus the

discussion on continuous data as discrete data is a simple extension.

Suppose we wish to encode some set of vectors X = {xi}N
i=1 where xi is supported

on some compact subset of Rdiv . To begin, we first quantize the domain of each feature into

a set of L discrete values L = {li}L
i=1 and assign each li ∈ L a codeword Li ∈ {±1}dhv . To

preserve the ordinal relationship between the quantizer bins (the li), we wish the similarity

between the codewords Li,L j to be inversely proportional to distance between the corresponding

quantization bins; e.g. δ(Li,L j) ∝ |li− l j|−1. To enforce this property we generate the codeword

L1 corresponding to the minimal quantizer bin l1 by sampling randomly from {±1}dhv . The

codeword for the second bin is generated by flipping dhv
2·L random coordinates in L1. The codeword

for the third bin is generated analogously from L2 and so on. Thus, the codewords for the
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minimal and maximal bins are orthogonal and δ(Li,L j) decays as | j− i| increases. This scheme

is appropriate for quantizers with linearly spaced bins – however, it can be extended to variable

bin-width quantizers.

To complete the description of encoding, let q(xi) be a function which returns the appro-

priate codeword L ∈ L for a component xi ∈ x. Then encoding proceeds as follows:

X =
div

∑
j=i

q(xi)⊗Pi (3.3)

Where Pi is a “position hypervector” which encodes the index of the feature value (e.g. i ∈

{1, ..,div}) and ⊗ is a “binding” operation which is typically taken to be XOR.

3.2.2 Motivation

While the basic operations of HD are simple, they are numerous due to its high-dimensional

nature. Prior work has proposed varied algorithmic and hardware innovations to tackle the compu-

tational challenges of HD. Acceleration in hardware has typically focused on FPGAs [102, 103,

104] or ASIC-ish accelerators [40, 105]. FPGA-based implementations provide a high degree of

parallelism and bit-level granularity of operations that significantly improves the performance and

effective utilization of resources. Furthermore, FPGAs are advantageous over more specialized

ASICs as they allow for easy customization of model parameters such as lengths of hypervectors

(dhv) and input-vectors (div) along with the number of quantization levels. This flexibility is

important as learning applications are heterogeneous in practice. Accordingly, we here focus on

an FPGA based implementation but emphasize our techniques are generic and can be integrated

with ASIC- [105] and processor-based [40] implementations.

As noted in the preceding section, the element-wise sum is a critical operation in the

encoding pipeline. Thus, popcount operations play a critical role in determining the efficiency of

HD computing. Figure 3.2(a) shows a popular tree-based implementation of popcount that adds
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Figure 3.2: (a) Adder-tree and (b) counter-based implementation of popcount. +⃝ denotes add
operation.

div binary bits (note that we can replace ‘−1’s by 0 in the hardware). Each six-input look-up table

(LUT-6) of conventional FPGAs consists of two LUT-5. Hence, we can implement the first stage

of the tree using div
3 of three-port one-bit adders. Each subsequent stage comprises two-port k-bit

adders where k increases by one at each stage, while the number of adders per stage decreases

by a factor of 1
2 . A n-bit adder requires n LUT-6. Thus, the number of LUT-6 for a div-input

popcount can be formulated as Equation (3.4).

nLUT6(adder-tree) =
logdiv

∑
i=1

div

3
× i

2i−1 ≃
4
3

div (3.4)

HD operations can be parallelized at the granularity of a single coordinate in each hyper-

vector: all dimensions of the encoding hypervector and associative search can be computed in

parallel. Nonetheless, Equation (3.4) reveals that the popcount module for a popular benchmark

dataset [106] with 617 features per input requires ∼820 LUTs. This limits a mid-size low-power

FPGA with ∼50K LUTs [107] to generate only ∼60 encoding dimension per cycle (out of

dhv ≃ 5,000).

To save resources, [104] and [105] suggest using counters to implement the popcount for
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each dimension of encoding, as shown in Figure 3.2 (b). Although this seems more compact, in

practice, it is less efficient than an adder-tree implementation: the counter-based implementation

needs “logdiv” LUTs per dimension, with a per-dimension latency of div cycles, while adder-trees

require O(4
3div) LUTs per dimension with a per-dimension throughput of one cycle, so for a given

amount of resources, the conventional adder-tree is 3
4 logdiv× more performance-efficient.

Work in [102] and [103] quantize the dimensions of encoding and class hypervectors

which eliminates DSP modules (or large number of cascaded LUTs) that are conventionally

used for the associative search stage, since, through quantization, inner product for cosine

similarity will be replaced by popcount operations in case of binary quantization, or lower-

bit multiplications. The resulting improvement is minor because the quantization is applied

after full-bit encoding. Furthermore, the multipliers of the associative search stage have input

widths of wenc (from encoding dimensions) and wclass (from class dimensions), so each one

needs O(wenc×wclass) LUTs. Pessimistically assuming bit-widths up to wenc = wclass = 16, an

extreme binary quantization can eliminate 256 LUTs required for multiplication. However, the

savings are again modest at best in practice: on the benchmark dataset mentioned previously,

only wenc×wclass
wenc×wclass+

4
3 div
≃ 23%. Therefore, we target the popcount portion that contributes to the

more significant part of resources. Indeed, ex-post quantizing of encoding hypervectors can be

orthogonal to our technique for further improvement.

3.3 Proposed Method: SHEARer

3.3.1 Approximate Encoding

In the previous section, we explained prior work that applies quantization after obtaining

the encoding hypervector in full bit-width. As noted there, while this approach is simple it

only accelerates the associative search phase and does not improve encoding - which is often

the principal bottleneck. Because the HD representation of data entails substantial redundancy
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and information is uniformly distributed over a large number of bits, it is robust to bit-level

errors: flipping 10% of hypervectors’ bits shows virtually zero accuracy drop, while 30% bit-error

impairs the accuracy by a mere 4% [80]. We leverage such resilience to improve the resource

utilization through approximate encoding, as shown in Figure 3.3. In the following, we discuss

each technique in greater detail and estimate its resource usage.

(1) Local majority. From Equation (3.4) we can observe that the number of resources

(in terms of LUT-6) of the exact adder-tree to see that the complexity encoding each dimension

linearly depends on the number of data features, div. We, therefore, aim to reduce the number of

inputs to the primary adder-tree by sub-sampling using the majority function so as to shrink the

tree inputs while (approximately) extracting the information contained in the input. Note that, here,

‘inputs’ are the binary dimensions of the level hypervectors (see Figure 3.1 2 and Figure 3.2). As

shown in Figure 3.3(a), each LUT-6 is configured to return the majority of its six input bits. When

three out of six inputs are 0/1, we break the tie by designating all LUTs that perform majority

functions of a specific encoding dimension to deterministically output 0 or 1. We specify this

randomly for every dimension (i.e., an entire adder-tree) but it remains fixed for a model during

the training and inference. We choose groups of six bits as a single LUT-6 can vote for up to

six inputs. Using smaller majority groups diminishes the resource saving, especially taking the

majorities adds extra LUTs. Moreover, following the Shannon decomposition, implementing a

‘k+1’-input LUT requires two k-input LUTs (and a two-input multiplexer). Thus, the number of

LUTs for majority groups larger than six inputs grows exponentially.

There are div
6 MAJ LUTs in the first stage of Figure 3.3(a), hence the number of inputs

for the subsequent adder-tree reduces to div
6 . From Equation (3.4) we also know that a k-input

adder-tree requires 4
3k LUT-6. Thus, the design of Figure 3.3(a) consumes:

MAJ LUT-6︷︸︸︷
div

6
+

adder-tree︷︸︸︷
4
3

div

6
=

7
18

div LUT-6 (3.5)
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Figure 3.3: Our proposed approximate encoding techniques. MAJ and +⃝ denote majority and
addition, respectively.

This uses 1− 7/18
4/3

= 70.8% less LUT resources than an exact adder-tree.

In [103], the authors report an average accuracy loss of 1.6% by post-hoc quantizing the

encodings to binary. Thus, one might think of repeating the majority functions in the subsequent

stages to obtain final one-bit encoding dimensions. Using local majority functions is efficient,

but degrades the encoding quality as majority is not associative. In particular, the MAJ LUTs add

another layer of approximation by breaking ties. Thus, a so-called MAJ-tree causes considerable

accuracy loss. Therefore, in our cascaded-MAJ design in Figure 3.3(b), we limit the MAJ stages to

the first two stages. Our cascaded-MAJ utilizes:

1st stage MAJs︷︸︸︷
div

6
+

2nd stage MAJs︷︸︸︷
div/6

6
+

adder-tree︷ ︸︸ ︷
4
3

div/6

6
=

25
108

div LUT-6 (3.6)

which saves 1− 25/108
4/3

= 82.6% resources compared to exact encoding. We emphasize that a

cascaded all-MAJ popcount needs ≃ ∑i=1
1
6i = 0.2div LUTs, which saves 85.0% of LUTs. So the

two-stage MAJ implementation with 82.6% resource saving is nearly optimal because the first two

stages of the exact tree were consuming the most resources.

(2) Input overfeeding. In Figure 3.2(a) we can observe that each LUT-5 pair of the

first stage computes s1s0 = hvi + hvi+1 + hvi+2. Since only three (out of five) inputs of them

are used, these LUTs left underutilized. With one more input, the output range will be [0−3],

which requires three bits (outputs) to represent, so we cannot add more than three bits using two
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LUT-5s. However, instead of using the LUT-5s to carry out regular addition, we can supply a pair

of LUT-5s with five inputs to perform quantized/truncated addition. For actual outputs (sum of

five bits) of 0 or 1, the LUT-5 pair would produce 00 (zero); for 2 or 3 they produce 01 (one), and

for 4 or 5 they produce 10 (two). That is one LUT-5 computes the actual carry out of the five bits,

and the other computes MSB of the sum. To ensure that the synthesis tool infers a single LUT-6

for each pair, we can directly instantiate LUT primitives. As a LUT-6 comprises a LUT-5 pair

(with shared inputs), the number of resources of Figure 3.3(c) is:

logdiv

∑
i=1

div

5
× i

2i−1 ≃
4
5

div LUT-6 (3.7)

The first stage encompasses div
5 LUT-6s, and each subsequent stage contains i-bit adders while

their count decreases by 1
2× at each stage. Total number of LUTs is reduced by 1− 4/5

4/3
= 40%

(the same ratio of over-use of inputs). The saving is smaller than the local majority approach but

we expect higher accuracy due to intuitively more moderate imposed approximation.

(3) Truncated nodes. Out of 4
3div LUTs used in an exact adder-tree, div (75%) are used

in the intermediate adder units. More precisely, following i
2i ratio (see Equation (3.4)), stages

1–4 of the adder contribute to 25%, 25%, 18.75%, and 12.5% of the total resources, respectively.

Note that, although the number of adder units halves at each stage, the area of each one increases

linearly. We avoid a blowup of adder sizes by truncating the least significant bit (LSB) of each

adder. As demonstrated in Figure 3.3(d), the LSB of the second stage (which is supposed to have

three-bit output) is discarded. Thus, instead of using two LUT-6s to compute s2s1s0 = a1a0+b1b0,

we can use two LUT-5s (equivalent to one LUT-6) to obtain s2s1 = a1a0+b1b0, where one LUT-5

computes s2 and the other produces s1 using four inputs a0, a1, b0, and b1. Truncating the output

of the second stage consequently decreases the output bit-width of the third stage by one bit as its

inputs became two bits. Thus, we can apply the LSB truncating to the third stage to implement it

using two LUT-5s, as well. We can apply the same procedure in all the consecutive nodes and
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implement them by only two LUT-5s. The output of the first stage is already two bits so we do

not modify its original implementation.

We apply truncating to first stages particularly from the left side of Equation 3.4 we can

perceive the first five stages that contribute to ∼90% of the adder-tree resources. Otherwise, the

decay in accuracy becomes too severe. Equation (3.8) characterizes the resource usage of the

adder-tree in which the first k stages are implemented using 2-bit adders shown in Figure 3.3(d)

(including the stage one, which uses the primary exact mode).

the first k stages︷ ︸︸ ︷
k

∑
i=1

div

3
1

2i−1 +

subsequent stages︷ ︸︸ ︷
logdiv

∑
i=k+1

div

3
i+1− k

2i−1 ≃ div

3
(2+

4
2k ) LUT-6 (3.8)

We can see that for k = 1 – i.e. when none of intermediate stages are truncated – the equation

returns 4
3div which is equal to resources of an exact adder-tree. Setting k to 2, 3, and 4 achieves

25%, 37.5%, and 43.75% resource saving, respectively.

3.3.2 SHEARer Architecture

Recall from Figure 3.1, that the HD encoding procedure needs to convert all input features

to equivalent level hypervectors, bind them with the associated ID hypervector, and bundle

together (e.g. sum) the resulting hypervectors to generate the final encoding. FPGAs, however,

contain limited logic resources as well as on-chip SRAM-based memory blocks (a.k.a BRAMs) to

provide high performance with affordable power. Previous work, therefore, break down this step

into multiple cycles whereby at each cycle they process dseg dimensions [102, 101, 108]. When

processing dimensions n ·dseg to (n+1) ·dseg, those architectures fetch the same dimensions of all

L level hypervectors. Each of dseg adder-trees are augmented with L-to-1 multiplexers in all of

their div input ports, where the kth ≤ dseg adder-tree’s multiplexers are connected to kth dimension

of the fetched level hypervectors, and the (quantized) value of associated feature selects the
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Figure 3.4: SHEARer datapath overview.

right level dimension to pass. The advantage of such architectures is that only dseg ·L bits need

to be fetched at each cycle. However, it requires div · dseq multiplexers. For a modest L = 16,

which translates to 16-input multiplexers occupying four LUTs, the total number of LUTs used

for multiplexers will be 4 ·div ·dseq, the (exact) adder-trees occupy dseq · 4
3div (in Equation (3.4)

we showed that a div input exact adder-tree uses 4
3div LUTs). This means that the augmented

multiplexers occupy 3× LUTs of the adder area.In our approximate encoding, this ratio would be

even larger as we trim the exact adder. Thus, multiplexer-based implementation overshadows the

gain of approximating the adders as we need to preserve the copious multiplexers.

To address this issue, we propose a novel FPGA implementation that relies on on-chip

memories rather than adding extra resources. Figure 3.4 illustrates an overview of the SHEARer

FPGA architecture. At each cycle, we partially process F (out of div) input features, where

F ≤ div. Our implementation is BRAM-oriented, so each (quantized) feature translates to the

address from which the corresponding level hypervector can be read. This entails a dedicated

memory block group for each of F features currently being processed. The number of BRAMs in
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a group is equal to group size = L ·dhv
Cbram

as there are L different level hypervectors of length dhv bits,

for a memory capacity of Cbram bits. Therefore, the number of features F that can be partially

processed in a cycle is limited to F < 2 total BRAMs
group size . The coefficient 2 is because the BRAMs have

two ports from which we can independently read (that is why in Figure 3.4 two pixels share the

same BRAM group). The address translator – “level to address” in Figure 3.4) – activates only

the right BRAM and row of the group, so the other BRAMs do not dissipate dynamic power.

Depending on its configuration, each memory block can deliver up to dmem bits, as indicated in

the figure. Certainly, we could double the dmem by duplicating the size of memory groups to

process more dimensions per cycle, but then F – the number of features that can be processed –

halves.

