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ABSTRACT
The second term has been obtained in the asymptotic series

for the secondl(longitudinal) adiabatic invariant of charged

particle motion in a static magnetic field. This correction to the

lowest order invariant has two sources: the correction to the
~lowest order magnetic moment and the integrated effect of the

1‘guiding center drift across the field 11nes. The second term is

found to vanish at the mirror points; therefore during its motion

. i
between mlrror reflections, the guiding center deviates from the

" surface on which thie lowest order invariant.is constant and

intersects this surface at reflection.

*Part of thlS author's work done at hls present address: NASA,

Goddard Space Flight Center, Greenbelt Marylend

Atomic Energy Commission.

R u*work‘supported-by contract AT-(3041)~1238 with_thernited States
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I. INTRODUCTION
. This'paper coﬁtainsva systematic derivation of the next

term:beyoﬁd the lowest order for the second adiabatic invariaunt

of éicharged particle in a magnetic field. A charged particle in an
electromagnetic field possesses up to three approximate invariants
of,ité motion. The first is the Alfvén invariant' or magnetic moﬁent
ﬁﬂf/?moﬁ, where}%_is the component of particle momentum my perpen-
dicular to.the‘magnetic field 8. If there is an electric field,ihis
.the'momentumlin the reference frame in which the electric field
vanishés.: Magnetic moment invariance requires that fields vary
:5 sldw1y c6mbared to the particle gyrafion period and gradually

igompared.to.the éyraﬁioﬁ radius. The second invariant?’ 2 is an
vinvarignt-of the guiding-center equations of motion, which are
fvéquationé obtainédlby aVeréginé over the particle gyration about
the magﬁetic'fiéld line. The second invafiant is therefore, also
‘an inQariéht of the partiéle motion, fromvﬁhich the guiding-center
.equati§§s‘éfe_derived. This second invariaht exists when the
‘Gguiding-cénter motion along a field line is nearly periodic; the
'_1nvariahtvi§ §$mdsfvﬁhere ?ﬂis'the compoﬁent of guiding;center-
:momentum patallel.toﬁg, and the iﬁtegral é#tends over a period of
the moﬁion in's,'whicﬁ is distaqce along.the.line. The third
invari.ant:3 ié an invariant of equations of motion resulting when
the gqiding-cehger équations A;e'averagedjévet»the periodic motion
along the field line (and théréfore is an invariant éffthe particle

motion also); it exists when these doubly averaged equations have




nearly periodic solutions, and this occurs when the surfaces of

constant second invariant are topologically cylinders. The third

‘invariant % is the magnetic flux threading a second invariant

cylinder. 1Its invariance is trivially true in static fields and
becomes of significance only in time-dependent fields.,
" The three invariants described above are really only the

lowe st orders of three asymptotic series of the form

constant = Mo + eM; + 6°Mz2 4 -mmemme- s
constant m Jo 4 €Jy + 6°J2 4 ---c--a- s (1)
constant m @0 + €81 + €282 4 ~----==- . ‘ ‘ \

where Mo‘is 1ﬁf/2moB, Jo is §$mds, and §o 1s the magnetic flux threading-’

through a surface of constant Jo. The expansion parameter ¢ is the

_ mass-tq-charge ratio of the particle. The invariance of Mo, Jo, and

¢o can be surmised.(and demonstfated) by rather physical methods,

..while to obtain higher order terms in each series may require deep

insight. or a systematic method. 1In the present paper we use a

! .
systematic method due to Kruskal® to obtain J; for static magnetic

fields. Although the second invariant exists whenever the motion

along a field line is nearly periodic, we confine ourselves to the -

case where the motion is oscillatory between two mirrors. The case

" where the particle traverses a clp#ed field line always in the same

sense must be treated separately in the systematic derivation.

" However, a direct derivation of Jy to be given at the end of the»,

‘paper shows that the result is the same as for the oscillatory case.

The prbof of the invariance of Jo in reference 3 is valid for the
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. constanﬁ ::ﬁg(é’, ¢, €)
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closed field-line case as well as for the oscillatory case.

I11. THE SYSTEMATIC METHOD
" The systematic method presupposes coupled equations of motion

of the form: ' '

“dx/dT & £(x, €), . (2)

where X has a finite number N of components and £ possesses a power
series expansion in the small parameter €. Furthermore, it is

required that all solutions of the system dx/dT = ﬁ(é, 0) traverse

closed trajectories in x space. The equation of motion of a charged

particle can be put into this form with ¢ equal to m/e, The method
shows how to obtain a transformation from the N variables to another

set (g, ®) which have the property that the equations of motion are

- dz/dT = eh(g_; e)a

de/dT . w(z, €), K o ' (3)

|

?the important poiht being that ¢ does not appear on the right sides,

and that x = é(&, @, €) is'periodic in ¢, The vector z has N-1

cpmpoqenfs.. The transformation and the new functions.h and'w are

obtained as series in €. |
If in addition the equations (2) are canonical, with x the

vector (p» q)» then there exists the adiabatic invariant

a¢ ’

A

where p and q are the canonical momentum and position, and
A N
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where the integral is over a period of . The invariant is

‘obtained as a series in € and, although a function of the 2

variables, mayAbe rewritten in termé of the original 5\var;ables
by inverting the transformation. To have an invariant, it is not
really.necessary that (2) themselves be canonical-only that they
be‘transformable into canonicél equations,

The transformation X to (2, @) is not made directly, but
for convenience by way of intermediate variables (Zﬂ V), where Y
is any vector constant on the closed, lowest-order (¢ = O)
solutions of (2), and v is an angle-like variable specifying the
positioh around such closed curves.

