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ABSTRACT OF THE THESIS

A 2D example study

of Deep FRAME model

by

Yaxuan Zhu

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Song-chun Zhu, Chair

In this work, we use a 2D to study many aspects of Deep FRAME model. We first do

visualization on the training process, showing how the fitted probability distribution evolves

during training, how the model captures different modes and how these results are influenced

by the choice of prior distributions and activation functions. We then study the activation

pattern of the learned network and the corresponding partition of the input space. Based

on the input space partition and statistics matching, we then compare the multi-layer model

trained with SGD with the original one-layer model. Finally, we analyze the case in which

we train the model with finite-MCMC sampling, showing the difference between fitting the

energy function and synthesizing samples.
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CHAPTER 1

Introduction

Recently, deep neural network [11] has been applied in many fields such as image classifi-

cation, image generation, object detection [10, 4, 14], etc. The Deep FRAME model is a

kind of energy-based probability model, which defines a energy function using deep neural

network. It can be viewed as a hierarchical version of FRMAE (Filters, Random field, And

Maximum Entropy) model [19]. This model is proved to be very powerful and can be used to

model complex distributions such as image distribution [1, 6, 15]. Fitting the model usually

employs using MCMC sampling[18, 2].

It is very useful if we can form a deeper understanding of this model. Many questions,

such as how the model captures those complex underlying distributions, how the fitted dis-

tribution evolves during training, why deep model works in capturing complex distributions

are worthy answering. Besides, in previous research, we mainly focus on the model’s ability

for synthesizing data. Although some works [7] try to reveal the landscaping of the fitted

energy, it’s not quite clear whether there is a difference between fitting good energy function

and synthesizing data, or more precisely, synthesizing the data using generator or finite-step

MCMC. These questions are hard to be answered in the high-dimensional input space. In

this work, we use a simple 2D setting to discover the answers of these questions and our

results reveals many interesting properties that the Deep FRAME model has.

The contribution of this thesis is helping people to better understand the Deep FRAME

model. We do this in many aspects:

1. Visualize the energy fitting process of Deep FRAME model.

2. Compare the influence of choice of prior distribution and activation function.

3. Show the activation pattern of learned Deep FRANE model and the space division by

1



the ReLU function.

4. Show the match statitics of Deep FRAME model.

5. Discuss the influence of using finite-step MCMC in the training process. Show the

relationship between generating good samples and fitting good energies.
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CHAPTER 2

Deep FRAME model

The FRAME model, proposed by Zhu, et.al [19] is an energy-based probability model. As

shown in equation 2.1, the model tilts a reference distribution (e.g. Gaussian Distribution or

Uniform Distribution) by an exponential term. In [19], the energy term fθ(Y ) is defined as

the linear combination of features extracted by a set of predefined filters, e.g. Gabor Filters.

With the help of deep neural network, Deep FRAME model generalize the original FRAME

model into a hierarchical version. (Strictly speaking, the energy term should be defined as

-fθ(Y ) or we call fθ(Y ) the negative energy. In this thesis, for simplicity, when we show the

fitted energy funcitons, we directly show fθ(Y ) instead of explicitly specify it is the negative

energy.) Here, given an input Y, fθ(Y ) is defined by a bottom-up neural network where θ

denotes its parameters and Z(θ) is the normalization term.

pθ(Y ) =
1

Z(θ)
exp[fθ(Y )]p0(Y ) (2.1)

2.1 Training of Deep FRAME model

The training of the Deep FRAME model relies on Maximum Likelihood Estimation (MLE).

Given a set of observed training example Yi i = 1, . . . , n, MLE seeks to maximize the log-

likelihood function:

L(θ) =
1

n

n∑
i=1

logpθ(Yi) (2.2)

If the sample size n is large, the maximum likelihood estimator minimizes the Kullback-

Leibler divergence from the data distribution Pdata to the fitted distribution Pθ . The gradient
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of L(θ) can be written as

L
′
(θ) =

1

n

n∑
i=1

∂

∂θ
fθ(Yi) − Eθ[

∂

∂θ
fθ(Y )] (2.3)

This updating equation can be understood as matching the expected energy of the syn-

thesized data and true data. If we defined energy as a linear combination of a series of

filter responses, then taking gradient means we are matching the expected responses of these

filters. In other words, we use these responses as sufficient statistics for discribing the un-

derlying distribution.

In the case of high dimensional data such as images, the expectation term in 2.3 is ana-

lytically intractable and needs to be approximated by MCMC, such as Langevin dynamics

[18, 2]. In this thesis, since we work on 2D space and the range of the input is limited to

[-1, 1] (more details please refer to Chapter 3), instead of using MCMC sampling, we can

estimate the expectation by dividing the whole input space into grids and approximate the

probability distribution using the grid points. As long as our division of the input space

is refined enough, our estimation is accurate. In Chapter 5, we compare the result using

finite-MCMC sampling with grid points.

