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§1. INTRODUCTION

IT 1s OFTEN desirable to compress a subset X of a manifold V¥ into a submanifold V’ by an
isotopy of V. For example, ¥ might be a Euclidean space R" and ¥’ might be R*, with k
much smaller than n. If X has some special properties ensuring that such a compression is
always possible, then we conclude that X embeds in R*. In this article the problem of
compressing X into the boundary of an s-cell is studied, where s = dim V. As applications
several theorems are proved about embedding polyhedra and smooth manifolds in Eucli-
dean space.

The main theorems say that a compact polyhedron or smooth submanifold X = ¥
compresses into the boundary of an s-cell provided (1) there exists a “Dehn cone” on X,
and (2) V~X is highly connected. A Dehn cone on X = V is an embedding X x I« V
with X x 0 = X together with a null homotopy of X x lin ¥ — X x 0. If V-X is suffici-
ently connected, a regular neighborhood theorem of Hudson and Zeeman, together
with an engulfing theorem due to Zeeman and the author, provides an s-cell E c V with
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X < OE. If V' = R, this implies the compressibility of X into R*~* or 5%,

First the piecewise linear (=PL) theory is developed, then the smooth case is reduced
to the PL case.

In the applications we take X = R?*! and try to compress X into R%. There are three
steps:

(1) extend X to X x I< R**Y,

(2) choose the extension so that X x 1 ~0in R2*! — X;

(3) prove R¢*! — X is sufficiently connected for the Engulfing Theorem to apply.

Step (1) is difficult in the PL case, so in the applications it is assumed as part of the
hypothesis. In the smooth case, however, (1) is equivalent to the existence of a normal
vector field on the smooth submanifold X.

Stgp (2) is accomplished through aleebraic topolo sometimes bv luck—as when X
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is a smooth homology sphere—more usually by just assuming that the obstructions to a

t This work was supported by the National Science Foundation grant GP-4035
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nuil homotopy vanish. These lie in groups H'(X, n(R?" ). Since H(R?
= H%~(X), the hypothesis takes the form: H/(X) = 0 for j > k.

Step (3) is handled similarly. The relevant property of X is its “collapsibility dimension”;
call X d-coIlapsibIe if X collapses to Y of dimension d. The engulfing theorem requires
ﬂi(R‘”l - A) =0 for i = 2d - q+ 2, or eqmv:ucuuy', "'(X) =0 for J = Aq —-2d-2. 1t

also requires ¢ =d + 3. Observe that a connected bounded polyhedral m-manifold is

- X

necessarilv m — 1 r‘n“an sible.
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Some examples of embedding theorems proved by these methods:

THEOREM A. Let P be a d-collapsible compact polyhedron such that P x I' embeds in
Ri*", Suppose g = d + 3, and H(P) =0 for

igmin{[q;l],Zq—zd—Z}

Then P embeds in RY. In fact if f: P x I"— R¥*" is an embedding, then f(P x 0) compresses
into R4.

Praof. Induct on r, writing P x I"' = (P
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embeds in R™*2,
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Proof. According to Miinor {i4], M embeds in R™™* wiih a normal microbundie v,

for some k. Since M has trivial cohomology, the classifying map M -» BPL(k) of v is null
nal In oths rr‘e M v T* amhade in pﬂl+k naw
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(i) Wy (M) = Wy(M)=0.
To see this, anerve that n{BPL) = n(BO)fori £ 3 (ig act for i £ 7), and that (ii) therefore

M and allows Theorem A to be applied.
CoOROLLARY C. A4 PL m-manifold M with the cohomology of S™ embeds in R™*3,

Proof. Bv Theorem B, the comnlement Af. of the interior of an m-cell of M embeds
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in R™*2, Adjoin the cone on M, from a point of R"*3 — R™*2,
f

THEOREM D. A smooth compact m-manifold M with trivial homology embeds in R™*?2,

A F e e 2ae Az masaasa Fpe 4o DML 20 ... 1 D
in R" COmpresses into R i n>moroa

Proof. Apply Theorem 6 with 1 =0, and g =m + 2.

THEOREM E. Let M be the boundary of a smooth compact parallelizable manifold.
Suppose H(M) = 0 for 0 < i £ k. Then M embeds in R? provided

g=max{2m —2k - 1,183m — k + 2), m + 3}.
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Proof. This is a special case Theorem 12.

