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ORIGINAL RESEARCH

The role of artificial intelligence and machine 
learning in harmonization of high-resolution 
post-mortem MRI (virtopsy) with respect 
to brain microstructure
Shane O’Sullivan1*, Helmut Heinsen1,2,3, Lea Tenenholz Grinberg2,4,5, Leila Chimelli6, 
Edson Amaro Jr.3, Paulo Hilário do Nascimento Saldiva1,7, Fleur Jeanquartier8, Claire Jean‑Quartier8, 
Maria da Graça Morais Martin3, Mohammed Imran Sajid9 and Andreas Holzinger8

Abstract 

Enhanced resolution of 7 T magnetic resonance imaging (MRI) scanners has considerably advanced our knowledge 
of structure and function in human and animal brains. Post‑industrialized countries are particularly prone to an ever‑
increasing number of ageing individuals and ageing‑associated neurodegenerative diseases. Neurodegenerative dis‑
eases are associated with volume loss in the affected brain. MRI diagnoses and monitoring of subtle volume changes 
in the ageing/diseased brains have the potential to become standard diagnostic tools. Even with the superior resolu‑
tion of 7 T MRI scanners, the microstructural changes comprising cell types, cell numbers, and cellular processes, are 
still undetectable. Knowledge of origin, nature, and progression for microstructural changes are necessary to under‑
stand pathogenetic stages in the relentless neurodegenerative diseases, as well as to develop therapeutic tools that 
delay or stop neurodegenerative processes at their earliest stage. We illustrate the gap in resolution by comparing the 
identical regions of the post‑mortem in situ 7 T MR images (virtual autopsy or virtopsy) with the histological observa‑
tions in serial sections through the same brain. We also described the protocols and limitations associated with these 
comparisons, as well as the necessity of supercomputers and data management for “Big data”. Analysis of neuron and/
or glial number by using a body of mathematical tools and guidelines (stereology) is time‑consuming, cumbersome, 
and still restricted to trained human investigators. Development of tools based on machine learning (ML) and artificial 
intelligence (AI) could considerably accelerate studies on localization, onset, and progression of neuron loss. Finally, 
these observations could disentangle the mechanisms of volume loss into stages of reversible atrophy and/or irre‑
versible fatal cell death. This AI‑ and ML‑based cooperation between virtopsy and histology could bridge the present 
gap between virtual reality and neuropathology. It could also culminate in the creation of an imaging‑associated 
comprehensive database. This database would include genetic, clinical, epidemiological, and technical aspects that 
could help to alleviate or even stop the adverse effects of neurodegenerative diseases on affected individuals, their 
families, and society.
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1 Introduction
In the past two centuries, post-mortem autopsy and histo-
pathological investigation of diseased organs or tissues have 
yielded innumerable observations on disease onset, progres-
sion, and fatal outcome. Knowledge of the pathogenesis of 
diseases proved indispensable for disease diagnosis, therapy, 
and prevention. Ethical issues including retention of organs 
after autopsy [1] and financial considerations [2] may have 
contributed to a global decrease in autopsy rates [3–11]. 
Virtual autopsy (Virtopsy) [12], in the form of MRI or com-
puted tomography (CT) post-mortem investigation, could 
reduce the financial and physical/psychological burden [4, 
5, 13–19] of autopsies, as well as appease fears and increase 
the autopsy rate amongst large populations of individuals 
with strong traditional, religious or cultural concerns [20]. 
Previous reviews still considered both, autopsy and virtopsy, 
supplementing each other [21, 22].

The introduction of 7  T high-resolution MRI-scanners 
with superior resolution resulted in more detailed images 
of the human central nervous system, which is character-
ized by densely packed neurons, neurites, glial cells, and a 
typical vascular supply of cortical and subcortical regions. 
High-detailed 3D reconstructions of basal ganglia elements 
and circuits [23–25] may help in targeting defined nuclear 
regions for neurostimulation in the course of Parkinson’s dis-
ease, and prevent or reduce unwanted side effects. We pre-
sent unpublished exemplary observations of a combined 3 T 
in situ, 7 T post-mortem MRI investigation compared with 
horizontal serial 420-μm-thick gallocyanin-stained sections 
of the complete brain of an 85-year-old female [26–28].