Each of dmem fetched level hypervector bit is XORed with the corresponding bit of the

ID (position) hypervector. As detailed in Section 3.2.1, each feature index is associated with

an ID hypervector, which is a randomly chosen (but fixed) hypervector of length dhv. We thus

require dhv·div
Cbram

additional BRAM blocks to store ID hypervectors. This further limits the number

of features that can be processed in a cycle due to BRAM shortage. To resolve this, we only

store a single ID hypervector (seed ID) and generate the other ones by rotating the seed ID, i.e.,

ID of index k can be obtained by rotating the ID of index 1 (seed ID) by k−1. This does not

affect the HD accuracy as the resulting ID hypervectors are still iid and approximately orthogonal.

For the first feature, we need to read dmem bits, while for the subsequent F −1 features we need

one more bit as each ID has dmem−1 common bits with its predecessor. Therefore we need a

data-width of dmem+F −1 for ID memory, meaning that we need 1+ F
dmem

memory blocks of the

seed ID hypervector. Thus, although the seed ID fits in a single BRAM, the required data-width

demands more memory blocks. However, this is still significantly smaller than the case of storing

all different IDs in BRAM blocks, which either releases BRAMs for processing the features, or

power gates the unused BRAMs. Moreover, using seed ID BRAM also saves dynamic power as

dmem +F −1 bits are read (compared to dmem×F of storing different IDs). It is also noteworthy
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that at each cycle the first dmem bits read from the ID memory are passed to the first feature of

the features currently being processed (i.e., feature 1, F + 1, 2F + 1, · · · ). Similarly, bits 2 to

dmem +1 of the fetched ID are passed to the second feature, and so on. Thus, the output of ID

BRAMs to processing logic needs a fixed routing.

After XORing the fetched level hypervectors with the ID hypervectors, each of the dmem

approximate adder-trees add up F binary bits, so the input size of all adders is F . Since the

result is only the sum of the first F features, SHEARer utilizes a buffer to store these partial

sums. In the next cycle, the procedure repeats for the next group of features, i.e., features F + 1

to 2F . Therefore, SHEARer produces dmem encoding dimensions in div
F cycles, hence the entire

encoding hypervector is generated in
⌈

dhv
dmem

⌉
×
⌈

div
F

⌉
cycles.

To make these tangible, in the Xilinx FPGAs we use for experiments, dmem is 64 and

Cbram = 512row× 64col . We also noticed that 16 level hypervectors gives the same accuracy

of having more, so we set L = 16. We also select the hypervector lengths to be a multiple of

512. Taking the previously mentioned language recognition benchmark [106] as an example,

we observed that dhv = 2,560 provides acceptable accuracy (see Section 3.4 for more details).

For this benchmark we thus need group size of
⌈16×2560

512×64

⌉
= 2 BRAMs, where each group can

cover two input features. The FPGA we use has a total 445 BRAMs, which can make at most⌊445
2

⌋
= 222 groups, capable of processing 444 features per cycle. Therefore, we divide 617 input

features of the benchmark into two repeating cycles using 310 BRAMs (155 BRAM groups)

to process the first 310 features in the first cycle, and the rest 307 cycles in the second cycle,

generating dmem = 64 encoding dimensions per 2 cycles. All 64 adder-trees have a 1-bit input

sizes of 310. The entire encoding takes 2560 dim× 2 cycles
64 dim = 80 cycles. Note that reading from

on-chip BRAMs has just one cycle latency and the off-chip memory latency is buried in the

computation pipeline.
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3.3.3 Software Layer

Because of approximation, the output of encoding and hence the class hypervectors are

different than training with exact encoding. Therefore we also need to train the model using the

same approximate encoding(s), as the associative search only looks for the similarity (rather than

exactness) of an approximately encoded hypervector with trained class hypervectors – which

are made up by bundling a manifold of encoding hypervectors. Our FPGA implementation is

tailored for inference, so we carry out the training step on CPU. We developed an efficient SIMD

vectorized Python implementation to emulate the exact and the proposed encoding techniques

in software. The emulation of the proposed techniques is straightforward. For instance, for the

local majority approximation (Figure 3.3(a)), instead of adding up all div hypervectors, we divide

them to groups of six hypervectors, add up all six hypervectors of each group, and compare if

each resultant dimension is larger than 3. We also break the ties in software by generating a

constant vector dictating how the ties of each dimension should be served. This acts as the MAJ

LUTs of the first stage. Thereafter, we simply add up all these temporary hypervectors to realize

the subsequent exact adders. This guarantees to match the software output with approximate

hardware’s, while we also achieve a fast implementation by avoiding unnecessary imitation of

hardware implementation.

In addition to div that is the dataset’s attribute, dhv, α, epochs (number of training epochs)

are the other variables of our software implementation. α is the learning rate of HD. As explained

in Section 3.1, HD bundles all encoding hypervectors belonging to the same-label data to create the

initial class hypervectors. In the subsequent epochs iterations, HD updates the class hypervectors

by observing if the model correctly predicts the training data. If the model mispredicts an encoded

query H l of label l as class C l′ , HD updates as shown by Equation (3.9). If learning rate α is not

provided, SHEARer finds the best α through bisectioning for a certain number of iterations.

C l = C l +α ·H l C l′ = C l′−α ·H l (3.9)
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We supply the software implementation of SHEARer with the number of BRAM and LUT

resources of the target FPGA to estimate the architectural parameters according to Section 3.3.2

as well as using the resource utilization formulated in Section 3.3.1. We have also implemented

the exact and approximate adder-trees of different input sizes and interpolated their measured

power consumption – which is linear w.r.t. the adder size – for different average activities of the

adders’ primary inputs. Therefore, we calculate the average signal activity observed by the adders

according to the values of temporary-generated binding hypervectors (level XOR ID). We similarly

estimate the toggle rate of BRAMs according to consecutive dmem bits read from BRAMs. As

alluded earlier, we do not replicate the hardware implementation in software; we just need to

determine each fetched level hypervector belongs to which BRAM group (based on the index of

feature), so we can keep track of toggle rates. Using the signal information with an offline look-up

table created for activity-power, along with the instantiated resource information calculated as

mentioned, during training, SHEARer estimates the power consumption of an application targeted

for a specific device.

3.4 Experimental Results

(1) General Setup. We have implemented the SHEARer architecture using Vivado

High-Level Synthesis Design Suite on Xilinx Kintex-7 FPGA KC705 Evaluation Kit which

embraces a XC7K325T device with 203,800 LUT-6 and 445 36 Kb BRAM memory blocks

that we use in 512×64bit configuration. By pipelining the adder-tree stages we could achieve

a clock frequency of 200 MHz. We compare the performance and energy results with the

high-end NVIDIA GeForce GTX 1080 Ti GPU, and Raspberry Pi 3 embedded processor. We

optimize the CUDA implementation by packing the hypervectors within 32-bit integers, so a

single logical XOR operation can bind 32 dimensions. We use speech [106], activity [109], and

hand-written digit [110] recognition as well as a face detection dataset [86] as our benchmarks.
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Table 3.1: Baseline implementation results.
Parameter ↓ Benchmark→ speech activity face digit

Input features (div) 617 561 608 784
Hypervector length (dhv) 2,560 3,072 6,144 2,048
Baseline accuracy 93.18% 93.91% 95.47% 89.07%

Table 3.2: LUT count for a 512-input adder-tree.
exact MAJ MAJ-2 over-feed truncate

Synthesis 638 183 116 383 340
Analysis 675 195 116 405 343
Error 5.8% 6.6% 0.0% 5.7% 0.9%

Table 3.1 summarizes the length of hypervectors and associated accuracy of each dataset in the

baseline exact mode. For a fair comparison, we first obtained the accuracies using dhv = 10,000,

then decreased it until the accuracies remain within 0.5% of the original values. This avoids

over-saturated hypervectors and accuracy drop due to approximation manifests better.

(2) Resource Utilization. To validate the efficiency of the proposed approximation

techniques, in addition to holistic high-level performance and energy comparisons, we examine

them by synthesizing a 512-input adder-tree. Table 3.2 reports the LUT utilization of the adder

implemented in exact and approximate modes. MAJ, MAJ-2, over-feed and truncate refer to the

designs of Figure 3.3(a)-(d). It can be seen that our equations in Section 3.3.1 have a modest

average error of 3.8%. Especially, it over-estimates the LUT count of both exact and approximate

adders, so the resource saving estimations remain similar to our predicted values. For instance,

synthesis results indicate MAJ (MAJ-2) saves 71.3% (81.8%) LUTs, which is very close to the

predicted 71.1% (82.8%).

(3) Accuracy. Table 3.3 summarizes the accuracies of the proposed encodings relative

to the exact encoding. LUT saving, which is dataset-independent, is represented again for the

comparison purpose. “trunc-3” and “trunc-4” stand for truncated encoding (Figure 3.3(d)) where,

respectively, three and four intermediate stages are truncated. Overall, MAJ encoding (one-stage

local majority shown in Figure 3.3(a)) achieves an acceptable accuracy with significant resource
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Table 3.3: Relative accuracies SHEARer approximate encodings.
exact MAJ MAJ-2 over-feed trunc-3 trunc-4

speech 93.2% −0.7% −2.3% −0.8% −0.9% −1.9%
activity 93.9% −0.8% −1.2% −1.3% −1.1% −1.0%
face 95.5% −1.8% −3.3% −1.7% −1.6% −1.9%
digit 89.1% −0.8% −0.3% −1.7% 0.1% −0.1%
average −1.0% −1.8% −1.4% −0.9% −1.2%
LUT saving 0 71.1% 82.8% 40.0% 37.5% 43.8%
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Figure 3.5: Throughput of SHEARer versus Raspberry Pi 3 and Nvidia GTX 1080 Ti. Y-axis is
logarithmic scale.

saving, though it is not always the highest-accurate one. For instance, in the face detection

benchmark, the over-feed and 3-stage truncated encodings offer slightly better accuracy. More

interestingly, in the digit recognition dataset, trunc-4 shows a negligible −0.1% accuracy drop

while trunc-3 even improves the accuracy by 0.1%. This can stem from the fact that emulating the

hardware approximation in SHEARer’s software layer takes a long time for the digit dataset,

so we limited the software to try five different learning rate (α) and repeat the entire training for

five times (with epochs= 50) so the result might be slightly skewed. For the other datasets we

conducted the training for 25 times each with 50 epochs to average out the variance of results.

(4) Performance. Figure 3.5 compares the throughput of SHEARer FPGA implemen-

tation with Raspberry Pi and Nvidia GPU. SHEARer implementation is BRAM-bound, so all

the exact and approximate implementations yield the same performance. In Section 3.3.2 we

elaborated that the speech dataset requires two cycles per dmem = 64 dimensions. We can sim-

ilarly show that activity and digit datasets also need two cycles per 64 dimensions, while
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digit requires three cycles as its level hypervectors are larger (dhv = 6,144) and occupy more

BRAMs. In the worst scenario, SHEARer improves the throughput by 58,333× and 6.7× com-

pared to Raspberry Pi and GPU implementation. On average SHEARer provides a throughput

of 104,904× and 15.7× as compared to Raspberry Pi and GPU, respectively. The substantial

improvements arise from that SHEARer adds up div
2 × 64 (e.g., ∼25,000) numbers per cycle

while also performs the binding (XOR operations) on the fly. However, Raspberry Pi executes

sequentially and also its cache cannot fit all the class hypervectors with non-binary dimensions.

Note that we assume that dataset is available in the off-chip memory (DRAM) of the FPGA.

Otherwise, although per-sample latency would be affected, throughput remains the same as the

off-chip memory latency is buried in the computation cycles.

(5) Energy Consumption. Figure 3.6 compares the energy consumption of the exact and

approximate SHEARer implementations with Raspberry Pi and GPU. We have scaled the energy

to 10 million inferences for the sake of illustration (Y-axis is logarithmic). We used Hioki 3334

power meter and NVIDIA system management interface to measure the power consumption of

Raspberry Pi and GPU, respectively. We used Xilinx Power Estimator (XPE) to estimate the

FPGA power consumption. The average power of Raspberry Pi for all datasets hovers around

3.10 Watt, while this is ∼120 Watt for the GPU. In FPGA implementation, powers showed more

variation as the number of active LUTs and BRAMs differ between applications. E.g., The
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face dataset with two-stage majority encoding (MAJ-2) consumes 3.11 Watt, while the digit

recognition dataset in the exact mode consumes 10.80 Watt. The smaller power consumption

of face is mainly because of smaller off-chip data transfer as face has the largest hypervector

length and takes 288 cycles to process an entire input, while for digit it takes 64 cycles. On

average, SHEARer’s exact encoding decreases the energy consumption of by 45,988× and 247×

(average of all datasets) as compared to Raspberry Pi and GPU implementations. MAJ-2 encoding

of SHEARer consumes the minimum energy, which throttles the energy consumption by 56,044×

and 301× compared to Raspberry Pi and GPU, respectively. Note that power improvement of the

approximate encodings is not proportional to their resource (LUT) utilization as BRAM power

remains the same for all encodings.

3.5 Conclusion

In this chapter, we leveraged the intrinsic error tolerance of HD computing to develop

different approximate encodings with varied accuracy and resource utilization attributes. With a

modest 1.0% accuracy drop, our approximate encoding reduces the LUT utilization by 71.1%.

By effectively utilizing the on-chip BRAMs of FPGA, we also proposed a highly efficient

implementation that outperforms an optimized GPU implementation over 15× and surpasses

Raspberry Pi by over five orders of magnitude. Our FPGA implementation also consumes

a moderate power: a minimum of 3.11 Watt for a face detection dataset using approximate

encoding and a maximum of 10.8 Watt for a digit recognition dataset when using exact encoding.

Eventually, our implementation reduces the energy consumption by 247× (45,988×) compared

to GPU and Raspberry Pi in exact encoding, which further improves by a factor of 1.22× using

approximate encoding.

As a proof of concept, we implemented our architectures on a mid-range Kintex-7 de-

vice, while given the obtained LUT usage per dimension, the proposed architectures can be
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implemented on very low-end FPGA devices such as Microsemi’s IGLOO2 series with a few

thousands of LUTs and ∼10 mW power consumption [111]. While this amount of resource and

power consumption might be acceptable for a variety of devices such as gadgets and smartphone,

there are many IoT applications and devices that have much stricter resource (area) and energy

constraints such as wearable devices (e.g., an eye glass or earbud with integrated seizure detection

logic) or remote sensors. Therefore, in the next chapter, we propose custom ASIC implementation

for HDC to further improve its efficiency while still offering flexibility in supporting different

applications.

Chapter 3, in part, is a reprint of the material as it appears in “SHEARer: Highly-Efficient

Hyperdimensional Computing by Software-Hardware Enabled Multifold Approximation” by

Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim,

and Tajana Rosing which appears in Proceedings of ACM/IEEE International Symposium on

Low Power Electronics and Design (ISLPED), 2020. The dissertation author was the primary

investigator and author of this paper.
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Chapter 4

Efficient Learning Engine on Edge

using Hyperdimensional Computing

In Chapter 2, we proposed techniques to reduce the energy consumption of FPGA-based

designs and make them plausible for a wider range of edge applications. In Chapter 3, to cope

with the memory and compute overhead of machine learning techniques, we introduced HD

computing and proposed exact and approximate HDC implementation that allows implementing

on low-end FPGAs. However, although low-end FPGA devices are used in certain IoT use

cases, their large form-factor and constant leakage power consumption hinders their utilization in

extremely low-power use cases such as wearable devices and other tiny sensors. In this chapter,

we show conventional processing systems are incapable of taking full advantage of the highly-

parallel bit-level operations of HDC, which makes a custom ASIC design of HDC indispensable.

