
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Recommendation in Dialogue Systems

Permalink
https://escholarship.org/uc/item/4rs1s3ms

Author
Sun, Yueming

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rs1s3ms
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

RECOMMENDATION IN DIALOGUE SYSTEMS
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

TECHNOLOGY AND INFORMATION MANAGEMENT

by

Yueming Sun

September 2019

The Dissertation of Yueming Sun
is approved:

Professor Yi Zhang, Chair

Professor Lise Getoor

Professor Zhou Yu

Dilek Z. Hakkani-Tür, Ph.D.

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Copyright © by

Yueming Sun

2019

Table of Contents

List of Figures vi

List of Tables viii

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1
1.1 The Current Recommender Systems, Dialogue Systems, and Their

Limitations . 1
1.2 Benefits and Goals of Conversational Recommender Systems . . . 5
1.3 Contribution of the Dissertation 8
1.4 Outline of the Dissertation . 9

2 Related Work 11
2.1 Recommender Systems . 11

2.1.1 Content-based Recommender Systems 11
2.1.2 Collaborative Filtering Recommender Systems 13
2.1.3 Hybrid Recommender Systems 14
2.1.4 Deep Learning based Recommender Systems 15

2.2 Reinforcement Learning . 16
2.2.1 The Markov Decision Process 16
2.2.2 Function Approximation and Deep Reinforcement Learning 18
2.2.3 Reinforcement Learning based Recommender Systems . . . 20

2.3 Dialogue Systems . 21
2.3.1 The Chit-Chat, Information-Seeking and Task-Oriented Di-

alogue Systems . 21
2.3.2 Components of Task-Oriented Dialogue Systems and End-

to-end Task-Oriented Dialogue Systems 23

iii

2.3.3 Conversational Recommender Systems 25

3 Conversational Recommendation Dialogue Data Collection 28
3.1 Overview . 28
3.2 Related Work . 29
3.3 Faceted based Recommendation Dataset Processing 31
3.4 Crowd Sourcing based Conversational Dialogue Dataset Collection 33
3.5 Summary . 39

4 The Framework of Conversational Recommender System 40
4.1 Overview . 40
4.2 The Conversational Recommender System Framework 41

4.2.1 Belief Tracker . 41
4.2.2 Recommender Module . 44
4.2.3 Deep Policy Network based Dialogue Manager 46

4.3 Experimental Setup . 48
4.3.1 User Simulation . 48
4.3.2 Baselines and Evaluation Methodology 51
4.3.3 Model Training Details . 53

4.4 Experiment Results . 54
4.4.1 Offline Experiments . 54
4.4.2 Online User Study . 60

4.5 Summary and Contribution . 62

5 Personalization in Conversational Recommender System 65
5.1 Overview . 65
5.2 Methodologies . 67

5.2.1 Belief Tracker . 67
5.2.2 Personalized Probabilistic Recommender 67
5.2.3 The Reinforcement Learning based Dialogue Agent 71

5.3 Experimental Settings . 75
5.3.1 User Simulation . 75
5.3.2 Evaluation Measures and Baseline for the Personalized Prob-

ability Recommender . 75
5.3.3 Evaluation Measures and Baselines for the Dialogue Agent 76

5.4 Experiments Results . 77
5.4.1 The Personalized Probabilistic Recommendation 77
5.4.2 The Personalized Conversational Recommender System . . 79
5.4.3 User Study . 85

5.5 Summary and Contribution . 87

iv

6 Conclusion and Future Work 88
6.1 Contribution . 88
6.2 The Limitations and Future Work 89

6.2.1 Limitation of the Collected Conversational Recommenda-
tion Dataset . 90

6.2.2 Joint Learning the Recommender and the Dialogue Policy 91
6.2.3 Enabling More User Actions and Machine Actions 91
6.2.4 Integrating More Dialogue Functionalities 92

Bibliography 94

v

List of Figures

3.1 The histogram diagram of the number of facet values of items on
the MovieLens1M (upper) and Yelp Challenge dataset (lower). . . 32

3.2 The dialogue collection graphical user interface. On the left panel
shows instructions and several examples. On the right panel is the
dialogue window, where an MTurk is requested to paraphrase the
schema into natural language user utterance. 35

4.1 The conversational recommender system overview 41
4.2 The structure of the proposed conversational recommender frame-

work. The bottom part is the belief tracker, the top left part is the
recommendation model, and the top right part is the deep policy
network. 42

4.3 Comparisons on the three measures with different belief tracker
accuracy. 59

5.1 The proposed framework. The bottom part is the belief tracker,
the middle part is the personalized probabilistic recommender, and
the top part is the dialogue manager. 66

5.2 Comparing the percentage of dialogue turns, the success rate and
the average return of the PA and NPA at different number of dia-
logue turns, on the MovieLens1M dataset (the upper row) and the
Yelp dataset (the lower row). 82

vi

5.3 The Average Return obtained by using the Policy Gradient method
and the A3C method. The x-axis is the total number of evaluation
steps. The y-axis shows the Average Return evaluated on the whole
dev dataset. 84

vii

List of Tables

3.1 Basic statistics of the pre-processed MovieLens1M and Yelp recom-
mendation datasets. 32

3.2 An example of a simulated dialogue schema for a user item pair in
the MovieLens1M dataset . 34

3.3 The crowdsourced dialogue scripts using the schema in Table 3.2 . 36
3.4 Statistics of the two conversational recommendation datasets, com-

paring to the DSTC2 dataset. 38
3.5 Example dialogues simulated using the method discussed in this

chapter. The left dialogue is a MovieLens1M example, the right
dialogue is a Yelp example. 38

4.1 Comparisons of CRM and the baselines on Average Return, Average
Turn, Success Rate, Wrong quit rate, and Low rank rate. Results
in bold are significantly better than baselines at 0.01 level. 55

4.2 The dialogue with CRM agent (left) is more aggressive than the
one with the MaxEnt agent (right). 56

4.3 The MaxEnt agent (right) fails early due to the belief tracker error,
but the CRM agent (left) is able to by pass the failure case and
succeed. 57

4.4 The MaxEnt agent (right) fails due to the belief tracker error, but
the CRM agent (left) asks a different facet at the second turn,
avoids the belief tracker misunderstanding, and succeed with shorter
turns. 57

viii

4.5 Comparisons of CRM and the baseline with different user behaviors
of checking the recommendation results, on R (Average Return), T
(Average Turn), and S (Success Rate). 58

4.6 Results of R (Average Return), T (Average Turn), and S (Success
Rate) with different maximum reward C. 60

4.7 Model performances of three measures with different cutoff thresh-
old K. 60

4.8 Comparison of CRM and the MaxEnt method on R (Average Re-
turn), T (Average Turn), and S (Success Rate) in online user study. 62

4.9 User study example dialogues of CRM and the MaxEnt methods.
The facet values extracted by the belief tracker module are shown
in the parentheses. 63

5.1 Comparison of the Non-personalized Recommender (NPR) and the
Personalized Recommender (PR) with baselines. Evaluated on the
MRR@100 of the target item, when different number of facets are
known. The top part is on the MovieLens1M dataset, and the
bottom part is on the Yelp dataset. Results in bold are significantly
better than baselines at 0.01 level. 78

5.2 The conversational recommendation dialogue performance of the
Non Personalized Agent (NPA) and the Personalized Agent (PA)
with the simulated user on the MovieLens1M Dialogue Dataset (the
upper part) and on the Yelp Dialogue Dataset (the lower part).
Results in bold are significantly better than baselines at 0.01 level. 80

5.3 Comparison of example dialogues between PA and the NPA on
the MovieLens1M dataset (the top row) and the Yelp dataset (the
bottom row). 81

5.4 Comparing the conversational recommendation performance of the
PA and NPA interacting with simulated users having different con-
tinue probability pc. 83

ix

5.5 The comparison of NPA and PA in online user study on the Movie-
Lens1M dataset. 85

5.6 The comparison of NPA and PA in online user study on the Yelp
dataset. 85

5.7 User study example dialogues of PA and NPA on the MovieLens1M
dataset (the top row) and the Yelp dataset (the bottom row). . . 86

x

Abstract

Recommendation in Dialogue Systems

by

Yueming Sun

Dialogue system has been an active research field for decades and is devel-

oping fast in recent years, due to the recent breakthrough of the deep learning

techniques. How to make recommendations in dialogue systems is attracting in-

creasing attention because such systems could meet various user information needs

and have much commercial potential.

Current dialogue system researches typically focus on building systems for

social conversation, question answering, and performing specific tasks. However,

making recommendations to users, as important information need, has not been

intensively researched. Meanwhile, traditional recommender systems are usually

developed for non-conversation scenarios. In this dissertation, we explore how to

integrate these two systems into one framework that specifically aims at making

recommendations in dialogues. Such a system helps users find items by chatting

with users to understand their preferences and recommending accordingly.

First, we build conversational recommendation datasets, because existing dia-

logue datasets do not have user-item preference information or the dialogue utter-

ances discussing facets of items, and current recommendation datasets do not have

dialogue scripts associated with each user-item pair. We build the datasets by re-

questing crowdsourcing workers to compose dialogue utterances based on schemas

and then use the delexicalization approach to simulate dialogues with the collected

utterances. The datasets are used to train the natural language understanding

component and provide recommendation information for our system.

xi

Based on collected datasets, we propose a reinforcement learning based conver-

sational recommendation framework. Such a framework has three components, a

belief tracker, a dialogue manager, and a recommender. The dialogue agent learns

to first chat with a user to understand her preferences, and when it feels confident

enough, it recommends a list of items to the user. We conduct both offline and

online experiments to demonstrate the effectiveness of the framework.

We further extend this framework with a personalized probabilistic recom-

mender module. This recommender learns to predict the probability of a user

likes an item given the dialogue utterance information and the personalized user

preference information. By leveraging this hybrid information, the recommenda-

tion and dialogue performances are further improved. We evaluate the dialogue

agent’s strength in various simulated environments as well as in online user studies

and demonstrate the advantages of this approach.

xii

To Xingxing & my mother

xiii

Acknowledgments

I would like to express my sincerest gratitude to my advisor Prof. Yi Zhang for

her patient guidance and continuous support in my Ph.D. research. Her inspiring

vision and immense knowledge guided me to conquer research problems, and her

encouragement helped me keep moving forward. Without her persistent help, I

can never finish this whole journey.

Besides my advisor, I would like to thank my committee members, Prof. Lise

Getoor, Prof. Zhou Yu, and Dr. Dilek Z. Hakkani-Tür, for their reviewing of

this dissertation, the discussions we have, and their insightful suggestions for the

improvement of this work.

I want to thank members of Information Retrieval and Knowledge Manage-

ment (IRKM) lab, Qi Zhao, Yunfei Chen, Jian Wang, Lanbo Zhang, Xilian Li; also

my friends Tian Jin, Jie Li, Xing Yi, and Huajun Zeng. Thank you for discussing

research questions with me, and for the happy time we spent together.

I am very grateful to the support of my family. My mother always believes in

me and encourage me to do what I want. The love she gives me is unconditional.

Most of all, I want to express my deepest gratitude to my wife Xingxing. She

supports me with all her heart. The company she gives me in my hard time is

invaluable. This dissertation is dedicated to my family.

xiv

Chapter 1

Introduction

1.1 The Current Recommender Systems, Dia-

logue Systems, and Their Limitations

The modern world has witnessed the prosperity of information technologies.

Recommender Systems play an increasingly important role in finding users their

preferred items from the huge amount of information. These systems find items

that match the personalized preferences of users efficiently and precisely. Rec-

ommender systems are widely used in various applications, for instance, music

streaming services [10], online movie rating databases [127] [24], restaurants rec-

ommendation websites [25], online shopping websites [26], news online portals

[52], and video streaming services [14]. These systems use different types of in-

formation for the recommendation purpose, such as the past items one has rated,

the URLs one has clicked, the orders one has placed, and the comments one has

scripted.

Recommender systems are mainly divided into three categories [132] [1]: the

content-based system, the collaborative filtering system, and the hybrid system.

1

The content-based systems recommend items that are similar to those ones liked

by users before. The collaborative filtering systems generate recommendations

based on the preferences of users who have similar tastes with the target user.

The hybrid systems integrate multiple systems in systematic ways and usually

have the strengths of each individual system.

The Dialogue System is one of the important applications of artificial intelli-

gence. It has been researched and developed for decades. In such a system, an

end-user and a dialogue agent take turns to communicate in natural language, so

that the system can fulfill the user’s information need. Generally, dialogue sys-

tems can be categorized into three types [21]: the open domain dialogue system

(the chit-chat system) [114] [45], the question answering system (the information-

seeking system) [77] [79], and the task-oriented system [134] [18]. With the re-

cent breakthrough of the deep learning technology and the significant increase of

computing power, researches of dialogue systems have entered a new era. The

collaboration of the research and industry has successfully spawned many popu-

lar conversational AI, for example, the Alexa of Amazon, the Siri of Apple, the

Google Assistant, the Facebook Messenger and the Cortana of Microsoft. These

chatbots are implemented on different platforms, such as mobiles, home devices,

and webpages.

Dialogue systems are becoming indispensable tools in our life. First, the di-

alogue system fulfills a wide range of user information need [21], for example, a

user can search news, ask the weather, track a package status, book a ticket, and

place an order. Second, the dialogue system is an important entrance of online

services and can bring the business provider a lot of traffic. Once a user initiates

an interaction with a dialogue agent, the agent can proactively provide various

follow-up services, such as making recommendations, to keep the user in-the-loop,

2

which can create many business opportunities. Third, dialogue systems such as

the virtual customer service agents can provide services 24/7 and can handle con-

versations at scale, which are suitable to operate repetitive works and save cost for

business owners. Moreover, the dialogue systems can free users hand in a variety

of scenarios, e.g., find a route while a user is driving, control the home devices

while a user is arriving home.

Techniques such as reinforcement learning and the sequence-to-sequence [107]

models are widely used in the dialogue system researches. Reinforcement learning

views the dialogue procedure as a sequence of decision makings. At each turn,

it maintains a description of the dialogue state, based on which it samples an

action, according to a learning policy, so that the action is deemed to be the most

long-term beneficial [135]. Sequence-to-sequence models view the conversation as

an encoding-decoding process, for example, the user utterance is modeled as the

input sequence, based on which the model generates an output sequence, which

is a natural language response. These models maintain some sorts of memory,

for instance, the dialogue history, which is updated each turn. Much information

could be encoded in this way, depending on the details of modeling approach [119].

These models are usually learned by optimizing some object functions, which are

specifically designed for the problems being studied.

However, not much work has been done towards integrating the recommender

system and the dialogue system to build the conversational recommender systems,

which are very important to contemporary life and have big potential. According

to the statistics1, for example, in 2018, there are around 16 million salespeople in

the US. As virtual sales agents, conversational recommender systems can provide

services to users anytime, anywhere. They can be complementary to the salespeo-

ple, or to some extent, be their substitutes. There are huge business opportunities
1https://www.bls.gov

3

in this field. The conversational recommendation information need has not been

properly handled by existing recommender systems or dialogue systems.

On the one hand, the recommender systems research community did not ad-

dress the distinctive characteristics of the dialogue scenario. In the dialogue

scenario, the user feedback is usually given in real-time, while traditional rec-

ommender systems use static or historical information a lot, i.e., reviews. User

feedback is relatively clear in dialogue systems; for example, a user will try to de-

scribe her need in explicit utterances. However, the traditional systems deal with

less explicit information, for instance, ratings and reviews [38] [59], which contain

much noise, or user clicks and impressions, which are implicit feedback. Moreover,

a user can provide the information required by the dialogue systems, especially

the information that is deemed as crucial for the system to make better services.

There is one line of research in traditional system literature denotes the conver-

sational recommendation as critique-based multiple round recommendations [7]

[85]. However, there are no explicit natural language dialogues in such kinds of

systems.

On the other hand, the dialogue system research community did not address

the recommendation information need too much. Each of the three types of di-

alogue systems has different research focuses, and none of them treats making

recommendations in the dialogue as a major task. The chit-chat systems focus on

generating meaningful [114], diverse [43], and persona consistent [44] responses.

The question answering systems focus on finding correct answers to specific ques-

tions and are usually evaluated by measures such as precision and recalls. They

tend to focus on the natural language processing aspects of the dialogue system.

For example, generate answers for factoid questions using a knowledge base, re-

trieve answers from a set of candidates, and generating answers from a segment

4

of the given text, which is also known as reading comprehension.

Task-oriented dialogue systems focus on completing specific tasks for users,

such as booking a movie ticket or reserving a table in a restaurant. Though

recommendation can be viewed as a particular type of task, there are no previous

works that are built with making personalized recommendations as the direct

goal. Many works format the tasks as slot-filling procedures, and dialogue agents

collect the slot values while conversing with users. When the required information

is collected, a knowledge base is looked up to find the target items for users [134].

The number of instances in the knowledge base is usually much smaller than that

of a traditional recommender system [119]. Decision makings in such systems are

not recommendation oriented [19] [133]. Moreover, the generated results are not

personalized [18]. Different users get the same set of results, and therefore, these

systems are information access systems rather than personalized recommender

systems.

Based on the discussions above, how to make recommendations in a dialogue

system remains an open question to both the recommender systems and the dia-

logue system research communities.

1.2 Benefits and Goals of Conversational Rec-

ommender Systems

In this dissertation, we explore how to build dialogue systems that aim at

making personalized recommendations for users. Our systems are studied and

built based on the combination of recommendation research and dialogue system

research. We argue that conversational recommender systems have the following

benefits and characteristics:

5

First, conversational recommender systems can bring potential business val-

ues to both end-users and service providers. For service providers, a successful

recommendation can lead to a conversion to business success naturally. There are

a variety of scenarios; for example, a good product recommendation can lead to

purchasing; a successful movie recommendation can trigger a ticket booking; a

restaurant recommendation can be converted to a reservation. High-quality rec-

ommendations can increase customer satisfaction and loyalty to the service. For

end-users, conversational recommender systems are handy tools which can help

them find target items via close cooperation. On the traditional website, a user

is all on her own, for example, navigating through links on web pages to find the

ideal product. However, a conversational recommendation agent can guide the

user through such a process, collect necessary information, and make personalized

suggestions. Users can express their needs in natural languages. Besides, users

do not always precisely know which items they want; they might only have some

preferences on several attributes. Just like a real salesperson, a conversational

recommender is an expert in this domain and can assist users to elicit and clarify

their needs gradually.

Second, the dialogue system and the recommender system bring merits to each

other. For the recommendation, the dialogue system can provide real-time user

feedback. Traditional recommender systems often use users’ historical interaction

data, while dialogue scripts provide the real-time user need and are more explicit.

Besides, the current user interest may not always be consistent with the user’s

past preferences, and therefore, the current and historical user interest is comple-

mentary information to each other, and together lead to better recommendation

results. For the dialogue system, a good recommender can bring more diversities

in the conversation, such as increasing the length of interactions with users, sug-

6

gesting more types of services for users, and attracting users to be more engaged

with the conversation. Current dialogue systems are relatively passive in com-

pleting specific tasks originated by users. Recommender systems allow dialogue

agents to have more initiative and behave proactively to create more business

opportunities in assisting users.

Third, the conversational recommender system should learn when to make

a recommendation. In the conversation, the dialogue agent should first learn

to talk with users about the features of the items, in order to collect sufficient

user interests, and then make the recommendation when it is confident enough.

