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Christian Werner 

Patterns of Drainage Areas with Random Topology* 

After several years of rather successful investigation of the geometry and 
topology of channel networks by theoretical analysis and simulation 
models, one is tempted to pose the question of whether other morphological 
patterns of the physical landscape can be approached with a similar meth- 
odology. The problem with which this paper is concerned is a direct trans- 
fer of Shreve’s investigation of channel networks 171 to the subject of 
drainage divide patterns. Thus, the problem can be formulated as follows: 
Assume that, in the absence of environmental control, all topologically 
different patterns formed by the drainage areas (drainage polygons) of the 
links of a channel network of given magnitude n are equally likely to occur. 
What will be the expected distribution of drainage polygons when grouped 
according to the number of their sides? Do empirical d a b  support the 
hypothetical assumption above through close correspondence to the the- 
oretical distribution deduced from this assumption? 

*The support of the National Science Foundation, Grant GS-2989, is gratefully 
acknowledged. 

Christian Werner is associate professor of geography, University of Cali- 
fornia, Irvine. 
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THE TOPOLOGY OF DRAINAGE PATTERNS : BASIC DEFINITIONS AND 
DESCRIPTIVE STATEMENTS 

The drainage area of a channel network can be subdivided into a set 
of smaller areas, each of which is drained by one network link. But rather 
than defining the subdivision on the basis of the total drainage, we will 
consider drainage by surface runoff only. Thus, this definition is equivalent 
with an alternative definition based on the concept of channel links and 
the notion of steepest slope; namely, that all points of the area under con- 
sideration belong to the same subarea if and only if the lines of steepest de- 
cline passing through these points enter the same channel link. Obviously 
this latter definition is altogether independent from the notion of drainage 
and provides a strictly topographical subdivision. 

The pattern of individual drainage areas (drainage polygons) as defined 
above produces an exhaustive and exclusive subdivision of the total area 
under consideration. The boundaries are formed by a pattern of interlinked 
drainage divides consisting of divide links and divide nodes. Each divide 
node joins at least three divide links, and, in general, no more than three 
drainage divide links merge in one divide node. Since, in any real case, the 
location of a drainage divide can never be identified with absolute (mathe- 
matical) precision, this observation will be adopted as an axiom, i.e., we 
will assume, that every node in a drainage divide pattern joins exactly three 
drainage divide links. I t  follows, then, 

(a) the pattern of drainage divides subdiving the drainage area of a 
given channel network forms a cubic graph; 

(b) if the magnitude’ of the channel network is n, then the number of 
individual drainage areas is 2n - 1, i.e., the number of channel links; 

(c) For a channel network of magnitude n the number of drainage di- 
vide nodes is 4 (n - 1) and the number of drainage divide links is 
6 (n - 1). This follows from Euler’s equation v - e + c = 1 and the 
relationship e = 3v/2 in cubic graphs, where e refers to the number 
of divide links, v to the number of divide nodes, and c to the number 
of individual drainage areas or drainage polygons. Each of the n - 1 
channel network nodes is, at the same time, a divide node, so that 
only % of the divide nodes are located on slopes2 or ridges. 

(d) In calculating the average number of divide links per drainage poly- 
gon (topologically speaking, the average “size” of a polygon) , we 
have to take into account that the inner divide links are always 

‘ The magnitude of a channel network is defined as the number of first order streams 
(05 sources) it possesses, 

It might be appropnate here to emphasize that ridges are only a subset of drainagc 
divide lines. A slope which approximates an inclined plane can very well be drained by 
two or more channel links. Since each channel link would drain a certain subarea of the 
plane, the boundaries between those subareas are, by definjtion, drainage divide lines. 
Obvious1 , these drainage divides are not ridges, and the drainage divide nodes intercon- 
necting t h m  can also be located on the plane. 
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shared by two polygons, whereas each of the links of the outer di- 
vide enclosing the whole basin of the channel network delimits only 
one drainage polygon. Let I (n) be the number of inner divide links 
and O(n) the number of outer divide links as defined above, and 
let X be the average number of links per drainage polygon. Then it 
is 

and 

Hence, 

X =  

Z (n) + O(n) =6(n - 1) 

(2n - 1) - X  = 2.Z(n) +O(n) 

12(n - 1) - o ( n )  = 6 - 6 + O(n) 
2n - 1 2n - 1 

The theoretically possible minimum value of 0 ( n )  is 1, and the maximum 
value is 3 ( n  - 1). The following table shows maximum and minimum 
values of X for the range 2 5  n 5 00. 