However, existing HDC encoding techniques do not cover a broad range of applications to make a

fixed design plausible. Therefore, in this chapter, we first propose a novel encoding that achieves

high accuracy for diverse applications. Then, we leverage the proposed encoding and design a

highly efficient and flexible ASIC accelerator, suited for low-power edge domain, and capable of
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running classification (both learning and inference) as well as clustering.

4.1 Introduction

As explained in Chapter 3, HDC uses specific algorithms to encode raw inputs to a

high-dimensional representation of hypervectors with Dhv ≈ 2−5K dimensions. The encoding

takes place by deterministically associating each element of an input with a binary or bipolar (±1)

hypervector and bundling (element-wise addition) the hypervectors of all elements to create the

encoded hypervector. Training is straightforward and involves bundling all encoded hypervectors

of the same category. For inference, the query input is encoded to a hypervector in the same

fashion and compared with all class hypervectors using a simple similarity metric such as cosine.

The bit-level massively parallel operations of HDC do not accord well with conventional

CPUs/GPUs due to, e.g., memory latency and data movement of large vectors and the fact that

these devices are over-provisioned for majorly binary operations of HDC. Previous works on

custom HDC accelerators support a limited range of applications or achieve low accuracy. The

authors of [36] and [37] propose custom HDC inference designs that are limited to a specific

application. More flexible HDC inference ASICs are proposed in [38] and [39], but as we

quantify in Section 4.3.2, the utilized encoding techniques achieve poor accuracy for particular

applications such as time-series. The authors of [40] propose a trainable HDC accelerator, which

yields 9% lower accuracy than baseline ML algorithms. An HDC-tailored processor is proposed

in [112], but it consumes ∼1−2 orders of magnitude more energy than ASIC counterparts. The

in-memory HDC platform of [113] uses low-leakage PCM cells to store hypervectors, but its

CMOS peripherals throttle the overall efficiency.

In this chapter, we propose GENERIC (highly efficient learning engine on edge using

hyperdimensional computing) for highly efficient and accurate trainable classification and clus-

tering. Our primary goal is to make GENERIC compact and low-power to meet year-long
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battery-powered operation, yet fast enough during training and burst inference, e.g., when it

serves as an IoT gateway. To this end, we make the following contributions.

(1) We propose a novel HDC encoding that yields high accuracy in various benchmarks. Such a

generic encoding is fundamental to develop a custom yet flexible circuit.

(2) We perform a detailed comparison of HDC and various ML techniques on conventional

devices and point out the failure of these devices in unleashing HDC advantages.

(3) We propose the GENERIC flexible architecture that implements accurate HDC-based trainable

classification and clustering.

(4) GENERIC benefits from extreme energy reduction techniques such as application-opportunistic

power gating, on-demand dimension reduction, and error-resilient voltage over-scaling.

(5) Comparison of GENERIC with the state-of-the-art HDC implementations reveals GENERIC

improves the classification accuracy by 3.5% over previous HDC techniques and 6.5% over ML

techniques. GENERIC improves the inference energy consumption by 528×, and training energy

by 1590× over the most-efficient ML algorithm, while achieving higher accuracy. Compared to

previous HDC accelerators [38] and [40], GENERIC reduces the energy consumption by 4.1×

and 15.7×, respectively.

4.2 Hyperdimensional Computing Background

In Chapter 3, we introduced the concepts of HDC learning and inference. Therefore, in

this section we only introduce different encoding techniques of HDC before evaluating them. We

also explain HDC-based clustering we the proposed accelerator is capable of clustering using

HDC.

61



+1 -1 -1 +1 +1 +1 ... +1

+1 +1 +1 -1 +1 -1 ... -1

-1 +1 -1 -1 +1 -1 ... +1

D = 5,000
LB ⋅ LW ≈ 0

Permuting level hypervectors

(a)

+1 +1 +1 -1 +1 -1 ... -1

-1 +1 -1 -1 +1 -1 ... +1

+

≪ m

≪ n

+9 0 -2 +1 -4 -7 ... +10

+

+1 -1 -1 +1 +1 +1 ... +1

≪ 0

7

241

122

×

×

×

-1 -1 +1 -1 +1 -1 ... +1

-1 +1 +1 -1 -1 +1 ... -1

-1 -1 +1 +1 +1 -1 ... +1

id0

idm

idn

+91 -3 -24 +61 -40 -71 ... +12

(b) (c)

+1 -1 -1 +1 +1 +1 ... +1
≪ 0

+1 -1 -1 +1 +1 +1 ... +1
≪ 1

-1 +1 -1 -1 +1 -1 ... +1
≪ 2

+

+

+

(d)

+12 -7 0 +4 -3 +2 ... -13

⊕

⊕

⊕

-1 -1 +1 +1 +1 -1 ... +1 idk

Level Hypervectors

LB ⋅ LG ≈ 2500

LG ⋅ LW ≈ 2500

One id per each index

Permuting and XORing window’s levels

Pixel value

One id per 

window

Figure 4.1: (a) Level hypervectors, (b) permutation encoding, (c) random projection encoding,
(d) proposed GENERIC encoding.

4.2.1 Encoding

In Chapter 3 we introduced base-level (aka id-level or id-vector) encoding. There are

several other encoding techniques to map the inputs to high-dimensional space for subsequent

learning tasks, such as permutation and random projection encoding shown in Figure 4.1. Each

encoding technique preserves a particular distance (such as L1 or angular distance) suitable

for particular data types. We denote any input in the low-dimensional space as a vector X =

(x1, · · ·xdiv) where xi ∈ R and div is the number of features (dimensionality of the input vector in

the original space).

Base-level is discussed in the previous chapter. To recap, it quantizes the input features

to Q levels and assigns a binary or bipolar (±1) hypervector of length Dhv. We explained the

process of generating the level vectors in Chapter 3. In addition to level hypervectors, a random

base B⃗i (aka id) hypervector per each feature position is also used to account for the order of

features in an input [114]. Equation (4.1) formulates the base-level encoding.

H⃗ (X ) =
div

∑
i=1

B⃗i · L⃗(xi) (4.1)

Permutation encoding uses the same concept of level hypervectors as in base-level

encoding but accounts for positional information using circular shift instead of binding with
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base hypervectors. In Equation (4.2), ρk(X
)

indicates circular shift of X by k indexes, which has

replaced binding by B⃗k of Equation (4.1). Therefore, after selecting the proper level hypervector

of feature xi, it is shifted by i−1 indexes and is added up with the same of the rest of xis.

H⃗ (X ) =
div

∑
i=1

ρ
(i−1)

(
L⃗(xi)

)
(4.2)

Random Projection (RP) encoding, similar to base-level, uses base hypervectors to take

care of positional information, but instead of level hypervectors directly uses the scalar values

of features (‘xi’s) as shown by Equation (4.3a), in which xi× B⃗i is a scalar-vector multiplication

between a single feature xi and the base hypervector of position i (B⃗i). RP encoding may be

accompanied by a quantization scheme such as the sign function to restrict the embedding to H .

H⃗ (X ) =
div

∑
i=1

xi× B⃗i (4.3a)

H⃗ (X ) = sign
( div

∑
i=1

xi× B⃗i
)

(4.3b)

Note that we can rearrange all div base hypervectors into a Dhv×div matrix. Therefore, Equa-

tion (4.3) can be rewritten as H⃗ (X ) = B ′×X , a matrix-vector multiplication, in which each

column i of B ′ is base hypervector B⃗i.

N-gram encoding is used in applications that the global position of features does not

provide meaningful information, e.g., the relative position of words when detecting a language.

N-gram encoding applies circular shift over the level hypervectors of N consecutive features

within a sliding window (zero shift for the first level hypervector and N−1 shift for the Nth one),

obtains the dot-product/XOR of these permuted hypervectors, and accumulates/bundles the result

of all div−N+1 windows [36]. Typically N ∈ {2,3,4}. Note that N-gram encoding is naturally

incapable of accounting for global positional information and is expected to yield low accuracy
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Algorithm 3: HDC Clustering Algorithm
Input: SX : list of all inputs X in low-dimensional space
Input: k: number of clusters, T number of epochs
Output: CX : cluster of all inputs X

1 for i ∈ 1 : |SX | do
2 H i = encode(X i)

3 for i ∈ 1 : k do
4 C i

prev = H random(1,|SX |) // initialize centroids

5 for t ∈ 1 : T do
6 Cnext = Ø
7 for i ∈ 1 : |SX | do
8 c⋆ = argmax δ(H i,C j

prev) ∀ j ∈ [1,k]
9 C c⋆

next += H i

10 CX (X i) = c⋆ // cluster of the ith input is c⋆

11 Cprev = Cnext

12 return CX

in many application domains.

H⃗ (X ) =
div−N

∑
i=1

N−1

∏
j=0

ρ
( j)
(

L⃗(xi+ j)
)

(4.4)

4.2.2 HDC Clustering

The similarity of hypervectors indicates their proximity [31], which can be used to cluster

data in the hyperspace. Algorithm 3 summarizes the HDC clustering, which in essence is similar

to the k-means clustering algorithm [114]. Initially, k encoded input hypervectors are randomly

chosen to serve as centroids. After that, HDC clustering iterates over the remaining encoded data,

and according to the similarity score of each encoded hypervector with the current centroids, it

adds up all hypervectors that belong (most similar) to the same centroid to create the centroids

of the updated clusters. This procedure repeats for a predefined number of epochs or until

convergence, when none of the centroids are updated (the new centroids are the same as previous

ones).
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4.3 Proposed HDC Encoding

4.3.1 GENERIC Encoding

The encoding techniques discussed in Section 4.2.1 achieve low accuracy for certain

datasets such as language identification which generally need extracting local subsequences of

consecutive features, without considering the global order of these subsequences (see subsec-

tion 4.3.2). Previous studies use ngram encoding for such datasets [36, 37, 115]. Ngram encoding

extracts all subsequences of length n (usually n∈{3−5}) in a given input, encodes all these subse-

quences and aggregates them to produce the encoded hypervector. However, ngram encoding

achieves very low accuracy for datasets such as images or voices in which the spatio-temporal

information of should be taken into account.

We propose a new encoding, dubbed GENERIC, to cover a more versatile set of applica-

tions. As shown in Figure 4.1(d), our encoding processes sliding windows of length n by applying

the permutation encoding. That is, for every window consisting of elements {xk,xk+1,xk+2} (for

n=3), three level hypervectors are selected, where ℓ(xk), ℓ(xk+1), and ℓ(xk+2) are permuted by 0,

1, and 2 indexes, respectively. The permuted hypervectors are XORed element-wise to create the

window hypervector. The permutation accounts for positional information within a window, e.g.,

to distinguish “abc” and “bca”. To account for global order of features, we associate a random

but constant id hypervector with each window, which is XORed with the window hypervector to

perform binding. To skip the global binding in certain applications, id hypervectors are set to

{0}Dhv . Equation (4.5) formalizes our encoding, where ρ( j) indicates permutation by j indexes,

∏ multiplies (XOR in binary) the levels of ith window, idi applies the binding id, and ∑ adds up

the window hypervector for all windows of d elements.

H (X ) =
d−n+1

∑
i=1

(
idi ·

n−1

∏
j=0

ρ
( j)(ℓ(xi+ j)

))
(4.5)
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Table 4.1: Accuracy of HDC and ML algorithms.

Dataset 
HDC Algorithms ML Algorithms 

RP level-id ngram permute GENERIC MLP SVM RF DNN 

CARDIO 83.0% 88.1% 88.1% 88.2% 91.8% 86.4% 86.4% 95.3% 90.1% 

DNA 99.3% 99.3% 99.7% 99.3% 99.7% 99.5% 99.5% 99.5% 99.8% 

EEG 46.8% 77.5% 83.1% 78.3% 83.1% 56.8% 75.4% 80.1% 60.2% 

EMG 53.6% 90.9% 90.8% 91.1% 90.9% 91.0% 89.2% 83.6% 89.4% 

FACE 95.3% 95.0% 73.3% 96.1% 95.7% 95.5% 97.3% 92.5% 96.7% 

ISOLET 93.2% 93.5% 38.9% 93.5% 93.1% 95.0% 96.0% 92.2% 94.4% 

LANG 8.2% 75.9% 100.0% 52.8% 100.0% 5.4% 30.8% 10.3% 99.9% 

MNIST 94.6% 89.4% 53.0% 89.3% 94.0% 96.7% 97.9% 96.0% 99.1% 

PAGE 96.1% 91.6% 91.7% 91.7% 91.8% 96.5% 96.9% 97.4% 95.8% 

PAMAP2 83.0% 94.6% 60.9% 95.8% 93.8% 92.9% 91.9% 95.6% 96.1% 

UCIHAR 93.4% 94.6% 64.9% 94.7% 94.9% 94.6% 95.8% 95.6% 96.5% 

Mean 77.0% 90.0% 76.8% 88.3% 93.5% 82.8% 87.0% 85.3% 92.5% 

STDV 27.5% 6.9% 19.2% 12.4% 4.4% 26.9% 19.0% 24.4% 10.8% 

 

 

 

We use n=3 as it achieved the highest accuracy (on average) for our examined benchmarks (see

subsection 4.3.2), however, GENERIC architecture can adjust the value of n for every application.

4.3.2 Accuracy Comparison

We compiled eleven datasets from different domains, consisting of the benchmarks

described in [40], seizure detection by skull surface EEG signals, and user activity recognition

by motion sensors (PAMAP2) [116]. We implemented the HDC algorithms using an optimized

Python implementation that leverages SIMD operations. For ML techniques, we used Python

scikit-learn library [117]. We discarded the results of logistic regression and k-nearest neighbors as

they achieved lower accuracy. For DNN models of benchmarks, we used AutoKeras library [118]

for automated model exploration.

Table 4.1 summarizes the accuracy results (RP: random projection, MLP: multi-layer

perceptron, SVM: support vector machine, RF: random forest). The proposed GENERIC encoding

achieves 3.5% higher accuracy than the best baseline HDC (level-id), 6.5% higher than best

baseline ML (SVM), and 1.0% higher than DNN. The RP encoding fails in time-series datasets

66



1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

R
P

le
v

el
-i

d

G
E

N
E

R
IC

M
L

P

L
R

K
N

N

SV
M R
F

D
N

N

R
P

le
v

el
-i

d

G
E

N
E

R
IC

M
L

P

L
R

K
N

N

SV
M R
F

D
N

N

R
P

le
v

el
-i

d

G
E

N
E

R
IC

D
N

N

T
im

e 
p

er
 in

p
u

t 
(m

Se
c)

Train Inference

G
E

N
E

R
IC

G
E

N
E

R
IC

G
E

N
E

R
IC

Raspberry Pi CPU eGPU

(b) Execution Time

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

R
P

le
v

el
-i

d

G
E

N
E

R
IC

M
L

P

L
R

K
N

N

SV
M R
F

D
N

N

R
P

le
v

el
-i

d

G
E

N
E

R
IC

M
L

P

L
R

K
N

N

SV
M R
F

D
N

N

R
P

le
v

el
-i

d

G
E

N
E

R
IC

D
N

N

E
n

er
gy

 p
er

 in
p

u
t 

(m
J

Train Inference

Raspberry Pi CPU eGPU

G
E

N
E

R
IC

G
E

N
E

R
IC

G
E

N
E

R
IC

(a) Energy Consumption

Figure 4.2: (a) Energy consumption and (b) execution time of HDC and ML algorithms on
different devices.

that require temporal information (e.g., EEG). As explained in subsection 4.3.1, the ngram

encoding [36, 115] do not capture the global relation of the features, so it fails in datasets such

as speech (ISOLET) and image recognition (MNIST). Except for the ngram and the proposed

GENERIC, other HDC techniques fail in the LANG (text classification) as they enforce capturing

sequential information and ignore subsequences.

