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ABSTRACT OF THE DISSERTATION

Classification of Static and Driven Topological insulators

by

Xu Liu

Doctor of Philosophy in Physics

University of California, Los Angeles, 2020

Professor Rahul Roy, Chair

This dissertation focus on the classification of topological matters in static and periodically

driven systems.

First, we build a complete topological classification of local unitary operators in free

fermionic systems. This result can be encoded in a periodic table with a period of eight,

similar to the periodic table of topological insulators. In our classification, we define two local

unitaries in a certain symmetry class to be topologically equivalent if they can be connected

via finite time evolutions (locally generated unitaries) without breaking the symmetries of the

symmetry class while maintaining locality. In this way, the classification we derive will allow

us to distinguish locally generated unitaries from those that cannot be locally generated.

Besides, we also how to find possible generating Hamiltonians for locally generated unitaries.

These results can be used to study the edge behaviors of Floquet systems.

Second, we propose bulk invariants and edge invariants that are locally computable

and improve existing topological invariants by being applicable to systems with disorder.

Afterward, we set up a rigorous connection between bulk and edge invariants for Floquet

systems belonging to Class AIII and class AII of the Altland-Zirnbauer symmetry classification.

Last, after treating a static system as a Floquet system generated by a constant Hamiltonian,

we employ the tools we developed in Floquet systems to classify the edge behaviors in static

systems.
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CHAPTER 1

introduction

1.1 Floquet Topological phases

1.1.1 Periodically Driven Systems

A general time-periodic Hamiltonian satisfying H(t + T ) = H(t) generates the unitary

time-evolution operator

U(t) = T exp
[
−i
∫ t

0
H(t′)dt′

]
, (1.1)

where T indicates time ordering (and we have set ~ = 1). In a time-independent system, we

usually study the eigenstates of a static Hamiltonian in order to obtain information about the

underlying topology. In a driven system, however, we are instead interested in the spectrum

of the Floquet operator U(T ), the evolution operator after one complete period of driving. If

the drive is topologically nontrivial, then this spectrum (in an open system) should exhibit

protected boundary modes. These protected edge modes are driven-system analogues of the

edge modes that arise (for example) in the quantum Hall effect or topological insulators.

Using an analogue of Bloch’s theorem, the action of U(T ) may be written in terms of

time-periodic eigenstates |φn(t)〉 as

U(T ) |φn(0)〉 = e−iεnT |φn(0)〉 , (1.2)

where the quantities εn are known as quasienergies and are defined modulo 2π/T . In many

cases we can define an effective Floquet Hamiltonian HF , which is related to the full-period

time-evolution operator through

U(T ) = exp(−iHFT ). (1.3)
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In order for HF to be well-defined, U(T ) must be gapped at some quasienergy εg so that a

branch can be chosen when taking the logarithm. In addition, the branch cut must respect

the underlying symmetries of the system. For topological phases, this feature generally

restricts the utility of the Floquet Hamiltonian to closed systems, since open systems may

have protected edge modes that lie in or across the quasienergy gap.

In Ref. [1] it was argued that the topology of a general periodic drive can have both

dynamical and static components, and that these two components may be isolated from each

other by a homotopic deformation of the unitary. We briefly review this construction for the

specific case of a Floquet system which is gapped at quasienergy ε = π/T and which has

chiral symmetry, as will be assumed throughout this paper. A discussion of the more general

construction may be found in Ref. [1].

With these assumptions in mind, we consider a closed-system unitary evolution whose end

point is of the form U(T ) = exp(−iHFT ), where HF is a static and local Hamiltonian and

where the branch cut in defining the Hamiltonian is at ε = π/T . Then, we continuously deform

the unitary evolution into a composition of a unitary loop L and a constant Hamiltonian

evolution C, which is an evolution with the static Hamiltonian HF . The dynamical component

of the evolution is characterised by the loop L, a unitary evolution which (for a closed system)

starts and ends at the identity,

U(0) = U(T ) = I. (1.4)

In this way, the deformed evolution (L followed by C) is a homotopic deformation of the

original evolution.

Overall, the bulk properties of an evolution can be described by studying the components

L and C independently. The loop part of the evolution may be classified by a topological

integer nL, while the constant part of the evolution may be classified by a set of integers nCi
,

each associated with the ith gap in the constant Hamiltonian HF [1].

The decomposition introduced above may be extended to an open system by removing

terms from the generating Hamiltonian at each point in time that connect sites across a

boundary cut. At the end of the evolution, these cuts may lead to nontrivial (protected) edge
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modes in the gaps in the quasienergy spectrum. Since the deformation is homotopic, any edge

modes in the deformed evolution will be topologically equivalent to the edge modes in the

original evolution. There is a one-to-one correspondence between the number of edge modes

in each quasienergy gap (labelled ni) and the integers characterising the bulk evolution, given

by

nπ = nL (1.5)

ni = nCi
+ nL,

where addition is taken modulo two if necessary [1]. We note that since we have assumed the

presence of chiral symmetry, only the gaps at ε = 0 and ε = π/T are physically meaningful,

and the spectrum must be symmetric about these points [1]. In particular, the index nπ
counts the number of edge modes at ε = π/T , which are inherently dynamical in nature and

arise only if the loop component of the evolution is nontrivial. The remaining edge modes at

ε = 0 (if present) are similar to edge modes that arise in static Hamiltonians (although they

may be affected by the loop component of the evolution).

A classification of evolutions by constant Hamiltonians is equivalent to the classification

of static topological insulators and superconductors, and is well understood in the literature

[2–4]. Since we are interested in Floquet topological phases, we will instead focus on inherently

dynamical evolutions, described by unitary loops, and the associated dynamical edge modes at

ε = π/T (hereafter we set T = 1 for simplicity). For this refason, we will assume throughout

this paper that there is a bulk quasienergy gap at ε = π, in which edge modes may appear

in the open system. In the translationally invariant case, loop evolutions corresponding to

all symmetry classes and dimensions were classified in Ref. [1]. In the present work, we will

study a certain class of loop evolutions which do not have translational symmetry.

1.1.2 An example: The RLBL model

In this section we illustrate the basic ideas in Floquet systems by introducing through the

exactly solvable RLBL model [5].
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Consider a tight-binding model on a bipartite square lattice with two orbitals at each unit

cell, denoted by A and B. The evolution is generated by the time-dependent Hamiltonian

H(t) =
∑

k

(
c†k,A c

†
k,B

)
H(k, t)

ck,A

ck,B


where c†k,(A/B) creates a particle with crystal momentum k completely on sublattice (A/B)

and ck,(A/B) is the correponding annihilation operator. The time-dependent momentum-space

Hamiltonian is given by

H(k, t) = −
4∑

n=1
Jn(t)

(
exp (ibn · k) σx + iσy

2 + h.c.
)

(1.6)

where Jn(t) controls hopping from each B orbital to its neighboring A orbital. It is chosen

such that a particle hops to its neighboring site with probability one during each step n,

Jn(t) =


1 if (n−1)π

2 ≤ t < nπ
2

0 otherwise
,

and the real-space vectors bn are given by b1 = (1, 0), b2 = (0, 1), b3 = (−1, 0), and

b4 = (0,−1) [5].

Our driving cycle consists of four steps, as depicted in Figure 1.1, with the pairing

depending on bn. During each step n, a state which is completely localized at a particular

A/B sublattice will move to its neighboring B/A sublattice. We can write down the unitary

evolution operator during each complete step n,

Un =
∑

r
c†r+bn,A

cr,B + c†r,Bcr+bn,A
.

The motion of particles initialized on a single site in the bulk of the system is visualized in

Figure 1.1. We can see that particles in the bulk move in closed trajectories, returning to its

initial position after a complete driving cycle. Starting from A sublattice, a particle follows a

counter-clockwise trajectory encircling one plaquette, as depicted in Figure 1.1. Similarly,

a particle initially localized at a B sublattice in the bulk completes a counter-clockwise

trajectory encircling one plaquette.
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Figure 1.1: (a)The driving protocol of the four-step RLBL model described in section 1.1.2.

Here the A and B sublattices are represented by open and filled circles separately. The

Hamiltonian is piecewise constant, and there are four steps in total. During each step, a

hopping strength of J = 1 is applied along the highlighted bond, and particles can hop to

their neighboring sites with probability 1. (b)A depiction of the movements of states initially

localized at single sublattices in an open system. Over a complete cycle, states localized in

the bulk return precisely to their original position. Along the upper boundary, states initially

localized at a A orbital are translated to the left by two sites (green arrow). While along the

lower edge, states initially localized at a B orbital shift two sites to the right(red arrow). In

this way, there are nontrivial edge modes propagating along the boundary. (Figure adapted

from Reference [6] with permission from Annual Reviews of Condensed Matter Physics.)
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Therefore, the unitary evolution at the end of a complete cycle in the bulk U(T ) = I. This

can be verified by multiplying four step unitaries together, i.e. U4U3U2U1 = I. In particular,

this drive is a unitary loop that starts and ends at the identity. As a result the Floquet

Hamiltonian HF , defined in Equation (1.3), is identically zero in the bulk. The Chern number

associated with its bands is obviously zero. Despite this fact, this system exhibits nontrivial

anomalous boundary behavior.

After opening the boundary, we remove terms involving sites beyond the boundary in the

real-space representation of the Hamiltonian. When doing this, we need to determine the

geometry of the boundary at the beginning. In this example, we consider a strip geometry

by applying periodic boundary conditions along one dimension of the underlying lattice

(y-direction) and open boundary conditions in the other dimension (x-direction). Then we

analyze the effect of the boundary by studying the motion of states initially localized near

the boundary, which may differ from those in the bulk. The movement of states along the

boundary is depicted in Figure 1.1.

Consider how a state initially localized at an A sublattice moves along the upper boundary.

During the first step, U1 is unmodified since it involves no hopping terms cross the boundary.

As shown in Figure 1.1, under the action of U1, such a state will be pushed to the B sublattice

to its left. However, during the second step, U2 drives the states localized in the B sublattice

up, which is allowed in bulk and blocked on the boundary. In this step, this state will stay

stationary as U2 acts as the identity operator. In the third step, U3 drives this state to its

neighboring A sublattice. Finally, in the last step, U4 is blocked again and acts as the Identity

matrix. After a complete cycle, by adding all four steps, we can see that U(T ) works like a

left-moving translation operator on the upper boundary for states initially localized at the A

sublattice, transferring them to another A orbital.

1.1.3 Topological invariants

In the last section, we saw how nontrivial edge modes could appear even if the time-evolution

operator is the identity matrix in bulk. As depicted in Figure 1.2, these edge modes wind
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Figure 1.2: The spectrum of the Floquet operator U(T ) for the RLBL model in an open

system, as defined in Section 1.1.2. In our case, we already assume the lattice spacing a to be

1 and set the period T to be 2π. And we use the floquet operator to represent the evolution

operator evaluated throughout the entire driving period. In the bulk, the Floquet operator

acts as the identity matrix at both sublattice A and B, thus creates doubly degenerate flat

band at quasi-energy zero(blue lines). On the upper/lower boundaries, the Floquet operator

acts as a left-moving/right-moving translation operator at sublattice A/B. Therefore two

edge modes appear in the spectrum(red/green lines). (Figure adapted from Reference [6]

with permission from Annual Reviews of Condensed Matter Physics.)
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around the quasienergy Brillouin zone and thus is robust against small perturbations. In this

way, topologically protected edge modes can be hosted even if the effective Hamiltonian is

completely trivial (identically zero HF = 0 in the RLBL model).

The effective Hamiltonian fails to capture the topology of this system due to the loss

of the information about the micromotion in the effective Hamiltonian. This micromotion,

determined by the evolution unitary U(t), records the endpoint of an evolution and how the

evolution is completed during each driving period. For example, in the RLBL model, if we

reverse the steps(4 → 3 → 2 → 1), we will get an evolution with an opposite circulation

direction. This circulation direction determines the propagation direction of the edge states

and thus is of crucial importance. However, this chirality information is missing in the

effective Hamiltonian since the effective Hamiltonian is zero for both the original and the

reversed ones. Therefore, to capture the full topology of a Floquet system, we need to find

topological invariants associated with the evolution unitary U(t).

The RLBL model presented in Section 1.1.2 is a unitary loop, satisfying the loop condition

Equation (1.4). As a result, the bulk time-evolution operator U(t, kx, ky), is a periodic

function of not only kx and ky but also t. Thus U defines a map from S1 × S1 × S1 → U(N)

and such a map can be classified by ‘winding number’,

W [U ] = 1
8π2

∫
dt dkx dky × Tr

{
U−1∂tU [U−1∂kxU,U

−1∂kyU ]
}
. (1.7)

For a general unitary evolution, we can decompose it into a unitary loop L and a constant

Hamiltonian evolution C, as noted in Section 1.1.1. Then we can use this ‘winding number’

to classify the unitary loop, the dynamical part. Besides giving this bulk invariant, Rudner et

al. show that the number of chiral edge modes nedge which propagate across the quasi-energy

spectrum at any boundary is equal to W [U ][5]. In this way, a rigorous proof of bulk-edge

correspondence in 2D Floquet systems is formulated. Later, Graf et al. extend the discussions

to disordered systems in Reference [7].
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1.1.4 Periodic table for Floquet topological insulators

The RLBL model described in Section 1.1.2 is an example of a Floquet Topological Insulator.

These modes cannot be created or removed from the system through any locally generated

perturbation confined to the edge of the system. Since the generating Hamiltonian in this

example does not require any additional symmetry requirements(other than translation

symmetry in space and time), this system belongs to class A of the Altland-Zirnbauer class.

In static systems, Hamiltonians in this symmetry class are fully classified with the Chern

number of the filled bands. As shown in Eq. (1.7), in the Floquet systems, however, we need

additional topological invariants like the winding number to detect the topology fully.

The difference between Floquet systems and static systems pushes us to find a new

classification and new topological invariants for Floquet systems. To catalog these new

topological phases, we can extend the well-known ‘periodic table’ of topological insulators

and superconductors to periodically driven systems.

Before going into details of the periodic table for Floquet topological insulators, we need

to introduce symmetry classes of the AZ classification scheme. These classes are characterized

by combinations of time-reversal T , particle-hole (charge conjugation) C, and chiral symmetry

S. To understand the meaning of these symmetry classes, let’s see how these symmetry

operators act on the band Hamiltonians and the time evolution operators with translation

invariance.

In systems with particle-hole symmetry (PHS),

CH(k, t)C−1 = −H(−k, t), (1.8)

CU(k, t)C−1 = U(−k, t). (1.9)

Similarly, in systems with time-reversal symmetry (TRS),

T H(k, t)T −1 = H(−k, T − t), (1.10)

T U(k, t)T −1 = U(−k, T − t)U †(−k, T ), (1.11)

With the presence of both PHS and TRS, chiral symmetry appear as an additional unitary

9



symmetry. It can also exist solely without the companion of PHS and TRS. This is how it

acts on Hamitonians and

SH(k, t)S−1 = −H(k, T − t), (1.12)

SU(k, t)S−1 = U(k, T − t)U †(k, T ), (1.13)

We can extend these symmetry constraints to real-space unitary operators,

CH(t)C−1 = −H(t), (1.14)

T U(t)C−1 = U(t), (1.15)

T H(t)T −1 = H(T − t), (1.16)

T U(t)T −1 = U(T − t)U †(T ), (1.17)

SH(t)S−1 = −H(T − t), (1.18)

SU(t)S−1 = U(T − t)U †(T ), (1.19)

The presence or absence of these symmetries, and whether the antiunitary symmetry

operators Θ and P square to ±1, define the 10 AZ symmetry classes. In Reference [1], Roy

and Harper build a periodic table for Floquet topological insulators from the ten Altland-

Zirnbauer symmetry classes across all dimensions using the K-theory method. This periodic

table, as shown in Table 1.1, incorporates all previous studies of Floquet topological phases

and can also be used to discover new phases. However, it only indicates what Abelian group

a topological invariant in a specific symmetry class belongs to. The mathematical formulas

to calculate these topological invariants are still missing. So in this thesis, we will show how

to calculate topological invariants in some symmetry classes.

1.1.5 Effective edge unitary

As shown in Section 1.1.2, in an open system, the unitary evolution will differ from that of

the closed system at the edge, giving rise to an effective edge unitary. In this section, we will

give a rigorous definition of effective edge unitary.
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AZ Class T C S d = 0 1 2 3 4 5 6 7

A 0 0 0 Z× Z 0 Z× Z 0 Z× Z 0 Z× Z 0

AIII 0 0 1 0 Z× Z 0 Z× Z 0 Z× Z 0 Z× Z

AI + 0 0 Z× Z 0 0 0 Z× Z 0 Z2 × Z2 Z2 × Z2

BDI + + 1 Z2 × Z2 Z× Z 0 0 0 Z× Z 0 Z2 × Z2

D 0 + 0 Z2 × Z2 Z2 × Z2 Z× Z 0 0 0 Z× Z 0

DIII − + 1 0 Z2 × Z2 Z2 × Z2 Z× Z 0 0 0 Z× Z

AII − 0 0 Z× Z 0 Z2 × Z2 Z2 × Z2 Z× Z 0 0 0

CII − − 1 0 Z× Z 0 Z2 × Z2 Z2 × Z2 Z× Z 0 0

C 0 − 0 0 0 Z× Z 0 Z2 × Z2 Z2 × Z2 Z× Z 0

CI + − 1 0 0 0 Z× Z 0 Z2 × Z2 Z2 × Z2 Z× Z

Table 1.1: The periodic table for Floquet topological insulators by symmetry class and

spatial dimension d in Reference [1]. Each entry is equal to one of the Abelian groups

{0,Z×Z,Z2×Z2}. If a specific symmetry class in a dimension hosts no nontrivial topological

phases, then the corresponding entry is zero. For entry that is not zero, it’s composed by two

identical factors. The first one represents the classification result of the static component

and the second one represents the classification result of the dynamical component.

Assume an open system is inside a large region D in our lattice. Then the Hamiltonian

and evolution operator in this open system is defined as:

Uo(T ) = T exp
(
−i
∫ T

0
dtHo(t)

)
; Ho(t) = PDHc(t)PD. (1.20)

This is because we truncated the whole system to region D after opening the boundary,

changing from the Hamiltonian in the close system Hc(t) to the Hamiltonian in the open

system Ho(t).

For a unitary loop, the evolution operator generated by Hc(t) over a complete driving

cycle Uc(T ) is precisely the identity matrix. After opening the boundary, nontrivial edge

modes may arise from such unitary evolutions. These modes are just eigenstates of Uo(T ).

In the bulk, Uo(T ) is the same as Uc(T ) since the truncation operation we do in Eq. (1.20)

is a local operation and can only affect the boundary of the region D. Therefore, Uo(T ) is

nontrivial only along the edge. In this way, we call Uo(T ) the effective edge unitary.
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Generally, a unitary evolution can be decomposed into a unitary loop and a constant-

Hamiltonian evolution generated by the effective Hamiltonian HF . As a result, the unitary

can be written as a product of two factors, where the first factor is due to this unitary loop,

and the second factor is corresponding to constant Hamiltonian evolution. That is,

Uo(T ) = Ueffe
−iHo

FT

where the effective unitary Ueff derives from the loop component of the evolution. Therefore

it’s nontrivial only along the edge given the same reason as before. We call Ueff the effective

edge unitary.

Since Ueff represents the edge behavior of a Floquet system, we will study it in details in

the following chapters.

1.2 Outline of this thesis

In this thesis, we mainly focus on the classification of Floquet systems. In chapter 2, we

build a complete topological classification of local unitary operators in free fermionic systems.

Effective edge unitary operators, which belongs to local unitary operators, are fully understood

in this way. And in the following chapters, we use the topological invariants of effective edge

unitary operators as edge invariants.

Besides, we show that a locally generated unitary is topological trivial as it can be

contacted to the identity matrix smoothly. Then in chapter 3, we use the decoupling theory

to show how to find the possible generating Hamiltonians for locally generated unitaries.

For the next three chapters 4,5,6, we develop methods to classify bulk unitary evolutions

and use the machines introduced in chapter 2 to diagnose topology associated with edge

unitaries. Afterwards, we set up a rigorous connection between bulk and edge properties.

In the last chapter 7, after treating a static system as a Floquet system with a constant

Hamiltonian, we employ the tools we developed in Floquet systems to classify the edge

behaviors in static cases.
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CHAPTER 2

Classification of Local Unitary Operators

2.1 Motivations

Periodic driving serves as a powerful tool to realize nontrivial topological phases of matter

which does not exist in its corresponding static counterpart. In particular, driven systems

of free fermions have been found to form dynamical analogues of TIs known as Floquet

topological insulators (FTIs)[1, 5, 6, 8–20]. Several of these phases have now been realized

experimentally inside different systems like ultracold matter and acoustic systems[21, 22],

photonic and acoustic systems [23–25]. In these systems, topologically protected edge states

can appear at the boundary after one complete unitary evolution. Such modes are robust

against a wide range of perturbations; thus, they play critical roles in the fascinating quantized

responses exhibited by materials in experiments.

To better understand the topology associated with each edge mode, we study effective

edge unitary operators that govern the edge behavior. These operators are defined as the

difference between unitary evolutions in open systems and the corresponding closed systems

at the edge[18, 26, 27]. Such edge unitaries are described by unitaries that can keep locality.

Namely, unitaries that map local operators to nearby local operators[28–30]. These unitaries

are called local unitary operators, the focus of this chapter. They can be expressed in a matrix

product way in interacting systems, at least for one-dimensional systems[28, 29]. While in

non-interacting systems, they are represented by quasidiagonal matrices with sufficiently

rapidly decaying off-diagonal elements[31]. In this chapter, we will focus on local unitary

operators constrained to non-interacting systems.

In recent years, the classification of local unitary operators has attracted a lot of interest.
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Most work has been done in the context of quantum walks, which are discrete-time analogs

"hopping" on a lattice[30]. The classification of one-dimensional quantum walks with and

without symmetries has been well studied[32–35], and formulas for calculating the topological

invariants in one-dimensional systems are provided. A well-known example is the flow index of

a one-dimensional system proposed by Kitaev[31], measuring net charge pumping from left to

right in one direction. This index is physically motivated, locally computable, and robust to

local perturbations. One application of this flow index is to classify co-propagating chiral edge

modes generated by shift operators that are supported on the boundary of two-dimensional

Floquet systems. In this chapter, we extend the notion of flow index to higher dimensions by

classifying local unitary matrices without any symmetries. Furthermore, we build a complete

classification of local unitary operators from the ten Altland-Zirnbauer symmetry classes

across all dimensions.

Our classification of local unitary operators can shed light on the study of the bulk-edge

correspondence between bulk unitary evolutions and their protected edge states, an important

property of Floquet topological insulators. To set up a rigorous connection between bulk

and edge properties, we need to develop methods to classify bulk unitary evolutions and

edge unitaries separately. The topological classification of bulk unitary evolutions in Floquet

systems with different symmetries have been intensively studied[1, 7, 29, 36–40], both in

the translation-invariant systems and disordered systems. These papers focus on the entire

driving process. Thus, the calculated topological invariants depend on the full-time evolution

throughout the driving cycle rather than just a unitary at a specific time point in general.

Unlike these studies, our method is applicable to edge unitaries, providing an alternative

way to look at Floquet systems. In this chapter, we classify driven systems in terms of

their corresponding Floquet operators, i.e., their unitary evolution operators, after one

complete drive. We demonstrate that nontrivial edge modes can only occur on the boundary

if the corresponding edge unitary, the Floquet operator constrained to the edge, belong

to a nontrivial topological class. While traditional classification and topological invariants

characterize the topological features of the bulk, our method captures the properties of edge
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behaviors. Combining these two results, we can derive explicit bulk-boundary correspondences

for a wide class of Floquet systems.

In this chapter, we encode the topological classification of local unitary operators into a

"periodic table". The periodic table was first used to summarize a complete classification of

all topological insulators and superconductors, which is obtained by using the idea of random

matrix theory or K-theoretical approach[2, 41]. For Floquet systems, a generalized periodic

table of quantum dynamics related to the full-time evolution has already been produced[1].

We, however, produce a new periodic table which characterizes the topological properties of

local unitary operators. Like the other two periodic tables, this table provides a connection

between the Bott periodicity in K-theory and the topological phases of non-interacting local

unitary operators. In addition, it indicates topological invariants for local unitary operators

in each dimension and each symmetry class of the Altland-Zirnbauer symmetry. Therefore,

we can discover new topological phases that have not been discussed before from this periodic

table.

In this work, we present a complete topological classification of local unitary operators in

free fermionic systems. We are applying a similar method to that for Floquet Topological

insulators given in Refs. [42]. While this assumes translational invariance, our approach

applies to disordered systems with more rigorous proof provided. In addition, we define

equivalence classes of pairs of unitaries and use the classification result to determine whether a

unitary can be generated by a sequence of local Hamiltonians. Although topological invariants

associated with all local unitary operators are only given in some symmetry classes, we can

obtain the missing parts quickly with the topological invariants of Hamiltonians discovered

in literature[3, 43, 44]. Since quantum walks can be realized in periodically driven systems,

our work is also applicable to quantum walks.

The rest of the chapter is organized as follows. We begin, in section 2.2, by giving a

definition of local unitary operators. Besides, we demonstrate that a local unitary operator is

not necessarily the finite-time evolution operator of a local Hamiltonian. In section 2.3, we

reviewed the previous studies of the flow index and extended it to higher dimensions. Then in
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Sec. 2.4, we propose a definition of homotopy equivalence classes in all AZ symmetry classes.

In Sec. 2.5 and 2.6, after building a one to one correspondence between Hermitian operators

and unitary operators, we obtain a topological classification of local unitary operators with

and without chiral symmetry separately. Then we give some examples of nontrivial unitary

operators in section 2.7 and show how to diagnose their topology via mapping to Hermitian

operators. Finally, we summarize our results and discuss future directions motivated by work

done in this chapter in Sec. VI.

2.2 preliminary discussion

In this work, we are interested in obtaining a topological classification of local unitary

operators, which are usually represented by local unitary matrices. Such operators arise

naturally in systems where a quantum (Hermitian) Hamiltonian evolves in time and describes

unitary operations in more general contexts, such as in quantum walks. In this section, we

introduce the definitions and preliminary ideas that will underpin the arguments given in the

rest of the chapter.

We begin by defining a unitary operator U as one which satisfies the usual definition

U †U = UU † = I, (2.1)

where † indicates the Hermitian conjugate and I is the identity operator. For concreteness,

we will assume that the unitary operator has matrix elements Ujk, where j and k label unit

cells in some (formally infinite) real-space lattice. For example, the element Ujk may give the

propagation amplitude for a fermion to travel from the site with position rk to the site with

position rj under the action of U . In this chapter, the unitary operators we consider will

be independent of time. To connect our discussion to time evolution operators (which often

arise in quantum systems), we can interpret our results as the instantaneous time-evolution

operator at some specified time tc.

We define a local unitary operator to be a unitary operator whose matrix elements decay
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exponentially (or faster) in this space. Explicitly, we require that

|Ujk| ≤ Ce−|j−k|/` (2.2)

for some positive constants C and ` and for large enough |j − k|, where |j − k| is shorthand

for the distance between the unit cells labelled j and k. In this way, ` is (a bound on) the

localization length of the unitary operator. Note that we have suppressed any additional

labels such as orbital or spin in the expressions above.

For later use, we also define Hermitian operators (e.g. Hamiltonians) as operators which

satisfy H† = H, and local Hermitian operators as Hermitian operators whose real-space

matrix elements decay as in Eq. (2.2). We define a gapped Hermitian operator as one whose

eigenvalue spectrum has a finite gap around zero. Explicitly, if {Ei} are the (necessarily real)

eigenvalues of a Hermitian operator H, then H is gapped if and only if

|Ei| > Ec (2.3)

for some positive Ec, for all indices i. We define a flattened Hermitian operator as one whose

eigenvalues satisfy

Ei ∈ {−1,+1} (2.4)

for all indices i. In particular, we note that this is true if and only if H2 = I. Flattened

Hermitian operators are useful in the context of classifying Hamiltonians, as any local

Hamiltonian can be brought into a flattened form without breaking the locality [44, 45]

(albeit at the expense of introducing longer-ranged hopping terms).

The classification we will ultimately derive will describe unitaries that are local but which

are not necessarily locally generated. For our purposes, we define a locally generated unitary

operator as one which may be written as a finite-time evolution with a local Hamiltonian [27]

U = T exp
[
−i
∫ T

0
Hloc(t)dt

]
, (2.5)

where Hloc(t) is a time dependent local Hermitian operator (or ‘Hamiltonian’) as defined

above. Indeed, a consequence of Eq. 2.5 is that a locally generated unitary operator may be
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continuously connected to the identity operator through a local evolution. Importantly, we

require a locally generated unitary to satisfy Eq. 2.5 in the thermodynamic limit. Specially,

if we apply symmetry constraints to Hloc(t), we say that the unitary operator is locally

generated in the same symmetry classes. These will be discussed in details in section Sec. 2.4.

The locally generated unitary evolution introduced here is closely related to finite time

evolution which can be simulated by finite depth quantum circuits in the quantum information

context. In some chapters, they call a given time evolution local implementable if can be

achieved by a sequence of block unitaries, i.e., quantum gates. Because of their equivalence,

we use locally generated unitary evolution to represent both finite depth quantum circuits

and local implementable unitary.

2.3 Flow of quantum systems

2.3.1 Nontrivial flow in one dimension

In this section, we will review one interesting property of unitary matrices, known as ‘flow’

introduced by Kitaev [31]. This index measures a charge pumping from the left side of a

system to the right side of a system passing through a ‘cross section’.

For a noninteracting unitary matrix U = (Ujk), where j and k label sites on a one-

dimensional lattice and the matrix elements Ujk represents the hopping of a particle from site

k to j. An intuitive notion of ‘current’ from position k to position j induced by the unitary

operator may then be defined as

fjk = |Ujk|2 − |Ukj|2 (2.6)

Then the total current through a cross-section (at position x0) can be written as the summation

of this site-to-site current:

F (U) =
∑
j≥x0

∑
k<x0

fjk. (2.7)

The flow index of a unitary matrix can also be rewritten in terms of two projectors PR for

the half axis x ≥ x0 and PL for the other half axis x < x0.
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F (U) = Tr(U †PRUPL − U †PLUPR)

= Tr(U †PRU − PR)

= Tr(U †[PR, U ]).

(2.8)

This invariant is locally computable for local unitary matrices, even for those acting on

systems with infinite size. In other words, this invariant can be obtained on an interval with

a large enough size close to the cross-section and remain the same for any interval we may

select.

To illustrate how nonzero "flow" can emerge, we give two simple examples, including one

trivial unitary and one nontrivial unitary. First, we study the case of the identity operator,

U = I. It is clear that the flow of this operator will be zero, since each projector commutes

with U in Eq. (2.8) and the overlap between two orthogonal projections is zero, namely,

PLPR = 0. Next, we consider the 1d translation t̂ operator which moves particle one site

right.

t̂ |j〉 = |j + 1〉 , (2.9)

Since t̂ is strictly zero for |i− j| > 1, the only sites that can be effective in calculation when

applying Eq (4.4) are two neighboring sites splitting by a cross section, labelled by -1 and 0.

F (U) = Tr
[(
t̂† |0〉〈0| t̂ |−1〉〈−1|

)
−
(
t̂† |−1〉〈−1| t̂ |0〉〈0|

)]
= 1. (2.10)

In this chapter, we aim to extend the notion of this flow index to higher-dimensional

systems and search for locally computable invariants. By establishing a connection between

local unitary operators and Hermitian operators, we obtain the higher-dimensional index for

local unitary operators.
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2.3.2 Equivalence Classes of Unitary Operators

Before moving on to generalize the flow index to dimensions greater than one, we first define

equivalence classes of local unitary operators that are related to each other through a notion

of homotopy.

Two local unitary operators U0 and U1 (possibly with symmetries) are in the same

equivalence class (U0 ≈ U1) if there is a homotopy

U(s) = Vα(s)U0Vβ(s) (2.11)

where two unitary transformation operators

Vα/β(s) = T exp
[
−i
∫ s

0
H̃α/β(g)dg

]
, (2.12)

are locally generated unitary operators such that U(0) = U0 and U(1) = U1, and where

U(s) remains in the appropriate symmetry class throughout the homotopy. Note that this

condition is different from the homotopy condition for Hermitian operators given in Eq. (2.37):

in the current case, the transformed operator U(s) must remain unitary throughout the

transformation, but not necessarily Hermitian, and so the two transformation unitaries Vα(s)

and Vβ(s) may differ. From our definition, if U(s) is locally generated, then U(s) is homotopic

equivalent to the Identity matrix and vice versa.

There are some different definitions of equivalence relations in previous studies. We will

prove that these definitions are equivalent to our definition. In one statement, U1 and Un
belong to the same equivalence class, if there is a sequence of unitaries U1, U2,...,Un smoothly

connecting U1 and Un. For any two consecutive unitaries, Ui and Ui+1 act in the same

way in a large enough area after the choice of a suitable isomorphism[30]. In other words,

the difference between two unitaries Ui and Ui+1 represented as γ(i) = U †i+1Ui is equal to

(almost) the identity at a large area. Because γ(i) is bounded in a finite region, γ(i) can be

generated by a local Hamiltonian, which can be the logarithm of γ(i). Therefore, U1 and Un
can be connected via a locally generated unitary. Besides this "share the patch" definition,
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another more homotopic definition says that U1 and U2 are homotopic equivalent if two

unitary operators can be continuously deformed into each other[46]. Since small physical

deformations can be viewed as a dressing of the original operator by a locally generated

unitary, this one also matches our definition.