A new proof is given for Haefliger’s theorem that a smooth homology m-sphere embeds
in R? where g = $(m + 1). Other applications, on which Theorems A through E are based,
will be found in §3. The two main theorems are stated and proved in §2.

§2. THE MAIN THEOREMS

We start with some terminology which will apply to both the piecewise linear category
of polyhedra and PL maps and to the smooth category of smooth manifolds and smooth
maps. Observe that Euclidean n-space R" has natural smooth and PL structures; thus R"
denotes an object in both categories. Similarly for a closed half-n-space E” and the closed
interval I = [0, 1] <= R

A manifold means a paracompact object locally isomorphic to E”. An object X is a
subobject of an object Y, written X < ¥, if X is a subset of Y and there is a retraction (in
the category!) of an open set of ¥ onto X.

A homeomorphism is an isomorphism in the category. An embedding of X in Y is an
isomorphism of X onto a subobject of Y. An isotopy of Y is a homotopy F: ¥ x I - Yin
the category such that, putting F(x, t) = F,(x), we have F;, = 1y and the map (x, 1) = (F(x), )
is an isomorphism ¥ x I—» Y x /. If A <« Y and B < Y, then A is isotopic to B if there is
an isotopy F of Y with F,(4) = B, and 4 compresses into B if there is an isotopy F of Y
such that F,(4) = B.

An n-cell in the PL category is a homeomorph of I”; in the smooth category an n-cell
means a homeomorph of the closed unit ball D" = R". A sphere is the boundary of a cell.

A basic fact, true in both categories is that two m-cells in the interior of an m-manifold are
isotopic; see for example [20, 18]. Of course a set meeting the boundary of a manifold M
cannot be isotopic to a set in the interior,

If M is an m-manifold and X < M, then X is compressible if X = 0B where B M is
an m-cell. If M = R™ and X is not a sphere, then X is compressible if and only if X com-
presses into R™~'. “Compressible” is a convenient generalization of “compressible into
R™~1”; the main theorems concern the compressibility of a subobject of a manifold.

A Dehn cone on X c V is a null homotopy g of X in V with no double points for
t £ 4, and such that g embeds X x [0,4]. Thatis g: X x I— Y is a map in the category
such that

@) g(x,0) = x

(ii) g(X x 1) is a point

(iii) g)X x [0, 1] is an embedding

(iv) g 7'g(X x [0, 3]) = X x [0, 4].

A polyhedron is d-collapsible if it collapses in the sense of Whitehead [20] to a d-

dimensional polyhedron. A smooth manifold is d-collapsible if it can be smoothly triangu-
lated by a d-collapsible polyhedron (which is necessarily a PL manifold).



364 MORRIS W. HIRSCH

s

xxr

We can now staie the iwo main theorems.
THEOREM 1. Let V be a PL-manifold of dimension q + 1, and P = V a compact poly-
hedron contained either in GV or in V — éV = int ¥. Suppose:
(@) P is d-collapsible;

(W ¥V _Diedd __~ D nnsesenntad:
\U} r X IQ P27 I.!TLLUI"«CLI (£
©) gzd+3;

(d) there is a Dehn cone on P.
Then P is compressible.
In the smooth category a Dehn co Xl Vran he identified with a

=23 LS SANO0RAL LallE A201222 ne A A can be 1aentined with a nont (i)

normal vector field ¢ on X. Thisis a normal vector field ¢ such that ¢(X) ~0in V —int T,
where T < Vis a closed tubular neighborhood of X identified with the normal disk bundle
of X, and ¢ is identified with an embedding ¢ : X — 0T. If X = 3V then ¢ is required to
point into V.

If B = Vis a smooth cell with X = B, and ¢ points into B, then X is called compressible
along ¢. Observe that if X = 0¥ and ¢ is any nonlinking vector field, then if X is compres-
sible, X is necessarily compressible along ¢.

nonlinking

THEOREM 2. Let V be a smooth q + | manifold and X < V a smooth compact submanifold
with normal bundle v. Suppose either X = 0V or X < int V. Let ¢ be a nonlinking normal
vector field on X, and let v' be the orthogonal complement of ¢ in v. Suppose:

(@) X is d-collapsible;

(b) V— Xis2d—q+ 2 connected,

(c) g=d+3. '

Then X is compressible along ¢. In fact there is a smooth q + 1 cell B < V with X < 0B such
that ihe normal bundle of X in 0B is v'.

The rest of this section is devoted to the proofs of Theorems 1 and 2.