4.3.3 Efficiency on Conventional Hardware

HDC’s operations are simple and highly parallelizable, however, conventional processors

are not optimized for binary operations such as one-bit accumulation. Also, the size of hypervec-
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tors in most settings becomes larger than the cache size of low-end edge processors, which may

impose significant performance overhead. For a detailed comparison, we implemented the HDC

and ML algorithms on the datasets of subsection 4.3.2 on a Raspberry Pi 3 embedded processor

and NVIDIA Jetson TX2 low-power edge GPU, and also a desktop CPU (Intel Core i7-8700

at 3.2 GHz) with a larger cache. We used Hioki 3334 power meter to measure the power of the

Raspberry Pi.

Figure 4.2 compares the training and inference (a) energy consumption and (b) execution

time of the algorithms, reported as the geometric mean of all benchmarks (for eGPU, we omitted

the results of conventional ML as it performed worse than CPU for a variety of libraries we

examined). We can observe that (i) conventional ML algorithms, including DNN, unanimously

consume smaller energy than HDC on all devices, (ii) GENERIC encoding, due to processing

multiple hypervectors per window, is less efficient than other HDC techniques, and (iii) our eGPU

implementation, by data packing (for parallel XOR) and memory reuse, significantly improves

the HDC execution time and energy consumption. For instance, eGPU improves the energy

usage and execution time of GENERIC inference by 134× and 252× over running on low-end

Raspberry Pi (70× and 30× over CPU). However, GENERIC running on eGPU still consumes

12× (3×) more inference (train) energy, with 27× (111×) higher execution time than the most

efficient baseline (random forest). Nonetheless, eGPU numbers imply substantial energy and

runtime reduction potential for HDC by effectively taking advantage of low-precision operations

(achieved by bit-packing in eGPU) and high parallelism.

4.4 GENERIC Architecture

4.4.1 Overview

Figure 4.3 shows the main components of GENERIC architecture. The main inputs

include (i) input port to read an input (including the label in case of training) from the serial
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Figure 4.3: Overview of GENERIC architecture.

interface element by element and store in the input memory before starting the encoding, (ii)

config port to load the level, id, and class hypervectors (in case of offline training), and (iii) spec

port to provide the application characteristics to the controller, such as Dhv dimensionality, d

elements per input, n length of window, nC number of classes or centroids, bw effective bit-width,

and mode (training, inference, or clustering). Output port returns the labels of inference or

clustering.

The controller, by using spec data, handles the programmability of GENERIC and or-

chestrates the operations. For instance, the encoder generates m=16 (architectural constant)

partial dimensions after each iteration over the stored input, where the variable Dhv signals the

end of encoding to finalize the search result, d denotes the number of input memory rows to

be proceeded to fetch features (i.e., the exit condition for counter), nC indicates the number of
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class memory rows that need to be read for dot-product and so on. The class memory layout

of GENERIC also allows trade off between the hypervectors length Dhv and supported classes

nC. By default, GENERIC class memories can store Dhv=4K for up to nC=32 classes. For

an application with less than 32 classes, higher number of dimensions can be used (e.g., 8K

dimensions for 16 classes). We further discuss it in subsection 4.4.3. These application-specific

input parameters enable GENERIC the flexibility to implement various applications without

requiring a complex instruction set or reconfigurable logic.

In the following, we explain how GENERIC implement different HDC stages.

4.4.2 Classification and Clustering

Encoding and Inference: Features are fetched one by one from the input memory and

quantized to obtain the level bin, and accordingly, m (16) bits of the proper level hypervector

are read. The levels are stored as m-bit rows in the level memory. The stacked registers (reg n

to 1) facilitate storing and on-the-fly sliding of level hypervectors of a window. Each pass over

the input features generates m encoding dimensions, which are used for dot-product with the

classes. The class hypervectors are distributed into m memories (CM 1 to CM m) to enable reading

m consecutive dimensions at once. The dot-product of partial encoding with each class is summed

up in the pipelined adder•6 , and accumulated with the dot-product result of previous/next m

dimensions in the score memory•7 .

After Dhv
m iterations, all dimensions are generated, and the dot-product scores are finalized.

We use cosine similarity metric between the encoding vector H and class Ci: δi =
H ·Ci

∥H ∥2×∥Ci∥2
;

hence, we need to normalize the dot-product result with L2 norms. The ∥H ∥2 can be removed

from the denominator as it is a constant and does not affect the rank of classes. In addition,

to eliminate the square root of ∥Ci∥2, we modify the metric to δi =
(H ·Ci)

2

∥Ci∥2
2

without affecting

the predictions. The norm2 memory of Figure 4.3•8 stores the squared L2 norms of classes,

and similarly, the squared score is passed to the divider•9 . We use an approximate log-based
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division [119].

Training and Retraining: In the first round of training, i.e., model initialization, encoded

inputs of the same class/label are accumulated. It is done through the adder•4 and mux•3 of

all class memories. The controller uses the input label and the iteration counter to activate the

proper memory row. In the next retraining epochs, the model is examined and updated in case of

misprediction. Thus, during retraining, meanwhile performing inference on the training data, the

encoded hypervector is stored in temporary rows of the class memories (through the second input

of mux•3 ). If updating a class is required, the class rows are read and latched in the adder•4 ,

followed by reading the corresponding encoded dimensions from the temporary rows and writing

the new class dimensions back to the memory. Hence, each update takes 3×Dhv
m cycles. Training

also requires calculating the squared L2 norm of classes in the norm2 memory•8 . As it can be

seen in Figure 4.3, the class memories are able to pass the output into both ports of the multipliers

(one direct and another through the mux) to calculate and then accumulate the squared elements.

Clustering: GENERIC selects the first k encoded inputs as the initial cluster centroids and

initializes k centroids in the class memories. It allocates two sets of memory rows for temporary

data; one for the incoming encoding generated in the encoding module and another for the copy

centroids (as mentioned in Section 4.2.2, clustering generates a new copy instead of direct update).

Similarity checking of the encoding dimensions with the centroids is done pipelined similar to

inference, but the encoded dimensions are stored to be added to the copy centroid after finalizing

the similarity checking. After finding the most similar centroid, the copy centroid is updated

by adding the stored hypervector (similar to retraining). The copy centroids serve as the new

centroids in the next epoch.

4.4.3 Energy Reduction

We take advantage of the properties of GENERIC architecture and HDC for utmost energy

efficiency. The following elaborates energy-saving techniques that benefit GENERIC. These
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techniques can also be applied to other HDC accelerators.

id Memory Compression: The id memory naturally needs 1K×4K=512 KB (for up to

to 1K features per input, and Dhv=4K dimensions) which occupies a large area and consumes

huge power. However, GENERIC generates ids on-the-fly using a seed id vector, where kth id is

generated by permuting the seed id by k indexes. Therefore, the id memory shrinks to 4 Kbit, i.e.,

1024× reduction. Permutation preserves the orthogonality. It is implemented by the tmp register

in Figure 4.3•2 , by which, for a new window, the reg id is right-shifted and one bit of tmp is

shifted in. The tmp register helps to avoid frequent access to the id memory by reading m (16)

bits at once and feeding in the next m cycles.

Application-opportunistic Power Gating: For an application with nC classes and using

Dhv dimensions, GENERIC stripes the dimensions 1 to m (16) of its 1st class vector in the 1st row

of m class memories, the 2nd class vector in the 2nd row, and so on (see Figure 4.3). The next m

dimensions of the 1st class vector are therefore written into nC +1th row, followed by the other

classes. Thus, GENERIC always uses the first nC×Dhv
32×4K portion of class memories.

The applications of Section 4.3.2, on average, fill 28% of the class memories (minimum

6% for EEG/FACE, and maximum 81% for ISOLET) using Dhv=4K dimensions. Accordingly,

GENERIC partitions each class memory into four banks and power gates the unused banks.

With four banks, 1.6 out of four banks are activated on average, leading to 59% power saving.

With more fine-grained eight banks, 2.7 banks (out of eight) become active, saving 66% power.

However, eight banks impose 55% area overhead compared to 20% of four banks (see Section 4.5.1

for setup). We concluded that the four-bank configuration yields the minimum area×power cost.

Since the power gating is static (permanent) for an application, no wake-up latency or energy is

involved.

On-demand Dimension Reduction: GENERIC can trade the energy consumption and

performance with accuracy. Recall that GENERIC generates m dimensions of the encoding per

iteration over the features. By feeding a new Dhv value as input, GENERIC can seamlessly
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Figure 4.5: Accuracy and power reduction with respect to memory error.

use the new dimension count by updating the counter exit condition, so smaller hypervectors of

the encoding and class hypervectors will be used. Nevertheless, GENERIC stores the squared

L2 norms of the whole classes for similarity metric (δi =
(H ·Ci)

2

∥Ci∥2
2

) while for arbitrary reduced

encoding dimensions, only the corresponding elements (and their L2 norms) of the classes are

needed. As Figure 4.4 shows, using the old (Constant) L2 values causes significant accuracy loss

compared to using the recomputed (Updated) L2 norm of sub-hypervectors. The difference is up

to 20.1% for EEG and 8.5% for ISOLET. To address this issue, when calculating the squared L2

norms during the training, GENERIC stores the L2 norms of every 128th-dimension sub-class in

a different row of the norm2 memory•8 .Thus, dimensions can be reduced with a granularity of

128 while keeping the norm2 memory small (2 KB for 32 classes).

Voltage Over-scaling: GENERIC has to use 16-bit class dimensions to support training.

As a result, the large class memories consume ∼80% of the total power. HDC exhibits notable
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tolerance to the bit-flip of vectors [80], which can be leveraged to over-scale the memory voltage

without performance loss. Figure 4.5 shows the accuracy of select benchmarks (ISOLET and

FACE) with respect to the class memory error. The static (s) and dynamic (dyn) power saving as

a result of corresponding voltage scaling (without reducing clock cycle) is also shown in the right

axis (based on the measured data of [120]). The figure shows the result of the HDC models with

different bit-width (bw input parameter of GENERIC) of classes by loading a quantized HDC

model (the mask unit•5 in the architecture masks out the unused bits). As it can be seen, error

tolerance not only depends on application but also on the bit-width. 1-bit FACE model shows a

high degree of error tolerance (hence, power saving) by up to 7% bit-flip error rate, while ISOLET

provides acceptable accuracy by up to 4% bit-flip using a 4-bit model. Quantized elements also

reduce the dynamic power of dot-product.

Voltage over-scaling also depends on the application’s sensitivity to dimension reduction

and its workload. For instance, FACE has a higher tolerance to voltage scaling than dimension

reduction (see Figure 4.4). On the other hand, ISOLET is more sensitive to voltage reduction

but achieves good accuracy down to 1K dimensions (Figure 4.4), which means 4× energy

reduction compared to 4K dimensions. Thus, voltage over-scaling for ISOLET is only preferred

in workloads with a higher idle time where the static power dominates (voltage scaling reduces

the static power more significantly).

4.5 Results

4.5.1 Setup

We implemented GENERIC at the RTL level in SystemVerilog and verified the func-

tionality in Modelsim. We used Synopsys Design Compiler to synthesize GENERIC targeting

500 MHz clock with 14 nm Standard Cell Library of GlobalFoundries. We used Artisan memory

compiler to generate the SRAM memories. The level memory has a total size of 64×4K = 32KB
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for 64 bins, the feature memory is 1024×8b, and class memories are 8K×16b (16 KB each). We

obtained the power consumption using Synopsys Power Compiler. GENERIC occupies an area of

0.30 mm2 and consumes a worst-case static power of 0.25 mW when all memory banks are active.

For datasets of Section 4.3.2, GENERIC consumes a static and dynamic power of 0.09 mW, and

1.79 mW, respectively (without voltage scaling). Figure 4.6 shows the area and power breakdown.

Note that the level memory contributes to less than 10% of area and power. Hence, using more

levels does not considerably affect the area or power.

4.5.2 Classification Evaluation

Training: Since previous HDC ASICs have not reported training energy and performance,

we compare the per-input energy and execution time of GENERIC training with RF (random

forest, most efficient baseline) and SVM (most accurate conventional ML) on CPU, and DNN

and HDC on eGPU. Figure 4.7 shows the average energy and execution time for the datasets of

Section 4.3.2. GENERIC improves the energy consumption by 528× over RF, 1257× over DNN,

and 694× over HDC on eGPU (which, as discussed in Section 4.3.3, is the most efficient baseline

device for HDC). GENERIC consumes an average 2.06 mW of training power. It also has 11×

faster train time than DNN and 3.7× than HDC on eGPU. RF has 12× smaller train time than

GENERIC, but as we mentioned, the overall energy consumption of GENERIC is significantly
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Figure 4.7: (a) Training energy and (b) execution time.

(528×) smaller than RF. Also, we used constant 20 epochs for GENERIC training while the

accuracy of most datasets saturates after a few epochs.

Inference: We compare the energy consumption of GENERIC inference with previous

HDC platforms from Datta et al. [40], and tiny-HD [38]. We scale their report numbers to 14 nm

according to [121] for a fair comparison. We also include the RF (most efficient ML), SVM

(most-accurate ML) and DNN on HDC on eGPU (most-efficient HDC baseline). Figure 4.8

compares the energy consumption of GENERIC and aforementioned baselines. Since GENERIC

achieves significantly higher accuracy than previous work (e.g., 10.3% over [40]), GENERIC−LP

applies the low-power techniques of Section 4.4.3 to leverage this accuracy benefit. GENERIC−LP

improves the baseline GENERIC energy by 15.5× through dimension reduction and voltage over-

scaling. GENERIC−LP consumes 15.7× and 4.1× less energy compared to [40] and tiny-HD [38],

respectively. Note that despite tiny-HD [38], GENERIC supports training which makes it to use

larger memories. GENERIC is is 1593× and 8796× more energy-efficient than the most-efficient

ML (RF) and eGPU-HDC, respectively.

4.5.3 Clustering Evaluation

Table 4.2 compares the normalized mutual information score of the K-means and HDC for

the FCPS [122] benchmarks and the Iris flower dataset. On average, K-means achieves slightly
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(0.031) higher score, but for datasets with more features, the proposed GENERIC can better

benefit from using windows (windows become less effective in a smaller number of features).

Figure 4.9 compares the per-input energy consumption of GENERIC with K-means

clustering running on CPU and Raspberry Pi. GENERIC consumes only 0.068 µJ per input,

which is 17,523× and 61,400× more efficient than K-means on Raspberry Pi and CPU. The

average per-input execution time of Raspberry Pi and CPU is, respectively, 394 µSec and 248 µSec,

while GENERIC achieves 9.6 µSec (41× and 26× faster than R-Pi and CPU, respectively).
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Table 4.2: Mutual information score of K-means and HDC.
Hepta Tetra TwoDiamonds WingNut Iris

K-means 1.0 0.637 1.0 0.774 0.758
HDC 0.904 0.589 0.981 0.781 0.760

4.6 Conclusion

We proposed GENERIC, a highly-efficient HDC accelerator that supports classification

(inference and training) and clustering using a novel encoding technique that achieves 3.5%

(6.5%) better accuracy compared to other HDC (ML) algorithms. GENERIC benefits from

power-gating, voltage over-scaling, and dimension reduction for utmost energy saving. Our

results showed that GENERIC improves the classification energy by 15.1× over a previous

trainable HDC accelerator, and 4.1× over an inference-only accelerator. Compared to random

forest (most-efficient conventional ML), GENERIC consumes 528× and 1593× less training and

inference energy, respectively, with 8.2% higher accuracy. Compared to DNNs running on eGPU,

GENERIC reduces the training energy by 1257×, inference energy by 6230×, while achieves

1.0% better accuracy. GENERIC HDC-based clustering consumes 17,523× lower energy with

41× higher performance than Raspberry Pi running K-means with similar accuracy.