2.2 Input space partition of Deep FRAME model

Suppose we use ReLU activation[12, 3], then given an image Y, the output of the neural k

in layer l, F l
k, can be written as:

F l
k = δlk ∗ (

〈
W l
k, F

(l−1)
〉

+ blk) (2.4)

δlk = 1(
〈
W l
k, F

(l − 1)
〉

+ blk) (2.5)

According to whether the linear combination of the features is greater than 0, the neurons

in the lth layer partition the input space into many subspaces. In each subspace, the output

of lth layer is linear to the input features of the l-1th layer. This space will be further

partitioned by the l+1th layer and hierarchically the input space is partitioned into lots of

different small cells. According to [16], if we choose uniform distribution as prior distribution,
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then the input space is piecewise linear. On the other hand, if Gaussian prior is chosen, then

input space is piecewise Gaussian.
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CHAPTER 3

2D example study training on grid points

In this section, we talk about the 2D example study results for Deep FRAME model. Our

inputs are 2D points lying in the square space, whose coordinates are limited to the range

of [-1, 1]. For the observed data, we randomly samples 10k-40k points according to the

distribution we want to fit. Note that in this section, in order to estimate the expectation,

we divide the input space into 40k square grids (divide each axis into 200 intervals) and

calculate expectation on these 40K grid points. In chapter 5, we will show the results using

finite-MCMC to calculate the expectation. We use 1 to 5 hidden layers fully-connected

neural network to carry on the experiments.

The report is organized as follows: In 3.1 we compare the result for fitting different

distributions. We show the input space partition and compare the result using different

structures. In 3.2 we show the training process and discuss how this process is influenced

by the choice of activation functions and prior distributions. 3.3 shows how the modes are

formed and 3.4 visualizes the activation patterns of neurons. Finally, in 3.5 we consider

sampling with a generator and discuss the potential problem in this situation.

3.1 Fitting result for different distributions

Here we show the several fitted results, the distribution we fit include a single circle distribu-

tion, several dots distribution and more complex distribution getting from galaxy image (this

distribution is converted from real galaxy image from the web according to the intensity).

In all these experiments, we use a standard Normal Distribution as our prior distribution.

(We will compare the effect using different distribution in section 3.2.) We show the results
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of fitted distribution in Figure 3.1. In this figure, we show the original distribution, then the

final fitted results we get and finally the input space partition.

From the result, first thing we can tell is that our model can capture the underlying

distribution even in those complex case of galaxy image (case E and F). Then if we see the

input space partition, we can tell that the cutting lines of the input space concentrate on

the place of the observed points. We can see in all the 6 cases the input spaces are cut into

smaller and finer cells around the place where the observed data locates. We think this effect

is because the place where observed points locate usually has large variance and in order

to capture these variances, the model pays more attention to describe these areas. Since

the ReLU function bends the output space at the place where input equals to 0 (where the

cutting lines locate), then it can create a difference between the 2 sides of the cutting line.

Therefore, by putting the cutting lines at the place with high variance, the model can fit the

underlying distribution better.

Besides, for each of the underlying distribution, we use two structures. Comparing A and

B, C and D, E and F, we can see that adding more layers enables the model to capture finer

structures of the underlying distribution. For example, in case E and F, when we use the

2-layer network, the model only captures the contour of the fitted distribution while after

adding a new layer, finer structure can be seen. Also note that in case C and D, the 1-layer

network and the 2-layer network actually have similar number of parameters, but the 2-layer

network result is much clearer and concentrating, which may show that the hierarchy of the

model helps it capture the underlaying distribution in a better way.

3.2 Study of the training process

In this section, we show how the model evolves from the prior distribution to the final fitted

distribution. Furthermore, we compare the learning process under different prior distribution

(uniform distribution, Gaussian distribution with different variances). We also compare 2

more different activation function with the original ReLU, which is softplus 3.1 and tanh 3.2.

The softplus can be seen as a soft version of the ReLU function. It’s differentiable at 0 and

7



Original distribution Fitted distribution Input space partition

A

B

C

D

E

F

Figure 3.1: Fitted results for several distributions

A. Fitted ring distribution using 1 hidden-layer network (128 neurons) B. Fitted ring

distribution using 2 hidden-layer network (32-32 neurons) C. Fitted star distribution using

1 hidden layer network (512 neurons) D. Fitted star distribution using 2 hidden layer

network (32-16 neurons) E. Fitted galaxy distribution using 2 hidden layer network (32-64

neurons) F. Fitted galaxy distribution using 3 hidden layer network (32-64-128 neurons)
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thus gives us smoother boundaries between pieces. Besides that, if we take derivative to the

softplus function, we will get sigmoid in the backward propagation, which can be interpreted

as the probability of detecting a certain pattern. Therefore, we get sigmoid function in

the process of backward propagation. The tanh function is also a smooth function and it

squashes those inputs that are either too big or too small. In our experiments, we use the

same structure with 2 hidden layers (32-16 neurons) for all the settings. We also keep other

hyper-parameters (learning rate, optimization settings, etc.) same across the experiments.