In order to compare unitaries with different numbers of bands, we consider stable homotopy

here (i.e. the addition of arbitrary numbers of trivial bands). We define U1 ∼ U2 if and only

if there exist two trivial unitaries, U0
n1 and U0

n2 , such that

U1 ⊕ U0
n1 ≈ U2 ⊕ U0

n2 (2.13)

where ⊕ is the direct sum and we need to add n1 and n2 number of bands to two unitaries

separately. The two trivial unitaries are in the same symmetry class in order to follow the

homotopy equivalence.

To illustrate these ideas, we now give a simple example of some local unitary operators

that belong to different equivalence classes in one dimension. We first consider the operator

UA which is block diagonal, consisting of repeating blocks of the Pauli operator σx, i.e.

UA =
⊕
b

 0 1

1 0


b

. (2.14)

In a physical system, this could be interpreted as a single-particle fermionic operator which

enacts hoppings between neighbouring sites, as illustrated in Fig. 2.1. It is clearly a local

operator, since Uij is strictly zero for |i− j| > 1. It is also locally generated, as it may be

written as the exponential of a local (block diagonal) Hamiltonian, through

UA = exp
[
−i
⊕
b

H(b)
]
, (2.15)

where

HA(b) = π

2

 −1 1

1 −1


b

(2.16)

and with H(b)ij again strictly zero for |i − j| > 1. The unitary UA belongs to the same

universality class as the identity operator I, as shown by the homotopy UA = e−iHAI ∗ I.
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An example of a unitary operator belonging to a different universality class is the

translation operator UB, as defined in Eq. (2.9), which has matrix elements

[UB]ij = δi,j+1. (2.17)

In matrix form, it consists of ones on the first upper diagonal and in the lower left-hand

corner (assuming periodic boundary conditions). In a physical system, this can be interpreted

as a single-particle fermionic operator, which enacts a hopping to the right for each lattice

site, as illustrated in Fig. 2.1.

UA

UB

Figure 2.1: Illustration of the actions of example unitary operators UA and UB defined

in Eqs. (2.14) and (2.17). UA is local and locally generated, and may be interpreted as

particle hops between neighbouring sites. UB is local but not locally generated, and may be

interpreted as particle translation in one direction. UA and UB belong to different equivalence

classes.

UB is again a local operator, as [UB]ij is strictly zero for |i − j| > 1. However, it is

not locally generated, as may be verified naively by taking the matrix logarithm of UB and

studying its matrix elements as a function of system size. More fundamentally, this property

stems from the fact that chiral translation is anomalous on a 1D lattice [27, 27, 31].

Since UB is not locally generated, it can’t become the multiplication of UA and other

locally generated unitaries, and so UA and UB belong to different universality classes. In

this simple 1D case, unitary operators can be assigned to different universality classes based

on their winding number or unitary flow given in Eq. (2.8), which gives an integer-valued

invariant in each case.

Before moving on, we note that this definition of equivalence will lead to a different

classification from that which arises in the study of Floquet systems (such as Refs. [1]). In
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previous studies of time-dependent systems, topological classifications are usually concerned

with the presence of protected edge modes in gaps in the quasienergy spectrum. However,

since these unitary operators are obtained by evolving with a local Hamiltonian, they are

trivial according to our definition. Instead, the homotopic classification we study in this

chapter will lead to unitary operators that are nonlocal and gapless. In this way, the nontrivial

unitaries we discuss may only arise at the boundary of a time-evolved physical system.

2.3.3 Mapping from Unitary Operators to Flattened Hermitian Operators

In this section, we show how unitary operators may be mapped uniquely onto local Hermitian

operators with chiral symmetry. To do this, we use a mapping introduced in the context of

Floquet topological phases in Ref. [1], defining the Hermitian operator

HU =

 0 U

U † 0

 . (2.18)

It is clear from Eq. (2.18) that HU has twice as many degrees of freedom as the original

operator U . We can interpret this doubling as effectively adding a sublattice or orbital degree

of freedom on each site, which we label A and B. In this way, the two nonzero blocks of HU

on the antidiagonal connect A sites with B sites.

With this interpretation, HU is a local operator, inheriting its locality from the underlying

unitary operator U . Specifically, since the matrix elements Uij satisfy the locality condition

in Eq. 2.2, so do the matrix elements [HU ]αi,βj , where we have included the sublattice indices

α, β ∈ {A,B}. We also see that H2
U = I, and so HU is a flattened Hermitian operator as

discussed in Sec. 2.3.1. In addition, from its 2× 2 block form, it must have equal numbers of

±1 eigenvalues (see Appendix 2.C).

This mapping automatically introduces a new unitary chiral (or sublattice) symmetry,

which we define as

S ′ = η

 I 0

0 −I

 , (2.19)

23



(i.e. proportional to σz in the new basis) where η ∈ {1, i} and will be determined later. This

operator squares to (S ′)2 = I and has the action

S ′HU (S ′)−1 =

 0 −U

−U † 0

 = −HU , (2.20)

and so agrees with the definition of chiral symmetry in Eq. (2.32). Indeed, a flattened

Hermitian operator with unitary symmetry S ′ must take the form of HU given in Eq. (2.18).

In section. 2.5, we will show that this mapping is one-to-one; namely, the mapping from

Hermitian operators to local unitary operators is also unique. Besides, we show that the

homotopic equivalence between two Hermitian operators HU implies a homotopic equivalence

between the corresponding two unitary operators U, and vice versa. In other words, if

two Hamiltonians are topologically equivalent, then we can find Vα or Vβ which smoothly

connects the corresponding two unitary operators due to the definition of equivalence classes

of unitaries given in Eq. (2.11).

2.3.4 Flow index in higher dimensional systems

Now we can apply the correspondence between flattened Hamiltonians and unitary operators

to find the flow indices for unitary operators in higher-dimensional systems. Let us consider a

local unitary U acting on an infinite d-dimensional lattice (where d = 2n+ 1 is odd). We then

start by mapping a local unitary operator without any symmetries and a Hermitian operator

with chiral symmetry. According to what we have analyzed, we can construct a flattened

Hamiltonian with chiral symmetry shown in Eq. (2.18). Then the topological invariant of

this Hamiltonian which is also the flow index of this unitary can be written as

ν2n+1[U ] = (πi)n
(2n+ 1)!!

∑
σ

(2.21)

(−1)σ Tr
(
U †[P (σ1)

a , U ]U †[P (σ2)
a , U ] · · ·U †[P (σ2n+1)

a , U ]
)
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where σ is a permutation given by

σ =

 1, 2, ..., 2n

σ1, σ2, ..., σ2n

 (2.22)

with the signature (−1)σ. Similar to one dimension, we define right half axis projectors acting

on all d directions,

P i
a |r, α〉 =


|r, α〉 if ri ≥ ai

0 if ri < ai

, (2.23)

This flow index reduces to the same formula as Eq.(4.4) when setting n = 0. While this index

is associated with unitary matrices of odd dimensional systems, the unitary operators of even

dimensional systems can also be classified by a lower dimensional index(e.g. ν1[U ] for two

dimensional systems, see Appendix 2.B).

Especially, if U possesses a translational symmetry, these real-space invariants which

reduces to winding numbers defined by [47], can be written as

ν2n+1[U ] = (−1)n( i2π )n+1 n!
(2n+ 1)!

∑
σ

(−1)σ (2.24)∫
dk Tr

(
(U †∂σ1U)(U †∂σ2U) · · · (U †∂σ2n+1U)

)
(2.25)

Our results agree with the topological invariants associated with homotopy groups πd[U(m)]

because U defines a map from d-dimensional torus to m×m unitary matrices, U(m)[8].

This invariant has some fundamental properties. First, it is a conserved quantity, in the

sense that it is independent of the choice of a, the location of the reference point. Second,

it is locally computable since it can be (almost) determined by the truncation of unitary

matrices inside a finite interval. Third, the flow index of a local unitary is zero if and only

if it is locally generated. Last, this unitary index is addictive under both composition and

product of the unitaries:

ν[U1 ⊕ U2] = ν[U1] + ν[U2]

ν[U1U2] = ν[U1] + ν[U2]
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The first two properties directly stem from the results of Hamiltonian with chiral symmetry[4].

The proof for the last two rules will be presented in the Appendix. Here we will give an

example to illustrate this property. Since t̂2 moves a particle two sites right, we expect the

flow index of t̂2 to be 2. In addition, t̂⊕ t̂ moves two states across the cut, and thus we can

expect the flow index of t̂2 to be 2. This flow index, sharing the same properties with the

current measure, could be used to gauge a flow transporting a conserved quantity.

2.3.5 Three Dimensional Quantum Flow

We now introduce a model [48] which can generate nontrivial Hamiltonians from where we

can construct nontrivial unitary.

H̃(k) =



0 0 −iq0 + q3 q1 − iq2

0 0 q1 + iq2 −iq0 − q3

iq0 + q3 q1 + iq2 0 0

q1 − iq2 iq0 − q3 0 0


, (2.26)

Where q0 = h+ cos kx + cos ky + cos kz, q1 = t sin kx, q2 = sin ky, q3 = sin kz with h, t being

control parameters. This Hamiltonian is strictly local, with nonzero hopping only existing

between nearest neighboring sites. Then we can flatten the bands of this Hamiltonian by

introducing the Q matrix,

Q(k) = 1
E(k)H̃(k) (2.27)

where the absolute energy spectrum of H̃(k) is E(k) = [t2(sin kx)2 +sin2 ky+sin2 kz+(cos kx+

cos ky + cos kz + h)2] 1
2 . Then the off-diagonal part of the flattened Hamiltonian can become

an unitary

U = 1
E(k)

 −iq0 + q3 q1 − iq2

q1 + iq2 −iq0 − q3

 . (2.28)

After plugging into Eq. (2.24) and let n=1, the quantity ν[U ] can be simplified as

ν[U ] = 1
8π2

∫
dkxdkydkz Tr

(
U †∂σkx

U
[
U †∂kyU,U

†∂kzU
])
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which could be calculated analytically for this model. The topological index could take values

0,±1,±2 given different values of parameters h and t, calculated by [48],

ν[U ] =



−2sign(t) |h| < 1

sign(t) 1 < |h| < 3

0 |h| > 3

. (2.29)

This shows how nontrivial flow could be generated in three dimensional systems. While the

first order flow index describes the net pumping of charges in one direction, what is being

transported described by this three dimensional index is not clear yet and will be interesting

subjects for future work.

2.4 Classification of Unitary Operators with Symmetries

In this section, we generalize our method in the above discussion and build a complete

classification of unitary operators with symmetries in all dimensions. We are applying a

similar method to that for Floquet Topological insulators given in Refs. [1, 42]. These papers

are mainly focused on translational invariant systems, while our method applies to disordered

systems with more rigorous proof is provided. We will first discuss the equivalence classes of

Hermitian operators and unitary operators separately, and then obtain a one-to-one mapping

between them.

2.4.1 Symmetry Operators and Symmetry Classes for Hermitian Operators

The well-known periodic table of topological insulators and superconductors [2] is a classification

of gapped free-fermion Hamiltonians, arranged according to spatial dimension and symmetry

class. The symmetry classes included in the table label the presence or absence of three

physically relevant symmetries: time-reversal symmetry (T ), particle-hole conjugation

symmetry (C), and chiral (or sublattice) symmetry (S). The first two of these symmetries

are antiunitary (i.e., proportional to the complex conjugation operator), and if present, act
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on a real-space Hamiltonian according to

T HT −1 = H (2.30)

CHC−1 = −H. (2.31)

Chiral symmetry is a unitary symmetry which is present automatically if both time-reversal

and particle-hole symmetries are present, but may also be present independently. This has

the action

SHS−1 = −H. (2.32)

The value of S2 can be varied arbitrarily by adding a complex phase to the operator, but

the antiunitary symmetries T and C may only square to either +I or −I. The presence or

absence of each symmetry, along with the sign of its square, yields the ten Altland-Zirnbauer

(AZ) symmetry classes [49]. We note that unitary commuting symmetries are ignored in this

classification, as if present, they simply allow the Hamiltonian to be block diagonalised. For

completeness, we also give the action of the symmetry operators on the momentum-space

(Bloch) Hamiltonian, which may be used when the system has translational symmetry:

T H(k)T −1 = H(−k) (2.33)

CH(k)C−1 = −H(−k) (2.34)

SH(k)S−1 = −H(k). (2.35)

Since the value of S2 can be varied, it is often chosen to satisfy S2 = 1. However, in some

symmetry classes, this can cause S to anticommute (rather than commute) with the other

symmetries present. To see this, we observe that if S = CT , then

S2 = CT CT . (2.36)

For this to be consistent, the three symmetry operators would need to anticommute if

T 2 = −C2. To simplify the calculations, in this chapter, we use the convention that all

symmetry operators commute if present, so that S2 takes the value +1 or −1 as required by
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adding a phase factor η to the definition of the chiral symmetry operator S = ηCT . We can

set η = 1 when T 2 = C2 and η = i when T 2 = −C2 in order to make all symmetry operators

commute.

2.4.2 Equivalence Classes of Hermitian Operators

Within each symmetry class, two gapped, flattened Hamiltonians are topologically equivalent

if one can be continuously deformed into the other without closing the spectral gap, without

breaking any protected symmetries, and possibly allowing the addition of an arbitrary number

of trivial bands (through ‘stable homotopy’). To simplify the discussion, we ignore the latter

condition in this text and assume that all Hamiltonians have the same number of bands with

an equal number of ±1 eigenvalues, but the arguments can be extended straightforwardly

to the more general case. Overall, this defines a set of equivalence classes for Hermitian

operators belonging to each symmetry class.

In general, we can write the topological equivalence between two flattened Hamiltonians

H0 and H1 as the homotopy [50]

H(s) = V (s)H0V (s)†, (2.37)

where V (s) is a locally generated unitary operator

V (s) = T exp
[
−i
∫ s

0
H̃(g)dg

]
, (2.38)

with H(0) = H0 and H(1) = H1. If this relationship does not hold, then H0 cannot be

continuously transformed into H1 without becoming nonlocal, which takes it outside the space

of gapped, flattened Hamiltonians. Note that the exact form of H̃g is given in Ref. [50, 51],

and the detailed discussion will be given in Appendix 2.D. In general, the Hamiltonians H̃(g)

that generated the unitary transformation V (s) is different from the path H(s) that smoothly

connects H0 and H1. [50]

For two gapped Hamiltonians that are not flattened, we say that these two Hamiltonians

H1 and H2 are topologically equivalent if and only if there exists a continuous path H(s),

29



with s ∈ [0, 1], which connects H1 and H2 smoothly without ever closing the energy gap and

with some symmetries preserved. Then we can define a chain of flattened Hamiltonians

H ′(s) = 1− 2P (s) (2.39)

where the spectral projector P (s) specifies a subspace of the total Hilbert space spanned by

the occupied Bloch wave functions of H(s). Here H ′(s) will absolutely follows our topological

equivalence definition given in Eq. (2.37).

In addition to satisfying these equations, the transformed Hamiltonian must also preserve

any symmetries required by the AZ symmetry class throughout the transformation, which

places restrictions on the form of the unitary operator V (s). Recalling Eqs. (2.30–2.32), we

find that each symmetry operator (if present) must commute with V (s) (see Appendix 2.D

for a deviation),

T V (s)T −1 = V (s) (2.40)

CV (s)C−1 = V (s) (2.41)

SV (s)S−1 = V (s). (2.42)

The question of how many such equivalence classes exist in a given AZ symmetry class

can be posed in the language of Clifford algebras, and answered using methods from K-theory

[2, 52]. The result is that in a given symmetry class in a specified number of spatial dimensions,

equivalence classes are in one-to-one correspondence with elements from one of the Abelian

groups Z, Z2 or 0. The appropriate element can be found by calculating (or measuring) a

suitable topological invariant. For example, class A in two dimensions is classified by the

group of integers Z, which indicates that different topological phases can be labelled by

different integers. These correspond to the quantized Hall conductance in (integer) quantum

Hall or Chern insulator phases. In Table 2.1, we give the definitions of the AZ symmetry

classes and reproduce the full periodic table of topological insulators and superconductors for

reference.

We note that the derivation of Table 2.1 using K-theory formally requires the underlying

system to have translational symmetry, so that the periodicity of the Brillouin zone may be
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used. However, the entries in the classification (which describe strong topological phases) hold

even when this symmetry is broken (e.g., by disorder). A rough argument for why this is the

case is that topological phases are labeled by discrete invariants that cannot vary continuously

and are protected by a bulk energy gap. Adding weak disorder to a translationally symmetric

system acts as a small perturbation, which cannot change the value of this invariant unless it

is strong enough to close the energy gap. The classification therefore naturally extends to

systems with weak (symmetry-respecting) disorder. However, even with a strong disorder,

topological phases can survive the closure of a spectral gap provided there remains a mobility

gap [44]. In these situations, real-space expressions for topological invariants may be used to

diagnose the topology of a phase [44].

2.4.3 Symmetry Operators and Symmetry Classes for Unitary Operators

Equations (2.30), (2.31) and (2.32) give the actions of the three relevant symmetries on a

Hamiltonian. To obtain the action of the symmetries on a unitary operator, we recall that

we can obtain a unitary operator by taking the (imaginary) exponential of a Hermitian one.

Acting on such an exponential, we find

T e−iHT −1 = e+iH (2.43)

Ce−iHC−1 = e−iH (2.44)

Se−iHS−1 = e+iH . (2.45)

We therefore define the action of the three symmetries on a unitary operator (if present) to

be

T UT −1 = U † (2.46)

CUC−1 = U (2.47)

SUS−1 = U †. (2.48)

31



AZ Class T C S d = 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI + 0 0 Z 0 0 0 Z 0 Z2 Z2

BDI + + 1 Z2 Z 0 0 0 Z 0 Z2

D 0 + 0 Z2 Z2 Z 0 0 0 Z 0

DIII − + 1 0 Z2 Z2 Z 0 0 0 Z

AII − 0 0 Z 0 Z2 Z2 Z 0 0 0

CII − − 1 0 Z 0 Z2 Z2 Z 0 0

C 0 − 0 0 0 Z 0 Z2 Z2 Z 0

CI + − 1 0 0 0 Z 0 Z2 Z2 Z

Table 2.1: Periodic table of topological insulators and superconductors [2]. The leftmost

column gives the letter label for each AZ symmetry class. The next three columns indicate

the presence / absence of time-reversal symmetry (T ), particle-hole symmetry (C) and chiral

symmetry (S) for each symmetry class, along with whether they square to +I or −I. The

rightmost eight columns indicate the topological classification for each symmetry class in

dimension d. Note that the classification depends only on d mod 8 (d mod 2 for classes A

and AIII) due to Bott periodicity [2]. See main text for details.
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If there is translational symmetry, then these relations can be written in terms of the Bloch

unitary U(k) as

T U(k)T −1 = U †(−k) (2.49)

CU(k)C−1 = U(−k) (2.50)

SU(k)S−1 = U †(k), (2.51)

based on Eqs. (2.33–2.35). With these symmetry definitions, we can assign unitary operators

to the same ten AZ symmetry classes as static Hamiltonians. As discussed in Sec. 2.4.1, we

will continue to use the assumption that all symmetry operators commute if they are present

(so that S2 = ±1 as required). Our result also works for periodic driven systems, where we

study unitary at the end of one complete cycle

U(T ) = T exp
[
−i
∫ T

0
H(t′)dt′

]
, (2.52)

generated by a time-periodic Hamiltonian satisfying H(t) = H(t+ T ) [1].

2.4.4 Equivalence Classes of Unitary Operators

Our aim is to classify local unitary operators belong-ing to one of the AZ symmetry classes for

any number of spatial dimensions d. First we generalize the definition of unitary equivalence

in Sec. 2.3.2 to unitary operators with symmetries.

The discussion of unitary operators in Sec. 2.3.2 still applies here with some constraints

on the locally generated unitary operators Vα(s) and Vβ(s). Importantly, these two operators

will generally be related to one another through the actions of the symmetry operators. If the

system has time-reversal symmetry, then the requirement of Eq. (2.46) imposes the condition

T Vα(s)T −1 = Vβ(s)†, (2.53)

while the presence of chiral symmetry [Eq. (2.48)] imposes the similar condition

SVα(s)S−1 = Vβ(s)†. (2.54)
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If there is particle-hole symmetry, then the requirement of Eq. (2.47) instead imposes

commutativity through

CVα/β(s)C−1 = Vα/β(s). (2.55)

Now with these constraints, if U(s) is locally generated in some symmetry classes, then

U(s) is homotopic equivalent to the Identity matrix and vice versa.

2.5 Classification of Unitary Operators without Chiral Symmetry

With these definitions, we now begin a formal topological classification of local unitary

operators. Our approach will be to obtain a one-to-one mapping between local unitary

operators and local Hermitian operators, at which point the machinery used to classify static

Hamiltonians can be employed. In order to do this, we split the AZ symmetry classes into

those for which chiral symmetry is absent (classes A, AI, D, AII, and C) and those for which

it is present (classes AIII, BDI, DIII, CII, and CI), and begin by studying the first set.

2.5.1 Mapping from Unitary Operators to Flattened Hermitian Operators

We will use the same mapping discussed in Section 2.3.3. We know that the mapping process

can automatically generate a new chiral symmetry. In addition to this new chiral symmetry,

the operator HU may also inherit symmetries from the original unitary U . If the original

unitary operator had time-reversal symmetry as defined in Eq. (2.46), then we can define a

modified time-reversal symmetry operator T ′ through

T ′ =

 0 T

T 0

 , (2.56)

This acts on HU according to

T ′HU (T ′)−1 =

 0 T U †T −1

T UT −1 0

 = HU , (2.57)
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with (T ′)2 taking the sign T 2. In this way, T ′ has the same action as T in Eq. (2.30), and so

HU inherits time-reversal symmetry from the underlying unitary operator. The commutator

between S ′ and T ′ is

[S ′, T ′] = (η + η∗)

 0 T

−T 0

 , (2.58)

and so we should set η = i for the operators to commute (following our assumption that all

symmetry operators should commute discussed in Sec. 2.4.1).

However, if HU has both time-reversal symmetry and chiral symmetry, then it also has a

particle-hole symmetry defined through

C ′ = S ′T ′. (2.59)

It may be verified that this has required action of a particle-hole symmetry as defined in

Eq. (2.47),

C ′HU (C ′)−1 = S ′T ′HU (T ′)−1 (S ′)−1 = −HU , (2.60)

and further, that C ′ commutes with both S ′ and T ′. It follows that

(C ′)2 = S ′T ′S ′T ′ = η2 (T ′)2 = − (T ′)2
, (2.61)

and so (C ′)2 has the opposite sign to (T ′)2. [At this point, we note that different definitions

of the symmetry operators are possible, but that the final results end up being unchanged].

Overall, the AZ symmetry class of HU is different to that of the original unitary operator U ,

as detailed below in Eq. (2.68).

On the other hand, the original unitary operator may have particle-hole symmetry as

defined in Eq. (2.47). If this is the case, then we define the modified particle-hole symmetry

operator C ′ through

C ′ =

 C 0

0 −C

 , (2.62)
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which acts on HU according to

C ′HUC =

 0 −CUC−1

−CU †C−1 0

 = −HU (2.63)

and squares to give (C ′)2 = C2 ⊗ I2 where I2 is an identity matrix of size 2. In this way, C ′

has the same action as C in Eq. (2.31), and HU inherits particle-hole symmetry from the

underlying unitary operator. This time, the commutator between S ′ and C ′ is

[S ′, C ′] = (η − η∗)

 C 0

0 C

 , (2.64)

and so in this case we should set η = 1 for the operators to commute.

As before, the presence of two symmetries implies the presence of the third, and so we

can define a time-reversal symmetry operator T ′ through

T ′ = S ′C ′. (2.65)

This again has the required action

T ′HU (T ′)−1 = S ′C ′HU (C ′)−1 (S ′)−1 = +HU , (2.66)

and squares to

(T ′)2 = S ′C ′S ′C ′ = η2 (C ′)2 = + (C ′)2
, (2.67)

which is the same as the original particle-hole symmetry operator.

In all cases, the mapping from U to HU introduces an additional chiral symmetry while

preserving any existing symmetries. If there was an existing symmetry, then this mapping

also introduces a third symmetry as the product of the other two as summarised in Table. 2.2.

Overall, the mapping shifts the AZ symmetry class according to

A→ AIII AI → CI D→ BDI

AII → DIII C→ CII, (2.68)

which is equivalent to cyclically moving one row upwards in Table 2.1 (considering the complex

and real classes independently). Note that this is a mapping from the symmetry class of the

original unitary operator U to the symmetry class of the resulting Hermitian operator HU .
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2.5.2 Mapping from Flattened Hermitian Operators to Unitary Operators

In the previous subsection, we demonstrated that a local unitary U from symmetry classes A,

AI, D, AII, and C may be mapped uniquely onto a local flattened Hermitian operator from

classes AIII, BDI, DIII, CII, and CI through Eq. (2.18). We now show that the mapping is

one-to-one, by demonstrating the inverse mapping from local flattened Hermitian operators

to local unitary operators.

It may be verified that a flattened Hermitian operator with chiral symmetry S ′ defined

through Eq. (2.19) necessarily takes the form of Eq. (2.18). If the chiral symmetry operator

is not of this form, then a rotation can always be performed to bring it into this basis. We

will assume that the phase factor η = 1 in the definition of S ′ for Hermitian operators in class

AIII, BDI, CII, and that η = i for Hermitian operators in classes CI and DIII, consistent

with the previous discussion.

For class AIII, the inverse mapping is now complete: a flattened Hermitian operator HU

with chiral symmetry uniquely defines a local unitary operator U through its off-diagonal

blocks. Since there are no other constraints on U , the unitary belongs to class A. For the

other symmetry classes, however, we must verify that the actions of the other symmetry

operators on HU map consistently onto symmetry actions on U .

We first consider classes BDI and CII, for which η = 1. Since we have assumed (without

loss of generality) that all symmetry operators commute, the time reversal symmetry operator

T ′ must be block diagonal, in order to commute with S ′ = σz [we are labelling our symmetry

operators with primes so that notation is consistent with the previous section]. By performing

a second basis transformation within each sublattice (which is therefore consistent with

chiral symmetry), we can bring the operator T ′ into a canonical form in which each block is

identical. We write this as

T ′ =

 C 0

0 C

 , (2.69)

where C is some antiunitary operator that we have labelled C in anticipation of its action of
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U . Indeed, the action of T ′ on HU leads to the condition 0 CUC−1

CU †C−1 0

 =

 0 U

U † 0

 . (2.70)

By equating the blocks of the matrix equation, this demonstrates that U must possess

particle-hole symmetry as in Eq. (2.47), with C2 ⊗ I2 = (T ′)2.

With our basis choice, the particle-hole symmetry operator for HU then takes the form

C ′ =

 C 0

0 −C

 , (2.71)

which reproduces the same condition on U as above. In this way, a local flattened Hamiltonian

in class BDI or CII is mapped uniquely (modulo basis changes) onto a local unitary operator

in class D or C, respectively.

For classes CI and DIII, on the other hand, we take η = i in the definition of S ′. In these

cases, the time reversal symmetry operator T ′ only commutes S ′ = iσz if its diagonal blocks

are zero. By performing another basis rotation, we can again make these blocks identical so

that

T ′ =

 0 T

T 0

 , (2.72)

where we have again written the nonzero blocks as T in anticipation of their action on U .

Specifically, the requirement of time-reversal symmetry for HU now leads to 0 T U †T −1

T UT −1 0

 =

 0 U

U † 0

 , (2.73)

which, after comparing with Eq. (2.46), demonstrates that U must possess time reversal

symmetry under T , with T 2 = (T ′)2.

Finally, HU must also possess particle-hole symmetry C ′ = S ′T ′, which in our basis takes

the form

C ′ =

 0 T

−T 0

 . (2.74)
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The action of C ′ on HU reproduces the same symmetry action on U as before, and so

HU is mapped onto a unitary U that only exhibits time-reversal symmetry. In this way,

local, flattened Hermitian operators from classes CI and DIII are mapped onto local unitary

operators from classes AI and AII, respectively. This completes the demonstration of the

one-to-one correspondence between local unitary operators without chiral symmetry and

local, flattened Hermitian operators with chiral symmetry.

2.5.3 Topological Classification of Local Unitary Operators

We showed previously that there is a one-to-one mapping between a local unitary U and a

Hermitian operator HU , which is a gapped, flattened ‘Hamiltonian’ belonging to one of five

AZ symmetry classes. HU is therefore classified according to the periodic table of topological

insulators (Table 2.1), which we will now show permits an equivalent topological classification

of the underlying unitary operator U . Specifically, we will demonstrate that homotopic

equivalence between two Hermitian operators HU implies a homotopic equivalence between

the corresponding unitary operators U , and vice versa.

As discussed in Sec. 2.4.2, two gapped, flattened Hamiltonians belong to the same

symmetry class if one can be continuously transformed into the other without closing the gap

and without breaking any protecting symmetries. We represented this transformation as the

homotopy given in Eq. (2.37). In our case, the relevant Hermitian operators are of the form

of HU , and the homotopy relation should connect two such operators HU0 and HU1 through

HU(s) = V (s)HU0V (s)†, (2.75)

with HU(0) = HU0 and HU(1) = HU1 .

In the present symmetry classes, HU has sublattice symmetry S ′ and possibly an additional

pair of symmetries {T ′, C ′}, which should be preserved throughout the homotopy. To ensure

that {S ′, H(s)} = 0 for any value of s, we require that [S ′, V (s)] = 0, shown in Eq. (2.40).
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U HU

AZ Class T C S HU Symmetry Operators T ′ C ′ S ′ AZ Class

A 0 0 0 U⊕̂U † S ′ = σz 0 0 1 AIII

AIII 0 0 1 SU None 0 0 0 A

AI + 0 0 U⊕̂U † T ′ = T σx, C ′ = −iT σy, S ′ = iσz + − 1 CI

BDI + + 1 SU T ′ = C + 0 0 AI

D 0 + 0 U⊕̂U † T ′ = C, C ′ = Cσz, S ′ = σz + + 1 BDI

DIII − + 1 iSU C ′ = C 0 + 0 D

AII − 0 0 U⊕̂U † T ′ = T σx, C ′ = −iT σy, S ′ = iσz − + 1 DIII

CII − − 1 SU T ′ = C − 0 0 AII

C 0 − 0 U⊕̂U † T ′ = C, C ′ = Cσz, S ′ = σz − − 1 CII

CI + − 1 iSU C ′ = C 0 − 0 C

Table 2.2: Summary of the mapping between a local unitary operator U and a local, flattened

Hermitian operator HU for each symmetry class. We use the shorthand U⊕̂U † to represent

the doubled Hermitian operator obtained from U and U † through Eq. (2.18). For these cases,

the Pauli operators σj are expressed in the chiral basis of HU . See main text for details.
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From the expression for S ′ in Eq. (2.19), it follows that V (s) must be of the form

V (s) =

 VAA(s) 0

0 VBB(s)

 , (2.76)

where VAA(s) and VBB(s) only connect sites within the specified sublattice. This decomposition

means that the homotopy relation for HU can be written in terms of its constituent blocks,

U(s) = VAA(s)U0V
†
BB(s) (2.77)

U(s)† = VBB(s)U †0V †AA(s), (2.78)

(where the two relations are equivalent under Hermitian conjugation). Relabelling VAA → Vα

and VBB → V †β , we see that this homotopy relation between U0 and U1 is exactly the same as

that used in the definition of equivalence classes of unitaries in Sec. 2.3.2.

If the pair of symmetries {T ′, C ′} are also present in HU , then these must also commute

with V (s) throughout the homotopy. For the case where the operators are defined as in

Eqs. (2.69) and (2.71), this leads to the conditions

T VAA(s)T −1 = VBB(s) (2.79)

T VBB(s)T −1 = VAA(s). (2.80)

On the other hand, when the operators are defined as in Eqs. (2.72) and (2.74), the unitary

operator must satisfy

CVAA(s)C−1 = VAA(s) (2.81)

CVBB(s)C−1 = VBB(s). (2.82)

We note that both of these sets of conditions involve just the original symmetry operator

(either T or C), even though the Hermitian operator HU has additional symmetries. With the

relabelling VAA → Vα and VBB → V †β , we see that these equations give the usual symmetry

requirements used in the homotopic equivalence of unitary operators discussed in Sec. 2.4.4

In this way, a topological classification of local unitary operators from these symmetry

classes directly follows from the topological classification of Hermitian operators HU from
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the appropriate modified symmetry classes. Conversely, a topological classification of local

unitary operators U implies a corresponding classification of Hermitian operators of the

form HU in a modified symmetry class, which may be verified by following the steps in the

transformation above in reverse. We can therefore fill in half of the elements of Table 2.3,

the periodic table for local unitary operators.

2.6 Unitary Operators with Chiral Symmetry

We now turn to those AZ symmetry classes which do possess chiral symmetry, namely classes

AIII, BDI, DIII, CII, and CI. Our approach will again be to form a one-to-one mapping

between local unitary operators from one of these classes and Hermitian operators from a

modified symmetry class, and thereby obtain a topological classification.

2.6.1 Mapping from Unitary Operators to Flattened Hermitian Operators

We begin by obtaining another mapping from local unitary operators to local Hermitian

operators. As there is already a chiral symmetry present, we cannot augment the symmetry

class with chiral symmetry using the doubling trick from Sec. 2.5. Instead, we will make use

of the existing chiral symmetry operator, which we assume is written in the canonical form

S = η

 I 0

0 −I

 . (2.83)

If this is not already the case, then a local basis transformation can be performed to bring

the chiral symmetry operator into this canonical form. We take the phase factor η to be 1 or

i, depending on the symmetry class: since we assume all symmetry operators commute, the

value of S2 = T 2C2 depends on the values of T 2 and C2 (if present). For classes AIII, BDI,

and CII, we take η = 1 so that S2 = 1, while for classes DIII and CI, we take η = i so that

S2 = −1, consistent in both cases with the value of T 2C2.

