
Lawrence Berkeley National Laboratory
Biological Systems & Engineering

Title
Analysis of individual cells identifies cell‐to‐cell variability following induction of cellular 
senescence

Permalink
https://escholarship.org/uc/item/4rn1g00s

Journal
Aging Cell, 16(5)

ISSN
1474-9718

Authors
Wiley, Christopher D
Flynn, James M
Morrissey, Christapher
et al.

Publication Date
2017-10-01

DOI
10.1111/acel.12632
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rn1g00s
https://escholarship.org/uc/item/4rn1g00s#author
https://escholarship.org
http://www.cdlib.org/


Analysis of individual cells identifies cell-to-cell variability
following induction of cellular senescence

Christopher D. Wiley,1 James M. Flynn,1 Christapher
Morrissey,1 Ronald Lebofsky,2 Joe Shuga,2 Xiao Dong,3 Marc
A. Unger,2 Jan Vijg,3 Simon Melov1 and Judith Campisi1,4

1Buck Institute for Research on Aging, Novato, CA 94945, USA
2Fluidigm Corporation, South San Francisco, CA 94080, USA
3Department of Genetics, Albert Einstein College of Medicine, Bronx, NY

10461, USA
4Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Summary

Senescent cells play important roles in both physiological and

pathological processes, including cancer and aging. In all cases,

however, senescent cells comprise only a small fraction of tissues.

Senescent phenotypes have been studied largely in relatively

homogeneous populations of cultured cells. In vivo, senescent

cells are generally identified by a small number of markers, but

whether and how these markers vary among individual cells is

unknown. We therefore utilized a combination of single-cell

isolation and a nanofluidic PCR platform to determine the

contributions of individual cells to the overall gene expression

profile of senescent human fibroblast populations. Individual

senescent cells were surprisingly heterogeneous in their gene

expression signatures. This cell-to-cell variability resulted in a loss

of correlation among the expression of several senescence-

associated genes. Many genes encoding senescence-associated

secretory phenotype (SASP) factors, a major contributor to the

effects of senescent cells in vivo, showed marked variability with

a subset of highly induced genes accounting for the increases

observed at the population level. Inflammatory genes in clus-

tered genomic loci showed a greater correlation with senescence

compared to nonclustered loci, suggesting that these genes are

coregulated by genomic location. Together, these data offer new

insights into how genes are regulated in senescent cells and

suggest that single markers are inadequate to identify senescent

cells in vivo.

Key words: aging; cellular senescence; cytokines; single cell;

transcriptomics.

Introduction

Cellular senescence is a process by which mitotically competent cells

permanently arrest proliferation (growth) in response to a variety of

physiological signals and pathological stresses (Munoz-Espin & Serrano,

2014). Because the growth arrest prevents the propagation of stressed

or damaged cells, the senescence response is an important tumor-

suppressive mechanism (Campisi, 2013). Further, because senescent

cells accumulate with age, they can cause or contribute to several

degenerative diseases of aging (Baker et al., 2016). These effects might

stem from the fact that senescent cells cannot divide and therefore

cannot create new cells to maintain tissue homeostasis. However, as

senescent cells generally comprise a minority of cells within even very old

tissues (Dimri et al., 1995; Herbig et al., 2006; Kreiling et al., 2011;

Waaijer et al., 2012; Baker et al., 2016), it is more likely that senescent

cells drive age-related disease cells nonautonomously. Indeed, senescent

cells secrete a myriad of inflammatory cytokines, chemokines, proteases,

and growth factors that can have potent effects on tissue microenvi-

ronments (Coppe et al., 2008) and thus drive age-related pathologies by

mechanisms that extend beyond the loss of proliferative potential.

Traditional gene expression analyses that compare transcriptional

profiles of cell populations are limited because they measure average of

gene expression levels across the entire population. For example, two

populations of 5000 cells each might show a twofold difference in the

mRNA level of a particular gene, but this change could result from every

cell expressing twice as much mRNA, or from a single cell expressing

5000 times more of that mRNA. The difference between these

possibilities could have enormous phenotypic consequences in the

context of a tissue. Single-cell approaches offer advantages over

population studies because they can distinguish between these types

of scenarios. Single-cell analyses also require fewer cells and therefore

can be used to interrogate the phenotypes of rare cells, such as

senescent cells produced during organismal aging.