The results of the training process are shown in Figure 3.2.

f(x) = log(1 + exp(x)) (3.1)

f(x) =
exp(x) − exp(−x)

exp(x) + exp(−x)
(3.2)

By comparing the results A and B, we can see that, according to the training process, there

isn’t much difference between using uniform prior or Gaussian prior with relatively large

variance. The influence of the prior distribution is quickly surpassed by the fitted energy

term. The model will expand its high probability region to cover the true distribution first

and then gradually reduce the probability on those areas which do not have any observed

data. And in this process, we can see very clear line cut. But the difference between B

and C is very obvious. If we use much smaller variance in Gaussian distribution, then the

mode forming process will be that the model first split its single mode into several small

pieces, then these pieces will move towards the position of observed points. And in the whole

process, we do not see any hard line cut from the probability space.

If we compare the results among different activation functions (D,E,F,G), we can see that

using softplus and tanh do make the fitted energy function smoother. We do not observe

the sharp line cuts in A and B. However, they will also increase the hardness for training

the model, especially the softplus. As we can see, the softplus and tanh take longer time

to converge. And if combined with small variance Gaussian prior, the model may fail to

accurately capture the underlying distribution. (See the vary vague results in E.)

9



Epoch 1 10 50 100 500 1000

A

B

C

D

E

F

G

Figure 3.2: Training Process under different settings

A. Uniform prior distribution with ReLU activation function B. N(0, 1.0) Gaussian prior

distribution with ReLU activation C. N(0, 0.1) Gaussian prior distribution with ReLU

activation. D. N(0, 1.0) Gaussian prior distribution with softplus activation E. N(0, 0.1)

Gaussian prior distribution with softplus activation F. N(0, 1.0) Gaussian prior distribution

with tanh activation G. N(0, 0.1) Gaussian prior distribution with tanh activation
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A. Uniform prior B. Normal prior

Figure 3.3: Captured modes and the pieces it lies in for star distribution

A. Fitted modes under Uniform prior distribution (piece-wise linear in the input space) B.

Fitted modes under Normal (N(0, 1.0)) prior distribution (piece-wise Gaussian in input

space)

3.3 Mode forming

To capture the variance in the underlying distribution, the fitted model will form different

modes. We define the modes as those points whose value is bigger or equal than its neighbors.

As we discussed before, under ReLU activation, the input space is piecewise Gaussian or

piecewise linear. In Figure 3.3, we show the modes in its pieces for the star distribution

we talked about above. We show the modes under uniform distribution, which in theory

should give us piecewise linear energy function, as well as Normal prior distribution, which

should form piecewise Gaussian energy function. Form the results, we can see in these 2

situations, almost all the modes fitted located on the boundaries of each pieces. This means

that instead of using the property in the pieces, the model actually relies on the bending

effect of the ReLU function to capture the modes. Therefore, in the sense of mode capturing,

there is not much difference between using Uniform prior or Gaussian prior. This result is

consistent with our observation in 3.2 that the training processes of the 2 settings are very

similar. (Because they actually rely on the same mechanism to capture the modes.)

We further show another case (Figure 3.4) where the observed data contains several

concentrated places (which we called textons) as well as a sparse uniform distribution across

the whole spaces (which we called textures). Shown in Figure 3.4 (B and C), in this case,

11



A. Original distribution B. All modes C. Deep modes

Figure 3.4: Captured modes under the texton-texture situation

the model captures lots of shallow modes in the area of texture and deep modes in the area

of texton. We can see many modes are aligned as lines. This is consistent with observation

above that the modes are mainly formed by the bending of ReLU function.

3.4 Visualization of activation patterns

After we study the fitted distribution and the learning process, another question we want to

study is how the neurons is activated inside a learned model. We first calculate the statistics

of activated neuron in each layer. We find that given an input, usually about 50% of the

neuron will be activated. This statistic is similar among different distributions, which means

the model do not have a sparse property. (We show the histogram getting from the galaxy

distribution in Figure 3.5 since the network used in this case has many layers. The results

for other distributions are just similar.)

This result means that each point in the input space will activate lots of neurons. In

geometry, the activation of each neuron corresponds to a line that cut the input space. As we

show in Figure 3.1, the whole input space is cut into many small pieces. Given the points into

a certain piece, although many neurons will be activated, the number of neurons that define

the boundary of this piece is actually very limited. In Figure 3.6, we show several example

pieces and the neurons that correspond to their boundaries. Here we use the 2 hidden layer

network (32-16) trained on star distribution. We can see only less than 5 neurons really

12



Layer 0 Layer 1

Layer 2 Layer 3

Layer 4 Across all the layers

Figure 3.5: Activation distribution for each layer in a learned energy function

Results come from a 5-layer network here trained on the galaxy distribution.
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Figure 3.6: Pieces and corresponding boundary neurons

correspond to a certain piece, although many neurons are activated, which can be helpful in

communicative learning.