Our neuropathological data illustrate the complexity 
involved with tasks that aim to identify many different cer-
ebral disorder patterns. The study was conducted in coop-
eration with the Autopsy Service (SVO) of the University of 
Sao Paulo (USP). We describe the current status of virtopsy 
and provide practical examples demonstrating how this 
consists of two stages: early post-mortem MRI of the brain, 
followed by taking biopsies at selected brain regions guided 
by the findings of the MRI. Finally, we provide guidelines on 
how MRI analysis can be enhanced by artificial intelligence 
(AI) and machine learning (ML). We argue that AI and ML 
can effectively help with challenges highlighted in this paper, 
and also identify many other benefits (such as more accu-
rate identifications and faster results among other benefits).

2  A comparison between post‑mortem in situ 3 T 
and 7 T MR imaging after autopsy with formalin 
fixation and a gallocyanin‑stained celloidin 
section

The 3  T in  situ image taken at a post-mortem time of 
16 h depicts a well-preserved brain with a high contrast 
between cortex, medullary layer, and subcortical nuclei 
(Fig. 1a).

An in  situ post-mortem image is indispensable for 
comparison of either 3 T or 7 T MR images and histol-
ogy. Figure 1b documents the same brain after formalin 
fixation. In general, the resolution of a 7 T scanner is far 
superior to a 3 T scanner. However, fixation artefacts by 
formalin cause a nutshell-phenomenon (Fig. 2b). Initially, 
formalin rapidly penetrates human central nervous tis-
sue. After a few millimetres fixation-induced cross-link-
ing of proteins imposes a kind of barrier that impedes a 
further penetration of formalin into the deepest parts of 
the brain. Early opening of the telencephalic ventricular 
system by a sagittal cut into the corpus callosum facili-
tates the replacement of cerebrospinal fluid (CSF) by 
formalin with a concomitant fixation of external and 
internal brain parts.

Care must be taken during the first 12 h of fixation 
because incomplete fixed brain tissue is soft and subject 
to considerable and irreversible distortion. Intracranial 
perfusion fixation via the carotid and basilar arteries 
would be an optimal strategy for brain fixation without 
distortion. However, this strategy is usually only possi-
ble with brains from patients who were enrolled in body 
donation programs of anatomical institutes. Perfusion 
fixation does not guarantee the absence of fixation arte-
facts because post-mortem blood clotting and frequently 
encountered arteriosclerotic plaques in elderly individu-
als can impede the complete removal of blood from the 
brain’s vascular system.

Moreover, high-pressure intravascular injection of for-
malin can cause rupture of cerebral arteries and mechanic 
fixation artifacts. Immediately after the removal from the 
skull, unfixed brains should be weighed and carefully sus-
pended into an excess of low concentration formalin (one 
part with 37% formaldehyde and 9 parts with distilled 
water—at least 5 liters) with a small thread on the walls of 
a fixation bucket. Incomplete fixation and storage of the 
brain on the base of a bucket instead of suspension could 
explain the distortion of the brain (compare Fig. 1a with 
b). Neurons, a major component of the central nervous 
system, can only be visualized after cutting of the brain 
and staining with special stains that are summarized 
under the term Nissl stains. Prior to cutting, the brain 
must be dehydrated with alcohol and embedded into 
either paraffin or celloidin. This procedure causes con-
siderable shrinkage of the brain with a volume loss of up 
to 60%. Different shrinkages of the brain’s white and grey 
matter during dehydration and embedding are additional 
confounders causing further brain deformation [12].

Finally, the paraffin- or formalin-embedded brain must 
be cut on special microtomes, that can carry 3–5 kg 
(weight of paraffin block + brains with cerebellum and 
brainstem) without vibration and gross variations in sec-
tions thickness with a range between 20 and 420 μm. It 
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is necessary to CT scan the brain’s position (Figs. 2, 3, 4) 
in the block and to orient the brain with a horizontal line 
connecting the anterior and posterior commissure in a 
medio-sagittal plane. Cutting of brains causes additional 
deformations.

