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How Sensitive are Spatial Estimates of Wilderness Recreation Values to 44 
Information about Hiking Destinations?  45 
 46 
 47 
Abstract 48 
 49 
This study uses individual survey data to investigate the impact of information about hiking destinations on 50 
estimated wilderness values in a spatial context. The data is derived from a revealed preference survey of 51 
backcountry visitors who responded to questions about their recreation behavior in the San Jacinto Wilderness of 52 
southern California. Two GIS data layers are developed showing spatial representations of non-market values 53 
derived from a Kuhn-Tucker demand model, with and without destination information. Each pixel in each data layer 54 
contains an estimate of the recreation value at that location. The destination data provides more detailed information 55 
on recreation behavior that can be used to more accurately allocate the landscape values. Results show that including 56 
destination information produces significantly greater heterogeneity in parcel value estimates for large areas of the 57 
wilderness. 58 
 59 
Keywords: GIS, Kuhn-Tucker demand system model, Nonmarket valuation, Web-based survey, Viewshed analysis 60 
 61 

1. Introduction  62 

Given limited budgets, the need for economic valuation of public land has become vital for 63 

maintaining public access and conservation of our nation’s public lands. The use of spatial 64 

analysis software benefits forest management because it provides a better spatial representation 65 

of forest lands and helps the decision making process. The use of this software is now possible 66 

because recent increases in computing power have given researchers the ability to make greater 67 

use of geographic information systems (GIS). As use of this tool has increased, researchers have 68 

begun combining GIS software with non-market valuation methods to assist land and forest 69 

managers (Baerenklau et al., 2010; González-Cabán et al., 2003). This combination has allowed 70 

researchers to derive spatially-explicit representations of landscape values.  71 

Non-market valuation methods such as travel cost analysis, contingent valuation, and 72 

hedonic pricing have been used to help inform management decisions. Mapping of ecosystem 73 

services values has been increasing in the past several years as seen by the number of cases 74 

reported in Crossman et al. (2013), Schägner et al. (2013), and Wolff et al. (2015). GIS in 75 



conjunction with non-market valuation methods has been used to derive spatially explicit 76 

landscape values. For example, Eade and Moran (1996) developed an “economic value map” for 77 

the Rio Bravo Conservation Area in Belize using the benefit transfer method and GIS to spatially 78 

allocate ecosystem service values. Troy and Wilson (2006) used a similar approach to produce a 79 

map of ecosystem service flow values based on land cover types for three case studies. 80 

González-Cabán et al. (2003) estimated the effect of prescribed burning on deer harvest by using 81 

time-series data and GIS approaches with travel cost and contingent valuation methods. 82 

Additionally, Cavailhès et al. (2009) evaluated the landscape values of Dijon, France and found 83 

land cover around houses has an effect on housing prices using GIS and hedonic price model.   84 

A highly relevant work for this study is the GIS-based landscape valuation application by 85 

Baerenklau et al. (2010). The authors use recreation permit data and a zonal travel cost method to 86 

estimate the aggregate recreation values. They then spatially allocate that value to the landscape 87 

using GIS-based “viewshed” analysis. Due to the absence of information about hiking routes or 88 

destinations, the authors assumed that when a hiker encountered a trail junction, s/he took each 89 

path with equal probability. However, the equal probability assumption underestimates the 90 

values of popular destinations and related parts of the landscape because in reality a trail junction 91 

leading to more visited destinations will have a higher probability than less frequently visited 92 

destinations. The extent to which spatial wilderness valuations are affected by incomplete 93 

information about spatial patterns of site use is the main subject of this paper.  94 

To-date there is a paucity of publications in this subject area. A study by Paracchini et al. 95 

(2014) uses population distribution and behavior datasets to map and assesses outdoor recreation 96 

opportunities for the European Union at a continental scale but does not include an economic 97 

valuation of recreation opportunities nor a spatial allocation over the landscape. Chiou et al. 98 



(2010) found optimal travel routes based on time and energy cost consumption to inform 99 

managers and visitors of trail difficulty. However, the authors do not derive recreation values. 100 

Another study by Ji et al. (2016) found that using the “nearest access point” approach to model 101 

recreation demand with incomplete information about where people actually access a large 102 

geographic site can lead to biased travel cost estimates. Schägner et al. (2016) map estimated 103 

recreational values for European National Parks using predicted annual visits with monetary 104 

value estimates. However the authors use the “value transfer” method and assume a constant 105 

value per visit. To the best of our knowledge, ours is the first study that uses information about 106 

routes utilized on-site to estimate wilderness recreation values in a spatial context. To do this, we 107 

use a web-based survey to elicit information on hiking entry points and destinations visited over 108 

a season to develop individual hiking routes. This information is missing in Baerenklau et al. 109 

(2010) and is potentially useful to more rigorously allocate the wilderness recreation value across 110 

the landscape.  111 

This study contributes to the recreation demand literature by advancing the standard 112 

methodology for environmental valuation which focuses on valuing access to what is often a 113 

spatially expansive resource as a singular good and potentially helps to refine our understanding 114 

of environmental values associated with preserved areas. In addition, we address the question of 115 

whether the additional cost and effort of collecting route and destination information has policy-116 

relevant implications for demand and welfare analysis. Our results also can help researchers and 117 

managers better understand and address the economic effects of natural or human-made disaster 118 

that damage or impact natural resources in location-specific ways. Examples include 119 

management of wildfire, pest infestation, resource extraction, pollution, and land development 120 

pressures on open space.  121 



 122 

2. Study Area and Data1 123 

This study investigates backcountry hikers who visit the San Jacinto Wilderness, San Bernardino 124 