If the recommendation is made too fast, the target item might not be ranked

high enough, and the recommendation can fail. However, if the dialogue agent

asks too many questions, users may get bored and leave the dialogue before the

recommendation could be made. Moreover, the dialogue system can not always

understand users correctly. So the longer the conversation is, the higher the

chances of making mistakes. Therefore it is a trade-off between collecting enough

information and making a good recommendation quick enough.

Fourth, conversation recommender systems should support rich interactions

with users. For example, request and inform a facet value, negate a previous

constraint, and confirm questions. Users should be able to modify their preferences

at any turn. There could be multi-round recommendations in a single dialogue

session. Moreover, dialogue agents should be able to answer different types of

user questions, for example, general questions before the selection of an item or

specific questions related to a selected item. The system should also analyze user

logs to build user profiles to provide better-personalized services. For example,

some users might be more patient and talkative, while others might be succinct

and less patient. The above features can be better achieved via running the

7

system against the real users to collect rich user interactive information. Due to

the limitation of our datasets, we leave these further extensions to future work.

1.3 Contribution of the Dissertation

We build a conversational recommender system to make successful recommen-

dations for users. In our system, the dialogue agent first chats with users to

understand their preferences gradually and then make recommendations accord-

ingly.

The contributions of this dissertation are three-folds. First, we build con-

versational recommendation datasets based on two traditional recommendation

datasets, with crowdsourcing techniques. On the one hand, existing recommen-

dation datasets are in the non-dialogue problem domain and do not have the dia-

logues associated with them. On the other hand, current dialogue datasets do not

have personalization information; for instance, they do not contain the user-item

pair information. In order to conduct the experiments in this dissertation and to

facilitate researches in this direction, we design online experiments to request the

crowdsourcing workers on the Amazon Mechanical Turk platform to compose di-

alogue scripts. In this way, we build the conversational recommendation datasets

in two domains. We use these datasets to train modules for understanding user

requirements in dialogue utterances, as well as making recommendations in the

dialogue.

Second, we propose a framework that is specifically tailored for making rec-

ommendations in the dialogue system. This framework combines the strengths

of dialogue systems and recommender systems to build a dialogue agent to chat

with users in natural language in order to find the target items for them. The

framework has three components: 1) a belief tracker, for taking the user utterance

8

to compute a dialogue state; 2) a dialogue manager that decides what actions to

take given the dialogue state; 3) a recommender module to recommend a person-

alized item list using the dialogue states. The dialogue manager is a reinforcement

learning based component. Under such a framework, our system learns to first

chat with a user to collect the facet value constraints on the items this user wants.

When the system is confident enough, it will make a recommendation to the user.

We simulate users for the dialogue agent to interact with to boost the training of

the model. We then perform both offline and online experiments to demonstrate

the effectiveness of our proposed method.

Third, we propose a personalized probabilistic recommendation module for

the conversational framework. This model integrates the personalized informa-

tion, which is the historical user preferences, and the real-time user constraints

enclosed in the user utterances to compute the conditional probability of all the

items given a user and a dialogue. We compare this model to the state-of-the-

art recommendation models to demonstrate the advantages of our approach. We

then integrate the model into the conversational recommendation framework and

perform different experiments to demonstrate that it further improves the recom-

mendation and dialogue performance. We also conduct user studies to testify the

effectiveness of our model with real users.

1.4 Outline of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 discusses the

related work, including the recommender systems, the reinforcement learning

method, the dialogue system, and their intersections. Chapter 3 introduces the

conversational recommendation dataset collection with the help of the crowdsourc-

ing technique. Chapter 4 describes our proposed conversational recommendation

9

framework and its implementation. Chapter 5 describes how to address the per-

sonalization in the proposed framework better to reach improved recommendation

and dialogue performance. Chapter 6 summarizes major contributions and dis-

cusses our vision of future improvement directions.

Parts of the dissertation have been published in conferences. Chapter 3 is based

on a paper published in the 10th ACM Conference on Recommender Systems in

2016 [106] and a paper published in the 41st International ACM SIGIR Conference

in 2018 [105]. Chapter 4 is based on the paper [105]. Chapter 5 is based on the

most recent work that has yet to be submitted for publication.

10

Chapter 2

Related Work

2.1 Recommender Systems

Recommender systems are important information tools to filter and find items,

usually from a large number of candidate items, that are of interest to different

users [53]. They are ubiquitous on the Internet and have become indispensable to

our daily life. The research in recommender systems dates back to the mid-1990s

[83] and is still one of the most rigorous research areas today. Recommender

systems are generally categorized into three categories: the content-based recom-

mender systems, the collaborative filtering recommender systems, and the hybrid

recommender systems [132] [1].

2.1.1 Content-based Recommender Systems

Content-based recommender systems find items for users according to similar

items that are liked by them before [1] [75] [53]. One typical example is the Vector

Space Model-based recommendation, in which users and items are represented as

vectors of words, and the user-item preference is modeled by the closeness of

11

the representation vectors on certain distance measures, for instance, the cosine

similarity. Each element in the vector corresponds to a word in the vocabulary

of corpus and is represented by the Term Frequency (TF) - Inverse Document

Frequency (IDF) weight [1] [53], which are defined as:

TFi,w = fi,w (2.1)

IDFw = log(ND

Dw

) (2.2)

wTF−IDF = TF × IDF = fi,wlog(ND

Dw

) (2.3)

where fi,w is the raw count of a word w in a document i (or could be a

normalized quantity). Dw is the document frequency of the word w, and ND is

the total number of documents in the corpus.

Another example is the machine learning based Naive Bayes approach [74] [69].

Again, an item i is represented as a set of words, and the problem is to compute

the probability of the item belong to a class c (liked or not liked). This is modeled

by the conditional probability p(c|i), according to the Bayesian Theorem:

p(c|i) = p(i|c)p(c)
p(i) (2.4)

where p(c) is the prior probability of class c, and p(i|c) is the conditional

probability of observing an item given the class c. This approach has a strong

assumption that the p(i|c) = Πwk∈V ip(wk|c), where w denotes words in the vocab-

ulary V i of the item i. Therefore, both the p(c) and p(i|c) could be estimated from

the dataset. This approach shows good performance in real applications [74].

Content-based recommender systems have several limitations [1]: (1) the per-

formance of the recommendation is usually determined by the strength of content

12

features used [97]; (2) lacking novelty, as items dissimilar to a user’s historical

preferences would be hard to be recommended [4]; (3) the cold start problem, can

not make proper recommendations for a new user whose historical information is

insufficient [39].

2.1.2 Collaborative Filtering Recommender Systems

Collaborative filtering recommender systems assume that users have similar

preferences on some items would also have similar tastes on some other items

[86]. Generally, they can be divided into the memory-based and model-based

approaches [104]. Take the user-based collaborative filtering method as an exam-

ple of the memory-based approaches [86] (the item-based method can be derived

similarly). To predict a rating of a user u to a target item i, this approach first

finds a subset of users V who have rated this item and have similar tastes with

the target user. It then computes the similarity between the target user and each

user v in V . Commonly used similarity scores are the cosine similarity and the

Pearson correlation coefficient [17], where:

cosine(u, v) =
∑
i∈Iuv

ruirvi√∑
i∈Iu

r2
ui

√∑
i∈Iv

r2
vi

(2.5)

Pearson(u, v) =
∑
i∈Iuv

(rui − r̄u)(rvi − r̄v)√∑
i∈Iuv

(rui − r̄u)2
√∑

i∈Iuv
(rvi − r̄v)2

(2.6)

and the predicted rating of the target item by the target user is the weighted

sum of ratings of the target item given by users in the neighboring set V .

rui =
∑
v∈V rvi score(u, v)∑
v∈V |score(u, v)| (2.7)

The model-based collaborative methods predict ratings using a learned model.

13

One of the classic models is the Matrix Factorization model [38], which became

widely recognized due to the Netflix Prize competition1. The main idea is to

map users and items into a low dimensional latent space, with the latent factors

encoding the users and items interactions. Specifically, this mechanism represents

the rating of a user to an item to be the dot product of the K dimensional latent

vectors of the user and the item. Many popular models are developed based on

this, such as the SVD++ [37], the ListRank-MF [99] model, the BPR model [82],

and the Factorization Machine [81]. Collaborative filtering recommender systems

also have a few limitations: (1) the cold start problems, making predictions for

new users and new items when not enough ratings are available; (2) the data

sparsity problem, because enough ratings have to be observed to compute the

user preferences. In this dissertation, we propose the personalized probabilistic

recommendation model by extending the Matrix Factorization model. We use the

Factorization Machine, the BPR model, and the ListRank-MF as our baselines.

2.1.3 Hybrid Recommender Systems

The hybrid recommender systems combine the strength of several systems,

e.g., the content-based recommender systems and the collaborative filtering rec-

ommender systems into a unified model which has the mixing power of each ap-

proach [8]. The Fab system [3] is one of the earliest hybrid systems. De Campos et

al. [16] presented a Bayesian Hybrid recommendation model using a probability

reasoning technique to compute the conditional probability of a rating, using the

evidence from the network topology of the content-based and the collaborative

based recommendation components. Our proposed model is a hybrid approach as

we leverage the collaborative latent factors of the users and items, as well as the
1https://www.netflixprize.com/

14

content features contained in the dialogue utterances into our model. This brings

us benefits of recommending items based on the real-time user needs as well as the

personalized past user preferences. More details will be introduced in Chapter 5.

2.1.4 Deep Learning based Recommender Systems

Due to the recent success of deep learning techniques, the deep neural networks

have been successfully applied to many traditional research areas [40], including

recommender systems. Traditional machine learning methods normally depends

on the carefully designed features, while deep learning methods can automatically

learn representations from the raw data. Convolution Neural Network (CNN) [41]

and Recurrent Neural network (RNN) [33] are two of the widely used networks,

which are good at capturing spatial representations and temporal features, re-

spectively. There are a lot of works in applying the deep neural networks for the

recommender systems [27] [12] [2] [23]. In this dissertation, we mainly use Multi-

layer Perceptron (MLP) and RNN structures [33]. MLP is a feedforward neural

network which has one or more hidden layers, with non-linear activation functions

for each layer. When properly designed, MLP can be used to learn an arbitrarily

complex function. RNN is a cell structure with the inside loops, which serve as

the internal memory structures. When expanded across the time steps, RNN is

transferred into a feedforward neural network across the temporal steps. RNN

is widely used to model the problems with sequential information, for example,

the conversational dialogue. Readers may refer to [132] for a much more detailed

review.

15

2.2 Reinforcement Learning

Reinforcement Learning is one type of machine learning approaches, peered

with supervised learning, and unsupervised learning methods [109]. This learning

approach is suitable for problems which require sequential decision makings. Usu-

ally, such problems are interpreted as an agent, or the learned model, constantly

interacting with the environment. In this process, the agent gets step-wise rewards

or episodic rewards, which are used to update the agent’s decision policies. The

agent’s goal is to maximize the expected total rewards. Therefore the rewards are

usually designed to include the learning target of research problems being studied

[72] [135] [134]. There are two major advantages of reinforcement learning [109].

First, reinforcement learning focuses on long term learning. It not only looks at

the immediate reward but also all the subsequent rewards or the delayed reward.

Second, reinforcement learning is a trial-and-error learning process which balances

the exploration and exploitation.

2.2.1 The Markov Decision Process

Reinforcement Learning is usually formalized as Markov Decision Processes

(MDPs) [126]. An MDP is described by a tuple of (st, at, rt, π, γ). At time step t,

the state st is a description of the environment. The action at is selected by the

agent, according to the learned policy π, which is a conditional probability π(at|st).

After taking an action, the agent receives a reward rt from the environment. And

the state st is updated to a new state st+1 at time step t + 1, affected by the

action taken by the agent. Meanwhile, the agent uses the delayed reward signals to

update its policy π so that in the long run, it can get the maximum expected total

rewards. Note that the agent learns through interacting with the environment,

but it can not change the environment settings. The MDP contains a trajectory of

16

st, at, rt, st+1, at+1, rt+1, ... The learning object, which is the expected discounted

return, is defined by:

Gt = rt + γrt+1 + γ2rt+2 + ... (2.8)

where γ is a discount factor and is in the range of (0, 1). If γ is close to 0, the

agent focuses more on the near future, and if it is close to 1, the agent focuses

more on the long term benefits.

In order to find a good policy, the reinforcement learning agent learns to es-

timate value functions, including the state-value function vπ(st) and the action-

value function qπ(st, at), which measures how good it is to be in a given state or a

state-action pair, respectively. According to the assumption of Markov property,

the value functions only depend on the immediately preceding state and action,

not on the other previous states and actions [109]. Thus the Bellman equations

hold, with the state-value function:

vπ(st) = Eπ(Gt|st) =
∑
at

π(at|st)
∑

st+1,rt

p(st+1, rt|st, at)[rt + γvπ(st+1)] (2.9)

and the action-value function, also known as Q-function:

qπ(st, at) =
∑
st+1

p(st+1|st, at)rt + γ
∑
st+1

p(st+1|st, at)
∑
at+1

π(at+1|st+1)qπ(st+1, at+1)

(2.10)

Solving the reinforcement learning problem is equivalent to finding the optimal

value functions:
v∗ = maxπ vπ(st)

q∗ = maxπ qπ(st, at)
(2.11)

Methods commonly used for solving the reinforcement learning problems can

be divided into the Monte Carlo methods, which learn from the episodic expe-

riences, and the Temporal Difference (TD) methods, which learn partially from

17

the estimates of the raw experiences. Specifically, the off-policy TD method, also

known as the Q-learning, is a significant breakthrough of the reinforcement learn-

ing [116]. As a model-free method, the Q-learning method learns without waiting

till the end of the episode and does not follow the policy in the updating of the

learning process, and therefore has few constraints in the learning process. It has

the updating form:

Q(st, at) = Q(st, at) + α[Rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (2.12)

Note that the choice of the action a at state st+1 does not follow the policy

being learned, so it is an off-policy method, which is a crucial simplification of the

learning process [109] [116].

2.2.2 Function Approximation and Deep Reinforcement

Learning

Function approximation further enhances the generalization ability of rein-

forcement learning and does not rely on the strong assumptions of Markov prop-

erty. In reality, the problems we tackling usually have a large (discrete or contin-

uous) state space, so that the exact modeling of the value function is infeasible.

Moreover, the training data is usually very limited comparing to the complexity of

the problem domain, and can not generalize well enough to the unseen states [109].

By borrowing the ideas from supervised learning, the function approximation al-

lows a model to use parameterized functions to represent the value functions and

can obtain good generalization ability. Due to the recent breakthrough in deep

learning, deep neural networks are widely used as function approximators, which

leads to the prosperity of the Deep Reinforcement Learning technique. One of

18

the remarkable success of the deep reinforcement learning is by Google’s Deep-

Mind team, who has trained an agent to play the Game of Go and has gained the

superhuman skills [68] [100] [102].

A series of works kept pushing forward the-state-of-the-art of Deep Reinforce-

ment Learning. First, the deep Q-learning is proposed in [67] where the authors

use a deep convolutional neural network as the function approximator of the Q

function. They came up with the experience replay technique [50], which stores

the experience in a buffer, and then samples instances from this buffer uniformly to

train the Q network. This technique solves the data correlation problem, which of-

ten leads to the divergence of the learning process. Prioritized experience replay is

then developed by [92] to improve experience replay. By introducing a prioritized

sampling strategy, this approach samples the experiences that having a higher

TD-error with higher priorities, which speeds up the learning and gets improved

performance. The traditional Q-learning suffers from the overestimation problem

[111], which is caused by the fact that the same Q function is used for both the

evaluation of action values and the selection of actions. Double Q-learning [112]

uses two networks to decouple the action selection and the action value evaluation,

and therefore mitigate the overestimation problem. The Asynchronous Advantage

Actor-Critic (A3C) approach [66] combines the advantages of the above models.

This approach runs multi-threads on a single machine to train multiple agents at

the same time, and update their learned parameter interchangeably. The updates

are accumulated over several steps before applying to the global network. This

mechanism solves the data correlation problem and the overestimation problem

at the same time, leading to a model with superior performance. Our model in

Chapter 5 adopts this approach as the reinforcement learning algorithm and has

achieved better performance. Moreover, the Deep Deterministic Policy Gradient

19

(DDPG) approach [49] explored in the continuous action space scenario by using

the deep neural networks as the function approximators. And [31] combines the

above improvements to reach a more powerful state-of-the-art.

2.2.3 Reinforcement Learning based Recommender Sys-

tems

Researches on using reinforcement learning for recommender systems usually

model recommendation as an N-item-gram problem: the recommendation process

is viewed as recommending the next item(s) based on historical items, and the

length of the past item sequence is usually limited to a fixed number N . By

considering the recommendation as a sequential decision-making process, it is

natural to model the historical item sequences as states, and the recommending

of the next item or items as actions. However, the number of items is big, and

the item combinations are enormous, which makes the problem having nearly

infinite state and action space. Thus approximations and simplifications are used

in the modeling to keep the problem manageable. Moreover, the rewards must be

specifically designed to match the learning objects.

[96] is one of the notable early works of using reinforcement learning in the

recommender systems. It models the recommendation process as an MDP pro-

cess - recommend the next item(s) (n-item-gram) according to the previous k

items. They applied the model on the real online bookstore website and showed

the advantage of the reinforcement learning based recommender system over a

traditional recommendation predictor. Taghipour et al. [110] also use the n-item-

gram paradigm to recommend the next web page based on the previous k browsed

pages. The reward is designed to encourage the recommended page being similar

to the historical pages and increasing the time a user spent on the page.

20

More recently, deep neural networks are widely used as function approxima-

tors. Zheng et al. [136] proposed a deep reinforcement learning based news

recommendation system. They use the double Q-learning framework, and the re-

ward is designed to incorporate both the user clicks and the user activeness (user

return time) to help improve the recommendation. Zhao et al. [135] developed a

deep reinforcement learning based page-wise recommender system. They encode

a two-dimensional page of items into the continuous embedding space and use

both GRU and CNN network to capture temporal and spatial signals. By using

the historical browsing/click data, they modeled the page-wise user behavior as

an n-item-gram problem and used the DDPG to train a recommendation model.

2.3 Dialogue Systems

Dialogue systems have been an active research area for many decades. Such a

system usually involves an end-user and a dialogue agent. By communicating via

natural language interactively, the agent helps one to fulfill the information need.

2.3.1 The Chit-Chat, Information-Seeking and Task-Oriented

Dialogue Systems

By the application scenarios, dialogue systems can be divided into the chit-chat

dialogue system, the information-seeking dialogue system, and the task-oriented

dialogue system.

The chit-chat dialogue systems aim at generating natural and appropriate

responses for users. Vinyals et al. [114] built a chit-chat agent using a sequence-

to-sequence model on the IT troubleshooting and the subtitle dataset. Li et al.

[45] proposed the modeling of mutual information in the learning object [43] to

21

increase the diversity of the conversation. Zhang et al. [131] modeled the persona

information for both user and agent in a dialogue, and show that the resulting

chit-chat dialogues are more engaged with topics.

Information-seeking dialogue system or the question-answering systems re-

spond to user questions with retrieved or generated answers using different kinds

of data resources. [77] collect a question answering dataset with the Wikipedia

articles, and the answers are sub-segments of the article. This work has triggered

a significant amount of researches in the question-answering field. Reddy et al.

[79] explore the conversational questions-answering domain, in which a sequence

of follow-up questions are given based on a passage, and the answers are free-form

text with evidence in the passage. [93] build a factoid question-answering corpus

using facts from the Freebase.