The theory as described so far will prdduce only one adiahetic

invariant series (the magnetic moment), but to any order in ¢

desired, The second (and third) adiabatic invariants are obtained

from '"reduced'" equations of motion as follows: it can be shown
that the Poisson bracket [¢, 1] equals 1, which means that 9 and I

can be used as conjugate variables in a canonical transformation

from (p, g) to (p', My q', ¢) where p' and q' have each one less

~n M

component than p and q. (M is the sum of the magnetic moment series

to the order in € to which one‘is‘wofking)._ The new Hamiltonian

m}(g', a's M, e).is independent of ¢-since’ﬁ equals —J%'/39p, and

M is zero, being the first invariant. . Thus the redvced system of

equations is:

e e e e e e

RO ——
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If these agéin-have the property that all solutions are closed
in (Ef, q') space when € is zero, then a second invariant exists
o ! s

in terms.of new 3.variab1es, which we will call 3::

. ' ' ' ' ' ) da’ t ' .
3z = oz, on) - 2aL Py (6)

New intermediate variables Lx‘, v') will generaily also be used.
Finally a second reduction can be performed to obtain the third

invariant. The variables and transformations are illustrated in

. , : ,
- Fig., 1. Each transformation is carried out as a series in the

expansion parameter .e.
.Although (Ef*.ﬂf' M, @) are shown by tﬁé arrow in Fig.'i
" as cdming from (B’ ﬂ),’they realiy éome from the entire first
line, since Qx,vu) and‘(gg ¢) must be found in order.t§ determine
M. A siﬁilar statement holds from the>23d invariént level‘to |

= o the 3rd.
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(p, q9) &> (y, v) 44——> (z, ¢) —— —31lst invariant (the magnetic moment series M)

-

(’B',S") “-’ ¢) é——"(z'a v, M, ¢) &—-—%(‘3\', ¢'$-M) ¢) —_— = =

2nd invariant (the longitudinal invariant series J)

F(P“s q", j’ ¢'s M, ¢) < >(¥".: v, J, ¢', M, ¢)<‘ﬁ (2, ", J, ¢', M, ¢) ——

3rd invariant (the flux series @)

Firgure 1: iThe'variables used at the level of first, second, and third adiabatic theory.

i

CRa



With so many transformations and variables, tricks for

‘reducing the labor are very welcome. There are several such

shortcuts. For one thing, ¢ is never needed, since it is simpler

to use v as the integration variable in (4). Likewise in (6), u'

is to be used.. Secondly, if the dz/dT equations of motion (3)

have all solutions periodié when ¢ (or another parameter) is zero,

‘as for Eq. (2), or if they can be transformed so that this is 80,

ﬁhe theory following Eq. (2) may be repeated. For the charged
particle, the equations of motion (3) for z are themselves of the.
prescribed form (2) with the needed periodicity when ¢ = O, after
a trivial rescaling of the independent variable. Thus (z:, v')

and (E:, ¢') can be obtained from the 2z variables rather than by

the pathway of (p', q'). Furthermore, it is proved in reference (4)

that:

' ' Y. ! ' ! 1 ' t -_&Md’
$o'(z's ") mg;—@—l_dqs:dg(gw,qs)gd,. ‘ e (7

that is, t%e original canonical variables may be used. Thus the
reduced éanonical variables (p', q'), and 9!, need not be found. The
pathway of transforma;ions actually followed iﬁ.the present calculation
is illuétrated in Fig. 2. The transformation is between z and

)

Qx'. u') and not between (33 ¢) and (y', v').

~m
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-9 .

(py @) &= (z, w) <> (y, u)H(%, 9) —mwe-- level of 1st

2 , invariant

. K

(y's U')é——?(g', @') --- level of 2nd

invariant

i
- Figure 2: The transformations and variables actually used in this calculation,




Here (ﬁ} x) are the position and velocity of the particle, The
5\vériab1es can be regarded as either (p, q) or (E, x), since

the particle equations of motion can be written in the form of (2)

with the required properties using either set.

In (7) the right side appears to be a function of ¢ but really
is nbt, since the left side is not; the ¢ dependence of the right
side actually must disappear. This fact gives another shortcut --
namely, that any particular value of @ desired can be used in the

functions p(z', @', ¢) and q(z', @', ¢). The choice ¢ = O greatly

)

reduces the algebra.

A fourth way to simplify the calculation is to choose the y

AAn

variables cleverly. The y vector is required only to be a constant
-

of the lowest-order motion, and the (z, ¢) follow uniquely from the

L

(y, v). There clearly are infinitely many suitable choices for the y

o~

variables, since any function of a given y is also a constant. The
B i AAN

‘guiding pfinciple is to choose for the components of y quantities
i A

which are both simple and constant to as high an order in ¢ as

possible, even though the theory only requires.x to be a constant of

the lowest-order motion.  For examplg, one component of’z' is much
better chosen. as Mo + evM1 rather than just Mo alone. Similarly,
one component qf;i is'mﬁch better chosen as the approximate guiding-
center position than as the éarticle position; since the guiding

center does not move as rapidiy as the particle.