National Forest in southern California (figure 1). The wilderness is located within a 2.5 hour 125 

drive from the highly urbanized Los Angeles, Orange, Riverside, San Bernardino, and San Diego 126 

counties. It covers 13,350 hectares with elevations ranging from 1,800 to 3,300 meters.  127 

 128 
Figure 1— Site location-San Jacinto Wilderness area. Map provided by Baerenklau et al. (2010). 129 

 130 

The most popular recreation activity is day hiking (Baerenklau et al. 2010). There was a total of 131 

55,239 visitors (table 1) who obtained backcountry permits to enter the wilderness area during 132 

2011 (Andrew Smith and Bart Grant, personal communication, USDA Forest Service and Mt. 133 

San Jacinto State Park Ranger, October 2013). 134 

Table 1 —Total San Jacinto wilderness visitors (2011) to selected trails and destinations 135 
    136 
Trailhead Visitors Destination Visitors2  137 
  138 
Deer Springs 6,271 San Jacinto Peak 9,297 139 
Devil’s Slide 12,362 Round Valley 6,862 140 
Marion Mtn   2,325 Round Valley Loop 6,346     141 

                                                 
1 See Sánchez et al. (2016) for a complete survey design and data collection procedure. 
2 Source: Bart Grant, personal communication, Mt San Jacinto State Park Ranger, October 2013. Destination visitor total is less 
than trailhead visitor total because the California State Parks collects destination information for the Long Valley trailhead only.  



South Ridge  2,118 Hidden Valley 280  142 
Long Valley 32,163 Tamarack 257 143 
Total 55,239 Total 23,042   144 
  145 

 146 

This study uses a web-based survey to collect revealed preference data from backcountry 147 

visitors during the summer months of June 2012 to September 2012. Recreationists visiting the 148 

Idyllwild and Long Valley Ranger Stations were asked to participate in an online survey. To help 149 

increase response rates, undergraduate students were stationed at both ranger stations to provide 150 

the study description, incentives for participating in the survey, and collecting email addresses of 151 

potential survey participants. The online survey was implemented using a modified Dillman et al. 152 

(2014) approach. Those agreeing to participate received an email invitation within a week of 153 

their wilderness visit with a link to the online survey. Approximately one week after receiving 154 

the survey link, non-responders received an e-mail reminder to complete the survey. A final e-155 

mail reminder was sent to non-responders approximately 3 weeks after the initial contact. Out of 156 

1527 invitations sent, a total of 698 usable surveys were collected, for an effective response rate 157 

of 46%. The survey collected socio-demographics (e.g., age, education level, gender, income, 158 

race, home zip code, and whether the respondent is currently a member of an environmental 159 

conservation organization) and recreational information (e.g., number of trips to each trailhead, 160 

number of trips to each destination). The travel cost for each individual trip was estimated to be 161 

the sum of driving and time costs. Driving costs are a function of distance (using Google Maps) 162 

and the average per-mile cost of operating a typical car ($0.585/mile; AAA, 2012). Time costs 163 

are a function of travel time (also from Google Maps) and the opportunity cost of time was 164 

included as one-third of respondent’s average hourly income (Hagerty and Moeltner, 2005). For 165 

trips originating on the east side of the wilderness and entering through Long Valley (see figure 166 



1), the cost of riding the Palm Springs Aerial Tramway into the state park was also included in 167 

the trip cost.  168 

 169 

3. Estimation of forest recreation values 170 

Benefits of landscape conservation are derived from revealed preference data using a Kuhn-171 

Tucker (KT) demand system (Phaneuf et al., 2000; von Haefen et al., 2004). The KT demand 172 

model is one of the most recently developed approaches for analyzing seasonal, multi-site 173 

recreation demand data. One advantage over other multiple site recreation demand models (e.g., 174 

count data models) is that it can model simultaneous decisions, the number of site visits and how 175 

many trips to each site during the year, using a single utility maximization framework. The KT 176 

model also accounts for corner solutions or zero visitations, which can be a significant portion of 177 

recreation data. In addition to having these advantages, it appears that similar policy inferences 178 

can be found between KT models and other recreation demand models. For example, von Haefen 179 

and Phaneuf (2003) compared the KT model and count data demand system model using Iowa 180 

wetlands recreation survey data and found a general convergence of welfare estimates. While 181 

Herriges et al. (1999) found that the KT model outperforms the linked model for angling in the 182 

Wisconsin Great Lakes region. However, despite the advantages over traditional models, the KT 183 

models have not been used that often in recreation demand. See Sánchez et al. (2016) and Nicita 184 

et al. (2015) for recent recreation demand application of the KT model. 185 

In a KT demand model, the individual’s direct utility function is 𝑢𝑢(𝑥𝑥, 𝑧𝑧; 𝑞𝑞, 𝜀𝜀,𝛤𝛤), where x 186 

is a vector of trips taken to each trailhead j, z is spending on all other goods with price 187 

normalized to one, q is a vector of site characteristics, ε is random error term unknown to the 188 



researcher, and Γ represents parameters of the utility function to be estimated. Individuals 189 

maximize utility over a season subject to their budget constraint: 190 

(1)     max
𝑥𝑥,𝑧𝑧

𝑢𝑢(𝑥𝑥, 𝑧𝑧; 𝑞𝑞, 𝜀𝜀,𝛤𝛤),                𝑠𝑠. 𝑡𝑡.   𝑦𝑦 = 𝑧𝑧 + 𝑥𝑥𝑥𝑥,       𝑥𝑥𝑗𝑗 ≥ 0, 𝑗𝑗 = 1, … ,𝑀𝑀, 191 

where y is the annual income and p is the price (travel cost) of visiting each trailhead access 192 

point. The first-order conditions that implicitly define the solution to the optimal consumption 193 

bundle (𝑥𝑥∗, 𝑧𝑧∗) are 194 

(2)     