For the first case, with S2 = +1, we define a Hermitian operator through

HU = SU, (2.84)
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which is clearly local if the underling unitary operator U is also local. It may be verified that

this operator is Hermitian by noting that S−1 = S = S† and recalling that SU = U †S from

Eq. (2.48). We also see that HU is a flattened operator, through

H2
U = SUSU = U †U = I. (2.85)

More specifically, HU has an equal number of eigenstates with energies +1 and −1, stemming

from the chiral symmetry of the underlying unitary (see Appendix 2.C for a constructive proof

of this). In this way, HU has a well-defined gap, which can be associated with a topological

invariant. However, HU itself no longer has chiral symmetry, since in general

SHUS−1 = US = SU † = UHUU
† 6= ±HU . (2.86)

If the original unitary had time-reversal or particle-hole symmetry, then these are also

modified under this mapping to HU . We find that

T HUT −1 = ST UT −1 = SU † = UHUU
† 6= ±HU

CHUC−1 = SCUC−1 = SU = HU . (2.87)

In this way, any prior time-reversal symmetry does not carry through to HU , while any

prior particle-hole symmetry now acts as a time-reversal symmetry, C → T ′, according to

Eq. (2.30). The value of (T ′)2 for the new time-reversal symmetry operator is equal to the

value of C2 of the original particle-hole symmetry operator. Overall, this maps the symmetry

class of the original local unitary U onto a symmetry class for the Hermitian operator HU

according to

AIII → A BDI → AI CII → AII. (2.88)

This is again equivalent to cyclically moving one row upwards in Table 2.1 (considering the

complex and real classes independently).

We now turn to the case where S2 = −1, and define a local, flattened Hermitian operator

through

HU = iSU. (2.89)
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Hermiticity follows this time by noting that S−1 = S† = −S, and again using the relation

SU = U †S. Flatness follows by observing that

H2
U = −SUSU = +SUS−1U = U †U = I. (2.90)

Recalling that the symmetry operators T and C are antiunitary, their action on HU becomes

T HUT −1 = −iST UT −1 = −iSU † = −UHUU
† 6= ±HU

CHUC−1 = −iSCUC−1 = −iSU = −HU . (2.91)

In this way, we see that the time-reversal symmetry again disappears, but the particle-hole

symmetry is retained (and squares to the same value as before). This maps the symmetry

class of the original local unitary U onto a symmetry class for the Hermitian operator HU

according to

DIII → D CI → C, (2.92)

which is again equivalent to cyclically moving one row upwards in the periodic table

(Table 2.1). The transformation between U and HU and associated new symmetry operators

are summarised in Table 2.2.

2.6.2 Mapping from Flattened Hermitian Operators to Unitary Operators

In the previous subsection, we showed that a local unitary U from symmetry classes AIII,

BDI, DIII, CII, or CI can be mapped uniquely onto a local flattened Hermitian operator

from classes A, AI, D, AII, or C (respectively) through Eqs. (2.84) or (2.89). The resulting

operators HU have an equal number of ±1 eigenstates (see Appendix 2.C). As before, in

order to demonstrate that this mapping is one-to-one, we now show that the inverse mapping

from HU to U is also unique (up to choices of basis).

For this direction, we start with a local Hermitian operator HU which is flattened (so

that H2
U = 1), which possibly has a single time-reversal or particle-hole symmetry (T ′ or C ′),

and which has an equal number of ±1 eigenvalues. Note that for symmetry classes without
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particle-hole symmetry, Hermitian operators are not required to have this last eigenvalue

property. However, operators which do have this property exhaust all topological classes, and

so our restriction to this case does not change the resulting classification. More generally,

Hamiltonians with different numbers of positive and negative eigenvalues can be related to

the balanced case through the notion of stable homotopy.

Our approach will be to multiply HU with a unitary operator which essentially undoes

the original mapping and introduces an (artificial) ‘sublattice’ degree of freedom. For class

A, we simply multiply with a chiral symmetry operator S = σz, which is consistent with

Eq. (2.83). In general, there are many different basis choices for this σz: since we ultimately

require S to behave as a symmetry operator, we will demand that σz is strictly local and acts

in a translationally invariant manner across the system. For example, we could alternately

label unit cells in a 1D lattice as A and B, and choose σz to act in this basis. Whichever

basis choice is used for S, we then define the operator

U = SHU , (2.93)

which is unitary (but generally no longer Hermitian) since S−1 = S† = S. The operator U

defined in this way has chiral symmetry, since

SUS−1 = HUS = U †. (2.94)

We have therefore mapped a Hermitian operator in class A onto a unitary operator from

class AIII, which is unique given a particular choice of ‘sublattice’ defining the operator σz.

For the other symmetry classes, we perform a similar mapping, but where the form of S

must now be consistent with the existing symmetries. Classes AI and AII already have a

time-reversal symmetry operator T ′, which (by assumption) must commute with the new

operator S that we introduce. This can be achieved by again artificially doubling the unit cell

size, so that S = σz ⊗ I in some basis, and T ′ → I⊗ T ′. In these expressions, the left-hand

operator in the product acts in ‘sublattice’-space, and the right-hand operator acts in the

time-reversal space. For example, T ′ might act on opposite spin species, while σz acts on

pairs of neighbouring lattice sites, each of which supports both types of spin.
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With this choice, we again define a unitary operator through U = SHU . This time, the

unitary operator has chiral symmetry and also a particle-hole symmetry inherited through

the original time-reversal symmetry T ′ of HU . Specifically, we define C = I⊗ T ′ so that

CUC−1 = T ′SHU (T ′)−1 = SHU = U. (2.95)

As usual, the presence of two symmetries implies the presence of the third, and so the local

unitary operator U also has a time-reversal symmetry symmetry T = SC. This squares to

the same value as the original time-reversal symmetry, (T ′)2, and so Hermitian operators

from classes AI and AII are mapped uniquely (up to a local basis choice) onto local unitary

operators from classes BDI and CII, respectively.

For classes D and C, the original Hermitian operator HU has an existing particle-hole

symmetry C ′. In these cases, we choose S = iσz ⊗ I, again chosen to be strictly local and

such that S commutes with C ′. Note that in this case, a local basis rotation may need to be

performed on C ′ to achieve commutativity with S (owing to the antiunitary property S and

the factor of i in S). An example of such a rotation is given in Sec. 2.7.

With these definitions, we then use the mapping

U = −iSHU , (2.96)

to define a local operator U . This is unitary (since S† = −S) and has chiral symmetry

through

SUS−1 = −iS2HUS† = iHUS
† = U †. (2.97)

This time, U inherits a particle-hole symmetry from the underlying particle-hole symmetry

of HU . Writing C = C ′, we see that

CUC−1 = iSC ′HU (C ′)−1 = −iSHU = U, (2.98)

with C2 = (C ′)2. As before, the combination of chiral symmetry and particle-hole symmetry

leads to a time-reversal symmetry through T = SC, which squares to T 2 = − (C ′)2. In this
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way, flattened Hermitian operators from classes D and C are mapped uniquely (up to a local

basis choice) onto local unitary operators from classes DIII and CI, respectively. Overall,

these mappings between symmetry classes are equivalent to moving downwards by one row in

the periodic table. This completes the demonstration of one-to-one correspondence between

local unitary operators and local, flattened Hermitian operators (with equal numbers of

positive and negative eigenvalues).

2.6.3 Topological Classification of Local Unitary Operators

Finally, as in Sec. 2.5, we now study the homotopic properties of HU and use these to obtain

a topological classification of the underlying unitary operator U .

We first recall that two Hermitian operators HU0 and HU1 are topologically equivalent if

they satisfy the homotopy relation

HU(s) = V (s)HU0V (s)†, (2.99)

with HU(0) = HU0 and HU(1) = HU1 . This can be rewritten as a homotopy relation for the

underlying unitary U through the replacement HU = (i)SU , which gives

HU(s) = V †β (s) [(i)SU0]Vβ(s)

= (i)S [Vα(s)U0Vβ(s)] (2.100)

= (i)SU(s),

where we have relabelled V (s)→ V †β (s) and defined

Vα(s) = SV †β (s)S† (2.101)

so that the notation is consistent with Sec. 2.3.2. Explicitly, the homotopy relation for U can

be extracted from Eq. (2.100) as

U(s) = Vα(s)U0Vβ(s), (2.102)

with U(0) = U0 and U(a) = U1. In this way, a homotopic deformation of HU is equivalent

to a homotopic deformation of the underlying U . The inverse relation also holds, as can be

shown reversing the procedure above and using the fact that U0 possesses chiral symmetry.
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All that remains is for us to check that the action of the symmetry operators is consistent.

The operator HU may have time-reversal symmetry or particle-hole symmetry (but not both).

These are required to commute with the transformation unitary V (s) (see Sec. 2.4.2), which

in turn means that they must commute with Vβ(s) and Vα(s). This is consistent with a

particle-hole symmetry for the underlying unitary U (and can also be shown in reverse).

On the other hand, the underlying unitary will have sublattice symmetry and time-reversal

symmetry too. The sublattice symmetry ensures that the homotopy for U(s) is equivalent

to the homotopy for HU(s), while the time-reversal symmetry does not impose any new

constraints on V (s).

In this way, a topological classification of local unitary operators implies and is implied by

a topological classification of the corresponding Hermitian operators, where the AZ symmetry

classes are mapped onto each other following the discussion above. We can therefore fill in

the remaining entries in Table 2.3, the periodic table for local unitary operators.

2.7 Examples of Nontrivial Local Unitary Operators

In the previous sections, we obtained a topological classification of local unitary operators

based on the topological classification of Hermitian operators from a modified symmetry class.

We now give some examples of nontrivial unitary operators, and show how the mapping to

Hermitian operators allows their topology to be diagnosed.

2.7.1 One Dimension

2.7.1.1 Unitary Operators without Sublattice Symmetry

We first consider local unitary operators in one dimension (which may be interpreted as

quantum walks). In Sec. 2.3.2, we discussed a pair of local unitary operators without

symmetry (and so belonging to class A), and noted that they belong to different equivalence

classes. To connect these to the classification above, we now rewrite these unitary operators
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AZ Class T C S d = 0 1 2 3 4 5 6 7

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI + 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI + + 1 Z 0 0 0 Z 0 Z2 Z2

D 0 + 0 Z2 Z 0 0 0 Z 0 Z2

DIII − + 1 Z2 Z2 Z 0 0 0 Z 0

AII − 0 0 0 Z2 Z2 Z 0 0 0 Z

CII − − 1 Z 0 Z2 Z2 Z 0 0 0

C 0 − 0 0 Z 0 Z2 Z2 Z 0 0

CI + − 1 0 0 Z 0 Z2 Z2 Z 0

Table 2.3: Periodic table for local unitary operators. The leftmost four columns define the AZ

symmetry classes as described in the main text and in Table 2.1. The rightmost eight columns

indicate the topological classification for local unitary operators from each symmetry class

in dimension d. Note that this table is a permutation of the periodic table for topological

Hamiltonians. See main text for details.

49



in momentum space as

U
(A)
A (k) =

 0 1

1 0

 (2.103)

U
(A)
B (k) = eik. (2.104)

We recall that U (A)
A enacts a hop between two sites within each unit cell, while U (A)

B performs

a chiral translation to a neighbouring unit cell in a single direction, with a lattice spacing

we take equal to 1 (see Fig. 2.1). While we have implicitly assumed translational symmetry

by writing these operators in terms of k, this is just to simplify the notation: the discussion

which follows extends straightforwardly to the disordered case by working in real space.

As motivated in Sec. 2.5, these unitary operators can be mapped onto Hermitian operators

in class AIII through Eq. (2.18), yielding

H
U

(A)
A

(k) =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


(2.105)

H
U

(A)
B

(k) =

 0 eik

e−ik 0

 (2.106)

Physically, the mapping to Hermitian operators may be interpreted as adding a sublattice

degree of freedom to the system, where H
U

(A)
A

then performs intracell hops, while H
U

(A)
B

performs hopping in opposite directions for each sublattice (see Fig. 2.2).

By calculating the Class AIII topological invariant for these Hamiltonians [53], it may be

verified that the first is trivial, while the second is topological with an invariant of 1, and so the

topology of each local unitary operator is preserved in the mapping to Hamiltonians. Indeed,

the invariant for these Hamiltonians is simply the winding number of the off-diagonal block—

equivalent to the winding number for a 1D local unitary operator discussed in Ref. [30, 31].

The mapping between unitary and Hermitian operators proceeds in a similar manner for

more complicated cases in these symmetry classes, and the mapping between topological

invariants remains the same.
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A similar picture also holds for 1D local unitary operators belonging to the nontrivial

classes A, D and C, all of which can be mapped onto Hermitian operators with chiral symmetry

and a winding number invariant. In class AII, a local unitary is mapped onto a Hermitian

operator from class DIII, which also has chiral symmetry. The corresponding Z2 topological

invariant in this case (for both unitaries and Hermitian operators) may loosely be thought of

as the winding number taken modulo 2. More formally, a constrained version of the Fu-Kane

invariant may be used instead [54].

HUA
UA

UA
†

UB

UB
†

HUB

Figure 2.2: Illustration of the actions of the Hermitian operators HUA
and HUB

defined in

Eqs. (2.105) and (2.106). In contrast to the underlying unitary operators (see Fig. 2.1, these

Hermitian operators have twice the degrees of freedom. As discussed in the main text, HUA

and HUB
belong to different equivalence classes.

2.7.1.2 Unitary Operators in Class DIII

The one remaining nontrivial case in 1D corresponds to unitary operators in class DIII, which

are mapped onto Hermitian operators in Class D. Topological Hamiltonians in class D are

exemplified by the well-known p-wave superconducting chain [55]: we will take this as our

starting point and work backwards to obtain a nontrivial local unitary operator belonging to

class DIII.
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The Hamiltonian for the p-wave superconductor may be written [55]

ĤK = −µ
∑
j

[
c†jcj −

1
2

]

−1
2
∑
j

[
tc†jcj+1 + ∆eiφcjcj+1 + H.c.

]
, (2.107)

where µ is the chemical potential, t is the hopping parameter, and ∆eiφ is the superconducting

pairing strength. We will take the two easily solvable (and flattened) points of this model as

examples of trivial and topological flattened Hamiltonians from class D. In BdG form and in

momentum space, these fixed points have the Hamiltonians

H
(D)
triv(k) =

 1 0

0 −1

 (2.108)

H
(D)
top (k) =

 − cos(k) i sin(k)

−i sin(k) cos(k)

 , (2.109)

which it may be verified square to the identity matrix, and satisfy particle-hole symmetry

with C = σxK. [These fixed point Hamiltonians also have additional symmetries, but this

does not affect the arguments that follow]. It may be verified (e.g. by transforming to

the Majorana fermion basis and calculating the Pfaffian [55]) that these Hamiltonians have

invariants 0 and 1, respectively.

To construct distinct local unitary operators from these Hamiltonians, we can perform the

(inverse) mapping described in Sec. 2.6: we should introduce a sublattice degree of freedom

and then define U = −iSH, where S = iσz ⊗ I is a chiral symmetry operaotr that acts in the

new sublattice basis. We introduce the artificial sublattice degree of freedom by labelling unit

cells alternately as sublattice A and B. In this step, we coarse grain the system by enlarging

the unit cell by a factor 2. Then the new coarse grained Hamiltonian after regrouping cells
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can be rewritten as

ĤK = −µ
∑
j

[
c†j,Acj,A + c†j,Bcj,B −

1
2

]

−1
2
∑
j

[
t(c†j,Acj,B + c†j,Bcj+1,A) + H.c.

]
(2.110)

−1
2
∑
j

[
∆eiφ(cj,Acj,B + cj,Bcj+1,A) + H.c.

]
, (2.111)

In momentum space, this leads to the Hamiltonians

H̃
(D)
triv(k) =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


(2.112)

H̃
(D)
top (k) = −1

2



0 0 1 + e−ik −1 + e−ik

0 0 1− e−ik −1− e−ik

1 + eik 1− eik 0 0

−1 + eik −1− eik 0 0


, (2.113)

which now act on the operators
(
cAk c†A−k cBk c†B−k

)T
.

The detailed calculations are shown in appendix 2.E. Both Hamiltonians continue to

square to the identity, and satisfy particle-hole symmetry as in Eq. (2.34) with the symmetry

operator now given by C = I⊗ σxK.

While we could work with these Hamiltonians directly, we will instead perform a basis

rotation so that the chiral symmetry operator takes the canonical form S = iσz ⊗ I

and commutes with the existing particle-hole symmetry. Specifically, we will rotate the

Hamiltonians with the unitary operator

V = 1√
2



0 i 1 0

i 0 0 1

0 −i 1 0

−i 0 0 1


, (2.114)

53



through H → V HV †. The particle-hole symmetry operator then becomes C = σx ⊗ σxK,

which commutes with a chiral symmetry operator defined through S = iσz ⊗ I. Finally,

after performing this rotation, we calculate the corresponding unitary operators through

U = −iSH to find

UDIII
triv (k) =



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


(2.115)

and a nontrivial unitary

UDIII
top (k) = 1

2



sin(k) i+ i cos(k) −i+ i cos(k) sin(k)

−i− i cos(k) − sin(k) − sin(k) i− i cos(k)

−i+ i cos(k) sin(k) sin(k) i+ i cos(k)

− sin(k) i− i cos(k) −i− i cos(k) − sin(k)


. (2.116)

It may be verified that these are unitary operators with particle-hole symmetry (C =

σx ⊗ σxK), chiral symmetry (S = iσz ⊗ I), and time-reversal symmetry (T = −σy ⊗ σxK),

belonging to class DIII of the periodic table, although the rotation obscures its interpretation

in terms of simple fermion operators. The nontrivial topology of UDIII
top is evident from the

spectra of the two operators: while the spectrum of UDIII
triv (k) is gapped, the eigenvalues of

UDIII
top (k) wrap around the unit circle as a function of momentum, as shown in Fig. 2.3.

We now introduce another way to construct local unitary operators by directly turning

the internal degree of freedom of Hamiltonian into sublattice degree of freedom. In this

example, there is a nature degree of freedom generated by BdG forms. Therefore, we can

define chiral symmetry operator as S = iσz. Then these two Hamiltonians can be mapped to

two unitaries:

UDIII
triv2 (k) =

 1 0

0 1

 (2.117)
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Figure 2.3: Spectrum of the unitaries (a)UDIII
triv (k), (b)UDIII

top (k), (c)UDIII
triv2 (k) and (d)UDIII

top2 (k)

given in the main text. The plots show the complex phase of the eigenvalues ε as a function

of momentum k.

and

UDIII
top2 (k) =

 − cos(k) i sin(k)

i sin(k) − cos(k)

 (2.118)

It’s obvious that UDIII
triv2 (k) is trivial since it’s an identity matrix. In addition, we can deduce

the nontrivial topology of UDIII
top2 from the nontrivial winding of the eigenspectrum of UDIII

top2

as shown in Fig.3.

This mapping to unitary operators provides an alternative method for diagnosing the

topology of a gapped Hamiltonian.
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2.7.2 Two Dimensions

2.7.2.1 Unitary Operators in Class AIII

We now study a two-dimensional example, again using the inverse mapping from topological

Hamiltonians to nontrivial unitary operators. To obtain a nontrivial unitary in class AIII,

we start from a nontrivial Hermitian operator from class A, which we take to be the simple

flattened Chern insulator model

HA(k) = 1
|E(k)|

 ∆ + cos(kx) + cos(ky) sin(kx)− i sin(ky)

sin(kx) + i sin(ky) −∆− cos(kx)− cos(ky)

 , (2.119)

with

E(k) =
√

(∆ + cos(kx) + cos(ky))2 + (sin(kx) + sin(ky))2. (2.120)

In real space, this Hamiltonian satisfies the definition of locality given in Sec. 2.3.1, but

the hoppings will formally extend to infinity (with an exponentially decaying amplitude) to

ensure perfectly flat bands. As shown in Ref [56], when −2 < ∆ < 0, the Chern number

of the model equals −1 and while 0 < ∆ < 2, the Chern number is equal to 1. For other

values of ∆, this model turns out to be trivial. Since this model describes a particle with

two internal states hopping on a lattice, we can relabel these two states as states acting on

sublattice A and sublattice B separately. Then chiral symmetry operator equals σz in the

original basis. Then this Hamiltonian can be mapped to a unitary with an expression

UA(k) = 1
|E(k)|

 ∆ + cos(kx) + cos(ky) sin(kx)− i sin(ky)

− sin(kx)− i sin(ky) ∆ + cos(kx) + cos(ky)

 , (2.121)

The numerical computation of the quasienergy spectrum of Unitary UA(k) reveals the

appearance of Dirac cones (that is, of isolated points on the Brillouin zone where the gap

closes with linear dispersion) at the surface of the system. This is illustrated in Fig. 2.4.
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Figure 2.4: Three-dimensional view of the Dirac cone in gap π of the quasienergy spectrum

of UA(k) when ∆ = 1. The dispersion is clearly linear in the neighborhood of the Dirac cone

(located approximately at kx = π and ky = π).

2.8 Conclusion

In this work, we introduce a method to classify local unitaries. By mapping local unitary

operators to Hermitian operators, we can obtain a topological classification based on the

topological classification of Hermitian operators. For unitary operators without chiral

symmetry, we apply the so-called ‘doubling trick’ by adding a sublattice or orbital degree

of freedom on each site. On the other hand, for unitary operators with chiral symmetry,

we make use of the existing chiral symmetry operator, which connects unitary operators

and Hermitian operators. In general, a pair of Hermitian operators and unitary operators

fall within different symmetry classes, and these mapping between symmetry classes are

equivalent to moving downwards by one row in the periodic table. After showing the existence

of one to one correspondence mapping between Hermitian operators and unitary operators,

we also demonstrate that homotopic equivalence between two Hermitian operators implies

a homotopic equivalence between the corresponding unitary operators. In the process, we

discovered a number of new topological phases. It would be interesting to see if these can be

realized in experimental settings.

To calculate topological invariants for models, we can combine our results with formulas

for the topological invariants in static systems. By mapping a local unitary operator to a

Hermitian operator, we can use the topological invariant of the Hermitian operator as the

topological invariant of the unitary operator.
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Our work raises many interesting problems. First, as claimed before in this chapter, our

work classifies all edge unitaries in Floquet systems. Then a rigorous connection between

bulk and edge properties can be explored in the future. Second, this chapter only gives a

complete classification of noninteracting local unitaries with different symmetries. It would

be interesting to study whether this classification can be extended to interacting Floquet

phases. Progress in this direction has already been made for one-dimensional local unitaries

via index theory and the matrix product unitary approach, which was first discussed in

quantum cellular automata and then was used to classify interacting Floquet phases. However,

the classification of quantum cellular automata and interacting Floquet phases in higher

dimensions are not complete and remains an exciting avenue for future research.
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APPENDIX

2.A Deviations of flow index

In this section, we derive the flow index of local unitary matrices given in Eq. (2.21) and

then prove some of the claims on the properties of the flow index ν2n+1[U ].

As what’s shown in Ref.[44], the topological invariant of a flattened Hamitonian with a

format of Eq. (2.18) can be written as

Ind[HU ] = 22n(πi)n
(2n+ 1)!!

∑
σ

(−1)σ (2.122)

TrSHU [P σ1
a , P−][P σ2

a , P−] · · · [P σ2n+1
a , P−]

where we define the projector onto the lower bands as P−. Since HU is a flattened Hamiltonian,

satisfying HU = 1− 2P− , we can substitute P− as a function of HU in the above function:

Ind[HU ] = (−1)n+1 (πi)n
(2n+ 1)!! ∗

1
2
∑
σ

(−1)σ (2.123)

TrSHU [P σ1
a , HU ][P σ2

a , HU ] · · · [P σ2n+1
a , HU ]

After inserting Eq. (2.18) and simplifying this expression, the multiplication of all operators

inside the trace becomes a block diagonal matrix and the trace of this block diagonal matrix

becomes

Tr
[
U [P σ1

a , U †][P σ2
a , U ] · · · [P σ2n+1

a , U †]
]

− Tr
[
U †[P σ1

a , U ][P σ2
a , U †] · · · [P σ2n+1

a , U ]
]

Then we utilize the identity [P σ1
a , U †] = −U †[P σ1

a , U ]U † and rewrite the above subtraction

of trace of two matrices as

2 ∗ (−1)n+1Tr
[
U †[P σ1

a , U ]U †[P σ2
a , U ] · · ·U †[P σ2n+1

a , U ]
]

Finally, by inserting it back into Eq. (2.122), we obtain the topological invariant of HU in

terms of its off-diagonal block U , which could be used as the flow index of U , showing in Eq.
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(2.21)

Ind[HU ] = (πi)n
(2n+ 1)!!

∑
σ

(−1)σ (2.124)

Tr
[
U †[P σ1

a , U ]U †[P σ2
a , U ] · · ·U †[P σ2n+1

a , U ]
]

We can know that the flow index can only take integer values directly from the properties of

the topological invariants of Hermitian operators.

In the rest of this section we provide a deviation of some properties of the flow index.

First, similar to one-dimensional cases, this invariant is local computable because of the

local computability of the topological invariants given in Eq. (2.122)[44]. We will explain this

idea by providing the intuition rather than giving a rigorous mathematical proof. For every

direction i, the matrix elements of U †[P i
a, U ] = U †P i

aU−P i
a = U †P i

aU(1−P i
a)−U †(1−P i

a)UP i
a

will decay exponentially with i-direction distance between the sites involved and the cut a.

Then the multiplication of U †[P i
a, U ] for all i is bounded by a rapidly decaying function of

the distance from the cut a. In other words, most contributions to the calculation of the flow

index come from the regions close to the cross section.

Second, we need to prove that the flow index is zero if and only if a unitary operator

is locally generated. If a unitary operator U is local generated by a sequence of local

Hamiltonians Hloc(t) (0 < t < T ), then we can define Vα(s) as

Vα(s) = U(s) = T exp
[
−i
∫ s

0
Hloc(t)dt

]
(2.125)

and Vβ(s) as Identity matrix I. So the homotopy relation between U and I

U(s) = Vα(s)IVβ(s) (2.126)

is the same as that used in the definition of equivalence classes of unitaries in Sec. 2.3.2.

Therefore the topological invariant of U is the same as the one for I which is zero. Two

unitaries share the same flow index if and only if they are topologically equivalent, inheriting

this property from their parenting Hamiltonians. Then if the flow index of a unitary U is

zero, this unitary is topologically equivalent to I, namely,

U(s) = Vα(s)IVβ(s) (2.127)
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Therefore U is locally generated. Last, this unitary index is addictive under composition and

product. It’s addictive because of the following property of the trace: Tr{U1 ⊕ U2} = Tr(U1)+

Tr(U2). A rigorous mathematical proof of why it’s addictive under matrix multiplication

is given in Section 5.A.1. Here we use the same method in [30]. First, for a stacked

chain, it’s clear that ν[U ⊕ V ] = ν[U ] + ν[V ]. Then we can construct a special unitary

(U ⊕ I)S+(I ⊕ V )S+ acting on two chains where S+ denote the unitary which acts as the

swap of these two chains on the right side r2n+1 > a2n+1 and leaves the left side r2n+1 < a2n+1

unchanged. Then this constructed unitary works like U ⊕ V on the right subspaces and

UV ⊕ I on the left spaces. Because this invariant is both local computable and independent

of positions, ν[UV ] = ν[U ⊕ V ] = ν[U ] + ν[V ].

2.B Weak topological invariants of unitary operators

In the main context, we only consider strong topological invariants of Hamiltonian and thus

only obtain strong topological invariants of unitary operators. In this appendix, we discuss

how to extend the notion of weak topological invariants to unitary operators.

Motivated by the studies done in disordered static systems [57], we directly apply the

corresponding formulas for strong invariants in lower dimensions to classify higher dimensional

systems with the absence of strong invariants. We will demonstrate this idea by giving an

example in a two-dimensional system.

While no strong topological invariants exist for Hamiltonians in two-dimensional class

AIII systems, strong one-dimensional topological invariants can be used as weak indices to

classify two-dimensional systems. As a result, we apply the flow index in Eq. (2.8) to classify

our systems. We use the same method to define weak indices as Ref. [57]. We consider

the two-dimensional systems as a stack of one-dimensional systems. To calculate the 1D

index in the x-direction, we treat the full system as a one-dimensional system infinite in

the x-direction and with width Ny in the y-direction. Finally, we could get a well defined
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topological invariant if it has converged as Ny →∞, namely,

νx[U ] = lim
Ny→∞

1
Ny

Tr(U †[P x
R, U ]PNy

trunc) (2.128)

where PNy

trunc is used to truncate the original unitary of the full system to a strip which has

Ny layers in y- direction labeled from −Ny/2 to Ny/2− 1. In addition, a similar topological

invariant can be defined in y- direction,

νy[U ] = lim
Nx→∞

1
Nx

Tr(U †[P y
R, U ]PNx

trunc) (2.129)

where PNy

trunc projects onto a vertical strip including Nx layers in x- direction labeled from

−Nx/2 to Nx/2− 1. Finally, these two invariants can be massaged into one vector nxx +nyy,

which can be used to classify this two dimensional system.

In a translation invariant system, consider a two-dimensional U(kx, ky) that now is a

Laurent polynomial of eikx and eiky [30]. Therefore, det U is also a polynomial function of

eikx and eikx , namely, detU = einxkx+inyky . Then we calculate topological invariants in two

directions separately, getting nx and ny. From our discussion of real-space formula, nxx +nyy

can be called the index, independent of basis vectors x and y. As a simple example, we

take the unitary operator to be eikx , which is simply stacks of one-dimensional shift operator

in x- direction. For this operator, the index vector is x since the winding number is 1 in

x-direction and 0 in y-direction.

2.C Eigenstate Properties of Flattened Operators

In this appendix we prove that the flattened Hermitian operators HU defined in the main text

have equal numbers of positive and negative eigenvalues. They therefore have a well-defined

energy gap and fit into the usual topological classification. For completeness, we also note

that in certain symmetry classes, Hermitian operators may have different numbers of positive

and negative eigenvalues. While these cannot be obtained through the mappings from unitary

operators used in the main text, this does not affect our conclusions, as cases with equal

eigenvalues exhaust all topological classes. The one-to-one mappings we describe are in this
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way between local unitary operators, and local flattened Hermitian operators with equal

numbers of positive and negative eigenvalues.

We first consider the symmetry classes discussed in Sec. 2.5, where HU is defined through

the doubling trick,

HU =

 0 U

U † 0

 . (2.130)

In these cases, we can expand the underlying unitary operator in its eigenstate basis as

U =
∑
j

eiθj |vj〉〈vj| . (2.131)

By taking the Hermitian conjugate of this equation, it follows that if |vj〉 is an eigenstate

of U with eigenvalue eiθj , then it is also an eigenstate of U † with eigenvalue e−iθj . We can

therefore construct pairs of states

∣∣∣ψ±j 〉 = 1√
2

 1

±e−iθj

 |vj〉 (2.132)

which are eigenstates of HU with eigenvalue ±1. In this way, each eigenstate of the original

unitary operator U generates a pair of eigenstates for HU with eigenvalues ±1.

On the other hand, the symmetry classes discussed in Sec. 2.6 possessed chiral symmetry,

and generated Hermitian operators through HU = ηSU (where η ∈ {1, i} depending on the

specific symmetry class). In these cases, the symmetry relation SUS−1 = U † means that we

can expand U in terms of its eigenstates through

U =
∑
j

[
eiθj |vj〉〈vj|+ e−iθj |v̄j〉〈v̄j|

]
, (2.133)

where pairs of eigenstates are related to each other through S |vj〉 = η∗ |v̄j〉 (and where the

factor of η∗ is necessary to ensure that S2 takes the correct value). Note that we are assuming

that the system is closed here, as topological eigenstates at a boundary can be mapped onto

themselves under the action of S [37].

With this setup, we can write the Hamiltonian as

H = ηSU =
∑
j

[
eiθj |v̄j〉〈vj|+ e−iθj |vj〉〈v̄j|

]
. (2.134)
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Then, similar to before, we can construct pairs of states
∣∣∣ψ±j 〉 = 1√

2

[
|vj〉 ± eiθj |v̄j〉

]
, (2.135)

which are eigenstates of HU with eigenvalues ±1. In this way, each eigenstate of the original

unitary operator U again generates a pair of eigenstates for HU with eigenvalues ±1.

2.D Local unitary transformation

In section 2.4.2, we define the equivalence relation between two gapped quantum systems.

Two Hamiltonians are in the same phase if we can find a local unitary transformation that

connects their corresponding flattened Hamiltonians. Now we present a method to calculate

this local unitary transformation.

This local unitary transformation defined in Eq. (2.12) is generated by H̃(s), s ∈ [0, 1]

with an expression given in Ref. [51]. For two topologically equivalent quantum systems with

Hamiltonians H0 and H1, there exists a continuous path s→ H(s) that smoothly connects

these two Hamiltonians. Then we can define H̃(s) as

H̃(s) = i
∫
dtF (t)eiH(s)t(∂sH(s))e−iH(s)t (2.136)

if the gap of Hamiltonian H(s) is larger than some finite value ∆ for all s.

Here, F (t) is a function with the following properties. First, the fourier transformation

of F (t), F̃ (ω) obeys, F̃ (ω) = − 1
ω

if |ω| ≥ ∆. Second, F (t) is antisymmetric, namely,

F (t) = −F (−t).