Besides describing each piece, we can also describe a group of pieces together. In Figure

3.7 we show all the 8 textons in texton-texture case. Each texton is constituted by many

small pieces and their boundaries are defined by 4-13 neurons, which is much less than half

of the total 48 neurons.

14



15



Figure 3.7: Textons and corresponding boundary neurons
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CHAPTER 4

Comparing Deep FRAME model with pursuit-based

model

In this chapter, we compare 2 different models: pursuing the neurons (with ReLU activation)

one by one (which can only be done on 1-layer network); training the whole model (both

one layer and multiple layers) using gradient based algorithm, which is the method used in

Deep FRAME model. Based on these results, we show why multi-layer Deep FRAME model

trained with SGD has the power to capture complex distributions.

4.1 ReLU-based pursuit result

In this section, we train one layer model using pursuit algorithm following the FRAME

paper. Starting from a normal distribution, at each iteration, we select the filter with the

biggest mismatch from our filter pool. We then update the coefficients of all the filters to

enable the statistics match on all the selected filters. We build our filter pool by discreting

all the orientations (i.e. weight) and positions (i.e. bias). Note that the model we use here

is different from the original FRAME model in the sense that after selecting a certain filter,

we do not ask the synthesized data to match all the histogram bins of that filter, instead,

we only require the model to match the expectation of the ReLU activation. We show the

results under 2 distributions. The results are shown in Figure 4.1 and Figure 4.2. In each

figure, we show the fitted distribution, as well as the matching statistics.

In matching statistics graph, we show the true sample points using blue points. The

background shows the cutting pieces and the read line shows the matching value for each

neuron (i.e. where the expectation value lies for each neuron). Note that because we are

17



calculating the average of ReLU over all the data (the negative values are set to 0), the line

may not go across either data cluster. (See the matching statistics for using 3 neurons in

Figure 4.1).

From Figure 4.1, we can see that to fit the mixing Gaussian distribution, the model

mainly choose filters from 2 orientations. The first 2 neurons limit the distribution to a line.

Then since we start from a normal prior distribution, the probability tends to concentrate

on the central part. To correct this, the model gradually adds more matching statistics in

the middle. We see from neuron 3 to 8, the model learns to tell apart points into 2 clusters.

Then after 8 neurons, the distribution are almost good enough so the following 2 neurons

just make small adjustment. Similar things happen in Figure 4.2. The first 2 neurons build

the basic cross shape, the 3rd one adjust its position and the rest of neurons gradually refine

its shape.

We can compare the ReLU-based pursuit result with the original histogram-based pursuit

in the sense of how many statistics number they need to match. In the original model, when

we choose a filter, we match all the histogram bins of this filter. This is similar to we use a

batch of paralell lines to partition the space. Whenever we introduce a new filter, we add a

fixed number of lines to the partition(13 lines at a time, for example). On the other hand,

in the ReLU case, we add one line a time. For those axises that are easy to fit, we only need

one or two lines and more lines can be put to those hard axises. Therefore, we only need to

match 8 numbers to fit the mixing Gaussian distribution.

4.2 Training neural network with gradient descent

4.2.1 One-layer neural network

Here, we show the 1 layer neural network result on the 2 aforementioned distributions to

compare with the pursuit ones. The results are shown in Figure 4.3, 4.4. From the results

we can see that in the neural network setting, the model still tries to match the statistics of

the activation value from a certain filter. However, the chosen filters are different from the

18



# of filters 1 2 3 4 5

Matching

Statistics

Fitted Dis-

tribution

# of filters 6 7 8 9 10

Matching

Statistics

Fitted Dis-

tribution

Figure 4.1: ReLU-based pursuit results for mixing Gaussian distributions
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# of filters 1 2 3 4

Matching

Statistics

Fitted Dis-

tribution

# of filters 5 6 7 8

Matching

Statistics

Fitted Dis-

tribution

Figure 4.2: ReLU-based pursuit results for cross line distribution
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pursuit case. Unlike in the pursuit situation where at each iteration we explictly choose the

filter with the most mismatch, here we just try to modify the weight to make the selected

features match. In other word, the model may end up reaching a match with a batch of

not so informative filters. The model will converge to this local optimum because further

changing weight will increase the loss. See the case of cross lines in Figure 4.4. When

we use one or two neurons, we still find a line to match, but under this line, expectation

of the prior distribution and the one the true distribution are not so different, therefore,

the final fitted distribution is not so different from the prior Gaussian distribution. In this

situation, it may not be approperate to say what is the exact number of neurons need to fit

a distribution, because even under the same structure, different initializations will lead to

different final filter choices. For example, we can see in the two-Gausssain distribution case,

the result using 10 neurons is actually worse than using 9 neurons. This is because they

choose different filters to match.