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≤ 𝑝𝑝𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑀𝑀, 195 

(3)     𝑥𝑥𝑗𝑗 × �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑝𝑝𝑗𝑗� = 0, 𝑗𝑗 = 1, … ,𝑀𝑀. 196 

Following von Haefen et al. (2004), the specific parameterization we use for the utility 197 

function is the following3: 198 

(4)    𝑈𝑈 =  �Ψ𝑗𝑗

𝑀𝑀

𝑗𝑗=1

𝑙𝑙𝑙𝑙�𝜙𝜙𝑗𝑗𝑥𝑥𝑗𝑗 + θ� +
1
𝜌𝜌

 𝑧𝑧𝜌𝜌,      199 

Ψ𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛿𝛿′𝑠𝑠 + 𝜀𝜀𝑗𝑗�       𝑗𝑗 = 1, … ,𝑀𝑀   200 

𝜙𝜙𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛾𝛾′𝑞𝑞𝑗𝑗� 201 

𝜌𝜌 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(𝜌𝜌∗) 202 

𝜇𝜇 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜇𝜇∗) 203 

𝜃𝜃 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜃𝜃∗) 204 

𝑧𝑧 = 𝑦𝑦 − 𝑝𝑝′𝑥𝑥 205 

𝜀𝜀𝑗𝑗~𝐸𝐸𝐸𝐸(𝜇𝜇) 206 

                                                 
3 This was first suggested by Bockstael et al. (1986) and later modified by von Haefen et al. (2004).  



where s is a vector of individual characteristics, z is spending on all other goods (a function of 207 

travel cost and income), 𝜀𝜀1, … , 𝜀𝜀𝑀𝑀 represent unobserved heterogeneity, and 𝛿𝛿, 𝛾𝛾,𝜃𝜃∗,𝜌𝜌∗, and 𝜇𝜇∗ are 208 

structural parameters. There are some features of the utility function that warrant further 209 

discussion. The KT model assumes additive separability, which implies weak substitution effect 210 

for goods with small income effects. This assumption may lead to overestimation of welfare 211 

losses due to individual site closures (Kuriyama and Hanemann, 2006). The KT specification 212 

also guarantees that weak complementarity is satisfied for all parameter values (von Haefen et 213 

al., 2004), implying that all values derived from the quality attributes of a good arise through its 214 

use (von Haefen, 2007). 215 

Rearranging equations 2 and 3 (Phaneuf et al., 2000) and using the utility function in 216 

equation 4, the implicit equation for ε can be solved using the KT conditions, yielding the 217 

following first-order conditions: 218 

(5)     𝜀𝜀𝑗𝑗 ≤ 𝑔𝑔𝑗𝑗(𝑥𝑥,𝑦𝑦,𝑝𝑝; 𝑞𝑞, 𝛾𝛾),  219 

𝑥𝑥𝑗𝑗 ≥ 0, 𝑥𝑥𝑗𝑗�𝜀𝜀𝑗𝑗 − 𝑔𝑔𝑗𝑗(𝑥𝑥,𝑦𝑦,𝑝𝑝; 𝑞𝑞, 𝛾𝛾)� = 0 220 

where  𝑔𝑔𝑗𝑗(𝑥𝑥,𝑦𝑦, 𝑝𝑝; 𝑞𝑞, 𝛾𝛾) is the solution to �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑝𝑝𝑗𝑗� = 0.  If we assume the εj are independent and 221 

each follows a type I extreme value distribution, then we can use equation 5 to derive the 222 

probability of observing an individual’s trip-taking outcome. The probability that x trips are 223 

taken is 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑥𝑥𝑗𝑗 = 𝑥𝑥� = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜀𝜀𝑗𝑗 = 𝑔𝑔𝑗𝑗� (Phaneuf and Siderelis, 2003). Therefore, the 224 

likelihood of observing an individual’s outcome x conditional on the structural parameters, 225 

(𝛿𝛿, 𝛾𝛾,𝜃𝜃∗,𝜌𝜌∗, 𝜇𝜇∗), is (von Haefen et al., 2004; von Haefen and Phaneuf, 2005): 226 

(6)     𝐿𝐿(𝑥𝑥|𝛿𝛿, 𝛾𝛾,𝜃𝜃∗,𝜌𝜌∗, 𝜇𝜇∗) = |𝐉𝐉|��𝑒𝑒𝑒𝑒𝑒𝑒�−𝑔𝑔𝑗𝑗(∙)/𝜇𝜇�/𝜇𝜇�
1𝑥𝑥𝑗𝑗>0

𝑗𝑗

×  𝑒𝑒𝑒𝑒𝑒𝑒�−𝑒𝑒𝑥𝑥𝑝𝑝�−𝑔𝑔𝑗𝑗(∙)/𝜇𝜇��, 227 



where |J| is the determinant of the Jacobian for the transformation from ε to (xj, εj) and 1𝑥𝑥𝑗𝑗>0 is 228 

an indicator function equal to one if xj is strictly positive and zero otherwise. We used a 229 

conventional maximum likelihood method for estimating the fixed parameter model and a 230 

maximum simulated likelihood method for estimating the random parameter model (Gourieroux 231 

and Monfort, 1996).  232 

Welfare estimation is possible in the KT framework using Hicksian consumer surplus 233 

(CSH), but no close-form solution exists. Therefore, computation of the welfare estimates must 234 

be done using Monte Carlo simulation techniques. The iterative algorithm of von Haefen et al. 235 

(2004) estimates CSH using an efficient numerical bisection routine. Details on the procedure can 236 

be found in von Haefen et al. (2004) and von Haefen and Phaneuf (2005).   237 

 238 

3.1 Estimation Results4 239 

For the present investigation, parameter estimates are derived for two separate analyses, 240 

each using the same dataset: (1) revealed preference estimates using trailhead entry points as 241 

sites and (2) revealed preference estimates using trailhead/destination pairs as sites. The two 242 

analyses use the same information on visitors (n=698) and the same total number of trips 243 