AVERAGE NUMBER OF LINKS 
X PER DRAINAGE POLYGON 

X, , .  X m a X  

n=2 3 3% 
n= ~0 4% 6 

It is important to note that Xmin and X,,, are monotone functions within 
the domain 2 I n I 00 , so that the tabulated figures represent the extreme 
values for the whole domain. Also, these are the theoretically possible 
values; in reality, n will never approach infinity, and the drainage patterns 
will never come close to the extreme cases established above. Hence, the em- 
pirical range of X will be even smaller. In particular, a strictly hexagonal 
pattern will never be found in reality; on the other hand, real world pat- 
terns cannot deviate very much from this situation, at least insofar as the 
average size of polygons is concerned. 

Let us now consider the possible topological arrangements of drainage 
polygons in a channel network basin of lower magnitude. Since empirical 
data have shown that first order streams tend to be twice as long as the in- 
terior links of the network,3 we will assume that the area along the outer 
drainage divide delimiting the network basin is drained by all and only the 
outer links of the network (Le., all first order streams plus the outlet of the 
network). Although this will introduce at least a small error term in the 
following calculations, it eases the mathematical manageability substan- 
tially. Combined, these assumptions provide a very convenient geometrical 
construct composed of the links of the channel network and the correspond- 
ing pattern of drainage polygons. An example is shown in Figure 1. 

The following definitions and descriptive statements will prove useful 

See. for example, James and Krumbein [3, p. 5451. 
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Figure 1 

Figure 2 
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during the later course of investigation. We will call two outer network 
links neighboring if one can be reached from the other by a path consisting 
only of left (or right) turns. In other words: if a path of the network starts 
in an outer link u and continues on the left of the two links of the first node 
it reaches and further on on the left of the two links of the second node, and 
so on, then the path will finally reach an outer link p and p is called the 
left neighbor of a. Similarly, a right neighbor y of a can be defined, and it 
is clear, that a is at the same time the right neighbor of p (see Fig. 1 ) .  
Each outer link has exactly two neighbors, and if we order all outer links 
using this definition of neighborhood, then the first and the last outer link 
will be neighbors. A path connecting two neighbors will be called a bowl 
(e.g., At, or Bt in Fig. 2 ) ,  and the size of the bowl will be defined as the 
number of links it consists of. Two bowls are called adjacent when they 
have an outer link of the network in common, and they are called opposite 
to each other when they have an interior link in common (e.g., At and 
Bt in Fig. 2 ) .  In either case we will say that the two bowls are joined by 
the link. Clearly, every drainage network of magnitude n is composed of 
n + l  bowls, and the sequence of the numbers representing the sizes of 
the bowls, where the latter are ordered according to adjacency, describes 
completely the topology of the network under consideration. Since each 
network link belongs to two and only two different bowls, the sum of the 
bowl sizes is twice the number of network links, i.e., the average size of a 
bowl is 

6 = 4 - -. 2(2n  - 1) 
n + l  n +  1 

Always three bowls meet in each channel network node, and each of them 
contains one of the three drainage divide lines radiating from that node. 
For any bowl of size t there are t - 1 such divide lines separating the 
catchment areas (drainage polygons) of adjacent links from each other. 
Since we assumed that the area adjacent to the basin boundary is drained 
by all and only the outer links of the network there will be exactly one 
drainage divide line located between the two outer links of the bowl; it 
connects the pattern of drainage divide lines of the area “enclosed” by 
the bowl with the basin boundary (which itself is of course a drainage 
divide). The t drainage divide lines are interlinked by others so as to 
form a dendritic tree possessing t outer links. This is of course a most 
welcome observation because it will permit us to utilize the existing body 
of theory regarding dendritic stream channel networks. We will call the 
tree of drainage divides “inside” a given bowl, separating the various 
catchment areas of the bowl links, the draimge divide network correspond- 
ing to this bowl. 

We can now describe the pattern of drainage divide lines of the total 
network basin as a system of interlinked divide networks, each of which 
is located in a channel network bowl and thereby separated from the 
others, the only connections being the channel network nodes, and, of 
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course, the basin boundary, which forms the main divide. Going back for 
the moment to a single channel network bowl and the corresponding divide 
network it “encloses,” it becomes apparent that the divide network in turn 
can be studied in terms of the bowls from which it is made. If the size of 
the channel network bowl is t ,  then the magnitude of the corresponding 
divide network is t - 1, and it consists of t divide bowls, each of which lies 
in juxtaposition to a link of the channel network bowl, such that adjacent 
divide bowls correspond to adjacent links of the channel network bowl and 
vice versa. In subject matter terms, each divide bowl delimits the surface 
run-off catchment area of one side of the corresponding channel network 
bowl link, which in turn drains all and only the area defined by the divide 
bowl under consideration. 