Task-oriented dialogue systems are used to complete specific tasks for users,

such as booking movie tickets. It has three major components [121] [126]: a Nat-

ural Language Understanding (NLU) module, which learns to parse the natural

language sentences (or speeches) into meaningful representations, such as real vec-

tors; a Dialogue Manager (DM) module, which takes the representation vector as

input to compute a dialogue action; and a Natural Language Generation (NLG)

module, which generates responses to the end-users, based on the action selected

by the dialogue manager. There are component-wise approaches and end-to-end

approaches in the building of the task-oriented dialogue systems.

22

2.3.2 Components of Task-Oriented Dialogue Systems and

End-to-end Task-Oriented Dialogue Systems

Natural Language Understanding

The Natural Language Understanding (NLU) and Dialogue State Tracking

(DST) are closely associated with each other [21]. This module is responsible

for understanding the end-user input and generating a belief vector that can be

interpreted by the dialogue manager. Mesnil et al. [63] modeled the NLU as a

sequence labeling problem and different types of deep neural networks are used.

[70] explores transferring knowledge in dialogue state tracking using delexicalised

features. They train an RNN model on one domain and continue to train the

model specifically on the other domain data. [71] combines the NLU and the DST

models, and learn a joint Neural Belief Tracker to convert the user utterances into

belief vectors. Moreover, the Dialogue State Tracking Challenge (DSTC) and its

recent rebranded Dialog System Technology Challenges have been held for many

years to research on a wide range of NLU and DST related problems2.

Dialogue Manager

The dialogue manager is responsible for finding a dialogue policy that decides

which action to take given the current dialogue state [123] [119]. Different methods

have been used, for example, the agenda-based method [91] and the rule-based

method [51] [124]. One of the widely used approaches is to learn a policy with the

reinforcement learning framework, due to its aligning with the dialogue procedure

[21]. [90] [121] are among the early works to model the dialogue system with the

Partially Observed Markov Decision Process (POMDP), pointing out a promising

direction of researches in this field. This framework has several advantages: (1)
2https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/

23

explicitly modeling the uncertainty of the user utterances, (2) stochastic modeling

of the dialogue action given the dialogue state, and (3) being able to use the reward

associated with the state action pairs [121] to guide the finding of a good dialogue

policy. A comprehensive review of the dialogue manager is out of the scope of

this thesis, and the readers may refer to [62] [126] [11] [21] for more details.

Natural Language Generation

The natural language generation component is used for taking the action se-

lected by the dialogue manager and generating natural language responses to

users. Traditional approaches break down the task into a three-step process:

text planning, sentence planning, and realization [115]. Rule-based methods

and template-based methods are used by early works [103]. Later statistical ap-

proaches and data-driven methods are used to decrease the handcrafting workload

[73] [57] [87]. More recently, the neural network based methods mitigate the chal-

lenges of expensive handcrafting and can generate responses with better language

variation and naturalness. Wen et al. [118] proposed a Semantically Conditioned

LSTM (SC-LSTM) network to model the sentence planning and surface realiza-

tion uniformly. They later extended this work to explore multi-domain NLG by

first training the SC-LSTM parameters on the counterfeiting data and then to

fine-tune the network on a small amount of domain-specific data [117].

End-to-End Dialogue System

Another important line of research manages to jointly train different com-

ponents of dialogue systems in an end-to-end data-driven way. The end-to-end

models have the advantage that the components of the system are differentiable

and are optimized against the learning object directly with the gradient descent

24

techniques. There are many works in this direction. For example, Zhao et al.

[134] proposed an end-to-end framework to jointly train the belief tracker and the

RL based dialogue manager and demonstrate the superior of joint training on a

20 Question Game. [119] proposes a sequence-to-sequence model to train the dia-

logue system end-to-end, including modeling the internal belief states and intent

distributions and decoding the DB query vectors into the dialogue responses. [18]

jointly trains the NLU and DM modules in a reinforcement learning framework,

to build a movie information access system, in which the users can find an item

in the knowledge base.

2.3.3 Conversational Recommender Systems

There is one line of research of the conversational recommendation focusing

on researching the critiquing-based systems [53]. More recent research, including

this dissertation, focusing on how to make recommendations in natural language

dialogue systems.

Critique-based conversational recommendation

In these systems, the conversation denotes making multiple cycles of recom-

mendations for users. Interactions with users are mainly through graphical user

interfaces presented on different platforms, e.g., on mobiles or webpages, rather

than through natural language dialogues [7] [85]. Critiques are facet (attribute)

value constrains of items. A user can modify the critiques, e.g., change the value

or the scales, to browse the recommended results. One can continue to modify

the critiques based on his preferences and the recommended items to update rec-

ommendations. This process continues until the user finds the target item in the

results.

25

Research questions in this field include [53]: (1) how to represent the critiques,

i.e., adopts both unit critique and compound critiques [7] and which critiques to

present for users, i.e., only presents available critiques based on the candidate

items [60]; (2) the critiques-based user preference modeling [129]; (3) grant users

the freedom to customize their critiques for more efficient interaction [80]; (4) how

to retrieve the items based on the critiques, i.e., according to both the current

constraints and the previous critiques [98] [61]; (5) how to design the user interface

to improve the efficiency and effectiveness of the interactions [128]. A critique-

based system could also have a sequence of interactive graphical user interfaces,

for example, [56] models multi-step webpage interactions with the reinforcement

learning method. At each step, their model decides whether to collect more in-

formation from the user or to show the recommendation page to users.

Comparing to dialogue systems, critique-based systems have their limitations.

First, there is overwhelming information in the user interface of the critique based

system, and a user has to spend time to get familiar with the system before using

it. However, interacting with dialogue systems is a more succinct and easy-to-use

procedure. Second, with critique based systems, a user can only manipulate the

critiques, which are usually predefined and limited. However, dialogue systems can

support much more flexible interactions, for example, free-form natural language

utterances.

Recommendation in Conversational Dialogue

Research in this direction is at its early stage. Yan et al. [124] proposed a con-

versational dialogue recommender framework based on a mobile online shopping

application. They formulate the framework into different components, and within

each component, they build a separate model to perform the task. By passing and

26

processing the data among different components, their system functions as a whole

for conversational online shopping. Christakopoulou et al. [13] built a system to

ask a user to provide opinions on if he likes an item or prefers one item to another

repeatedly, based on which their system improves the recommendation results.

One can feel bored in such a process if he is asked to compare items constantly.

A more natural process is to discuss the attributes of items in natural languages

to express opinions. Dodge et al. [19] built an end-to-end dialogue agent that can

recommend movies based on the context information using the memory network.

Zhang et al. [133] built a conversational search and recommender system using

a similar model. By utilizing the review information in amazon dataset, their

framework can select facets to ask the user and recommend a list of items accord-

ingly. However, these systems have relatively fixed dialogue discourses and do not

have recommendation related decision makings, for example, when to collect more

information and when to make a recommendation.

27

Chapter 3

Conversational Recommendation

Dialogue Data Collection

3.1 Overview

A conversational recommender system should act like a real human sales agent

to help users find their preferred items. In this procedure, a dialogue agent should

guide the user through the process, by strategically asking users appropriate ques-

tions to elicit their preferences, and making recommendations accordingly. The

agent is the expert and should know which questions to ask. Also, it should know

when to stop asking questions because enough information has been collected for

making high-quality recommendations. In order to build such a system, we need

dialogue datasets that have utterances of exchanging the facet values between

users and the dialogue agent. The dialogue should also contain user-item infor-

mation in order to make personalized recommendations to users. To the best of

our knowledge, there are no available public datasets that can be directly used

to support the research problem we want to explore. To facilitate the research

28

in this direction, we build the conversational recommendation dialogue datasets

based on popular recommender datasets, using the technique of crowdsourcing

[20]. The dialogues contain the utterances between a user and a dialogue agent

discussing the facet values of a target item.

3.2 Related Work

According to how the utterances of the dialogue are generated, existing dia-

logue datasets could be generally categorized into three types [94]:

Machine-Machine Dialogue Dataset: These type of dialogue data are gen-

erated via templates or patterns. For instance, Borders et al. [5] used templates

and a knowledge base to generate simulated dialogues to build a task-oriented dia-

logue system. Pure template-based dialogues are usually not natural enough. An

important improvement is proposed by [95] and [105]. In these works, a schema is

first simulated. Then crowdsourcing workers are requested to write natural lan-

guage paraphrases based on schemas. Our approach is slightly different from [95]

in that our dialogues are collected through an interactive dialogue user interface,

rather than through filling web forms, so our method is more consistent with the

actual online chatting scenario.

Human-Machine Dialogue Dataset: Dialogues of this type have utter-

ances between real users and an existing dialogue system. An early dataset is the

Let’s Go Public corpus [78], which has the conversations of real users interacting

with a bus schedule informational dialogue agent. Examples of the more recent

datasets are the popular Dialog State Tracking Challenges (DSTC 1-3) datasets

[29], which are in the domains of bus scheduling and restaurant booking. This

type of dataset usually requires a working dialogue system to let users interact

with. The dialogue utterances are more natural than machine-machine dialogues.

29

However, the quality of the dialogues is constrained by the quality of the existing

system.

Human-Human Dialogue Dataset: Dialogues of this type are collected

via the human-human conversation. The more recent DSTC 4-7 datasets are

collected in this way. There is another type of dataset collected via the Wizard-

of-OZ paradigm, in which the subjects are told to interact with a machine, but

are in fact interacting with real human beings. One example among the early

dataset is the ATIS corpus [28]. More recent ones include [119] [6]. Although this

type of dataset has the best naturalness among the three types, it is usually not

cost-efficient to collect dataset in this way, especially for our case where there are

millions of rating pairs of a typical recommendation dataset. A comprehensive

review of the dialogue dataset can be found in [94].

The dialogue datasets can also be categorized based on the type of dialogue

system they are used to build. The first type is the general-purpose dialogue cor-

pus, which can be collected from the conversation related scenarios, and they do

not have to be in the strict dialogue context. For example, the Ubuntu Dialogue

Corpus [54] is a dataset from the online chat room which has two or more partic-

ipants discussing in real-time about the issues related to the Ubuntu system. [88]

collected 1.3 million conversations from the Twitter Microblog. The second type

is the information-seeking dialogue dataset, for example, the single round ques-

tion answering dataset [77], multi-round reading comprehension dataset [79], and

the factoid question answering dataset [46]. The third type is the task-orientated

dialogue dataset. There are a lot of corpus in this category, spanning various ap-

plications and domains, such as movies [19], restaurants [29] and tourism [35]. [19]

created a conversational recommendation dataset using the MovieLens Dataset.

However, their dataset does not contain the utterances discussing facet values of

30

the target item.

Another related work is the delexicalization technique [119] [117]. It is a

method to abstract natural language utterances into templates by substituting a

subfragment with the corresponding placeholders. This approach enables the cre-

ation of templates based on the natural language sentences and allows knowledge

transferring across different domains.

3.3 Faceted based Recommendation Dataset Pro-

cessing

We build the conversational dialogue dataset based on two popular recom-

mendation datasets: the Yelp Challenge dataset1 and the MovieLens1M dataset

[24]. These two datasets have abundant user-item explicit rating feedback. Movie

and restaurant are two of the popular domains in both the recommendation and

the dialogue research communities [18] [119] [29]. We make an assumption [105]

that users have selected their preferred items after chatting with a dialogue agent.

Though this might be a strong assumption, it is a reasonable starting point for con-

ducting research in this direction. To preprocess the recommendation datasets, we

keep users and items that have at least 5 ratings. Also, the Yelp Challenge dataset

contains items of various business types, for example, “shopping”, “health”, and

“automotive”. We filter these types of items out to keep only items with “restau-

rant”, “food”, “bars” and “nightlife” business types. Statistics of the dataset after

preprocessing are shown in Table 3.1. The two datasets have different levels of

sparsity, and the MovieLens1M dataset is much denser one than the Yelp dataset,

which has a density of 0.0661%.
1https://www.yelp.com/dataset/challenge

31

Table 3.1: Basic statistics of the pre-processed MovieLens1M and Yelp recom-
mendation datasets.

of User # of Item # of Rating Density
MovieLens1M 6,040 3,412 999,458 4.84%
Yelp 62,047 21,350 875,721 0.0661%

In the next step, we collect the facet values for each item in both datasets,

because our conversational recommendation agent will discuss attributes of a tar-

get item with users. The Yelp Challenge dataset has already provided rich facet

values information. For the MovieLens1M dataset, we use the OMDB Api2 to

collect movie features from the online movie database IMDb3.

actor

language
director

country

productio
n company

genre

rated system

metacriti
c ra

ting

rotten tomatoes ra
ting

awards

imdb rating

num review
duration year

box office
0

50

100

of

 F
ac

et
 V

al
ue

s Movielens1M Item Facets

categorycity

neighborhoods
rating

ambience

dietary restric
tions

music
good for

parking

review count

noise level

price
 range

alcohol
attire
smoking

has happy hour

has ta
keout

has waiter se
rvicehas tv

has outdoor se
ating

acce
pts c

redit ca
rds

has drive through

dogs allowed
0

100

200

Fa

ce
t V

al
ue

s

Yelp Item Facets

Figure 3.1: The histogram diagram of the number of facet values of items on
the MovieLens1M (upper) and Yelp Challenge dataset (lower).

2http://www.omdbapi.com/
3https://www.imdb.com/

32

After collecting facet values, we continue to preprocess the values of each

facet. For numerical facets of both datasets, we bin their values into nominal

values by range. For example, we bin the “review count” facet in the Yelp dataset

into ranges of “≤ 20”, “21-50”, “51-100”, “101-500”, “≥ 500”. We also filter the

nominal facets by frequency. For example, in the MovieLens1M dataset, we filter

out the actor and director values, whose frequency is less than 5. Note that the

Yelp dataset has several “true/false” facets, for example, the “has tv” and “has

taken out”. After processing, there are 15 facets in the MovieLens1M dataset and

23 facets in the Yelp dataset. The numbers of facet values in both datasets are

shown in Figure 3.1. To this point, each item in both datasets is augmented with

the processed facets values.

3.4 Crowd Sourcing based Conversational Dia-

logue Dataset Collection

As discussed earlier, there is no publicly available dialogue dataset that can

directly support making a personalized recommendation for users based on the

discussions of item facet values. We build two datasets following the procedures

in [95] and [105], with the help of crowdsourcing techniques.

The ideal dialogues would be ones having a real user first chat with a dialogue

agent to inform the facet values of a target item and then select this item from a

list of items recommended by the dialogue agent. However, it is not possible for us

to collect such dialogues from real users who generate the ratings in the original

recommendation dataset. Besides, collecting dialogues with human-human or

human-machine conversations is less cost-effective, especially for recommendation

datasets, which have millions of rating information. Moreover, dialogues between

33

Table 3.2: An example of a simulated dialogue schema for a user item pair in
the MovieLens1M dataset

The target movie has the following facet values:
{genre: Drama, year range: before 80s,
language: French, rating range: 8.0-9.0}
User: inform(rating=“8.0-9.0”)
Agent: request(genre)
User: inform(genre=“Drama”)
Agent: request(director)
User: dontknow()
Agent: request(year_range)
User: inform(year_range=“before 80s”)
Agent: request(language)
User: inform(language=“French”)
Agent: recommend()
User: thanks()

two real users tend to have the “reasonable” discourses [95]. In other words, the

discourse can only cover a limited percentage of “dialogue paths” [32]. However,

in order to train a robust dialogue agent, we need to show as many dialogue paths

as possible to the dialogue agent, even ones that are logically incorrect [95]. Based

on these considerations, we resort to the simulation-based approach to generate

dialogues.

We mainly collect the user utterances in the dialogue. For machine utterances,

we sample them from a prescripted candidate set. First, we random simulate

the dialogue schemas [95] [105], which are template like sentences. A schema

contains an intention, facets and their values (if any) [120] [106]. For example,

a schema “inform(genre=“Drama”)” denotes “to inform the genre of the movie

is Drama”. A schema “request(rating)” denotes “to request the rating of the

movie”. We used four types of schemas: “request(facet)”, “inform(facet=value)”,

“dontknow(facet)” and “thanks()”. At each turn, the dialogue agent requests one

or more facets from a user and the user either inform the values within a response

34

if she knows it, or tells the agent she does not know it. The dialogue ends with

the agent making a recommendation to the user. Table 3.2 shows an example of

a simulated dialogue schema.

Figure 3.2: The dialogue collection graphical user interface. On the left panel
shows instructions and several examples. On the right panel is the dialogue win-
dow, where an MTurk is requested to paraphrase the schema into natural language
user utterance.

We use the crowdsourcing service provided by the Amazon Mechanical Turk

(AMT) website4. Only qualified workers are hired to do our tasks. In the HIT

(the task), MTurks (workers in the AMT) are first given an instructional overview.

Then they are presented with the graphical user interface, as shown in Figure 3.2

to do the task. On the left part, they are given several examples for different types

of schemas and the corresponding example utterances. The right part is a dia-

logue chatting window. At each turn, an MTurk sees a dialogue agent utterance,
4https://www.mturk.com/

35

Table 3.3: The crowdsourced dialogue scripts using the schema in Table 3.2

The target movie has the following facets:
{genre: Drama, year range: before 80s,
language: French, rating range: 8.0-9.0}
User: the rating should be 8.0-9.0
Agent: which genre would you like?
User: i would like Drama movies
Agent: who are you favourite director?
User: Don’t care.
Agent: which year range would you like to watch
User: i like before 80s year movies
Agent: which language would you like?
User: French
Agent: recommend you with the following items
User: Thanks

accompanied by a schema of the user response. The Mturk needs to paraphrase

this schema into a natural language utterance. One must address all the facet and

values (if given) in the schema. We require Mturks to write responses in natural

human language and encourage them to write diverse sentences. An example of a

written dialogue is shown in Table 3.3, which is a scripted dialogue by an Mturk

using the schema in Table 3.2.

After collecting the user utterances, we perform an additional round of MTurk

experiments to filter out low-quality sentences. Specifically, for each written ut-

terance and its paired schema, we request qualified MTurks to label whether or

not the utterance correctly paraphrases the schema with natural language and if

it has addressed all the facet value in the schema. We only keep the ones that are

given positive labels by two or more MTurks. After this round of experiments, we

collect a set of high-quality sentence level user utterances.

Following the approach in [119], we convert these utterances into templates.

Specifically, we use string matching to locate a subfragment in the MTurk written

36

utterances and replace them with placeholders. This is a process of delexicalization

defined by [119]. Following this process, we get a set of sentence-level templates.

For example, an utterance “I want to watch a Comic Movie” is transformed into

the template “I want to watch a <GENRE> movie”, in which <GENRE> is

the placeholder. Then we use these natural language templates to simulate the

conversational recommendation dialogues randomly. Each dialogue has a target

user-item pair, a conversation discussing the facet values of the target item, and

facet value labels for each user utterance. These dialogues are used to train natural

language understanding and recommender modules. Note that we do not train the

dialogue manager with the policy information contained in the collected dialogues.

Therefore, the random simulation of the dialogue utterances is acceptable. We

train the dialogue manager with a reinforcement learning approach, which is to

be introduced in the following chapters.

We generate dialogues for each user-item pair in the preprocessed recommen-

dation dataset. Statistics of the collected dialogue dataset is shown in Table 3.4.