(n=3840), but differ in the number of sites in the model. The first analysis uses 5 sites: one for 244 

each of the 5 trailheads examined in the survey. There are more trailheads in the San Jacinto 245 

Wilderness, but only 5 sites were selected because 97% of all visits are taken to these 5 246 

trailheads5. We assume negligible recollection bias due to the typically small number of annual 247 

                                                 
4 The parameter and welfare estimate were derived using Matlab (MathWorks, 2015) code generously provided by Dan Phaneuf.  
5 Out of a total of 34,218 permitted visitors to the San Jacinto Wilderness, 33,194 visited the 5 trails (Baerenklau et al. 2010).  
Similar results were found using 2011 wilderness permit data. 



trips per person taken to the wilderness (table 2). In order to spatially allocate access value in this 248 

model, we invoke the “equal probability” assumption as in Baerenklau et al. (2010). 249 

Table 2—Summary statistics for trips per person to trailheads and trailhead/destination routes 250 
 251 
Trail name  Mean (std. dev.) Min/Max 252 
 253 
Deer Springs trailhead 0.11 (0.46) 0/5 254 
Devil’s Slide trailhead 1.86 (6.95) 0/116 255 
Marion Mtn trailhead 0.21 (0.74) 0/8 256 
South Ridge trailhead 0.36(1.18) 0/16 257 
Long Valley trailhead 2.97 (7.97) 0/100 258 
 259 
Deer to San Jacinto Peak route 0.07 (0.36) 0/5 260 
Deer to Saddle Junction route 0.03 (0.28) 0/5 261 
Devil’s to San Jacinto Peak route 0.05 (0.30) 0/4 262 
Devil’s to Saddle Junction route 0.89 (3.07) 0/51 263 
Devil’s to Tahquitz Valley route 0.21 (1.24) 0/20 264 
Devil’s to Skunk Cabbage route 0.41 (2.13) 0/38 265 
Devil’s to Tahquitz Peak route 0.22 (0.85) 0/13 266 
Devil’s to Round Valley route 0.05(0.37) 0/7 267 
Devil’s to Hidden Valley route 0.03 (0.43) 0/10 268 
Marion Mtn to San Jacinto Peak route 0.11 (0.43) 0/4 269 
Marion Mtn to Little RV route 0.09 (0.37) 0/4 270 
S. Ridge to Saddle Junction route 0.06 (0.30) 0/4 271 
S. Ridge to Tahquitz Valley route 0.08 (0.36) 0/4 272 
S. Ridge to Skunk Cabbage route 0.06 (0.30) 0/4 273 
S. Ridge to Tahquitz Peak route 0.16 (0.54) 0/6 274 
Long Valley to San Jacinto Peak route 0.57 (1.64) 0/28 275 
Long Valley to Little RV route 0.51 (2.77) 0/51 276 
Long Valley to Tamarack route 0.34 (1.74) 0/33 277 
Long Valley to Hidden Valley route 0.33 (1.62) 0/33 278 
Long Valley to Round Valley route 1.23 (3.36) 0/33 279 
                                                                        280 
n = 698   281 
  282 

 283 

In the second analysis, sites are redefined as trailhead-destination pairs based on 284 

additional information reported in the survey. To determine hiking routes, we first identified 285 

more than 40 possible trailhead-destination routes using the trail network. We then omitted 286 

routes deemed too long for a day hike (typically more than 16 miles round-trip) and those that 287 

did not start and end at the same trailhead. We then made further refinements based on 288 



information obtained from the Idyllwild station Ranger6. Ultimately a total of 20 allowable 289 

hiking routes (sites) remained.  290 

To implement the model and capture individual preferences for site characteristics, we 291 

need both individual (Ψ matrix) and site characteristics (Φ matrix) information. Lacking site 292 

characteristics data, the site-specific (trailhead) dummy variables were used in the Φ matrix. 293 

Each dummy variable captures the combined effect of multiple (unobserved) attributes on the 294 

desirability of visiting a particular trailhead.7 Using the dummy variables in the Φ matrix is 295 

appropriate because these variables account for the distinct features of each site: elevation gain, 296 

vegetation (chaparral at lower elevations and Yellow and Ponderosa pine at higher elevations), 297 

panoramic views, trail distance and hiking difficulty for which we have only anecdotal 298 

information. For example, Long Valley trailhead has no chaparral vegetation and its lowest 299 

elevation is over 2,590 meters. The other trailheads (Deer Springs, Devil’s Slide, Marion 300 

Mountain, and South Ridge) have lower elevations, ranging from 1,707 to 2,073 meters and 301 

consist of chaparral vegetation near the beginning of the trail. As elevation increases, vegetation 302 

changes to pine.  303 

Table 3 shows the estimation results for the trailhead-only model.8 The Ψ matrix 304 

(individual characteristics) shows that being male, older, employed full-time, and belonging to 305 

an environmental group increases trip frequency to each trailhead. The remaining parameters on 306 

minority status and having at least a bachelor’s degree are not statistically significant. The Φ 307 

                                                 
6 The Idyllwild District Ranger provided a list of highly unlikely hiking routes for an average recreationist, given the difficulty, 
trail distance, and better alternative trail that leads to the same destination. 
7 For identification purposes, the Deer Springs trailhead was removed from the trailhead-only model and Deer Springs to San 
Jacinto Peak hiking route was removed from the trailhead-destination model. 
8 These results differ from Sánchez et al. (2016) because here we have trimmed the dataset to create a common set of trips that 
can be used across both models.  