Although this systematic method of calculating invariant series



. in principle requires -only routine labor, in practice the amount

~of algebra gets out of hand rather rapidly unless the above short-

cut's are used, along with physical intuition in the choice of Y-
After this long but necessary discussion of the method, we now

begin the actual calculation.

IT1. THE. CHARGED PARTICLE

The particle equation of motion can be written as

dr/dT = ey,

dv/dt = v x B(x), | (8)

where x is (r, v) and T is t/e. When € is zero, r is constant and
M A A . n

the second equation (8) is the equation of motion in a uniform

magnetic field B. The solution Vv has a constant projection along

‘B and is (harmonically) periodic in its two components perpendicular

~

to;ﬁ. Thds the trajectory is periodic in,ﬁ space. Let k,'M, andlﬁ

A
t ’ -~ ~

be three orthogonal unit vectors, with L parallel to B; M and N need

M

not be specified further. The y Variables will be denoted by (p, o, ﬂ)

and:defined as

o} al:“ + €V X,I;‘,(E)/B(E)’ v‘

o= |v, |, | | o |
M= L) ¢y o o (9)

The choice of‘ﬁ‘itsélf instead of the guiding center was tried for

p but led to a more difficult calculation. The y components 1} and ¢

A



L

N

are the components of particle velocity parallel and perpendicular
to the field line at the particle position. The u variable is

chosen as

b

\Poa N

La

) |
) (10)

: 1 ‘
= 5 arc tan
V= om (r

2

X
The inverse transformation can be obtained to any order desired from

Cvo= ML(x) + o[m(i) sin U + N(xz) cos o),

(11)
I = p+€C 3 RN ~
_ *‘ETE)[k(E) sin v —=M(r) cos v],

where D & 27U, The equations of motion for y. (du/dT is not needed)

are;

do/dT a=(Ne/o) X!‘Vé<i)’

dN/dT = GX\L:‘V_I;(E) ,

dp/dT = eTL(x) + €* {nzk X (L *UL) + o*[ (M sin U + N cos U) X
\ B - .
‘ ((}i sin U + N cos ) Vk) + (N sin v - M cos O) (M sin U + N cos ) Vf]

e

~ ~ ~ ~ ~ ~ ' ~ ~ ~ . ~ !
4+ Mo[M sin v + N cos v) x (L VL) + L x((rfi\ sin U + N cos V) "VL)]} (12)
~m . ~ S ~n A o ’ "~ - ~

- where the : notation means contraction first of.the two inner vectors
"and then of the tw0'ou;ef ones. For exahple‘in (13b) é&_:‘7£ means
i L. | '

The components of g_wiil be denoted by ﬁhe Greek capitals of the

corresponding y components - i.e., by (B, s, H). By use of the
%a)

recursion and periodicity relations (Bl19 - B23) in reference (4), we



obtain

irg
]

= p + 0(e*), | (13a)

A A

VL o+ Tt -2 MM sin U cos U +

A

T=o0+ éﬁ(—){nz(—ﬂ cos v + N sin v + M)

3(")

EMN + I\N) sin®VU + 3 NN $if'U cos V) :V‘I:} + 0(e?), (13b)
"H=71 {— VICOSU*Nsmu~\4)L VL-—g[—-gMMsmucosu.
B(‘e
' AN ~ AA ~ ~ S
+§(MN + VW) sin® .U + % NN sin U cos U] :C7L] + 0{e?), (13c)
)
¢ = jo -------- . (134)

vThe.expression for ¢ is not needed, since v will be used as the
integration'variable; (13d) is included only to show that ¢ =

when U‘=‘0, a fact that will be used later. The €2 terms of

'Qa, i, H) have also been calculated, but are too lengthy to include
here, Noté that éhoosing‘a to be the guidingvcenter has made the ¢
contribut@o% to g vanish, and thi§ will afford much simplification
later, ‘ o ' \ |

The equations of motion for the z variables (dg/d+ is not needed)

are:
}_Q_,E_'A c 20 ',A.,\'ezz,\. 622“3,_:1',"
car = HL(E) +5(p) HL X (L " L) + 337 L xUB + 5 L (GMN - 4109

+‘%Hz”£()§£:v1;> + 0(e 2>,. |
(142)
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Ldr _ _HRy o el LG 2 OL) _ it oy i
e =T VL + = [BV 5 (ML : VL)V-L
A AA PN » A A )
S+ e Hs: {%V [LOMN + W) :UL] + BV M(NL :vL)
B 2 B

<'ﬁ(ﬁ£':y£ He? - Ao ‘

-8V - B )} T % > (ML :9L)V* L + 0(e?), (145)
Ldi . [ _ T “ 1 as .

a1 = o v & - g times the order ¢ terms of = = + 0(e?). (lAc)

Since €7 is time t, the left sides are the guiding-center
velocity dP/dt, etc. The component of dP/dt perpendicular to the
field is the sum of the usual gradient-B and line-curvature drifts,
while the.parallel motion has both zero-order and ﬁirst-order

cbmponents. The equations for df/dt and dH/dt give

428 oy ST 15)

4 2o | . ' - (8)

which is conservation of the lowest-order magnetic moment Mo.
The so-called "guiding-center equations"; which are usual in
numerical integrations designed to follow the guiding center, are

the set (see for example reference 5)
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X ~ 2 A - 2
ap. : € >
o= HL(R) + 5(E) L x (L'VL) + 327 L xUs,
3(2? + H®) =_constant, (17)
22 tant
B(E) = Ccons an . . ,

This is a hybrid set, in that only some of thelterms of order ¢ are
retained in dg/dt and none of them in dZ/dt. It is simpler than
the complete set (14) and its use has validity, as will be
discussed at the end of the paper.