Senescent cells display many qualities that make them desirable

candidates for single-cell transcriptional analysis. As noted above, they

are typically rare (Dimri et al., 1995; Herbig et al., 2006; Kreiling et al.,

2011; Waaijer et al., 2012; Baker et al., 2016) and also often occur

alongside nonsenescent cells. Further, many of the phenotypic differ-

ences between senescent cells and their nonsenescent counterparts are

due to changes in mRNA levels, including mRNAs encoding many SASP

factors (Coppe et al., 2008).

To assess the contributions of individual senescent cells to known

senescent phenotypes, we conducted quantitative PCR analyses of single

quiescent and senescent cells from cultured populations of human

fibroblasts. From these analyses, we find that (i) virtually all senescent

cells display a gene expression signature that distinguishes them from

their quiescent counterparts; (ii) nonetheless, the expression of most

genes is more variable in senescent cells compared to quiescent cells;

and (iii) there are correlations among genes expressed by senescent cells,

including those encoding SASP factors, that localize in genomic clusters.

Together, the data demonstrate that senescent phenotypes are more

variable than the transcriptional profiles of cell populations previously

suggested.

Results

Single senescent cells can be identified by gene expression

signatures

Although cellular senescence is marked by strong phenotypic and gene

expression changes at the population level, less is known about how

individual cells contribute to the overall gene expression pattern. We
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therefore induced senescence in IMR-90 human fibroblasts using the

clastogen bleomycin (Fig. S1A) (Orjalo et al., 2009) and analyzed

individual senescent cells using a commercially available platform from

Fluidigm (C1) or manual isolation (MI). To control for growth status, we

cultured nonsenescent cells for 3 days in 0.2% FBS to induce quiescence

(Fig. S1A). Senescence was confirmed by senescence-associated beta-

galactosidase (SA-Bgal) activity (Dimri et al., 1995), markedly reduced

EdU incorporation into nuclear DNA (a measure of nuclear DNA

replication) (Fig. S1B), and secretion of a major SASP factor, inter-

leukin-6 (IL-6) (Fig. S1C).

C1 isolation captured 57 (59%) single senescent cells and 79 (82%)

quiescent cells. The different capture efficiencies were like due to the

increased size and irregular shape of senescent cells, resulting in several

empty wells. In addition, we manually isolated (MI) 163 single senescent

and 156 single quiescent cells.

We analyzed the cells for expression (mRNA levels) of 96 genes,

including those associated with cell cycle arrest (12 genes), nuclear

lamins (four genes), mitochondria and energy production (12 genes), the

SASP (46 genes), signal transduction (four genes), and other senescence

regulators (11 genes), in addition to seven control genes, the expression

of which were expected to be relatively invariant (Data S1). We chose

these genes mainly based on prior knowledge of gene expression

associated with cellular senescence. Of the 96 genes analyzed, we

excluded 25 as either nonamplifying (no or late Ct) or nonspecific

(multiple melting curves), resulting in a dataset comprised of 71 gene

expression (mRNA) levels in 235 quiescent and 229 senescent cells.

These 71 transcripts were detected in at least 30% of the analyzed cells,

with many of them being detected in > 60% of the analyzed cells

(Fig. S2A). Although several transcripts (e.g., CXCL2, MMP8, IGFBP6)

were detected at a higher percentage in the C1 dataset, most transcripts

were detected at higher percentage in the MI dataset (Fig. S2B). By

comparison, fewer differences were seen in detection percentages

between senescent and quiescent datasets, with a few exceptions

(Fig. S2C). For example, for LMNB1 gene expression—which declines in

senescent cells (Freund et al., 2012)—there were fewer senescent cells

in which the transcript was detected compared to transcript detection in

quiescent cells. Conversely, TNFRS10C gene expression, which is induced

in senescent cells (Coppe et al., 2008), was detected in a higher

percentage of senescent cells relative to quiescent cells (Fig. S2C). A few

highly studied SASP factors, such as IL-1B, IL-6, IL-7, CXCL1-3, MMP1,

MMP10, and CCL13, were also detected at low percentages (Fig. S2A),

limiting the types of analyses that could be performed on these factors.