parameter estimates demonstrate the popularity of the trails and have magnitudes that are 308 

consistent with the visitation data shown in tables 1 and 2. 309 

 310 
Table 3— Kuhn-Tucker model estimates. The dependent variable is the number of trips taken in the past 12 months to each 311 
trailhead (trailhead-only model). 312 
Parameter                         Model   313 
 Estimate                         Std. Err.  t-statistics 314 
Ψ Index parameters 315 
  Constant -10.0277** 1.8890 -5.3084 316 
  Gender 0.8884*** 0.1549 5.7352 317 
  Age 0.0215*** 0.0083 2.6013 318 
  EnvGrp 0.6330*** 0.1215 5.2083 319 
  Minority 0.2012 0.2744 0.7334 320 
  Degree -0.1396 0.1827 -0.7640 321 
  Employed   0.4589*** 0.1507 3.0459 322 
Translating parameter 323 
Θ 1.1953 62.4608 0.0191 324 
  325 
Φ parameters 326 
  Constant -1.1953 62.4609 -0.0191 327 
  Devil’s Slide Dummy 1.1553*** 0.0899 12.8507 328 
  Marion Mtn Dummy 0.5123*** 0.1005 5.0976 329 
  S. Ridge Dummy 0.6924 0.0953 7.2695 330 
  Long Valley Dummy 1.5089*** 0.0900 16.7747 331 
Rho parameter 332 
  ρ -0.0050 0.1701 -0.0295 333 
Type I extreme value scale parameter 334 
  μ -0.3746*** .00380 -9.8539 335 
Log-likelihood -3313.38 336 
Note: *** indicates significance difference from zero at the 0.01 level. Robust standard errors reported.  337 

 338 

Table 4 contains estimates for the trailhead/destination model. The results for the Ψ parameters 339 

show that being male, belonging to an environmental group, and having at least a bachelor’s 340 

degree increases visitation to each hiking route. The other parameters on age, minority status and 341 

full-time employment are statistically insignificant. For the Φ parameters, we find the largest 342 

magnitudes are associated with all of the Long Valley and Marion Mountain hiking routes, five 343 

of the Devil’s Slide routes, and two of the South Ridge routes. This is consistent with the 344 

popularity of the routes as shown in tables 1 and 2, as well as the observation that hiking from 345 

Deer Springs to Saddle Junction, and Deer Springs or Devil’s Slide to San Jacinto Peak, is 346 

extremely difficult for the average recreationist due to steepness and distance (approximately 9.2, 347 

8.2, and 8.0 miles one-way trip, respectively).  348 



Table 4— Kuhn-Tucker model estimates. The dependent variable is the number of trips taken in the past 12 months to each 349 
hiking route (trailhead/destination model). 350 
Parameter                         Model   351 
 Estimate                         Std. Err.  t-statistics 352 
Ψ Index parameters 353 
  Constant -2.2582*** 0.4951 -4.5610 354 
  Gender 0.5072*** 0.0581 8.7249 355 
  Age -0.0019 0.0026 -0.7354 356 
  EnvGrp 0.3067*** 0.0594 5.1613 357 
  Minority 0.1032 0.0994 1.0382 358 
  Degree 0.1465** 0.0678 2.1604 359 
  Employed 0.0777 0.0634 1.2266 360 
Translating parameter 361 
Θ 0.8306 73.9016 0.0112 362 
  363 
Φ parameters 364 
  Constant -0.8306 73.9012 -0.0112 365 
  Deer to Saddle Junction -0.7083*** 0.1945 -3.6424 366 
  Devil’s to San Jacinto Peak -0.1508 0.1771 -0.8515 367 
  Devil’s to Saddle Junction 1.5629*** 0.1233 12.6802 368 
  Devil’s to Tahquitz Valley 0.6799*** 0.1376 4.9411 369 
  Devil’s to Skunk Cabbage 1.0512*** 0.1306 8.0484 370 
  Devil’s to Tahquitz Peak 0.7929*** 0.1337 5.9305 371 
  Devil’s to Round Valley -0.2341 0.1836 -1.2753 372 
  Devil’s to Hidden Valley -1.2338*** 0.2901 -4.2524 373 
  Marion Mtn to San Jacinto Peak 0.7006*** 0.1390 5.0415 374 
  Marion Mtn to Little RV 0.6285*** 0.1420 4.4246 375 
  S. Ridge to Saddle Junction 0.1494 0.1606 0.9307 376 
  S. Ridge to Tahquitz Valley 0.4114*** 0.1490 2.7605 377 
  S. Ridge to Skunk Cabbage 0.1217 0.1621 0.7505 378 
  S. Ridge to Tahquitz Peak 0.8694*** 0.1338 6.4981 379 
  Long Valley to San Jacinto Peak 1.8349*** 0.1226 14.9706 380 
  Long Valley to Little RV 1.3237*** 0.1313 10.0798 381 
  Long Valley to Tamarack 1.1042*** 0.1364 8.0949 382 
  Long Valley to Hidden Valley 1.0819*** 0.1375 7.8689 383 
  Long Valley to Round Valley 1.8882*** 0.1235 15.2864  384 
Rho parameter 385 
  ρ -.9237*** .1158 -7.9737 386 
Type I extreme value scale parameter 387 
  μ -0.1408*** .0219 -6.4251 388 
Log-likelihood -7564.17 389 
Note: ** and *** indicates significance difference from zero at the 0.05 and 0.01 levels respectively. Robust standard errors reported. 390 
 391 

Overall these models exhibit both intuitive similarities as well as some differences, and 392 

demonstrate the effect that site definitions can have on model estimation results. We also 393 

analyzed alternative model structures, including several KT random parameter specifications. 394 