These strategies are time-consuming, but it is impor-
tant that they are followed correctly. Shrinkage, swell-
ing, and distortion artefacts in thick section (< 400 μm) 
are less frequently observed than in thin optical ones 
(≤ 20  μm) [13]. The superposition of several layers of 

Fig. 1 Panel of 3 Tesla MRI versus 7 Tesla MRI: this panel includes a comparison of a 7 Tesla MRI versus a 3 Tesla MRI for the same brain. a 3 Tesla 
axial FLAIR MR image of a horizontally cut brain, thickness = 2.0 mm, and unfixed post‑mortem in situ. b Same brain as in a after removal from 
the cranial cavity and formalin fixation for more than 3 months. 7 Tesla axial T2 GRE MR image (TE = 21 s, TR = 25 s) and thickness = 1.0 mm. c 
Histological serial section through a human brain, celloidin embedding, section thickness = 420 μm, and gallocyanin staining. This histology picture 
was taken by a Nikon D800E SLR camera with a Sigma 2.8/50 mm macrolens. This is an example of how histology data can supplement 7 Tesla MRI 
data. Scalebar = 10 mm and is the same for all three images. Arrows in b and c point to white matter hyperintensities
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neurons (more than 20 in a 420-μm-thick section com-
pared with conventional 20-μm-thick sections) in the 
z-axis enhances minimal differences in size, shape, and 
staining properties of neurons. Cortical archtectonic 
borders and parcellation of subregions within subcor-
tical nuclei are easier to be detected in thick sections 
after initial expert training. It remains to be tested to 
what extent visual cortical and subcortical parcellation 
are comparable with the so-called observer-independ-
ent computer-assisted parcellation [14]. Finally, the co-
registration (or matching) process of MR images and 
thick histological sections need less corrections after 
carefully executed technical procedures.

Close-up macroscopic (Fig.  2b) and microscopic 
(Fig.  2c) photographs from gallocyanin-stained sections 
prove the superior resolution of Nissl-stained thick sec-
tions and the possibility to compare closely aligned 7  T 
images (Fig.  2a) with their histological counterpart. In 
addition, when assessed by means of a binocular-loupe, 
the transparent thick gallocyanin-sections provide a 3-D 
impression of human or animal brain architecture from 
neurons arranged in layers (Fig. 2b) at low magnification 
to individual cells flooded by erythrocytes at higher mag-
nification (Fig. 2c).

Figure  2b demonstrates the impact of an aneurysm 
onto the entorhinal regions. The extended vascular 

Fig. 2 Horizontally cut right parahippocampal gyrus of an 85‑year‑old female with aneurysm of the right medial cerebral artery. a 7 T scan of 
the formalin‑fixed brain. b Macroscopic overview of a gallocyanin‑stained 420‑μm‑thick celloidin section through the corresponding region as 
depicted in a. c Microscopic photograph of the region indicated by the arrow in b with the majority of neurons unimpaired even when close to the 
fountain‑like streak of hemosiderin emerging from the caudo‑lateral extreme of the aneurysm. Scalebar in b = 1 mm and in c it is = 0.1 mm
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wall caused a long-lasting indentation of the perirhinal 
(transentorhinal cortex) with considerable thinning of 
layers and probable neuron loss (reduced staining—pal-
lor—with gallocyanin). The transentorhinal region is the 
first cortical region to be affected by tau pathology in the 
course of Alzheimer’s disease [15]. It is considered a relay 
station between reciprocal iso- and allocortical infor-
mation flow. The ruptured part of the aneurysm caused 
a small fountain of blood to spill erythrocytes into the 
medial entorhinal cortex. Phagocytosis of erythrocytes 
by macrophages and degradation of the red blood cells 
were just beginning to start. This is evidence that the 
time between rupture and death of the person differed 
by maximally two days, whereas neuron loss and dis-
tortion of layers in the perirhinal region persisted for a 
far longer time. The relatives of the diseased person did 
not report memory deficits. Unilateral pathology and/or 
missing sophisticated neuropsychological testing could 
explain an absence of reported neurological deficits. On 
the other hand, imaging and post-mortem histopathol-
ogy could be a powerful tool correlating brain-structure 
interactions after selecting and diagnosing cases with 
circumscribed brain lesions that are associated with 

well-defined neurological or neuropsychological deficits. 
It is worth noting that human brain function and their 
morphological correlations are based on comprehensive 
careful case reports from as far back as the start of the 
past century, or even earlier.