Our initial analysis revealed few significant differences between the

two cell populations primarily because senescent cells had a lower overall

transcript abundance, possibly owing to less efficient lysis/amplification.

After normalization (Livak et al., 2013), however, it was possible to

identify transcriptional profiles that were consistent with transcriptome

analyses of bulk cell populations (Fig. 1A). Normalization also resulted in

more coordinated expression profiles between the C1 and MI pools of

cells (Fig. 1B; Fig. S3A,B). Following normalization, MI cells showed 61

significantly altered genes during senescence, while C1 showed 31,

presumably due to the smaller number of successfully amplified genes.

Notably, 28 of the altered genes were shared between C1 and MI cells

(Fig. 1C).

Using these datasets, we first asked whether senescent and quiescent

cells were distinguishable at the single-cell level by gene expression

signatures. Principal component analysis (PCA) allowed us to identify

senescent cells by sorting the first and second principal components

(consisting of a combination of expression values for 70 genes) (Fig. 2A,

right panel). When plotted in two dimensions (X–Y axes), quiescent and

senescent populations clustered independently (Fig. 2A, left panel).

Senescent cells displayed a larger spread of values, consistent with more

variability.

Using the expression of all 70 genes, linear discriminant analysis (LDA)

correctly classified > 98% of cells as senescent or quiescent. Further-

more, expression of several genes individually strongly predicted

senescence status. The two most predictive genes were TNFRSF10C

and CDNK1A (Fig. 2B). TNFRSF10C encodes a secreted decoy receptor

that prevents TRAIL-induced apoptosis (Sheridan et al., 1997). This gene

is induced in response to genotoxic stress in a p53-dependent manner

(Sheikh et al., 1999) and is a component of the SASP (identified by its

alias TRAILR3) (Coppe et al., 2008). CDKN1A, which encodes p21Waf1, is

a cyclin-dependent kinase inhibitor (CDKi) and primary mediator of both

the transient and permanent (senescence) p53-induced G1 arrests (El-

Deiry et al., 1993; Dulic et al., 1994). CDKN2A, which encodes p16INK4a,

is another CDKi, and common marker of senescence and aging

(Beausejour et al., 2003; Krishnamurthy et al., 2004), but was not

assayed in these analyses owing to primer failures. Reduced LMNB1 or

HMGB1 expression also strongly predicted senescence. Both gene

products are lost from the nuclei of senescent cells in a p53-dependent

A B C

Fig. 1 Comparison of normalized mRNA levels in C1 and manually isolated (MI) cells. (A) Mean values of C1 (single-cell auto prep system) gene expression (Log2)

compared to bulk populations for all 71 genes analyzed in senescent cells. Each point is a single gene. (B) Rank-order analysis for all 71 genes for either C1 (y-axis) or

MI (x-axis) method. (C) Venn diagram showing number of genes significantly changed in senescent cells relative to quiescent cells by C1 or MI methods.
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manner (Freund et al., 2012; Davalos et al., 2013). As bleomycin causes

genotoxic stress and activates p53, CDKN1A, TNFRSF10C, LMNB1, and

HMGB1 are likely markers of p53 activation during senescence. Indeed,

the combination of CDKN1A, CDKN1B, LMNB1, TNFRSF10C, and CCL3

was sufficient to predict senescence in 97% of cells (P = 9.54E-39) by

LDA (Fig. 2C). Thus, markers of p53 activity are strong indicators of

senescence at the single-cell level.

A few quiescent cells associated more strongly with senescent cells

using both PCA and LDA (Fig 2A,C). As even early passage fibroblast

populations often contain a small percentage of senescent cells (Dimri

et al., 1995), this association was expected. Together, these analyses

indicate that senescent cells can be identified at the single-cell level

based upon their gene expression signatures.