4.2.2 Multilayer neural network

However, the neural network model has power of stacking multiple layers. The higher layer

neurons can have different orientations in different pieces, which means we do not only rely

on straight lines as the matching statistics. We show some typical results in Figure 4.5 to

illustrate this idea. For example, in the 7-3 case (2nd column), the model learns two rounds

to match the mixing Gaussian centers. In 5-1 (3rd column), the model uses broken lines to

fit the shape of the cross.

The power of multilayer model can be seen more clearly when we want to match highly

irregular shapes such as texture. We fit the distirbution in Figure 4.6. We show the fitted

results using both two-layer neural network model and one layer pursuit model with the

same total number of neurons in Figure 4.7, 4.8.

We can see that if we solely rely on straight line as matching statistics (corresponding

to 1 layer pursuit case). Even when we use 48 neurons, the shape of the fitted distribution

is still far from the underlying one. The model only fits a triangle-like shape. However, if
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# of filters 1 2 3 4 5

Matching
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tribution
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Figure 4.3: One-layer neural network results for mixing Gaussian distribution
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Figure 4.4: One-layer neural network results for cross lines distribution
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Strucure 4-5 7-3 5-1 6-3

Matching

Statistics

Fitted Distri-

bution

Figure 4.5: Two-layer neural network results

We show the structure of the 2 layer neural network on the top of the images, the first

number is the number of neurons for the first layer while the second one is the number for

second layer. The left two columns correspond to the two Gaussain distribution while the

right 2 columns are the cross lines distribution.

we stack 2 layers neurons, we can see even with only 16 neurons(8-8), we can capture the

rough shape of the distribution. When more neurons are added, more details are fitted.

The neurons from lower layers are mainly responsible for cutting the space so the higher

layer neurons can produce complex shapes for matching statistics (see those broken lines the

model uses as matching statistics).

4.3 Summary

From these observations, we can reach the following conclusions in this chapter: 1. In ReLU-

based pursuit we match one number a time. This allows us to put more numbers on those

axises that are hard to depict.

2. One layer neural network trained with gradient descent is usually not as efficient as the

pursuit method in the sense of how many numbers they match. This is because we do

not explictly choose the neuron with the largest mismatch. And it will converge to local

minimum depending on the initialization.

3. The neural network’s power lies in that is can stack many layers so the higher layer neuron
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Figure 4.6: Texture distribution

Strucure 4-4 8-4 8-8

Matching

Statistics

Fitted Dis-

tribution

Strucure 16-8 16-16 32-16

Matching

Statistics

Fitted Dis-

tribution

Figure 4.7: Two-layer neural network results
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Strucure 24 32 48

Matching

Statistics

Fitted Dis-

tribution

Figure 4.8: One-layer pursuit based method results

can produce arbitary shape for matching statistics. This can be much more efficient than

the one-layer pursuit method especially when the underlaying distribution is complex.
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CHAPTER 5

Sampling with finite-step MCMC

While in the previous chapters, we estimate the expectation term in 2.3 by dividing the input

space into grid points, in this chapter, we will do our calculation on the samples from finite-

step MCMC. More specifically, suppose at training epoch t - 1, we get a fitted probability

distribution pθt−1 . Then we use Langevin Dynamics [2, 18] to sample a batch of data from

pθt−1 . We then use these samples to estimate the expectation Eθt−1 [
∂

∂θt−1
fθt−1(Y )] and get

updated parameter θt. In our experiments, we start the langevin sampling process points

drawn from an uniform distribution. We compare different sampling steps and step size.

As one can imagine, unlike in the grid data situation where we can get a pretty accurate

estimation for the expectation term as long as we use fine enough grid points, in MCMC

case, the quality of our estimation largely depends on the quality of our sampling results.

Usually, it can take quite a long run for the MCMC to converge, especially when we are

dealing with highly complex data such as images. For example, to fit a well-formed energy

on the symple digit image dataset MNIST [11], one may need thousands of steps update for

MCMC to converge. But in general, we can only afford very limited MCMC steps (less than

100 steps) at each training iteration. (We refer this setting as finite-step MCMC). People

apply different methods to facilitate MCMC to converge [1, 6, 15, 16]. Usually, using these

kind of methods can give us pretty good sampling results at the end of the training. For

example, we can synthesize images with high quality by sampling from the fitted probability

distribution. And we usually take it for granted that being able to synthesize good samples

(under finite-step MCMC) means we have fitted a good probability function. However, this

may not be true. In this chapter, we discuss this question using our 2D example setting. In

section 5.1, we show the fitted energy with the synthesized data distribution. In section 5.2,
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we compare the fitted models trained using different MCMC steps. We mainly discuss the

synthesizing ability of these models in this section. In section 5.3, we compare the models

fitted by finite-step MCMC with the model fitted using grid points under a special case

where true points only locate at very small areas. In section 5.4, we further illustrate our

idea using a clearer 1D example.