We collected 331 user utterance template for the MovieLens1M dataset and 613

templates for the Yelp dataset. The total number of utterances and tokens are

large due to the big number of user-item pairs from the recommendation dataset.

However, the unique tokens and unique bigram are comparable to the DSTC2

dataset [95]. Two examples of the collected dialogues are shown in Table 3.5.

The user utterances are simulated based on the simulated facet value pairs and

the delexicalized templates. The machine utterances are sampled from a set of

pre-scripted templates. We can observe that the facet values are automatically

labeled, which are shown in the parenthesizes following each user utterance. We

make the dataset public available5.
5https://github.com/ysun30/ConvRec

37

Table 3.4: Statistics of the two conversational recommendation datasets, com-
paring to the DSTC2 dataset.

DSTC2 MovieLens1M Yelp
Dialogues 1611 999,458 875,721
Templates - 331 613
Users - 6,040 62,047
Items - 3,412 21,350
Total utterances 11,670 15,272,360 12,333,121
Total tokens 199,295 101,002,615 75,713,435
Avg. utterances per dialogue 14.49 15.2802 14.0820
Avg. tokens per utterance 8.54 6.6151 6.1386
Unique tokens 977 1,715 2,027
Unique bigram 3,528 8,440 13,461

Table 3.5: Example dialogues simulated using the method discussed in this
chapter. The left dialogue is a MovieLens1M example, the right dialogue is a Yelp
example.

MovieLens1M Yelp

User: a movie directed by Clint Eastwood
and in 90s

(director="Clint Eastwood", year="in 90s")
Agent: which production company of the
movie do you like?
User: movies produced by warner brothers

(production="warner brothers")
Agent: which genre would you like?
User: i would like the genre to be Mystery

(genre="Mystery")
Agent: which language would you like?
User: i want a movie in English

(language="English")
Agent: do you want movies with any awards?
User: has some awards or nominations

(award="other win or nomination")
Agent: which rating range would you like?
User: i like movies with a rating between
6.0 to 7.0

(rating="6.0-7.0")
Agent: which actor do you like?
User: I would like to watch a movie with
Clint Eastwood

(actor="Clint Eastwood")

User: i need a rating of 3.5
restaurant

(rating="3.5")
Agent: Which city are you in?
User: i’m in Tempe

(city="Tempe")
Agent: any preference for the parking site?
User: i would like lot parking.

(parking="lot")
Agent: which review count range do you want?
User: the review count should be between
101 and 500

(review_count="101-500")
Agent: do you want one that accept credit
card?
User: sure

(accept_card="True")
Agent: which category do you want?
User: i want a place that has Cupcakes

(category="Cupcakes")
Agent: which price range do you want?
User: a medium price range.

(price_range="medium")
Agent: recommend you with the following
items
User: Thanks a lot!

38

3.5 Summary

In this chapter, we introduced the conversational recommendation dataset

collected via the crowdsourcing technique. We argue that in order to make good

recommendations to users, the dialogue agent should chat with a user to un-

derstand the information need towards target items and make recommendations

accordingly. Existing datasets do not meet our requirements as the existing recom-

mendation datasets do not have the associated dialogues scripts, and the existing

dialogue datasets do not contain the personalized user-item information needed for

making personalized recommendations, or the utterances discussing facet values

of target items.

We build the dataset based on two recommendation datasets. We collected

facet values of the target items and simulated dialogue schemas for each user-

item pair in the dataset. Then we request the crowdsourcing workers to para-

phrase schemas into natural language utterances addressing all the facet values in

a schema. We further delexicalize the collected user utterances into sentence-level

templates. Finally, we simulate the conversational recommendation dialogues us-

ing these templates. In the next chapters, we will present how the collected

datasets are used to train different modules in our proposed conversational rec-

ommendation framework. We hope these datasets can facilitate researchers who

are also interested in this field.

39

Chapter 4

The Framework of Conversational

Recommender System

4.1 Overview

In this chapter, we discuss how to build a conversational recommender system.

The goal of the system is to recommend personalized item(s) to users successfully,

and it achieves this goal by analyzing what the user has said in the current session,

interactively asking user clarification questions, and making personalized recom-

mendations when appropriate, based on the current session and what the user has

consumed or rated before. Our framework has three components: a belief tracker,

a recommender system, and a dialogue manager.

Several aspects are important in the process. First, the dialogue agent needs

to understand the user’s intention correctly. Second, the agent should make se-

quential decisions and take appropriate actions in each turn. Third, the system

needs to make personalized recommendations in order to maximize user satisfac-

tion. Figure 4.1 illustrates an overview of our proposed framework. At a time

40

Which city are you in?

Belief
Tracker

Recommender

��hi
I want to find a Bar.

��

��

Dialogue
Manager

����

Figure 4.1: The conversational recommender system overview

step in the dialogue, the user utters “I want to find a Bar”. The framework calls

the belief tracker to convert the utterance into a vector representation or “belief”;

then the belief vector is sent to the dialogue manager for the dialogue agent to

make a decision. For example, the agent may decide to request the city infor-

mation next. Then the agent responds with “Which city are you in?”, and gets

a reward, which is used to train the dialogue policy. A different decision is to

make a recommendation. Then the agent calls the recommender module to get

a list of items personalized for the user. We introduce each component and the

relationships among them in more details in the following sections.

4.2 The Conversational Recommender System

Framework

4.2.1 Belief Tracker

When try to buy products on an e-commerce website, users often navigate

the product space through faceted search [130][36][113]. Motivated by this and in

order to assist users to find the item they want in conversation, it is crucial that

the system understands which values the user has provided for product facets, and

represents the user utterances with a semi-structured query. We introduce a Belief

41

LSTM

+

ReLU

ReLU

LSTM

...

...

...

++

Belief	Tracker

Policy	Network

Recommender

Figure 4.2: The structure of the proposed conversational recommender frame-
work. The bottom part is the belief tracker, the top left part is the recommenda-
tion model, and the top right part is the deep policy network.

Tracker module similar to [18] to extract facet-value pairs from user utterances

during the conversation, and maintain the facet-value pairs as the memory state

(i.e., user query) of the agent. In this dissertation, we view the product facet

(or attribute, metadata) f along with its specific value v as a facet-value pair

(f, v). Each facet-value pair represents a constraint on the items. For example,

(color, red) is a facet-value pair which constrains that the color of the items need

to be red.

The network structure of belief tracker is shown in the lower part in Figure 4.2.

We train a belief tracker for each facet of the items. The belief tracker takes the

42

current and the past user utterances as the input, and outputs a probability

distribution on all the possible values of a facet at a time step. The dialogue

system’s belief of the session is constituted by the predicted values of all the

facets. Specifically, given a user utterance at time step t, et, the input to the

belief tracker is the n-gram vector zt. Let V denotes the n-gram vocabulary, thus

zt ∈ R|V |×1.

zt = ngram(et) (4.1)

Suppose there are K types of facets, we denote a facet fm, with (1 ≤ m ≤ K).

At step t, the sequence of n-grams up to the current time z1, z2, ..., zt is encoded

by a Long Short Term Memory (LSTM) [33] into a vector ht ∈ R|fm|×1, where

|fm| is the number of values of fm. The hidden vector ht is then fed to a softmax

activation layer to be transformed to the probability distribution bmt ∈ R|fm|×1.

For each facet, we train an LSTM separately.

ft = σf (Wfzt + gf)

ot = σo(Wozt + go)

it = σi(Wizt + gi)

ct = ft � ct−1 + i� tanh(Wczt + gc)

ht = ot � tanh(ct)

(4.2)

where the parameters Wf , Wo, Wi, Wc belong to R|fm|×|V |, and the bias gf , go,

gi and gc belong to R|fm|×1. At round t, all the bmt are concatenated together to

form the agent’s current belief of the dialogue state in the current session.

bt = b1
t ⊕ b2

t ...⊕ bKt (4.3)

where bt has the dimension of ∑K
m=1 |fm|. By using the learned output of the

43

LSTM network directly, we keep the uncertainty from the belief tracker for the

following modules. This vector has the information that which values of which

facets have been addressed in the dialogue so far.

4.2.2 Recommender Module

As the conversational system interacting with the users, at certain round, the

dialogue agent can decide to make a recommendation based on its current belief

of the user’s information need, which is represented by the belief vector. We

train a recommender using the belief vector, the user information, and the item

information. Specifically, we use the Factorization Machine (FM) [81], for the

reason that FM can easily incorporate additional features, e.g., st, for the model

training.

The structure of the recommendation model is shown in the upper left part of

Figure 4.2. Let u denote the users and i the items. For M users and N items in

the dataset, the users and items are represented as the sets: {u1, u2, ..., uM} and

{i1, i2, ..., iN}. The input x to the recommender is the concatenation of the 1-hot

encoded user vector and item vector, where the only element that is not zero in

the vector corresponds to the index of a user or an item, and the dialogue belief

vector bt:

x = um ⊕ in ⊕ bt (4.4)

where m and n are the indexes of a user and an item, and

um = {0, 0, ..., 1, ..., 0}, with 1 at the mth element. (4.5)

in = {0, 0, ..., 1, ..., 0}, with 1 at the nth element. (4.6)

The output ym,n can be either explicit feedback, e.g., a rating score, or implicit

44

feedback, e.g., a 0-1 scalar. We use a 2-way (K = 2) FM [81]:

ym,n = w0 +
N∑
α=1

wαxα +
N∑
α=1

N∑
β=α+1

〈vα,vβ〉xα, xβ (4.7)

〈vα,vβ〉 =
K∑
κ=1

vα,κvκ,β (4.8)

where w0, wα, vα and vβ are learnable parameters. α and β denote the index

of elements in the input vector x, and ym,n is the rating score given to in by um.

For rating prediction, Stochastic Gradient Descent (SGD) is used to minimize the

square loss between the predicted rating score and the real rating score.

Loss(Θ) =
M∑
m=1

N∑
n=1

(ym,n − y)2 (4.9)

where Θ denotes all the parameters, and y is the real rating. Note that,

according to [81], the objective function scales linearly with the size of the data.

Without loss of the generality, when the dialogue agent needs to make rec-

ommendations using the trained recommender, it first takes the argmax of each

facet’s belief vector, to get K categorical distributions over the values, one for

each facet. The combinations of the facet values form a new distribution, with

the probability the product of K value’s probabilities. We keep the µ most prob-

able combinations and use their facet value combinations to retrieve items from

the entire item set. The retrieved items form a candidate set. Then we use the

trained model to re-rank the candidates based on their rating scores. Note that

due to the belief tracking errors, e.g., misunderstanding the user’s intention, the

target item may not exist in the candidate set.

45

4.2.3 Deep Policy Network based Dialogue Manager

The dialogue manager is a crucial component of the dialogue system. It de-

cides which actions to take at each dialogue turn. Reinforcement learning based

agent aligns well with a dialogue agent because reinforcement learning is suitable

for problems involving sequential decision-making [109]. We train a deep policy

network to act as the dialogue manager, i.e., at each dialogue turn, it decides

which action to take, in order to maximize the long-term expected return. It

looks at not only the short term reward, or immediate reward, but also the long

term accumulative rewards.

The policy gradient method can learn a policy directly, without consulting the

value functions [109]. One of the advantages of the policy gradient methods over

the action value methods is that it has stronger convergence guarantees. There

are pros and cons of the value-based methods and the policy network methods.

Readers may refer [109] for more details.

The structure of the policy network is shown in the upper right part in Fig-

ure 4.2. Following the Markov Decision Processes (MDPs), the policy gradient

model has the five tuples {st, at, rt, π(at|st), γ}.

State: The state st is a description of the current environment that the agent

is interacting with. In our case, we define it as the conversation context, which is

the belief vector, st = bt.

Action: At each time step t, the agent needs to select an action at based

on the information of the state st. In our setting, we have mainly two types of

actions. One type is to request the value of a facet, which is further divided into K

actions {a1, a2, ..., aK}, one action per facet. The other is to make a personalized

recommendation arec, in which case the recommendation module described above

would be called. Note that arec may in fact occur more than once in a single

46

conversation session. We leave the modeling of multiple recommendations in one

dialogue session for future work.

Reward: The reward is the benefit or penalty the agent gets from interacting

with an environment. At each turn, according to the current state st, the agent

selects an action at following the policy, and gets an immediate reward rt, denoting

how good the current decision is. Then the state st transits to a new state st+1.

In our framework, the dialogue manager gets a reward when it requests a facet

value, or makes a recommendation. Note that the reward is the feedback from the

environment. The recommender module serves as part of the environment. The

agent only gets rewards from the environment but can not change it [109]. We

model the recommendation reward in different ways, which will be introduced in

section 4.3.1.

Policy: The conversational recommendation scenario is an episodic process

where the whole dialogue is an episode. The policy is denoted as π(at|st, θ), which

is the probability of taking action at when the agent is in state st. We use a deep

neural network as the function approximator, because the states are in continuous

space, and it is not possible to enumerate all of them. For simplicity and without

loss of generality, our policy network contains two fully connected layers, and each

has an ReLU activation function. Other neural network structures may also work.

The output of the network is further sent to a softmax layer to be transferred

to the probability of the actions. Based on the policy gradient theorem, the

REINFORCE algorithm [122] is derived as

θt+1 = θt + α Gt
∇π(at|st, θt)
π(at|st, θt)

(4.10)

This is the target the model tries to learn. Note that the quantity Gt
∇π(at|st,θ)
π(at|st,θ)

is a sampled quantity at each timestep whose expectation equals to the gradient

47

of the performance measure J(θ) that the method tries to maximize:

∇J(θ) = Eπ(Gt
∇π(at|st, θ)
π(at|st, θ))

) (4.11)

where θ is the policy parameter to be learned. Here Gt is the discounted sum

of the total episodic rewards, or return, starting from time step t to the final time

step T :

Gt =
T∑
t=0

γtrt (4.12)

with γ the discount parameter that controls the weight of the immediate reward

in return.

In our case, we always have a terminating state of the conversation, e.g., the

user leaves the chat, or the user is successfully recommended with a target. This

enables us to use gradient ascent methods to optimize the parameter θ in the

policy network directly. Note that if θ is initialized randomly, the learning can fail

completely. To address this issue, we use a rule-based policy, which is introduced

in the next section, to initialize the parameters. The policy gradient algorithm is

presented in Algorithm 1.

4.3 Experimental Setup

4.3.1 User Simulation

It is common practice in the reinforcement learning field to first simulate an

environment, in our case is a simulated user, to interact with the agent. User

simulation has several advantages [48]: (1) allows the reinforcement learning agent

to explore different trajectories that may not be covered in the real user interaction

data. (2) it is a more cost-effective approach than running the reinforcement

48

Algorithm 1 The learning process of the policy gradient agent.
1: for each data in training batch do
2: t = 0, set episode set E={}
3: initiate a dialogue with starting utterance et
4: while not dialogue ends do
5: Apply the belief tracker to get the belief vector bt
6: st = bt
7: Sample at from the policy network π(at|st, θ)
8: Execute at to get rt and user response from the user simulator
9: Add <st, at, rt> to E
10: If at is recommend, then dialogue ends
11: t = t + 1
12: Gt = 0
13: for step t in episode do
14: Gt = ∑T

k=t γ
k−t−1rk

15: update θ: θ = θ +Gt∇lnπ(at|st, θ)

learning model online to learn from interacting with real users to learn the policy.

(3) learning from the simulated agent instead of learning from scratch with the

real users prevents the system from hurting user satisfaction, which is caused by

the incompetence of the system at its early stage.

Simulation of the user dialogue agent interaction

We assume that the user is cooperative while interacting with the dialogue

agent. The user has three behaviors: (1) if the system requests the facet val-

ues, the user will respond with a natural language utterance containing the facet

values; (2) if the system recommends a list of items, the user will examine the

list to find the target item; and (3) the user will leave the dialogue if one of the

following cases happens: i) the dialogue is too long; ii) the target item is not in

the recommendation list; iii) the target item is in the list but is ranked too low.

In the simulation, we assume that the user always knows which item she wants.

Note that this might not be true in the real case. As the user may leave at any

49

time, or may not be cooperative.

In each of the above situation, the user gives a numerical reward to the dialogue

agent. A small negative reward rc is given to the agent if the user answers the

agent’s question, and the dialogue continues. The rc is to prevent the dialogue

from getting too long. The agent receives a positive reward rp if the target item is

in the recommendation list and ranked high, e.g., above a threshold. A negative

reward rq is given if the user quits the conversation. We summarize the user

behaviors in Algorithm 2.

Algorithm 2 The interaction between the agent and the simulated user
1: Start with M epochs, N training data
2: for epoch = 1, M do
3: for i = 1, N do
4: t = 0
5: Sample a (u, i) pair from the training set
6: The user u starts the conversation, and conveys a random facet value

with utterance et
7: while True do
8: Apply belief tracker to et to get st
9: Send st to the policy gradient agent
10: Get action at from the agent
11: if at is arec then
12: Call the recommender to get an item ranking list
13: if the target item is in the top K then
14: rt = rp, the dialogue succeeds and break
15: else
16: rt = rq, the dialogue fails and break
17: else
18: The system generates a response em to the user
19: if the user quits then
20: rt = rq, the dialogue fails and break
21: else
22: rt = rc, t = t + 1
23: The user responds with a new utterance et

50

Simulation of user behavior of checking the recommendation results

When recommended with a list of items, the user has different ways of ex-

amining the results. We set a stopping threshold K for the recommendation list,

beyond which the user stops checking. We also denote C as the maximum positive

reward a user can get, e.g., rp ≤ C. The three user behaviors are:

Linear rp: the user always checks the next item in the list with the probability

of 1, until the target item is found, or the end of the list is reached or the stopping

threshold K is reached. In this case, the reward is defined as: rp = C(K−τ+1)
K

,

where τ is the ranking of the target item.

NDCG rp: following the assumption of NDCG [58], this behavior assumes that

users pay more attention to the top positions of the list than the lower positions.

Here we use the binary score for the relevant feedback. Thus, rp = C∗NDCG@K.

Cascade rp: following the assumption in [15], the user would examine the

list page by page. This is for cases where the dialogue system has a limited

user interface, in which case, only a limited number of items can be presented

at a time. And the user can navigate among the pages to view more items. In

each page, the user views the items equally. This is like a carousel mode. We

denote the number of items on a page by κ. The probability of seeing the next

page decreases exponentially, with the probability α1, and the success reward also

decreases exponentially with factor α2, where 0 ≤ α1, α2 ≤ 1. Thus we have

rp = C ∗ αρ2, where ρ is the page number and ρ ≤ dK/κe.

4.3.2 Baselines and Evaluation Methodology

In this chapter, we use the Yelp Challange dataset with 5 facets: the category,

state, city, price range, and rating. In order to evaluate our proposed framework,

we compare the model against a set of rule-based baselines. Specifically, we use the

51

maximum entropy-based baseline, in which the agent computes the entropy of the

unknown facet values and always picks the one with the maximum value entropy

to request from the user. It stops asking when either the dialogue has reached the

maximum turns or all the facet values are known, in which case it recommends a

list of items. Therefore, the rule-based policy is a greedy method. We also test a

set of its variants, for example, the agent stops to make a recommendation when

there are k facets known, with 1 ≤ k < 5. We name it MaxEnt Full for the one

asking all the facets and MaxEnt@K for the ones asking exactly k facets. We also

compare to one more baseline, which stops asking facet when there is no facet

value uncertainty in the candidate itemsets. We denote this approach MaxEnt.