Senescent cells display more variability in mRNA levels than

quiescent cells

There is increased variability in selected mRNA levels among single

cardiomyocytes from aged, compared to young, mice, and in mouse

fibroblasts treated with H2O2 (Bahar et al., 2006). Both age and H2O2

increase the number of senescent cells. In agreement with these studies,

many of the genes (51%) assayed here displayed significantly increased

variability in mRNA levels among single cells following induction of

senescence. This increased variability was not universal, however, with a

few genes (7%) (such as CYR61 and SOCS3) showing lower variance in

senescent compared to quiescent cells (Fig. 3A). Control genes, known

to show little change in expression in senescent cells, generally displayed

only minor changes in variance. For example, GAPDH displayed a

nonsignificant (P > 0.05, Monte Carlo permutation test) decrease in

variability, whereas ACTB variability increased slightly (Fig. 3A–C).

Interestingly, CDKN1A also showed no significant increases in variance

(P > 0.05), despite being induced in senescent cells (Fig. 3B).

Senescence-associated variability in gene expression could result from

genomic rearrangements, as suggested for aged and H2O2-treated cells

(Bahar et al., 2006), but also from changes in transcriptional activation

or repression in senescent cells. LMNB1 mRNA levels, which decline in

senescent cells (Freund et al., 2012), also showed increased variability

(Fig. 3B) accompanied, as expected, by fewer transcripts with detectable

amplification. Similarly, many SASP factors, such as IL-8 and IL-1A,

showed strongly increased variability, with a subset of cells displaying a

very high level of gene expression (Fig. 3B). This finding suggests the

increase in mRNAs encoding SASP factors (Coppe et al., 2008) could

result from contributions by only a subset of senescent cells at any time.

Gene expression correlations change during cellular

senescence

Are cells that strongly express SASP factors such as IL-8 and IL-1A a

subset of senescent cells, or do individual cells express these and other

senescence-associated transcripts in variable quantities? To address

these questions, we calculated correlation coefficients (R2) for all genes,

eliminating nonsignificant (P > 0.01) correlations (Fig. S4). Two classes

of inversely correlated genes emerged from analyses of quiescent cells

(arbitrarily labeled ‘Class 1’ and ‘Class 2’) (Fig. 4A, left). From analyses of

senescent cells, these classes were largely retained, but most correlation

values declined (Fig. 4A, right), with many no longer meeting the P-value

threshold. Pathway analysis of Class 1 genes showed a strong relation-

ship between extracellular matrix regulation, cellular stress responses

(including hypoxic responses), and cytokine signaling, whereas Class 2

genes most strongly associated with inflammatory responses (Fig. S5).

Most of the declines in correlation were likely the result of increased

variability. However, a subset of genes showed increased correlations

(DR2 > 0.5; R2 (sen) > R2 (qui)), either directly or inversely (Fig. 4A).

Among these genes, there was no relationship between variability in
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transcript abundance and correlation among paired transcripts (Fig. 4B),

suggesting that variability alone cannot account for these increases.

Of all genes that displayed highly altered correlations with senes-

cence, CDKN1A (which was consistently induced in senescent cells;

Fig. 3B) was most notable, displaying increased correlations with 25

gene transcripts (Fig. 4C). Furthermore, CDKN1A showed a substantial

shift in its correlation patterns, losing correlation with some genes (Class

1) and gaining correlation with others (Class 2) (Fig. 4A).

AsmanySASP factors are strongly clustered in thegenome (Coppeet al.,

2010), we asked whether genomic location is linked to expression

coregulation. Supporting this possibility, transcripts from the IL-1 cluster

(IL-1A and IL-1B, promoters separated by ~50 kb), as well as the CXCL
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cluster (in order: IL-8, CXCL1, CXCL5, CXCL3, andCXCL2, separated in total

by ~360 kb), went from nonsignificant correlations to stronger, significant

direct correlations, suggesting these genes were induced in a coordinated

manner (Fig. 4D). By comparison, little to no correlation of expression was

observed when the IL-1 cluster was analyzed against the CXCL cluster

(Fig. 4D), which are on different chromosomes. These data suggest that

genomic organization can influence gene expression changes in single cells.