The above expression involves a construction of F (t) and an integral over t. To simplify

the above expression, we derive H̃(s) from a different perspective. First we can define a

flattened Hamiltonian

H ′(s) = 1− 2Pg(s), (2.137)

where the spectral projector Pg(s) = ∑
α |Ψα(s)〉 〈Ψα(s)| specifies a subspace of the total

Hilbert space spanned by the occupied Bloch wave functions of H(s).
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Following from Eq. (2.37), after taking derivative over s, we find how H ′(s) changes with s

∂H ′(s)
∂s

= i[H̃(s), H ′(s)] (2.138)

We notice that
[
[H ′(s), ∂H

′(s)
∂s

], H ′(s)
]

= 2H ′(s)∂H
′(s)
∂s

H ′(s)− 2∂H
′(s)
∂s

(2.139)

because we are considering flattened Hamiltonian H ′(s) which satisfies H ′(s)2 = I. To

simplify above equation, we take derivative of the identity H ′(s)2 = I and another equation

can be derived,

H ′(s)∂H
′(s)
∂s

+ ∂H ′(s)
∂s

H ′(s) = 0 (2.140)

We can rewrite Eq. (2.139) by plugging Eq. (2.140),
[
[H ′(s), ∂H

′(s)
∂s

], H ′(s)
]

= −4∂H
′(s)
∂s

(2.141)

Therefore, we can choose

H̃(s) = − i4[H ′(s), ∂H
′(s)
∂s

] (2.142)

which satisfies our requirements Eq. (2.138) to be the local unitary transfomation generating

Hamiltonians. Because H ′(s) is local and continuous, H̃(s) is also local. In general, we can

also add arbitary terms to H̃(s) which commutes with H ′(s) or Pg(s) in order to satisfy

Eq. (2.138). Namely, a more general form of H̃(g) can be written as

H̃(s) = − i4[H ′(s), ∂H
′(s)
∂s

]

+ Pg(s)H1(s)Pg(s) + Pe(s)H2(s)Pe(s) (2.143)

where Pg(s) is the projector in the ground states and Pe(s) is the projector in the excited

states. Pg(s)H1(s)Pg(s) and Pe(s)H2(s)Pe(s) are two Hamiltonians which acts on occupied

states and empty states separately.
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Next, we want to show that these two techniques agree with each other. We can

start from the first expression of H̃(s) which is given in Eq. (2.136) and expand it by

inserting two identities I = Pg(s) + Pe(s). Then H̃(g) is decomposed into four parts,

Pg(s)H̃(s)Pg(s),Pe(s)H̃(s)Pg(s),Pg(s)H̃(s)Pe(s) and Pe(s)H̃(s)(s). To proceed further, we

express the spectral projector Pg(s) in terms of ground states Pg(s) = ∑
i∈g |Ψi(s)〉 〈Ψi(s)|

and similarly, Pe(s) = ∑
j∈e |Ψj(s)〉 〈Ψj(s)|.Then the second term can be rewritten as

PeH̃(s)Pg

=
∑
j∈e

∑
i∈g

〈
Ψj(s)

∣∣∣ H̃(s)
∣∣∣Ψi(s)

〉 ∣∣∣Ψj(s)
〉 〈

Ψi(s)
∣∣∣ (2.144)

After plugging the expression of H̃(s) in Eq.(2.136), the coefficient can be simplified using

the property of function F (t),

〈
Ψj(s)

∣∣∣ H̃(s)
∣∣∣Ψi(s)

〉
= i

〈
Ψj(s)

∣∣∣ ∫ dtF (t)exp[i(Ej − Ei)t]∂sH(s)
∣∣∣Ψi(s)

〉
= iF̃ (Ej − Ei)

〈
Ψj(s)

∣∣∣ ∂sH(s)
∣∣∣Ψi(s)

〉
= i

〈
Ψj(s)

∣∣∣ ∂s ∣∣∣Ψi(s)
〉

(2.145)

where F̃ (Ej − Ei) = − 1
Ej−Ei

according to the assumption on the gap in the spectrum. The

last equality in the above equation holds because

Ei
〈
Ψj(s)

∣∣∣ ∂s ∣∣∣Ψi(s)
〉

=
〈
Ψj(s)

∣∣∣ ∂s(H(s)
∣∣∣Ψi(s)

〉
)

=
〈
Ψj(s)

∣∣∣ ∂sH(s)
∣∣∣Ψi(s)

〉
+ Ej

〈
Ψj(s)

∣∣∣ ∂s ∣∣∣Ψi(s)
〉

(2.146)

Substituting (2.145) into (2.144) we have Pe(s)H̃(s)Pg(s) = iPe(s)∂sPg(s) and similarly

Pg(s)H̃(s)Pe(s) = iPg(s)∂sPe(s). After adding four parts together, we can massage H̃(s) into

the desired form (2.143),

H̃(s) = iPe(s)∂sPg(s) + iPg(s)∂sPe(s)

+ PgH̃(s)Pg + PeH̃(s)Pe (2.147)
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Where the addition of the first two terms become − i
4 [H ′(s), ∂H

′(s)
∂s

] if we apply two identities

I = Pg(s) + Pe(s) and (2.137). Therefore, these two techniques agree with each other.

The second question in this section we want to solve is how symmetry operators act on

these transformation generating Hamiltonians and their corresponding generated unitaries.

In general, these Hamiltonians don’t follow any symmetries because the freedom to add

arbitary local Hamiltonians that commutes with Pg(s). However, if we have a special choice

of H̃(s) given in (2.142), then symmetry operators can apply constraints on H̃(s). Recalling

Eqs. (2.30–2.32), we show how symmetry operators (if present) act on these Hamiltonians,

T H̃(s)T −1 = −H̃(s) (2.148)

CH̃(s)C−1 = −H̃(s) (2.149)

SH̃(s)S−1 = H̃(s). (2.150)

Consequently, we can write down the action of the three symmetries (if present) on the

transformation unitary operators generated by H̃(s) given in (2.142)

T V (s)T −1 = V (s) (2.151)

CV (s)C−1 = V (s) (2.152)

SV (s)S−1 = V (s). (2.153)

Overall, we provide two techniques to construct local unitary transformation and prove

that they agree with each other. Then we show how symmetry operators act on these locally

generated unitaries under a particular choice of generating Hamiltonians.

2.E Generating nontrivial unitaries from Hamiltonians

In section 2.7, we discuss how to map from Hamiltonians without chiral symmetry to unitary

operators with chiral symmetry. However, the local Hilbert spaces of these unitaries may

have different dimensions with the ones of Hamiltonians. In this appendix, we only consider
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when unitaries have larger internal degrees of freedom, and the opposite situation can be

dealt with a similar method. To match the internal degrees of freedom, we can reorganize

the cell structure by either adding trivial systems or regrouping several neighboring cells to

get a new single cell with a higher internal degree of freedom.

The first method, adding trivial systems, works because the topological properties of

Hamiltonians will stay the same after the addition of arbitrary numbers of trivial bands

under the definition of stable homotopy. In that case, although a Hamiltonian H1 can not be

transformed into a unitary with chiral symmetry U , it might be possible that there are trivial

walks H2 so that H1 ⊕H2 can be mapped to U . For example, We can define a nontrivial

flattened Hamiltonian HA acting on sublattice A and a trivial flattened Hamiltonian HB

acting on sublattice B. Then the chiral symmetry operator can be defined as I⊕−I which

can map a nontrivial Hamiltonian HA ⊕HB to a nontrivial unitary U = HA ⊕−HB.

Since the spatial degrees of freedom and the internal degrees of freedom are interchangeable

in general, we can also regroup some finite collection of the cells to increase the size of the

local Hilbert space. If we include two neighboring cells into one new unit cell, we can

change the periodicity from 1 to 2 and double the dimension of the local Hilbert space.

Clearly, this does not affect the topological properties of the original Hamiltonians. The main

difference between new Hamiltonians and original Hamiltonians is due to different definitions

of translation vectors. In section 2.7, we use this method to generate one-dimensional unitary

Operators in Class DIII from Hermitian operators in Class D. Let us explain how to do the

regrouping operations in this example.

In this example, we study translation-invariant systems and want to express Hamiltonians

in the momentum space. Then the matrix element connecting two positions of a Hamiltonian

is only dependent on distances between two positions. Explicitly, we can assume

f(~r) = 〈~r + ~x|H |~x〉 (2.154)

where ~x and ~x+ ~r are two points on the lattice, and H is the Hamiltonian that we want to

transform. If there is an internal degree of freedom, f(~r) can become a matrix. After doing a
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fourier transformation, we can express the Hamiltonian in the momentum space as

H(~k) =
∑
~r

e−i
~k·~rf(~r) (2.155)

For one dimensional system, we label even sites as sublattice A and odd sites as sublattice

B. Then the transformation has similar form as in Ref. [32]. First, the regrouped Hamiltonian

fr in the position space can be written as

fr(r) =

 f(2r) f(2r − 1)

f(2r + 1) f(2r)

 (2.156)

and after doing fourier transformation

Hr(k) = M(k2)

H(k2 ) 0

0 H(k2 + π)

M †(k2) (2.157)

where the unitary matrixM(k) meetsM = 1√
2

 1 1

e−ik −e−ik

 Then we obtain the expressions

of the topological Hamiltonian after regrouping Eq. (2.113) given H(k) satisfying Eq. (2.109)

For two dimensional systems with square lattice, similarly, we label unit cells alternately.

This time new translation vectors become e′x = 2ex, e′y = ex + ey if original lattice can be

constructed by two translation vectors ex and ey. Then regrouping Hamiltonian becomes

fr(x, y) =

 H(2x+ y, y) H(2x+ y − 1, y)

H(2x+ y + 1, y) H(2x+ y, y)

 (2.158)

and the regrouping Hamiltonian in momentum space becomes

Hr(k) (2.159)

= M(kx2 )

(H(kx

2 , ky −
kx

2 )

H(kx

2 + π, ky − kx

2 + π))

M †(kx2 )
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CHAPTER 3

Constructing locally generated unitaries

In last chapter, we provide a method which can detect whether a local unitary is locally

generated. In this chapter, we want to show how to construct such locally generated unitaries.

To do this, we first apply the one-dimensional decoupling method introduced in Reference [30,

46]. Then we explain it in a new perspective and generalize this theory to higher dimensions.

3.1 One-dimensional decoupling theory

In the one-dimensional decoupling theory given in Reference [46], we construct V , which

decouples the left and right side of a system. Therefore, V can transform this unitary U to a

new unitary UL ⊕ UR,

V U = UL ⊕ UR (3.1)

In other words, the decoupling condition can be expressed as [Pa, V U ] = 0 where Pa is a

half-space projection operator. In one-dimensional system, Pa act on sites on the right of the

cross-section a. If we label the one-step translation of the projector Pa as Q = UPaU
†, the

decoupling condition can also be written as

V Qa = PaV (3.2)

V should be a function of Pa and Qa. Before giving the detailed construction, we introduce

the following subspaces
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H10 = {φ ∈ H|Qaφ = φ, Paφ = 0}

H01 = {φ ∈ H|Qaφ = 0, Paφ = φ}

and the complement of H10 ⊕H01 is represented as H⊥.

With these notations, the steps to construct V is given as follows. First we study the

operator X = 1 − Pa − Qa + 2PaQa. This operator meets the decoupling condition above

but is not unitary. Therefore we need to modify the X operator to make it unitary. We

separate Hilbert space into two parts, the null space of X which coincides with H10 ⊕H01

and the complement of the null space which equals H⊥. On the subspace H⊥, X is not zero,

and all its eigenvalues can be normalized. After normalizing all its nonzero eigenvalues, X is

transformed to be a canonical decoupling operator Vcan which can be written as

Vcan = (X†X)−1/2X (3.3)

On the subspace H10 ⊕ H01, however, the normalization approach doesn’t work. This

time, we define a swap unitary V01 which swaps H10 and H01, i.e.,

V01H10 = H01, V01H01 = H10 (3.4)

This is required by the decoupling condition. Finally we find a proper decoulping unitary

U by adding Vcan and V01 together

V = Vcan ⊕ V01 (3.5)

For strictly localized systems, when away from the cut, Pa = Qa = 1 on the far right and

Pa = Qa = 0 on the far left. Therefore X = I far from the cut. As the function of X, the

decoupling unitary V is also equal to identity away from the cut. For exponentially decaying

unitaries, V − I is also exponentially decaying when away from the cut. For these unitaries

almost confined to a finite-size region, we can always find a Hermitian operator H which are

bounded to the same region such that eiH = V .
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If there are symmetric constraints on U given in Eq.(2.48), V U should also be in the same

symmetric class. If there is particle-hole symmetry, then the requirement of Eq. (2.47) means

V commutes with the symmetry operator C,

CV C−1 = V. (3.6)

If the system has time-reversal symmetry, then the requirement of Eq. (2.46) imposes the

condition

T̃ V T̃ −1 = V, (3.7)

with the modified symmetric operator T̃ = UT . While the presence of chiral symmetry

[Eq. (2.48)] imposes the similar condition

S̃V S̃−1 = V, (3.8)

with the modified symmetric operator S̃ = US.

While Vcan always meets all these communication relations, we need to add these additional

constraints for V01. We are not going to give details about how to add constraints here and

suggest the reader refer Reference [46] for details.

3.2 One dimensional locally generated unitaries

After briefly reviewing the decoupling theory, we now show how to construct locally generated

unitaries in this section. We cut the systems at locations with equal distance x = 0,±a,±2a, · · · .

At every cut ma, we can find a unitary Vm using the decoupling theory above. Let Hm

denote the Hermitian operator decaying exponentially away from the cut m, such that

Vm = eiHm . After multiplying by the product of these unitaries, ∏m e
iHmU will be fully

decoupled, becoming ∑n Ũn where Ũn only act on sites between the cut na and (n+ 1)a for

each n. Since each unitary Un is acting on a finite region [na, (n+ 1)a], we can always find

a Hermitian operator H̃n acting on the same subspaces such that eiH̃n = Ũ †n. The whole
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process can be written as

nmax∏
n=nmin

eiH̃n

mmax∏
m=mmin

eiHmU = I (3.9)

Accordingly, the generating process for a local unitary U is

U =
mmin∏

m=mmax

e−iHm

nmin∏
n=nmax

e−iH̃n (3.10)

Let’s give an example here. Consider a translation-invariant system with two internal

degrees of freedom for each site. We show how to generate the following unitary

U(k) =

eik 0

0 e−ik

 (3.11)

We first do an inverse Fourier transformation of this unitary U(k) to get a real space

unitary operator Ũ . As shown below, it’s an addition of a left-moving translation operator

and a right-moving translation operator on two separate sublattices in real space.

Ũ =
∑
m

|m+ 1,−1〉 〈m,−1|+ |m, 1〉 〈m+ 1, 1| (3.12)

where the first index denotes the position of sites and the second index represents internal

degrees of freedom.

Next, we choose x = 0 as a decoupling position, then the half-space projector becomes

Pa = P0 = ∑
m≥0 |m〉 〈m|. Another projection will be the unitary transformation of P0,

Q0 = ŨP0Ũ
†. The two subspaces labelled by the eigenvalues of Q0 and P0 are

H10 = {c |−1, 1〉 |c ∈ C}

H01 = {c |0,−1〉 |c ∈ C}

where c is the coefficient of a state, taking arbitrary complex number. V01 swap two Hilbert

spaces H10 and H01. This operator is of course not uniquely defined, we choose it to be

V01 = i |0,−1〉 〈−1, 1|+ i |−1, 1〉 〈0,−1| (3.13)
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Next, we calculate the decoupling operator X,

X = 1− P0 − ŨP0Ũ
† + 2P0ŨP0Ũ

† (3.14)

= I− |0,−1〉 〈0,−1| − |−1, 1〉 〈−1, 1|

=
∑
m6=0
|m,−1〉 〈m,−1|+

∑
m 6=−1

|m, 1〉 〈m, 1|

Therefore on the complement of the null space H10 ⊕H01, X acts as the Identity matrix

and thus is already a unitary. After applying the normalization process in Eq. (3.3),

Vcan = X (3.15)

Finally, we find the unitary that can decouple the left side and right side of the cut x = 0

by adding Vcan and V01,

V0 =
∑
m6=0
|m,−1〉 〈m,−1|+

∑
m 6=−1

|m, 1〉 〈m, 1|+ i |0,−1〉 〈−1, 1|+ i |−1, 1〉 〈0,−1| (3.16)

which can be generated by H0 = |0,−1〉 〈−1, 1|+ |−1, 1〉 〈0,−1|, satisfying V0 = eiH0 . This

unitary is strictly local, with nonzero hopping only existing between nearest neighboring

sites.

According to translation invariance, we can get decoupling unitaries Vn at every cut x = n,

Vn =
∑
m 6=n
|m,−1〉 〈m,−1|+

∑
m 6=n−1

|m, 1〉 〈m, 1|+ i |n,−1〉 〈n− 1, 1|+ i |n− 1, 1〉 〈n,−1|

governed by a Hamiltonian Hn = π
2 (|n,−1〉 〈n− 1, 1| + |n− 1, 1〉 〈n,−1|). Since each

Hamiltonian Hn are bounded to the subspaces expanded by |n,−1〉 and |n− 1, 1〉, different

Hn and Hn′ act on separate subspaces and don’t intertwine with each other. As a result, we

can do the decoupling at each cut simultaneously with a decoupling unitary,

V =
∏
n

Vn (3.17)

generated by a Hamiltonian

H =
∑
n

Hn (3.18)

= π

2
∑
n

|n,−1〉 〈n− 1, 1|+ |n− 1, 1〉 〈n,−1|
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We can do a Fourier transformation of H to express it back in the momentum space,

H(k) = π

2

 0 eik

e−ik 0

 (3.19)

After applying V (k) = eiH(k) to decouple the original unitary (3.11), we get

W (k) = V (k)U(k) = −i

0 1

1 0

 (3.20)

Since W (k) is fully decoupled, W (k) can be generated by a constant Hamiltonian W (k) =

eiH
′(k). To recover H ′(k), we need to take a log of W (k),

H ′(k) = −π2

0 1

1 0

 (3.21)

Finally, we show that U(k) can be generated by a two-step evolutions,

U(k) = V †(k)W (k) = e−iH(k)eiH
′(k) (3.22)

where H(k) and H ′(k) are given in Eq. (3.19) and (3.21) separately.

3.3 Higher dimensional decoupling theory

In this section, we will have a different viewpoint of the decoupling theory and generalize it

to higher dimensional systems. As shown in Chapter 2, there is a one-to-one correspondence

between a local unitary operator and a local gapped Hermitian operator. Hence we can

decouple a unitary by decoupling a Hermitian operator.

3.3.1 Decoupling flattened Hermitian operators

To decouple a flattened Hermitian operator in d dimension, we need to find a d−1 dimensional

local unitary VH , such that,

VHHV
†
H = H̃ = HR ⊕HL. (3.23)
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Since this is a unitary transformation, H̃ is also a flattened Hermitian operator. An intuitive

way to do this is to have a truncation of these Hamiltonians through

Htrunc = P i
aHUP

i
a + (1− P i

a)HU(1− P i
a) (3.24)

where we cut the whole system through a cross-section located at a along the direction i and

the definition of P i
a is given in Equation (2.23). Then Htrunc is clearly decoupled, with no

nonzero hoppings between left and right side of the cut. Clearly,

Htrunc =

 0 P i
aUP

i
a + (1− P i

a)U(1− P i
a)

P i
aU
†P i

a + (1− P i
a)U †(1− P i

a) 0

 (3.25)

Then we need to flatten this Hamiltonian as required by Eq. (3.23). If Htrunc is gapped

then we can flatten Htrunc directly. If Htrunc is gapless, then we need to transform Htrunc

into a gapped Hamiltonian. From the last chapter, we know that if a unitary can be locally

generated, then its corresponding Hamiltonian should be topological trivial. By adding

symmetry-preserving local perturbations on the edge created by the cut, we can lift the gap.

This step can be done numerically. Finally, we get a gapped Hamiltonian

Hgap = Htrunc +Hperturbation (3.26)

Then we flatten this Hamiltonian by introducing a matrix

Hflat = 1− 2PF (3.27)

where PF projectors to the lower bands of Hgap. Finally, we get the decoupled Hamiltonian

H̃ = Hflat.

3.3.2 Unitary operators without chiral symmetry

For a unitary operator U without chiral symmetry, it can be mapped to a Hermitian operator

with chiral symmetry via

HU =

 0 U

U † 0

 . (3.28)
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Then the decoupling condition in Eq. (3.23) can also be written as

VHHUV
†
H =

 0 V U

U †V † 0

 = HR ⊕HL (3.29)

where we define a decoupling unitary for HU through

Ṽ =

V 0

0 I

 (3.30)

Hence, Hflat = HR +HL given in Equation (3.27) also follows the same chiral symmetry as

HU , taking the form of

HR +HL = Hflat =

 0 W

W † 0

 (3.31)

After comparing this equation with Eq. (3.29), we find the decoupling unitary V , satisfying

V = WU † (3.32)

3.3.3 Unitary operators with chiral symmetry

We define a Hermitian operator through Equation (2.84) and (2.89),

HU = ηSU (3.33)

when S2 = 1, η = 1 and when S2 = −1, η = i. Similarly, the decoupled Hamiltonian

H̃U = Hflat given in Eq. (3.27) can be written in a similar form,

H̃U = ηSŨ (3.34)

Therefore, the decoupled unitary Ũ can be written as

Ũ = η3SH̃U (3.35)

= (η3SH̃UU
†)U (3.36)

Then we can define a local unitary V = η3SH̃UU
† that meets the decoupling condition given

in Eq. (3.1).
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CHAPTER 4

Chiral flow in one-dimensional floquet topological

insulator

Portions of this chapter are adapted from the publication:

Reiss, D., Harper, F., and Roy, R. Chiral Flow in One-dimensional Floquet Topological

Insulators. Physical Review B 98, 165116 (2018).

4.1 Preliminary Discussion

4.1.1 The Flow of a Unitary Matrix

In our study of dynamical phases, we will make use of a property of unitary matrices known

as ‘flow’, introduced by Kitaev in Ref. [31]. This property may be defined for any unitary

operator, although we will later apply it to the special case of unitary loop evolutions.

To define this quantity, we consider a noninteracting unitary matrix U = (Ujk), where j

and k can be interpreted as labelling sites on a (formally infinite) one-dimensional lattice.

Explicitly, the matrix elements Ujk determine a unitary operator through the definition

Û =
∑
jk

Ujkc
†
jck, (4.1)

where c†j (cj) creates (annihilates) a single boson or fermion on site j. An intuitive notion of

‘current’ from position k to position j induced by the unitary operator may then be defined
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as

fjk = |Ujk|2 − |Ukj|2, (4.2)

which is the difference in hopping probabilities between the two sites. In analogy with electric

current, the one-dimensional flow of a unitary matrix is the total current through a cross

section [31], which may be written explicitly (for a cross section at coordinate x0) as

F (U) =
∑
j≥x0

∑
k<x0

fjk. (4.3)

This is shown schematically in Fig. 4.1.

k j

U jk

Ukj

x0

ℓ

x

L R

Figure 4.1: The flow of a unitary matrix. Vertical dashed green line indicates the coordinate

of the cross section x0, defining regions L and R. Red points indicate 1D lattice sites, while

black arrows represent the current between sites j and k across the cut. The flow is defined

by summing over all particle currents that cross the cut, as in Eq. (4.3). If the unitary is

strictly local, only sites within a distance ` of the cut will contribute to the flow, delimited

by grey dotted lines.(Figure adapted from Reference [37] with permission from the American

Physical Society.)

Following Ref. [31], we now introduce a projector PR for the half axis x ≥ x0 and a

projector PL for the other half axis x < x0, so that PL = I−PR. In terms of these projectors,

the flow of a unitary matrix may equivalently be rewritten as

F (U) = Tr(U †PRUPL − U †PLUPR)

= Tr(U †PRU − PR)

= Tr(U †[PR, U ]).

(4.4)
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It may be verified that these expressions reduce to Eq. (4.3). Importantly, in these expressions

we cannot use the cyclic property of the trace Tr(AB) = Tr(BA), since this holds only if one

of the matrices has a finite number of nonzero elements [31].

In a physical system, the underlying Hamiltonian must satisfy certain locality constraints,

which in turn places constraints on the form of the time-evolution operator. We can use these

properties to our advantage when calculating the flow of a unitary operator that corresponds

to time evolution. The usual definition of a local operator is one whose matrix elements

decay exponentially (or faster) with the distance between the sites involved (see, for example,

Ref. [7]). To simplify our discussion in the main text, however, we will assume that the

time-evolution operator is strictly local, i.e. that Ujk = 0 for |j − k| > ` beyond some

localisation length ` (where j and k label unit cell positions). In Appendix 4.A we extend

our arguments to the more general definition of locality.

Under this assumption of strict locality, it is clear that only the regions close to the

cross section will contribute to the calculation of flow in Eq. (4.4). Setting the cross section

coordinate to be x0 = 0, we can therefore restrict our projectors to the relevant interval

[−`, `]. Specifically, we define the projector P `
L for the region [−`, 0) and the projector P `

R

for the region [0, `) and substitute PL → P `
L and PR → P `

R in Eq. (4.4). It is clear that the

result will not be affected by this truncation, and we arrive at the expression

F (U) = Tr(U †P `
RUP

`
L − U †P `

LUP
`
R). (4.5)

With this truncation, we have an expression for F (U) that can now be applied to finite

systems.

To develop some intuition for this index, we now consider two simple examples. First, we

take the unitary operator to be the identity, U = I. It is clear that the flow will be zero in

this case, since each projector commutes with U in Eq. (4.5) and we can apply the result

P `
LP

`
R = 0. This is reflective of the fact that that unitary operator I does not involve any

particle current between the two sides of the cut.

As a second example we consider the unitary U = t̂, where t̂ is the shift operator having
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action

t̂ |j〉 = |j + 1〉 , (4.6)

with |j〉 a state localised on site x = j. For this operator the localisation length is ` = 1.

Writing P `
L = |−1〉〈−1| and P `

R = |0〉〈0|, we see that

F (U) = Tr
[(
t̂† |0〉〈0| t̂ |−1〉〈−1|

)
−
(
t̂† |−1〉〈−1| t̂ |0〉〈0|

)]
= 1. (4.7)

This quantifies the non-zero current of particles across the cut effected by the operator t̂.

The flow of a unitary operator, using any of the definitions above, is quantized to take

integer values [31]. It is therefore robust to any continuous change of the system, and can be

used for the purposes of topological classification. When U possesses translational symmetry,

it was shown by Kitaev [31] that PR in Eq. (4.4) may be replaced with the position operator

X̂ so that

F (U) = tr
(
U †
[
X̂, U

])
, (4.8)

where ‘tr’ now indicates the trace per unit cell. We can then use the Fourier transform

Û(q) =
∑
x

U0xe
iqx (4.9)

to rewrite the flow as the integral

F (U) = i

2π

∫ π

−π
dqTr

[
Û(q)†dÛ

dq

]
, (4.10)

where ‘Tr’ is once again the usual matrix trace [31]. In this way, we see that for translationally

invariant systems, the flow is equal to the familiar momentum-space winding number w[U ]

that captures the topology of the mapping from the space S1 to the space of unitary matrices.

In this paper, we aim to find and classify time-evolution operators with nontrivial unitary

flow. However, many of the systems we might hope would host such phases can be shown to

have a trivial flow index. In particular, a 1D unitary generated by a local 1D Hamiltonian

can be shown to always have zero flow index [30]. In addition, for a unitary operator with a
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finite number of nonzero elements, we can use the cyclic property of the trace to show that

Eq. (4.4) vanishes.

One way to achieve a nonzero flow is to consider higher-dimensional systems, where, for

example, robust chiral edge modes may exist at the boundary of a 2D periodic drive [5]. In

this work, we will instead consider inherently 1D systems with a protected chiral symmetry,

which leads to a definition of ‘chiral flow’.

4.2 Driven Systems with Chiral Symmetry

4.2.1 Chiral Symmetry

In this section, we will study topological drives with chiral symmetry, corresponding to

Class AIII of the AZ classification scheme [1, 49, 58]. We will introduce a notion of chiral

flow that can be used to characterise such systems and describe a nontrivial model drive that

may be used to generate phases with different chiral flow indices. We begin by recalling that

a system has chiral symmetry if its (time-dependent) Hamiltonian satisfies the relation

CH(t)C−1 = −H(−t) (4.11)

for some chiral symmetry operator C, which is a unitary operator satisfying C2 = I [1]. The

eigenvalues of such an operator are ±1, and so we can write it in diagonal form as

C =

 I 0

0 −I

 = C+ − C−, (4.12)

where C± are projectors onto the ±1 eigenspace. In this basis, the instantaneous Hamiltonian

is off-diagonal. It follows from Eq. (4.11) that chiral symmetry acts on the unitary time-

evolution operator as

CU(t)C−1 = U(T − t)U †(T ), (4.13)

where we have used the fact that the Hamiltonian is periodic in time with period T [1]. At

the end of one cycle, the time-evolution operator satisfies

CU(T )C−1 = U †(T ). (4.14)
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4.2.2 A Model Drive with Chiral Symmetry

We now build a model drive with chiral symmetry that has nontrivial flow properties.

Inspired by the static Su-Schrieffer-Heeger (SSH) model [59], we take a 1D bipartite chain of

N unit cells, with sublattices labelled ‘A’ and ‘B’. For a closed chain, we define the SSH-like

Hamiltonian

HSSH = v
N∑
m=1

[
|m,B〉 〈m,A|+ H.c.

]
(4.15)

+ w
N∑
m=1

[
|(m+ 1)N,A〉 〈m,B|+ H.c.

]
,

where |m,α〉 denotes a state of the chain where the particle is on sublattice α in unit cell m.

The parameter v controls the hopping of particles between sublattice A and B within the

same cell, while the parameter w controls the hopping between unit cells. In this static case,

the Hamiltonian is trivial (topological) when |v| > |w| (|w| > |v|) [59]. It may be verified

that this Hamiltonian satisfies the chiral symmetry constraint

CHSSHC
−1 = −HSSH ,

where C is defined in the canonical way through C = ∏
j τ

z
j , and where τ zj is a Pauli z-matrix

acting in the sublattice space on site j.

For our model drive, we take a piecewise constant Hamiltonian of the form

H(t) =



H1 0 ≤ t < 1
4T

H2
1
4T ≤ t < 1

2T

H2
1
2T ≤ t < 3

4T

H1
3
4T ≤ t < T,

, (4.16)

where

H1 = 2π
T

N∑
m=1

(|m,B〉 〈m,A|+ h.c.) (4.17)

H2 = −2π
T

N−1∑
m=1

(|m+ 1, A〉 〈m,B|+ h.c.)
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are of the form in Eq. (4.15).1 The hopping terms of the drive are indicated in Fig. 4.2(a).

In each of the four steps of the drive, a particle moves with probability one between

neighboring sites, following the trajectory shown in Fig. 4.2(b). After a complete cycle, each

particle in the closed system returns to its initial position, so that U(T ) = I and the unitary

is a loop. After cutting the chain open, however, some terms from the Hamiltonian are

removed, and one particle on each edge no longer moves during the second and third steps.

At the end of the evolution, these particles have instead gained a phase of π, and will show

up in the quasienergy spectrum as protected edge modes at ε = π.

H1

H2
(a)

(b)
1 2

34

Figure 4.2: Schematic picture of the model drive given in Eqs. (4.16) and (4.17). (a) Driving

protocol. The phase with Floquet edge states is obtained by driving with a trivial Hamiltonian

H1 and a nontrivial Hamiltonian H2 in turn. Black (gray) points are sites on sublattice

A (B). For each Hamiltonian, hopping occurs between sites indicated by red lines. Gray

background indicates unit cells. (b) Drive action. Particles in the bulk move in closed

trajectories indicated by the blue arrows, while particles on the boundary follow the green

arrows and gain a phase of π.(Figure adapted from Reference [37] with permission from the

American Physical Society.

4.2.3 Winding Number Invariant

We now obtain a classification of this model drive which may be extended to more general

systems with chiral symmetry. We first observe that at t = T/2 in the model drive, particles

that started on an A site have moved to another A site (unless they are near the boundary)

1The relative minus sign is added for convenience so that hopping phases gained during steps one and two
cancel out in the bulk.
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and similarly, particles that started on sublattice B have moved to another B site. More

specifically, particles appear to ‘flow’ within each sublattice, and the action of the half-period

evolution U(T/2) resembles a combination of shift operators t̂⊕ t̂†, introduced in Eq. (4.6).

This is shown schematically in Fig. 4.3(a).

This sublattice decoupling is a general feature of Floquet drives with chiral symmetry at

the half-period point. We can see this by substituting t = T/2 into Eq. (4.13) to find

U † (T/2)CU (T/2)C−1 = U † (T ) . (4.18)

If the drive is a loop, then

CU (T/2)C−1 = U (T/2) , (4.19)

which means that U(T/2) commutes with the chirality operator and hence is block-diagonal

in the chiral basis,

U (T/2) =

U+ 0

0 U−

 . (4.20)

For the model drive, we see that U+ = t̂ and U− = t̂†.

Now, we know that any translationally symmetric (closed-system) unitary in 1D has a

winding number as given in Eq. (4.10). Applying this formula to the block-diagonal unitary

U(T/2), we find

w[U(T/2)] = w[U+] + w[U−] = 0, (4.21)

which must vanish because the evolution is one-dimensional: Specifically, the winding number

is a homotopy invariant and U(t) is smooth, and so w[U(t)] must be independent of time

[14]. Then, since w[U(0)] = w[I] = 0 at the beginning of the evolution, it follows that

w[U(T/2)] = 0 too.