However, the mean and dispersion parameters were not statistically different from zero. We 395 

followed Nicita et al. (2015) to compare random and fixed coefficient models using the 396 

consistent Akaike Information Criteria (Bozdogan, 1987). Based on the results, we only report 397 



the fixed coefficient model here because this specification has a better fit to the data. Other 398 

results are available from the authors upon request. 399 

 400 

3.2 Welfare Analysis 401 

We use the numerical bisection method developed by von Haefen et al. (2004) to derive 402 

recreation value estimates for the sites in each model9. This iterative algorithm produces 403 

Hicksian consumer surplus to find the income compensation that equates utility before and after 404 

a price and/or quality change. The trailhead-only analysis uses the parameter estimates from 405 

table 3 to simulate the welfare loss that might be associated with a high intensity wildfire or 406 

other disturbance that would result in closure of one or more sites. Therefore, the welfare loss is 407 

the foregone value of recreation if access to the site is restricted (e.g., a trailhead closure). To 408 

account for uncertainty in the parameter estimates as well as nonlinearities in the welfare 409 

calculation, we take 500 random draws from the estimated parameter distributions to simulate 410 

distributions for the welfare losses. 411 

Table 5 reports the average simulated welfare losses for the trailhead-only model, along 412 

with the standard errors. The table shows that the individual mean welfare loss is the greatest for 413 

Long Valley and Devil’s Slide, with Deer Springs being the site with the lowest welfare loss. 414 

This reflects both the popularity of the sites as well as differences in travel costs to access each 415 

site, as there is the additional cost of riding the Palm Springs Aerial Tramway to access the Long 416 

Valley site. Standard errors are relatively small.  417 

 418 

                                                 
9 Note that we do not extrapolate these estimates to the entire population of potential users. This is because the present study is 
motivated by a methodological question rather than an interest in the aggregate value of the study site to the broader population. 
Therefore we do not concern ourselves with establishing the representativeness of our sample for the broader population.  



 419 

 420 
Table 5— Mean individual seasonal welfare loss due to trailhead closure (2012 dollars). 421 
  422 
Scenario Mean Std. Err.      423 
  424 
Loss of Deer Springs site  -$6.18  0.3885 425 
Loss of Devil’s Slide site  -$146.40  5.6315 426 
Loss of Marion Mtn site     -$17.74  0.8728  427 
Loss of South Ridge site    -$26.22 1.2099 428 
Loss of Long Valley site   -$313.90   11.2372 429 
Loss of All sites  -$515.78    19.1941 430 
Note: Mean seasonal welfare estimates based on 500 random draws from the parameter distributions (trailhead-only model, table 431 
3).  432 

 433 

We use the same procedure for the trailhead/destination model, but using table 4 to draw 434 

the random coefficients. This analysis, presented in table 6, shows that the highest welfare losses 435 

again are for the Long Valley and Devil’s Slide routes, and the lowest for Deer Springs. Standard 436 

errors are again relatively small. Table 6 also shows that when we aggregate these route-specific 437 

values into trailhead values, we derive estimates very similar to those in table 5, with differences 438 

ranging from 2-7%. However none of these differences are statistically significant at standard 439 

significance levels.  440 

 441 

Table 6 — Mean seasonal individual welfare estimate for selected trailhead/destination hiking route (2012 dollars). 442 
  443 
Scenario Mean Std. Err.     Aggregate Mean Value 444 
  445 
Loss of Deer Springs & San Jacinto Peak route   -$4.77    0.2528  446 
Loss of Deer Springs & Saddle Junction route     -$1.56    0.1119 447 
Loss of Deer Springs site ------ ------ -$6.33 448 
Loss of Devil’s & San Jacinto Peak route             -$3.72    0.2029  449 
Loss of Devil’s & Saddle Junction route          -$70.24    2.6880  450 
Loss of Devil’s & Tahquitz Valley route         -$14.23    0.6325  451 
Loss of Devil’s & Skunk Cabbage route           -$27.11   1.1018  452 
Loss of Devil’s & Tahquitz Peak route          -$16.48   0.7368  453 
Loss of Devil’s & RV route               -$3.30    0.1765  454 
Loss of Devil’s & Hidden Valley route          -$2.14    0.1285 455 
Loss of Devil’s Slide site ------ -----  -$137.23 456 
Loss of Marion Mtn & San Jacinto Peak route   -$10.27    0.4841  457 
Loss of Marion Mtn & Little RV route    -$7.84    0.3791 458 
Loss of Marion Mtn site ------ -----  -$18.10 459 
Loss of S. Ridge & Saddle Junction route         -$3.97   0.2118  460 
Loss of S. Ridge & Tahquitz Valley route       -$5.39    0.2709  461 
Loss of S. Ridge & Skunk Cabbage route          -$3.58   0.1946  462 
Loss of S. Ridge & Tahquitz Peak route        -$11.87    0.5445 463 



Loss of S. Ridge site ----- -----  -$24.81 464 
Loss of Long Valley & San Jacinto Peak route  -$59.76   2.3181  465 
Loss of Long Valley & Little RV route  -$47.56    1.7753 466 
Loss of Long Valley & Tamarack route   -$30.15   1.2124  467 
Loss of Long Valley & Hidden Valley route     -$28.76    1.1465  468 
Loss of Long Valley & Round V route    -$124.99    4.4763 469 
Loss of Long Valley site ----- ------ -$291.21 470 
Loss of All routes             -$487.63 18.8815   471 
Note: Mean seasonal welfare estimates based on 500 random draws from the parameter distributions (trailhead/destination model, 472 
table 4). 473 
 474 