For the evaluation metrics, we use the widely used ones in the dialogue system

research. Which are the average return of the dialogues,

R =
T∑
t=1

rt (4.13)

the average dialogue turn,

T = dialogue turn (4.14)

and the success rate. Note that in recommender systems, the success rate is

viewed as the conversion rate, e.g., the percentage of successful recommendations,

which is one of the important measures a business tries to maximize:

S = # successful dialogues
dialogues · 100% (4.15)

52

4.3.3 Model Training Details

For simplicity and scalability, we use a bag of 2-gram representation for the

collected user utterances, and the vocabulary size is 19644. To train the belief

tracker, we split the entire dataset to a train, dev, and test set with the 80%,

10% and 10% split. We use gradient descent with a learning rate of 0.001 to train

the belief tracker. Then we fix the belief tracker’s parameters to train the FM

recommender and the policy network. We use the 2-way FM model, with the

Adam optimizer and the learning rate of 0.001. For the policy gradient network,

we pre-train it as a classifier, by taking the dialogue state as input and the max

entropy method’s actions as the labels. After the classifier’s accuracy is stable, we

keep on training the policy network using the REINFORCE algorithm [122]. We

randomly sample 35000 training dialogues and 26000 dev and test dialogues from

the train, dev and test sets, respectively. We use the RMSProp optimizer with a

learning rate of 0.001 and the batch size of 100. The best belief tracker that we

use has an accuracy of 85.0%. For the reward signals, unless specifically pointed

out, we train the simulated users with Linear rp. We set rc = −1, rq = −10 and

the max reward constant C to 40. The discount rate γ is 0.95. The stop threshold

K is 30. The maximum dialogue length limit is set to 7. The impact of C and K

are shown below.

53

4.4 Experiment Results

4.4.1 Offline Experiments

Reinforcement learning vs greedy methods

First, we explore how the reinforcement learning method performs in the se-

quential decision making for the conversation recommender system. Table 4.1

shows the experiment results of the Conversational Recommender Model (CRM)

and the baselines on several key measurements. The result of CRM is generated

by first training the RL agent and selecting the best model, then evaluating on

the test set. Comparing CRM and the MaxEnt model, we observe that the RL

agent finds a better policy. In general, the CRM agent is significantly better than

all the baselines, in that it can reach a higher average return in shorter average

turns, and with higher success rate.

For the baseline methods, we further run several MaxEnt@K methods with

K < 5 and find that the reward increases as K increases. When K = 5, the

baseline is MaxEnt Full, and it outperforms the MaxEnt@K methods. We do not

expect it to be generally true, especially if K could be very big, such as 100. We

also find that MaxEnt is the most competitive baseline method. Thus we use it

as the baseline for the following experiments.

We also evaluated the performance while not using the st information, i.e.,

directly recommend items at the beginning of the dialogue. In this case, the

model falls back to the plain FM model and performs extremely poor. We find

that st contributes to the candidate selection step in the recommendation module.

However, it does not seem to boost the FM model.

The last two columns of Table 4.1 are also aligned with our expectation. When

k ≥ 4, CRM has a lower “Wrong Quit Rate” because it interacts with the NLU

54

Table 4.1: Comparisons of CRM and the baselines on Average Return, Average
Turn, Success Rate, Wrong quit rate, and Low rank rate. Results in bold are
significantly better than baselines at 0.01 level.

Avg. Return Avg. Turn Success % Wrong
Quit %

Low
Rank %

MaxEnt@1 -7.0777 1.0002 0.0879 0.0328 0.8793
MaxEnt@2 -3.2687 1.4344 0.2070 0.0460 0.7469
MaxEnt@3 9.4093 2.2524 0.5449 0.0802 0.3749
MaxEnt@4 18.4624 2.9759 0.7544 0.0957 0.1498
MaxEnt Full 21.4557 4.3957 0.8199 0.1027 0.0767
MaxEnt 22.4986 3.8068 0.8251 0.1022 0.0722
CRM 22.6694 3.7724 0.8337 0.0880 0.0783

module less. When k ≤ 3, the MaxEnt@K baselines have shorter “Wrong Quit

Rate” because they interact with the belief tracker much less and perform poorly.

For the “Low Rank Rate”, CRM is slightly higher than the MaxEnt method

because it is prone to make a faster recommendation and do not narrow the

constraints as deep as the latter. Thus CRM’s candidate list is often longer

than the MaxEnt method, which makes it more challenging to rank the target

item above the threshold. We have similar observations for other MaxEnt@K

methods. We also examine the number of candidates in the last recommendation

step for each mode. CRM generally has more candidates than the MaxEnt method

because MaxEnt adds more constraints than CRM.

Detailed analysis

The CRM can learn that in certain cases, it is better to recommend right away

without exhausting all the facet values. This is crucial as users may get bored

if they have to provide all the facets before seeing any recommendation. This

contributes to CRM’s shorter average dialogue length. Table 4.2 is an example of

this case.

55

Table 4.2: The dialogue with CRM agent (left) is more aggressive than the one
with the MaxEnt agent (right).

CRM MaxEnt

User: i am in the state of AZ
(state="AZ")

Agent: Which rating range do you want?
User: 4.5 or above

(rating_range>="4.5")
Agent: Which category would you like?
User: i would like Breakfast and Brunch
restaurant

(category="Breakfast & Brunch")
Agent: Which city are you in?
User: i am from Scottsdale

(city="Scottsdale")
Agent: <recommend, target ranked 3 of 9>

User: i am in the state of AZ
(state="AZ")

Agent: Which category would you like?
User: i would like Breakfast & Brunch
restaurant

(category="Breakfast & Brunch")
Agent: Which city are you in?
User: i am from Scottsdale

(city="Scottsdale")
Agent: Which rating range do you want?
User: 4.5 or above

(rating_range>="4.5")
Agent: Which price range do you want?
User: in a medium price range

(price_range>="medium")
Agent: <recommend, target ranked 4 of 11>

In some other situations, the dialogue failures are caused by the imperfection

of the belief tracker component. There are two cases. One case is when the

rule-based method fails early in the dialogue turns. Because the belief tracker

misunderstand the user’s need and there are no candidates fulfill the constraints.

However, the CRM agent continues to ask more facets, which might “bypass” this

misunderstanding status and lead to a successful dialogue. Table 4.3 shows an

example. Note that the baseline has a belief tracker error in the second and the

third round.

The other case is associated with the long dialogue. Again the rule-based

method fails due to belief tracker errors. However, the CRM agent does not

always take the facet with the maximum entropy, which does not encounter a

belief tracker error and succeeds with a shorter turn. In this case, the RL agent

takes a different facet trajectory. This case falls into the category of shorter

dialogues, as discussed above. An example is shown in Table 4.4. Note that the

rule-based agent has a belief tracker error in the fourth turn.

56

Table 4.3: The MaxEnt agent (right) fails early due to the belief tracker error,
but the CRM agent (left) is able to by pass the failure case and succeed.

CRM MaxEnt
User: i would like Fast Food restaurant

(category="Fast Food")
Agent: Which rating range do you want?
User: 4.0 or above

(rating_range ≥ "4.0")
Agent: Which city are you in?
User: i am from Goodyear

(city="Goodyear")
Agent: Which price range do you want?
User: in a cheap price range

(price_range>="cheap")
Agent: <recommend, target ranked 1 of 2>

User: i would like Fast Food restaurant
(category="Fast Food")

Agent: Which city are you in?
User: i am from Goodyear

(no facet found)
Agent: Which city are you in?
User: i am from Goodyear

(state="NV", city="Goodyear")
Agent: <recommend, no candidates found>

Table 4.4: The MaxEnt agent (right) fails due to the belief tracker error, but
the CRM agent (left) asks a different facet at the second turn, avoids the belief
tracker misunderstanding, and succeed with shorter turns.

CRM MaxEnt

User: I would like Ice Cream & Frozen Yogurt
restaurant

(category="Ice Cream & Frozen Yogurt")
Agent: Which rating range do you want?
User: 4.0 or above

(rating ≥ "4.0")
Agent: Which city are you in?
User: i am from Henderson

(city="Henderson")
Agent: <recommend, target ranked 1 of 9>

User: I would like Ice Cream & Frozen Yogurt
restaurant

(category="Ice Cream & Frozen Yogurt")
Agent: Which city are you in?
User: i am from Henderson

(city="Henderson")
Agent: Which rating range do you want?
User: 4.0 or above

(rating ≥ "4.0")
Agent: Which price range do you want?
User: in a cheap price range

(state="PA", price="cheap")
Agent: <recommend, no candidates found>

57

Table 4.5: Comparisons of CRM and the baseline with different user behaviors of
checking the recommendation results, on R (Average Return), T (Average Turn),
and S (Success Rate).

NDCG rp Cascade rp
Model R T S R T S
MaxEnt 13.2990 3.8068 82.51 25.2893 3.8068 80.18
CRM 13.3865 3.7936 83.30 25.4265 3.7634 80.56

Recommendation rewards

To explore the impact of rp, we run the experiments with the NDCG rp and

the Cascade rp as discussed in section 4.3.1. We set α1 = α2 = 0.95. Results

are shown in Table 4.5. Note the Linear rp results have already been listed in

Table 4.1. In all three settings, CRM always finds a better policy, with higher

average reward and success rate in shorter turns. Linear rp and NDCG rp assume

the user checks each item until threshold K, and Cascade rp assumes that the user

may leave at any turn. We also observe that the reward of the Linear rp is higher

than the NDCG rp. Because NDCG rp penalizes the rewards non-linearly with

the decrease of the ranking. Changing the way of modeling rp is actually changing

the environment for reinforcement learning. The experiment results demonstrate

that CRM can consistently outperform the baseline in different settings.

The impact of belief tracker accuracy

In our framework, we train the policy network based on the pretrained belief

tracker. To study the impact of belief tracker accuracy, we explore how the two

models perform on three major measures while varying the belief tracker accuracy

from 50% to 85%.

Figure 4.3 shows the belief tracker’s accuracy has an important impact on the

proposed framework. The Average Return and the Success Rate increase as the

58

belief tracker’s error decreases. The Average Length of MaxEnt decreases a bit as

the accuracy grows. For all the cases, CRM is better than the baseline. Especially

when the belief tracker’s performance is poor. These comparisons reflect the

robustness of the reinforcement learning model.

45 55 65 75 85
Belief Tracker Accuracy

10

20

Av
g.

 R
et

ur
n CRM

MaxEnt

45 55 65 75 85
Belief Tracker Accuracy

3.8

4.0

Av
g.

 T
ur

n CRM
MaxEnt

45 55 65 75 85
Belief Tracker Accuracy

60

80

Su
cc

es
s R

at
e

% CRM
MaxEnt

Figure 4.3: Comparisons on the three measures with different belief tracker
accuracy.

Different environments

To study the effects of the simulated environments, we vary two major factors,

the maximum success reward C, and the recommendation list stop threshold K.

Table 4.6 shows how the measures vary with C, and Table 4.7 shows the effects of

the threshold K. We observe an increase for the Average Return and the Success

Rate as C grows or K increases. In all cases, CRM outperforms the baseline.

With further analysis, we found that the average conversational length of CRM

increases with C. This observation is not surprising, because as C increases, it

59

Table 4.6: Results of R (Average Return), T (Average Turn), and S (Success
Rate) with different maximum reward C.

R T S

C=20 MaxEnt 8.9711 3.8068 0.8251
CRM 9.2028 3.6736 0.8370

C=30 MaxEnt 15.7347 3.8068 0.8251
CRM 15.9487 3.7674 0.8339

C=40 MaxEnt 22.4986 3.8068 0.8251
CRM 22.6694 3.7724 0.8337

C=50 MaxEnt 29.2620 3.8068 0.8251
CRM 29.4842 3.7830 0.8334

Table 4.7: Model performances of three measures with different cutoff threshold
K.

R T S

K=20 MaxEnt 19.4010 3.8068 0.7764
CRM 19.5393 3.7668 0.7827

K=30 MaxEnt 22.4986 3.8068 0.8251
CRM 22.6694 3.7724 0.8337

K=40 MaxEnt 24.4098 3.8068 0.8515
CRM 24.5960 3.7182 0.8596

K=50 MaxEnt 25.6668 3.8068 0.8641
CRM 25.9282 3.7479 0.8748

does worth the effort for the RL agent to spend more time to gather information to

increase the chance of recommending the target item, thus receiving the reward.

4.4.2 Online User Study

We further evaluate our trained model with the online crowdsourcing experi-

ments and present the quantitative results here. The ideal users would be those

yelp users who have actually visited a number of restaurants and would like to

chat with our agent to inform their current interest of a target. And our agent

would make a recommendation at the end based on their historical interests as

60

well as the current session’s user intention. However, it is relatively difficult for

us to find those real users. Instead, we come up with an experimental design to

try to recover the ideal scenario as much as possible.

First, we randomly sample a target restaurant from the test dataset, contain-

ing a user id, a restaurant id, and the facets of this restaurant. Second, using

the sampled user id, we retrieve a list of the restaurants that are visited by this

user from the train set. This list is treated as the “historical” visiting informa-

tion. Next, an MTurk is presented with the list of visited restaurants with their

metadata. They are instructed to view each item carefully, in order to “learn

the preference” of the sampled user. After this, the worker starts to chat with

the conversational recommendation agent. The worker is presented with the facet

values of the target restaurant on the side so that she can correctly answer the

questions. However, she does not know which restaurant is the target. The agent

may fail due to the error in the belief tracker module. When are recommended

with a list of items, the worker needs to select up to three restaurants in the

list. To motivate the worker to work carefully, she would receive a bonus if she

successfully finds the target restaurant. There are no particular constraints, and

workers can chat freely in natural language and end a session as they want.

The MaxEnt method based agent is used as a baseline since it is better than

the others. Both of the two agents use the same belief tracker and recommender.

Each worker needs to complete 8 dialogues. A worker interacts with our two

agents in a random order, and each subject would not experiment with the same

target restaurant more than once.

We collected 402 dialogues, with 201 dialogues for each method. The linear

rp recommendation reward is used. We set C = 40 and the stop threshold to 30.

A dialogue is successful only if the worker finds the target restaurant from the

61

Table 4.8: Comparison of CRM and the MaxEnt method on R (Average Return),
T (Average Turn), and S (Success Rate) in online user study.

Model R T S
MaxEnt 1.8740 3.8457 31.84
CRM 4.0049 3.7114 36.82

recommendation list.

The results in Table 4.8 show that in general CRM is better, with a higher

return of 4.0049. Note that the average return and the success rate are lower

than the offline experiments, indicating that the real online settings are more

complicated than offline settings. CRM achieves a higher success rate of 36.82%,

showing that it can better assist real users to find the target items. Specifically,

74 out of 201 users successfully find their target items when using CRM, versus

64 out of 201 for the baseline. CRM has a shorter turn of 3.7114 compared to

3.8457 of the baseline. This is aligned with offline experiments because CRM is

able to make a recommendation more aggressively.

We further explored the average ranking of the target item in the recommen-

dation list, and that of the policy gradient model is 4.45, and that of the baseline

is 3.83. The reason for this is because the MaxEnt model often has a shorter can-

didate list because it adds more constraints due to the longer dialogues. Table 4.9

shows the example dialogues collected in the user study. The MaxEnt method

asks all slots before recommendation, while CRM often recommends quicker.

4.5 Summary and Contribution

This chapter describes the conversational recommendation framework, its im-

plementation, and evaluation. Our framework has three components. The belief

tracker computes a belief vector based on the dialogue utterances, describing the

62

Table 4.9: User study example dialogues of CRM and the MaxEnt methods. The
facet values extracted by the belief tracker module are shown in the parentheses.

CRM MaxEnt

User: I’m looking for mexican food
(category="Mexican")

Agent: Which rating range do you want?
User: 4.0 or above

(rating ≥ "4.0")
Agent: Which city are you in?
User: Gilbert

(city="Gilbert")
Agent: Which price level would you like?
User: medium

(price="medium")
Agent: <recommend, target ranked 1 of 8>

User: Mexican
(category="Mexican")

Agent: Which city are you in?
User: Gilbert

(city="Gilbert")
Agent: Which rating range do you want?
User: 4.0

(rating ≥ "4.0")
Agent: Which price level would you like?
User: medium

(price="medium")
Agent: Which state are you in?
User: AZ

(state="AZ")
Agent: <recommend, target ranked 1 of 5>

Note: The RL agent asked for four slots Note: The rule agent collected all five slots
and then make an recommendation, before recommendation
no need to ask for the rests.

User: Find a restaurant in Henderson, NV
(state="NV", city="Henderson")

Agent: Which category do you want?
User: Pizza

(category="Pizza")
Agent: Which rating range do you want?
User: 4.5

(rating ≥ "4.5")
Agent: <recommend, target ranked 1 of 2>

User: Restaurant in Henderson NV
(state="NV", city="Henderson")

Agent: Which category do you want?
User: PIzza

(category="Pizza")
Agent: Which rating range do you want?
User: 4.5 or above

(rating ≥ "4.5")
Agent: Which price level would you like?
User: medium

(price="medium")
Agent: <recommend, target ranked 1 of 1>

Note: four slots are asked by the agent Note: five slots are collected by the agent

63

facet values constraints given by users. The recommender module takes the belief

vector as additional features to predict a personalized item list for users. The

reinforcement learning based dialogue manager decides when to ask facets and

when to make a recommendation. We compared our proposed CRM model with

the maximum entropy based baselines. On the Yelp dataset, the proposed method

performs significantly better than the baselines because it aims at the maximiza-

tion of the long term expected return. Instead of always asking a facet if there

are still uncertainties about the facet values, the reinforcement learning agent

learns that sometimes it can make a recommendation right away. We conduct

both offline experiments and online user studies to validate the robustness and

effectiveness of our proposed framework.

The major contributions of this work include the follows:

• Propose the way of modeling conversational recommendation problem: such

a system should first chat with users to understand the user need and then

make recommendations when the system is confident enough.

• Propose the framework and design different modules in the framework. The

reinforcement learning based dialogue agent can decide when to ask facets

and when to make a recommendation, using the context information pre-

dicted by the neural belief tracker, and recommend with the FM based

recommender.

• Conduct offline experiments using simulated environments and test the trained

model in online user studies to show that the proposed model can reach a

better performance than baselines.

64

Chapter 5

Personalization in Conversational

Recommender System

5.1 Overview

In this chapter, we explore how to better address the personalization problem

in the framework to improve the dialogue performance. The recommendation in

conversational dialogue is different from traditional scenarios, as users provide

real-time, explicit feedback to the system. How to better utilize the user utter-

ances to improve the recommendation performance is an open question. Figure 5.1

shows the proposed framework in this chapter. Again we have three components:

a belief tracker, a recommender, and a dialogue manager. There are two major

differences. First, we train a personalized probabilistic recommender to predict

the probability of a user likes an item conditioned on the user past preferences,

which is the personalized information, and the current in-session user interest.

Second, we integrate the new recommender into the conversational recommenda-

tion framework by feeding the item probability distribution and the belief vector

65

to the reinforcement learning module to learn an improved policy. The details are

introduced in the following sections.

+...

...

...

.

Belief	Tracker

RL	Agent

Recommender

. .

Figure 5.1: The proposed framework. The bottom part is the belief tracker, the
middle part is the personalized probabilistic recommender, and the top part is the
dialogue manager.