Ac.this point the next term of the magnetic mémenc-series can
be célculated._ We will not give details, but juét the result.

) o2 cHAT nn
= (2)

- euy< [(\I‘"i _M\I) VMI;,‘ o+ %‘(N\i + i\N) VLJ 2 M&:.V'\I:

Mo + €M,

’ (18)

" Since the highest order term we will need in the magnetic moment

- series isiou1, M will stand henceforth for Mo + ¢M;, so that aM(z)/dt

is of order ¢*. When expression (18) is written in terms of (x, ¥)

it agrees with Eq. (28) of reference (6).
& q
We now proceed to the reduced system and the -second invariant.

If we set ¢ = 0 in (14) we have

~

HL(P)

ana N Aen

dB/dt

i

]

ig/dt = — 3HEV-L,

qg/dt = A9°9-L. - | | (19)
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Figure 3: The projection of the lowest-order trajectory into the £ —H plane.
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The first equation says that the guiding—ceﬁter moves along a
field line without deviating from it, the drifts having vanished
for € = 0. The second and third equations show how the parallel
and pefpendicular enérgie; interchange in the usual mirror manner
The ﬁotion is the fiQe—dimensional space (E, v, H) is a closed
loop;vthe projection of the loop into the T — H plane is double,
as illustrated in Fig. 3.

Theax' var{gbles are to be chosen as constants of the motion

along this path. One component of y' is naturally taken as the

energy K = (82 + HZ)/Z. Another component is the magnetic moment,

and in accord with the technique of choosirig the y variables as
constant as possible, we use M = 22/28(3) + €My, where My is

given in (18). The final two components‘of'x' are o(P) and B(P),

where o and B are two functions of position, constant on each

field line, such that the vector potential A is a¥g and‘é is vaxVs.

(See references 7 and 8), Since the lowest-order motion is strictly - i

on a field line, o and § are sutiable for y' components. The angle
AN

variable v' we define as the fraction of its total longitudinal

oscillation period T the particle has completed: -

L L)
v (S, H, B) = ooy NCTavT z = T
T TEHLE) J : ‘5-{2 - [2%(9) 4+ eMy (5,1,R) | B(2') } -

. X . P . £ § A

‘Bo(Z,H,B)%

(20)
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where the path of integration is along the field line on which E

‘

is located, and £° is a zero of the denominator. For the oscil-

latory case we are considering the denominator will vanish at

two points’ao and P;. For definiteness, choose Py as the one at
A . ~ .

'which‘E'is directed towards rather than away from the other,

in Fig. 4. The period T is twice the integral from Po to E;

as .

. The

positive sign in the denominator is to be used when integrating

from Po to Py and the negative sign on the return. A point on a
- A .

field line has two values of L' whose sum in unity. It shou

noted that the denominator in the integral (20) is not exact

1d be

ly

the parallel guiding-center velocity at P'; it is to lowest order

only. From (14) the parallel guiding-center velocity is

ex?
2B

2

(NN - 300) VL + S (ULivL).

<
o
e

This can be solved for H, which can then be substituted into

[K - (Mo 4 eM;)B]. The result is

. ' ‘ 2 ~~n ~a ~
2[K = (Mo + eM;)B] =[V“2 + eV, 2%— (yﬁ -yﬁ):Vk] + O(ez).
Therefore the denominator of (20) is not exactly Vy- When v

too small, the square root of (21) may be expanded to give

2%(1( -—MB)% s v

“+2eMo(NH ~MN):YL + 0(e?).

(21)

is not -

i
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In the special case where 3:VX B = 0, the difference

) % R
between the parallel guiding-center velocity and #27(K —MbE)’
does vanish. The reason is that (WM — MN):VL equals (L/B)-UxE.
The vanishing of B'VX3 is the necessary and sufficient condition
for the existence of a family of surfaces orthogonal to the £ field.
Simplification sometimes appears in adiabatic theory when this
condition is met. For two other cases, see reference 7, pages 30

and 7Q.

In Fig. 4, the guiding center is shown reversing its parallel

velocity at P; (i.e. at u' = 3) because by (21) the denowinator of
— : . 2 X ) - . . )
(20) vanishes up to terwms of order ¢° when v, = 0, and By is defined
Ay

as a zero of the denominator. The order e¢” difference is invisible
to the order to which we are working.

The equations of motion (14) in terms of {(y', u') are

M = 0(e?), (22)
1'.<= 0(62)

oL

v =7

i
where the dots mean d/dt and where P is given by (14a); &, H, and P
are to be expressed in terms of («, B8, M, K, v'), a procedure that is

in principle possible given the form of the field.
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By using the systematic method for finding the z' variables,
’ Vaaad

. we obtain

du(u) -ve(u) = B(ur7a(u)] + 0(e?),

[
J O - Ay,

zz' = B + T{egkM) PG [y 2(v) 78 (u) —}i(u) Ta(u)] + 0(e™).
| (23)

z3' = "1 + O(e?) = Mo + eM; + O(ez).