Proof of Theorem 1

The main tool, a criterion for the existence of collapsible polyhedra, is the following
theorem, which is joint work with E. C. Zeeman. A proof of a more general result will
appear elsewhere.

ENGULFING THEOREM (with E. C. Zeeman). Suppose P < 6V. Assume:
(@ P~0inV

(b) P is d-collapsible

(c) Vis2d— s+ 2 connected

d) s=zd+4.

Then there exists a collapsible C such that P< Cc V.

Recall that a subset A = B is called collared if there is an embedding f: A x /— B
such that f(x, 0) = x for all x € 4, and f(A4 x I) is a neighborhood of 4 in B.

LemMma (Hudson-Zeeman [9])). Let X be a manifoid. Suppose A= B< X, with A
collared in B. There exists a regular neighborhood N of B in X such that A < B n ON.
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Moreover, if BN 06X — A, then N can be chosen so ithat A = B n ON.
Next, observe that (i) P < V is compressible if there is a collapsible C such that
Pc Cc V,and P is collared in C. The reason is that any regular neighborhood N of C is
a cell [20]. By Hudson-Zeeman, N can be chosen so that Pc d N.

To prove Theorem 1, let f: P x I—- ¥V be a Dehn cone on P. Let f(Pxt)=P, If
P cint ¥, choose fsothat f(P x I) =int V. If P < 8 V, choose fso that f(P x I) n 0V = P.

Under these conditions it is easy to find a regular neighborhood N of f(# x {0, 4]} such that:
(i) POP,cON

~ N :_ wr __ 1/ . r\
TZvin w=y — \r U int Y j.
To achieve (ii), use Hudson-Zeeman. For ( use the conditions on f. These conditions
a ho

also “'r;nlv that the inclusion W—V ~P 1is
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(iii) P, =01in V' —int N, and therefor

1omotopy equivalence, The Engulfing

Theorem, with s = g + 1, gives a collapsible C' =« W with Py = C’. Let

N __ Mt (D T AN
v = UJ\[ALU,IJ}.

Since C’' N f(P x [0, 4]) = P, it follows that C collapses to C’. Therefore C is collapsible.
Moreover, P is collared in C, making P compressible by (i).

Proof of Theorem 2

We reduce the case X <int V'tothecase X< dV. If XcintV,let f: X x I—int V
be a (smooth) Dehn cone. Since X is isotopic to f(X x 1), it suffices to prove that f(X x %)
is compressible. We may choose f so that f(X x %) lies on the boundary of a tubular
neighborhood T of X in int V. Replacing X by /(X x 1), and V by V — int T, we may thus
assume X < oV.

If X = @V, give V a smooth triangulation so that JV and X are subcomplexes [16].
Consider V as a PL-manifold and X = 0V as a polyhedron. By Theorem 1 there is a PL
g+ 1cell B =V with X = 0B’. We may assume that B’ n 0V is a neighborhood of X in

aV, for if this is not already the case, we replace B’ by a suitable regular neighborhood of
itself.

By [7] there is a smooth submanifold B < V which can be smoothly triangulated by
the PL-cell B, such that B n ¢V is a neighborhood of X in B’ n 8V. (See especially the
remark on p. 106 of [6].) By Munkres [15] B must be a smooth g + 1 cell. Clearly X < éB,
and ¢ points into B. The proof is compiete.

§3. APPLICATIONS OF THE MAIN THEOREMS

1t is easy to see that if X = R?*! is d-collapsible, then R**! — X is g ~ d — 1 connected.
Indeed, if X collapses to a d-dimensional Y < X, then R?*! — X has the homotopy type
of R#*! — Y (they are in fact homeomorphic), and R**! — Y is g ~ d — 1 connected by a
simple general position argument. In particular if ¢ = d + 2, then R?*! — X is 1-connected.

Assume further that f = 0 is an integer such that the reduced integer cohomology
of X satisfies H(X)=0 for i = +. Then if R?*! — X is 1-connected, Alexander duality
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and Hurewicz isomorphism show that R?*! — X is g — ¢ connected. These remarks are
used to prove the next theorem.

THEOREM 3. Let X < R*™' be a compact d-collapsible polyhedron. Assume:

(a) there is an embedding g : X x I— R*™*! with g(x, 0) = x;

(b) A(X)=0fori=t, wheret 2 0.

(©) gzmax{2t—1,3¢ +2d +2),d+ 3}

Then X is compressible.