However, we observed for the model drive in Sec. 4.2.2 a ‘chiral flow’ within each sublattice

for which w 6= 0, and so in general w[U+] and w[U−] might not be zero individually. We

identify the quantity w[U+] as the topological invariant ν[U ] for a chiral Floquet system,
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which may be written in full as

ν[U ] = i

2π

∫ π

−π
dk tr

[
U−1

+ (k)∂kU+(k)
]

(4.22)

= i

4π

∫ π

−π
dk tr

[
CU−1(k, T/2)∂kU(k, T/2)

]
.

In the second line we have inserted the chiral symmetry operator and used the fact that

w[U+] = −w[U−]. For the model drive above, it may be verified that ν[U ] = 1. Other integer

values of ν[U ] can be obtained by running this model drive in sequence (being sure to preserve

chiral symmetry), or by running the model drive in reverse.

Since the winding number is quantised to take integer values, it is robust to local

perturbations and is a well-defined topological index for chiral symmetric Floquet systems

with translational invariance. The topological invariant for 1D Floquet systems in class AIII

has previously been expressed in this form in Ref. [14].

(a)

(b)

Figure 4.3: Schematic picture of the chiral flow for the model drive introduced in Sec. 4.2.2.

(a) The chiral flow in the closed system generated by U(T/2). Black (grey) circles indicate

sublattice A (B). Blue (red) lines show the motion of particles on sublattice A (B) after a

half period. (b) The chiral flow in the corresponding open system after a half period. Note

that on each edge, particles are forced to hop between sublattices (green arrows).(Figure

adapted from Reference [37] with permission from the American Physical Society.

4.2.4 Chiral Flow Invariant

The winding number above functions as a topological invariant for Floquet systems with

both chiral symmetry and translational invariance. We now seek to construct a real-space
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topological invariant that continues to hold even in disordered systems, using the connection

between flow and winding number discussed in Sec. 4.1.1.

From Eq. (4.10), we see that the winding number w(U+) is related to the flow of the

unitary U+, which acts only on the positive chirality eigenspace. We can therefore use

Eqs. (4.4) and (4.5) to replace w[U+] with F [U+], so that

ν[U ] = Tr(U−1
+ PRU+PL)− Tr(U−1

+ PLU+PR)

= Tr(U−1
+ P `

RU+P
`
L)− Tr(U−1

+ P `
LU+P

`
R). (4.23)

This describes the flow from the left side of a cut to the right, using the definitions of

projectors introduced in Sec. 4.1.1. In the second line, we have again assumed that the

unitary operator is strictly local, so that the truncation to a region of width 2` around the

cut has no effect on the calculation of ν[U ]. In Appendix 4.A, we consider the more general

case where U is only exponentially localised.

As in the translationally invariant case, the total flow of the unitary must be zero and so

F [U+] = −F [U−]. We can therefore write the real-space invariant more symmetrically as

ν[U ] = 1
2

[
Tr
(
CU−1PRUPL

)
− Tr

(
CU−1PLUPR

) ]

= 1
2

[
Tr
(
CU−1[PR, U ]

) ]
(4.24)

= 1
2

[
Tr
(
CU−1P `

RUP
`
L

)
− Tr

(
CU−1P `

LUP
`
R

) ]

where we have used the shorthand U = U(T/2).

These (equivalent) expressions for ν[U ] define what we refer to as chiral flow, a bulk

topological invariant that quantifies the particle flow on a single sublattice at the midpoint of

a Floquet evolution belonging to class AIII. For the model drive introduced in Sec. 4.2.2, this

flow is evident from the form of the unitary operator at t = T/2, but ν[U ] may be calculated

for any evolution in the symmetry class. In particular, the real-space expression for the chiral

flow is applicable to unitary evolutions with disorder.

Before concluding this section, we note that there is another way of interpreting the chiral

flow in this model drive. In Ref. [5], the authors construct a 2D Floquet loop drive belonging
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to class A (which has no protecting symmetries). Under the action of their drive, a particle in

the bulk will follow a closed path around a square plaquette, returning to its initial position.

However, a particle at the boundary will be unable to complete a closed path, and will instead

propagate along the edge, as shown in Fig. 4.4.

At t = T/2, our 1D class AIII model drive exhibits bulk chiral flow that looks very similar

to the edge behaviour (at t = T ) of the 2D class A model of Ref. [5]. In fact, our class AIII

model can be interpreted as an open-system class A drive collapsed down to a single layer.

In this interpretation, the edge modes of the model of Ref. [5] undergo chiral flow at the

boundary.

Figure 4.4: Action of the 2D class A drive introduced in Ref. [5]. During each step, particles

hop between sites on a bipartite lattice following the paths indicated by red and blue arrows.

Sublattices are indicated by gray and black points, while gray shaded regions indicate unit

cells. After a complete cycle, a particle in the bulk returns to its initial position, while a

particle at the edge is translated by one unit cell. The 1D class AIII model we introduce in

Sec. 4.2.2 can be obtained by collapsing this 2D model onto a single chain. (Figure adapted

from Reference [37] with permission from the American Physical Society.
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4.3 Dynamical Edge Modes with Chiral Symmetry

4.3.1 Protected Dynamical Edge Modes in the Model Drive

In the previous section, we introduced chiral flow as a robust topological quantity that

describes the bulk properties of a Floquet evolution in class AIII halfway through the driving

cycle. However, topological phases also exhibit robust edge behaviour that is closely related

to the physics in the bulk, a feature known as bulk-boundary correspondence. In this section,

we study the form of the dynamical edge modes present at the end of a topological drive in

class AIII, and introduce an invariant that may be used to count them. This will be used in

Sec. 4.4 when we derive an explicit bulk-edge correspondence.

In general, protected edge states arise at interfaces between topological phases where

bulk topological numbers change. In this paper, we will mostly consider edge modes at the

boundary of an open system, which may be viewed as an interface with the (topologically

trivial) vacuum. As motivated in Sec. 4.1, inherently dynamical edge modes are associated

with bulk unitary loops, and occur at quasienergy ε = π.

As an example, we first revisit the model drive introduced in Sec. 4.2.2. We recall that

halfway through the drive, the time-evolution operator takes the block-diagonal form

Uc(T/2) =

 t̂ 0

0 t̂†

 ,
where t̂ (t̂†) is the unit translation operator to the right (left), and each translation operator

acts within a single sublattice. We have added the subscript c to emphasise that the unitary

operator here is for the closed system. In this way, the unitary Uc(T/2) generates a chiral

flow with index ν[U ] = 1, shown schematically in Fig. 4.3.

In order to find the number and form of the edge modes of the model, we must evolve

with the drive in an open system until t = T . Using Eqs. (4.15) and (4.16), we find

Uo(T ) = − |1, B〉 〈1, B| − |N,A〉 〈N,A| (4.25)

+
N−1∑
m=1
|m,A〉 〈m,A|+

N∑
m=2
|m,B〉 〈m,B| ,
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where the subscript o indicates this is the evolution for the open system (i.e. with terms in

the generating Hamitonian which connect sites across the boundary omitted). Then, writing

Uo(T ) =
∑
n

e−iεnT |φn〉〈φn| , (4.26)

we see that there is a single edge mode at ε = π on each boundary. Focussing on the

right-hand edge at x = N , we find that there is one edge mode with wavefunction |N,A〉,

and that the total number of π modes is nπ = 1. In general, we write the net number of π

edge modes at a single boundary as

nπ = nAπ − nBπ , (4.27)

which is the number of edge modes on sublattice A minus the number of edge modes on

sublattice B. This definition is justified in that a pair of degenerate states at the same edge

on different sublattices can be gapped out by a chiral-symmetric Hamiltonian acting only at

the edge, as proved below in Sec. 4.3.2.

For our model drive, it follows that at the right edge nRπ = 1, while at the left edge

nLπ = −1. In this way, at least for the model drive, we see that the number of edge modes is

equal to the change in the bulk chiral flow invariant across the interface,

nπ = nAπ − nBπ = ∆ν. (4.28)

We will show below that this bulk-edge correspondence holds in general.

4.3.2 Edge Invariants

We now extend this discussion of edge modes to more general drives with chiral symmetry.

First, we note from Eq. (4.14) that the quasienergy spectrum of a chiral-symmetric Floquet

operator U(T ) is symmetric about ε = 0 and ε = π. Specifically, if |φn〉 is an eigenstate of

U(T ) with quasienergy εn (mod 2π), then using Eq. (4.14) we can write

U(T )C |φn〉 = CU †(T ) |φn〉 = e−iεnC |φn〉 , (4.29)

which shows that C |φn〉 is also an eigenstate of U(T ) with quasienergy −εn (mod 2π). In

this way, eigenstates at ε = 0 and ε = π are special, in that the chiral symmetry operator
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maps them onto states with the same quasienergy. These spectral properties are illustrated

in Fig. 4.5.

ϵ

0π CC

Figure 4.5: Schematic quasienergy spectrum for a Floquet operator U(T ) with chiral symmetry.

Since quasienergies are defined modulo 2π, the spectrum may be visualised on the unit circle.

The chiral symmetry operator C maps states with quasienergy ε onto states with quasienergy

−ε (green band and blue points). In this way, the spectrum is symmetric about ε = 0

and ε = π. States at these special values map onto states with the same quasienergy

under the action of C, and possibly map onto themselves (red points).(Figure adapted from

Reference [37] with permission from the American Physical Society.

For the open-system Floquet operator Uo(T ) of the model drive given in Eq. (4.25), we

see that each edge state has support on a single sublattice, and is mapped onto itself under

the action of C. In fact, eigenstates at ε = π can always be chosen to have support on a

single sublattice, as we now show. First, we write the projector onto sublattice A/B as

PA/B = I± C
2 , (4.30)

which follows from Eq. (4.12). Then, given an eigenstate

Uo(T ) |φ〉 = − |φ〉 , (4.31)

we see that

Uo(T )PA |φ〉 = Uo(T )
[
I + C

2

]
|φ〉

= 1
2
[
Uo(T ) + CU †o (T )

]
|φ〉

= −PA |φ〉 , (4.32)

91



where we have made use of Eq. (4.14). In this way, PA |φ〉 is either an eigenstate of Uo(T ) at

ε = π or |φ〉 is annihilated by PA. In either case, we can split the state |φ〉 into components

PA |φ〉 and PB |φ〉, each of which has support on a single sublattice or vanishes. A state with

support on a single sublattice is mapped onto itself by the action of C.

Now, a dynamical topological phase is indicated by the presence of protected edge modes

at ε = π. In order to be protected, it should not be possible to gap out the edge modes with

a local, symmetry-respecting evolution acting only in the edge region. We now demonstrate

that for edge modes to be protected, they must all have support on the same sublattice.

Specifically, we will show that a pair of edge modes (at the same edge) with support on

different sublattices may be gapped out, providing justification for the edge-mode counting

defined in Eq. (4.27).

We assume we have two eigenstates |φA〉 and |φB〉 at quasienergy ε = π, with support

on sublattice A and B, respectively. While the states do not need to have support on the

same sites, they should each be localised to the same boundary. We then consider the local,

chiral-symmetric Hamiltonian

H ′ = |φA〉〈φB|+ |φB〉〈φA| , (4.33)

which generates the evolution,

e−itH
′ =

 cos(t) −i sin(t)

−i sin(t) cos(t)

 , (4.34)

where we have used the basis {|φA〉 , |φB〉}. To form a chiral-symmetric unitary evolution,

we prepend and append this new evolution to the original unitary Uo(T ). Considering the

action of this new evolution on the edge-state subspace, we find

e−itH
′
Uo(T )e−itH′ = e−itH

′

 −1 0

0 −1

 e−itH′

=

 − cos(2t) i sin(2t)

i sin(2t) − cos(2t)

 . (4.35)
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This new unitary evolution has quasienergies ε = π ± 2t, and so even for an infinitesimal

perturbation, the edge states are mixed and gap out. In this way, a pair of edge modes at

ε = π on different sublattices can be gapped out by a local, symmetric perturbation, and are

not protected. The number of protected edge modes at a given edge is the difference between

the number of edge modes on sublattice A and the number of edge modes on sublattice B, as

defined in Eq. (4.27).

With these definitions, we can now obtain a general expression for the number of protected

edge modes present at the boundary of an arbitrary chiral drive. An open-system drive

(derived from a unitary loop evolution) will have a thermodynamically large number of

eigenstates at ε = 0 corresponding to states in the bulk, and a smaller number of states with

ε 6= 0 near each boundary. The number of edge modes is the net number of eigenstates on a

single sublattice at quasienergy ε = π on a single boundary.

We project to just the right-hand boundary with the real-space projector PR, where the

boundary region need not be exact but should include all states on the right-hand edge with

ε 6= 0. We also define a projector Pπ onto the space of states with quasienergy ε = π (we give

an explicit expression for this operator below). In terms of these projectors, the number of

protected dynamical edge modes at the right-hand edge is given by

nRπ = nR,Aπ − nR,Bπ = Tr [PAPπPR]− Tr [PBPπPR] . (4.36)

Recalling that the chiral symmetry operator takes the form C = PA − PB, this expression

can be rewritten as

nRπ [U ] = Tr [CPπPR] = −1
2Tr [C (Uo(T )− I)PR] , (4.37)

where in the final equality we have replaced Pπ = −1
2 [Uo(T )− I] under the trace.

This replacement can be justified as follows, by expanding Uo(T ) in its basis of eigenstates,

Uo(T ) =
∑
n

e−iεn |φn〉〈φn| . (4.38)

First, subtracting the identity removes all states with ε = 0 from the expansion of Uo(T ),

meaning that these states do not contribute to the trace. The states with ε = π, however,
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have a coefficient of −1 in the expansion of Uo(T ), and so end up with a coefficient of −2

after subtracting the identity. States at ε = π will therefore each contribute −2 to the trace

(if they are not annihilated by PR or C). Finally, if there are any states with ε 6= 0 and

ε 6= π, they must occur as chiral pairs with quasienergy ±ε. However, the chiral symmetry

operator C acts as σx on these eigenvectors (mapping each state onto its chiral partner), and

is therefore traceless in this subspace.

Overall, the only subspace that contributes to the trace of C(Uo(T ) − I)PR is the π

eigenspace of the right-hand edge, and we divide by −2 to calculate the number of states in

this subspace. As long as the chosen region R is larger than the localisation length of any

edge modes, the trace will be integer valued. It follows that Eq. (4.37) is a robust topological

edge invariant which may be used to calculate the number of protected edge modes at the

right-hand edge of any chiral-symmetric Floquet operator Uo(T ).

4.4 Bulk-Edge Correspondence

4.4.1 Bulk-Edge Correspondence at half period

In this section, we will prove that the bulk chiral flow invariant of a chiral unitary loop drive

(ν[U ]) is equal to the number of protected edge modes at the right-hand edge at the end of

the evolution (nRπ ). Our argument has two parts: first, we will show that a nonzero chiral

flow in the bulk at t = T/2 leads to chiral-symmetry-breaking flow at the boundary, also

at t = T/2. Then, we will show that this symmetry-breaking boundary flow at t = T/2 is

responsible for nontrivial edge modes at the end of the cycle.

As in the previous section, it will be useful to distinguish between the closed-system

evolution and the open-system evolution, which we write as Uc(t) and Uo(t), respectively.

These two evolutions are identical apart from in a finite (Lieb-Robinson bounded) region

near the edges. In particular, since we are considering unitary loop evolutions, Uc(T ) = I

everywhere, while Uo(T ) is the identity away from the boundary regions.

We identify the three relevant spatial regions (left edge, middle, and right edge) as L, M
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and R, respectively, as shown in Fig. 4.6. The bulk region M should be defined far enough

away from the edges (i.e. larger than the Lieb-Robinson length away) that Uc(t) and Uo(t)

act identically within this region. For concreteness, a chain of length N can be split into the

regions

L : x ≤ N/3

M : N/3 < x ≤ 2N/3

R : x > 2N/3,

(4.39)

rounding the fractions if necessary.

We recall that halfway through a chiral-symmetric drive, the unitary operator Uc(T/2)

takes a block diagonal form (see Eq. (4.20)), indicating that the two sublattices become

decoupled. This motivated the notion of chiral flow, which we defined in Eq. (4.24). In the

open system, however, Uo(T/2) will not in general take this block-diagonal form. Instead,

at the edges of the system there may be coupling between the two sublattices, as we found

for the model drive and as illustrated schematically in Fig. 4.6. However, within the bulk

region M , both closed- and open-system drives are identical. In this way, we can calculate

the chiral flow invariant ν[U ] in the bulk even for the open system.

We now use the properties of chiral flow to relate the bulk behaviour to the boundary

behaviour of the open system at t = T/2. As noted in Sec. 4.1.1, chiral flow builds on the

notion of unitary flow from Ref. [31], and inherits many of its properties. Importantly, the

unitary flow invariant is independent of location, and may be calculated across any imaginary

cut in the 1D system. In turn, this implies that unitary flow is constant and conserved

throughout the system.

In the bulk at t = T/2, chiral flow is similarly constant and conserved. However, at the

edge region R, unitary flow corresponding to one sublattice flows from region M to region

R, while flow corresponding to the other sublattice flows from R to L. Since unitary flow is

conserved, there must be flow between sublattices at some point within the edge region. This

is the coupling between sublattices that is shown schematically in Fig. 4.6. We show below

that this inter-sublattice flow at the edges is exactly equal to the chiral flow in the bulk.
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L M R

(a)

(b)

Figure 4.6: Action of the general chiral unitaries Uc(T/2) and Uo(T/2) within the left

edge (L), middle (M) and right edge (R) regions of a 1D chain. Sublattices are shown as

black and gray points. (a) The unitary action of the closed system Uc(T/2) acts on each

sublattice independently. (b) In the open system, the unitary Uo(T/2) acts on each sublattice

independently in the bulk but couples the two sublattices in the edge regions. (Figure adapted

from Reference [37] with permission from the American Physical Society.

We write the open-system half-period unitary Uo(T/2) using the shorthand U and consider

the trivial trace

0 = Tr
[
U−1PR,AU − PR,A

]
, (4.40)

where PR,A = PRPA is a projector onto sublattice A in region R. This trace vanishes because,

for an open system, we can use the cyclic property of the trace to bring U next to U−1 and

replace UU−1 = I. Defining the complementary projector P̄R,A = I− PR,A, we can rewrite

the above trace as

0 = Tr
[
U−1PR,AUP̄R,A − U−1P̄R,AUPR,A

]
. (4.41)

The complementary projector can be expanded as a sum over all other sublattices and regions,

P̄R,A = PL,A + PL,B + PM,A + PM,B + PR,B. (4.42)

However, assuming the unitary has some finite strict localisation length, there can be no

overlap between U−1PRU and PL, and so we can ignore PL in the complementary projector.

In addition, in the bulk the unitary preserves chiral symmetry, and so U−1PR,AU can have
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overlap with PM,A but not with PM,B. Expanding the remaining projectors, we find

0 = Tr
[
U−1PR,AUPM,A − U−1PM,AUPR,A

]
+Tr

[
U−1PR,AUPR,B − U−1PR,BUPR,A

]
(4.43)

≡ ν1[U ]− ν2[U ],

where we have defined ν1/2[U ] as the first/second traces in the equation above. Referring

back to Sec. 4.2.4, we identify ν1[U ] as the chiral flow invariant ν[U ], measured across the

boundary between regions M and R. Explicitly, we use the relation PA = (I + C)/2 and the

fact that C commutes with the bulk unitary to rewrite the first trace as

ν1[U ] = Tr
[
U−1PRPAUPMPA − U−1PMPAUPRPA

]
= 1

2Tr
[
(I + C)U−1PRUPM − (I + C)U−1PMUPR

]
= 1

2Tr
[
CU−1PRUPM − CU−1PMUPR

]
, (4.44)

which recovers ν[U ] from Eq. (4.24). Note that the terms involving I in the expression above

do not contribute because they describe a (non-chiral) unitary flow, which must vanish in a

1D Floquet system.

We now identify the second trace ν2[U ], equal to ν1[U ], as an edge invariant which captures

the flow between sublattices within the region R,

νRedge[U ] = Tr
[
U−1PR,BUPR,A − U−1PR,AUPR,B

]
. (4.45)

This can be written equivalently as

νRedge[U ] = Tr
[
U−1PBUPAPR − U−1PAUPBPR

]
, (4.46)

where we have dropped two projectors onto R, which are unnecessary because any flow into

region M must conserve sublattice. We can define a similar edge invariant at the left edge,

which is equal in magnitude but opposite in direction to νRedge[U ].

Since ν1[U ] and ν2[U ] are equal, we see that the bulk chiral flow invariant (Eq. (4.24)) is

equal to the half-period edge invariant (Eq. (4.46)), i.e. that

ν[Uc(T/2)] = ν[Uo(T/2)] = νRedge[Uo(T/2)]. (4.47)
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This is the first step in our derivation of bulk-edge correspondence.

4.4.2 Bulk-Edge Correspondence after a complete cycle

To complete the derivation, we now show that the half-period edge invariant is equal to the

number of protected edge modes present at the right-hand edge at the end of the evolution,

nRπ .

To do this, we rewrite our expression for νRedge[U ] in terms of C by substituting Eq. (4.30)

into Eq. (4.46). Writing out U = Uo(T/2) in full, this gives

νRedge[U ] = 1
2
[
Tr [CPR]− Tr

[
U−1
o (T/2)CUo(T/2)PR

] ]
. (4.48)

However, Eq. (4.18) gives a relation between a generic half-period unitary and the corresponding

full-period unitary, which we can use to rewrite the expression above as

νRedge[U ] = 1
2

[
Tr [CPR]− Tr

[
U−1
o (T )CPR

] ]

= −1
2Tr

[
C
(
U−1
o (T )− I

)
PR
]
, (4.49)

where in the second line we have used that C commutes with PR and grouped together the

expressions under the trace. Finally, we identify the expression above as nRπ from Eq. (4.37),

noting that either Uo(T ) or U−1
o (T ) may be used to count edge modes at ε = π.

Overall, we have shown that chiral flow in the bulk at t = T/2 leads to chiral symmetry-

breaking flow at the boundary, which in turn generates edge modes at ε = π at the end of the

evolution. This bulk-boundary correspondence is summarised by the three equal invariants

ν[Uc/o(T/2)] = νRedge[Uo(T/2)] = nRπ [Uo(T )]. (4.50)

4.5 Conclusion

In this work, we have introduced chiral flow (Eq. (4.24)) as a physically motivated, locally

computable bulk invariant, which describes the topological properties of unitary evolutions

with chiral symmetry. While the invariant itself is defined only for unitary loop evolutions,
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we argued in Sec. 4.1 and in Appendix 4.B that any chiral evolution (with a gap at ε = π)

is related to a characteristic unitary loop. In this way, chiral flow provides a topological

characterisation of any (gapped and non-interacting) driven system belonging to class AIII.

This invariant is an improvement on previous invariants, discussed in Sec. 5.3, in that it

applies to systems with disorder and is locally computable. In addition, it has the intuitive

physical interpretation of describing the unitary flow [31] on each sublattice at the half-period

point.

We went on to derive an explicit bulk-boundary correspondence which relates the chiral

flow to the number of protected dynamical edge modes present at the end of the evolution.

To do this, we first introduced an edge invariant (Eq. (4.46)) which quantifies the chiral-

symmetry-breaking flow that arises at a boundary at the midpoint of the evolution. This

was found to be exactly equal to the chiral flow invariant in the bulk. It is interesting to

note that the behaviour of a chiral drive at t = T/2 offers much more information about its

topological properties than its behaviour at t = T .

Finally, we equated this half-period edge invariant to the full-period edge invariant

(Eq. (4.37)), which directly counts the number of protected edge modes at ε = π at the end

of the evolution. In this way, our work provides the first explicit bulk-edge correspondence

for one-dimensional Floquet systems with chiral symmetry. In passing, we note that the

full-period edge invariant we introduced may be used to count the number of modes at ε = π

in general, and is applicable beyond unitary loop evolutions.

Our work raises a number of interesting open questions. First, Floquet system in class AIII

have been shown to host nontrivial topological phases in all odd (spatial) dimensions, but

have thus far only been studied in cases with translational symmetry or in one dimension.

In future work, we will extend the notion of chiral flow, and the associated bulk-boundary

correspondence, to the higher dimensional case. In the process, we hope to provide insight

into the boundary behaviour of Floquet topological phases in even dimensions. Our work also

extends Kitaev’s notion of unitary flow [31] to systems with chiral symmetry. It would be

interesting to study whether this quantity can be similarly extended to the other symmetry
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classes in the 10-fold way. Finally, an information-theoretic extension of the notion of flow

was applied to many-body unitary evolutions in Ref. [30], in the context of quantum cellular

automata. The resulting topological invariant underpins the classification of interacting

Floquet topological phases in two and three dimensions introduced in Refs. [26, 27, 60]. An

extension of this many-body invariant to systems with chiral symmetry, and indeed in other

symmetry classes and dimensions, remains an interesting avenue for future research.
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APPENDIX

4.A Extension to Exponentially Decaying Unitaries

In the main text, the unitary operators we considered were assumed to be strictly local with

some localization length `, i.e., we assumed that Ujk = 0 for |j − k| > ` (where j and k label

unit cell positions). In this appendix, we extend our results to the more general definition of

locality in which matrix element magnitudes decay exponentially with distance. Specifically,

we will assume that for large enough |j − k|, the unitary operator satisfies

|Ujk| ≤ Ce−|j−k|/`, (4.51)

for some positive constant C and localization length `. If we evolve a local Hamiltonian in

time, the unitary time-evolution operator will generically take this form [7].

● ●
●

●

● ●

●

●
● ●

L R

x0

x

x

|Ux0 x|

(a)

(b)

ℓ

x0-a x0+a

Figure 4.7: Calculation of the chiral flow invariant for a local unitary satisfying Eq. (4.51).

(a) We split the region near a cut at x = x0 into left (L) and right (R) pieces. (b) Matrix

elements which connect sites across the cut are bounded by an exponentially decaying envelope

function. By truncating projectors to sites within a distance a from the cut, we neglect

contributions which are of size O(e−a/`). By taking a much larger than ` these errors can be

made exponentially small.
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4.A.1 Bulk Invariants

We now study how this looser definition of locality affects the definition and calculation

of invariants introduced in the main text. We recall that the bulk chiral flow invariant

(Eq. (4.24)) may be written for a formally infinite system as

ν[U ] = 1
2

[
Tr
(
CU−1PRUPL

)
− Tr

(
CU−1PLUPR

) ]
, (4.52)

where U = U(T/2) and PL and PR are projectors onto the semi-infinite regions x ≤ x0 and

x > x0, respectively. For the infinite system, this equation continues to give a well-defined

quantised chiral flow index, even for exponentially localised unitaries satisfying Eq. (4.51)

[31]. For practical purposes, however, infinite system sizes cannot be achieved, and we must

necessarily consider a finite system with projectors truncated to a finite region around the

cut at x0.

In the main text, the unitary operators we considered were strictly local, and we could

truncate to the region [x0 − `, x0 + `] without changing the value of ν[U ]. In addition, ν[U ]

could be calculated using either the closed-system unitary Uc(T/2) or the open-system unitary

Uo(T/2), since these had identical action within the truncated region (as long as the edges

were far enough away from x0). In the current case, the open and closed system unitaries will

have actions which differ at x0, even if only by an exponentially small amount. In addition,

truncation to a region around a cut at x0 will introduce other (exponentially small) errors,

and so too will having a finite system size. All of these sources of error will need to be taken

into account and quantified.

First, we consider a closed system with N sites in total (which we write as c[N ]) and

attempt to calculate the bulk invariant using a truncation to the region [x0 − a, x0 + a], with

a ≤ N/2.2 Explicitly, we set x0 = 0 and define

νc[N ],a[U ] = 1
2

[
Tr
(
CU−1P a

RUP
a
L

)
− Tr

(
CU−1P a

LUP
a
R

) ]
, (4.53)

2For a finite system, we require a ≤ N/2 so that only the flow across the cut is measured, and not
contributions which pass around the ‘back’ of the system.
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where P a
L projects onto the range [−a, 0), P a

R projects onto the range [0, a), and U is shorthand

for the closed-system unitary Uc[N ](T/2). It is clear that

lim
a→∞

lim
N→∞

νc[N ],a[U ] = ν[U ], (4.54)

as this recovers Eq. (4.52) which gives the exact, quantised invariant.

For large but finite values of a and N , this expression will neglect contributions from the

unitary operator with magnitudes less than or equal to O(e−a/`) and O(e−N/(2`)), respectively.

Since a ≤ N/2, the errors due to finite system size will be smaller than those due to truncation,

and so we can safely ignore them. The total error in the calculated value of νc[N ],a[U ] is

bounded by the sum of all neglected terms, and so overall we expect

νc[N ],a[U ] = ν[U ] +O
(
e−a/`

)
. (4.55)

In this way, by taking the truncation length a � ` (and increasing the system size

correspondingly), it is possible to calculate the chiral flow invariant to arbitrary accuracy.

This idea is shown schematically in Fig. 4.7.

We now consider a finite open system o[N ], which has N sites labelled from −N/2 to

N/2− 1. We again try to calculate the bulk invariant using a truncation to the region [−a, a],

and this time define

νo[N ],a[U ] = 1
2

[
Tr
(
CU−1P a

RUP
a
L

)
− Tr

(
CU−1P a

LUP
a
R

) ]
, (4.56)

where definitions are as before except U is now shorthand for the open-system unitary

Uo[N ](T/2). As for the closed system, we can take the limit N → ∞ followed by the limit

a→∞ to find

lim
a→∞

lim
N→∞

νo[N ],a[U ] = ν[U ], (4.57)

which again recovers Eq. (4.52) (since boundary conditions are negligible in the infinite system

limit). At finite system sizes, there are errors due to the truncation and errors due the finite

size. The scaling follows as before, and we find

νo[N ],a[U ] = ν[U ] +O
(
e−a/`

)
. (4.58)
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In this way, although calculations of the chiral flow invariant in the closed system and in the

open system may be different, both values tend towards the same quantised value in the limit

of infinite system size and infinite truncation region. At finite sizes the calculated values

differ from the true value by errors of size O(e−a/`), and correspondingly may differ from

each other by a similar amount.

4.A.2 Edge Invariants

We now consider the effects of the new definition of locality on the edge invariants defined in

the main text. To aid the discussion, we formally consider a semi-infinite system extending

from negative infinity to x = a, as shown in Figure. 4.8. Recalling Eq. (4.46), we write the

edge invariant for the semi-infinite system as

νRedge,a[U ] = Tr
[
U−1PBUPAP

a
R − U−1PAUPBP

a
R

]
. (4.59)

where U = Uo(T/2) is the open-system unitary and P a
R is a projector onto the right-hand

edge region of the system, the interval [0, a]. For a strictly local unitary (as considered in

the main text), the expression above gives an exact, quantised value, as long as a > `. For

exponentially decaying unitary operators satisfying Eq. (4.51), however, the definition of R

amounts to a truncation. In this case, the ‘edge region’ should formally include exponentially

small contributions (set by the length scale `) even on sites outside of the range [0, a]. The

truncation in Eq. (4.59) neglects these contributions of size O(e−a/`), leading to a total error

(bounded by a sum of these pieces), which is also of size O(e−a/`). In the thermodynamic

limit we take a→∞ and find

lim
a→∞

[
νRedge,a[U ]

]
= νRedge[U ]. (4.60)

We will verify that this is indeed the true, quantised edge invariant below.

We first use a similar method as in the main text to show that the bulk and edge invariants

are equal in the thermodynamic limit. Starting from the trivial trace

0 = Tr
[
U−1P a

R,AU − P a
R,A

]
, (4.61)
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Figure 4.8: Semi-infinite system used in the construction of truncated edge invariants. (a)

Boxed region indicates the region where P a
R is nonzero, extending from x = 0 to x = a. To

reduce truncation errors, this should be much larger than the Lieb-Robinson length of the

unitary `. (b) Edge modes decay exponentially away from x = 0. Truncating to the boxed

region means contributions of size O(e−a/`) are neglected.

we insert the complementary projector P a
R,A = P a

R,B + PL,A + PL,B, where PL projects onto

the region x ≤ 0, and find

0 = Tr
[
U−1P a

R,AUP
a
R,A − P a

R,AP
a
R,A

]
= ν̃Ra [U ]− νRedge,a[U ], (4.62)

where

νRedge,a[U ] = Tr
[
U−1

(
P a
R,B + PL,B

)
UP a

R,A

−U−1P a
R,AU

(
P a
R,B + PL,B

)]
(4.63)

recovers Eq. (4.59) and

ν̃Ra [U ] = Tr
[
U−1P a

R,AUPL,A − U−1PL,AUP
a
R,A

]
(4.64)

is equivalent to Eq. (4.53) up to corrections of size O(e−a/`) (due to the fact that the system

is now semi-infinite). In this way, in the thermodynamic limit we find

lim
a→∞

[
νRedge,a[U ]

]
= lim

a→∞

[
ν̃Ra [U ]

]
= ν[U ], (4.65)
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which recovers the quantised bulk invariant. In this way, we have defined truncated edge

and bulk invariants at t = T/2 which are equal to each other and to their values in the

thermodynamic limit up to exponentially small corrections. By taking the truncation region

a� `, the corrections can be made exponentially small. This is illustrated schematically in

Fig. 4.8.

Finally, we define the invariant which counts the number of edge modes at t = T in a

similar way to Eq. (4.37). In the semi-infinite system, however, there is only one edge, and

we can formally define the exact (quantised) number of edge modes as

nRπ [U ] = −1
2Tr [C (Uo(T )− I)] , (4.66)

where Uo(T ) is obtained by removing terms from the generating Hamiltonian that connect

sites across the boundary at x = a. In contrast to Eq. (4.37), there is no projector PR, which

previously served to remove any contributions from the left edge. This expression formally

gives the exact number of edge modes, even for exponentially decaying unitaries satisfying

Eq. (4.51).