4. Spatial Allocation Procedure 475 

The estimation results in the preceding section show that introducing route and destination 476 

information in a site visitation model does not statistically change estimated site access values, 477 

but our main focus is on spatial representations of access value rather than just the site access 478 

values themselves. Our expectation is that there may be significant differences in spatially-479 

explicit values across models. This is because, as demonstrated by Baerenklau et al. (2010), there 480 

already is heterogeneity in parcel-level landscape values associated with recreation activity from 481 

any particular access point. Introducing route and destination information is likely to increase 482 

this heterogeneity at the parcel level due to recreationists’ tendency to seek out particular 483 

features within a landscape (e.g. streams, meadows, peaks, overlooks, well maintained trails, 484 

etc.), thus potentially creating policy-relevant value differences across models. Furthermore, the 485 

additional information should produce a more accurate representation of which parts of the 486 

landscape contribute most (and least) to recreationists’ experiences, which also is of interest to 487 

resource managers.  488 

 The access or trip values estimated with the KT model (tables 5 and 6) can be allocated 489 

using the GIS-based viewshed tool to the individual parcels that together represent the landscape 490 

of our study to derive a recreation value map. We developed three such maps: (1) trailheads as 491 

sites; (2) trailhead/destination combinations as sites; and (3) the difference between maps 1 and 492 



2. The trailhead approach follows the same method as Baerenklau et al. (2010) but uses 493 

individual rather than zonal recreation data. The trailhead/destination approach requires 494 

modifying the procedure slightly to include hiking routes as well. The difference in parcel-level 495 

values between these maps demonstrates the extent to which the use of additional—and often 496 

unobserved—destination information changes the welfare estimates in a spatial context.  497 

The first step is to define the hiking routes used by visitors in each of the models. The 498 

web-based survey focused on 5 entry points: Long Valley and the 4 most popular entry points in 499 

Idyllwild. The survey data includes the entry point, sites and destinations visited, but the actual 500 

routes taken through the wilderness are unknown. Using GIS trail maps from the USDA Forest 501 

Service, the 20 most likely hiking routes were identified based on hiking distance, popularity of 502 

the destination and recommendations by the Forest Service Recreation Officer for the study area 503 

(Personal communication, October 2013). These trails consist of continuous segments that 504 

extend between two trail junctions or a junction and a destination.  505 

The next step is to determine the likelihoods that each trail segment is used by a visitor. 506 

The method developed by Baerenklau et al. (2010) was implemented for the trailhead-only 507 

model. For this model, in the absence of any information about hiking paths, routes can be 508 

predicted by calculating the probability that a trail will be used during a one-day hiking trip. 509 

These calculations start at one of the 5 main entry points by assigning each entry trail an initial 510 

probability of 100% for a trip beginning at that trailhead. Trail segments leading away from trail 511 

junctions are then assigned equal probabilities. This means that if there is a two-way junction, 512 

the probability assigned to each trail segment leading away from this junction is 50%; the 513 

probability assigned to each segment leading away from a three-way junction is 33%, and so 514 

forth (see figure 2).  515 



 516 
Figure 2- Probability tree assuming equal probability distribution 517 
 518 

For the trailhead/destination model, the hiking routes were determined based on 519 

destinations visited and assumptions presented in section 3. The trail junction probabilities differ 520 

depending on access to destinations. For example, when arriving to a two-way junction, 521 

probabilities will be 1 if the trail segment leads to the desired destination and 0 if it leads to a 522 

different destination (see table 5 for hiking routes used in analysis). 523 

 The final step is to determine the monetary values for each trail segment and 524 

consequently for the entire landscape by establishing how the use of a trail implies value in the 525 

surrounding landscape. The allocation of trail values throughout the surrounding landscape is 526 

based on the concept of scenic quality. The recreation value of a parcel is a function of how 527 

frequently that parcel is viewed by visitors and from what distance it is viewed. Parcel values are 528 

higher when viewed often, and experienced at close range. The allocation of scenic quality value 529 

is based on the work by Higuchi (1983). The author defined a weighting function as a method for 530 

measuring the quality of visual landscape attributes based on their appearance from a specific 531 

observation point. Baerenklau et al. (2010) modified the suggested indices by increasing the 532 

distance to account for the vegetation type in their study area and increased the number of 533 

distance bands. We used the same approach as Baerenklau et al. (2010) to calculate recreational 534 

users’ scenic value. The procedure uses a normalized weighting function that can be calculated 535 

for each point in the landscape, representing the scenic value for recreational users. 536 



 The visual experience of an individual hiker is simulated with a visibility analysis that 537 

was performed using the viewshed tool in ArcGIS10 (ESRI, 2012). The viewshed tool identifies 538 

and calculates the number of times a location in a Digital Elevation Model (DEM) is visible by 539 

scanning the surrounding areas of one or more observations points. Locating areas of varying 540 

visual significance within the study site allows for a redistribution of the aggregate trip value 541 

across the heterogeneous landscape to allocate recreation values to individual parcels (30x30 542 

meters). The values calculated for each parcel are then entered into the map layer. 543 

 544 

4.1 Estimated Landscape Values 545 

 The mean welfare estimates shown in table 5 are used with the GIS-based viewshed tool to 546 

derive the landscape value map for the trailhead-only model. For all parcels, the annual values 547 

range from $0/ha to $19,466/ha throughout the wilderness, with a mean of $158.70/ha and 548 

standard deviation of $829/ha (figure 3). The high parcel values are concentrated in areas with 549 

high elevations (San Jacinto Peak) and popular sites (Long Valley). This is expected because our 550 

spatial allocation method is based on visibility; therefore parcels like these that are highly visible 551 

and/or frequently viewed received higher visibility weights and thus contribute more to the value 552 

of a trip. In contrast, parcels located in relatively remote areas and away from trails in our study 553 

have lower and sometimes no recreation value because of their limited visibility and/or low 554 

visitation rates (or having no data for a particular trailhead). However, this does not mean that 555 

those areas do not have economic value; rather we simply did not have any information to 556 

calculate the recreation values for those parcels.  557 

                                                 
10 See Baerenklau et al. (2010) for viewshed tool settings used in the calculations. 



 558 
 559 
 560 

Figure 3 —Landscape values for trailhead-only model. 561 
 562 

These parcel value estimates may be sensitive to the availability of destination 563 

information in the analysis. To investigate the magnitude of this sensitivity, we derive a similar 564 

map using the mean welfare estimates in table 6, which include information about specific hiking 565 

routes. Figure 4 shows the trailhead/destination landscape value map (same scale as figure 3). 566 