So far, we attempted to address the energy efficiency of edge intelligence by proposing

FPGA and ASIC that rely on HDC algorithm. In the next chapter, we show how noise robustness

of HDC can be leveraged to realize privacy-preserved and efficient inference and training at the

edge.

Chapter 4, in part, is a reprint of the material as it appears in “GENERIC: Highly Efficient

Learning Engine on Edge using Hyperdimensional Computing” by Behnam Khaleghi, Jaeyoung

Kang, Hanyang Xu, Justin Morris, and Tajana Rosing, which appears in Proceedings of the

59th ACM/IEEE Design Automation Conference (DAC), 2022. The dissertation author was the

primary investigator and author of this paper.
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Chapter 5

Private Learning and Inference with

Hyperdimensional Computing

In Chapter 3 and Chapter 4 we showed how the simple algorithm and operations of HDC

can bring orders of magnitude energy savings for learning tasks. In this chapter, we leverage

HDC to cope with the privacy issues of machine learning algorithms at the edge. We show that

HDC can offer privacy-preserved training and inference with comparable or better accuracy than

DNNs for many workloads, including larger size image datasets, with significantly faster training

time.

5.1 Introduction

The number and diversity of applications that can take advantage of machine learning

(ML) algorithms to gain insightful information from data continue to grow [21, 23]. However,

sensory and edge devices have tight resource and energy constraints or operate in error-prone

environments [24, 26, 27]. One approach to tackle this issue is to offload the computation to
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gateway or cloud [14, 123, 124]. Nevertheless, transmitting the data, particularly in sensory

devices that cannot accommodate complex encrypted schemes, can expose it to an untrustworthy

communication link or server.

Previous studies have attempted to obfuscate the transmitted information to address the

privacy breach of cloud-hosted inference of DNNs. These techniques mainly run the initial

layers of the network on the edge device and transmit the noise-injected (obfuscated) features

to carry on the rest of the operations on the cloud [125]. However, running part of the compute-

and memory-heavy networks on the edge device is not feasible for many edge devices [26]. In

addition, DNN layers expand the size of data compared to the raw input [126], which aggravates

the communication cost.

Another challenge with the privacy of DNNs is membership inference, i.e., whether

a particular sample was used during the model training. To deal with the training privacy,

previous works have leveraged differential privacy (DP) [43, 125]. By randomizing the output

of a mechanism by adding a particular noise, DP guarantees that the output does not reveal the

information of individual records. As an example, consider the sum query, denoted by M , on a

database. Although M does not directly reveal the value of a particular row r, it can be inferred

by M (D)−M (D−{r}), i.e., calling M twice on certain rows with and without r. DP increases

the cost of revealing r by adding a random noise on top of M (D), so more queries are needed to

cancel out the noise. In the context of ML training, a network trained over two training datasets

that differ in one sample (called adjacent datasets) should not reveal the input when the models

are inspected. However, DNN training is a sensitive mechanism and adding noise on the trained

models impairs the training convergence and leads to poor accuracy [125].

In this chapter, we use Hyperdimensional Computing (HDC) to cope with the privacy

issues of edge computing. HDC is a new learning paradigm that addresses the efficiency and

reliability limitations of conventional ML algorithms. HDC encodes raw input data to points

in hyperspace, represented by vectors of thousands of bits, which makes it robust to error as
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information is distributed over the components of a vector [127, 128]. Training using HDC is

as simple as adding up the vectors of the same label to create the class vectors. For inference,

the query is encoded in the same fashion and compared with the class vectors using simple

metric such as Hamming distance for binary vectors, or dot-product. All these operations are

low-precision and parallelizable, which makes custom implementations of HDC more than two

orders of magnitude more energy efficient than the other ML counterparts [40, 129].

HDC, however, does not inherently preserve privacy. Encoding is reversible and thus can

return the original data as a part of the decoding process [3, 130]. Therefore, in applications

such as federated learning or cloud-hosted inference when the model does not fit on edge device

memory [42, 41], transmitting the encoded data jeopardizes the privacy as an untrustworthy link

or server can reconstruct the original data. Moreover, as the HDC classes are built by simply

superposition of vectors, small changes in the training data can reveal the statistics of the particular

encoded vectors, which can result in the membership breach.

That being said, we show that the superior error tolerance of HDC [127, 128] can be

prudently leveraged to enhance the privacy by noise/error injection. Specifically, we make the

following novel contributions.

(1) We demonstrate the reversibility of common encoding methods, which indicates that HDC

is vulnerable to privacy breach. We also show that the encoding parameters that are required

for HDC decoding can be extracted by using adversarial inputs, hence obscurity alone does not

guarantee privacy (Section 5.3).

(2) We propose novel hardware and efficient communication techniques to improve the HDC

inference privacy by reducing the information of the transferred data through approximate locally-

sparse encoding (Section 5.4).

(3) We propose privacy-preserving one-pass and iterative training of HDC to combat membership

inference breaches (Section 5.5).

(4) We propose Privé-HDnn, a combination of CNN feature extractor and HDC classifier for
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privacy preserving image classification (Section 5.5).

5.2 Related Work

The closest study related to our work is Prive-HD [3], which trains an HDC model and

adds a Gaussian noise to the final model. Prive-HD assumes that the trained models of adjacent

datasets are different only in one vector (i.e., the encoded vector of the extra record) and sets

the amount of noise injection accordingly. While this works for one-pass training, in iterative

training the updates in the subsequent epochs depend on the initial model. Hence, one extra

sample changes the initial model which in turn affects the subsequent updates and can make

the trained models significantly different. Likewise, the randomness of the training batches also

impacts the final model. Considering only a single vector difference is a substantial underestimate

of the required noise.

PRID [130] proposes model inversion attack and defense techniques on HDC models.

It first decodes the model classes into the original space, which represents rough estimates of

the utilized training data. Then, given a query, PRID attempts to reconstruct the train data by

replacing a subset of input query features (e.g., pixels of an image) with the features of the

decoded class so that the similarity score increases. PRID uses dimension reduction and model

quantization to reduce information leakage.

SecureHD [42] aims to protect user data from an untrustworthy cloud system in a col-

laborative learning system. The idea is that each client has distinct base vectors to encode the

data, which are generated by shuffling a seed base. The cloud has only the shuffling keys (not

the bases) to reshuffle the clients’ encoded vectors; hence, after reshuffling, all the vectors are

encoded by the same bases, and HDC learning becomes possible. Nonetheless, such obscurity

does not guarantee privacy. As we show in this chapter, the private encoding parameters (base

vectors in [42]) can be revealed from the encoded vectors through adversary inputs. Moreover, an
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adversary client can share its private key with the cloud, by which the cloud can reconstruct the

seed bases (hence, all the private bases) using the shuffling keys.

Another body of research has targeted various attacks on HDC. The study in [131]

uses genetic algorithm to generate adversarial images with minimal perturbation that leads to

misclassification by the model. HDTest [132] applies random row/column mutation, shift, and

noise to generate adversarial images. PoisonHD [133] aims to degrade the performance of the

HDC model by injecting false data with flipped labels.

5.3 Reversibility of HDC

In this section, we introduce the common encoding methods and show how the original

data can be reconstructed from the encoding vectors to jeopardize privacy. HDC decoding process

needs the constant vectors that are used for encoding. We also show that these parameters

(encoding vectors) can be discovered by using adversarial inputs, so privacy cannot be attained

merely through obscurity.

5.3.1 Encoding and Decoding

Figs. 4.1(a)-(c), illustrate the common HDC encoding techniques, each of which preserves

a particular distance in the hyperspace [31] and is suitable for particular type of data [129]. We

represent input samples as a d element feature vector V = ⟨v0,v1, · · · ,vd−1⟩, and we use capital D

for encoded vectors dimensionality. We use vector symbol⃗ to represent vectors in the hyperspace.

(1) Random projection (RP) encoding, shown in Figure 4.1(a), multiplies each feature

with a D-dimensional base vector associated with that index. B⃗ks are constant orthogonal vectors

called base or id vectors that are used to preserve (bind) the spatiotemporal relations of the

features. RP encoding can be transformed to a matrix-vector multiplication by laying the d base
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vectors as the columns of a D×d matrix BT .

H⃗ =
d−1

∑
k=0

vk× B⃗k = BT ×V (5.1)

Thus, we can decode V⃗ in the following way:

(BT )†× H⃗ = (BT )†×BT ×V ⇒V ≃ (BT )†× H⃗

Since B is non-square, we use Moore-Penrose pseudo-inverse [134] to estimate B†.

(2) Base-level (aka id-level) encoding, instead of directly using the raw values of features,

uses a set of high-dimensional level vectors L⃗ to represent values. Both the base and level vectors

have bipolar components, i.e., {+1,−1}D. For q level vectors, L⃗0 is generated randomly, then

every L⃗k is generated by flipping D
2q bits of L⃗k−1. Therefore, closer features have more similar

levels and vice versa; particularly, L⃗0 · L⃗q−1 ≃ 0 (e.g., white and black pixels have the most

different level vectors). The number of level vectors is limited, so input values are quantized to q

bins to obtain the right level of each value. Equation (5.2) formulates the base-level encoding:

H⃗ =
d−1

∑
k=0

L⃗(vk)× B⃗k (5.2)

We can decode the base-level encoding index by index. To obtain a feature vi, we first

multiply H⃗ by B⃗i so we have:

B⃗i×H⃗ = B⃗i×
d−1

∑
k=0

L⃗(vi)×B⃗k = L⃗(vi)+
d−1

∑
k=0
k ̸=i

L⃗(vk)×B⃗k
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Then, we try L⃗x on the resultant vector to find out the one with highest dot-product:

L⃗x · (B⃗i×H⃗ ) = L⃗x · L⃗(vi)+

noise(≈0)︷ ︸︸ ︷
L⃗x ·

d−1

∑
k=0
k ̸=i

L⃗(vk)×B⃗k (5.3)

Since base vectors are random, expected value of the right-hand side of the above equation is ≈ 0,

and L⃗x · L⃗(vi) becomes maximum when x = i. Once we obtained L⃗(vi), we can infer vi from the

associated level.

(3) Permutation uses a different way of binding the spatiotemporal information. Instead

of using base vectors, it applies P(k) on the level vector of each feature vk, where P(k)(L⃗
)

denotes

circular shift of L⃗ by k indexes. It can be formulated as follows:

H⃗ =
d−1

∑
k=0

P(k)(L⃗(vk)
)

(5.4)

Decoding the permuting encoding can be done in a similar way to base-level decoding,

except for multiplying by B⃗i in the first step, we permute H⃗ by −i indexes, then try to find the L⃗x

that maximizes the dot-product.

5.3.2 Parameter Extraction

In the previous subsection, we showed how the vectors of common encoding methods can

be decoded to the original data. Decoding the vectors needs knowledge of the HDC parameters,

i.e., the base and/or level vectors. Here, we show how these parameters can be extracted by using

adversary inputs. Previous studies Prive-HD [3] and PRID [130] decode the random projection

encoding only and assume prior knowledge of the encoding parameters. Hence, our work is the

first one that introduces various decoding technique and shows hot to extrat their parameters.

Parameter extraction can break the security mechanisms such as SecureHD [42] that build on the
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assumption that these parameters remain unknown. We consider a gray-box model where the

input format and encoding algorithm is known, but not its parameters, and we can observe the

encoded outputs. This is a plausible scenario in federated learning or cloud inference [42] where

the clients send the encoded outputs to the cloud.

(1) RP parameter extraction. Random projection is a simpler encoding as it directly

projects each scalar input feature by multiplying it with the associated base vector. By feeding an

adversary input V = e(i), i.e., a null input vector except vi = 1 in Equation (5.1), we have:

H⃗ =
d−1

∑
k=0

vk× B⃗k = 1× B⃗i + ∑
k=0
k ̸=i

0× B⃗k = B⃗i

That is, to infer the ith base B⃗i, we only need to generate an adversary input with ith feature 1 and

others 0. The observed encoded output H⃗ is the same as B⃗i. Our approach requires d adversary

inputs to extract all d base vectors.

(2) Permutation parameter extraction. To extract the level vectors, we first need to find

the number and size (length) of the quantization bins. To this end, we create an all-equal-features

adversary input V = {α}d starting with the lowest value for α based on the application. By

gradually increasing α, the encoded vector H⃗ = ∑
d−1
k=0 P(k)(L⃗0

)
remains the same until α falls in

the next bin (⃗L1). By continually increasing the α, we can obtain the number and length of the

bins.

Then, to extract the xth level vector, we generate an adversary input in which all features

fall in the xth bin. Having L⃗x={x0, · · · ,xD−1}, Figure 5.1 shows an example where d=4 features

and D=6 dimensions, hence, H⃗ 4 = L⃗4
x + L⃗5

x + L⃗0
x + L⃗1

x = x4+x5+x0+x1. In general, it creates

a system of D linear equations with D unknowns, where each equation has d coefficients of ′1′,

and the rest D−d of ′0′, and has a unique solution given that L⃗x ∈ {+1,−1}D. We need only one

adversary input to infer each level vector. While we assumed a typical binding where the level

vector at index k is permuted by k, our approach works for arbitrary permutations; we still get a
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𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 0
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 2
𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 0
𝑥3 + 𝑥4 + 𝑥5 + 𝑥0 = −2
𝑥4 + 𝑥5 + 𝑥0 + 𝑥1 = 0
𝑥5 + 𝑥0 + 𝑥1 + 𝑥2 = 0

x0 x1 x2 x3 x4 x5

x0x1 x2 x3 x4 x5

x0x2 x3 x4 x5 x1

x0x3 x4 x5 x1 x2

  0 2 0 0 0

Lx    

Lx    

Lx    

Lx    

𝐿𝑥 =     +1 +1 +1   𝐻 =

Figure 5.1: An example of inferring an unknown level vector L⃗x by setting all four features vk to
L⃗(vk) = L⃗x.

system of D linear equations.

(3) Base-level parameter extraction. Here we deal with two unknowns, level and base

vectors. We aim to first infer the level vectors, followed by the base vectors. We denote the

inferred level and base vectors by L⃗ ′ and B⃗ ′. Base-level extraction does not have a unique solution,

so we set L⃗ ′0={1}D. Similar to permutation case, we use an adversary V ={α}d and increase

α until H⃗ changes. Once α falls in the next bin (⃗L1), a jth component of encoded H⃗ changes

only if the same component is different in L⃗ j
0 versus L⃗ j

1 . As we set L⃗ ′0={1}D, we observe the

changed components of H⃗ and set those of L⃗ ′1 to −1. We keep increasing the α to create L⃗ ′2 upon

the next change of H⃗ and so on.

Figure 5.2 shows an example with D=6 dimensions, d=3 features/bases and m=4

levels/bins.•1 and•2 are the original level and base vectors. In•3 , we have observed all the

m=4 encoded vectors by using inputs in the form of V ={α,α,α}. The yellow elements show

changes of H⃗ as α increases. In•4 , we set L⃗ ′0={1}6 and generate the rest of the levels by

comparing the H⃗1, H⃗2 and H⃗3 with H⃗0. The inferred L⃗ ′ is different from L⃗ in dimensions shown

in red.