Note that as we stated earlier, the energy should be defined as -fθ(Y ). For simplicity, in

this section, when we show the energy, we just show fθ(Y ) itself. One can understand that

in this case, the area where have higher fθ(Y ) also should have higher probability density.

5.1 Fitted results using different MCMC steps

We start our discussion by showing the fitted result using finite-step MCMC. In these exper-

iments, we use the star distribution as talked in previous chapter. This distribution is the

composition of several Gaussian distribution centered at different places. We first show the

true data points as well as the fitted results using grid points in Figure 5.1. Similar to our

previous results, the model fitted with grid points can capture the underlying probability

very well.

Then we show the results using finite-step MCMC in Figure 5.2. In our experiments, we

start with uniform distribution. We fix the step size to be 0.004 and try different number of

steps (number of steps = 15, 25, 50, 100). After we train them, we synthesize data from these

models using the same setting as their training time (i.e. starting from uniform distribution

and do Langevin update with certain steps). As we can see, all the 4 models have the ability

to synthesize data that roughly agree with the input data distribution. Although when the

number of steps are small, clusters that are close to each other may not be easily told apart

from each other (see the up-left corner of number of steps equal to 15 and 25), generally

speaking, the models do capture the area where true data locate. One can imagine if the

data are from a certain subset of real image space, then this results means that we can

generate images that look real from our model.

However, if we look at the fitted energy and the corresponding probability function, we
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A. True data points B. Fitted energy function C. Fitted probability distribution

Figure 5.1: Fitted result using grid data

can easily tell that they are far from being perfect. One can see that in each of the fitted

probability distribution, there is only a very limited area that have high probability and all

the other areas are dark. This is because in the fitted energy, instead of making all the

modes eqaully high, the differences between different areas can be very big. Then if we take

exponential of the fitted energy to calculate the probability, the difference is further amplified,

making probability only fire at certain small places and the most places are suppressed to

very low.

On the other hand, if we compare the fitted energies using finite-step MCMC with the

energy from grid points, we can see that the finite-step MCMC energies are more vague while

the energy trained from grid data have more distinct seperation among different modes. In

the later on sections, we will further discuss this phenomenon. We think the model may

choose to spread its energy into larger areas instead of concentrate them into certain clusters

so that during MCMC sampling, the points can get more guidences in the path and that

guarrantees we can generate good samples in limited number of sampling steps.

In summary, in this section, our experiments show that being able to generating good

data do not guarrantee us to get a well-formed energy.
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Step Synthesized samples Fitted energy function Fitted probability distribution

15

25

50

100

Figure 5.2: Fitted result using finite-step MCMC
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5.2 Comparison among models using different number of sampling

steps

One of our observations in section 5.2 is that after training, all the models can generate pretty

good samples, even the model with 15 MCMC steps can relatively accrurately capture the

position of the true data. Under this observation, we can naturally think of the question

that whether this phenomenon happens because this problem is so very simple that 15 step

of updating is enough for MCMC to converge (and using 100 steps is just a waster of time).

A deeper question behind this is whether all the models try to converge to the same goal.

Are all these models just different imperfect versions of the underlying data distribution? In

this case, if we load a model trained with higher number of MCMC sampling steps (e.g. 100

steps) and sample it with less MCMC steps (e.g. 15 steps), the result should be not worse

than the result we get from the model directly trained on this number of step. An opposite

hypothesis to this is that actually every model specializes in its own settings. They should

fit the energy to adpat the current settings. Therefore, a model trained use high number of

MCMC steps may not fit the settings with less MCMC steps and its synthesis results may

not be as good as the specialist trained with less MCMC steps.

To answer these questions, in Figure 5.3, we show the results of loading a model pretrained

on different number of steps (number of steps = 15, 25, 50, 100) and synthesizing samples

from them by another step number. Note that in these expeiments, we only change the

number of steps but keep the step size to be the same (step size=0.004). As we can see, if

we load a model and samples from it using less MCMC steps, then the synthesized result

can not match the one from the model directly trained on this number of steps. Comparing

the results samples with same number of MCMC steps (each column of figures), it is obvious

to see that the synthesize results from a model pretrained with more MCMC steps do not

concentrate enough.

This result supports our second hypothesis that the models actually try to adapt to the

synthesizing settings. The fact that we can get good samples from a model trained on 15

MCMC steps is not because for the underlying true probability distribution, 15-step MCMC
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is enough to converge , but should contribute to the fact that during the training, the model

choose to shape the energy to make sure the 15-step MCMC can produce good results.