To reiterate this situation, using Figure 2 as an illustration the follow- 
ing statement can be made: 

(a) Let t be a link of a channel network; 
(b) Let At and Bt be the two bowls of the channel network, which 

have t in common; 
(c) Let d ( A t )  and d ( B t )  denote the two divide networks which corre- 

spond to the network bowls At and Bt in the predefined sense; 
(d) Let a ( t )  and b ( t )  be the bowls of the divide networks d (A, )  and 

d (B t )  , which correspond to the two sides of t ,  i.e., which delimit 
the drainage area of t on both sides of t ;  

(e) Then the drainage polygon corresponding to t is the closed polygon 
defined by the union of two open polygons, namely the bowls a( t )  
and b( t ) .  

n SOURCES PRODUCING i NETWORKS’ 

Before we can proceed with the theoretical analysis of drainage area 

Theorem: The number Z (&n) of topologically different ways in which 

patterns, we need the following: 

n first order streams can merge to form i networks is 

The following observations about this relationship are noteworthy and 

(a) If we ask for the number of topologically different ways in which 
will in part be used for subsequent analysis. 

n first order streams can form a single network we get 
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/ 2 n  - 11 
( 3 )  

which shows that this result, previously reported by Shreve 17, p. 291 and 
Werner 19, p. 1581, is only a special case of the above theorem. 

(b) Obviously, Z(n,n) = 1 for all n. 
(c) It is interesting to note, that 

i.e., the 
is equal 

Z(1,n) = Z(2,n) (4) 

number of ways to form one network from n first order streams 
to the number of ways to form two networks from them: 

Z(1,n) (5) (2n- 2) - 2  - (2n - 1) ! * 2 
(2n - 1) * n! 

- 
z(2,n) =I n! (n - 2) ! (2n - 2) 

Actually, this result is trivial and can be shown without using the 
theorem. Whenever n first order streams merge to form two networks, 
the merger of the latter will produce a single network; and whenever n 
first order streams merge into a single network, the elimination of the out- 
let together with the last downstream node will produce exactly two net- 
works. Since the described transformation and its inverse are one-valued 
functions, i.e., establish a one-to-one relationship, we get Z (1,n) = Z (2,n) . 

(d) Let us assume, that the n first order streams form an ordered set, 
and that the first j of them form k networks (k I j )  , whereas the remain- 
ing n - j first order streams form i - k networks (i - k i n - j )  . If one 
considers all possible mergers for given n, i, j and k, i.e., Z (k , j )  - Z (i - k, 
n - j )  , then the sum of the number of topologically different arrangements 
taken over all j ,  1 i j I n, will be equal to the total number of different 
patterns possible : 

Z(i ,n)  = x Z ( k , j ) Z ( i  -k,n - j )  For any k, 1 I k < i ( 6 )  
Id. 

For equation (6 )  as well as later applications of the theorem we need 
the following definitions: 

Z(m,n) = 0 for m < 0 

Z ( 0 , O )  = 1 

Z(m,n)  = 0 form > n (7) 
(e) We will show the following relationship 

Z(i ,n)  = Z ( i  - 1,n) - Z ( i  - 2 , n  - 1) (8) 
by mathematical induction. Equation (8) is apparently correct for i = 2 
and any n 2 2 (see equation (4) and subsequent discussion). Assume that 
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equation (8) is correct for all positive integers u < i and v < n, i.e., 

Z(u,v) = Z ( u  - 1,v)  - Z(u  -2 ,  u - 1 )  (9) 

Multiplying equation (9) by a factor Z ( i  - u,n - v )  and summing over 
u, keeping u fixed: 

l l -1  11-1 

rr-1 

- z Z ( u  - 2,v - 1 ) Z ( i  - u,n - v )  (10)  
V-1 

Since we assumed u < i, Z (i - u,n - v )  will always be zero for v = n, and 

z (u,n) z (i - u,o) = z (u - 1,n) 2 ( i  - up) 
- Z ( u  - 2,n - 1 )  Z(i - u,o) ( 1 1 )  

is a trivial statement. Adding equation (11) to equation (10) will increase 
the index set of u to (1, . . . ,nl. According to equation (6), the three sums 
will then represent the individual terms in equation (8), q.e.d. 