After inferring the L⃗ ′ vectors, we create a system of linear equation for each index,

with L⃗ ′ and the observed H⃗ as constant, and B⃗ ′ as variable. Figure 5.2•6 shows the equations

corresponding to B⃗ ′1 (index 1 of bases). We decided to use d adversary inputs in the form
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Figure 5.2: An example of extracting the level and base vectors.

of V1={vmin, · · · ,vmin,vmax}, V2={vmin, · · · ,vmax,vmax}, · · · , and Vd ={vmax, · · · ,vmax,vmax} to

assure the rows are linearly independent. We need only d adversary inputs to infer the bases, the

same inputs that are used to simultaneously infer all indexes. Figure 5.2•8 shows the inferred

base vectors B⃗ ′, which are different from B⃗ , but {L⃗ ′, B⃗ ′} returns the same encoding as the original

{L⃗ , B⃗}.

5.4 Privacy-Preserved HDC Inference

We improve the privacy of HDC inference by obfuscating the information of offloaded

encoded vectors, so that the reconstructed data is indiscernible. We rely on noise tolerance of

HDC [127, 128] and make the vectors highly sparse by keeping the most effectual elements only.

The sparsification is done in a regular manner; each segment of the vectors is sparsified indepen-

dently, which helps in efficient hardware implementation and simple index-based compression

for communication purpose as we detail in the following.

(1) Local sparsification: HDC has performed well in cloud-hosted inference [42] and

federated learning where it outperforms CNNs by having significantly smaller communication
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Figure 5.3: Local sparsification. Darker colors indicate larger values.

cost, consuming less local compute energy [41], and being more robust to noise [128]. All these

use cases rely on transmitting the encoded vectors to the cloud. However, the reversibility of

HDC encoding that we demonstrated in the previous section poses a serious privacy challenge

when the communication link or the cloud is untrustworthy.

To reduce the exposed information as a result of decoding by an adversary link or cloud,

we use sparse representation of HDC. Sparsification can be deemed as a lossy compression that

reduces the recoverable information. A plausible approach for sparsification is to keep the top-k

components of the encoded vector and zero-out the rest. This is conceivable as these components

have higher contribution to the similarity score (dot-product), and concurs with the sensory

systems of many organisms such as the olfactory system of fruit fly that perform a winner-take-all

thresholding on the expanded representation of the input odor [31, 135].

Our goal is to realize sparsification in a hardware and communication efficient fashion.

Selecting top-k of the encoded components is trivial in a processor via sort operation. However,

sort is irregular and not done efficiently in low-power devices [136]. Instead of selecting the top-k

percentage of components over the entire vector, we find the local maximums and sparsify locally.

Figure 5.3 demonstrates the concept. For a target non-sparse rate of 1
2m , we divide the encoded

vector into segments of 2m elements, and replace all but the maximum element of each segment

with zero.
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(2) Efficient FPGA implementation: Since we are interested only in the index of the

maximum components rather than their exact values, we can use more-efficient approximate

encodings to obtain the components. For base-level and permutation encodings that vastly use

binary popcount for bundling, in a previous work [2] we proposed approximate binary popcounts

that simplify these encodings by replacing part of the sum operations with majority functions

(Figure 5.4(a)). Using majority function reduces up to of 80% FPGA resources, and although the

encoding components are approximate, they are suitable in the context of sparsification where

only the relative value of components matters.

That being said, here for focus on a novel approximate implementation for locally-sparse

random projection encoding. Figure 5.4(b) shows an FPGA-friendly implementation of the

proposed sparse RP encoding. RP multiplies the projection matrix with the input vector. The idea

is to bypass some matrix elements when generating the encoding. We split the original matrix

into partitions of 2m rows and n columns each, with 1
2m non-sparse rate. Multiplication of a whole

row of the matrix with the input vector produces one output component. Among these 2m rows,

the output of only one of them will be 1 and the remaining will be zeroed out. At each step, one

bit of a partition’s column is multiplied with the corresponding feature. The partial encoding

result compares the adjacent values, which belong to adjacent rows, and allows the maximum

one to proceed to the next step. In Figure 5.4(b), the red bits are for the first step, active in all

rows, while the green bits are activated for the rows that passed to the second step. Accordingly,

m steps are needed to finalize the encoding.

We choose m≤ n, which means that even for a row that proceeds to till the last step, n−m

bits of it still remains unused. That is, the projection matrix is also sparse. The sparsity pattern

varies among the partitions so none of the matrix columns is entirely zero. This approach does

not require local sorting as, at each step, adjacent outputs are compared and the maximum index

is passed to to the next steps. This helps to realize a deterministic and hardware (e.g. FPGA)

friendly data flow.
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Figure 5.4: (a) Approximate element-wise addition, suitable for sparse base-level and permutation
encodings [2], (b) approximate local sparse encoding random projection.

(3) Communication compression: One advantage of our approach is in reducing the

communication overhead. Instead of sending 2m×w bits per segment (2m components, w bit

each), we just need to send m+w bits, i.e., m bits for the non-zero index and w bits for its value.

Since HDC encodings work well with quantization [103], we can further quantize the encoding

vectors down to binary. Hence, only m bits per segment is needed. In normal top-k sparsification,

besides the complication of finding top-k, we would need log(D) bits per non-zero component.

We quantify the improvement of our approach in Section 5.6.

5.5 Differentially Private HDC Training

In contrast to DNNs that are built from more abstract backpropagation parameters, HDC

models are built by superposition of encoded data, which, as we showed, can be decoded to

the original data. Thus, the privacy of HDC training is more challenging as the data inputs are

mapped onto a reversible vector. In this section, we show how differential privacy (DP) can be

applied to protect the data privacy of HDC for both one-pass and iterative (multi-pass) training
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using state of the art HDC encoding techniques discussed in previous section.

While most classification applications have excellent accuracy when encoding raw data

into HDC vectors, our recent work showed that for larger size image data, such as CIFAR 100,

we need to use a subset of a pretrained neural network as a feature extractor prior to HDC-based

encoding and training [137]. To solve privacy problems for such HDC-based image classifiers,

we propose a hybrid CNN-HDC approach, dubbed Privé-HDnn, that enables differentially private

yet accurate image classification.

As we explained in Section 5.2, previous work [3] targeted private iterative HDC training

by post-ex noise injection. However, as we show in Section 5.5.3, [3] substantially underestimates

the amount of additive noise. In fact, post-training noise injection is not a viable approach for

iterative training.

5.5.1 Differential Privacy (DP)

A randomized algorithm M with domain DM is (ε,δ)-differentially private if for any two

adjacent datasets D,D−1∈DM that differ in one record (an input sample), for all output subset S

of M the following holds [43]:

Pr[M (D) ∈ S ]≤ eεPr[M (D−1) ∈ S ]+δ

which means that observing D after D−1 increases the probability of an event by no more than eε.

The additive term δ allows breaking the DP by a probability of δ, which is usually selected to be

smaller than 1
|D| .

A common approach to satisfy DP is applying a Gaussian noise proportional to the

sensitivity of the algorithm, defined as the maximum amount of change of the output if the

input differs in one element. For Gaussian noise, we use ℓ2 norm for sensitivity, i.e., ∆M =
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∥M (D)−M (D−1)∥2. Thus,

MDP(D) = M (D)+N (0,∆M ·σ) (5.5)

in which ∆M ·σ is the standard deviation of the noise. For a fixed δ and a privacy target ε, the

parameter σ can be obtained to satisfy δ≥ 4
5e−

(σε)2
2 [43]. A smaller ε or δ (i.e., less likelihood of

leakage) demands larger noise parameter σ.

5.5.2 Private One-pass Training

One-pass HDC training simply accumulates the encoded vectors of the same label as

follows below.

C⃗ j = ∑
i s.t.yi= j

H⃗i (5.6)

When an input V is discarded from the dataset, only one of the class vectors is affected, where

C⃗−1= C⃗ − H⃗ (V ). Thus, the sensitivity of one-pass model is ∆M = ∥ H⃗ (V )∥2. This is a valuable

property as it shows the sensitivity of one-pass training does not depend on the dataset size. We

can train a one-pass HDC model on arbitrary datasets and add a noise based on ∆Mmax
which is

independent of the encoding and the dataset. For inference, we will have (⃗C ′ are classes with

additive noise):

y=argmax
i∈C

C⃗ ′i ·H⃗ = argmax
i∈C

C⃗i·H⃗ + N⃗ ·H⃗ (5.7)

A large noise can impact the N⃗ ·H⃗ and change the scores rank. Each encoded component

H⃗ j belongs to [−d,d] (with vmax=1). This implies a sensitivity of ∆Mmax
=d
√

D that demands

a significant amount of noise N
(
µ=0,σ=

∆Mmax
ε

√
2log(1.25

δ
)
)

that can be as large as the class

values themselves. It is because DP considers the worst-case of H⃗ where components are {±d}.

To solve this issue, we need to ensure that H⃗ does not exceed an expected bound, so

we can use a smaller noise in accordance. Thus, we normalize and clip the encoded vectors by
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H⃗ ′=H⃗ /max(1, ∥H⃗ ∥2
κ

) which ensures ∥H⃗ ′ ∥2 ≤κ. By choosing, e.g., κ=1, we achieve ∆Mmax
=1

which shrinks the variance of noise. By normalizing the encoded vectors, the values of class

vectors also scale accordingly, hence, normalization alone cannot mitigate the impact of noise;

clipping bounds the values and helps to avoid worst-case scenarios and paying extra sensitivity

(∆M ) cost.

5.5.3 Private Iterative Training

Iterative (multi-pass) HDC training improves the HDC accuracy by evaluating the model

on the training data. In case of wrong prediction, the encoded vector is subtracted from the

mispredicted class to make them less similar, and is added to the expected class once again as

follows below.

C⃗ f = C⃗ f − H⃗

C⃗t = C⃗t + H⃗
(5.8)

Privacy of iterative training cannot simply be obtained by finding the sensitivity and adding the

post-training noise. In iterative training, a discarded or extra input affects the model updates

in the subsequent epochs. Normalizing the encoded vectors guarantees ∆Mmax
= ∥ H⃗ ∥2 ≤κ for

one-pass learning, but it does not hold for iterative training. The work in [3] was built on this

assumption. For the datasets of Section 5.6, after normalizing the vectors to ∆Mmax
= ∥ H⃗ ∥2 ≤ 1,

we observed that excluding only one input makes ∆M of [∼20−43] which makes the required

noise σ intractable.

To realize differentially private multi-pass training, we use the composition property of

DP. A mechanism with a series of εi-private steps is ∑εi-differentially private [138]. Thus, we

can preserve privacy at the batch level, where the total privacy cost of training is the total cost of

the batches. It helps by requiring smaller noise, and although the noise will be injected frequently
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Algorithm 4: Differentially private iterative HDC training

Input: Dataset D = {⃗V1, · · ·V⃗N}, batch size L, noise variance σ2, encoding norm-2
limit κ

Output: Class vectors C⃗ = {C⃗1, · · · C⃗C}
1 H⃗D ← enc(D) // encode the train data

2 C⃗ ← 0
3 for t in [1:T ] do
4 G⃗ [1:C] = {0}D // initialize class update vectors per iteration

5 Lt ← random select(H⃗D , L) // L=1 in normal training

6 for H⃗ in Lt do
7 ℓ= argmaxi C⃗i·H⃗ // inference on the train sample
8 if ℓ ̸= ℓH then

9 H⃗ ′← H⃗ /max(1,
√

2∥H⃗ ∥2
κ

) // bound the sensitivity

10 G⃗ [ℓ]← G⃗ [ℓ]− H⃗ ′ // subtract from mispredicted class ℓ

11 G⃗ [ℓH ]← G⃗ [ℓH ]+ H⃗ ′ // add to the golden class ℓH

12 G⃗ ← G⃗/L+ N⃗ (0,κ·σ) // average the updates and add noise

13 C⃗ ← C⃗ + G⃗ // update the classes

14 return C⃗

per batch, the model has the opportunity to be calibrated against the introduced noise. If the

training is divided into batches of L=qN randomly selected samples (for N being the dataset

size), following the privacy amplification theorem, each iteration is (qε,qδ)-private with respect

to the whole dataset [139, 43]. For T training iteration (E=q×T epochs), [43] provides a tighter

bound of (qε
√

T ,δ) on privacy of the composite model with the following additive noise:

σ≥ c
q
ε

√
T ln(1/δ) (5.9)

Algorithm 4 summarizes the composite private learning for HDC. The lines with com-

ments in red are exclusive to the private training. At each of T training iterations, a random batch

of encoded data is selected (line 5). Similar to DNN training, a forward inference pass is run

over the batch (line 6–7). For the data with mispredicted labels (line 8), the normalized vectors
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Figure 5.5: Privé-HDnn for private training on images. A shallow CNN extracts the features
(only once) as raw inputs for HDC, which performs private training according to Algorithm 4.

are saved (similar to gradients of different samples in neural networks), and averaged followed

by noise injection (line 14). The algorithm is fairly similar to normal HDC training, except the

updates are done per a batch for L samples, as opposed to per sample, and the encoded vectors

are normalized to bound the worst-case sensitivity as discussed in subsection 5.5.2.

5.5.4 Privé-HDnn: Private Image Classification

HDC achieves poor accuracy for complex image datasets when using state of the art HDC

encoding directly on the raw image data. A way to resolve this issue is to train a CNN-based

feature extractor and use HDC for classification over the extracted features [137, 41]. The hybrid

architecture is called HDnn. The conventional HDnn flow consists of (i) extracting image features

using a subset of a pretrained CNN (ii) training an HDC model over the extracted features, and

(iii) attaching the trained HDC to the CNN and calibrating the CNN to compensate potential

accuracy loss. HDnn offers other advantages such as few-shot learning [140] due to capability of

HDC in learning from fewer data, and more straightforward in-field learning as only the HDC

head needs to be updated.

We leverage the HDnn structure and propose Privé-HDnn, shown in Figure 5.5, for private

learning on images. A major issue with CNNs is their intolerance to additive noise due to

the highly sensitive gradient descent backpropagation. Previous studies on privacy-preserving

training of CNNs have shown low accuracies, e.g. 72% on CIFAR-10 [141]. Some of the previous
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works use simple networks and even keeps some of the layers fixed [43].

We circumvent the noise intolerance of DNNs by using transfer learning over a public

dataset from a different distribution. We keep the pretrined CNN feature extractor unchanged.

That is, we do not calibrate it on the target dataset after attaching the HDC. Hence, it acts as a

constant function and we do not need to add noise on the CNN part as does not learn nor expose

any information of the target dataset. Thus, CNN retains its exact functionality.

The HDC classifier head, however, is trained on the extracted features of the target dataset

with differential privacy using the proposed iterative method of Algorithm 4. The extracted

features act as raw data for HDC algorithm. Therefore, data is encoded and class vectors are

realized by bounding the sensitivity of encoded vectors, followed by adding noise before bundling.

We use a ResNet-18 network pretrained on ILSVRC 2012 dataset as the constant function. For

privacy purposes, we do not calibrate the public model after attaching the HDC in place of the

last layers. For efficiency purpose – which is not the main focus of this work – any shallower

model could replace ResNet-18.