For any finite system, however, we must introduce a truncation, and so we define

nRπ,a[U ] = −1
2Tr [C (Uo(T )− I)P a

R] , (4.67)

where P a
R again projects onto the region between x = 0 and x = a. This expression differs

from the exact value by an error with size O(e−a/`), as it neglects the exponential tails of

the edge modes that permeate beyond x = 0. However, these corrections are again of size

O(e−a/`), and can be made arbitrarily small by taking a much larger than `. In this way,

lim
a→∞

[
nRπ,a[U ]

]
= nRπ [U ]. (4.68)

As in the main text, we can use Eq. (4.18) to show that expressions for nRπ,a[U ] and νRedge,a[U ]

are equivalent. This argument is very similar to that given in Sec. 4.4.2, and so we do not

reproduce it here.

Overall, we find that bulk and edge invariants can be defined even for unitary operators

satisfying the looser definition of locality given in Eq. 4.51. While these invariants take
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quantised values only in the limit of infinite system size, any realistic measurement necessarily

requires truncation, which will introduce exponentially small corrections. However, by taking

the truncation region to be much larger than the Lieb-Robinson length of the unitary operator,

these errors can be made arbitrarily small.

4.B Obtaining a Unitary Loop from a General Unitary Evolution

In the main text, we mostly worked with unitary loop evolutions, which satisfy Uc(T ) = I.

Most unitary evolutions, however, will not satisfy this property. In these cases, as motivated

in Sec. 4.1, we may construct a unitary loop from the evolution which captures its inherently

dynamical component. In this appendix, we outline this construction in more detail.

We consider an arbitrary closed-system evolution with chiral symmetry which, at t = T = 1,

has a gap in the quasienergy spectrum at ε = π. [In order for there to be protected dynamical

edge modes, we require a gap at ε = π in the closed system, and so we only consider this

case here]. We can then define a Floquet Hamiltonian corresponding to this gap as

HF = i

T
logπ Uc(T ), (4.69)

where logπ is the complex logarithm defined as

logπ(eiψ) = iψ (4.70)

for

−π < ψ < π. (4.71)

Explicitly, if we express the full unitary evolution Uc(T ) in its eigenbasis,

Uc(T ) =
∑
j

λj |Ψj〉〈Ψj| , (4.72)

then the Floquet Hamiltonian may be written

HF = i

T

∑
j

logπ (λj) |Ψj〉〈Ψj| . (4.73)

107



As shown in Ref. [7], a Floquet Hamiltonian defined in this way is local (in that the magnitudes

of its matrix elements decay exponentially with distance). In addition, since the underlying

evolution is chiral symmetric, the Floquet Hamiltonian satisfies

CHFC
−1 = −HF . (4.74)

We can deform the full unitary evolution Uc(t) into a unitary loop followed by an

evolution with HF . First, we define a (chiral-symmetric) unitary loop through the generating

Hamiltonian

HL(t) =



−2HF 0 ≤ t < 1
4T

2H(2(t− 1
4T )) 1

4T ≤ t < 3
4T

−2HF
3
4T ≤ t < T,

, (4.75)

where H(t) is the original generating Hamiltonian for Uc(t). It may be verified that the

evolution

Vc(t) = T exp
[
−i
∫ t

0
HL(t′) dt′

]
(4.76)

satisfies Vc(T ) = I. To recover Uc(T ), we can evolve with HF for time T/2 before and after

the evolution with HL(t) and note that

e−iHFT/2Vc(T )e−iHFT/2 = e−iHFT ≡ Uc(T ). (4.77)

This complete evolution has chiral symmetry and is homotopically connected to the original

evolution Uc(t) [1]. Dynamical edge modes can only arise during the evolution with HL(t),

as it is only in this part of the evolution that the gap at ε = π can close. In this way, the

dynamical properties of Uc(t) are equivalent to the dynamical properties of the loop evolution

Vc(t).

The loop evolution Vc(t) can be used directly in the calculation of the bulk chiral flow

invariant in Eq. (4.24). For the edge invariants, we require the corresponding open system

evolution, Vo(t). This can be obtained by truncating the loop generating Hamiltonian HL(t)

in Eq. (4.75) by removing terms which connect sites across the boundary. Evolution with
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this open-system Hamiltonian then yields Vo(t). This can be used in the calculation of the

half-period edge invariant in Eq. (4.46) and in the calculation of the number of edge modes

at t = T in Eq. (4.37).
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CHAPTER 5

Bulk edge correspondence in high dimensional class

AIII

5.1 A three-dimensional Model Drive with Chiral Symmetry

We now build a model drive with chiral symmetry. Inspired by the three dimensional

tight-binding model for chiral topological insulators[61], we take a 3D bipartite chain of

Nx ×Ny ×Nz unit cells, with spin 1/2 on a crystal with two sublattices(or orbitals) labelled

‘A’ and ‘B’. For our model drive, we take a piecewise constant Hamiltonian of the form

H(t) =



H1 0 ≤ t < 1
4T

H2
1
4T ≤ t < 1

2T

H2
1
2T ≤ t < 3

4T

H1
3
4T ≤ t < T,

(5.1)

where H1 is a swap operator only including the hopping of particles between sublattice A

and B within the same cell

H1 =



0 0 I 0

0 0 0 I

I 0 0 0

0 I 0 0


(5.2)
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H2(kx, ky) = −2π
T

1
E(k)



0 0 −iq0 + q3 q1 − iq2

0 0 q1 + iq2 −iq0 − q3

iq0 + q3 q1 + iq2 0 0

q1 − iq2 iq0 − q3 0 0


(5.3)

in basis (A ↑, A ↓, B ↑, B ↓) and where q0 = h + cos kx + cos ky + cos kz, q1 = t sin kx,

q2 = sin ky, q3 = sin kz with h, t being control parameters.

This model, similar to the one-dimensional model we discussed in last section, can generate

Dirac cones on the edge by tuning the parameters h and t. At half-period, this evolution

operator becomes,

U(kx, ky,
T

2 ) = i
1

E(k)



−iq0 + q3 q1 − iq2 0 0

q1 + iq2 −iq0 − q3 0 0

0 0 iq0 + q3 q1 + iq2

0 0 q1 − iq2 iq0 − q3


(5.4)

where each block can generate the three dimensional quantum flow as defined in Section 2.3.5.

In the following sections, we will study the connection between this flow and the edge behavior.

5.2 Edge invariants

We use Uc(t) and Uo(t) to distinguish between the closed-system evolution and the open-

system evolution respectively. These two evolutions are identical apart from in a finite

(Lieb-Robinson bounded) region near the edges. In particular, since we are considering

unitary loop evolutions, Uc(T ) = I everywhere, while Uo(T ) is the identity away from the

boundary regions.

To describe the edge behavior, we only need to consider the boundary of the open system,

which could be a 2n dimensional surface of a 2n+ 1 cubic(or other shape) with a thickness

at least larger than double the Lieb-Robinson length.

We identify the two relevant spatial regions (edge and center) as E, M , respectively.
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The bulk region M should be defined far enough away from the edges (i.e. larger than the

Lieb-Robinson length away) that Uc(t) and Uo(t) act identically within this region. In general,

this system can be split into the regions

E : |r| ≥ R

M : |r| ≤ R
(5.5)

Then M is a 2n+1 dimensional ball. we now introduce a projector PE acting on the edge.

Then the edge unitary can be the truncation of the unitary Uo(T ):

UE(T ) = PEUo(T )PE (5.6)

To simplify our discussion, we consider a semi-infinity open-system extending from

x2n+1 = 0 to positive infinity. Then there is only one edge located at x2n+1 = 0. We can

directly use Uo(T ) as edge unitary.

To classify an edge unitary, we can map this unitary to a flattened Hamiltonian without

the chiral symmetry through Chapter 2

HU = SUo(T ) (5.7)

and then use the classification of HU (in 2n-dimensional Class A)[4]

νE = −(2πi)n
n!

∑
σ

(5.8)

(−1)sign(σ) Tr
(
PF
[
P (σ1)

a , PF
][
P (σ2)

a , PF
]
· · ·

[
P (σ2n)

a , PF
])

where σ is a permutation given by

σ =

 1, 2, ..., 2n

σ1, σ2, ..., σ2n

 (5.9)

with the parity sign(σ). We define PF as the projector onto the lower bands, satisfying

PF = 1−HU

2 . In addition, we define right half axis projectors acting on all d directions,

P i
a |r, α〉 =


|r, α〉 if ri ≥ ai

0 if ri < ai

, (5.10)
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After plugging Eq. (5.7) and PF = 1−HU

2 , we can rewrite the edge invariant as the function

of the edge unitary

νE = − (πi)n
2n+1n!

∑
σ

(5.11)

(−1)sign(σ) Tr(1− SUo(T ))
[
P (σ1)

a ,SUo(T )
][
P (σ2)

a ,SUo(T )
]
· · ·

[
P (σ2n)

a ,SUo(T )
]

This can be further simplified as as

νE = (πi)n
2n+1n!

∑
σ

(5.12)

(−1)sign(σ) TrSUo(T )
[
P (σ1)

a ,SUo(T )
][
P (σ2)

a ,SUo(T )
]
· · ·

[
P (σ2n)

a ,SUo(T )
]

This invariant is independent of the reference point a because the topological invariants of

HU doesn’t depend on the choice of a.

5.3 Bulk invariants

Same as one-dimensional system, the classification of a higher-dimensional system with chiral

symmetry is determined by the unitary evolution at half period Uc(T2 ). Every Uc(T2 ) is

block-diagonal in the chiral basis as shown in Eq. (4.20), we can associate each block unitary

with a flow index which is given in Eq. (2.21). The flow index for the block unitary on

sublattice A is

ν2n+1[U+] = (πi)n
(2n+ 1)!!

∑
σ

(5.13)

(−1)sign(σ) Tr
(
U †+[P (σ1)

a , U+]U †+[P (σ2)
a , U+] · · ·U †+[P (σ2n+1)

a , U+]
)

Where P (σ1)
a and σ are defined in last section. Substituting U+ as PAUc(T/2)PA, we can

therefore write down the real space invariant as

ν2n+1[U+] = (πi)n
(2n+ 1)!!

∑
σ

(5.14)

(−1)sign(σ) Tr
(
PAŨ

†[P (σ1)
a , Ũ ]Ũ †[P (σ2)

a , Ũ ] · · · Ũ †[P (σ2n+1)
a , Ũ ]

)
where we have used the shorthand Ũ = Uc(T/2). This real-space expression for the flow is

applicable to unitary evolutions with disorder. As we proved in Chapter 2, the flow index
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associated with a locally generated unitary U is zero. In addition, Uc(T/2) is locally generated

which can be written as a finite-time evolution with a local Hamiltonian

Uc(T/2) = T exp
[
−i
∫ T/2

0
Hc(t)dt

]
(5.15)

Thus the total flow which can be written as ν2n+1[U+]+ν2n+1[U−] in the 2n+1 dimensional

system is zero. This can also be understood in this way: The winding number is a homotopy

invariant and U(t) is smooth, and so w[U(t)] must be independent of time [14]. Then, since

w[U(0)] = w[I] = 0 at the beginning of the evolution, it follows that w[U(T/2)] = 0 too.

Therefore, there are opposite flow on sublattice A and B. That’s why we call it ‘chiral flow’.

5.4 Bulk-Edge Correspondence

In this section, we will prove the bulk edge correspondence similar as what we did in one-

dimensional system. We will prove that the bulk chiral flow invariant of a chiral unitary loop

drive (ν2n+1[U ]) is equal to the number of protected edge modes denoted by νE.

5.4.1 truncated edge invariants

In order to connect the bulk and edge, we introduce a truncated edge invariant. We take a

cut-off in direction x2n+1 by using Q0,r, a projector onto the interval [0, r] at the left-hand

edge region of the system. Then we can express the truncated edge invariant as,

νrE = (πi)n
2n+1n!

∑
σ

(5.16)

(−1)sign(σ) Tr
[
SUo(T )

[
P (σ1)

a ,SUo(T )
][
P (σ2)

a ,SUo(T )
]
· · ·

[
P (σ2n)

a ,SUo(T )
]
Q0,r

]

Note that Q0,r = P 2n+1
0 − P 2n+1

rê2n+1 where the definition of these two projectors P 2n+1
0 and

P 2n+1
rê2n+1 are given in Eq. (5.10). For a strictly local unitary, the expression above equals νE,

taking a quantized value, as long as r is larger than the localized length l. For exponentially
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decaying operators, this truncated edge invariant differ from νE by exponentially small

contributions(with a size O(e−r/l)) from regions outside the interval [0, r]. Therefore, in the

thermodynamic limit, by taking a limit,

νE = lim
r−→∞ ν

r
E (5.17)

To connect the edge invariants at the end of a complete cycle(t = T ) with the half-period

bulk invariants, we rewrite our expression for νrE by substituting Eq. (4.18) into Eq. (5.16),

νrE = (πi)n
2n+1n!

∑
σ

(5.18)

(−1)sign(σ) Tr
[
U †SU

[
P (σ1)

a , U †SU
][
P (σ2)

a , U †SU
]
· · ·

[
P (σ2n)

a , U †SU
]
Q0,r

]
using the shorthand U to represent Uo(T/2).

5.4.2 Bulk-Edge Correspondence

As what we discussed in Sec 5.2, the difference between two unitary operators Uc(t) and Uo(t)

is bounded near the edge. We define the difference as

D(t) = Uo(t)− P 2n+1
0 Uc(t)P 2n+1

0 (5.19)

where we use P 2n+1
0 to confine Ub(t) to the semi-infinity system. This operator D(t) is

exponentially decaying in direction 2n+ 1. Namely,

|D(t)r1,r2| ≤ Ce−λ|r2−r1|e−λ|r
2n+1
1 | (5.20)

with a decaying length 1/λ. Then we can use the localization properties of D(t) to connect

the bulk invariant and edge behavior at half-period. Similar as the bulk invariant for Uc(t) in

the closed system, we can also define a ‘bulk invariant’ for Uo(t) in the open system,

νrb = (πi)n
(2n− 1)!!

∑
σ

(5.21)

(−1)sign(σ) Tr
(
PAU

†[P (σ1)
rê2n+1 , U ]U †[P (σ2)

rê2n+1 , U ] · · ·U †[P (σ2n)
rê2n+1 , U ]U †[P (2n+1)

rê2n+1 , U ]
)
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using the shorthand U to represent Uo(T/2). Since the difference between open system and

local system mainly exists on the boundary as indicated in Eq. (5.19), this invariant should

agree with the bulk invariant of Uc(t) as we increase r and move projectors away from the

edge. In the appendix, we will show that

νrb = νrE (5.22)

when away from the edge. After taking limit (r →∞) for both sides, we prove the bulk-edge

correspondence.
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APPENDIX

5.A Projector Calculus

In this section, we introduce Projector Calculus method to study the properties of bulk and

edge invariants.

Consider a general p-form

A = ai1...ipdxi1 ∧ . . . ∧ dxip (5.23)

= aIdx
I .

where the operator aI = ai1...ip is skew symmetric in i1 . . . ip. We define operators P̂j which

act on such a form through conjugation as

P̂jA = [Pj, aI ] dxj ∧ dxI

= dxj ∧ [Pj, A]

where the wedge product acts from the left and we define the commutator [Pj, A] := [Pj, aI ] dxI .

On a 0-form, we define the action of P̂i to be

P̂jA = dxj [Pj, A] .

The summation of P̂j over all directions become

P̂ =
n∑
j

P̂j.

where we consider a n-dimensional system. This operator works like exterior differentiation

but uses commutator instead of differentiation operator. While the differentiation form is

used to encode the topology of Floquet systems in momentum space [14], we can apply this

‘commutator form’ to real-space unitary evolutions.

Lemma 5.A.1 The operator P̂ takes an p-form to an (p+ 1)-form, satisfying

(i)P̂ is additive, namely, P̂ (A+B) = P̂A+ P̂B
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(ii)P̂ 2A = 0 for any p-form A

(iii)P̂ (AB) =
[
P̂ (A)

]
B + (−1)nAA

[
P̂ (B)

]
, where A is a nA form and we use the shorthand

AB to represent the wedge product between A and B, i.e., A ∧B.

(iv)P̂ (A−1) = −A−1P̂ (A)A−1 if A is a 0-form

Proof: (i) can be proved directly from the definition of the operator P̂ .

P̂j(A+B) = dxj ∧ [P,A+B]

= P̂jA+ P̂iB

(ii) We note that

P̂ 2A =
∑
i

P̂i

∑
j

P̂jA


=

∑
i

P̂i

∑
j

dxj ∧ [Pj, A]


=
∑
ij

dxi ∧ dxj ∧ [Pi, [Pj, A]] .

Terms with i = j vanish because dxi ∧ dxi = 0, while for terms with i 6= j we find

dxi ∧ dxj ∧ [Pi, [Pj, A]]

= dxi ∧ dxj ∧ [PiPjA− PiAPj − PjAPi + APjPi]

= −dxj ∧ dxi ∧ [PiPjA− PiAPj − PjAPi + APjPi] ,

where in the final line, we have used the antisymmetric property of the wedge product.

However, we can relabel i↔ j in the summation to write

dxi ∧ dxj ∧ [Pi, [Pj, A]]

= −dxj ∧ dxi ∧ [PiPjA− PiAPj − PjAPi + APjPi]

= −dxi ∧ dxj [PjPiA− PjAPi − PiAPj + APiPj] .

Then, since Pi and Pj commute, this term is equal to its negative, and so must vanish.
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(iii) We consider how P̂j acts on a product of forms, writing

P̂j (AB) = dxj ∧ [Pj, AB]

= dxj ∧ [PjAB − ABPj]

= dxj ∧ [PjAB − APjB + APjB − ABPj]

= dxj ∧
[

[Pj, A]B
]

+ dxj ∧
[
A [Pj, B]

]

=
[
dxj ∧ [Pj, A]

]
∧B + (−1)nAA ∧

[
dxj ∧ [Pj, B]

]
=

[
P̂j(A)

]
B + (−1)nAA

[
P̂j(B)

]
,

where the possible relative negative sign is important. In addition, since P̂ is a sum over P̂i,

we find

P̂ (AB) =
[
P̂ (A)

]
B + (−1)nAA

[
P̂ (B)

]
,

(iv) If A is a 0-form

P̂i
(
A−1

)
= dxi

[
PiA

−1 − A−1Pi
]

= dxi
[
− A−1 (PiA− APi)A−1

]
= −A−1P̂i(A)A−1.

By doing a summation over all directions,

P̂
(
A−1

)
= −A−1P̂ (A)A−1

�

We now introduce the trace operator as

Tr(A) = Tr
(
as(I)

)
if A is a p-form defined in (5.23). We use the symbol s(I) to represent a sorting of the indices

in I, organizing them in increasing order,

s(i1, i2, . . . , ip) = (i′1 < . . . < i′p) (5.24)

For instance, s(3, 1, 2) = (1, 2, 3). Here are two important properties of the trace operator:
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Lemma 5.A.2 (i) The trace of any commutator form is always zero. In other words,

Tr
(
P̂ (A)

)
= 0 holds for any p-form A.

(ii) The cyclic property of the trace operator acting on the exterior forms: Tr(BA) =

(−1)nAnB Tr(AB).

Proof: Then

Tr
(
P̂ (A)

)
= Tr

([
Pj, as(I)

])
= 0

using the cyclic property of the trace operator. This property is very useful especially when

we need to construct zero-trace operators.

(vi) Consider two exterior forms A and B:

A = ai1...indxi1 ∧ . . . ∧ dxinA

B = bj1...jndxj1 ∧ . . . ∧ dxjnB

Then the wedge product between them:

AB = A ∧B

= ai1...inbj1...jn
(
dxi1 ∧ . . . ∧ dxinA

)
∧
(
dxj1 ∧ . . . ∧ dxjnB

)
BA = B ∧ A

= bj1...jnai1...in
(
dxj1 ∧ . . . ∧ dxjnB

)
∧
(
dxi1 ∧ . . . ∧ dxinA

)
= (−1)nAnB bj1...jnai1...in

(
dxi1 ∧ . . . ∧ dxinA

)
∧
(
dxj1 ∧ . . . ∧ dxjnB

)
After taking trace of AB and BA, we get

Tr(BA) = (−1)nAnB Tr(AB)

where we also use the cyclic property Tr(bj1...jnai1...in) = Tr(ai1...inbj1...jn).

When nA + nB is odd, nAnB is always even. The following equality always holds:

Tr(BA) = Tr(AB)

�
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5.A.1 Winding number

The winding number given in (2.21) can be expressed in the commutator form

Wn[U ] = (πi)n
(2n+ 1)!!Tr

[(
U−1P̂U

)n]
, (5.25)

where the power involves taking the wedge product between brackets. We can show that this

invariant is additive.

For the one-dimensional case, we can calculate the winding number of a product easily

using the methods above, finding

W1[UV ] = Tr
[(
V −1U−1P̂ (UV )

)]
= Tr

[
V −1U−1

(
P̂ (U)V + (−1)nUUP̂ (V )

)]
= Tr

[
V −1

(
U−1P̂ (U)

)
V
]

+ (−1)nU Tr
[(
V −1P̂ (V )

)]
.

However, U is a 0-form, and so there is no overall negative sign, and we can also use the

cyclic property of the trace to find

W1[UV ] = Tr
[(
U−1P̂ (U)

)]
+ Tr

[(
V −1P̂ (V )

)]
= W [U ] +W [V ].

Before we generalize this property to arbitrary odd dimensions, we first prove the following

property:

Lemma 5.A.3 The winding number is addictive, namely, Wn[UV ] = Wn[U ] +Wn[V ].

Proof: We first write down Wn[V U ],

Wn[V U ] = (πi)n
(2n+ 1)!!Tr

[(
V −1U−1P̂ (UV )

)n]
,

If we split this term,

V −1U−1P̂ (UV ) = V −1(U−1P̂U)V + V −1P̂ V

Defining a = V −1P̂ V , b = V −1U−1P̂ (UV ), we want to prove

Tr [bn] = Tr [an] + Tr [(b− a)n] (5.26)
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First we construct "total commutator" term by studying the action of P̂ on all possible

(n− 1)-forms of a and b. These (n− 1)-forms should be the multiplication of a and b. We

use binomial representation to represent the multiplication of a and b,

Bd
q1,q2,...qd

= (aq1b1−q1)(aq2b1−q2) . . . (aqib1−qi) . . . (aqdb1−qd)

Where qi = 0 or 1. Each block aqib1−qi can become either a or b given the value of qi.

Let’s first study how P̂ act on each block aqb1−q.

If q = 0,

P̂ (a0b1) = −b2

If q = 1,

P̂ (a1b0) = −a2

In conclusion,

P̂ (aqb1−q) = −aqb1−qaqb1−q

Then we act P̂ on this (n-1)-form operator:

P̂ (Bn−1
q1,q2,...qn−1) = P̂ (aq1b1−q1aq2b1−q2 . . . aqn−1b1−qn−1)

=
n−1∑
i=1

(−1)i−1aq1b1−q1aq2b1−q2 . . . P̂ (aqib1−qi) . . . aqn−1b1−qn−1

= −
n−1∑
i=1

(−1)i−1aq1b1−q1aq2b1−q2 . . . aqib1−qiaqib1−qi . . . aqn−1b1−qn−1

= −
n−1∑
i=1

(−1)i−1Bn
q1,q2,...qi,qi,qi+1...qn−1
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We can also expand the result in the basis of Bn
q′1,q
′
2...q

′
n
, the above equation becomes

−
n−1∑
i=1

(−1)i−1
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Bn
q′1,q
′
2...q

′
n
δq′1,q1δq′2,q2 . . . δq′i,qi

δq′i+1,qi
δq′i+2,qi+1 . . . δq′n,qn−1

= −
n−1∑
i=1

(−1)i−1

1∑
q′1=0

1∑
q′2=0

. . .
1∑

q′n=0

1 + (−1)q′i+q′i+1

2 Bn
q′1,q
′
2...q

′
n
δq′1,q1δq′2,q2 . . . δq′i,qi

δq′i+2,qi+1 . . . δq′n,qn−1

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Bn
q′1,q
′
2...q

′
n

n−1∑
i=1

(−1)iδq′1,q1δq′2,q2 . . . δq′i,qi
δq′i+2,qi+1 . . . δq′n,qn−1

1 + (−1)q′i+q′i+1

2

We define a filtering function H(x) to only include x satisfying x 6= 0 in the calculation.

In the following calculation, we use H(n− 1−∑n−2
j=1 (−1)qj+qj+1 − (−1)q1+qn−1) to filter out

(q1, q2, ..., qn−1) which satisfies n− 1−∑n−2
j=1 (−1)qj+qj+1 − (−1)q1+qn−1 = 0.
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Then taking a sum over all possible (n-1)-form operators,
1∑

q1=0

1∑
q2=0

. . .
1∑

qn−1=0
P̂ (Bn−1

q1,q2,...qn−1)(−1)
∑n−1

j=1 qj (−1)q1

−2
n− 1−∑n−2

j=1 (−1)qj+qj+1 − (−1)q1+qn−1

H(n− 1−
n−2∑
j=1

(−1)qj+qj+1 − (−1)q1+qn−1)

= −
1∑

q1=0

1∑
q2=0

. . .
1∑

qn−1=0
(−1)

∑n−1
j=1 qj (−1)q1

−2
n− 1−∑n−2

j=1 (−1)qj+qj+1 − (−1)q1+qn−1

H(n− 1−
n−2∑
j=1

(−1)qj+qj+1 − (−1)q1+qn−1)

1∑
q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Bn
q′1,q
′
2...q

′
n

n−1∑
i=1

(−1)iδq′1,q1δq′2,q2 . . . δq′i,qi
δq′i+2,qi+1 . . . δq′n,qn−1

1 + (−1)q′i+q′i+1

2

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Bn
q′1,q
′
2...q

′
n
(−1)q′1

n−1∑
i=1

(−1)i1 + (−1)q′i+q′i+1

2 (−1)−q
′
i+1+

∑n

j=1 q
′
j

H(n− 1−
i−1∑
j=1

(−1)q′j+q′j+1 −
n−1∑
j=i+2

(−1)q′j+q′j+1 − (−1)q′i+q′i+2 − (−1)q′1+q′n)

−2
n− 1−∑i−1

j=1(−1)q′j+q′j+1 −∑n−1
j=i+2(−1)q′j+q′j+1 − (−1)q′i+q′i+2 − (−1)q′1+q′n

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Bn
q′1,q
′
2...q

′
n
(−1)q′1H(n−

n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n)

n−1∑
i=1

(−1)i (−1)q′i+1 + (−1)q′i
2 (−1)

∑n

j=1 q
′
j

−2
n−∑n−1

j=1 (−1)q′j+q′j+1 − (−1)q′1+q′n

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Bn
q′1,q
′
2...q

′
n
(−1)q′1

(−1)
∑n

j=1 q
′
j
(−1)q′n − (−1)q′1

2
−2

n−∑n−1
j=1 (−1)q′j+q′j+1 − (−1)q′1+q′n

H(n−
n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n)

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Bn
q′1,q
′
2...q

′
n

(−1)
∑n

j=1 q
′
j

1− (−1)q′1+q′n

n−∑n−1
j=1 (−1)q′j+q′j+1 − (−1)q′1+q′n

H(n−
n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n)
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After taking trace of both sides, we get

1∑
q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
g(q′1, q′2, . . . , q′n) = 0

where

g(q′1, q′2, . . . , q′n)

= (−1)
∑n

j=1 q
′
j

1− (−1)q′1+q′n

n−∑n−1
j=1 (−1)q′j+q′j+1 − (−1)q′1+q′n

H(n−
n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n).

Then we apply the cyclic properties of Tr
[
Bn
q′1,q
′
2...q

′
n

]
,

n
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
g(q′1, q′2, . . . , q′n)

=
n∑
i=1

1∑
q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′i+1,q

′
i+2...q

′
n,q
′
1,q
′
2...q

′
i

]
g(q′1, q′2, . . . , q′n)

=
n∑
i=1

1∑
q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
g(q′n−i+1, q

′
n−i+2, . . . , q

′
n, q
′
1, q
′
2, . . . , q

′
n−i)

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

] n∑
i=1

g(q′i+1, q
′
i+2, . . . , q

′
n, q
′
1, q
′
2, . . . , q

′
i)

Where

n∑
i=1

g(q′i+1, q
′
i+2, . . . , q

′
n, q
′
1, q
′
2, . . . , q

′
i)

=
n∑
i=1

(−1)
∑n

j=1 q
′
j

1− (−1)q′i+q′i+1

n−∑n−1
j=1 (−1)q′j+q′j+1 − (−1)q′1+q′n

H(n−
n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n)

= (−1)
∑n

j=1 q
′
jH(n−

n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n)

Therefore,

1∑
q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
(−1)

∑n

j=1 q
′
jH(n−

n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n) = 0 (5.27)

The screening function H(n−∑n−1
j=1 (−1)q′j+q′j+1 − (−1)q′1+q′n) only selects the combination

of (q′1, q′2, . . . , q′n) which makes n −∑n−1
j=1 (−1)q′j+q′j+1 − (−1)q′1+q′n 6= 0. The equal sign holds
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only when q′1 = q′2 = . . . = q′n. Therefore

H(n−
n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n) = 1− δq′1,q′2δq′2,q′3 . . . δq′n−1,q
′
n
δq′n,q′1 (5.28)

Combining with Eq. (5.27), we can simplify the summation below
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
(−1)

∑n

j=1 q
′
j

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
(−1)

∑n

j=1 q
′
j

[
δq′1,q′2δq′2,q′3 . . . δq′n−1,q

′
n
δq′n,q′1 +H(n−

n−1∑
j=1

(−1)q′j+q′j+1 − (−1)q′1+q′n)
]

=
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
(−1)

∑n

j=1 q
′
jδq′1,q′2δq′2,q′3 . . . δq′n−1,q

′
n
δq′n,q′1

= Tr
[
Bn

0,0,0,...,0

]
− Tr

[
Bn

1,1,1,...,1

]
= Tr

[
bn
]
− Tr

[
an
]

Finally, we can confirm the equality given in Eq. (5.26)

Tr [an] + Tr [(b− a)n]

= Tr [an] +
1∑

q′1=0

1∑
q′2=0

. . .
1∑

q′n=0
Tr
[
Bn
q′1,q
′
2...q

′
n

]
(−1)

∑n

j=1 q
′
j

= Tr [bn]

On the other hands,

Tr [(b− a)n]

= Tr
[
(V −1(U−1P̂U)V )n

]
= Tr

[
V −1(U−1P̂U)nV

]

After applying the cyclic properties of the trace operator,

Tr [(b− a)n]

= Tr
[
(U−1P̂U)n

]
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Thus,

Wn[V U ] = (πi)n
(2n+ 1)!!Tr

[(
V −1U−1P̂ (UV )

)n]
= (πi)n

(2n+ 1)!!Tr [bn]

= (πi)n
(2n+ 1)!!Tr [(b− a)n] + (πi)n

(2n+ 1)!!Tr [an]

= (πi)n
(2n+ 1)!!Tr

[
(U−1P̂U)n

]
+ (πi)n

(2n+ 1)!!Tr
[
(V −1P̂ V )n

]
= Wn[U ] +Wn[V ]

We finish proving the addictive properties of this winding number. �

5.B Bulk edge correspondence

In this appendix, we want to prove the bulk-edge correspondence given in Eq. (5.22).

5.B.1 Two differential forms

In this section, we introduce two differential forms that assemble the bulk invariants.

First we define a 1-form O = U †P̂U and a 0-form PU
A = U †PAU where PA is a projector

acting on the sublattice A. We are considering 2n-dimensional system now, so P̂ = ∑2n
j P̂j.

A set of d-form which are the multiplication of O and PU
A takes this general expression

Zd
q1,q2...qs+1 = Oq1PU

AO
q2PU

A . . . O
qsPU

AO
qs+1 (5.29)

where ∑s+1
i=1 qi = d and s is just the number of the projector PU

A inside Zd
q1,q2,...,qs+1 . For

instance, Z1
1,0 = OPU

A = U †P̂UU †PAU .

To proceed the proof, we first show two equalities:

Lemma 5.B.1 Here are two equalities:

(i) P̂ (Oq) = −1−(−1)q

2 Oq+1 for q ≥ 1

(ii)P̂ (PU
A ) = −OPU

A + PU
AO
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Proof: (i) We use recursion method to prove this formula. When q = 1,

P̂O = P̂
[
U−1P̂ (U)

]
= P̂

(
U−1

)
P̂ (U) + U−1P̂ 2(U)

=
[
−U−1P̂ (U)U−1P̂ (U)

]
= −O2.

meets P̂ (Oq) = −1−(−1)q

2 Oq+1. If for q-1,

P̂ (Oq−1) = −1− (−1)q−1

2 Oq

Then we can prove for q,

P̂ (Oq) = P̂ (Oq−1O)

= P̂ (Oq−1)O + (−1)q−1Oq−1P̂

= −1− (−1)q−1

2 Oq+1 − (−1)q−1Oq+1

= −1− (−1)q
2 Oq+1

as expected.

(ii)

P̂ (PU
A ) = P̂

[
U−1PAU

]
= P̂

(
U−1

)
PAU + U−1PAP̂ (U)

= −U−1P̂ (U)U−1PAU + U−1PAUU
−1P̂ (U)

= −OPU
A + PU

AO.