( f )  Still another relationship, relating Z(i,n) to the number N(n)  = 
Z(l,n), i.e., relating the number of ways in which n first order streams 
can merge to produce i channel networks to the number of ways that n 
first order streams can produce a single channel network, is 

Z(i,n) = z ; N ( t j )  (12)  
I d  

where the sequence t,, j = 1 ,  . , . i, assumes all possible partitions of n into 
i positive integers. 

The proof of the theorem follows directly from equation (8) by mathe- 
matical induction. It has already been verified for i = 1 and any n [see 
equation (3) with commentsl. Assuming the theorem to be correct for 
Z(i - I,n) and Z(i - 2,n - 1 )  , equation (8 )  becomes 

2 ( n  - 1 )  - (i - 2 )  
n - 1  ( 2 n  - ! - l )  h i  - 1) - ( ) (i  - 2) - 

2 ( n - 1 )  - c i - 2 )  Z( i ,n)  = 
2 n -  ( i -  1 ,  
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COMBINATORIAL ANALYSIS OF THE FREQUENCY DISTRIBUTION OF 
DRAINAGE POLYGONS 

Let us summarize the explication of the problem stated at the beginning, 
as it has developed so far. 

Any channel network can be described as a sequence of bowls, which 
are paths of the network connecting “neighboring” outer links of the net- 
work. The drainage basin of a channel network is subdivided into indi- 
vidual drainage areas (drainage polygons), each draining in one and only 
one link of the channel network. In topological terms, these drainage areas 
form a pattern of drainage polygons. Their boundaries are the drainage 
divides separating the catchment areas of the individual channel links. 
Leaving, for the moment, the boundary of the basin out of consideration, 
then the drainage divide lines which are separated from the rest of the 
divide pattern by a bowl of the channel network form a dendritic network 
on their own. Under the previous assumption, that the basin boundary 
is drained by all and only the outer links of the channel network, this divide 
network has as many outer links as the mrresponding bowl has links, i.e., 
if the size of the bowl is t ,  then the number of links of the corresponding 
divide network is 2t - 3. If we define the drainage divide link connecting 
the divide network with the basin’s boundary as its root, then its magnitude 
is t - 1. Each divide network of magnitude t - 1 consists of t bowls, each 
of which delimits the drainage area of one side of one of the links of the 
corresponding channel network bowl. The union of the bowls of the 
various divide networks constitutes the drainage polygons we want to 
analyze. 

The calculation of the expected number E(w,n) of drainage polygons 
of size w (i.e., having w sides) for a channel network of magnitude YZ can 
now be broken down into the following problems: 

(a) What is the probability p(u,n), that a bowl drawn randomly 
from a channel network of magnitude n is of size u? 

(b) What is the probability p(u,v,n), that a link drawn randomly 
from a channel network of magnitude n joins two bowls of sizes 
u and v? 
Given a channel network bowl of size u and a randomly drawn 
link t of this bowl, what is the probability p(i ,u)  that the bowl 
of the corresponding divide network delimiting the drainage area 
of t is of size i? 

As pointed out before, the drainage polygon of any channel network link 
consists of the union of two open polygons, which are the divide network 
bowls corresponding to that link. Thus, the size of the drainage polygon 
is the same for any combination of open polygons (divide network bowls), 
whose respective sizes add up to a fixed value. Furthermore, we have to 
allow for the dependency of the size of a divide network bowl on the mag- 
nitude of the corresponding divide network which in turn is dependent 
on the size of the channel network bowl to which it corresponds. Dis- 

(c) 
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regarding, for the moment, those sides of drainage polygons which are 
part of the basin boundary we get 

E (w,n)  = (2n - 1) z 2 z z p(u ,v ,n )p ( i ,u )p ( j , v )  (14) 
m 0 4 j  

"SO 6+IP(D 

Solution to Problem A: Any bowl of size u in a network of magnitude 
n possesses u - 1 nodes. In each of these nodes the bowl is linked to a 
sub-tree of the network. If one considers each node as the outlet of the 
respective sub-tree, then the sum of the magnitudes of the sub-trees is 
n - 1. Hence, the number of ways in which a network of magnitude n can 
have a bowl of size u is equal to the number of ways in which n - 1 
sources can generate u - 1 networks. This number, however, is given by 
the Theorem. Dividing by the number N(n)  of all topologically distinct 
configurations a network of magnitude n can have we get 

Solution to Problem B: If in a network of given magnitude n two bowls 
of sizes u and v have a network link in common, this link can be either 
an inner link (case I) or an outer link (case 11). 