5.6 Results

(1) Setup: In this section, (i) we first evaluate the proposed locally sparse encoding in

terms of performance and energy efficiency, and its impact on the resiliency of HDC. (ii) Then, we

evaluate the effectiveness of decoding on normal (non-private) HDC in terms of root-mean-square

error (RMSE), which is a representative of the quality of data reconstruction. We also report

the execution time of the decoding per input sample. (iii) Afterwards, we quantify the proposed

private inference by showing how obfuscating of vectors affects the RMSE of the reconstructed

data and the inference accuracy. (iv) Finally, we evaluate the proposed private HDC training (both

one-pass and iterative), including Privé-HDnn, in terms of accuracy and privacy metric (ε). We

also measure the training time of Privé-HDnn and compare with DNN alternatives.
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To evaluate the algorithms in terms of accuracy, decoding RMSE, and error resiliency, we

used Python 3.9 running on a Linux machine with an Intel Core i7-12700 CPU. To evaluate the

efficiency of the proposed locally sparse encoding, we accelerated it on a Xilinx Kintex-7 KC705

FPGA Kit, where we estimated the power using Xilinx Power Estimator (XPE) [64]. For CPU,

we estimate the power consumption using CPU Energy Meter [142]. Finally, for Privé-HDnn,

in addition to CPU implementation, we use a CUDA implementation on NVIDIA’s GTX 1080

Ti GPU for a fair comparison of its training time with previous DNN works as they mainly use

GPUs.

(2) Benchmarks: We use standard IoT domain benchmarks: FACE detection with face

versus non-face labels [86], UCIHAR user activity recognition using smartphone (five activities such

as sitting, standing, etc.) [143], PAMAP2 physical activity monitoring using inertial measurement

and heart rate monitor (12 activities such as cycling, running, etc.) [144], and ISOLET voice of

English alphabet recognition [106]. We use MNIST [110] and CIFAR-10 [145] images to evaluate

Privé-HDnn. We would like to remind that HDnn achieves the same or better performance

compared to DNNs [137] in non-private setting. However, private training is challenging (e.g.,

previous DNN studies show low accuracies, e.g. 72% on CIFAR-10 [141]), and applications

deal with practical use-cases with a limited number of classes (as opposed to general learning

problems). Thus, we compare using MNIST [110] and CIFAR-10 [145] as well.

5.6.1 Encoding

(1) FPGA performance: Fig. 5.6 compares the encoding performance of the approximate

locally sparse encoding implemented on FPGA versus normal (non-sparse) encoding on FPGA

and CPU. We use D=4K and set n=2m (n determines the matrix sparsity; see Fig. 5.4(b)). Note

that the performance of non-sparse models is constant for different sparsity levels. We chose

UCIHAR and MNIST as these benchmarks consist of, respectively, the least and highest number of

features.

98



1E+0

1E+2

1E+4

1E+6

1E+8

m=3 (87.5%) m=4 (93.7%) m=5 (96.8%) m=6 (98.4%)

E
n
co

d
in

g
/s

ec
o
n
d

Sparsity

UCIHAR (sparse) MNIST (sparse) UCIHAR (normal)

MNIST (normal) UCIHAR (CPU) MNIST (CPU)

Figure 5.6: Comparing the encoding performance of the approximate locally sparse encoding
(FPGA) versus normal encoding on FPGA and CPU.

The sparse FPGA implementation of MNIST, achieves 2.6× (5.3×) higher performance

compared to non-sparse FPGA with m=3 (m=6) sparsity level. These values are slightly lower

for UCIHAR, i.e., 2.1× (m=3) to 4.3× (m=6) because UCIHAR consists of fewer features, so the

control overhead slightly lowers its savings.

Compared to CPU implementation, our sparse FPGA implementation achieves 38×

(m=3) to 79× (m=6) higher performance for UCIHAR, and 19× (m=3) to 37× (m=6) for

MNIST. The relative FPGA improvements of UCIHAR is higher because it has less features, so the

impact of data movement in CPU becomes more dominant.

(2) FPGA energy: Fig. 5.7 compares the energy consumption of the proposed approxi-

mate sparse encoding (FPGA) with the non-sparse FPGA and CPU encoding. Since the power

consumption of the sparse and normal FPGA implementation is similar (8 W for UCIHAR and

10 W for MNIST), the energy saving of sparse implementation over the non-sparse FPGA is

similar to the performance numbers, e.g., 2.6× (5.3×) with m=3 (m=6) sparsity level for MNIST.

CPU consumes 60 W for UCIHAR and 85 W for MNIST. Accordingly, the proposed sparse FPGA

implementation achieves 289× (m=3) to 590× (m=6) higher performance for UCIHAR, and

157× (m=3) to 315× (m=6) for MNIST.
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Figure 5.7: Comparing the energy consumption of the approximate locally sparse encoding
(FPGA) versus normal encoding on FPGA and CPU.

Table 5.1: Communication bit reduction.
Encoding m = 3 (87.5%) m = 4 (93.7%) m = 5 (96.8%) m = 6 (98.4%)
Local Sparsity 63% 75% 84% 91%
Top-k 0% 25% 63% 81%

Note that we did not consider the similarity checking step as we assume it is run on the

cloud/gateway. Nonetheless, for similarity checking we can expect an improvement proportional

to the sparsity level, e.g., 87% for m=3 as the number of memory reads and products of class

components reduce by 2m.

(3) Communication efficiency: Data communication energy saving depends on the

transmission distance [146]. However, since the transfer energy is linear with the number of bits,

we can estimate the transmission energy according to 1− m
2m because per 2m encoded bits, only

log2m=m (non-zero index) is transmitted.

Table 5.1 reports the communication bit reduction (proportional to transmit energy saving)

of the proposed local sparsity and compares it with top-k (which needs logD bits per each

non-zero component, where D=4000 in this setting). For m=3 (87% sparsity), the transmit

energy reduces by 62% (compared to 0% of top-k), up to 91% for m=6. Note that with m=3,
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representing the encoded vector of top-k method with its index information increases the number

of bits compared to simple binary representation. Thus, for m=3, top-k method transmits the

information in the original format, so its compression rate is 0%.

(4) Error resiliency. In normal HDC encoding, the number of encoding zeros and ones

are, on expectation, equal. In sparse encoding, however, the majority of bits are zero; hence,

a bit-flip of encoded components from zero to one and vice versa has a higher impact on the

similarity (dot-product) result. Fig. 5.8 compares the impact of bit error on the accuracy of models

using the conventional non-sparse and locally sparse encodings. We model the bit error on the

final encoded vectors, so the result is independent of the underlying hardware. The error can

be due to hardware error such as emerging memory cells [147] or communication bit error. We

adopt the communication error model of [128] which adjusts the parameters of WiFi protocol

stack (802.11n), and changes the distance of the transmitter and receiver distance and collects

SNR data with Friis propagation loss model.

We show the results on FACE and ISOLET datasets that have the smallest and largest

number of classes, respectively. From Fig. 5.8, we can see that while normal encoding exhibits

slightly better robustness, sparse encoding also demonstrates remarkable error robustness. With

2% bit error rate (equivalent to 180 meter-distant transfer), the average accuracy loss of sparse

encoding is 0.77% (versus 0.30% of normal encoding). With∼6.5% bit error (250 meter distance),

the accuracy loss is 2.37% (versus 1.32% of normal encoding). At these error rates, the accuracy

of conventional ML algorithms such as logistic regression and support vector machine drops to

zero (random) [128].

5.6.2 Decoding

(1) RMSE: For illustration purpose, Fig. 5.9 shows decoding examples of a handwritten

digit and a sinusoidal wave for different encoding techniques. It can be seen that both the decoded

image and wave are similar to the original data. To quantify the similarity, Fig. 5.10 shows
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Figure 5.8: Impact of bit error on the accuracy of conventional and sparse encoding. D=4000
for both datasets.
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Figure 5.9: Examples of decoded data from handwritten digit and a sinusoidal wave for different
encodings.

the RMSE between the original and the decoded data for all our proposed encoding methods

(RP, base-level, permutation) and compares it with the state of the art RP [3]. The datasets

are normalized to [0, 1] to make the RMSEs more insightful and comparable. Our method of

decoding random projection (RP) perfectly reconstructs the original data and achieves an average

RMSE of ∼0 among all benchmarks, while [3] uses an analytical approach to decode the RP and

achieves an average RMSE of 0.09. PRID [130] also decodes RP encoding and reports a PSNR

of ∼51 dB for MNIST, whereas our approach achieves an average PSNR of ∼250 dB.

The average RMSE of decoding the permutation and base-level is relatively higher, i.e.,
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Figure 5.10: RMSE between the original and the decoded data for different encodings (RP,
base-level, permutation) along with comparison with analytical RP decoding of [3].

Table 5.2: Execution time (ms) for decoding
Benchmark RP Permutation Base-Level
FACE 0.015 0.86 1.58
ISOLET 0.015 1.14 1.49
MNIST 0.019 1.32 1.99
PAMAP2 0.013 1.06 1.38
UCIHAR 0.002 0.09 1.01

0.126 and 0.164 respectively. The higher RMSE of these methods compared to RP decoding

is mainly due to the noise term in Equation (5.3) that affects finding the right L⃗x that achieves

the maximum score. However, even with an RMSE of 0.23 for MNIST base-level decoding,

which is the highest RMSE among benchmarks, the constructed image is still recognizable. The

noise impact, hence the decoding quality, is directly related to the number of features (d in

Equation (5.3)). UCIHAR has the least number of features per sample (d=27), so its decoding

achieves a small RMSE of <0.02. The other datasets have 561 to 784 features, and thus they

have larger and similar RMSEs.

(2) Execution time: Table 5.2 reports the execution time in milliseconds for decoding

each input sample. To decode each feature of a sample, RP uses D multiplications and each input

can be decoded in 0.013 mSec on average. The permutation and base-level encoding use D×L
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Table 5.3: Accuracy and decoding RMSE for sparse encoding.

Sparsity
FACE
(95%)

UCIHAR
(95%)

PAMAP2
(94.5%)

ISOLET
(94%)

MNIST
(95.5%)

87.5% (m = 3) -0.3% 0.0% -0.1% -0.2% -0.1%
93.7% (m = 4) -1.1% -1.6% -1.7% -1.3% -2.2%
96.8% (m = 5) -2% -2.9% -5.5% -3.0% -7%
98.4% (m = 6) -3.3% -20.0% -10.0% -5.8% -9.5%

RMSE 0.173–0.184 0.282–0.346 0.72–0.735 0.616–0.624 0.316–0.332

(for L being the number of levels) multiplications, yet decoding of these methods is also fast

(0.90 mSec for permutation and 1.49 mSec for base-level).

5.6.3 Inference Privacy

RMSE and Accuracy: In the previous subsection we observed that RP encoding exhibits

the highest exposure of data. Thus, for brevity, we evaluate the impact of the proposed local

sparsification technique (Section 5.4) in obfuscating the RP encoding. Table 5.3 summarizes

the accuracy of benchmarks for different local sparsity rates, where, e.g., m=4 means only

one dimension out of 24=16 consecutive dimensions remains one, so the sparsity rate is 1−
1
16 =87.5%. The first row of the table reports the baseline non-sparse accuracy (e.g., 95.0% for

FACE). The average accuracy loss of m=3 (m=4) is only 0.14% (1.6%) among all benchmarks.

The last row of the table reports the RMSE range of the decoded benchmarks. The range

corresponds to m=3 (smallest RMSE) to m=6 (largest RMSE). To recap, without sparsification,

the RMSEs of all decoded benchmarks are ∼0 as discussed in subsection 5.6.2. Based on

Table 5.3, with m=3, with an accuracy degradation of only 0.14%, increases the RMSE to 0.421,

meaning that, on average, the retrieved features are deviated by 0.421 from the original values

(features are between 0 and 1). This is notable especially when the features are independent

measurements such as a vector of temperature, heart rate, and inertial measurements (as in

PAMAP2), so the exact values cannot be recovered anymore.

For illustration purpose, Fig. 5.11 shows how samples of handwritten digit and sinusoidal
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Figure 5.11: Decoding the sparse vectors of RP encoding.

wave are perturbed by locally sparse encoding. The average PSNR among all the inputs drops

below 12 dB, and RMSE of the sinusoidal wave increases to 0.7 (versus ∼0 of original RP).

5.6.4 One-pass Training Privacy

Fig. 5.12 shows the results of private one-pass training. We set δ=10−5 (< 1
|D| for all

datasets) and used D=4K dimensions. At each number of inputs (consumed train data on the

x-axis), we obtained the accuracy using the entire test set for inference. Each curve is the average

of 20 runs. The dashed curve (labeled iterative) shows the accuracy of non-private iterative HDC

training. The green curve (labeled one-pass) shows the typical non-private online (one-pass)

training which achieves 87.4% accuracy on average (−6.8% versus iterative training). The sharp

spike of one-pass learning indicates the fast learning of HDC from limited data, e.g., in FACE

detection and UCIHAR one-pass learning reaches near 0.5% of its maximum accuracy by learning

from only 2% of the data.

The private one-pass training of FACE and UCIHAR benchmarks yields the same accuracy

of non-private one-pass with ε=1 which is a tight privacy constraint. FACE can obtain the baseline

one-shot accuracy with ε= 1
4 as well, while UCIHAR could not converge with ε= 1

2 . This can be
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Figure 5.12: Accuracy of differentially private one-pass HDC training (δ=10−5, D=4000).

attributed to the fact that FACE has more data and fewer labels (two labels versus five of UCIHAR)

which makes it more resilient to noise. The magnitude of noise for one-pass learning depends on

the sensitivity, ∥H⃗ ∥2, which is independent of the dataset size. Since size of the dataset affects

the value of class components, with more vector accumulation in datasets with more samples,

the C⃗i·H⃗ score in Equation (5.7) grows versus the noise term N⃗ ·H⃗ . The other two benchmarks,

PAMAP2 and ISOLET, have more classes (12 and 26) with less training data. As a result, they

could converge to their maximum accuracy at larger ε=3 (i.e., less noise).

In Section 5.5.2, we proposed to normalize and clip the vectors to reduce the HDC

sensitivity, and as a result, the amount of noise. The “w/o clipping” curves of Fig. 5.12 show the

accuracy of private learning without normalization and clipping. Accordingly, due to the large

amount of noise entailed, only weak privacy (ε=10) could be achieved, with 32.7% less accuracy

(versus one-pass private training that benefits from normalization and clipping).

5.6.5 Iterative Training Privacy

Fig. 5.13 compares the accuracy of the benchmarks trained with differentially private

iterative HDC training. With ε=1 (ε=4), private FACE benchmark achieves 91.1% (92.2%)

accuracy, which is 2.5% (3.6%) higher than one-pass training. Similarly, private UCIHAR achieves

1.8% (3.5%) better accuracy than one-pass. Notably, with ε=4, differentially private UCIHAR’s

accuracy is only 1% lower than the non-private training. PAMAP2, however, has more classes

and less training data. Thus, even with ε=8, it achieves 82% accuracy, which is not any better
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Figure 5.13: Accuracy of differentially private iterative HDC training (δ = 10−5, D = 4,000).

than one-pass private training. This is because of the same reason we also observed in one-pass

training, i.e., due to the small training set of PAMAP2, the noise impact (N⃗ ·H⃗ ) aggravates versus

the similarity score C⃗i·H⃗ . Particularly, because of larger number of classes, the margin between

classes is also smaller. Thus, for PAMAP2, we first trained a one-pass private model with ε=2 for

faster initial convergence, followed by an iterative training with ε=6. The resultant model (2+6)

obtains 3% higher accuracy compared to the ε=8 iterative training from scratch.

For a target ε and δ, various combinations of σ, q, and T can satisfy Equation (5.9). We

observed that smaller noise parameter σ achieves better accuracy at the cost of fewer epochs.