Figure 3a depicts sharp borders of the basal ganglia and 
the thalamus, whereas Fig. 3b shows CSF-filled perivas-
cular spaces (extended Virchow–Robin spaces) and a 
small infarct in caudal (posterior) thalamic regions. If 
these widened perivascular spaces are dispersed over 
the striatum, they can be recognized with the unaided 
eye (diameter < 5 mm) or in a low magnification—neu-
ropathologists classify these changes as status cribrosus. 
In our case, we can observe the outlines of the globus 
pallidus between the crura of the capsula interna medi-
ally and the putamen laterally. The outlines of both globi 
pallidi are better to be seen in Fig. 3a. The globus palli-
dus on the left side is stained in a faint purple hue, on the 
right side in a yellow to brown one. This is an indication 
of either a high concentration of iron ions, lipofuscin or 
both.

These tissue changes indicate neuronal degenera-
tion and extraneuronal accumulation of iron, which 

Fig. 3 a 7 T MRI of a post‑mortem fixated brain. T2 TSE axial image, 2.0 mm thickness and 0.2 mm in plane resolution. b 7 T MRI of a post‑mortem 
fixated brain. 3D GRE TR 12 s, TE 8 s, 0.3 mm in plane resolution and 0.6 mm slice thickness. Black arrows in b and c point to a small liquifying infarct 
in the posterior region of the left thalamus. c Celloidin section of the same brain as depicted in a and b. 420 μm section thickness and gallocyanin 
staining. d Higher magnification of the region with small liquified infarct at the border of the posterior ventrocaudal nucleus and the pulvinar 
thalami. The shape and the size of the infarct region are similar after 7 T imaging and after celloidin embedding of the brain that was cut into 283 
horizontal sections. The scalebar in c = 5 mm long and in d it is = 1 mm width. c and d show C = caudate nucleus, Ca = crus anterius, Cp = 
crus posterius of the internal capsule, ce = external part, ci = internal part of the thalamic ventrocaudal nucleus, Pu = pulvinar thalami, and P = 
putamen. White arrows in b and d point to a region of elective parenchymal necrosis
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normally plays an important role as a catalyser in enzy-
matic processes. At higher magnification, the borders 
of the thalamic ventrocaudal nucleus and the pulvinar 
thalami can be unequivocally seen. Parcellation of tha-
lamic subnuclei in conventional 20-μm-thick paraf-
fin sections can be a matter of dispute, even between 
experts in this field [16]. The old thalamic infarct is 
surrounded by a lightly stained capsule that consists 
of fibrouas astroglial cells forming a neuron-free scar. 
However, in the periphery of the infarct, single, via-
ble, as well as irregularly shaped groups of intact and 
degenerating neurons can be identified. This kind of 

neuropathological degeneration is known as elective 
parenchymal necrosis. It will result in complete neu-
ron loss and replacement of neurons, as well as their 
processes, by an astroglial scar and the absence of a 
fluid-filled cyst. The less conspicuous sickle-shaped 
hyperintensity below the central cyst in Fig. 3d is most 
likely the 7  T equivalent of this still ongoing process. 
In addition, widened perivascular spaces around arter-
ies supplying the caudate nucleus and pulvinar (status 
cribrosus) indicate a leakage of the blood-brain-barrier 
and disturbed blood supply in both striata of this case 
[29–33].

Fig. 4 a Celloidin‑embedded gallocyanin‑stained 420‑μm‑thick horizontal brainstem section of a 85‑year‑old female case. b Axial 7 T post‑mortem 
MRI (Siemens) after 3 months of formalin fixation of the complete brain—with a 3D gradient‑echo acquisition (TE 8 ms, TR 12 ms, 0.6 mm thickness, 
0.3 mm in plane resolution)—at corresponding horizontal level. c Merged a and b with semitrans parent c on the bottom of the stack. Arrows in a 
and c point to the lateral angle of the aqueduct. Arrowheads in a point to the locus coeruleus. Scalebar in a and c subdivided into mm
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3  The potential of high‑resolution 7 T MR scanners 
in analysing regions with early Alzheimer’s 
disease (AD) related pathology