(a) Case I : The number of inner links of the two bowls are u - 2 
and tr - 2 respectively. Keeping one bowl fixed in one of the possible n + 1 
positions in the network, the number of possible ways in which the two 
bowls can be joined along an inner link is (u - 2 )  (v  - 2 ) ,  leaving together 
I (u - 1) + (v  - 1) - 41 nodes in which the remaining parts of the net- 
work will be attached as sub-trees whose joint magnitude is 12 - 3. Con- 
sequently, the total number of ways in which a network of magnitude n 
can have two bowls of sizes u,v joining along an inner link of the network is 

is the Kronecker delta, and n + l  
S,,V + 1 
is defined as 

(u  - 2 )  ( v  - 2)  Z(u + v - 6,n - 3 ) .  

1 for u = 2) 
0 for u f v  S,," = 

It assures that the combination of two bowls A,B joined by a network link 
is counted only once rather than twice ( A  vs. B and B vs. A) when the 
sizes of A and B are the same. 

(b) Case 11: There are only two ways in which two bowls can have 
an outer link in common, leaving [ (u - 1 + ( v  - 1) - 21 nodes in which 
the remaining network is attached as a set of sub-trees. The joint magni- 
tude of those u + v - 4 sub-trees is (n + 1) - 3. Hence, the total number 
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of ways in which a network of magnitude n can have two bowls of sizes 
u,v joining along an outer link of the network is s",=\ 2 2  (u + v - 4, 

t z  - 2) .  Combining the solution of cases I and I1 we obtain 

(16)  ( r t + l )  I ( u - 2 )  ( ~ - 2 ) 2 ( ~ + ~ - 6 , n - 3 )  + 2 2 ( ~ + ~ - 4 , ~ ~ - 2 )  1 
( S u u + l )  ( 2 n - l ) Z ( i , n )  P(u,v,n) = 

The two expressions on the right side of the equation are the probabilities 
Pin (u,u,n) and Pout (zc,u,n) referring to inner and outer links respectively. 

Solution to Problem C: The problem is mathematically analogous to the 
problem A. Let u be the size of a channel network bowl and t be a ran- 
domly drawn link of it. Then the magnitude of the divide network corre- 
sponding to this bowl is u-1, and the probability p(i,u) that the divide 
network bowl corresponding to link t is of size i is 

Z ( i -  l ,u-2)  
2 (1 $4- 1) P(i,u) = (17) 

We are now prepared to construct the probability distribution p (w,n)  
of drainage polygons by size w for a channel network of magnitude n ex- 
plicitly. Let us first determine the probability distribution Piu(w,n) for 
all inner polygons, i.e., drainage polygons of inner links of the channel 
network. The probability of an inner link joining bowls of sizes u and u is 
Pin (u,u,n) , and the probability that an inner link joining bowls of sizes zc 
and u has a drainage polygon of size w is 

Hence, 

Drainage polygons corresponding to outer channel network links have an 
additional link located on the boundary of the network basin. Hence, their 
probability distribution by size is 
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Combining the two distributions and substituting the individual expres- 
sions yields: 

Z ( i  - 1.u - 2 ) Z ( j  - l , v  - 2 )  
Z(1,ZC - l ) Z ( l , V  - 1) 

(21 1 

Z(i - 1,u - 2 ) Z ( j  - l , v  - 2)  
Z(1.u - l ) Z ( l , V  - 1) 

+ zcxx ( n  + 1) 2Z(u + - 4,n - 2) 
" 

r r l r '  i + j = r o -  I 
* J s,,v + 1 - (2n - 1) z (1,n) 

'I'ESI' RESULTS 

Data have been sampled by Professor K. Wiek (University of California. 
Riverside) and students from the USGS 1 :24,000 topographic maps cover- 
ing an area of eastern Kentucky which is largely free from geologic con- 
trol. In total, nine river networks (not channel networks!) of magnitude 
7, and 17 river networks of magnitude 4 were subdivided into the areas 
drained by the individual network links. The frequency of these drainage 
polygons by size, i.e., by number of sides, for each set is shown in Tables I 
and 11. The tables also include the expected frequencies according to equa- 
tion (21). The chi-square values (xz) are 2.73 for the data in Table I 
and 3.43 for the data in Table 11, which correspond to percentiles of 
n = 55% and 93% respectively. 