Thus, the fitted goal for model under different MCMC settings can indeed be different.

Those models trained with less MCMC steps may choose to spread their energy to wider

areas and increase the gradient of their energies so that the MCMC can quickly converge to

the areas that true samples locate. That’s why when we load a model pretrained using less

MCMC steps and test them using more steps, we will get more concentrating result than a

pretrained more step model.

Another interesting result is that we load the model pretrained using grid data and

samples using MCMC. Shown in Figure 5.4, we can see that in our training setting (step size

= 0.004), the grid-point model fail to synthesize meaningful results. But if we increase the

step size (step size = 0.04), then we can get good results. The requirement for higher step

size means that the model fitted on grid data have smaller gradient on its landscape. This

in return explain the fact why the models fitted using finite-step MCMC have a large energy

difference (see Figure 5.2). The larger gradient actually facilitate the MCMC to converge

under the training settings.

5.3 Discussion of fitting good energy and synthesizing good sam-

ples

In the previous sections, we have mentioned that the ability of getting good samples does not

guarrantee we get a good energy function and model will try to adjust its energy function

to adapt the sample settings. In this section, we further discuss this phenomenon. Consider

a situation where the true samples concentrate on several small areas (see Figure 5.6 A). In

this situation, if we fit a well-formed energy, the energy will only be non-zero at very limited

areas around the center and leave most place with almost zero energy. Therefore, if we start

from a place far from the energy center, there will not be any guidance for our Langevin

update at first and the points just update according to the noise, which cause it to do the

Brownian movement. This Brownian movement may continue for a long time until the points
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sample with 15 sample with 25 sample with 50 sample with 100

train

with

15

train

with

25

train

with

50

train

with

100

Figure 5.3: Loading models and synthesizing with different number of MCMC steps

We load the pretrained models of different number of sampling steps (number of steps =

15,25,50,100) and generate samples from each of them under various sampling steps. Each

row represents a model trained on a certain number sampling step and each column is the

number of sampling steps we actually use to generate the data.

sample with 15 sample with 25 sample with 50 sample with 100

step size

= 0.004

step size

= 0.04

Figure 5.4: Synthesis results from model trained on grid data
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happen to be captured by one of the energy peak (shown in Figure 5.5 A). In this case, if we

limit our number of steps, it can be impossible for the MCMC to converge and there may be

a lot of noise points in the synthesized data. One option may be we increase the step size,

as what we have done in section 4.2 for the grid-point model. However, if we set the step

size to be too big, then it may over-shot when the gradient is big, which also prevent the

MCMC to converge. This means given a setting, we can only adjust our step size in some

interval. And there may be the situation that we can not get a good synthesis result just

by adjusting the step size. In this case, we actually need a specialist. This specialist may

carefully shape its energy to facilitate the MCMC to converge. For example, it can choose

to spread its energy into larger areas so that the points can be captured in a few Brownian

steps (see Figure 5.5 B). Surely this will hurt the fitted energy function. But it enable us to

get good synthesized samples only in finite MCMC steps. Remember our objective function

here (Equation 2.3) is actually try to match the the statisitcs of synthesized data with true

data. Then it is favorable for the model to focus on synthesizing good samples and sacrifice

the quality of fitted energy.

We illustrate this idea using a experiment. We create a true distribution where the data

locate in very small areas. We first use finite-step MCMC setting for training the model.

Shown in Figure 5.6, the 2 finite-step MCMC model can synthesize good results (the points

concentrate on only small areas). Then we load in the model trainined using the grid data,

which is thought to be a good fit for the energy function. We adjust the MCMC settings

and see its synthesis results. Shown in Figure 5.7. As we can see, when we choose small step

size and small number of steps, the final synthesize result will spread a big area (see A and

C). This is the case that may points are still doing Brownian Movement or just finishing it,

so they have not come to the right place. But if we choose to big step size (see F), then

our result is still vague. This is the case where the points over-shot at the place where the

gradient is big and this prevent the MCMC from final converging. The best result we get

here seems to happen when we use 100 steps sampling and set the step size to be 0.01 or 0.02

(case D, E). But if we compare these results with the synthesized results using finite-step

MCMC (Figure 5.6 C), we can tell that the results from the latter model outperm those
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from the previous one. The finite-MCMC give us more compact results using same number

of steps and smaller step size. But comparing the fitted probability in Figure 5.8, we can

tell that the grid data model gives us much better fitted energy. There are 8 firing areas

in the fitted probability, which correspond to 8 clusters of data. But the energy got from

finite-step MCMC only contains one fired place on the up-left corner. If we see the fitted

energy, we can tell that the grid points model give us more shape energy near the real data

cluster while the MCMC model softly spread the energy across the whole input space.

Using the previous results, we show that the reason why being able to generate good

samples do not guarrantee a well-formed energy is not purely due to the unperfect fitting,

but actually because the model need to reshape the energy to get good synthesis result under

the given MCMC setting.