'

1 .
The integral f dy'P(u"rga(u®) is (to the order needec) the average of
O S

o over the unperturbed path and Qill be denoted <«d&>, and similarly
for é. The equations of motion for the,i‘ variables have not been
obtained from (14) bgcause they are not needed in calculating tbhe
second invariant.

;

The second invariant (since p = mv & ep(;)) is
h N FAV]

1 Are

[\ 1 .
BED b pevienzt ot o)+ alxlzt vt 01} -

e

where (7) has been used and the integration variable switched to v'
from ¢'. The integral (24)'15 independent of ‘¢.. The range of

integration for either @' or u' is O to 1. The right side of (24)

R e T R
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b

must be é&aluated throughvorder € so0 as to get the J; term of the

series Jo + e€J; #+ e . The contribution to order 1l/¢ in (24)

vanishes because it is l/¢ times the magnetic, flux through the

ze?o;order trajectory. But the zero-order trajectory is along a

. ~ field line and back along the same path, thus enclosing no flux.
The -contribution to order 1 in (24) will be Jo, so we need up to
and‘including order e,

L , : . 2 . .
To get 5(3" u', @) correct through order ¢* and v(z', v', @)

51

correct through order ¢ is straightforward and tedious. Great
simplification occurs when we set ¢ = 0. When ¢ = 0, v = 0 also,
as shown by (13d). From (13a-c) we then have that P = 5, & = o,
E . - o

and H = 7. In fact according to the general theory these are

exact relations (to all orders in &) when ¢ = O. Then from (11)

m’\ ( 1 2020 0N g252 A\E . '
1y - =P - s r) =P - el P) “‘.'e = M-Zli - g2 I‘fl) VB 4 O(bs),
- ~  B(x) T~ B(P) B B
@=0 ~ _ - ' (25)
. 25)
Ao ~ . ex UL esNUR
¥l o = HL(z) + N(x) = HL(R) + ZE(R) - “5iE gy + 0(e%).
=0 =% _
The next step is to express (P, £, H) in terms of (z', v'). 1In
principle it is possible to invert the definitions of the (y', ')
) to get Qg, <, H) in terms of (y', v'). Let
P = R(e, 8, M, K, u") ' : (26)

. . be the formula Eor/g obtained by inversion. Then_g(z', u')'is
obtained by substitution of (23) into the funtion R and then Taylor-
A

expanding:




- 23 -
, !
P(f': v') =Rz, z2', 23", oz, U') = Tl<dmu' - [T0)
1
R (z1'y 22ty 23y zp', W) —T(=3>0'= 7 g) 3K (27)
321" Yyt

where the T, &, and 8 are to be expressed as functions of (2, u').
A

. Consider the contribution of the vector potential to the integral

inv(24):‘
: N 2200 T e [ y
, L e o QUM - M-UB) D [P - eDY
lodu' L[:E(E', u') —QD;(,?) F TR ” B ‘/(\DU'L‘
202 (% O — v OR
> (MU th.va ; A (28)

where an‘, V') is to be replaced from (27). Since the integral

(z', u')

S

(28) is needed through order e*, it seems that the € term of E
would be needed.  As the folléwing analysis will show, neither it
202 52 vy " . 2
nor (e“%n*/B*) (EJVM —-Mg;VB/B) contributes and all of the order ¢
contribution to the integral arises from the products of first order
terms. The path of integration is at constant z'. Varying u' at

constant z' does not make‘E(z', v') follow a field line unless

a[ﬁ(gf, u')] and Bfﬁ(i" u')]) are independent of u'; but they do depend

on v'. In fact

(30)

—-.—._.-—.v...“_.
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1
Jfeats = o {ls (2, ) —alzt 02 ~lalz's v1) - elz, o},

The ring of constant z' might look as in Fig. 4. The

vector-potential integral in (28) is the magnetic flux passing g
through this ring, and that is the negative of the double integral

fjdadﬁ over the ring, because 4 is ¢VE&. In an o —3 plane the ring

might look as in Fig. 5. The double integral is the area of this

ring, which by a little geometry is

(31)

where g and § are given in (29) and (30) as functions of (z', U'?.
Thg d;fferencg d(g', v') - Q(E:, 0) is order ¢, since the zero order
of each is z;'. Moreover ac(Ef, u')/2u! is order €. Similar
statements hold for é(g’, v'). fhese facts are also clear from Figs.
4 and 5, where the deviation d(Ef, v') - a(Ef, 0) of the ring from i i
the u' = O field line is due to the drifts, which are of order ¢. To
summarizé, (31) vanishes through order ¢ while its eé‘part comes only
from the éfoducts of ¢ terms.