The locus coeruleus forms an elongated slender rostro-
caudally oriented column in the brainstem consisting 
of conspicuous predominantly pigmented neuromela-
nin containing neurons (Fig.  4a–c). The axons of these 
neurons are thin. However, they leave the brainstem in 
a rostral direction to the telencephalon and in a caudal 
course to the spinal cord. After a distance of several cen-
timetres, the axons collateralize and a maximal unilat-
eral number of 137,910 (58-year-old Braak stage II case) 
pigmented neurons will supply billions of telencephalic 
cerebellar, and spinal cord neurons with noradrenaline 
[34]. Noradrenaline is considered a neuromodulator that 
enhances vigilance and attention.

In three Braak stage VI AD cases, ranging in age from 
78 to 81 years, the locus coeruleus was devoid of neurons 
[34]. According to these post-mortem quantitative analy-
ses, locus coeruleus volume already declines in the earli-
est AD stages (stages a-c according to Braaks’ modified 
classification [35, 36]) and after a time interval in addi-
tion to volume decrease, neurons start dying (Braak and 
Braak stage II). The rostral and the middle parts of the 
locus coeruleus show earlier volume and more neuron 
loss than the caudal one. Neuronal death in AD signi-
fies a point of no return in AD progression because neu-
rogenesis in the adult human brain is absent or, if at all, 
confined to the hippocampal dentate gyrus.

Recently, the locus coeruleus could be visualized with 
3  T imaging [37]. A combined 7  T post-mortem in  situ 
volumetric study, supplemented by a post-mortem ste-
reological investigation on serial gallocyanin and hyper-
phosphorylated tau immunohistochemically stained 
sections of the same brains, could answer the question 
as to whether longitudinal voxel-based morphometric 
studies are a replicable and reliable marker of AD pro-
gression. The locus coeruleus would be ideal for this 
kind of study, because to our knowledge, locus coeruleus 
neurons are prone to early AD-related pathology. This is 
obviously long before cortical regions are affected and, 
consequently, patients become demented and are subject 
to long-lasting intensive and expensive care.

The nucleus basalis of Meynert (NbM) forms an inte-
gral part of the human substantia innominata and it 
supplies the telencephalic iso- and allocortex with ace-
tylcholine [38, 39]. Cortical decrease in acetylcholine is 
an early neurochemical marker of AD [40, 41]. There-
fore, it would be an additional candidate for a combined 
post-mortem in  situ 7  T histological study. NbM neu-
rons show tau pathology already in Braak stages 0 and I, 
similar to locus coeruleus neurons [42]. Its neurons are 
arranged in complex curving band coursing in the basal 

forebrain [43]. After mapping basal forebrain cholinergic 
nuclei into the MRI standard space, signal changes could 
be correlated with grey matter atrophy and other param-
eters [44–54].

Presently, it is not possible to visualize the NbM with 
3 T or 7 T imaging. In similar protocols like the proposed 
test of the feasibility of locus coeruleus morphometry, 
the stereological analysis of total NbM neuron number 
and nuclear volume could mark atrophic changes (loss of 
dendrites) and decreasing perikaryal (Nissl-stained cyto-
plasm surrounding the characteristic neuronal nucleus 
+ nucleolus) from necrotic irreversible neuron loss. 
The resolution of 7 T scanners is still too low to directly 
address the questions of cellular atrophy, cell death, reac-
tive astrogliosis, microglial reaction and loss of oligo-
dendrocytes (Figs. 2, 4 document this). A recent series of 
publications summarizes this scanner-associated resolu-
tion deficit under the term microstructure and several 
strategies suggest to bridge this shortcoming [55–58]. 
Likewise, tractography studies should be supplemented 
by histological protocols [59].

4  The role of computer science, AI and ML 
in integrating virtual reality (MR imaging) 
with histological reality (documentation 
of histological slides with digital cameras 
or scanners)

The relatively low resolution of 7  T MR scanners com-
pared with high power resolution of advanced digital 
cameras, scanners, and microscopes suggests a combina-
tion of both methods. In vivo and selected post-mortem 
in situ 7 T scans provides images of an intact brain more 
or less free from manipulation-associated artefacts. The 
increase in resolution of histologically processed brains 
comes at a price of processing artefacts, starting with 
fixation, and ending with coverslipping of the individual 
stained sections.