5.4 1D example study

In this section, we use an 1D example to illustrate our idea. We use a mixture of 3 Gaussian

models centered as -0.8, -0.2, 0.65. When sampling the true data, we set the number of

data getting from each Gaussian model as 3000, 2000, 3000. (So in total we have 8000 true

data points.) Compare to the heatmap we used in our 2D example, in the 1D case, we can

plot the synthesis points using histograms, which can give us a clearer impression about the

distribution of generated data and true underlying distribution. (Note again that for energy,

we directly plot fθ here.)

In Figure 5.9 B, we show the generated samples using histogram (organge histogram).The

result is got using 50-step MCMC, with a step size of 0.01. We smooth the histogram into

density curve using kernel density estimation (orange line). And we also plot the curve

for true distribution using green line for comparison. As we can see, the generated data

distribution almost agree with the underlying true distribution. On the other hand, if we see

the energy plot (strictly speaking, negative energy), we can see that the fitted energy is very

different from the underlying energy. The fitted energy has much larger energy difference

between the maximum value and lowest value, it also has a obvious difference between each
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A. In a well-fitted energy, it may takes a long run for MCMC to

converge.

B. If we limited the number of MCMC, then the model may spread

its energy to facilitate convergence , although this may hurt the

energy quality.

Figure 5.5: Illustration for the relationship of fitting energy and synthesizing samples in

finite-step MCMC

A. True samples B. Synthesized data for

25 steps

C. Synthesized data for

100 steps

Figure 5.6: Samples from finite-step MCMC model trained on concentrating points

We try a situation where the data distribution is compact (points concentrate on a few

very small areas). We show the true samples and the samples getting from finite-step

MCMC models. We set the step size to be 0.006 for all the MCMC models.
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A. Number of step = 15,

step size = 0.02

B. Number of step = 25,

step size = 0.02

C. Number of step = 100,

step size = 0.004

D. Number of step = 100,

step size = 0.01

E. Number of step = 100,

step size = 0.02

F. Number of step = 100,

step size = 0.04

Figure 5.7: Samples from grid points model trained on concentrating points

We load the model pretrained on grid data and synthesize points from it using different

MCMC settings.
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Figure 5.8: Fitted energy and probability distribution
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A.Fitted energy vs true energy B. Synthesized data vs underlying

true distribution

Figure 5.9: 1D fitted energy and synthesis result

peak of the mode.

This illustrates our idea in this chapter. Under the limitation of MCMC sampling steps,

the model tries to shape its energy to make sure the points can be guided to the right place.

In the 1D case, the model actually cuts the input space into different intervals according

to its gradient. Each interval contains on peak (We have postive gradient to zero gradient

and to negative gradient. Next postive gradient will start the next interval). The points

in this interval will concentrate to the peak in this interval under the guidance of gradient.

The start and end point of the interval determine how many points will be guided to this

interval. In Figure 5.9 A, there are roughly 3 intervals: [-1.0, -0.25], [-0.25, 0.25], [0.25, 1.0].

The relative ratio of their lengths are 3:2:3, which is agree with the number of point in our

underlying distribution. The norm of the gradient controls to what extent will the points

gathered to the peak during sampling. Thus, those intervals with bigger gradients (see the

left and center peaks) will form thinner and taller peak. And those with smaller gradients

(the right one) correspond to lower peak.

5.5 Summary

In this chapter, we show the case where we fit the model using finite-step MCMC. In section

5.1, we show that being able to synthesize good samples do not means the fitted model

perfectly discribe the underlying distribution. In section 5.2, 5.3 and 5.4, we use various
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experiments to show that the fitted distributions are not bad fittings for the underlying

ones, but actually the specialist for the current sampling settings. They may choose to

sacrifice the quality of fitted energy to make sure the generated samples are good enough.

These result agree with the observation in [13].
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CHAPTER 6

Conclusion

In this thesis, we use a 2D setting to help us form a better understanding of the Deep

FRAME model. We show that the model captures the modes mainly by cutting the input

space instead of rely on the piecewise Gaussian property. Changing the variance in the

prior distribution or choosing smoother activation function will make the training process

different and sometimes makes model harder to train. The introduction of ReLU function

(or its smoother approximations) cuts the input sapce into many small cells. This enables

the matching statistics from higher layer to take different forms in each cell partitioned by

the lower layer and thus enable multi-layer model to capture highly complex distributions.

The activation in a certain cell is usually far from sparese, but the number of neurons that

actually define the boundary of that cell are indeed very small.

In the situation where finite-step MCMC is introduced to do sampling, the fitted energies

are usually not well-fitted, even though we can get good synthesized data. These energies are

actually intentionally and carefully shaped (instead of just fitted unperfectly) to facilitate

MCMC to produce good samples.
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