TABLE 1. 
1)HAINAGE POLYGONS FOR 9 RIVER 

NETWORKS OF MAGNITUDE 7, 
BY NUMBER OF SIDES W 

W Observed Expected 
3&4 48 42.4 
5 40 47.1 
li 21 21.6 
7 
8 

TABLE 11. 
DRAINAGE POLYGONS FOR 17 RIVER 

N ~ W O R K S  OF MAGNITUDE 4, 
BY NUMBER OF SIDES W 

W Observed Expected 
3&4 78 68 
5&6 .11 51 
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Whereas the data of the first test support the theory, the data from the 
magnitude 4 river networks are inconclusive as to the adequacy of the 
theoretical approach developed in this paper. An inspection of the actual 
drainage divide patterns on the maps revealed that one of the assumptions 
of the paper was frequently violated; namely, that only outer links of the 
network drain the area along the boundary of the network basin. This as- 
sumption was therefore replaced by another one permitting every link of a 
channel network to drain an area stretching all the way to the basin bound- 
ary. Again we assume that no interior polygon is drained by an outer net- 
work link, and that all topologically different patterns will occur with equal 
likelihood. The probability that a randomly drawn link of a channel net- 
work bowl of size u has a drainage area delimited by a corresponding divide 
bowl of size i is 

Figure 3 shows a channel network bowl of size 4 and the topologically 
different drainage divide trees associated with it, (a) corresponding to dis- 
tribution (17) and (b) corresponding to distribution (22). To reiterate: 
distribution (17) is based on the assumption that all and only outer links 
of the channel network drain the area along the basin boundary, and distri- 
bution (22) is based on the assumption that, in addition to all outer links, 
the inner links of the channel network may participate in the drainage of 
the area along the basin boundary. 

The mathematical derivation of the probability distribution of (22) fol- 
lows closely that of (17). For a given channel network bowl of size u there 
are u - 1 drainage divide links originating in the nodes of the bowl. If the 
two drainage divide links which are located on the basin boundary and 
establish a connection to the drainage divide trees of the adjacent network 
bowls are considered to be part of the divide tree associated with the chan- 
nel network bowl under consideration, then the total number of outer links 
of this tree is zc + 1 and its magnitude is u. Hence, the number of ways in 
which a divide bowl of size i can be constructed within the divide tree of 
magnitude u is, according to Theorem I ,  Z ( i  - 1,u - 1) , which leads di- 
rectly to (22). It is important to note, that the way in which the distribu- 
tion was established, the drainage divide links located on the basin bound- 
ary as specified above will be counted twice; thus the probability that an 
outer channel network link joining bowls of sizes u and u has a drainage 
polygon of size w is 

Adjusting equation (21) to the new probability distribution p(i,u) pro- 
duces the following expected data for the 17 networks of magnitude 4 : 
Although the test results are quite encouraging, the theoretical approach 
as well as the data sampling procedure show several shortcomings and 
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Figure 3 

need to be improved. On the theoretical side, the assumption of lower mag- 
nitude which was needed to assure that no outer network link drains an 
interior polygon, should be abolished. A preliminary study of actual drain- 

' Results equivalent to those derived in this section have been independently established 
by  Dacey [ I ] .  
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TABLE 111. 
OBSERVED DRAINAGE POLYGON DATA FROM 17 RIVER NETWORKS OF MAGNITUDE 

4;  EXPECTED DATA ACCORDING TO (21) WITH MODIFIED PROBABILITY DISTRIBUTION (22) 

Observed Expected 
34 34.9 
44 45.9 

: 
4 
5 30 26.3 

xZ1.715 
a=13.2% 

age divide patterns seems to support the distribution (22) rather than 
(17). It might very well be that an adequate description of reality lies 
somewhere “in between,” so that both (17) and (22) account only for 
part of the observed distribution. If this impression turns out to be cor- 
rect, then it would either constitute a new example of topological non- 
randomness or a new definition of the concept of random network topology 
would be needed. As to the data: the selection of the river networks was 
based on availability rather than random sampling. The impact of the 
restriction of the sample networks to river networks which in effect results 
in a gross generalization of the pattern of channel networks, introduces 
another uncertainty with regard to the reliability and interpretation of the 
data. In view of the sampling procedures, the data do not really qualify 
for analysis by inferential statistics. In this context it might be interesting 
to note that similar data sampled in the coastal mountain ranges of North- 
ern California, an area of pronounced geologic control, did not sufficiently 
deviate from the expected values so as to permit a rejection of the theory 
at the five percent level of significance. 
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