66

5.2 Methodologies

5.2.1 Belief Tracker

We use the same belief tracker as in the section 4.2.1, as shown in the bottom

of Figure 5.1. Suppose there are K types of facets, for each facet fm(1 ≤ m ≤ K),

the belief tracker predicts a probability distribution bm over the possible facet

values. It then concatenates the bm into a belief vector. This vector contains

the current belief of the facet values that have been addressed by the user in the

dialogue. Let et denote the utterance of the dialogue turn t, we convert it to a

k-gram (k = 2) sparse encoding zt. For each facet fm, we train an LSTM with

the softmax activation layer to generate a probability distribution over the values

of fm:

bmt = LSTM(z1, ..., zt) (5.1)

Let D = ∑K
m=1 |fm| be the dimension of all the facet values, where |fm| is the

number of values of the facet fm. Thus the belief vector at dialogue turn t is

the concatenation of the K facet value distributions: bTt = (b1
t ⊕ b2

t ... ⊕ bKt)T ∈

RD×1. This vector is then used as the input to the recommender and the dialogue

manager, as will be introduced in the following sections.

5.2.2 Personalized Probabilistic Recommender

At each turn of the dialogue, given the current user and the dialogue utterances

e1, e2, ...et, we want to recommend a ranking list of all the items. This ranking list

keeps updating as the dialogue proceeds, and more constraints are being added.

Gradually the target item is ranked to the top positions. It is preferable if the

ranking list is on the whole items because the candidate set generation step of

the recommender is not needed. Ideally, the target item can be ranked to the

67

first position in the list. Note that there might be multiple items meeting a

user dialogue utterance constraints, and therefore might also be preferable to this

user. For example, if a user likes a restaurant with the facet values of “(cuisine,

Indian)” and “(price, medium)”, there are often many other restaurants meet

these requirements. So it is, to some extent, reasonable to rank these restaurants

in the top positions of the list. However, we do not have the ratings of these items.

Therefore, in this work, we mainly evaluate the ranking of the real target item.

Our results can be viewed as a lower bound of the quality of the system.

To achieve good recommendation results, we need to look at both the per-

sonalized user historical preferences towards items, as well as the user’s current

interest. The dialogue utterances contain the real-time user’s need about the tar-

get item, which may deviate from the user’s past preference. In the meantime,

the user’s historical preferences of items reflect the user’s personalized, general

interests towards items. We argue that both signals are essential. Our intuitions

are two folds. First, the facet constraints in the utterances express which kinds

of items the user wants. As more restrictions are being added with the dialogue

rolling, the target item would be gradually ranked to the top positions due to the

facet matching. Second, if multiple items having similar facet values are ranked

high, the personalized information can further differentiate the target item from

its similar competitors.

Modeling the personalized user preference

Suppose there are M users {u1, u2, ..., um} and N items {v1, v2, ..., vn}. The

users and items are mapped to a f dimensional latent embedding space [38], with

the embedding describing the strength of a user or an item possesses towards a

factor. The dot product of the user embedding u ∈ Rα and the item embedding

68

v ∈ Rα measures how close a user is to an item. Generally, it indicates how much a

user like an item. Given the conversational recommendation dataset, we can train

the user and item embeddings, which contain the personalized user preferences

towards the items.

We pretrain the user-item embeddings with the negative sampling loss, to

enable the embedding to contain both the closeness information and the ranking

information, e.g., to rank the target item higher than the other items. Specifically,

we use the top one probability loss function [9] [99] and an FM model. This loss

function is designed to differentiate the target item (the positive item) from a set

of negative items, and it is defined as

P (vj) =
φ(svj

)∑
j′ φ(svj′)

(5.2)

where φ(svj
) is a monotonic positive increasing function about a scoring func-

tion svj
on item vj. Here the rating predicted by the FM model is chosen as the

scoring function, and the exponential function is used for φ, which converts p(vj)

to the softmax function:

P (vj) =
exp(svj

)∑
j′ exp(svj′)

(5.3)

For each training instance, n negative samples are used for the pretrain of the

user-item embeddings. At the time of training, we feed n + 1 training instances

with the target item labeled 1 and the negative items labeled 0 to the model. The

learning object is the cross-entropy error function. Then the trained embeddings

are used to initialize the user-item embeddings in the personalized probabilistic

recommender.

69

Modeling the current in session user interest

The belief tracker predicts a belief vector based on the dialogue history e1, ..., et.

This vector contains the facet constraints of a user and is useful for ranking items.

For example, the utterance “I want to find a comic movie” is strong evidence for

ranking the comic movies higher than the other genre movies. We denote the

0 − 1 facet value vector of an item vj as Fj ∈ RD×1, with the values of elements

corresponding to the facet values of this item 1, and the rest elements value 0.

Fj = 1
D(∀Fd = 1) (5.4)

To utilize the facet information contained in the dialogue scripts, we compute

the closeness of a belief vector bt to Fj. The intuition is that an item that is

“close” to the belief tracker is more likely to be the target item. Note that the

belief tracker is not perfect and may contain errors. Specifically, the distance is

defined as btWfFj ∈ R, where Wf ∈ RD×D is a square parameter matrix. Note

that Wf learns both the same facet value matching and the cross-facet value

matching. For example, a movie starring “Will Smith” is very likely to be a

comic movie. Thus, the cross facet matching also contributes to the dialogue item

matching.

The personalized probabilistic recommender

Combining the above two types of information, the tuple (ui · vj, btWfFj)

contains the user-item embedding matching score and the dialogue-item matching

score, of a user ui, an item vj and a dialogue at turn t. Hence we define the

70

conditional probability of an item given a user and a dialogue belief vector as:

P (vj|ui, bt) =
exp

(
wc · (ui · vj, btWfFj)

)
∑
j′ exp

(
wc · (ui · vj′ , btWfFj′)

) (5.5)

where the denominator is summing over all items, and wc ∈ R2 is a weighted

summing parameter.

The direct optimization of this probability is computationally inefficient as we

have to compute all the items in the denominator for each gradient update, and

the number of items is usually large in recommendation datasets. Alternatively,

we learn this conditional probability approximately by the negative sampling loss,

which is introduced in [64]. The learning object is to distinguish the target item

from a set of negative samples:

logσ(wc · (ui · vj, btWfFj)) +
∑
j′
Ej′∼P (j′)σ(−wc · (ui · vj′ , btWfFj′)) (5.6)

In practice, we randomly sample |j′| = 5 items as the negative samples, fol-

lowing P (j′), which is the uniform distribution raised to the 3/4rd power. At test

time, we use the trained model to rank all items and select the top ones to form

a recommendation list for the user. The proposed recommender is shown in the

middle part of Figure 5.1.

5.2.3 The Reinforcement Learning based Dialogue Agent

We train a reinforcement learning agent for the dialogue manager module of

the framework. As mentioned earlier, the RL process is commonly modeled as an

MDP, which contains the tuples of {st, at, rt, π(at|st), γ}.

State: We use the dialogue belief vector bt and the item conditional probability

distribution, computed in section 5.2.2, to construct the dialogue state. We also

71

add the dialogue statistics sstat vector as the additional features, which includes the

number of dialogue turn so far, and the number of possible candidates computed

by the belief vector. Thus the state is denoted as:

st = bt ⊕ P (v1|ui, bt)⊕ ...⊕ P (vN |ui, bt)⊕ sstat (5.7)

Action: Similar to the previous chapter, we use two types of actions. One

type is to decide to request more information and select a facet to ask the user

based on the current understanding of the dialogue. The other is to decide to

make a recommendation.

Reward: The reward is given by the environment, which is a simulated or real

user. The agent gets a positive reward rp if the target item in the top K positions

of the recommendation list and a negative reward rq if the dialogue fails, including

cases that the user quit the dialogue, the target item is ranked too low, and the

agent misunderstands the user. Again, we use a per dialogue turn rc reward for

preventing the dialogue from running too long.

Policy: We use the A3C model [66] to learn the policy. The vanilla policy

gradient algorithm is a Monte Carlo method. It has the disadvantage of high vari-

ance and slow learning speed. By introducing a baseline to it, the Policy Gradient

with Baseline approach remains unbiased, and the variance can be reduced. A

normal choice of the baseline value would be a state value function V (st|θ′).

θt+1 = θt + α (Gt − V (st|θ′))
∇π(at|st, θt)
π(at|st, θt)

(5.8)

However, this approach still suffers from the problems of high variance and slow

learning speed. The one-step Actor-Critic methods remedy this by introducing

bias into learning via bootstrapping. The bootstrapping refers to using the value

72

estimations of the subsequent states to update the current state’s value estimation.

The introduced bias is beneficial as it reduces the variance, and therefore speed

up the learning [109]. In this approach, a policy network, which is the Actor,

picks an action to execute, and a value network, which is the critic, evaluates the

decision. The one-step Actor-Critic method is an on-policy method.

The Asynchronous Advantage Actor-Critic (A3C) method by Mnih et al. [66]

further improves the Actor-Critic by using the n-step return for the updating of

the two networks. It uses multiple CPUs as the parallel learning processors, and

update the global network asynchronously.

A3C is an off-policy biased model, with the benefits of speeding up the learning

and reducing the variance. The learning object is to maximize the expected total

Advantage starting from the beginning of the dialogue, with the Advantage defined

as [66]:

A(st, at|θ, θ′) =
k−1∑
i=0

γirt+i + γkV (st+k|θ′)− V (st|θ′) (5.9)

This method maintains both a policy network π(at|st, θ) and a value network

V (st|θ′), with θ and θ′ the parameters respectively. We use two ReLU layers with

a softmax layer at the top as the policy network, and a linear layer at the top as

the value network, as shown in the top part of Figure 5.1. The update performed

is:
θg = θg +∇θA(st, at|θ, θ′)logπ(at|st, θ)

θ′g = θ′g +∇θ′(Gt − V (st|θ′))2
(5.10)

where the θg and θ′g are parameters in the global network and are updated asyn-

chronously by thread-specific parameters θ and θ′. The Advantage is computed

from the current time step t to the end of the episode. The learning algorithm is

shown in Algorithm 3. Our readers may refer to [66] [108] for more details.

73

Algorithm 3 The learning process of the A3C agent.
1: Start with M epochs, N training data
2: Initialize the global policy network θg and the global value network θ′g
3: for epoch = 1, M do
4: for i = 1, N do
5: Synchronize parameters in the thread θ = θg, θ′ = θ′g
6: t = 0, set episode set E={}
7: Sample a dialogue with starting utterance et, user ui
8: while not dialogue ends do
9: Apply belief tracker to e 0:t to get bt
10: Apply the recommender to get P (vj|ui, bt)
11: st = bt ⊕ P (v1|ui, bt)... ⊕ sstat, sample at from the policy network

and get the state value Vt from the value network.
12: Get rt and user response from the user simulator
13: Add st, at, rt, Vt to E
14: If at is recommend, then dialogue ends
15: t = t + 1
16: Gt = 0
17: for each step in E do
18: Gt = rt + γGt

19: Asynchronously update θg with ∇θπ(at|st)(Gt − V (st|θ′))
20: Asynchronously update θ′g with ∇θ′(Gt − V (st|θ′))2

74

5.3 Experimental Settings

5.3.1 User Simulation

We use simulated users to train the conversational recommender agent. Specif-

ically, at turn t, the probability of a user continue to the next turn is ptc. This

probability decreases exponentially as the turn t increases. The higher the pc is,

the more patient the simulated user is. Similar as before, the user gives a positive

reward rp if it finds the target item in the top K positions in the list. Otherwise,

a negative reward rq is returned. The user generates a small negative reward rc

each turn if the dialogue continues.

5.3.2 Evaluation Measures and Baseline for the Personal-

ized Probability Recommender

Evaluation measure

Since there is always only one target item, we hope that the target item is

ranked as high as possible. To this end, the Mean Reciprocal Rank (MRR) mea-

sure on the top 100 positions of the target item is used for evaluation. Let N

denotes the set of target items on the evaluation dataset, MRR@k is defined as:

MRR@k = 1
|N |

|N |∑
i

1
rankingi

(5.11)

Baselines

We use a number of baselines, including the start-of-the-art recommendation

algorithms that include the pointwise and pairwise methods.

(1) Factorization Machine [81], a pointwise recommender. It takes the user-

item one hot vector to predict the rating score of a user-item pair.

75

(2) Bayesian Personalized Ranking (BPR) [82], which is a pairwise model.

This recommender considers the pairwise ranking of the target item and a random

drawn negative sample, aiming to maximize the posterior estimate from a Bayesian

point of view. It optimizes:

BPROPT =
∑

(u,i,j)∈Ds

lnσ(x̂uij)− λ||Θ||2 (5.12)

And for an MF-BPR,

x̂uij = x̂ui − x̂uj (5.13)

(3) ListRank-MF [99]: this is a listwise method based on the matrix factoriza-

tion approach. It trains a model to learn the object:

ListRankOPT = argmin
1
2

M∑
i=1

N∑
j=1

Iij(Rij−g(UT
i Vj))2+λU

2 ||U ||
2+λV

2 ||V ||
2 (5.14)

where the Rij is the original rating, and g(UT
i Vj) is the learned prediction with

the user and item represented by the low-rank vector Ui and Vj respectively. The

top-one probability [9] is used to learn the parameters.

5.3.3 Evaluation Measures and Baselines for the Dialogue

Agent

Evaluation measures

Similarly, we evaluate the framework on three dialogue measures: the Average

Return, the Average Length, and the Success Rate, as introduced in Section 4.3.2.

Note that the success rate is also viewed as the Conversion Rate in the recom-

mendation field.

76

Baselines

We use the MaxEnt and the CRM model in the previous chapter as baselines.

The MaxEnt policy always selects the facet that has the maximum entropy on

the values to ask [18]. It recommends when the max entropy of all facets is below

a threshold. We conduct a grid search to identify the best performance threshold

is 3.5. As introduced before, the CRM model contains a belief vector, an FM

recommender, and a policy gradient dialogue manager.

Training parameters

We use only the items that have ratings ≥ 4 for training because these user-

item pairs are denoted as “high quality” user-item preferences. We randomly split

the dataset into a train, dev, and test set with an 80%, 10%, 10% percentage.

Models are trained and evaluated on the train and dev set. Experiments are

evaluated on the test set. There are 15 facets on the MovieLens1M dataset and

23 facets on the Yelp dataset. The belief tracker hidden size is 64. The user-

item embedding size is 64, and the negative sampling loss is computed with 5

negative samples. For the RL parameters, we use the RMSProp optimizer with a

learning rate 0.001, γ = 0.99, rp = 30, rq = −10, rc = −1, K = 30. The continue

probability of the user is pc = 0.8.

5.4 Experiments Results

5.4.1 The Personalized Probabilistic Recommendation

First, we evaluate the performance of the personalized probabilistic recom-

mender on the collected conversational recommendation dialogue dataset. The

recommender introduced above generates a recommendation list of all the items,

77

Table 5.1: Comparison of the Non-personalized Recommender (NPR) and the
Personalized Recommender (PR) with baselines. Evaluated on the MRR@100 of
the target item, when different number of facets are known. The top part is on
the MovieLens1M dataset, and the bottom part is on the Yelp dataset. Results
in bold are significantly better than baselines at 0.01 level.

MovieLens1M 1 2 3 4 5 6 7
FM 0.0120

BPR-MF 0.0317
ListRank-MF 0.0191

NPR 0.0969 0.2552 0.4180 0.5614 0.6804 0.7847 0.8565
PR 0.1133 0.2796 0.4438 0.5786 0.6916 0.7846 0.8528
Yelp 1 2 3 4 5 6 7
FM 0.0011

BPR-MF 0.0171
ListRank-MF 0.0034

NPR 0.0249 0.0791 0.1516 0.2501 0.3654 0.4843 0.5943
PR 0.0610 0.1322 0.2179 0.3136 0.4191 0.5237 0.6159

at each turn in the dialogue, based on both the past user preferences and the

current in-session user interest. As the dialogue continues, more facet constraints

are being added. We want to evaluate the quality of the recommendation as the

number of known facets increases.

We explore two settings of our model: one with dialogue-item matching infor-

mation only, and we denote it as the Non-Personalized Recommender (NPR); the

other uses both personalized user-item matching information and the dialogue-

item matching information, which is denoted Personalized Recommender (PR).

Results: As shown in Table 5.1. The top part is on the MovieLens1M dataset,

and the bottom part is on the Yelp dataset. First, the two proposed models per-

form significantly better than the baselines on both datasets. Second, on Movie-

Lens1M dataset, PR reaches a higher MRR when fewer facets are known, for

example, when #known facets ≤ 5. Because when less information is known, the

user-item matching information help with differentiating the target item from the

78

other items that have similar facet values. However, when #known facets ≥ 6,

NPR performs better because when more facet values are known, the dialogue-

item matching information alone can make a good recommendation. Since the

dialogue usually will not run to a large number of turns, this indicates that PR is

a beneficial approach. On the Yelp dataset, PR is constantly better than NPR.

Overall, the experiment results illustrate that our approach of modeling the con-

versational recommendation problem is effective, and specifically, the personalized

information is useful for making recommendations in the dialogue.

5.4.2 The Personalized Conversational Recommender Sys-

tem

In this part, we evaluate the dialogue performance by integrating the personal-

ized probabilistic recommender into the conversational recommender framework.

At each turn, our trained RL agent interacts with a simulated user and decides

whether to select a facet to ask the user or to make a recommendation. If it

decides to recommend, it presents the item list computed by the personalized

probabilistic recommender.

Offline experimental results

The major results are shown in Table 5.2, with MovieLens1M dataset results

on the top, and Yelp dataset results at the bottom. We use the PA to represent

the Personalized RL Agent and NPA to represent the Non-Personalized RL agent.

First, our two probabilistic recommender based dialogue agents outperform both

the maximum entropy rule-based agent and the CRM agent, by reaching a higher

average return, a shorter average dialogue length, and a higher success rate. This

is because we use the dialogue-facet matching (for both PA and NPA) and per-

79

Table 5.2: The conversational recommendation dialogue performance of the Non
Personalized Agent (NPA) and the Personalized Agent (PA) with the simulated
user on the MovieLens1M Dialogue Dataset (the upper part) and on the Yelp
Dialogue Dataset (the lower part). Results in bold are significantly better than
baselines at 0.01 level.

MovieLens1M Avg. Return Avg. Turn Success Rate
Max Entropy 2.5293 3.2104 0.3827

CRM 5.2727 2.8032 0.4837
NPA 10.2151 2.7417 0.6187
PA 11.0647 2.5961 0.6393
Yelp Avg. Return Avg. Turn Success Rate

Max Entropy -1.9505 3.1140 0.2970
CRM -0.3199 3.1609 0.3538
NPA 7.0484 2.8936 0.5493
PA 8.9326 2.7326 0.5988

sonalized user-item matching information (for PA) in the recommender module.

Second, PA is significantly better than NPA in all three measures, illustrating

that the personalization information can further improve the conversational rec-

ommendation performance. The experiment results are consistent on the two

datasets.

Two exemplary dialogues are shown in Table 5.3. The dialogue length is the

shorter, the better, and the item is ranked the higher, the better. The upper

part shows PA and NPA interacts with a simulated user on an instance from

the MovieLens1M dataset. For example, we observe that the user starts with an

utterance contains the genre preference, and the agent responds by asking more

facets and makes a recommendation when enough values information are collected.

We can see that PA and NPA make the recommendation in the second and the

third round, respectively. Also, the target item is ranked to the 3rd position in

PA’s recommendation list versus the 28th position in NPA’s recommendation list.