Depending on the plane of section (coronal, horizon-
tal, or sagittal), a stack of around 330–280 serial sec-
tions with a section thickness of 400–420 μm must 
be photographed with high-resolution digital cam-
eras during the section procedure with a heavy duty 
microtome. High-resolution colour photographs taken 
through the central parts of the brain can comprise up 
to 15 MB in JPG format or up to 80 MB in the TIF-for-
mat. Blockface pictures of serially cut brains provide a 
template for arrangement and stacking of the sections 
that are stained after the cutting procedure.

The next step includes the co-registration of the 
stacked and coloured sections into the MRI space. The 
high-resolution pictures yield a high number of data 
that must be processed with supercomputers [60]. This 



Page 8 of 12O’Sullivan et al. Brain Inf.             (2019) 6:3 

procedure provides high-resolution virtual slices that 
can simulate planes of sections other than the ones 
originally produced on the microtome. This greatly 
facilitates cytoarchitectonic delineations and localiza-
tion of small circumscribed MRI structures or profiles 
of uncertain nature and origin in the MRI [61].

The following step would be the stereologic analy-
sis of cell density, cell size, and cell type (glia, neu-
rons). This is an extremely time-consuming procedure, 
because the investigator must unequivocally identify 
typical features of glial cells and neurons whilst focus-
ing on the z-axis of a microscope. Superimposition of 
densely packed cells complicates this task. We could 
automate the analysis in immunostained 60 μm sec-
tions [62]. With this procedure, cells and profiles are 
well-defined and easier to classify. Nissl-stained sec-
tions impose far more challenges in classifying cellular 
profiles and Schmitz et al. concluded that present auto-
mated methods are unreliable [63].

Voxel-based morphometric imaging with 3 T or 7 
T scanners clearly demonstrates volume loss or den-
sity changes in the course of neurodegenerative dis-
eases. However, presently, the underlying causes for 
these changes can only be disclosed by a combined 
MRI-histological analysis of the affected brain. Stereol-
ogy provides a number of mathematical methods and 
guidelines that guarantee replicable results with analy-
sis of histological sections [64]. The disector guidelines 
[65, 66] prevent overestimation of cell number when 
analysing cells of different shape and size. Schmitz and 
Hof provide a comprehensive overview for analysis of 
other neuronal elements besides perikarya [67]. Cell 
number estimation with stereological tools and disec-
tor principles represent a special case of particle anal-
ysis in a 3D space. A human researcher must identify 
profiles when focusing within a defined optical thick-
ness and count all neurons or glial cells that arise in 
his/her microscopic field of vision. Consequently, an 
automated computer-based strategy must coordinate 
pattern recognition with defined movements within 
a 3D space. Pattern recognition is presently the most 
intriguing step, and to our knowledge, no unanimously 
accepted strategy is available. This technique would 
greatly reduce the cumbersome burden of cell count-
ing, and a combination of both methods (as we have 
described) will enhance the diagnostic and prognos-
tic capabilities of 3  T or 7  T scanners by providing 
biomarkers.

Another remaining open question is the strategy of data 
processing. Amunts et al. [69] studied paraffin-embedded 
brains, which were cut into more than 7000 20-μm-thick 
slices. They were using only every 20th section for data 
acquisition and they concluded that a comprehensive 

analysis of their data exceeds present computer capabili-
ties [68, 69]. We have profited by the Berkeley supercom-
puter facilities for co-registration of our high-resolution 
macroscopic pictures of a human brain [60]. We estimate 
that high-resolution microscopic pictures of our thick 
serial slices would exceed the data provided by Amunts 
et al. by a factor of 10.

Furthermore, already routine diagnostic assessment of 
3 T or 7 T images yields an immense body of biographi-
cal and clinical data of patients. Molecular imaging pro-
tocols provide additional aspects and data [70–74]. 
In animal research, mean diffusivity changes could be 
related to structural changes in astrocytes, myelin or syn-
aptic remodelling [75, 76]. Taken together, this immense 
conglomerate of data warrants advanced data processing 
and interpretation.