We will next show that only the ¢T(M'Va)/B and ¢Z(M'V8)/B terms

of (29) and (30) contribute to (31); products of € terms coming from

the -4 and 8 parts all cancel. Substitution of (29) and (30) into (31)

gives

[asds =L [ avt (v - [T < -8 - (ot - V) (G ~8))

. : ' : V' 3 TH-TS ‘
+ el | du’[(<5>u' ) - o S <<<z->\)'", I 09 2 .Mj
> . > ) o 1%2 B
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Figure 5: An integration ring in the g - B plane.
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1 o . . .
e [(@ Jg) BBy gy B v@,]
(¢} ;

B B :
(32)
’ . N ~ . ~ —\ :
eT ' - . . . M Vs . '\(%N-Va'\\ |
—= [ du' | (<& = &) <~"'-'~* > = {<g> -\ N
2 jO [ o u'=0 . \ B /U'.to_i
T, . . :
The last integral vanishes because [ (<@> —4&) = fo(<t> -8)=
v o . =
" The second integral in (22) can be infegrated by parts, and after !
some cancellation one finds - Cy
1 N .
| ;u—ii du' = — [fdadg = €T 1du'z— r(<£> _5);3.7;, - (<> —c'y)t:i-Vﬂ : '
5ok ot = = [faz = 1] 0wk (5> - )i v |
) : ,
S, o
* 5 (<g><ay'> — <><gyu'>) .
T2 '1 . L' . . o .' ‘
+ _2_j dU'[<C(>Jr dU"B(U“ — <8>u dU“C((U“>J :
0 o) 0
. T2 1 . ! . i u' -
+ _é__ J‘ dU'[B(UI,)dr dU“Ci(U“') __Q,(Ux)f dU“S(U")]- (33)
o ) o] 0

We proceed to show that the terms with T? give zero. In the second

P _
Tz.integral interchange the order of the v' and V" integration to

get

S ' .o L
J“;du'<oz>j";du"(e(u“) = <0>J'od'u"s(u")('1 - ") = <@><g> - <><BLD (34)

and  similarly for the other part of the integral. Thus the T? terms g



in (33) become

R B 1 ' . . . . _
T2{<8><&u'> - <e><pu'> ~ &f dU'fU dav'[alut)g(u™) -B(U')c(v")J}-
. ) . - 0 ¢

Further progress depends on a theorem: Given two functions f(u) and
g(v) such that f(1-u) equals f(u) and g(l-uv) equals g(1) - g(v).
Then f;dug(u)f(u) = %g(l)f1duf(u). In (35) the first term is
f;éf;&u'. Clearly, v is.z g function. Also, & is an f function;
this is because l-u' is the same point on the zero-order field line

as V', and the drift velocit% which produces ¢ and Blis independent

of the sign of the parallel guiding-center velocity. Application
1

of the theorem now gives f YU'=cqu'> = d<o>, and similarly <gu'> = 3<B>.

0
And so the first two terms of (35) cancel. In the last term we have

f;du'é(u')fzéu“&(u“), where é‘(v') is an’f function, and f:éu“&(u“)
is a g function of its upper limit. Application of the theorem yields
jxdu'é(u')f:éu”d(u”)v= %<&§<é> and similarly f1du'&(v‘)fgéu“é(u“j =
0 : ; 0 o
%<é><&>. Thus all the T? terms disappear and the ¢ contribution of

the vector potential to J(z')/m is

‘el‘f;éfg(g', vy - 2elaauty,, =1 vy He> - OR(R)72(R) -
(co> = R(R)-Ve(R)]. . | €

In this expression R means R(z;', z2', 23
Ve Ana

-

Y,oza u'))and T is

A

[223'.8(3)] to the order needed. The ¢ and 3 are to be expressed

as functions of z' and u'.

Z
—



v

P . ° PR} . . . - A - .
We now turn to the evaluation of the integral in (24) containing

. the velocity. Substitute r and v from (25) into (24):
- 1 > 1 I ! ~ ~ s '7A
. oartzt. v . A , N T cHM -
; fodu' vizt, vt Sees S cu'(ﬂé(;} + (e - 3**513&
o\ ) 1 o]

— e}‘;a“.l'v.‘:’J- 3 [E(,%', v') —65\4&)‘{ (37)

where (P, H, T) are to be expressed in terms of (z', v'). Equation
x z .

an

(27) gives.P(z','v'>; H(z', v') and Z(z', V') can be obtained by
ZNZ Z ,

Jdnverting the definitions of the y' variables and then expressing

y! in terms of (z2', v').
Ans ol )

The lowest order of (37) is found to be the usual longitudinal
invariant .

=~ dvu

A
p—_
Vi
C
Pamm
W
(o]
g

“ - ol + . fod
where the plus sign is to be used for Qzu'-s and the minus sign for

44u' £ 1, because the parallel velocity, which tq‘lowest order is H,

changeé sign‘at the turning point where v' is 2. - The plus-or-minus

sign is eésentialj without it Jg would vanigh becausegg“aﬁyaufvﬁas

opposite éigns but the same magnitude at v' and 1-u'. DBecause of it,
- . >many terms in J; will vanish due to the symmetry‘properties of their
integrands. ‘

The ¢ part of (37) is not difficult to calculate.. Many terms

vanish due to the symmetry of the integrand. A sample term is

a1 vt gt A et - . . L . . - [ R e . [
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1 SR~ - A
ef 2z3 ' == M:VN which vanishes because ¥ 'UN is the same at U’
0 cu o . - .

and 1~ U', but 3R/3u' has opposite signs. The result we find for

the contribution of the velocity to J/m is

O T KL SEL DU UL
-—TJ’;du'Jl(<§Z>u' —J;)o') 551, [22%(z, *23'B>%};’§T§T]

+ (<9:$u' -—I?Bﬁ) g‘zcz_‘.‘f—‘_2‘}“"(24' - 23'»‘5)%};' 5’%‘3

¢ (> - 0f() 5 (22,00

+ (<> —é)ﬁ(g)ﬁ% (223'5) 2

—~ev_[';du'.(.i)2%(24'. - zvz'B)%(%‘lL)%‘,l;ﬁ%ﬁWz +~1; ’ f‘B’TSIA:VLZ:I (439)

The last integral vanishes because ag/au' is parallel (or anti—parallel
to L and LL:VM + ML:VL = L*Y(L-M) = O.
v, "‘"‘"‘ A Nre A A~ e .