The lower part shows two example dialogues from the Yelp Dataset. The two

80

Table 5.3: Comparison of example dialogues between PA and the NPA on the
MovieLens1M dataset (the top row) and the Yelp dataset (the bottom row).

Personalized Agent Non Personalized Agent

User: my genre of choice is Drama
(genre="Drama")

Agent: which meta critic rating range
would you like?
User: the meta critic rating range should
be 70-80

(rating_range="70-80")
Agent: recommend you with the following
items

(item ranked 3 of 30)
User: thank you

User: my genre of choice is Drama
(genre="Drama")

Agent: which rating range would you like?
User: a movie with a rating of 7.0 to 8.0

(rating_range="7.0-8.0")
Agent: how many reviews would you like
the movie to have?
User: i would like to see a movie with
review 0-50000

(num_review="0-50000")
Agent: recommend you with the following
items

(item ranked 28 of 30)
User: thank you

Personalized Agent Non Personalized Agent
User: find me a medium price Chinese
restaurant

(category="Chinese",
price_range="medium")

Agent: which rating do you want?
User: i want a restaurant with 3.5 rating
please

(rating="3.5")
Agent: recommend you with the following
items

(item ranked 1 of 30)
User: thank you

User: find me a medium price Chinese
restaurant

(category="Chinese",
price_range="medium")

Agent: which city are you in?
User: around Las Vegas, NV

(city="Las Vegas, NV")
Agent: recommend you with the following
items

(item ranked 3 of 30)
User: thank you

agents recommend at the same turn, with the target item ranked higher by PA

than NPA.

The detailed analysis by the dialogue turn

We dig deeper to compare the dialogue performances at different dialogue

turns of the two proposed models. Results are shown in Figure 5.2. First, on both

datasets, both PA and NPA have many more short turn (turn length 2 & 3) dia-

logues than the long turn (turn length 4 or more) dialogues. Second, PA has more

short turn dialogues than NPA, which explains the reason PA has a shorter aver-

81

age dialogue length. Third, PA generally has a higher average return and success

rate on the short dialogues than NPA. This illustrates that PA tends to make a

recommendation more quickly because it can reach recommendation performance

when fewer facets are known. While NPA is better at longer dialogues, in which

case more constraints are added by the dialogue utterances. This illustrates that

when fewer facets are known, the personalization information plays an important

role. However, when more facets values become available, the facet values alone

can provide strong enough information for finding the target item, in which case

NPA can have a better performance.

2 4
Dialogue Turn

0.0

0.2

0.4

0.6

Di
al

og
ue

 T
ur

n
Pe

rc
en

ta
ge

PA
NPA

2 4
Dialogue Turn

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

MovieLens1M
PA
NPA

2 4
Dialogue Turn

0

5

10

Av
er

ag
e

Re
tu

rn

PA
NPA

2 4
Dialogue Turn

0.0

0.2

0.4

0.6

0.8

Di
al

og
ue

 T
ur

n
Pe

rc
en

ta
ge

PA
NPA

2 4
Dialogue Turn

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Yelp
PA
NPA

2 4
Dialogue Turn

5

0

5

10

15

Av
er

ag
e

Re
tu

rn

PA
NPA

Figure 5.2: Comparing the percentage of dialogue turns, the success rate and
the average return of the PA and NPA at different number of dialogue turns, on
the MovieLens1M dataset (the upper row) and the Yelp dataset (the lower row).

82

Table 5.4: Comparing the conversational recommendation performance of the
PA and NPA interacting with simulated users having different continue probability
pc.

MovieLens1M Yelp
pc = 0.85 R T S R T S
NPA 12.4057 2.9982 0.6769 9.3126 3.1524 0.6145
PA 12.5453 2.8703 0.6844 10.5880 2.9289 0.6446
pc = 0.75 R T S R T S
NPA 8.8174 2.5801 0.5799 2.1888 2.4700 0.4092
PA 9.8127 2.4937 0.6075 7.8568 2.6672 0.5647
pc = 0.70 R T S R T S
NPA 8.4335 2.4953 0.5667 -3.0171 2.0001 0.2399
PA 9.1623 2.4491 0.5821 5.5274 2.4400 0.5075

The effects of different user continue probability pc

Since our model is trained with interactions with the simulated user, we further

evaluate the performance by varying the behavior of the simulated user, which is

the continuing probability pc at each round. We test it at different levels, from 0.70

to 0.85 and the results are shown in Table 5.4. Note that pc decays exponentially

as the dialogue grows.

We observe that in general, on both datasets, as pc decrease, all the measures

also decrease, because the user has a higher probability of leaving the conversation.

Specifically, on the MovieLens1M dataset, PA is significantly better than NPA,

with one exception when pc = 0.85, the improvement on return is not significant.

This is because MovieLens1M dataset is denser than the Yelp dataset. And the

dialogue-item matching information alone can be reasonably effective. On the Yelp

dataset, the PA is significantly better than NPA in the average return. When pc

is small, i.e., pc <= 0.75, the NPA agent performed poorly. This is also because

the Yelp dataset is sparser than the MovieLens1M dataset; thus, the personalized

user-item historical preference information has a big impact.

83

The advantage of A3C over policy gradient

We explore the advantage of using the A3C method. Specifically, we compare

the Average Return gained using the vanilla policy gradient method and the A3C

method, on both datasets. Results are shown in Figure 5.3, which shows the

Average Return evaluated on the dev dataset against the training epochs. We

observe that the A3C methods can converge to a higher Average Return, for both

PA and NPA, than the policy gradient methods. The A3C methods can escape

from the local minimum. For example, in the lower-left figure, the pg agents (the

orange line) converge to a sub-optimal average return, while the A3C agents (the

blue line) jumps to a higher return given more training time.

0 10 20 30 40
Evaluation Step

5

0

5

10

Av
er

ag
e

Re
tu

rn

MovieLens1M

PA_A3C
PA_PG

0 10 20 30 40
Evaluation Step

5

0

5

10

Av
er

ag
e

Re
tu

rn

MovieLens1M

NPA_A3C
NPA_PG

0 10 20 30 40
Evaluation Step

10

5

0

5

10

Av
er

ag
e

Re
tu

rn

Yelp

PA_A3C
PA_PG

0 10 20 30 40
Evaluation Step

10

5

0

5

Av
er

ag
e

Re
tu

rn

Yelp

NPA_A3C
NPA_PG

Figure 5.3: The Average Return obtained by using the Policy Gradient method
and the A3C method. The x-axis is the total number of evaluation steps. The
y-axis shows the Average Return evaluated on the whole dev dataset.

84

Table 5.5: The comparison of NPA and PA in online user study on the Movie-
Lens1M dataset.

MovieLens1M R T S
NPA -2.8559 3.5339 25.69
PA 0.1192 3.3119 31.19

Table 5.6: The comparison of NPA and PA in online user study on the Yelp
dataset.

Yelp R T S
NPA -3.764 3.3008 22.32
PA 0.111 3.0170 33.33

5.4.3 User Study

In order to evaluate our trained agents against real users, we conducted online

user studies. We use the similar settings as in section 4.4.2. However, we have

more facets in this user study. Again we first sample a user-item pair, then show

the preferred historical items of the user to a crowdsourcing worker. After the

worker has learned the sampled user’s preference, she starts to converse with our

trained models. We show the target item’s facets to the worker, and let her chat

with our agent to get recommendations. She must select 3 items in the list. The

dialogue is deemed as a success if the worker successfully finds the target item.

We collect 109 dialogues on the MovieLens1M dataset and 117 dialogues on the

Yelp dataset, for both agents. Results are shown in Table 5.5 and Table 5.6.

The results are consistent with the offline experiments, in that PA has a higher

average return, shorter dialogue length, and higher success rate. Table 5.7 shows

the comparison of PA and NPA on the collected user study dialogues.

85

Table 5.7: User study example dialogues of PA and NPA on the MovieLens1M
dataset (the top row) and the Yelp dataset (the bottom row).

Personalized Agent Non Personalized Agent

User: i like morgan freeman movie
(actor="Morgan Freeman")

Agent: which genre would you like?
User: drama

(genre="Drama")
Agent: recommend you with the following
items

(item ranked 3 of 30)
User: thank you

User: okay
(no facets detected)

Agent: which genre would you like?
User: Drama

(genre="Drama")
Agent: which rating range would you like?
User: 7.0-8.0

(num_review="dontknow")
Agent: how many reviews would you like
User: 50000 to 100000

(num_revie="50000-100000")
the movie to have?
Agent: recommend you with the following
items

(item ranked 17 of 30)
User: thank you

Personalized Agent Non Personalized Agent

User: Soul Food
(category="Sandwiches")

Agent: which rating do you want?
User: 3.5

(category="Sandwiches", rating="3.5")
Agent: recommend you with the following
items

(item ranked 1 of 30)
User: thank you

User: casual
(no facets found)

Agent: which category do you want?
User: Soul Food

(category="Donuts")
Agent: which city are you in?
User: Phoenix

(category="Soul Food",
city="Phoenix")

Agent: recommend you with the following
items

(item ranked 2 of 30)
User: thank you

86

5.5 Summary and Contribution

In this chapter, we propose the personalized probabilistic recommender to pre-

dict the conditional probability of an item given a user and a dialogue context.

This approach captures the dialogue-item matching information of the dialogue

scripts and personalized user-item preference information. The facet value con-

straints in the dialogue utterances can effectively narrow down a subset of items

with the target item ranked high. At the same time, the user past preference

information can further differentiate the target item from its peers with similar

facet values. The joint modeling of the two types of information leads to a rec-

ommendation module that is suitable for the conversation dialogue scenario. We

compare the new recommender to the start-of-the-art models and show that it has

better performance. Then we integrate the new module into the conversational

recommendation framework and perform both offline and online experiments to

demonstrate they can improve the dialogue performance.

The major contribution of this work includes the following:

• Propose the personalized probabilistic recommender to model the past user

preferences in the historical user-item information and the user current ses-

sion preferences in the dialogue utterances.

• Integrate the recommender into the conversational recommendation frame-

work. Conduct experiments and show that the new recommender module

improves dialogue performance, and specifically, the personalization infor-

mation is beneficial in both offline and online experiments.

87

Chapter 6

Conclusion and Future Work

In this chapter, we conclude this dissertation by listing the contributions, dis-

cussing the limitations, and pointing out the possible future work directions.

6.1 Contribution

First, we contribute the conversational recommendation datasets in Chap-

ter 3. We develop datasets based on two popular recommendation datasets. Our

datasets have the conversational dialogues and the user-item preference infor-

mation. We argue that a conversational recommendation agent should gradually

elicit user preferences of items and then make recommendations accordingly. Thus

we manage to collect dialogues with the utterances discussing the facet values of

the target items. The dialogues in the datasets are collected with crowdsourc-

ing experiments, and the quality of utterances are validated. The final simulated

dialogues have rich facet value information, which supports the facet-based conver-

sation, as well as rich user-item rating information, which supports the training of

recommendation modules. Hopefully, the datasets can facilitate future researches

on how to make recommendations in dialogue systems.

88

Second, we propose the conversational recommendation framework in Chap-

ter 4. The framework contains a belief tracker, a recommender, and a dialogue

manager. The three components work together to function as a recommendation

oriented dialogue agent, that can decide whether to request more facet values

from users or to make a recommendation when enough information has been col-

lected. The proposed model aims at the maximizing of the long-term expected

total rewards. Instead of always asking for more facets when there are uncertain-

ties, our framework learns that sometimes it should make recommendations right

away. We train the dialogue manager with different simulated users. Experiments

with both simulated user and real users illustrate the effectiveness of the proposed

framework.

Third, we propose a personalized probabilistic recommender to extend the

framework. Recommending in the dialogue environment is different from tra-

ditional scenarios as there is real-time user feedback involved, and the dialogue

agent can explicitly request information which is deemed as necessary from the

user. The model can adequately consider the information contained in dialogue

utterances as well as the personalized user preferences contained in the past. We

integrate this recommender into the conversational recommendation framework

and conduct extensive experiments. Results show that the personalized user pref-

erence is essential information in further improving both the recommendation and

the dialogue performances.

6.2 The Limitations and Future Work

Our research in this dissertation is only one step towards integrating the dia-

logue system and recommender systems into a conversational recommender sys-

tem. There is still much work to do in this direction.

89

6.2.1 Limitation of the Collected Conversational Recom-

mendation Dataset

There are limitations of the datasets we introduced in Chapter 3. First, we

use the simulation and the crowdsourcing methods to collect the datasets. How-

ever, compared to real human-human or human-machine dialogues, our dialogues

are still not natural enough. A future improvement might be to use dialogues

collected from a real-world conversational recommender system or real human-

human conversation to build models. Alternatively, we can design crowdsourcing

experiments to let two workers chat in the scenario of conversation recommenda-

tion. One worker plays the role of a virtual sales agent, and the other worker plays

the role of a customer. However, how to design the right mechanism to provide

incentives for crowdsourcing workers to behave like real sales/recommendation

agents and buyers might be an important issue to consider. Second, the dialogues

we collected are used to train the NLU module. The NLU model trained does not

have much ability to recognize discourse information such as coreference resolu-

tion. Besides, if we want to use dialogues to train dialogue policy, we need data

collected from a dialogue system with real users or better-simulated users to use

this system to find their preferred target items, so that the datasets have more

realistic recommendation related decision making information in them. Collab-

oration with industry or owning a real conversational recommender system with

real users would be very helpful.

90

6.2.2 Joint Learning the Recommender and the Dialogue

Policy

The recommender module in the framework is pre-trained in our framework.

In the future, we should improve this by training the recommender and the dia-

logue manager jointly, for example, to allow the reward signals to update both the

dialogue policy and the recommendation algorithm. Similar to the discussion in

6.2.1, we need datasets collected from real dialogue systems recommending items

to real users. The dialogue agent needs to learn from sequences of dialogue de-

cisions leading to both successful and unsuccessful recommendations, as well as

which items to present in the recommendation list to gain more rewards. More-

over, we only consider the ranking of the real target item, and the other items are

treated as “irrelevant” items because we do not have the labels of them. However,

this is too harsh. The other items can be very similar to the target item and may

also be preferable to users. Therefore, our experiment results can be interpreted

as a lower bound of the real system. Datasets from the real conversational recom-

mendation systems can overcome this problem, because the choosing of an item

by a real user represents that, given the dialogue context, this user prefer this

item to all the other items, and this real user behavior can provide us with real

positive and negative user feedback, which can guide the joint learning of both

the dialogue policy and the recommendation model.

6.2.3 Enabling More User Actions and Machine Actions

As shown in Chapter 4 and 5, the primary user actions in our dialogues include

a user informs the dialogue agent facet value constraints or expresses one does not

know the value, and the major machine actions are to request more facets from

users and to make a recommendation for a user. There are more dialogue actions

91

need to be added to the dialogue in the future. For example, a user can request

facet values from the dialogue agent so that both the dialogue and the user can

take the initiative in the conversation. Moreover, the dialogue agent should be

able to provide candidate facet values when requesting them from users, and the

candidate suggestion can be learned from the recommendation dialogues as well.

After issuing recommendations to a user, the user can further, for example, negate

a facet value or update an informed value based on the recommended items, and

the dialogue agent should be able to recommend new sets of items based on user

feedback. This process enables the user and the dialogue agent to negotiate so

that the recommended results gradually drifting towards the real user preference.

There are more decision makings need to be learned in the session, for example,

how much more information to collect before making the next recommendation,

and how to consider the past sequence of user preferences in the current session

to generate new recommendations. Finer simulation strategies are needed, or

datasets from real industrial systems are needed to enable the research in these

directions.

6.2.4 Integrating More Dialogue Functionalities

There is still a big gap between a real salesperson and a conversational rec-

ommendation agent. The future conversational recommender system should be

a systematic integration of all three types of dialogue systems: the task-oriented

dialogue system, the open domain dialogue system, and the question answering

system. For example, a user can ask general questions towards one category of

products to gain the knowledge needed for finding items. One can also ask specific

questions about the recommended item. Moreover, it is favorable if the dialogue

agent can respond naturally to chitchat of users at any turn in the dialogue,

92

which makes the dialogue agent behaves more like a real human agent. The above

scenarios may interleave with each other in the whole dialogue process, and the

dialogue agent should be able to track the states of multiple intentions correctly.

Fulfilling any of the above cases can generate important gains, which should be

adequately modeled to guide the training of the dialogue agent. Each of the above

functions can be an interesting research direction to explore.

93

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge & Data Engineering, (6):734–
749, 2005.

[2] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft.
Learning a hierarchical embedding model for personalized product search. In
Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 645–654. ACM, 2017.

[3] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative
recommendation. Communications of the ACM, 40(3):66–72, 1997.

[4] Daniel Billsus and Michael J Pazzani. User modeling for adaptive news
access. User modeling and user-adapted interaction, 10(2-3):147–180, 2000.

[5] Antoine Bordes, Y-Lan Boureau, and Jason Weston. Learning end-to-end
goal-oriented dialog. arXiv preprint arXiv:1605.07683, 2016.

[6] Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva,
Stefan Ultes, Osman Ramadan, and Milica Gašić. Multiwoz-a large-scale
multi-domain wizard-of-oz dataset for task-oriented dialogue modelling.
arXiv preprint arXiv:1810.00278, 2018.

[7] Robin D Burke, Kristian J Hammond, and Benjamin C Young. Knowledge-
based navigation of complex information spaces. In Proceedings of the na-
tional conference on artificial intelligence, volume 462, page 468, 1996.

[8] Erion Çano and Maurizio Morisio. Hybrid recommender systems: A sys-
tematic literature review. Intelligent Data Analysis, 21(6):1487–1524, 2017.

[9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the
24th international conference on Machine learning, pages 129–136. ACM,
2007.

94

[10] Oscar Celma. Music recommendation. In Music recommendation and dis-
covery, pages 43–85. Springer, 2010.

[11] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A survey on
dialogue systems: Recent advances and new frontiers. ACM SIGKDD Ex-
plorations Newsletter, 19(2):25–35, 2017.

[12] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chan-
dra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa
Ispir, et al. Wide & deep learning for recommender systems. In Proceedings
of the 1st workshop on deep learning for recommender systems, pages 7–10.
ACM, 2016.

[13] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. To-
wards conversational recommender systems. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining, pages 815–824. ACM, 2016.

[14] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems, pages 191–198. ACM, 2016.

[15] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experi-
mental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining, pages 87–94. ACM,
2008.

[16] Luis M De Campos, Juan M Fernández-Luna, Juan F Huete, and Miguel A
Rueda-Morales. Combining content-based and collaborative recommenda-
tions: A hybrid approach based on bayesian networks. International Journal
of Approximate Reasoning, 51(7):785–799, 2010.

[17] Mukund Deshpande and George Karypis. Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems (TOIS), 22(1):143–
177, 2004.

[18] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen,
Faisal Ahmed, and Li Deng. Towards end-to-end reinforcement learning of
dialogue agents for information access. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 484–495, 2017.

[19] Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra,
Alexander Miller, Arthur Szlam, and Jason Weston. Evaluating prereq-
uisite qualities for learning end-to-end dialog systems. arXiv preprint
arXiv:1511.06931, 2015.

95

[20] Enrique Estellés-Arolas and Fernando González-Ladrón-De-Guevara. To-
wards an integrated crowdsourcing definition. Journal of Information sci-
ence, 38(2):189–200, 2012.

[21] Jianfeng Gao, Michel Galley, Lihong Li, et al. Neural approaches to con-
versational ai. Foundations and Trends® in Information Retrieval, 13(2-
3):127–298, 2019.