Proof. Theorem 1 will apply if

(1) there is a Dehn cone on X,

(2) R**! — X is 2d — g + 2 connected, and

(3) g =2 d + 3 (which is assumed in (c)).

To prove (1) it suffices to show that g(X x 1) ~ 0 in R1*! — X, The obstructions to such
a homotopy lie in A(X; 7,(R*"*' — X)). The coefficient group vanishes for i < g — ¢; the
first inequality in (c) gives ¢ — ¢ + 1 2 7, so that the cohomology group vanishes if i > q-—-t
Hence X has a Dehn cone. To prove (2), observe that the second inequality of (c) is equiva-
lenttog—t22d—q+2.

THEOREM 4. Let M be a compact smooth manifold. Suppose:

(a) M is d-collapsible

(b) M embeds in R**" with a field of normal (r + s)-frames (¢, ... , ¢,.,).

(© H(X)=0fori=t wheret20.

(d) g = max{2t — 1,4t + 2d + 2), d + 3}.

Then M embeds in R* with a field of normal s-frames. In fact any embedding as in (b) com-
presses into R by a diffeotopy of RY*" which carries ¢,, ... , ¢, into RA.

Proof. It suffices to prove that ¢, ., is nonlinking and that the connectivity hypothesis
(b) of Theorem 2 is satisfied, for then M compresses along ¢, . . into R*** -1, and iteration
proves the theorem. The arguments are similar to those in the proof of Theorem 3, and
are left to the reader.

COROLLARY 5. Let M be a bounded compact smooth m-manifold, Assume:

@ A'M)=0forizt where0 <t < m;

) gz max{2t — 1,4t + m,m + 2}.

Then M embeds in R* with a field of normal s-frames if M immerses in R® with a field of
normal s-frames.

Proof. If M immerses in R? with a field of normal s-frames, then M embeds in R?*’
with a field of normal (r + s)-frames for r sufficiently large. Apply Theorem 4 with
d=m-—-1.

In the next theorem the requirements for M are purely homological.

THEOREM 6. Let M be a smooth compact m-manifold. Assume:

(@) A'(M)=0 fori=t, where t 2 0.

(b) Wq—m-!'l(M) =0

© gzmax{2t =, m+1—-2,m+ 4, m+2}.

Then M embeds in RA.
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>Proof. If some component of M has no boundary, then (a) implies f > m and (c)
implies ¢ = 2m + 1 and the theorem is well known. Assume that each component of M
has a boundary, so that M is m — 1 collapsible.

Embed M in R**" with g+ r 2 2m + 1. The first obstruction to a field of normal
r-frames is W,_,., assumed to vanish. There are no higher obstructions since A{(M) =0
for i 2 ¢, and the second inequality of (c) implies ¢ — m + 2 = ¢. The rest of () implies
(d) of Theorem 4, taking d=m — 1. Now Theorem 6 follows from Theorem 4 (with
s=0).

THEOREM 7. Let M be a smooth compact bounded m-manifold. Suppose:
(@) H*(OM)= H*(S™1)
(b) M is parallelizable
(c) there is an integer k such that H{(M)=0for0<iSk
(d) g = max{2m — 2k ~ 1, 1(3m — k), m + 2}
Then M embeds in R® with a trivial normal bundle.

Proof. By Poincaré duality H(M) = Ofori = m — k. Apply Theorem 4 with t = m — k,
d=m—-1,s=qg—~m.

In order to obtain embedding theorems for closed manifolds we use the following
theorem of Haefliger.

THeOREM 8. (Haefliger) Let M be a smooth closed m-manifold, D < M a smooth m-cell,
and My = M — int D. Assume q = 4(3m + 1). If f: My — R? is an embedding, the compo-
sition My — R? < R*™*! extends to an embedding of M.

Proof. See [3] and [5, Theorem 3.2a}.

THEOREM 9. Let M be a closed smooth m-manifold. Suppose:
(@ H(M)=0for0<i<k.
(b) M, immerses in R with a field of normal s-frames.
©) gz max{2m ~2k — 1,m+ 2,13m + 1)}
Then M embeds in R?*" with a field of normal s + 1-frames on M,,.

Proof. Apply Corollary 5 with t = m — k, to embed M, in R? with normal s-frames;
use Theorem 8 to get the desired embedding of M in RT*1.