For successful ML, we need the combination of data 
from various sources. Here we must mention that for 
automatic ML we need a substantial amount of data sets 
(“Big data”). Particularly deep neural networks require 
enormous amounts of training sets until an algorithm 
can reliably identify patterns and structures within a 
brain image. Since it is often difficult to get millions of 
brain images, there are some image augmentation meth-
ods available, which can help to produce the necessary 
amount of training data. However, two crucial facts are 
always underestimated in the medical domain: (1) we 
need not only top-quality data, but (2) we need domain 
expertise. Ultimately, the results have to be validated. 
We have to emphasize that ML does not mean that the 
software learns what, e.g. “the hippocampus is and how 
it looks”. Rather, the algorithm only learns (biologically 
meaningless) patterns within images, and those patterns 
can then be identified via image-processing methods. 
This is important because this actually causes limitations 
in machine-based identification of brain regions and 
pathologies. Consequently, providing high-resolution 
images in general, and MRI data in particular, not only 
supports the development of ML algorithms for image 
analysis per se, but enables us to reach a further step 
towards diagnosis assistance [77, 78].

Whilst AI methods have shown to be equally or even 
more effective than human clinicians in diagnosing 
dementia from neuroimages [79], further clinical stud-
ies are needed (beyond what is presented in this paper), 
which should include full cases to provide important 
findings based on histological (e.g. thin slices of whole 
brain) and MRI data (e.g. in  situ, ex-situ) [80, 81]. So 
far, psychotic diseases cannot be diagnosed histo-
logically. Investigations into psychiatric diseases with 
unknown histological markers could also be beneficial. 
We hypothesize that AI could point out to which areas 
might have differences in these populations, and each 
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brain could be histologically assessed. This is not yet 
possible with current in  vivo studies, but this assess-
ment could be expanded if more tissues were made 
available for histological analysis.

Our group has been using automatic classifiers, 
mainly support vector machines (SVM) to analyse both 
structural and functional MRI datasets in patients and 
healthy volunteers [82–88]. The majority of the find-
ings in neurodegenerative diseases point to a reduction 
in brain morphometrics—conversely, patterns related 
to cortical malformations are known to produce cor-
tical thickening (in fact, when analysed closely, this 
macroscopic appearance is due to intracortical disor-
ganization of the layers in the neocortex). Changes that 
are more subtle—and today still remain undetected 
by experts—can be unravelled using texture analysis 
methods combined with classifiers [88]. We believe that 
those features will benefit from the use of ultra-high 
field MR data and recent developments in ML tech-
nologies. Disease classifications based on ML-meth-
ods, that incorporate data from studies using chemical 
imaging will expand the scope of possibilities. This idea 
of quantitative mapping incorporates data from par-
ticular chemical components at spatial and temporal 
resolution [89].

For classification of nuclei, Sirinukunwattana et  al. 
used Neighbouring Ensemble Predictors [90] coupled 
with (meanwhile very successful) standard convolu-
tional neural networks [91] to more accurately predict 
class labels of the detected cell nuclei, which do not 
require segmentation. Such methods can offer huge 
benefits to pathology practice in terms of quantitative 
analysis of tissue constituents in whole-slide images, 
and potentially lead to a better disease understanding. 
This can be further enhanced by bringing a “pathologist 
in the loop”, i.e. by application of interactive ML (iML) 
methods [92, 93], which also enable to explain why a 
machine decision has been reached [94, 95]. Techni-
cally, this will be done by applying algorithms which 
enable an integration of a human into the algorithmic 
loop, who can then provide his/her expertise to find the 
underlying explanatory factors [96].

5  Conclusion
In an analogy with architecture, enormous constructions 
should be based on a solid foundation. The cooperation 
of disciplines including neuroimaging and neuroanat-
omy/neuropathology could provide a fundament of solid 
and replicable data. Presently, virtual autopsy cannot 
substitute conventional autopsy. Both methods should be 
used concomitantly with provided tissue and organs for 
a comprehensive and meticulous research database for 
control and diseased cases.
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