�

We can construct ‘total commutator’ from this 2n− 1 form

P̂ (Z2n−1
q1,q2...qs+1)

= P̂ (Oq1PU
AO

q2PU
A . . . O

qrPU
AO

qs+1)

=
s+1∑
i=1

(−1)
∑i−1

k=1 qkOq1PU
A . . . P̂ (Oqi) . . . PU

AO
qs+1

+
s∑
i=1

(−1)
∑i

k=1 qkOq1PU
A ...O

qiP̂ (PU
A )Oqi+1 . . . PU

AO
qs+1

128



After plugging in the two equalities in Lemma 5.B.1, we get

s+1∑
i=1
−1− (−1)qi

2 (−1)
∑i−1

k=1 qkOq1PU
A . . . O

qi+1 . . . PU
AO

qs+1)

+
s∑
i=1

(−1)
∑i

k=1 qkOq1PU
A . . . O

qi(PU
AO −OPU

A )Oqi+1 . . . PU
AO

qs+1

=
s+1∑
i=1
−1− (−1)qi

2 (−1)
∑i−1

k=1 qkZ2n
q1,q2,...,qi+1,...qs+1

+
s∑
i=1

(−1)
∑i

k=1 qk(Z2n
q1,q2,...,qi+1+1,...qs+1 − Z

2n
q1,q2,...,qi+1,...qs+1)

Adding all these terms together,

P̂ (Z2n−1
q1,q2...qs+1) =

r+1∑
i=1

ci(q)Z2n
q1,q2,...,qi+1,...qs+1

where

ci(q) =



−1+(−1)q1

2 i = 1

(−1)
∑i−1

k=1 qk(1−(−1)qi

2 ) 2 ≤ i ≤ s

−1+(−1)qs+1

2 i = s+ 1,

, (5.30)

If we define Tr
(
Z2n
q1,q2,..ps+1Q0,r

)
as x2n

q1,q2,,..qs+1 , we get the first equation by taking trace of

above equation

s+1∑
i=1

ci(q)x2n
q1,q2,...qi+1,...qs+1 = 0 (5.31)

because ‘total commutator’ terms will vanish under the action of the trace according to

Lemma 5.A.2.

Another set of d-forms takes this format:

Y d
q1,q2,...,qs+1 = Qq1PAQ

q2PA, . . . , Q
qsPAQ

qs+1

where the 1-form Q = UP̂U †.
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Similar as how we deal with Z, we construct ‘total commutator’ form from Y ,

P̂ (Y 2n−1
q1,q2,...,qs+1Q0,r)

= P̂ (Qq1PAQ
q2PA...Q

qrPAQ
qs+1Q0,r)

=
s+1∑
i=1

(−1)
∑i−1

k=1 qkQq1PA...P̂ (Qqi)...PAQqs+1Q0,r

which can be simplified as

P̂ (Y 2n−1
q1,q2,...,qs+1Q0,r) =

s+1∑
i=1

ei(q)Y 2n
q1,q2,...,qi+1,...qs+1Q0,r

where

ei(q) = −1− (−1)qi

2 (−1)
∑i−1

k=1 qk (5.32)

After taking trace of both sides, we get,

s+1∑
i=1

ei(q) Tr
(
Y 2n
q1,q2,...,qi+1,...qs+1Q0,r

)
= 0 (5.33)

5.B.2 Bulk invariants

Since the edge lies at P 2n+1
rê2n+1 , we separate the direction σi = 2n+ 1 from others,

ν2n+1[U+] = (πi)n
(2n+ 1)!!

∑
i

∑
σ,σi=2n+1

(−1)sign(σ) (5.34)

Tr
(
U †+[P (σ1)

rê2n+1 , U+]U †+[P (σ2)
rê2n+1 , U+] . . . U †+[P 2n+1

rê2n+1 , U+] . . . U †+[P (σ2n+1)
rê2n+1 , U+]

)

Applying the cyclic properties of the trace operator,

ν2n+1[U+] = (πi)n
(2n+ 1)!!

∑
i

∑
σ,σi=2n+1

(−1)sign(σ) (5.35)

Tr
(
U †+[P (σi+1)

rê2n+1 , U+] . . . U †+[P (σ2n+1)
rê2n+1 , U+]U †+[P (σ1)

rê2n+1 , U+] . . . U †+[P (σi−1)
rê2n+1 , U+]U †+[P 2n+1

rê2n+1 , U+]
)
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Relabelling the indices for σ,

ν2n+1[U+] = (πi)n
(2n+ 1)!!

2n+1∑
i=1

∑
σ′

(5.36)

(−1)sign(σ′2n−i+2,...σ
′
2n,2n+1,σ′1,...,σ′2n−i+1)

Tr
(
U †+[P (σ′1)

rê2n+1 , U+]U †+[P (σ′2)
rê2n+1 , U+] . . . U †+[P 2n+1

rê2n+1 , U+]
)

= (πi)n
(2n− 1)!!

∑
σ′

(−1)sign(σ′) Tr
(
U †+[P (σ′1)

rê2n+1 , U+]U †+[P (σ′2)
rê2n+1 , U+] . . . U †+[P 2n+1

rê2n+1 , U+]
)

5.B.3 Expression bulk invariants in two differential forms

In this section, we express the truncated bulk invariant given in Eq. (5.21) using the above

two differential forms.

Subsequently, we substitute P (σ2n+1)
rê2n+1 as P 2n+1

0 −Q0,r and note that
[
P 2n+1

0 , U
]
since P 2n+1

0

acts like the identity matrix on the open system, the truncated bulk invariant can be rewritten

as

νrb = − (πi)n
(2n− 1)!!

∑
σ

(5.37)

(−1)sign(σ) Tr
(
PAU

†[P (σ1)
rê2n+1 , U ]U †[P (σ2)

rê2n+1 , U ] . . . U †[P (σ2n)
rê2n+1 , U ]U †[Q0,r, U ]

)

To represent this invariant in differential forms, we may use this simple rule:

∑
σ

(−1)sign(σ)
[
P

(σi)
rê2n+1 , .

]
→ P̂

Thus,

νrb = − (πi)n
(2n− 1)!! Tr

(
PA(U †P̂U)2nU †[Q0,r, U ]

)
To simplify our discussions below, we ignore the coefficient now and focus on the operator

calculations. We use ν1 to denote everything except the coefficient,

ν1 = (2n− 1)!!
(πi)n νrb (5.38)

= −Tr
(
PA(U †P̂U)2nU †[Q0,r, U ]

)
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We can move PA everywhere as PA commutes with U in the bulk, for example,

ν1 = −Tr
(
U †PAP̂U(U †P̂U)2nU †[Q0,r, U ]

)

Next we split U †[Q0,r, U ] into two parts U †[Q0,r, U ] = U †Q0,rU − Q0,r and apply the

cyclicity of trace,

ν1 = Tr
(
U †PAU(U †P̂U)2nQ0,r

)
− Tr

(
PA(UP̂U †)2nQ0,r

)

Which can be represented as the function of Z-form and Y-form,

ν1 = Tr
(
Z2n

0,2nQ0,r
)
− Tr

(
Y 2n

0,2nQ0,r
)

(5.39)

Since PA commutes with U and P 2
A = PA, we can insert PA anywhere in Eq. (5.39). In

this way, we generalize the above identity,

ν1 = Tr
(
Z2n
q1,q2,...,qs+1Q0,r

)
− Tr

(
Y 2n
q1,q2,...,qs+1Q0,r

)
(5.40)

Multiply both sides by ∑s+1
i=1 ei(q),

s+1∑
i=1

ei(q)ν1 =
s+1∑
i=1

ei(q) Tr
(
Z2n
q1,q2,...qi+1,...qs+1Q0,r

)
− Tr

(
Y 2n
q1,q2,...qi+1,...qs+1Q0,r

)
Applying Eq. (5.33),

(
s+1∑
i=1

ei(q)ν1 = −
s+1∑
i=1

ei(q) Tr
(
Z2n
q1,q2,...qi+1,...qs+1Q0,r

)
(5.41)

And the summation on the left side of above equation:
s+1∑
i=1

ei =
s+1∑
i=1
−1− (−1)qi

2 (−1)
∑i−1

k=1 qk (5.42)

=
s+1∑
i=1
−(−1)

∑i−1
k=1 qk − (−1)

∑i

k=1 qk

2

= −1− (−1)
∑s+1

k=1 qk

2

= −1− (−1)2n−1

2
= −1
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Therefore

−ν1 =
s+1∑
i=1

ei(q) Tr
(
Z2n
q1,q2,...qi+1,...qs+1Q0,r

)
(5.43)

To simplify discussions, we use x2n
q1,q2,...,qs+1 to denote Tr

(
Z2n
q1,q2,...,qs+1Q0,r

)
. Then the above

equation can be rewritten as

−ν1 =
s+1∑
i=1

ei(q)x2n
q1,q2,...qi+1,...qs+1 (5.44)

5.B.4 Two cyclic properties

If we add two equations in Eq. (5.31) and (5.44) together,

ν1 = x2n
q1+1,q2,...qi,...qs+1 + x2n

q1,q2,...qi,...qs+1+1 (5.45)

This equation shows after moving a 1-form O from the left end to the right end or from the

right end to the left end, the summation of the old trace and new trace is just one. This is a

special law of ‘cyclic property’. After utilizing this equation q1 times,

x2n
0,q2,...qi,...qs+1+q1 = 1− (−1)q1

2 (ν1 − x2n
q1,q2,...qi,...qs+1) + 1 + (−1)q1

2 x2n
q1,q2,...qi,...qs+1

= 1− (−1)q1

2 ν1 + (−1)q1x2n
q1,q2,...qi,...qs+1 (5.46)

Next, we notice another ‘cyclic property’,

x2n
0,q2,...qi,...qs+1 = Tr

[
PU
AO

q2PU
A . . . O

qsPU
AO

qs+1Q0,r

]
= Tr

[
Oq2PU

A . . . O
qsPU

AO
qs+1PU

AQ0,r

]
= x2n

q2,...qi,...qs+1,0 (5.47)

where we make use of the cyclic property of the trace operator and Q0,r commutes with PU
A

as r →∞.
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5.B.5 Edge invariant

We will show how the truncated edge invariant give in Eq. (5.16) agrees with the truncated

bulk invariant. First, we express the edge invariant in the differential form,

νrE = (2πi)n
n!

1
22n+1Tr

[
U †SU(P̂ (U †SU))2nQ0,r

]
= (2πi)n

n!
1

22n+1Tr
[
U †SU(P̂ (U †SU))2nQ0,r

] (5.48)

Next, we notice that

Tr
[
(P̂ (U †SU))2nQ0,r

]
= 0

This is because

P̂
[
(U †SU)(P̂ (U †SU))2n−1Q0,r

]
= P̂ (U †SU)(P̂ (U †SU))2n−1Q0,r

where the trace of the left side is zero and the trace of the right side is Tr
[
(P̂ (U †SU))2nQ0,r

]
.

As a result,

νrE = (2πi)n
n!

1
22n+1Tr

[
U †SU(P̂ (U †SU))2nQ0,r

]
(5.49)

= (2πi)n
n! Tr

[
U †PAU(P̂ (U †PAU))2nQ0,r

]

where we also substitute S = 2PA − 1.

Now we expand P̂ (U †PAU),

P̂ (U †PAU) = PU
AO −OPU

A

= PU
AOP

U
B − PU

BOP
U
A

where we use PU
B to denote U †PBU and apply the identity PB + PA = I. Using this equation,

we can simplify U †PAU(P̂ (U †PAU))2n,

U †PAU(P̂ (U †PAU))2n = PU
A (PU

AOP
U
B − PU

BOP
U
A )2n

= (PU
AOP

U
BOP

U
A )n

= (PU
AOP

U
BO)nPU

A
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where we also use PU
A P

U
B = 0.

Hence, Eq.(5.49) can be rewrittened as,

νrE = (2πi)n
n! Tr

[
(PU

AOP
U
BO)nPU

AQ0,r

]
(5.50)

= (2πi)n
n! Tr

[
(PU

AOP
U
BO)nQ0,r

]
where we use [Q0,r, P

U
A ] = 0.

5.B.6 Express edge invariants in differential forms

In this section, we want to calculate νrE in Eq. (5.51). To do this, we need to rewrite it in

terms of x2n
q1,q2,...qi,...qs+1 . We first expand this equation,

νrE = Tr
[
(PU

AO
2 − PU

AOP
U
AO)nQ0,r

]
(5.51)

=
1∑

q1=0

1∑
q2=0

. . .
1∑

qn=0
(−1)n−

∑n

i=1 qi

Tr
[
(PU

AO
2)q1(PU

AOP
U
AO)1−q1 . . . (PU

AO
2)qn(PU

AOP
U
AO)1−qnQ0,r

]

Only a specific collection of x2n
q1,q2,...,qs+1 where q1 = 0, q2 = q3 = ... = qs+1 = 1 or 2

contributes to above equation. To represent this subset of x2n
q1,q2,...,qs+1 , we can define another

set of variables,

ydp1,p2,...,ps+1 = Tr
[
(PU

AO)p1O(PU
AO)p2O(PU

AO)p3 . . . (PU
AO)psO(PU

AO)ps+1Q0,r

]
(5.52)

where s denotes the total number of O between two PU
AO. Since the operator inside

the trace is a d-form, ∑s+1
i=1 pi + s = d. when s = 0, the only possible configuration is

y2n
2n = Tr

[
(PU

AO)2nQ0,r

]
.

Then the we can express Eq. (5.51) in terms of y2n
p1,p2,...,ps+1 ,

νrE = (−1)ny2n
2n +

n∑
s=1

(−1)n−s
n∑

l1=0

n∑
l2=0

. . .
n∑

ls=0

n∑
ls+1=0

y2n
2l1+1,2l2+1,...,2ls+1,2ls+1δ

∑s+1
j=1(2lj+1),2n+1−s

The constraint δ∑s+1
j=1(2lj+1),2n+1−s is applied to make sure ∑s

j=1(2lj + 1) + 2ls+1 + s = 2n

because we only consider 2n-form.
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5.B.7 Calculate edge invariants

In this part, we will show how νrE can be written as a function of ν1.

By restricting q1 = 0, qi = 1 or 2 for i ≥ 2, we can rewrite Eq. (5.44) as

ν1 =
2n−s+1∑
i=2

(−1)
∑i−1

k=1 qkx2n
0,q2,...qi+1,...q2n−s+1δqi,1

To simplify the following discussions, we can define another set of variables, zdi1,i2,...,is
where i1, i2, ..., is represents the position of O2. zdi1,i2,...,is = xd0,q2,...,qd−s+1

where qil = 2 for

1 ≤ l ≤ k and qi = 1 for others. In this new representation, we only record the position of O2.

For example, z6
3,4 = Tr

[
PU
AOP

U
AO

2PU
AO

2PU
AO

]
. Then the above equation can be expressed as

a function of z if {i1, i2, ..., is−1} denotes the the position of O2 in q = (0, q2, q3, . . . , q2n−s+1),

i1−1∑
j=2

(−1)jz2n
j,i1,i2,...,is−1 +

i2−1∑
j=i1+1

(−1)j+1z2n
i1,j,i2,...,is−1 + . . .

2n−s+1∑
j=is−1

(−1)j+s−1z2n
i1,i2,...,is−1,j = ν1(5.53)

If we label i0 = 1 and is = 2n− s+ 2, we can simplify the above equation as
s−1∑
k=0

ik+1−1∑
j=ik+1

(−1)j+kz2n
i1,i2,...ik,j,ik+1,...,is−1 = ν1 (5.54)

Applying the cyclic properties given in Eq. (5.45) and (5.45),

z2n
i1,i2,...,is = x2n

0,q2,...,qd−s+1

= 1− (−1)i1−2

2 ν1 + (−1)i1−2x2n
0,qi1 ,...qs+1+q1,q2,...,qi1−1

Since we have moved i1 − 2 number of O from the left to the right. After representing

x2n
0,qi1 ,...qs+1+q1,q2,...,qi1−1

in terms of z, we get

z2n
i1,i2,...,is = 1− (−1)i1

2 ν1 + (−1)i1z2n
2,i2−i1+2,i3−i1+2,...,is−i1+2 (5.55)

In addition, if we continue moving i2 − i1 + 1 number of O from the left to the right,

z2n
2,i2−i1+2,i3−i1+2,...,is−is−1+2 (5.56)

= 1 + (−1)i2−i1
2 ν1 − (−1)i2−i1z2n

2,i3−i2+2,i4−i2+2,...,is−i2+2,(d−s)+(i1−i2)+2
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To better describe this cyclic behavior, we now define a new function:

fd(d1, d2, ..., ds) = zdi1=2,i2,...,is

where we use di to represent the distance between two neighboring indices of zdi1=2,i2,...,is .

Specifically, d1 = i2− i1, d2 = i3− i2, . . . , ds = 2n−s− (is− i1). Then di counts the number of

the projectors PU
A between two consecutive O2 and s means the number of O2. For example,

f 6(1, 3) = y6
2,3 = Tr

[
PU
AO

2PU
AO

2PU
AOP

U
AO

]
.

In this way, we can rewrite Eq. (5.55) as

z2n
i1,i2,...,is = 1− (−1)i1

2 ν1 + (−1)i1f 2n(i2 − i1, i3 − i2, . . . , is − is−1, 2n− s− (is − i1))(5.57)

and Eq. (5.56) as

f 2n(i2 − i1, i3 − i2, . . . , is − is−1, 2n− s− (is − i1))

= 1 + (−1)i2−i1
2 ν1 − (−1)i2−i1f 2n(i3 − i2, . . . , is − is−1, 2n− s− (is − i1), i2 − i1)

If we let d1 = i2 − i1, d2 = i3 − i2, . . . , ds = (2n− s)− (is − i1),

f 2n(d1, d2, . . . , ds) (5.58)

= 1 + (−1)d1

2 ν1 − (−1)d1f 2n(d2, d3, . . . , ds, d1)

with ∑s
i=1 di = 2n− s. After repeating this equation k times, we get,

f 2n(d1, d2, . . . , ds) (5.59)

= 1− (−1)k+
∑k

i=1 dl

2 ν1 + (−1)k+
∑k

i=1 dlf 2n(dk+1, . . . , ds, d1, d2, . . . , dk)

Plugging Eq. (5.57) into Eq. (5.54),

ν1 =
i1−1∑
j=2

(−1)j
[1− (−1)j

2 ν1

+ (−1)jf 2n(i1 − j, i2 − i1, . . . , is−1 − is−2, 2n− s− (is−1 − i1))
]

+
s−1∑
k=1

ik+1−1∑
j=ik+1

(−1)j+k
[1− (−1)i1

2 ν1

+ (−1)i1f 2n(i2 − i1, i3 − i2, . . . , j − ik, ik+1 − j, . . . , is−1 − is−2, 2n− s− (is−1 − i1))
]
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Then applying Eq. (5.58),

ν1 =
i1−1∑
j=2

(−1)j
[1− (−1)j

2 ν1

+ (−1)jf 2n(i1 − j, i2 − i1, . . . , is−1 − is−2, 2n− s− (is−1 − i1))
]

+
s−1∑
k=1

ik+1−1∑
j=ik+1

(−1)j+k
[1− (−1)j+k

2 ν1

+ (−1)j+kf 2n(ik+1 − j, . . . , is−1 − is−2, 2n− s− (is−1 − i1), i2 − i1, . . . , j − ik)
]

After simplifying this equation,

s−1∑
k=0

ik+1−1∑
j=ik+1

f 2n(ik+1 − j, . . . , is−1 − is−2, 2n− s− (is−1 − i1), i2 − i1, . . . , j − ik)

=
[
1 +

s−1∑
k=0

ik+1−1∑
j=ik+1

1− (−1)j+k
2 ]ν1

= (n− s+ 1)ν1

Let d1 = i2 − i1, d2 = i3 − i1, . . . , ds−2 = is−1 − is−2, ds−1 = 2n− s− (is−1 − i1), then we

can rewrite the above equation as

(n− s+ 1)ν1 =
s−1∑
k=1

dk−1∑
d′=1

f 2n(dk − d′, dk+1 . . . , ds−2, ds−1, d1, . . . , dk−1, d
′)

We now can prove the following equalities for y2n
p1,p2,...,ps+1

Lemma 5.B.2 (i) y2n
2n = 1

2ν1

(ii) When s ≥ 1,
n∑

l1=0

n∑
l2=0

. . .
n∑

ls=0

n∑
ls+1=0

y2n
2l1+1,2l2+1,...,2ls+1,2ls+1δ

∑s+1
j=1(2lj+1),2n+1−s

= n

2n− s(−1)s n!
s!(n− s)!

Proof: (i)

y2n
2n = Tr

[
(PU

AO)2nQ0,r

]
= x0,1,1,1,1,...,1
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Applying the first cyclic property given in Eq. (5.45), we have,

x1,1,1,1,...,1,0 + x0,1,1,1,1,...,1 = ν1

where we let q1 = qs+1 = 0 and q2 = q3 = . . . = qs = 1 in Eq. (5.45). Subsequently, we utilize

the second cyclic property given in Eq. (5.47),

x1,1,1,1,...,1,0 = x0,1,1,1,1,...,1

where we let q2 = q3 = . . . = qs+1 = 1. Therefore,

y2n
2n = x0,1,1,1,1,...,1 = ν1

2

(ii) Consider ydp1,p2,...,ps+1 = xd0,q2,q3,...,qd−s+1
where qj = 2 for j = 1 + ∑k

i=1 pi(1 ≤ k ≤ s)

and qj = 1 for other indices. Therefore, ydp1,p2,...,ps+1 = zdi1,i2,...,is where ik = 1 +∑k
i=1 pi(1 ≤

k ≤ s)(1 ≤ k ≤ s). In other words,

zdi1,i2,...,is = ydi1−1,i2−i1,...,is−is−1,2n−s+1−is

Substitute all y by z in the following summation,

n∑
l1=0

n∑
l2=0

. . .
n∑

ls=0

n∑
ls+1=0

y2n
2l1+1,2l2+1,...,2ls+1,2ls+1δ

∑s+1
j=1(2lj+1),2n+1−s

=
n∑

l1=0

n∑
l2=0

. . .
n∑

ls=0

n∑
ls+1=0

z2n
1+
∑1

i=1(2li+1),1+
∑2

i=1(2li+1),...,1+
∑s

i=1(2li+1)δ
∑s+1

j=1(2lj+1),2n+1−s

After applying (5.57), the rhs. becomes

n∑
l1=0

n∑
l2=0

. . .
n∑

ls=0

n∑
ls+1=0

f 2n(2l2 + 1, 2l3 + 1, . . . , 2ls + 1, 2n− s−
s∑
i=2

(2li + 1))δ∑s+1
j=1(2lj+1),2n+1−s

=
n∑

l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′1 + 1, 2l′2 + 1, 2l′3 + 1, . . . , 2l′s + 1)2l′s + 1

2 δ∑s

j=1(2lj+1),2n−s
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By relabelling indices, the lhs. becomes

n∑
l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′1 + 1, 2l′2 + 1, . . . , 2l′s + 1)2l′s + 1

2 δ∑s

j=1(2lj+1),2n−s

=
n∑

l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′2 + 1, 2l′3 + 1, . . . , 2l′s + 1, 2l′1 + 1)2l′1 + 1

2 δ∑s

j=1(2lj+1),2n−s

= . . .

=
n∑

l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′s + 1, 2l′1 + 1, 2l′2 + 1, . . . , 2l′s−1 + 1)2l′s−1 + 1

2 δ∑s

j=1(2lj+1),2n−s

Summarizing all equations and applying the cyclic properties in Equation (5.58), we have,

n∑
l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′1 + 1, 2l′2 + 1, 2l′3 + 1, . . . , 2l′s + 1)2l′s + 1

2 δ∑s

j=1(2lj+1),2n−s(5.60)

= n

k

n∑
l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′1 + 1, 2l′2 + 1, 2l′3 + 1, . . . , 2l′s + 1)δ∑s

j=1(2lj+1),2n−s (5.61)

Expand

(n− s+ 1)ν1 =
∑
d′1

∑
d′2

. . .
∑
d′s

f 2n(d′1, d′2, . . . , d′s)
s−1∑
k=1

dk−1∑
d′=1

δd′1,dk−d′δd′2,dk+1 . . . δd′s,d′

Then summerizing over all d1, d2, . . . , ds−1,

2n−s∑
d1=1

2n−s∑
d2=1

. . .
2n−s∑
ds−1=1

(n− s+ 1)δ∑s−1
j=1 dj ,2n−sν1

=
∑
d′1

∑
d′2

. . .
∑
d′s

f 2n(d′1, d′2, . . . , d′s)(s− 1)δ∑s

j=1 d
′
j ,2n−s

After applying the cyclic properties in Equation. (5.58), we cancelled all terms with even

distances (∃i, di is even) on the right-hand side,

n∑
l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′1 + 1, 2l′2 + 1, 2l′3 + 1, . . . , 2l′s + 1)δ∑s

j=1(2lj+1),2n−s

= s

2n− s(−1)s n!
s!(n− s)!ν1
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Combined with (5.61), we have

n∑
l′1=0

n∑
l′2=0

. . .
n∑

l′s=0
f 2n(2l′1 + 1, 2l′2 + 1, 2l′3 + 1, . . . , 2l′s + 1)2l′s + 1

2 δ∑s

j=1(2lj+1),2n−s

= n

2n− s(−1)s n!
s!(n− s)!ν1

where the left hand side is equal to

n∑
l1=0

n∑
l2=0

. . .
n∑

ls=0

n∑
ls+1=0

y2n
2l1+1,2l2+1,...,2ls+1,2ls+1δ

∑s+1
j=1(2lj+1),2n+1−s.

�

5.B.8 Connection between edge invariants and bulk invariants

Combining the two equations given in Lemma 5.B.2,

Tr
[
(PA2 − PAPA)nP2n+1

]
=

n∑
s=0

n

2n− s(−1)s n!
s!(n− s)!

= (−1)n
(2n− 1)!!

n!
2nν1

Finally, we prove the bulk edge correspondence

νrE = (2πi)n
n! Tr

[
(PA2 − PAPA)nP2n+1

]
= νrb (−1)n (5.62)
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CHAPTER 6

Classification of class AII

In this chapter, we characterize the topological properties of two dimensional periodic driven

systems with time reversal symmetry. In addition, we obtain the bulk edge correspondence

inside this system which is known as Class AII of the Altland-Zirnbauer symmetry classification

[1, 49].

The rest of the chapter is organized as follows. We begin, in Sec. II, by giving some

background on time-dependent systems and the concepts we will use in obtaining the bulk-

boundary correspondence. In Sec. III we define a new edge invariant which is physically

motivated, locally computable, and applicable to systems both with and without disorder,

and give an example how to apply it in a model drive. We study the properties of the edge

index in Sec. IV. Finally, we propose a bulk invariant which can be applied in the disordered

systems and derive the bulk-edge correspondence in Sec. V.

6.1 Driven Systems with time reversal Symmetry

6.1.1 Time reversal symmetry

In this section, we will study topological drives with time-reversal symmetry, corresponding to

Class AII of the AZ classification scheme. For time-reversal symmetry(TRS), the symmetry

operator takes the form of T = KT where K is still the complex conjugation and T is unitary.

Here are the constraints the operator applies to the system [1, 49]:

T H(t)T −1 = H(T − t) (6.1)

T U(t)T −1 = U(T − t)U †(T ) (6.2)
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where we have used the fact that the Hamiltonian is periodic in time with period. At the

end of one cycle, the time-evolution operator satisfies

T U(T )T −1 = U †(T ), (6.3)

6.1.2 Examples

Figure 6.1: The action of the 2D class AII drive introduced in Ref. [5]. (a)Driving protocol.

The only nonvanishing hopping amplitudes between sites are represented for each time step.

Spin up states moves according to the sequence 1 → 2 → 3 → 4 while spin-down states

follows the opposite sequence 4→ 3→ 2→ 1. (b)During each step, particles hop between

sites on a bipartite lattice, following the paths indicated by red and blue arrows. This is done

for spin-up (solid lines) and spin-down (dashed lines). Sublattices are indicated by gray and

black points. After a complete cycle, a particle in bulk returns to its initial position, while a

particle at the edge is translated by one unit cell.

To better understand the time-reversal symmetric system, we construct a model drive

in this symmetry class with nontrivial topological properties. A simple way to do this is to
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define a nontrivial evolution for spin-up states and then deduce an evolution for spin-down

states according to the time-reversal symmetry. [12] In this way, we consider a two-layer

Rudner model with a piece-wise Hamiltonian. [5] During each step of the evolution, the

Hamiltonian takes the diagonal form of

Hn =

H↑↑n 0

0 H↓↓n

 (6.4)

where H↑↑n (H↓↓n ) controls the motion of spin up(down) states.

H↑↑n =
∑
~r∈A

4∑
n=1

Jn(t)(c~r+~bn
c~r + h.c.) (6.5)

where c~r is the fermionic annihilation operator on the lattice site with coordinate ~r, and the

first sum runs over sites ~r on sublattice A. The vectors ~bn are given by ~b1 = −~b3 = (a, 0) and
~b2 = −~b4 = (0, a), where a is the lattice constant. There are four steps in total and for nth

step, Jn(t) = J where all other hopping amplitudes are zero and J T4 = π
2 . Then the evolution

operator U(t) is block diagonal in the spin basis and thus can be written as:

U(t) =

U↑(t) 0

0 U↓(t)


Put our diagonal Hamiltonian into Eq. (6.1), we find that H↓↓(t) = (H↑↑(T − t))∗. Thus

the spin down states is a time-reversed copy of the spin up states. After a full period, each

particle away from the edge returns to its initial position and thus the full evolution unitary

is identity. On the edge, however, spin up ↑ moves by one unit cell to the right along the

upper edge while spin down ↓ moves in the opposite direction.

In this example, the z-component of spin is conserved. Therefore we can classify the whole

system by calculating the winding number of each block unitary. According to reference [5],

W [U ] = 1
8π2

∫
dtdkxdky (6.6)

×Tr(U †∂tU
[
U †∂kxU,U

†∂kyU
]
)
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We can see that W↑ = W [U↑] is one. Namely, the net flow for the spin-up states is 1.

Then the Z2 index for our time-reversal symmetric system is W [U↑] mod 2 which is like a

"spin winding number." However, this simple formula only works when spin-up states are

decoupled from the spin-down states. If there are couplings between the spin up and spin

down states, classification becomes much more complicated, and we need to derive a new set

of topological invariants for these systems.

6.1.3 Zero Kitaev flow

In this paper, we mainly study unitary loops, satisfying U(0) = U(T ) = I in a close system

where T is the period of this evolution. In an open system, a unitary of this form may

generate nontrivial chiral edge modes along the boundary. Thus the evolution unitary at the

end of a complete cycle in an open system can be decomposed as:

Uo(T ) = Ub(T )⊕ Ue(T ) = I ⊕ Ue(T ) (6.7)

where the bulk and edge degrees of freedom are explicitly decoupled. Despite the apparently

trivial bulk Floquet operator, the dynamics of the system may be nontrivial at the edge.

Then Ue(T ) is the unitary which describes the behavior on the edge. Since our system is two

dimensional, the edge operator is an one dimensional operator. The first idea to classify the

system is to use the quantized Kitaev flow index.[31] We have a discussion of this flow index

in 4.1.1.

It’s found that the kitaev flow index can be used to classify the edge behavior of two-

dimensional Floquet systems. [62] The behavior related to a nontrivial index can be understood

as a nonadiabatic quantized charge pumping. In other words, this index counts the net

number of particles(states) that move to the right side of a cut from the left side after a

complete cycle. The idea of a topological pump was first proposed by Thouless[63] and was

always studied with a slow driving frequency where we can use the adiabatic theorem. But

now, in Floquet systems, we can have considered systems with high frequencies, and we don’t
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need to assume that the Hamiltonian should be gapped all the time.

To better understand the edge behavior of systems with time reversal symmetry, first we

notice that the kitaev flows for these systems are always zero. Th flow of a unitary matrix

maybe written as

ν[Ue] = Tr(U †ePUe − P ) (6.8)

where the projector P acts on the left side of a cut.

Next, we apply the time reversal operator,

ν[Ue] = Tr(T U †ePUeT −1 − T PT −1) (6.9)

= Tr(UePU †e − P )

After doing a unitary transformation,

ν[Ue] = −Tr(Ue(U †ePUe − P )U †e ) (6.10)

= −Tr(U †ePUe − P )

Combined with (6.8), it’s clear that

Tr(U †ePUe − P ) = 0 (6.11)

Therefore, the net flow of the whole system is always zero. We need to find a new way to

construct topological invariants for systems with time-reversal symmetry.

6.1.4 Construction of edge invariant

In one dimension, a nontrivial unitary can always transport some states from the left side of

a cut to the right side.

To describe this transport behavior, we study this ‘flow’ operator of a a one dimensional

locality-preserving unitary operator Y [33],

A = Q− P = Y †PY − P (6.12)
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Figure 6.2: The flow of a time-reversal symmetric unitary matrix. Vertical dashed green line

locates at the cross-section x0, separating the regions L and R. Red points indicate 1D lattice

sites host Hilbert space of even dimensions which includes states(|φ〉) and their time-reversed

partners(T |φ〉). The solid black arrow represents the hoppings between states on sites j

and k across the cut, while the dashed arrow denotes the movement of the corresponding

time-reversed partners. For example, in the preceding section, the solid arrow corresponds to

spin up states while the dashed arrow is associated with the spin-down states. Since a state

moves in the opposite direction compared to its time-reversed partner, their total contribution

to the Kitaev flow, associated with the charge pumping from region L to region R, is zero.

where P is a projector acting on the right side of a cut. Clearly, this operator A is the

difference between two projectors Q and P . Since Y is a locality preserving unitary, Y +PY

is different from P only inside a small range. Thus A is a finite size matrix.