Together, our correlation data indicate that, whereas the expression

of many genes is coordinated under quiescent conditions, some

senescence-specific gene expression processes appear to be regulated

independently of each other.

Discussion

As senescent cells are relatively rare, even in tissues from aged animals

(Dimri et al., 1995; Herbig et al., 2006; Kreiling et al., 2011; Waaijer

et al., 2012; Baker et al., 2016), the ability to identify and study

individual senescent cells is a unique opportunity to better understand

Fig. 4 Gene expression correlations in quiescent and senescent cells. (A) Heat maps of Pearson’s coefficients (R2) between clusters of coexpressed genes in quiescent (left

panel) and senescent (right panel) cells. Green indicates positive correlations, red indicates negative correlations, and empty cells indicate nonsignificant (P > 0.01)

correlations. Two classes of directly (green) and indirectly (red) correlated expression patterns (labeled Class 1 and Class 2) appear across multiple genes. (B) Circular node

network indicating changes in correlations between quiescent and senescent cells. Number of altered correlations increases from left to right. Green nodes indicate genes

with increased variability in senescent cells, while red nodes indicate decreased variability; white nodes indicate no change. Connecting lines indicate whether correlations

increase (green) or decrease (red) between genes. (C) Correlation (R2) levels of multiple genes relative to CDKN1A. Violet bars indicate quiescent cells, whereas red bars

indicate senescent cells. (D) Heat map of correlations (R2) between genes in the CXCL (blue) and IL-1 (orange) clusters in quiescent (left) and senescent (right) cells, as in A.
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the range of senescent phenotypes that contribute to their physiological

and pathological effects (Munoz-Espin & Serrano, 2014). In this study,

we highlight the ability to identify senescent cells by their gene

expression profile, while also demonstrating that the gene expression

profiles of senescent cells are highly heterogeneous. Despite this

heterogeneity, genes that reside in closely linked loci appear to be

coregulated during senescence.

Identifying senescent cells at the single-cell level is an important

technological step for future studies, especially in human tissues. While

transgenic mouse models now allow senescent cells to be identified and

isolated from mouse tissues (Demaria et al., 2014), identifying senescent

cells in human tissues remains difficult. Our study provides proof of

principle that single-cell analyses have potential for identifying senescent

cells from human tissues.

Our findings emphasize the risk of using a single biomarker to identify

senescent cells, whether in culture or in vivo. We recommend using

several makers—in our own studies, for example, we tend to use

combinations of SA-Bgal activity, loss of LMNB1 expression, HMGB1

relocalization, p16INK4a and/or p21WAF1 expressions, and the expression

of strongly upregulated SASP factors. As many inducers of senescence

(e.g., telomere attrition, ionizing radiation, bleomycin, and oncogene

activation) ultimately induce a DNA damage response, it is likely that

many of the factors identified in this study are common to several

senescence inducers. However, inducers of senescence that do not cause

genotoxic stress (e.g., mitochondrial dysfunction-associated senescence)

(Wiley et al., 2016) can have a distinct SASP and gene expression profile

and so would need to be identified by those signatures.

Increased gene expression variability in senescent cells is consistent

with studies showing such variability during aging and in response to

oxidative stress (Bahar et al., 2006). Our findings show that senescence-

associated mRNA levels can vary from cell to cell. For example, increases

in CDKN1AmRNA were tightly clustered, possibly reflecting uniform p53

activation following genotoxic stress (bleomycin administration). By

comparison, LMNB1 and many SASP factors, showing decreased or

increased expression, respectively, displayed large variability in expres-

sion levels in senescent cells. These data suggest the mechanisms

governing the expression of these genes are subject to more stochastic

events than those that govern CDKN1A expression. Alternatively, genes

that show large expression variability might fluctuate temporally, which,

in an asynchronous population, would result in cell-to-cell differences in

the expression levels at any given time.