Accordingly, we set T = 16×104 and q = 0.1√
T

which results in a unique and small σmin to satisfy

a (ε, δ). Also, as the training proceeds, the number of epochs E=q×T is the point the privacy

target ε is achieved. The ′ε factor′ in Fig. 5.13 (the secondary Y axis) shows the value of ε at each

epoch. Before reaching the last epoch, achieved privacy is tighter, though the accuracy is also

lower. For instance, in Fig. 5.13a, in the 10th epoch, the ε factor is ≃ 0.5 which means the green

curve setting (final ε=4) has a better ε of 2 if we terminate the training there.

5.6.6 Image Classification

(1) Accuracy: Fig. 5.14 shows the baseline non-private HDnn and Privé-HDnn accuracy

on MNIST and CIFAR-10 datasets. The non-private HDnn achieves 97.8% and 87.0% accuracy on

MNIST and CIFAR-10. Note that the baseline HDnn here uses a ResNet-18 network pretrained
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Figure 5.14: Private training on images with Privé-HDnn.

on ILSVRC 2012 dataset as the feature extractor, without tuning the CNN on the target MNIST

and CIFAR-10, which results in accuracy drop compared to tuned HDnn (that otherwise achieves

comparable or better accuracy than DNN [137]) or baseline ResNet-18. With ε=2, Privé-HDnn

achieves 90.6% on MNIST, and 77.8% on CIFAR-10. By relaxing the ε to 8, the accuracy improves

to 91.6% on MNIST, and 79.5% on CIFAR-10.

The accuracy numbers for differentially-private MNIST DNNs range from 90% in [148]

to 98.1% (with ε=2.93) in [141], where the latter work creates new models from scratch with

minimal parameters to make the DNN more noise tolerant. For CIFAR-10, the study in [141]

reports a maximum accuracy of 72% with ε=2, which is 5% higher than the pioneer work of

Abadi et al. [43]. Privé-HDnn could achieve 77.8% on the same CIFAR-10 dataset which is 5.8%

higher than [141], with the same ε=2. Thus, the accuracy of Privé-HDnn is comparable or better

than previous deep learning studies with differential privacy. The accuracy of Privé-HDnn can

be further improved by using larger CNN backbone such as ResNet-50 or using more relevant

public dataset (e.g., a more relevant subset of ILSVRC 2012).

(2) Execution time: Unlike studies like [141] that build a custom model, Privé-HDnn

leverages existing models for feature extraction and only trains HDC on the extracted features.

Due to the fast convergence of HDC and its simplicity, Privé-HDnn needs only 40 training epochs

(Fig. 5.14) and each epoch takes ∼2.0 second on GPU, and ∼8.7 second on CPU. Table 5.4
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Table 5.4: Training time (minutes) of Privé-HDnn versus previous studies.

Dataset
Privé-HDnn

GPU
Privé-HDnn

CPU
[43]
(low)

[43]
(high)

[141]
(low)

[141]
(high)

MNIST 1.3 (1.0×) 5.8 (4.5×) 12 (9.2×) 533 (410×) 28 (22×) 160 (123×)
CIFAR-10 1.3 (1.0×) 5.8 (4.5×) 40 (31×) 467 (359×) 280 (215×) 1600 (1231×)

compares the training time of Privé-HDnn with DNN training in [43] and [141]. The low and

high indicates the minimal and maximum configuration of the previous works based on their

target privacy budgets and hyperparameters (e.g., [141] high configuration uses 400 epochs with

batch size of 256 and consumes 240 second per epoch for the CIFAR-10 dataset). The GPU

implementation of Privé-HDnn improves the runtime by 9.2–410× over [43], and by 22–1231×

over [141]. Even the CPU training of Privé-HDnn takes less time than previous DNN works

that run on GPU. The CPU training time is 2.1–92× smaller than [43], and 4.8–276× smaller

than [141].

5.6.7 Overhead

The proposed privacy-enhancing techniques impose minimal overhead. The accuracy drop

of the local sparsification is only 0.14% for 87% sparsification rate. This rate of sparsification

lowers the energy cost of communicating data by 63% and improves performance by 2.6× (38×)

over non-sparse FPGA (CPU). The noise is applied on top of the model, so the model size and

training time are kept intact. In particular, for images, Privé-HDnn leverages the readily available

pre-trained CNNs (unlike previous studies that train from scratch), so only HDC is trained, which

is very fast and more accurate; 1.3 minutes compared to 26 hours for the CNN.

5.7 Conclusion

In this chapter, we leveraged the noise robustness of HDC for efficient privacy-preserved

inference and training. To improve inference privacy, we proposed local sparsification with
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efficient FPGA implementation, which deviates the decoded values by a normalized RMSE of

0.42 versus the original values, and improves the encoding performance by up to 5.3× over

non-sparse FPGA implementation, and 79× over CPU implementation. The encoding energy

consumption is also reduced by 5.3× compared with non-sparse FPGA implementation, and

590× versus CPU implementation. The communication energy (bit transfer) also reduces by

63%–91%. For training, we proposed differentially-private one-pass and iterative training. Thanks

to low sensitivity of one-pass training and noise robustness of HDC, one-pass private training

retained the same accuracy of non-private models while achieving stringent privacy. With private

iterative training, the average accuracy of the models further improved by 3.4%. Finally, we

used a hybrid CNN-HDC, Privé-HDnn, for differentially-private training on images, where the

CNN feature extractor is fixed and privacy preserving training only happens on the HDC part.

Privé-HDnn achieves comparable or better accuracy by up to 5.8% versus DNN-only solutions,

while reducing the training time on GPU 9.2–1231× over the state of the art [43] [141].

The next chapter summarizes the proposed approaches on bringing efficient computing

and learning to the edge and discloses the future directions.

Chapter 5, in full, is currently being prepared for submission for publication of the material

“Private Learning and Inference with Hyperdimensional Computing” by Behnam Khaleghi,

Jaeyoung Kang, Xiaofan Yu, and Tajana Rosing, to be submitted to IEEE Internet of Things

Journal. The dissertation author was the primary investigator and author of this paper.
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Chapter 6

Summary and Future Work

The growing number of interconnected devices and systems produce an unprecedented

volume of data. Notably, the growing number of edge devices in various shapes continually

produces data that need immediate processing with sustainable energy consumption. With the

current processing systems being pushed to their limits, striking methods to save energy is crucial.

In this dissertation, we propose two classes of solutions. First, we target the energy efficiency

of FPGAs. Relatively higher efficiency of these devices compared to CPUs and GPUs, together

with their programmability are making FPGAs a fundamental computation unit of both data

centers and edge computing applications. In Chapter 2 we present more aggressive power and

energy reduction of designs mapped onto FPGAs. Our approach has a broad impact as it can

be implemented on FPGAs running general applications from data filtering to heavy signal

processing at different levels of the computing stack.

In the rest of the dissertation, we target more energy efficient alternatives of todays

mainstream machine learning. The large model size and computation demand of ML algorithms,

particularly DNNs, hinder deploying them on the majority of edge devices. Real-time response

requirements, together with network reliability and congestion issues, impede using cloud for
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remote learning services. To cope with these challenge, we bring intelligence to the edge by

using Hyperdimensional Computing (HDC) as a lightweight alternative to DNNs. We first

propose an efficient FPGA implementation of HDC with approximate computing mode that

can even further lower the resource requirements of HDC and facilitate its implementation on

very low-end FPGAs in Chapter 3. Then, to enable HDC-based training for ultra-low-energy

wearable and sensory devices, we propose a flexible ASIC design that supports training, inference,

and clustering on a diverse range of applications n Chapter 4. The last part of this dissertation

addresses on the privacy challenges learning using HDC and DNNs. We show that although HDC

is not inherently private, its noise robustness can be leveraged for efficient privacy-preserved

inference and training by obfuscating the information through noise robustness with insignificant

impact on accuracy. To improve inference privacy, we propose approximate sparsification with

efficient FPGA implementation, which reduces the amount of transmitted bits, and hence the

communication energy as well. We also design differentially-private one-pass and iterative

training with tight privacy budget and good accuracy. Finally, for larger image datasets, we design

the combination of HDC and CNN that improves the accuracy with three orders of magnitude

smaller training time on GPUs.

6.1 Dissertation Summary

Efficiency by Aggressive Energy Reduction in FPGA-based Designs: In Chapter 2, we

proposed a systematical approach to leverage the available thermal headroom of FPGA-mapped

designs for power and energy improvement. By comprehensively analyzing the timing and

power consumption of FPGA building blocks under varying temperatures and voltages, we

proposed a thermal-aware voltage scaling flow that effectively utilizes the thermal margin to

reduce power consumption without degrading performance. We showed that the proposed flow

could be employed for energy optimization as well, whereby power consumption and delay are
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compromised to accomplish the tasks with minimum energy. This is desirable for a majority of

edge applications with tight energy requirements. Lastly, we proposed a simulation framework to

be able to examine the efficiency of the proposed method for other applications that are inherently

tolerant to a certain amount of error, granting further power saving opportunity. Experimental

results showed up to 36% power reduction with the same performance and 66% total energy

saving when energy is the optimization target.

Exact and Approximate FPGA Implementation of HDC Inference: In Chapter 3,

we proposed SHEARer, an algorithm-hardware co-optimization to improve the performance

and energy consumption of HD computing. We gained insight from a prudent scheme of

approximating the hypervectors that, thanks to the error resiliency of HD, has minimal impact on

accuracy while providing high prospect for hardware optimization. Unlike previous works that

generate the encoding hypervectors in full precision and then perform ex-post quantization, we

computed the encoding in an approximate manner that saves resources yet affords high accuracy.

We also proposed a novel FPGA architecture that achieves striking performance through massive

parallelism with low energy consumption. We also developed a software framework that enables

training HD models by emulating the proposed approximate encodings. Such approximate-aware

training is crucial to avoid significant accuracy loss. The FPGA implementation of SHEARer

achieved an average performance boost of 15.7× and energy savings of up to 301× compared to

state-of-the-art encoding methods implemented on GeForce GTX 1080 Ti using machine learning

datasets of the IoT domain.

Highly-Efficient ASIC Design of HDC Learning and Inference: In Chapter 4, to

realize a custom and tiny HDC engine that can be deployed in wearable and extremely low-

energy sensory devices while supporting a diverse range of applications, we proposed a novel

encoding that achieves high accuracy for various IoT applications. Thereafter, we leveraged

the proposed encoding and designed a highly efficient and flexible ASIC accelerator suited for

the edge domain. The proposed design supports both classification (train and inference) and

113



clustering for unsupervised learning on edge. It is also flexible in terms of input size (hence it can

run various applications) and hypervectors dimensionality, allowing it to trade off the accuracy

and energy/performance on-demand. The proposed design improved the prediction accuracy

over previous HDC and ML techniques by 3.5% and 6.5%, respectively. It occupies an area of

0.30 mm2 (at 14 nm node), and consumes 0.09 mW static and 1.97 mW active power at 500 MHz,

which can be further throttled by simply operating at lower frequencies.

Preserving the Privacy of HDC-based Learning and Inference: In Chapter 5, we used

HD computing to cope with the privacy challenges of deep neural networks. We first show that

HDC is not inherently privacy-preserved, and in fact, the raw data can be reconstructed from

the encoded vectors. Thus, transmitting the encoded data such as in federated learning or cloud

inference setting jeopardizes privacy. Superior error tolerance of HDC can be leveraged to enhance

the privacy by obfuscating the information through noise/error injection with insignificant impact

on accuracy. To improve inference privacy, we proposed local sparsification with approximate

FPGA implementation, which deviates the decoded values by a normalized root-mean-square error

(RMSE) of 0.42, and reduces the encoding energy consumption by up to 2.1–5.3× (157–590×)

over the baseline FPGA (CPU) implementation. We designed differentially-private one-pass

and iterative training. We modify the vectors to lower the sensitivity (hence, additive noise)

of one-pass training, as a result of which, one-pass HDC could retain the same accuracy of

non-private models while obtaining stringent privacy guarantees. With private iterative training,

the average accuracy of the models improved by 3.4%. Finally, we used a hybrid CNN-HDC for

private training over larger image data, where pretrained CNN is a fixed feature extractor and the

HDC classifier is trained with privacy preserving guarnatees. Compared to DNN-only solutions,

the hybrid model achieves up to 5.8% higher accuracy and is up to 1231× faster when training on

GPU.
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6.2 Future Directions

To make HD computing ubiquitous for computing at the edge, we plan to extend the HD

computing from both hardware and algorithm perspectives in the following way:

• Coarse-Grained Reconfigurable Architecture (CGRA): Both IoT applications and HDC

algorithms are continually evolving. For instance, in the case of seizure detection from more

channels and/or heterogeneous sources of data (such as in-ear measurements combined with

brain signals), we need more flexibility in the hardware. In Chapter 4, to make an ASIC design

workable for various types of IoT applications, we studied some of the existing HDC encoding

algorithms and proposed a new encoding that achieves high accuracy for a number of different

applications. From the proposed GENERIC architecture, we learned that the memory capacity

and bandwidth dictate the overall area and power consumption of the ASIC design (which will not

vary considerably between an ASIC and CGRA). To avoid the large form-factor and overheads

incurred by the programmable logic of FPGAs, we will seek CGRA architecture for HDC to

bridge the flexibility and efficiency gap between FPGA and ASIC implementation. It entails

exploring and identifying the common atomic units of different HDC algorithms, proposing

building blocks and architecture, and domain-specific language and software flow to write and

map the HD applications to the CGRA. We believe that a well-designed CGRA architecture

can provide comparable energy and performance to ASIC with a flexibility sufficient for HDC

algorithms.

• In-Memory Implementation of HDC: SRAM memory that stores the class vectors contributes

to more than 98% of the static power and area, and 90% of the dynamic power in our proposed

HDC GENERIC engine presented in Chapter 4. As a future work, we will seek the opportunities

to use dense non-volatile memories such as ReRAM to replace the SRAM memories. ReRAM

cells are CMOS compatible, have a footprint of 4F2 (versus 140F2 of SRAM), and consume

significantly less static power. We will investigate the in-memory search capability of ReRAM
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crossbars to perform similarity checks with less energy and higher performance. Several studies

have used ReRAM-based crossbars for HD computing. These studies, however, do not consider

the device-level limitations of in-memory computing, such as limited number of memory rows

that can be activated, I-V non-idealities, time- and thermal-induced resistant drift, sense-amplifier

and ADC errors, etc. Using the measured characteristics of ReRAM provided by our industry

partner (TSMC), we will explore the circuit-level peripherals and algorithms (e.g., how to break

down the integer operations into bit-level) to realize in-memory HD computing while accurately

taking the aforementioned non-idealities into account. Similar to our work in Chapter 3, we

will explore techniques to account the circuit non-idealities during the HDC training in order to

minimize their impact.

• Life-Long Learning with HDC: Life-long learning enables systems to learn continuously

in changing environments without forgetting past lessons, and being able to use the previous

knowledge to better learn from the current observations. Life-long learning with DNNs is

challenging due to the significant computational resources demanded, that is infeasible for the

majority of edge devices. We plan to build a system to facilitate life-long learning with HD

computing. Using HDC, we first develop algorithms that can model and track the current

context and its changes by density-based clustering. The hardware system uses these algorithmic

innovations to enable efficient lifelong learning for distributed sensing. The remote sensing device

will store the density model of the current context in a working in-memory block that allows

extremely fast access and updates. Using life long learning, the device can update this model

once new data is received from the environment. Upon a change in context, detected using the

developed algorithms, the device will fetch the most similar model from a persistent storage

(e.g., non-volatile flash memory) and load it into the working memory. If no sufficiently similar

context is found, the device will create a new context in working memory. All the frequent search

operations will rely on efficient in-memory and in-storage search, while the encoding and update

calculations will rely upon tiny CGRA embedded in the edge device.
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