This last theorem illustrates the influence of the tangent bundle on the embedding
dimension. For example, it is known that a 5-connected 24-manifold ¥ embeds in R*? since
every k-cornected m-manifold embeds in R*™ ~* [5] (if 2k < m). Butif Vis almost paralleliz-
able in addition, then Theorem 9 embeds V in R3®,

By using the higher dimensional Poincaré conjecture as proved by Smale [19] and
J. Levins's surgical techniques, further results can be proved, similar to those of Minkus
[12] and De Sapio [2]. For these we need the following theorem of Levine [10].

THEOREM 10 (Levine). A smooth m — | sphere S = R bounds a smooth m-cell B = R3
provided:
@gzm+2andmz 5;
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(b) S bounds a smooth compact m-manifold M < R3;
(¢) M has a field ® of normal q m frames;

£ sLo Eoeasclen PR G PRSI iy AP

\Q) i€ nérvaire invariant UJ \h:l, w; vanishes y m=2
vanishes if m = 0 mod 4.
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Recall that the proof consists of surgering A in R? until it is contractible; condition
(c) ensures there is no difficulty near the middle dimension if m is even.

COROLLARY 11. Let M be the complement of the interior of an m-cell D in a smooth
closed manifold V. If M = R? and satisfies (a) through (d) of Theorem 10, then there is a
smooth homotopy m-sphere T such that the embedding M — R? extends to an embedding
VxT— Rt

Proof. Let B < R? be the m-cell promised in Levine’s theorem. Push B diffeomorphi-
cally onto an m-cell B’ = R?*! with B’ n R? = dM. Then M U B’ = R?*! has a smoothable
corner along dM. Smoothing the corner gives an embedding of the connected sum M % T
where T is obtained by gluing the m-cells D and B together along their common boundary

~nAw e

oM.
Next, another embedding theorem.

THEOREM 12. Let V be a smooth, closed stably parallelizable m-manifold. Assume:

(@) H(VN)=0for0<iZk;

(b) if m= 6 mod 8, V has a stable framing with vanishing Kervaire invariant.

© pzmax{2m—-2k-1,183m—~k +2),m+3}andm=5.
Then there exists a homotopy m-sphere T such that the connected sum V % T embeds in RP.
If in addition V bounds a compact parallelizable manifold, or if the group T,, = 0, or if every
hromotopy m-sphere embeds in R?, then V embeds in R?. In all cases the embedding of V % T
can be chosen to have a trivial normal bundle on the complement of a point.

Proof. Let D < V be a smooth m-cell, put M =V —int D. By Theorem 7 we may
assume M < RP™! with a field ® of normal p — m — 1 frames. ‘

Observe that the embedding and @ can be chosen to represent any given stable framing
of M. Now the signature of M vanishes because V is stably parallelizable; if m = 2 mod 8
the Kervaire invariant of (M, ®) vanishes by Brown and Peterson [1]. Therefore (d) of
Theorem 10 is satisfied, and Corollary 11 gives the embedding of V% T. If V bounds a
parallelizable manifold, so does T since (with the proper choice of framing) V is framed
cobordant to T. If T bounds a parallelizable manifold then 7, and hence T embeds in

RP, Therefore so does (V% T % (—T)x V. The rest of the Theorem is o

TreorReM 13 (Haefliger [4]). Let M be a smooth m-manifold such that H,(M) = H(S™).
ifq 2 $(m + 1), then M embeds in R*.
Proof. Tt suffices to prove that any embedding M < S?*! compresses into 5. We may

assume g = m + 3, since otherwise m < 1, a trivial case.

The normal sphere bundle of M in $%*! is known to be fibre homotopically trivial
[11]; that therefore M has a normal vector field ¢ : M — S — M.
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Let [¢] denote the homotopy class of ¢ in 7,(S?** — M). If $ ™ < S7*! — M is the

fibre of the normal sphere bundle of M, the inclusion induces an isomorphism i, : 7, (S™™)
-, (ST — M). Given a € n,(S?™™), there is a unique homotopy class of normal vector
fields Y such that « is the difference obstruction to a homotopy of sections from ¢ to ¥.
It is easy to see that [f] = [@] — i,a. Therefore if a = iy '[¢], it follows that Y ~ 0 in
S§9*1 — M. In other words ¥ is nonlinking. The assumption g = 3(m + 1) is equivalent
tog—m—122m-—gqg+2. Since $*' — M is ¢ — m — 1 connected, Theorem 2 applies
to compress M.

X oo~
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