The increased correlation between genes clustered within genomic

loci suggests a level of gene regulation that has not previously been

described for senescent cells. One possibility is that senescence-

associated epigenetic changes extend over selected loci, as opposed to

individual genes, thereby affecting the accessibility of transcription

factors to linked genes within those loci. Indeed, the high mobility group

box proteins, which bind non-B-type DNA, have been linked to both

senescence and the SASP. HMGB1 is lost from the nuclei of senescent

cells (Davalos et al., 2013), whereas HMGB2 localizes to the promoters

of several SASP genes (Aird et al., 2016). This altered chromatin

landscape may explain the coordinated expression of SASP genes that

lie in close genomic proximity. Alternatively, as the correlated genes are

regulated by similar transcription factors (such as NF-jB and C/EBPb) and
likely emerged as a result of genomic duplication, it is possible that their

close physical proximity allows transcription factors that leave one gene

promoter for other promoters in close proximity.

An important limitation to this and similar single-cell transcription-

based studies is that mRNA transcript levels may not reflect the steady-

state levels of protein. Furthermore, as noted above, single-cell analyses

currently score transcript levels at a single time point. Nonetheless, our

analyses indicate that, at any given time, there are both uniformity in

patterns and variability in individual mRNA levels in senescent cell

populations.

Experimental procedures

Cell culture

IMR-90 human fetal lung fibroblasts at population doubling level 25–30

were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supple-

mented with 10% fetal bovine serum (FBS) and penicillin/streptomycin

(growth medium). Cells were seeded at 1 x 104 cells/cm2 in 175-cm2

flasks, maintained at 37° C, 10% CO2, and 3% O2, and were

mycoplasma negative. For senescence induction, cells were given growth

medium containing 50 lM bleomycin (senescent) or vehicle (PBS—

nonsenescent control) in atmospheric oxygen for 3 hrs. The cells were

then washed, given growthmedium, and returned to 3%O2. The growth

medium was changed every 3 days. On day 7, it was replaced with low

serum (0.2% FBS) medium, which induced quiescence in control cells.

Cells were harvested by trypsinization for analysis on Day 10 (see

Fig. S1A). A subset of cells was plated for senescence assays (below).

Senescence-associated beta-galactosidase (SA-Bgal) assay

Ten days after bleomycin or control treatment, a 12-well plate was

seeded with three wells from each treatment (30 000 cells/well) and

allowed to attach overnight. The assay was performed as described

(Dimri et al., 1995) using a commercial kit (BioVision, Milpitas, CA, USA).

Measurement of IL-6 secretion

Quiescent or senescent cells were seeded as for the SA-Bgal assay and

allowed to attach overnight. The following day, the medium was

replaced with 500 lL of serum-free DMEM. Conditioned media were

collected 24 hrs later. An ELISA kit (AlphaLISA, Perkin Elmer Biosciences,

San Jose, CA, USA) was used to measure IL-6 in conditioned media

according to the manufacturer’s instructions; IL-6 levels were normalized

to cell number.

EdU labeling

Quiescent or senescent cells were plated into four-well chamber slides

(Labtech, Tampa, FL, USA) and allowed to attach overnight. The next

day, the cells were given low serum medium containing 10 lM EdU

(Invitrogen, Carlsbad, CA, USA). After 24 hrs, cells were washed with

PBS, fixed in 4% formalin, then permeabilized in 0.5% Triton X-100 for

30 min, and washed twice in ice-cold PBS. Permeabilized cells were

subjected to the EdU reaction according to the manufacturer’s instruc-

tions (Click-IT EdU Imaging Kit, Invitrogen).

Manual isolation of single cells

Cells cultured as described above were trypsinized, pelleted by centrifu-

gation, and resuspended in Krebs–Henseleit buffer. Approximately

20 000 cells were placed in 10 mL of buffer in a 15-cm dish. Under

phase-contrast microscopy, a small glass needle was used to mouth

pipette individual cells into 200-lL reaction tubes in less than 2 lL
volumes. Single cells were immediately frozen on dry ice and maintained

at �80° C until analysis.
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Isolation of single cells by C1

Single cells were captured in the C1 platform (Fluidigm Inc., South San

Francisco, CA, USA) as per the manufacturer’s instructions (Fluidigm)

and verified as single-cell captures by microscopic analysis of each

nanofluidic chamber. Chambers on the C1 chip containing more than

one cell were excluded from subsequent analysis.