To have a better understanding of the information contained in operator A, we first study

the eigenspaces of A.[33]

HA
11 = {φ ∈ H|Pφ = Qφ = φ} (6.13)

HA
00 = {φ ∈ H|Pφ = Qφ = 0}

HA
10 = {φ ∈ H|Qφ = φ, Pφ = 0}

HA
01 = {φ ∈ H|Qφ = 0, Pφ = φ}

Because the two projectors P and Q can only have eigenvalues zero and one, the eigenvalues

of A are between −1 and +1. The +1 eigenvalue of A is reached only when there exists a
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state that is both the +1 eigenvector of Q and the zero eigenvector of P. Since

−1 ≤ 〈φ| (Y †PY − P ) |φ〉 ≤ 1, (6.14)

one obtains that

(Y †PY − P ) |φ〉 = |φ〉 (6.15)

if and only if P |φ〉 = 0 and Y †PY |φ〉 = |φ〉. Therefore the +1 eigenspace of A is just HA
10.

Now, let’s explain the physical meaning of these different eigenspaces. A state inside the

Hilbert space HA
00 is the eigenvector of P with eigenvalue 0 and the eigenvector of Q = Y †PY

with eigenvalue 0. That is, a state starting from the left side of a cut stays at the left side of

the cut after a unitary evolution Y . Therefore H00 includes the states ‘far left from the cut’.

Similarly, H11 are related to the regions ‘far-right from the cut’. To the opposite, H10 and

H01 match the regions ‘close to the cut’. Inside the Hilbert space H10, a state |φ〉 is not the

eigenvector of P, which means that |φ〉 is related to the left side of the cut which is covered

by 1− P . At the same time, |φ〉 is the eigenvector of Q:

Y †PY |φ〉 = |φ〉 (6.16)

which can be rewritten as

PY |φ〉 = Y |φ〉 (6.17)

Physically, the unitary Y pumps the state |φ〉 from the left side to the right side of the cut.

To construct the topological index of a time-reversal system, we seek a way to measure

the continuous flow from the left to the right (the full shift of a particle from the left side to

the right side). From the above analysis, a natural candidate is the dimension of H10 which

calculates the number of states which move from the left side to the right side across the cut.

ν1[Y ] = dim(HA
10) = dim(ker(A− 1)) mod 2 (6.18)

where dim ker O stands for the dimension of the kernel of an operator O, i.e. the nullspace

of O. This is because H10 denotes the +1 eigenspace of A.
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Similarly, the flow from the right side to the left side can be written as

ν2[Y ] = dim(H01) = dim(ker(A+ 1)) mod 2 (6.19)

And the relationship between the Kitaev flow index and our two new flow indexes ν1[Y ]

and ν2[Y ] is [64]

ν[Y ] = dim(ker(A− 1))− dim(ker(A+ 1)) = Tr(A)

Combining with the fact that the Kitaev flow is zero for any systems with time-reversal

symmetries, we reach the equivalence

ν1[Y ] = ν2[Y ] (6.20)

Hence, we can use any one of them to be the Z2 index of the time-reversal symmetry

system.

In a physical system, the Hamiltonian always satisfies a particular locality constraint,

making the generated unitary quasi-diagonal. In other words, the matrix elements of the

unitary decay exponentially (or faster) with the distance between the sites involved. In the

following discussion, to simplify the proof, we consider the unitary, which is strictly local,

i.e., Ujk vanishes if the distance between two positions j and k is larger than the localization

length l. Under the assumption of locality, it’s clear that only the regions close to our cutting

x = x0 will contribute to the calculation of the Z2 index.

After considering two contiguous intervals of sites Ll and Rl which are at the left and

right side of the cut respectively, we can then define two projectors P l
L and P l

R which are

hosted by Region L and R correspondingly. The size of the region Ll and Rl are both l. If

we set the coordinate of the cut to be x0 = 0, then LL and Rl are [−l, 0) and [0, l] separately.

Then we notice that the matrix

A = Y †PY − P = Y †PY (1− P )− Y †(1− P )Y P (6.21)

can be simplified as

A = Y †P l
RY P

l
L − Y †P l

LY P
l
R (6.22)
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To develop some intuitive understanding of the index, we now consider two simple

examples. If Y is the identity operator I, then the only eigenvalue of A is zero. Clearly

dim(ker(A− 1)) = 0. This is reflective of the fact that the unitary operator I does not create

any particle current between the two sides of the cut.

As a second example, we consider the unitary Y = t̂S↑ ⊕ t̂†S↓ where t̂ is the unit right

translation operator and t̂(t̂†) act at the spin-up (spin-down) subspace. The Lieb-Robinson

length of Y is 1 and thus the truncation length of L and R can be chosen to be 1 separately.

If we cut between site x and site x+ 1, then P l
L = Px and P l

R = Px+1.

A = Px ⊗ s+ − Px+1 ⊗ s− (6.23)

= |x, ↑〉 〈x, ↑| − |x+ 1, ↓〉 〈x+ 1, ↓|

Thus the dimension of the +1 eigenspace of A is 1 and the dimension of the -1 eigenspace

of A is also 1. The index ν = 1.

6.2 The Edge index

6.2.1 Properties of the operator A

The preceding section has shown that the eigenspectrum of A can offer us an opportunity to

understand better the transport behavior of a one dimensional unitary Y . In this section, we

are going to study the properties of operator A in detail. Our derivation is inspired by an

analogous derivation in Ref. [65].

First, we introduce a second operator[64]

B = 1− P −Q = 1− Y +PY − P

Then as in [64],the following relation holds:

AB +BA = 0 (6.24)

A2 +B2 = 1
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Consider an eigenvector of the operator A |φ〉 with an eigenvalue λ which satisfies

0 < λ < 1. Then, the anticommutation relation of (6.24) yields

AB |φ〉 = −BA |φ〉 = −λB |φ〉

There is a one-to-one correspondence between the states |φ〉 and B |φ〉, and their eigenvalues

come in pairs ±λ, provided 0 < |λ| < 1.

since the unitary operator Y follows time-reversal symmetry (6.3):

T Y T −1 = Y † (6.25)

Now we can build a relation between A and the time-reversal symmetric operator T . After

doing some algebraic calculations:

T A = T (Y †PY − P )

= (Y PY † − P )T

= Y (P − Y †PY )Y †T

= −Y AY †T

We find out an anticommutation relation

Y †T A = −AY †T (6.26)

Similarly, we can prove the commutation relation as follows,

Y †T B = BY †T (6.27)

Now let’s see how the time-reversal transformation plays a similar role as the operator B.

Let |φ〉 be an eigenvector of A with a strictly positive eigenvalue, i.e., A |φ〉 = λ |φ〉. Then

according to Eq. (6.26)

AY †T |φ〉 = −Y †T A |φ〉 (6.28)

Therefore,

AY †T |φ〉 = −λY †T |φ〉 (6.29)
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This implies that Y †T |φ〉 is an eigenvector of A with eigenvalue −λ. Now both B and

Y †T define a map from the eigenspace λ to −λ. It’s obvious that BY †T |φ〉 and Y †T B |φ〉

are both the eigenvectors of A with eigenvalue λ. As a result of (6.27), these two vectors are

actually the same,

BY †T |φ〉 = Y †T B |φ〉 (6.30)

Due to the anticommutation relation given in Eq. (6.24) and Eq. (6.26),

AY †T B |φ〉 = −λY †T B |φ〉 (6.31)

two vectors |φ〉 and Y †T B |φ〉 are eigenvectors of the operators A with the same eigenvalue λ.

The dimension of the λ eigenspace will be even if these two vectors are linearly independent

of each other. Now we show that if φ is an eigenvector of A with eigenvalue λ which meets

the constraint 0 < |λ| < 1, then

〈φ|Y †T B |φ〉 = 0 (6.32)

First, following from the properties of an antiunitary,

〈T φ|T ψ〉 = 〈φ|ψ〉∗ = 〈ψ|φ〉 (6.33)

We substitute |ψ〉 as Y †T B |φ〉 then the left side of the above equation becomes
〈
T φ

∣∣∣T Y †T Bφ〉 =
〈
T φ

∣∣∣Y T 2Bφ
〉

= −〈T φ|Y Bφ〉

= −
〈
BY †T φ

∣∣∣φ〉
= −

〈
Y †T Bφ

∣∣∣φ〉

And the right side becomes

〈ψ|φ〉 =
〈
Y †T φB

∣∣∣φ〉
Thus, we arrive at our desired result, two vectors are linearly independent,

〈
Y †BT φ

∣∣∣φ〉 = 0
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Overall, the eigenspectrum of a transport operator A is symmetric about the eigenvalue

λ = 0. In addition, the multiplicity of the eigenvalue λ of the operator A must be even when

λ satisfies 0 < |λ| < 1.

Figure 6.3: An illustration of the Eigenvalue spectrum of operator A. Red dots indicate

different eigenvalues, while the dashed lines represent the eigenvectors. The green Arrow

symbolizes the action of the mapping B, and the yellow arrows denote the mapping Y †T ,

between two eigenvectors with opposite eigenvalues. After these two mappings, a state is

mapped to another state with the same eigenvalue. Therefore each energy level between −1

and +1 is double degenerate.

6.2.2 Robustness of the index

Now it’s natural to ask whether this index is invariant under smooth physical transformations.

If it’s not, then this index can not be treated as the edge invariant.

First, We can study this question from the properties of operator A. As shown in the

last section, the multiplicity of the eigenvalue λ of the operator A must be even when

0 < |λ| < 1. Thus, when the eigenvalues of A changes continuously under a continuous

deformation of the unitary Y , the parity of the multiplicity of the ±1 must be invariant

under a smooth transformation of the unitary. There will be two possibilities: a) An even

number of eigenvectors of A are lifted from the sector spanned by the eigenvectors of A
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with the eigenvalue λ = 1; (b) an even number of eigenvectors of A with eigenvalue λ = 1

become degenerate with the eigenvectors of A with the eigenvalue λ = 1. In both cases, it is

enough to prove the continuity of the eigenvalues of the operator A under deformation of the

Hamiltonian. The logic for the eigenvalue −1 is the same.

Consider two locality-preserving unitaries which satisfies (6.3), U(0) and U(1), together

with a smooth interpolation U(s) respecting (6.3) between them, parametrized by s ∈ [0, 1].

Define the difference between two unitaries:

γ(s) = U(s)U †(0). (6.34)

For small δs, we expand the gamma operator as:

γ(s+ δs) = γ(s)(1− iδsh(s) + ...) (6.35)

where h(s) is a Hermitian operator because γ(s) is also a locality preserving unitary.

A(s) = U †(s)PU(s)− P (6.36)

A(s+ δs) = U †(s+ δs)PU(s+ δs)− P (6.37)

Consider the difference between A(s+ δs) and A(s)

A(s+ δs)− A(s) (6.38)

= (1 + iδsh(s))U †(s)PU(s)(1− iδsh(s))− P

− (U †(s)PU(s)− P )

= iδs
[
h(s), U †(s)PU(s)

]

because h(s) is a local operator, thus
[
h(s), U †(s)PU(s)

]
is finite. Therefore, A(s) changes

continuously as the parameter s changes. Together with above analysis, we know that the

index of A(s) is robust.
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6.2.3 Properties of the index

Here we provide an explicit derivation of some of the claims on the properties of the chiral

unitary index.

(a) Parallel chains.

ν1[U1 ⊕ U2] = ν[U1] + ν1[U2] (6.39)

Because for a unitary taking the block diagonal form, the dimension of its +1 eigenspace

should be the addition of the dimension of +1 eigenspace for each block unitary.

(b)

ν1[U ] = ν1[U †] (6.40)

P − UPU † is a unitary transformation of U †PU − P ,

P − UPU † = U(U †PU − P )U †

Thus the dimension of +1 eigenspace of P − UPU † should be equal to the dimension of +1

eigenspace of U †PU − P .

dim ker[(P − UPU †) + 1]
]

mod 2 = dim ker[(U †PU − P )− 1]
]

mod 2 (6.41)

That is,

ν2[U †] = ν1[U ] (6.42)

according to the definition of two flow indexes. Due to the equivalence between two indexes

ν1[Y ] and ν2[Y ] given in Eq. (6.20),

ν1[U †] = ν1[U ] (6.43)

This equality meets our physical intuition. As our flow index only relates to the amplitude

of a flow and ignore the direction information, two flows with the same amplitudes and

opposite directions should share the same index.
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6.3 Bulk-edge correspondence

6.3.1 Bulk invariant

Carpentier introduced a bulk invariant that can be used to classify the translation-invariant

system. They build a new unitary evolution only containing the information during the first

half-period in the original unitary evolution. We denote the new evolution unitary operator

as V (t) while our original unitary evolution operator is U(t).

This new evolution unitary operator is generated by the following Hamiltonian,

H̃(t) =


H(t) 0 ≤ t ≤ T

2

H ′(t) T
2 < t ≤ T

(6.44)

For the first half period, the Hamiltonian in the new evolution is the same as the original one.

And for the second half period, the new Hamiltonian H ′(t) follows particle hole symmetry

which can connect V (T2 ) with identity.

Then the new constructed evolution operator satisfies:

V (t) = U(t) (0 ≤ t ≤ T

2 ) (6.45)

and

T V (t)T −1 = V (t) (T2 < t ≤ T ) (6.46)

with V (T ) = I. In this way, we construct a two-dimensional unitary loop in class A. Then we

can use the bulk invariant for class A to classify this new unitary evolution V (t). [12, 66]

It will be useful to distinguish between the closed-system evolution and the open-system

evolution, which we write as Uc(t), Vc(t) and Uo(t), Vo(t) respectively. In the closed system,

the bulk invariant can be expressed as [7]

W [Vc] = 1
2

∫
dtTr

(
Vc(t)†∂tVc(t)

[
Vc(t)†[Px, Vc(t)], Vc(t)†[Py, Vc(t)]

])
(6.47)

The Z2-valued index K is defined by the relation

K[Uc] = W [Vc] mod 2 (6.48)
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Because V (t) is defined from U(T ), V (t) contains all the information inside U(t).

However, Carpentier only proved that this method worked for translation invariant systems.

In order to generalize this method to disordered systems, we need to first prove the existence

of the construction and then prove the independence of the choice of V (t).

First, to prove the construction of a new unitary V (t) exist, we only need to show V (T2 )

can be smoothly connected to Identity in any systems. Explicitly, from Equation (6.44) and

V (T ) = I, we have

V (T2 ) = T exp
[
i
∫ T

T
2

H ′(t′)dt′
]

and the corresponding hamiltonian H̃(t′) follows particle hole symmetry and belongs to class

C,

T H ′(t′)T −1 = −H ′(t′).

In other words, V (T2 ) can be local generated by two dimensional particle hole symmetric

Hamiltonians. According to the classification of local unitaries given in Chapter 2, we need to

show that all two dimensional class C unitary V (T2 ) are topologically trivial to be smoothly

connected to identity through class C hamiltonians. To do this, let’s have a one to one

correspondence from the unitary V (T2 ) and a local hermitian operator which is in Class CII,

HV =

 0 V (T2 )

V (T2 )† 0

 , (6.49)

and the second dimensional topological index for HV is always trivial[4]. Therefore, all V (T2 )

is topologically trivial and thus can be locally generated by class C Hamiltonians H ′(t).

Next, let’s address the question whether the Z2-valued quantity K[U ] is independent of the

choice of the contraction. If there are two distinct ways to do the contraction, we can prove

that the final Z2- valued index will be the same for two methods. The difference between

two winding numbers W [V1] for the first contraction and W [V2] for the second contraction is:
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W [V1]−W [V2] = 1
2

∫
dtdkxdky (6.50)

×Tr(V †1c∂tV1c
[
V1c(t)†[Px, V1c(t)], V1c(t)†[Py, V1c(t)]

]
−Tr(V †2c∂tV2c

[
V2c(t)†[Px, V2c(t)], V2c(t)†[Py, V2c(t)]

]
= 1

2

∫
dtTr(Ṽ †∂tṼ

[
Ṽ †[Px, Ṽ ], Ṽ †[Py, Ṽ ]

]
)

where we define a unitary loop as

Ṽ (t) =


V1c(T − t) 0 ≤ t ≤ T

2

V2c(t) T
2 < t ≤ T

.

Since V1c(t) and V2c(t) both follow particle-hole symmetry given in Eq. (1.8), Ṽ (t) is also

a class unitary and the winding number of it should always be even. Therefore

W [V1] mod 2 = W [V2] mod 2

In summary, we can generalize the method developed by Carpentier to disordered systems.

6.3.2 Bulk-edge correspondence

In this section, we will prove that the bulk invariant equals our Z2 edge index at the end of

the evolution. We first show that the edge index in the newly built Class A system is equal

to the bulk invariant, i.e., the bulk edge correspondence in class A. Then, we associate this

edge index to our Z2 edge index.

We partition the lattice into three spatial regions: L which is the part 0 ≤ x < Lx/3, M

which is 0 ≤ x < 2Lx/3 and R which is 2Lx/3 ≤ x ≤ Lx.The bulk part M should be far away

from the edges (larger than the Lieb-Robinson length) where is not affected by the cutting

operation thus Uc(t) = Uo(t) which is just Identity in this area. Then the unitary Vo(T ) takes

the block diagonal form

Vo(T ) =


VL(T )

I

VR(T )

 (6.51)
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According to [7], we can count the number of edge modes by using the edge invariants,

νedge[Vo] = Tr[V †LPVL − P ] (6.52)

Then due to the one to one correspondence between the well-defined bulk invariant and the

edge index as shown in [7],

W [Vc] = νedge[Vo] (6.53)

Similarly, the unitary Uo(T ) takes the block diagonal form

Uo(T ) =


UL(T )

I

UR(T )

 (6.54)

Substituting t = T/2 into Eq. (6.1), we find

T Uo(
T

2 )T −1 = Uo(
T

2 )U †o (T ) (6.55)

and according to the construction formula Eq. (6.45)

Vc(
T

2 , 0) = Uc(
T

2 , 0)

For the second half period (follows the particle-hole symmetry)

T Vc(T,
T

2 )T −1 = Vc(T,
T

2 )

where we use Vc(T, T2 ) to denote the unitary evolution for the second half period, i.e.,

Vc(T, T2 ) = V (T )V †(T2 ).

Following these equations, we can find the relation between the new constructed unitary

and our original unitary at the end of the cycle:

T Vc(T )T −1 = T Vc(T,
T

2 )T −1T Vc(
T

2 , 0)T −1 (6.56)

= Vc(T,
T

2 )Vc(
T

2 , 0)U †c (T )

= Vc(T )U †c (T )
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Then after decomposing Vc(T ) and Uc(T ) into three blocks:

U †L(T ) = VL(T )†T VL(T )T −1 (6.57)

Now, we want to prove the bulk edge correspondence in this class AII system which can be

written as

K[Uc] = ν[UL] (6.58)

we just need to prove that

νedge[Vo] mod 2 = ν[UL] (6.59)

which can be written as

Tr(V †LPVL − P ) mod 2 (6.60)

= dim(ker(U †LPUL − P − 1)) mod 2

because these two equalities (6.52) and (6.53).

To proceed further, define the transport operator A based on the one dimensional edge

unitary UL:

A = U †LPUL − P (6.61)

Eq. (6.57) gives a relation between the original full-period unitary U(T ) and the new

constructed full-period unitary V (T ), which we can use to rewrite the expression above as

A = VL(T )†T VL(T )PVL(T )†T −1VL(T )− P (6.62)

We introduce the operator

B = V †LPVL − P (6.63)

After doing a unitary transformation, we can get a new operator

C = −VLPV †L + P = P −Q = VLBV
†
L (6.64)
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where Q arising from the unitary evolution VL is defined as VLBV †L .

Thus

Tr(C) = Tr(B) (6.65)

since a unitary transformation will not change the trace of a matrix. Similarly, let’s do a

transformation of the operator A

D = T −1VLAV
†
LT (6.66)

= VLPV
†
L − T −1VLPV

†
LT (6.67)

= Q− T −1QT (6.68)

Thus the dimension of the +1 eigenspace of A equals the dimension of the +1 eigenspace

of D.

dim(ker(A− 1)) = dim(ker(D − 1)) (6.69)

Let’s study the eigenspace of operator D:

HD
00 = {|φ〉 ∈ H|Q |φ〉 = 0, QT |φ〉 = 0} (6.70)

HD
11 = {|φ〉 ∈ H|Q |φ〉 = |φ〉 , QT |φ〉 = 0}

HD
10 = {|φ〉 ∈ H|Q |φ〉 = |φ〉 , QT |φ〉 = 0}

HD
01 = {|φ〉 ∈ H|Q |φ〉 = |φ〉 , QT |φ〉 = T |φ〉}

HD
⊥ = {|φ〉 ∈ H|D |φ〉 = λ |φ〉 , 0 < |λ| < 1}

Where HD
10 indicates the +1 eigenspace of D and HD

01 is the −1 eigenspace of D. Each

vector in HD
⊥ is an eigenvector for D with absolute value larger than zero and less than one.

In the same time, we define projectors P00, P11, P10, P01 and P⊥ correlated to the Hilbert

space HD
00, HD

11, HD
10, HD

01 and HD
⊥ individually.

Now we want to prove that the zero eigenspace is just the combination of HD
11 and HD

00.

It’s easy to verify that D2 commutes with Q, namely,
[
D2, Q

]
= 0. (6.71)
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Hence, we can diagonalized D2 and Q simultaneously. If D |φ〉 = 0, then D2 |φ〉 = 0.

Therefore there are two sectors in the zero-eigenspace of D which corresponds to Q = 1 and

0 separately. The first sector is the same as HD
11 and the second sector is identical to HD

00.

From the above analysis, we see that the eigenspace of D is fully constructed by the

combination of HD
00 and HD

11 which is the same as the zero eigenspace, HD
10 which denotes the

+1 eigenspace , HD
01 which is related to the -1 eigenvalue and HD

⊥ satisfying that the absolute

values of eigenvalues are between 0 and 1.

According to the theory of pairs of projectors, we can create another operator E =

1−Q− T −1QT . Then the following two relations hold:

ED +DE = 0 (6.72)

and

E2 +D2 = 1 (6.73)

The second relation means that inside the D2 = 1 subspace, E2 = 0. This shows that the

zero eigenspace of E is identical to the ±1 eigenspace of D. And similarly, the ±1 eigenspace

of E is the same as the zero eigenspace of D. To summarize, the eigenspace of E is made

up of the combination of HD
10 and HD

01 which contain the zero eigenstate of E, HD
00 which

indicatess the +1 eigenspace of E, HD
11 which is associated the -1 eigenvalue of E and HD

⊥

includes eigenstates with the eigenvalues not 0 or ±1.

In addition, from Eq. (6.66) we find that T anticommutes with the operator D:

T D +DT = 0 (6.74)

Similarly, it’s clear that E commutes with the time reversal symmetric operator T :

T ET −1 = E (6.75)

This relation yields that E is time reversal symmetric which means that every energy

level of E is at least doubly degenerate due to the Kramers theorem. From (6.72) we can

162



define an invertible map D that maps an eigenvector with eigenvalue λ ∈ (0, 1) to that with

−λ. Thus, there is a one-to-one correspondence between the states |φ〉 and E |φ〉, and their

eigenvalues come in pairs ±λ, provided that 0 < |λ| < 1. Combined with the fact that every

eigenvalue of E is double degenerate, we know that the eigenspace H⊥D that is associated to

each eigenvalue λ which satisfies 0 < |λ| < 1 is four-fold, to be specific,

Tr(P⊥)/2 mod 2 (6.76)

= dim(H⊥D)/2 mod 2

= 0 mod 2

Since D anticommutes with the time reversal symmetric operator T (6.74), we can prove

that the eigenstates |φ〉 and T |φ〉 comes in pairs with opposite eigenvalues. Upon the fact

that the operator D is antisymmetric about the eigenvalue 0, the trace of D is zero on the

Hilbert space HD
⊥ , in other words,

Tr(DP⊥) = Tr(QP⊥)− Tr(T QT −1P⊥) = 0 (6.77)

where P⊥ is the projector to the Hilbert space HD
⊥ .

Due to the existence of the mapping D, we know that the eigenvalues of E on the Hilbert

space HD
⊥ come in ± pairs, the trace of E on this Hilbert space is zero.

Tr(EP⊥) = Tr((1−Q− T QT −1)P⊥) (6.78)

= Tr(P⊥)− Tr(QP⊥)− Tr(T QT −1P⊥)

= 0

Therefore,

Tr(P⊥) = 2Tr(QP⊥)

Since Tr(P⊥) is just the dimension of HD
⊥ which is a multiple of four(6.76), Tr(QP⊥) is

an even number, that is to say,

Tr(QP⊥) mod 2 = 0 (6.79)
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For every state |φ〉 belongs to HD
11, then

Q |φ〉 = |φ〉 (6.80)

QT |φ〉 = T |φ〉

Then T |φ〉 also belongs to HD
11 because it meets the same requirement. Since T |φ〉

and |φ〉 are linearly dependent with each other, the dimension of HD
11 is even. After some

straightforward algebraic calculation, we arrive at this equality,

dim(HD
11) = Tr(P11) = Tr(QP11) (6.81)

Consequently,

Tr(QP11) mod 2 = 0 mod 2 (6.82)

Now we can decompose the matrix Q into five parts according to different Hilbert space,

Tr(Q) = Tr((P11 + P00 + P10 + P01 + P⊥)Q) (6.83)

= Tr((P11 + P10 + P⊥)Q)

= Tr(P11Q) + Tr(P10Q) + Tr(P⊥Q)

owing to the fact that Q equals 0 on the Hilbertspace HD
00 and HD

01. Because both Tr(P11Q)

and Tr(P⊥Q) are even, the parity of Tr(Q) is the same as that of Tr(P10Q).

Tr(Q) mod 2 = Tr(QP10) mod 2 (6.84)

The final step is to massage the expression (6.84) into the desired form (6.60). Because

the projector P which acts on the right side of the cut is time reversal symmetric, it’s +1

eigenvalue is double degenerate, to be specific,

Tr(P ) mod 2 = 0 mod 2 (6.85)

Combined with the definition of the matrix C (6.64) and the equality(6.65), the left side

164



of Eq. (6.84) becomes

Tr(Q) mod 2 (6.86)

= Tr(Q)− Tr(P ) mod 2

= Tr(C) mod 2

= Tr(B) mod 2

Because the operator Q is identity on the Hilbert space HD
10, QP10 is just P10 and then

the right side of Eq. (6.84) can be rewritten as

Tr(QP10) = Tr(P10)

= dim(ker(D − 1))

= dim(ker(A− 1))

following from Eq. (6.69).

Substituting the expression (6.86) and (6.87) into (6.84),

dim(ker(A− 1)) mod 2 = Tr(B) mod 2

just as expected. The left side of the above expression is the Z2 index of our time reversal

symmetric evolution unitary and the right side indicates the parity of the edge invariant of

the newly constructed unitary. Then combined with the bulk edge correspondence in class A,

we can set up a one to one correspondence between the number of edge modes and the bulk

invariant.
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APPENDIX

6.A Edge invariants deviation

As we discussed in Chapter 2, there is another method to derive edge invariants. In this

section, we will show how to use this method to get edge invariants. First, we map the edge

unitary in class AII to a flattened Hamiltonian in class DIII through

HU =

 0 U

U † 0

 . (6.87)

Then we get the topological invariant of HU from [44] which is

Ind2(HU) := 1
2dim ker[S(PR −HUPRHU)− 1] mod 2 (6.88)

After plugging Eq.(6.87) into the above equation, we can rewrite the topological invariant

as the function of U ,

Ind2(HU) = 1
2

[
dim ker[(PR − UPRU †)− 1] + dim ker[(PR − U †PRU) + 1]

]
mod 2.(6.89)

As we know, PR − UPRU † is a unitary transformation of U †PRU − PR,

PR − UPRU † = U(U †PRU − PR)U † (6.90)

Thus the dimension of +1 eigenspace of PR − UPRU † should be equal to the dimension of

+1 eigenspace of U †PRU − PR. In addition, because PR − U †PRU = −(U †PRU − PR), the

dimension of −1 eigenspace of PR−U †PRU should be equal to the dimension of +1 eigenspace

of U †PRU − PR. Therefore, we can simplify Eq. (6.89) as

Ind2(HU) = dim ker[(U †PRU − PR)− 1]
]

mod 2 (6.91)

This agrees with what we show in Eq. (6.18).
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CHAPTER 7

classification of the edge states in static Hamiltonians

7.1 Motivations

In the last sections, we have talked about the classification of Floquet systems. In this section,

we will discuss the classification of static Hamiltonians following the connection between

Floquet systems and static Hamiltonians. Previous studies of static Hamiltonians mainly

focus on the classification of bulk Hamiltonians. There is limited research on the studies

of edge modes besides counting the number of edge modes from eigenspectrum. A rigorous

mathematical studies of edge modes in [45], however, only gives edge invariants for so-called

complex classes of topological insulators, which don’t include time-reversal or particle-hole

symmetries. Our method fills this gap and can be used in any symmetry classes. In this way,

our work forms a vital milestone in the study and characterization of Topological insulator

phases.

7.2 Constructing unitary loops from a static Hamiltonian

As we discussed before, we define a unitary loop to be a unitary evolution that satisfies

U(0) = U(T ) = I where T is the period of this evolution. This unitary loop captures all the

dynamic features of an unitary evolution. That’s the difference between Floquet systems and

static systems. A unitary of this form can be seen to act trivially on a closed system but may

generate nontrivial edge modes in a system with a boundary. In chapter 2, we classifies all

edge unitaries which control edge behaviors in Floquet systems. As long as we can associate

a static Hamiltonian to a unitary loop, we can build a connection between the edge modes of
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the static Hamiltonian and the edge unitary of the corresponding unitary loop. In this way,

we can directly apply the classification of edge unitaries to classify the edge modes of static

Hamiltonians. To simplify the discussion, we first discuss flattened Hamiltonians.

Consider a flatten Hamiltonian Hf with a projector PF where PF projects onto the lower

band, then we can define a unitary evolution which is governed by PF with a period 2π,

U(t) = eitPF (7.1)

After expanding this time evolution operator using the identity P 2
F = PF , we have

U(t) = (eit − 1)PF + 1 (7.2)

Hence this is a unitary loop which meets U(2π) = U(0) = I. We can also adjust this loop

to be an evolution directly evolved by Hf . By substituting PF = 1−Hf

2 and t′ = t/2, we get

another expression of this evolution,

U(t′) = e−it
′(Hf−1) (7.3)

with a period π. The part eit just gives a phase shift and the topology is encoded in Hf .

In a close system, we can see from Eq.(7.2) that U(t) takes a block diagonal form, acting

as the Identity matrix on the subspaces projected by 1−PF and eitI matrix on the subspaces

projected by PF . eit evolves from ei∗0 to ei∗2π as time goes. That is, the quasienergy of the

+1 eigenspace of the flattened Hamiltonian is fixed at 0 while the quasienergy of the −1

eigenspace evolve from 0 to 2π. After opening the boundary, the edge states at the gap 0 of

this flattened Hamiltonian will thus be pushed to the gap π.

Assume the number of edge modes for this flattened Hamiltonian is nHedge. In the evolution

process, we keep the edge modes structure nHedge = nUπ since we only extend or compress the

energy bands. After a complete cycle, we get an effective edge unitary Uedge for this unitary

loop. The topological invariants for this edge unitary is ν[Uedge] which counts the the number

of edge modes ν[Uedge] = nUπ . Therefore, nHedge = nUπ . Then we use the classification of the

edge unitary(emerge after opening the boundary for the unitary loop) to classify the edge

modes for the Hamiltonian.
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7.3 An example: class A Hamiltonian in two dimensions

In this section, we show how our logic works by testing it in two dimensional systems without

any symmetries. Reference [5] gives a similar discussion but only in translation-invariant

system and we are going to discuss in a more general context, including disordered system.

First, we note that the time evolution operator U = e2πitPF satisfies the identities

U = (e2πit − 1)PF + 1

U−1 = (e−2Πit − 1)PF + 1, (7.4)

Expanding U †[Px, U ] in terms of PF ,

U †[Px, U ] = (e−2πit − 1)(e2πit − 1)PF [Px, PF ]

+ (e2πit − 1)[Px, PF ]

≡ a (2πt) · PF [Px, PF ] + b (2πt) [Px, PF ]. (7.5)

where Px is a projector acting on the right-half plane with x > 0. Here,

a(θ) = 2− 2 cos(θ) , b(θ) = eiθ − 1. (7.6)

Similarly, we have

U−1[Py, PF ] = a (2πt) · PF [Py, PF ] + b (2πt) · [Py, PF ]

U−1∂tU = 2πiPF . (7.7)

Combining these results, we find

Tr
(
U−1∂tPF

)
U †[Px, U ]U †[Py, U ]

)
(7.8)

= Tr
(

2πiPF (a (2πt) · PF [Px, PF ] + b (2πt) [Px, PF ])

·(a (2πt)PF [Py, PF ] + b (2πt) [Py, PF ])
)

By making use of the identity

P [Px, P ]P = [Px, P 2]P − [Px, P ]P 2 = 0
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Similarly,

P [Py, P ]P = 0

We can simplify Eq. (7.9),

Tr
(
U−1∂tPFU

†[Px, U ]U †[Py, U ]
)

= 2πi[2 cos(2πt)− 2] Tr
(
PF [Px, PF ][Py, PF ]

)

We can now compute the winding number corresponding to U given in Reference. [7]:

W [U ] = 1
2

∫ 1

0
dtTr

(
U−1∂tPFU

†[Px, U ]U †[Py, U ]
)
− (x↔ y)

= πi
∫
dt[2 cos(2πt)− 2] Tr

(
PF [Px, PF ][Py, PF ]

)
(7.9)

= −2πiTr
(
PF [Px, PF ][Py, PF ]

)
(7.10)

The latter expression is the Chern number of a real-space Hamiltonian[31]. In this way, we

showed how a static Hamiltonian can be mapped to a special unitary loop. In addition,

the topological invariant of such unitary loop is equal to the topological invariant used in

classifying a bulk Hamiltonian.
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