/ 3
When (36) and (39) are added there is a term containing the

factor [(N-3R/dz;') + (&jV%/B)] wvhich vanishes because of the relation

(see reference 7, page 51) Vs/B = L X 3R/dz;' which holds for these

(o, 8) systems. The result for J(z') is

* - shdores.
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' d(y', u') and B(yx u'):‘ the rate of change of « and B due to the

- 30 -
J(z! L e Cn 0 3R ! (g ' ‘
e, o (tta - nrs iR & -1 el o

3
821' '

1

dz2' (40)

((2)2%(z ~25B) 3 2B 4 o(e?).

J(z') can be expressed in terms of the {y', V') variables,
hand Ara

which have more physical appeal than the z' ones. The reversion

A

is not too difficult if liberal use is made of the theorem regarding :

f and g type functions. We give only the result:

._.,;_. e au" _~‘

M>= rgd\)”(i)zl}é{}( _MBEE(Q’ 8, M, K, Uu)]}%é(ﬁ). __a_& . ’ X

(0, 8, M,
€

+ K) f;duv![<é>(:‘t(yl, U"> - <> S'(,.Z" U”)] 4;0(62),

o

Py
~
—

N

Definitions and equations needed to interpret Eq. (41l) are:

y't a vector with components «, 8, M, and K.

u': defined in Eq. tQO)W

« and B: ﬁuﬁctions of position, constant on a field line, such. that
L = dVB.

M: 1the magnetic ﬁoment constant through order €, given by Eq. (18).

K: ‘the particle energy, (Z° + H®)/2. K

T: the period of oscillation, defined below Eq. (20).

drifts,.and given by Eq. (22) and (lia).



i
Y/

<&>: the rate of change of « averaged over a longitudinal

: 1 .
oscillation and given by r duta(yt, u').
. . Y i

<p>: similar to <&>. Thus <a> and <B> are functions of y' in

L, H, BP: the guiding-center Variablés, defined by Egq. (13).

R(e, 8, M, K, u'): defined by Eq. (26).

the unit vector B/B.

s

€. mass to charge ratio m/e.

The first integral (41) contains € terms in M, which is Mo + ¢My;
g 1

Y

for a given M and K the integral is a function of only &« and § --

'i.e., of the field line on which the guiding-center is located,

and not of u', which gives the position along the field line.
The inﬁegrai is taken between zeros of K'—-SB(E), even though
the guiding-center hever actually moves along the lineéa, B) between
these "virtual' mirror points, C and D in Fig. 6. The guiding-center
will eventually be reflected on some field line, but it generally
willvnot be the.line CD.

| Tﬁe fetm éf J proportional to T? ;s of order ¢, siﬁce & and é

are of order e. Lt depenas on v throhgh the upper limit of the

‘integral, and vanishes at u' = O, %, and 1. In fact because &M,
vanishes when v, = O, the entire eJ,; vanishes at the mirror points.

It
Thus the guiding-center trajectory will look somewhat as in Fig. 6,
oscillating about the surface of constant Jo, but ‘always coinciding

~

with it at the mirror points. In the figure, the dotted part of the
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trajectory lies below the Jo surface. s
‘ : 3 3
As shown by Eq. (21) the radical =2%(K —MB)?% in the first
term of J/m is not the parallel guiding-center velocity- through
- ‘ order ¢. However the integral over a complete period of the
difference does vanish; the order ¢ term on the right side of (21)

is proportional v, and therefore has opposite signs in the ranges

i
v' = 0 to & and ¢ to 1, whereas xL'OR/3u' has the same sign.

Thus the integral of the order ¢ difference vanishes by symmetry.
For a similar reason, even the term of M; that is porporticnal

to H would contribute nothing to the integral, leaving only the

eML:ULH*T/B? term.

I1V: DIRECT DERLVATION
Verification that d(J/m)/dt = O(e?) will serve as a check
- on the result and at the same time suggest a direct derivation of

J that shortcuts much of the present work. We have

-

3T\ -
= Qba(m ) TF

EN

o
P
3 |G

CL,D..
ct

)+ 02 () s o(e?) (42)

So we need a(J/m)/aa and a(J/m)/aﬁ correct only to zero order,

since & and B are of order e¢. In reference (3) it is shown that

. 3 Jo T -
‘ S Jo_ T i
3¢ m € ?p ’
) (43
& = z <&>.