Measurement of single-cell transcriptional profiles

Gene expression in single cells was measured by quantitative multiplex

PCR following pre-amplification using the Biomark platform (Fluidigm)

according to the manufacturer’s instructions. Data were normalized as

described (Livak et al., 2013). Briefly, the data adjustment was as

follows: Log2 expression data were extracted through the single-cell

analysis package for all PCR plates, including both C1 and manual

isolation data. The data were then categorized as deriving from

quiescent or senescent cells prior to subsequent analyses.

Principle component analysis (PCA)

PCA was performed on qPCR values of 70 genes from 464 individual

cells, 235 quiescent cells, and 229 senescent cells (one senescent cell was

removed because none of its transcript was detected by qPCR) using the

pcaMethods package in R (probability principle component analysis

method with missing values imputed by default).

Linear discriminant analysis (LDA)

LDA was performed to maximize the separation between the 235

quiescent and 230 senescent cells. To determine which gene subsets

were most important in correctly classifying cells as quiescent or

senescent, we used a sequential backward selection process (Cotter

et al., 2001). Starting with all the data, we used LDA to obtain the

maximum separation between quiescent and senescent cells. Then, the

loss of a single transcription vector was tested by removing each gene

and repeating the LDA analysis with the data from the remaining 70

genes. The gene loss having the smallest impact on the ability to

separate quiescent from senescent cells was deleted. This process was

repeated until only the most predictive genes for discrimination

remained. Because imputation of missing expression values can influence

the results of LDA and the backward selection process, three separate

imputation schemes were employed, with the final ranking taking each

of these gene rankings into account. Missing values were first set to

zero, then to the average of all values recorded for that gene, and finally

to the average of all quiescent or senescent values.

Pathway analysis

Class 1 and Class 2 gene lists were submitted to the Database for

Annotation, Visualization and Integrated Discovery (DAVID v.6.7) (Huang

et al., 2007) for annotation enrichment analysis. The full human

genome was used as a background. Pathways and annotations showing

significant enrichment following Benjamini multiple testing correction

are summarized in Fig. S4:
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Fig. S1 Experimental design and quality control. (A) Schematic representation

of the experimental design showing time points for generating the datasets

and assays to confirm quiescence and senescence. Purple indicates quiescent

cells treated with vehicle (PBS), whereas red indicates senescent cells treated

with bleomycin. (B–C) Quality control assays confirming the induction of

senescence. (B) Senescence-associated beta galactosidase (SA-B-gal) and EdU

incorporation analysis of quiescent (PBS-treated) and senescent (bleomycin-

treated) samples. (C) IL-6 ELISA confirming establishment of a SASP in

senescent cells.

Fig. S2 Detection of gene transcripts varies by method and cell type. (A) Rank

ordered success rates by gene for all samples in our data sets. (B) Success

rates by gene for C1 vs. MI methods. (C) Success rates by gene for either

senescent (SEN) or quiescent (QUI) cell populations.

Fig. S3 Normalization of datasets. Density maps for gene expression analyzed

by C1 or manual isolation (MI) before (A) and after (B) normalization.

Fig. S4 Examples of genes with strong positive or negative correlations.

Relative gene expression values for each single cell were plotted against each

other. Each axis indicates gene expression values for each single cell; red dots

indicate senescent cells, blue dots indicate quiescent cells. (A) Example of a

strong positive correlation: GAPDH plotted against vimentin. (B) Example of a

strong negative correlation: AGER plotted against GAPDH.

Fig. S5 Pathway analysis of Class 1 and Class 2 genes. Pathway enrichment

analysis of Class 1 (above) and Class 2 (below) genes, sorted by P-value.

Data S1 Single cell expression datasheet.
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