For all parcels, the annual values range from $0/ha to $18,866/ha throughout the wilderness, with 567 

a mean of $159.16/ha and standard deviation of $904/ha. As in the previous case, and for the 568 

same reasons, high parcel values are concentrated in higher elevations (San Jacinto Peak and 569 

Tahquitz Peak) and along popular hiking routes.  570 



 571 
 572 
 573 

Figure 4— Landscape values for trailhead/destination model. 574 
 575 

To assess if there are statistically significance differences between these two modeling 576 

approaches, we rely on the large sample properties of the two-sample t-test with unequal 577 

variances to test for equal means, and Levene’s test (Levene 1960) to test for equal variances. 578 

The parcel value means are very similar in magnitude and are not statistically different (p-value 579 

= 0.78), however the variances are significantly different (p-value < 0.001). The first result 580 

reflects the fact that the welfare estimates for trailhead access also are not statistically different 581 

across models, while the second is consistent with our hypothesis that introducing destination 582 

information tends to increase parcel value heterogeneity across the landscape.  583 



To further compare the magnitudes of the parcel-specific value estimates derived from 584 

these two models, we created a difference map in figure 5. This map was created by subtracting 585 

the trailhead/destination values map (figure 4) from the trailhead-only values map (figure 3). As 586 

shown in figure 5, the annual differences range from -$9,538/ha to $5,234/ha throughout the 587 

wilderness, with a mean of -$0.46/ha. Assuming the trailhead/destination values are a better 588 

representation of the true values because they use available information about destinations, then 589 

the positive (negative) values in this map correspond to over- (under-) estimates by the trailhead-590 

only model. Figure 5 shows that often, but not always, the trailhead-only model over- (under-) 591 

estimates generally lower (higher) parcel values. This pattern is consistent with the observed 592 

smaller variance of parcel values in the trailhead-only model. Moreover, these differences in 593 

parcel values are indicative of differences in spatial allocation methodologies across models, and 594 

imply that the “equal probability assumption” may not be a good approximation. It is apparent 595 

that this assumption tends to overvalue some areas, and undervalue others, likely because actual 596 

visitation is more concentrated on particular routes that lead to and have views of popular 597 

destinations and unique scenic elements of the landscape.  598 
 599 



 600 
 601 

Figure 5—Over/under estimation by trailhead-only model. 602 
 603 

 604 

5. Discussion and conclusion 605 

Spatially explicit landscape values are potentially useful to forest managers because they provide 606 

a representation of the location-specific value of forestlands that can aid in making more 607 

effective land management decisions. Information from parcel value maps can be used to help 608 

manage risks to scenic quality from human or natural disturbances such as high intensity 609 

wildfires, pest infestations, invasive species, urban development, etc., assuming recreationists 610 

perceive these threats to the landscape as potentially degrading scenic quality. In addition, this 611 

information can potentially help forest managers with planning efforts including trail network 612 



design, campground development, siting/designation of scenic byways, and assessment of zoning 613 

regulations (such as building height limits).  614 

This paper is the first to explore the implications of omitting wilderness destination 615 

information when deriving spatially explicit landscape values from a Kuhn-Tucker model of 616 

recreation demand. We hypothesize that omitting destination information and replacing it with 617 

assumptions about how visitors might traverse the wilderness will tend to smooth out parcel 618 

values too much, under-valuing popular areas and over-valuing less visited ones. Consistent with 619 

this hypothesis, we find that introducing route and destination information into the recreation 620 

demand model does not change the estimated access values significantly, but it does introduce 621 

noteworthy and statistically significant differences into the parcel value estimates. These 622 

differences – in some cases several thousands of dollars in value annually per hectare – are 623 

apparent both when comparing the variance of parcel values across models, and when viewing 624 

the associated parcel value maps. Therefore, we conclude that destination information is not as 625 

critical if the analyst only wants to estimate aggregate access value, but it is important for 626 

determining accurate parcel values due to the additional heterogeneity it introduces into parcel 627 

value estimates. Because this information typically can be obtained cheaply and easily when 628 

visitors must already register their wilderness trips through a permitting system, we believe that 629 

the destination-based analysis often would pass a benefit-cost test in practice.  630 

One limitation of this approach (whether including destination information or not) is that 631 

the derived parcel value maps may show large areas with very low or zero value due to lack of 632 

information, or because the land cannot be seen from established access points within the 633 

landscape (such as trails). These blank areas should not be interpreted as having no value at all; 634 

rather they register no value given the available data and our scenic quality-based methodology 635 



for allocating recreation value. In such cases, additional valuation methods should be 636 

implemented to capture other types of land values and to ensure that parts of the landscape are 637 

not under-valued in the policy making process.  638 

Another more technical limitation of this study is the weak substitution effects inherent in 639 

the Kuhn-Tucker model, which can overestimate the welfare losses due to individual site 640 

closures. This can potentially be a problem as we expect recreationists will most likely hike a 641 

different trail when encountering a trail closure, implying larger than estimated substitution 642 

effects. Future work should address this issue to better assess welfare losses due to simultaneous 643 

trail closures. 644 
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