&lo
3
(o}



Furthermore, O' is 1/T and &{(J/m)/3u’ equals (T%/e) (<> — <a>8).
s ; . . . ; 2

Putting it all together gives what. we want: G(J/m)ﬁt = 0(e”).
The direct derivation goes as follows: start with the time

"derivative of the lowest order J,

o

Jo
t m

o 5 2 do, y, 2d0, o(e?), (44)

=« 33 m

o

S
104

“and by (43) convert this to

la

o T .. Ll . 2
= _ = K> — B> — =¥ .
C : L3 &<B>] + Mo Syt Of¢ ?

(a9

o -3

t s ‘ . . 3 J .
jdt£e<a> - a<g>]) —eM; T =2 4 0(e?)

4
dt o Mo m

where ﬁo has been replaced by —-eﬁ,.‘ The'period T, which depends

on time has been placed inside the d/dt because its time derivative

is proportional to the order ¢ drifts, making the error of order e?.

i
!

The term containing M; may be written as-

C . a3/
oy, 2= o Loy 8lo/m), 4 20o/m)
P Mo m T i Mo

at . oMo

_tBecause Jo. is an integral along a field line,'so is 3(Jo/m) /Mg,
whiqh.is proportional to <B>, the average magnetic field over an

oscillation. .Thercfore d3(Jo/m)/3Mo is changed only by the order ¢

e ¥



d 3:do /m)
e T 1

o s of 0(¢”) and can be dropped.
dt orlg :

drifts so that eM;
Transposing all terms of (45) to the left side and integrating

over time gives

J N / | T C .

. SiJo /mj - N I s
el PR L= 5 de{<g» & - <3t = censtant
n oMo e Yo -
or

1 b . .. ' 1A 2D s C . -
5;du'(i)2%[K ~ (Mg + eM;)B %&,gﬂ% - i Sodt[<a>a — <>B] = constant

| -

At this point we would have the result, except for the fact that
the intégral is over time in (46) and so is not a local quantity.
This objection can be circumvented by realizing that the correction

eJq, to Jo should be small, which means that the guiding center

should be distant only order € from the surface on which Jo is

constant. Thé time integral from A to F in Fig. 6 can be replaced
by the integral from C to F along the instantaneous field line, and

finally we have (41). - The u'-dependent term is just the effect of

.

the drifts), and the total e¢J; arises from this and from the correction-

of the lowest-order magnetic moment.

The direct derivation also reveals that the closed field=-line
case must yield the same expression for J; as the oscillatory case,

which has been considered to this point. In the closed field-line

s e



caée, the guiding center traverses the_line;always in the same
sense, parallel or antiparallel toii, but with varying speed,
depending on the magnitude of B. At the same éime it drifts
slowly at right angles to the line. There is nothing in the
direct derivation that relies on the oscillatory motion, thus
we may conclude that the form of the expression (4.} for J will
be unchanged; vu' m%y be taken as O and 1 at aﬂ‘arbitrary point
on‘the field line, and only one of the plus-or-minus signs will
be needed.

There is however & difference between the oscillatory and

closed field line cases - namely, that the order ¢ difference

o}

between the integral of v, and of = 2% (K —-MB)% no longer vanishes

1} _ 7
and thg first integral on the right side of (41) may not be replace
by §v“ds, no? may the pagt of eM; that is proportional to‘H be
omitted.

THe girect derivation also raises the question o why the time
defivative of the magnetic moment (as in Eq. L4,) did not need to
be considered in earlier proofs (references 3 and 7) of the con-
servation of Jo. The answer depends on whether Jo is defined with
(K ~—NCB)% or with (K ——MB)%; which includes some terms of order e.
If the fdrﬁér, the proofs should indeed consider the effect of éo.

Since the proofs show only thatv<d(Jo/m)/dt> - O(ez)'-- i.e., that

Jo is only conserved on the average, it is only necessary to show

i

. . S '\
that <Me> vanishes., This is easy to do: <Me> =—<eM> = <e/T)§ dtl

(e/T)AM;, where &AM, is the change in M; betwecen the time the guid-

3

d

M
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N . .. s \ .
ing center leaves one mirror and {to lowest order) returns to

8) this change is zero because M; is

o

it again. But from (
zero.when~H is zero. If on the other hand Jp is defined with M
instead of My, previous prdois are valid. In practice, defining

Jo with M is preferable because of the use to which Jg is usually
put. The invariance of Jg ié often used to determine the surface

on which the guiding-center moves on the average. In a numerical
calculation to find the surface one piqks a number representing

‘the magnetic moment and holds thié number constant, sc that in
effect one is using Mg + &M;.

The above discussion leads to the final subjéct to be treated-—

namely, the order to which tﬁe second invariant is conserved.

Since Jo 1is an integral aibng a field line, the parallel yelocity
does not change it, and therefore d(Jo/m)dt = O(e);_Jo\is trivially
conserved to lowest order and is affected by the drifts, which are
of order e¢. The usualvproof of the invariance of Jo (ref. 3} does

i

not show that the ¢ term is zero, but only that its average vanishes:
<d(Jo/m)/dt> = O(ez). So fér it would not matter whether the com-
plete set of equations (14) were used or the hybrid set (17). The
drifts:are the same for each\ and these are what are involved in

the proéfs that Jo is conserved on the average. In tﬁe preéent.
LPaper we Leve sthn that {i/m) d{Jo + €J;)/dt = Q(ez) wifhout

(=]

any averaging involved, but the full set of equations (14) must be

used in order that dM/dt = 0(52).
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