[22] Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jian-
feng Gao, Wen-tau Yih, and Michel Galley. A knowledge-grounded neural
conversation model. In Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

[23] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He.
Deepfm: a factorization-machine based neural network for ctr prediction.
arXiv preprint arXiv:1703.04247, 2017.

[24] F Maxwell Harper and Joseph A Konstan. The movielens datasets: His-
tory and context. Acm transactions on interactive intelligent systems (tiis),
5(4):19, 2016.

[25] Jianming He and Wesley W Chu. A social network-based recommender
system (snrs). InData mining for social network data, pages 47–74. Springer,
2010.

[26] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evo-
lution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web, pages 507–517. In-
ternational World Wide Web Conferences Steering Committee, 2016.

[27] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, pages 173–182. International World Wide
Web Conferences Steering Committee, 2017.

[28] Charles T Hemphill, John J Godfrey, and George R Doddington. The atis
spoken language systems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-
27, 1990, 1990.

[29] Matthew Henderson, Blaise Thomson, and Jason D Williams. The second
dialog state tracking challenge. In Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages
263–272, 2014.

96

[30] Matthew Henderson, Blaise Thomson, and Steve Young. Robust dialog
state tracking using delexicalised recurrent neural networks and unsuper-
vised adaptation. In 2014 IEEE Spoken Language Technology Workshop
(SLT), pages 360–365. IEEE, 2014.

[31] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Os-
trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. Rainbow: Combining improvements in deep reinforcement learning.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[32] Stefan Hillmann, Stefan Hillmann, and Baumann. Simulation-Based Us-
ability Evaluation of Spoken and Multimodal Dialogue Systems. Springer,
2018.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[34] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. Learning deep structured semantic models for web search using click-
through data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pages 2333–2338. ACM, 2013.

[35] Seokhwan Kim, Luis Fernando D’Haro, Rafael E Banchs, Jason D Williams,
Matthew Henderson, and Koichiro Yoshino. The fifth dialog state tracking
challenge. In 2016 IEEE Spoken Language Technology Workshop (SLT),
pages 511–517. IEEE, 2016.

[36] Jonathan Koren, Yi Zhang, and Xue Liu. Personalized interactive faceted
search. In Proceedings of the 17th international conference on World Wide
Web, pages 477–486. ACM, 2008.

[37] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collab-
orative filtering model. In Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 426–434.
ACM, 2008.

[38] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, (8):30–37, 2009.

[39] Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. Address-
ing cold-start problem in recommendation systems. In Proceedings of the
2nd international conference on Ubiquitous information management and
communication, pages 208–211. ACM, 2008.

[40] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

97

[41] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[42] Cheong-Jae Lee, Sang-Keun Jung, Kyung-Duk Kim, Dong-Hyeon Lee, and
Gary Geun-Bae Lee. Recent approaches to dialog management for spoken
dialog systems. Journal of Computing Science and Engineering, 4(1):1–22,
2010.

[43] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A
diversity-promoting objective function for neural conversation models. arXiv
preprint arXiv:1510.03055, 2015.

[44] Jiwei Li, Michel Galley, Chris Brockett, Georgios P Spithourakis, Jianfeng
Gao, and Bill Dolan. A persona-based neural conversation model. arXiv
preprint arXiv:1603.06155, 2016.

[45] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and
Dan Jurafsky. Deep reinforcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541, 2016.

[46] Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie Zhou, andWei
Xu. Dataset and neural recurrent sequence labeling model for open-domain
factoid question answering. arXiv preprint arXiv:1607.06275, 2016.

[47] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyil-
maz. End-to-end task-completion neural dialogue systems. arXiv preprint
arXiv:1703.01008, 2017.

[48] Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong Li, Jianfeng Gao,
and Yun-Nung Chen. A user simulator for task-completion dialogues. arXiv
preprint arXiv:1612.05688, 2016.

[49] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[50] Long-Ji Lin. Reinforcement learning for robots using neural networks. Tech-
nical report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Sci-
ence, 1993.

[51] Pierre Lison and Casey Kennington. Opendial: A toolkit for developing
spoken dialogue systems with probabilistic rules. Proceedings of ACL-2016
System Demonstrations, pages 67–72, 2016.

98

[52] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. Personalized news recom-
mendation based on click behavior. In Proceedings of the 15th international
conference on Intelligent user interfaces, pages 31–40. ACM, 2010.

[53] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based
recommender systems: State of the art and trends. In Recommender systems
handbook, pages 73–105. Springer, 2011.

[54] Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. The ubuntu
dialogue corpus: A large dataset for research in unstructured multi-turn
dialogue systems. arXiv preprint arXiv:1506.08909, 2015.

[55] Zhongqi Lu and Qiang Yang. Partially observable markov decision process
for recommender systems. arXiv preprint arXiv:1608.07793, 2016.

[56] Tariq Mahmood and Francesco Ricci. Improving recommender systems with
adaptive conversational strategies. In Proceedings of the 20th ACM confer-
ence on Hypertext and hypermedia, pages 73–82. ACM, 2009.

[57] François Mairesse, Milica Gašić, Filip Jurčíček, Simon Keizer, Blaise Thom-
son, Kai Yu, and Steve Young. Phrase-based statistical language generation
using graphical models and active learning. In Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics, pages 1552–
1561. Association for Computational Linguistics, 2010.

[58] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to information retrieval. Natural Language Engineering, 16(1):100–103,
2010.

[59] Julian McAuley and Alex Yang. Addressing complex and subjective product-
related queries with customer reviews. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, pages 625–635. International World
Wide Web Conferences Steering Committee, 2016.

[60] Kevin McCarthy, James Reilly, Lorraine McGinty, and Barry Smyth. On the
dynamic generation of compound critiques in conversational recommender
systems. In International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems, pages 176–184. Springer, 2004.

[61] David McSherry and David W Aha. Avoiding long and fruitless dialogues
in critiquing. In International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pages 173–186. Springer, 2006.

[62] Michael F McTear. Spoken dialogue technology: enabling the conversational
user interface. ACM Computing Surveys (CSUR), 34(1):90–169, 2002.

99

[63] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng,
Dilek Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu, et al.
Using recurrent neural networks for slot filling in spoken language under-
standing. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 23(3):530–539, 2014.

[64] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119,
2013.

[65] Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factoriza-
tion. In Advances in neural information processing systems, pages 1257–
1264, 2008.

[66] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International confer-
ence on machine learning, pages 1928–1937, 2016.

[67] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[68] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[69] Raymond J Mooney and Loriene Roy. Content-based book recommend-
ing using learning for text categorization. In Proceedings of the fifth ACM
conference on Digital libraries, pages 195–204. ACM, 2000.

[70] Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thomson, Milica Gašić, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young. Multi-
domain dialog state tracking using recurrent neural networks. arXiv preprint
arXiv:1506.07190, 2015.

[71] Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien Wen, Blaise Thomson,
and Steve Young. Neural belief tracker: Data-driven dialogue state tracking.
arXiv preprint arXiv:1606.03777, 2016.

[72] Karthik Narasimhan, Adam Yala, and Regina Barzilay. Improving informa-
tion extraction by acquiring external evidence with reinforcement learning.
arXiv preprint arXiv:1603.07954, 2016.

100

[73] Alice H Oh and Alexander I Rudnicky. Stochastic language generation for
spoken dialogue systems. In ANLP-NAACL 2000 Workshop: Conversational
Systems, 2000.

[74] Michael Pazzani and Daniel Billsus. Learning and revising user profiles:
The identification of interesting web sites. Machine learning, 27(3):313–
331, 1997.

[75] Michael J Pazzani and Daniel Billsus. Content-based recommendation sys-
tems. In The adaptive web, pages 325–341. Springer, 2007.

[76] Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong, and
Shang-Yu Su. Deep dyna-q: Integrating planning for task-completion dia-
logue policy learning. arXiv preprint arXiv:1801.06176, 2018.

[77] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text. arXiv
preprint arXiv:1606.05250, 2016.

[78] Antoine Raux, Brian Langner, Dan Bohus, Alan W Black, and Maxine
Eskenazi. Let’s go public! taking a spoken dialog system to the real world. In
Ninth European conference on speech communication and technology, 2005.

[79] Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversa-
tional question answering challenge. arXiv preprint arXiv:1808.07042, 2018.

[80] James Reilly, Barry Smyth, Lorraine McGinty, and Kevin McCarthy. Cri-
tiquing with confidence. In International Conference on Case-Based Rea-
soning, pages 436–450. Springer, 2005.

[81] Steffen Rendle. Factorization machines. In 2010 IEEE International Con-
ference on Data Mining, pages 995–1000. IEEE, 2010.

[82] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In
Proceedings of the twenty-fifth conference on uncertainty in artificial intel-
ligence, pages 452–461. AUAI Press, 2009.

[83] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. Grouplens: an open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM conference on Computer supported
cooperative work, pages 175–186. ACM, 1994.

[84] Francesco Ricci and Tariq Mahmood. Learning and adaptivity in interactive
recommender systems. In ECAI 2006 Workshop on Recommender Systems,
page 111, 2006.

101

[85] Francesco Ricci and Quang Nhat Nguyen. Critique-based mobile recom-
mender systems. OEGAI Journal, 24(4):1–7, 2005.

[86] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recom-
mender systems handbook. In Recommender systems handbook, pages 1–35.
Springer, 2011.

[87] Verena Rieser and Oliver Lemon. Reinforcement learning for adaptive di-
alogue systems: a data-driven methodology for dialogue management and
natural language generation. Springer Science & Business Media, 2011.

[88] Alan Ritter, Colin Cherry, and Bill Dolan. Unsupervised modeling of twitter
conversations. In Human Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association for Computational
Linguistics, pages 172–180. Association for Computational Linguistics, 2010.

[89] Pornthep Rojanavasu, Phaitoon Srinil, and Ouen Pinngern. New recom-
mendation system using reinforcement learning. Special Issue of the Intl. J.
Computer, the Internet and Management, 13(SP 3), 2005.

[90] Nicholas Roy, Joelle Pineau, and Sebastian Thrun. Spoken dialogue man-
agement using probabilistic reasoning. In Proceedings of the 38th Annual
Meeting on Association for Computational Linguistics, pages 93–100. Asso-
ciation for Computational Linguistics, 2000.

[91] Alexander Rudnicky and Wei Xu. An agenda-based dialog management ar-
chitecture for spoken language systems. In IEEE Automatic Speech Recog-
nition and Understanding Workshop, volume 13, 1999.

[92] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015.

[93] Iulian Vlad Serban, Alberto García-Durán, Caglar Gulcehre, Sungjin Ahn,
Sarath Chandar, Aaron Courville, and Yoshua Bengio. Generating factoid
questions with recurrent neural networks: The 30m factoid question-answer
corpus. arXiv preprint arXiv:1603.06807, 2016.

[94] Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and
Joelle Pineau. A survey of available corpora for building data-driven dia-
logue systems: The journal version. Dialogue & Discourse, 9(1):1–49, 2018.

[95] Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav Rastogi, Ankur
Bapna, Neha Nayak, and Larry Heck. Building a conversational agent
overnight with dialogue self-play. arXiv preprint arXiv:1801.04871, 2018.

102

[96] Guy Shani, David Heckerman, and Ronen I Brafman. An mdp-based recom-
mender system. Journal of Machine Learning Research, 6(Sep):1265–1295,
2005.

[97] Upendra Shardanand and Pattie Maes. Social information filtering: algo-
rithms for automating" word of mouth". In Chi, volume 95, pages 210–217.
Citeseer, 1995.

[98] Sybil Shearin and Henry Lieberman. Intelligent profiling by example. In
Proceedings of the 6th international conference on Intelligent user interfaces,
pages 145–151. ACM, 2001.

[99] Yue Shi, Martha Larson, and Alan Hanjalic. List-wise learning to rank with
matrix factorization for collaborative filtering. In Proceedings of the fourth
ACM conference on Recommender systems, pages 269–272. ACM, 2010.

[100] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484, 2016.

[101] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. Deterministic policy gradient algorithms. In ICML,
2014.

[102] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[103] Amanda Stent, Rashmi Prasad, and Marilyn Walker. Trainable sentence
planning for complex information presentation in spoken dialog systems. In
Proceedings of the 42nd annual meeting on association for computational
linguistics, page 79. Association for Computational Linguistics, 2004.

[104] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in artificial intelligence, 2009, 2009.

[105] Yueming Sun and Yi Zhang. Conversational recommender system. In The
41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, pages 235–244. ACM, 2018.

[106] Yueming Sun, Yi Zhang, Yunfei Chen, and Roger Jin. Conversational rec-
ommendation system with unsupervised learning. In Proceedings of the 10th
ACM Conference on Recommender Systems, pages 397–398. ACM, 2016.

103

[107] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[108] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge, 1998.

[109] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[110] Nima Taghipour, Ahmad Kardan, and Saeed Shiry Ghidary. Usage-based
web recommendations: a reinforcement learning approach. In Proceedings of
the 2007 ACM conference on Recommender systems, pages 113–120. ACM,
2007.

[111] Sebastian Thrun and Anton Schwartz. Issues in using function approxima-
tion for reinforcement learning. In Proceedings of the 1993 Connectionist
Models Summer School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[112] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[113] Damir Vandic, Steven Aanen, Flavius Frasincar, and Uzay Kaymak. Dy-
namic facet ordering for faceted product search engines. IEEE Transactions
on Knowledge and Data Engineering, 29(5):1004–1016, 2017.

[114] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015.

[115] Marilyn A Walker, Owen C Rambow, and Monica Rogati. Training a sen-
tence planner for spoken dialogue using boosting. Computer Speech & Lan-
guage, 16(3-4):409–433, 2002.

[116] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[117] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina M Rojas-Barahona,
Pei-Hao Su, David Vandyke, and Steve Young. Multi-domain neural net-
work language generation for spoken dialogue systems. arXiv preprint
arXiv:1603.01232, 2016.

[118] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke,
and Steve Young. Semantically conditioned lstm-based natural language
generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745,
2015.

104

[119] Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina M
Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. A network-
based end-to-end trainable task-oriented dialogue system. arXiv preprint
arXiv:1604.04562, 2016.

[120] Jason Williams, Antoine Raux, Deepak Ramachandran, and Alan Black.
The dialog state tracking challenge. In Proceedings of the SIGDIAL 2013
Conference, pages 404–413, 2013.

[121] Jason D Williams and Steve Young. Partially observable markov deci-
sion processes for spoken dialog systems. Computer Speech & Language,
21(2):393–422, 2007.

[122] Ronald J Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[123] Ji Wu, Miao Li, and Chin-Hui Lee. A probabilistic framework for represent-
ing dialog systems and entropy-based dialog management through dynamic
stochastic state evolution. IEEE/ACM Transactions on Audio, Speech and
Language Processing (TASLP), 23(11):2026–2035, 2015.

[124] Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe Zhou, and Zhoujun
Li. Building task-oriented dialogue systems for online shopping. In Thirty-
First AAAI Conference on Artificial Intelligence, 2017.

[125] Xuesong Yang, Yun-Nung Chen, Dilek Hakkani-Tür, Paul Crook, Xiujun
Li, Jianfeng Gao, and Li Deng. End-to-end joint learning of natural lan-
guage understanding and dialogue manager. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5690–5694. IEEE, 2017.

[126] Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. Pomdp-
based statistical spoken dialog systems: A review. Proceedings of the IEEE,
101(5):1160–1179, 2013.

[127] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi
Khandelwal, Brandon Norick, and Jiawei Han. Personalized entity recom-
mendation: A heterogeneous information network approach. In Proceedings
of the 7th ACM international conference on Web search and data mining,
pages 283–292. ACM, 2014.

[128] Jiyong Zhang, Nicolas Jones, and Pearl Pu. A visual interface for critiquing-
based recommender systems. In Proceedings of the 9th ACM conference on
Electronic commerce, pages 230–239. ACM, 2008.

105

[129] Jiyong Zhang and Pearl Pu. A comparative study of compound critique
generation in conversational recommender systems. In International Con-
ference on Adaptive Hypermedia and Adaptive Web-Based Systems, pages
234–243. Springer, 2006.

[130] Lanbo Zhang and Yi Zhang. Interactive retrieval based on faceted feedback.
In Proceedings of the 33rd international ACM SIGIR conference on Research
and development in information retrieval, pages 363–370. ACM, 2010.

[131] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela,
and Jason Weston. Personalizing dialogue agents: I have a dog, do you have
pets too? arXiv preprint arXiv:1801.07243, 2018.

[132] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recom-
mender system: A survey and new perspectives. ACM Computing Surveys
(CSUR), 52(1):5, 2019.

[133] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft.
Towards conversational search and recommendation: System ask, user re-
spond. In Proceedings of the 27th ACM International Conference on Infor-
mation and Knowledge Management, pages 177–186. ACM, 2018.

[134] Tiancheng Zhao and Maxine Eskenazi. Towards end-to-end learning for
dialog state tracking and management using deep reinforcement learning.
arXiv preprint arXiv:1606.02560, 2016.

[135] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jil-
iang Tang. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM Conference on Recommender Systems, pages
95–103. ACM, 2018.

[136] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing
Yuan, Xing Xie, and Zhenhui Li. Drn: A deep reinforcement learning frame-
work for news recommendation. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, pages 167–176. International World Wide
Web Conferences Steering Committee, 2018.

106

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	The Current Recommender Systems, Dialogue Systems, and Their Limitations
	Benefits and Goals of Conversational Recommender Systems
	Contribution of the Dissertation
	Outline of the Dissertation

	Related Work
	Recommender Systems
	Content-based Recommender Systems
	Collaborative Filtering Recommender Systems
	Hybrid Recommender Systems
	Deep Learning based Recommender Systems

	Reinforcement Learning
	The Markov Decision Process
	Function Approximation and Deep Reinforcement Learning
	Reinforcement Learning based Recommender Systems

	Dialogue Systems
	The Chit-Chat, Information-Seeking and Task-Oriented Dialogue Systems
	Components of Task-Oriented Dialogue Systems and End-to-end Task-Oriented Dialogue Systems
	Conversational Recommender Systems

	Conversational Recommendation Dialogue Data Collection
	Overview
	Related Work
	Faceted based Recommendation Dataset Processing
	Crowd Sourcing based Conversational Dialogue Dataset Collection
	Summary

	The Framework of Conversational Recommender System
	Overview
	The Conversational Recommender System Framework
	Belief Tracker
	Recommender Module
	Deep Policy Network based Dialogue Manager

	Experimental Setup
	User Simulation
	Baselines and Evaluation Methodology
	Model Training Details

	Experiment Results
	Offline Experiments
	Online User Study

	Summary and Contribution

	Personalization in Conversational Recommender System
	Overview
	Methodologies
	Belief Tracker
	Personalized Probabilistic Recommender
	The Reinforcement Learning based Dialogue Agent

	Experimental Settings
	User Simulation
	Evaluation Measures and Baseline for the Personalized Probability Recommender
	Evaluation Measures and Baselines for the Dialogue Agent

	Experiments Results
	The Personalized Probabilistic Recommendation
	The Personalized Conversational Recommender System
	User Study

	Summary and Contribution

	Conclusion and Future Work
	Contribution
	The Limitations and Future Work
	Limitation of the Collected Conversational Recommendation Dataset
	Joint Learning the Recommender and the Dialogue Policy
	Enabling More User Actions and Machine Actions
	Integrating More Dialogue Functionalities

	Bibliography

