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Abstract. We study the strength of a first-order electroweak phase transition in the
Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the light-
est neutral inert Higgs boson. We improve over previous studies in the description and
treatment of the finite-temperature effective potential and of the electroweak phase tran-
sition. We focus on a set of benchmark models inspired by the key mechanisms in the
IDM leading to a viable dark matter particle candidate, and illustrate how to enhance
the strength of the electroweak phase transition by adjusting the masses of the yet undis-
covered IDM Higgs states. We argue that across a variety of DM masses, obtaining a
strong enough first-order phase transition is a generic possibility in the IDM. We find
that due to direct dark matter searches and collider constraints, a sufficiently strong
transition and a thermal relic density matching the universal DM abundance is possible
only in the Higgs funnel regime.
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1 Introduction

The simplest extension of the Standard Model (SM) that includes two SU(2) Higgs
doublets is known as the inert Higgs Doublet Model (IDM). In the IDM, the extra doublet
has no coupling to SM fermions and is odd under a postulated new Z2 discrete symmetry,
whereas all SM fields are Z2-even. Such symmetry makes the lightest Z2-odd particle
(LOP) from the extra doublet stable and, thus, a potential weakly interacting massive
particle (WIMP) dark matter candidate. The symmetry also eliminates numerous terms
in the interaction Lagrangian of the model containing an odd number of extra “inert”
scalars.

The IDM was introduced originally as a possible generic scenario for electroweak
symmetry breaking (EWSB) [1]. Only subsequently was it realized that the IDM natu-
rally features a WIMP DM candidate [2, 3], possibly providing a thermal relic density
compatible with the inferred universal DM abundance. Numerous studies have subse-
quently investigated the DM and collider phenomenology of the model (see, e.g., Ref. [4–
10]).

An additional early motivation to consider the IDM as an appealing augmenta-
tion of the SM scalar structure was to allow for a relatively heavy SM-like Higgs while
remaining compatible with constraints from electroweak precision observables, and with-
out large fine tuning [3, 10]. Although this motivation has somewhat faded after the
discovery of a SM-like Higgs boson at the LHC with a mass of ∼ 125 GeV [11, 12], this
important discovery decreases the number of free parameters in the theory by one, and
places interesting and stringent constraints on the IDM phenomenology [13, 14].
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In the present study we are concerned with the nature of the electroweak phase
transition (EWPT) in the IDM, and, specifically, with determining which physical pa-
rameters drive the strength of the phase transition, making it more or less strongly
first-order, or second-order. This question is intimately related with the possibility to
produce the observed baryon-antibaryon asymmetry in the Universe at the electroweak
phase transition: A strongly first-order phase transition (in a quantitative sense we shall
make clear below) is a necessary ingredient to (i) achieve the necessary out-of-equilibrium
conditions, occurring on the boundary of broken and unbroken electroweak phase, and
to (ii) shield a baryon asymmetry captured in the broken electroweak phase region from
sphaleron wash-out.

While necessary, a strongly first-order phase transition is not a sufficient condition.
The CP violating sources of the SM are known to be insufficient to generate the neces-
sary asymmetry in the number density of baryons compared to antibaryons during the
electroweak phase transition. The unbroken Z2 symmetry in the IDM precludes any
new source of CP violation, and thus this model per se cannot accommodate successful
electroweak baryogenesis (EWBG). However, the IDM might be in effect a good ap-
proximation at low energy of a broader construction that includes such additional CP
violating sources at higher energies. Several suggestions of plausible effective higher-
dimensional operators have been made in the literature [15, 16]. We will not discuss this
aspect any more, as it falls outside the scope of this study.

The nature and strength of the electroweak phase transition in the IDM has been
subject of several studies, with increasingly refined treatment of the effective poten-
tial [17–21]. For example, Ref. [17] utilized only the high-temperature form of the effec-
tive potential without including the zero-temperature Coleman-Weinberg terms. These
were then shown to be quantitatively important for the phase transition strength in
Ref. [19], where the full one-loop effective potential was used. Alternative SU(2)L rep-
resentations of the inert scalar were considered in Ref. [20] where it was argued that in
general, higher representations are less successful in satisfying experimental and theo-
retical constraints, thereby further motivating the study of the doublet case.

With the exception of Ref. [21], the primary focus has been on the Higgs funnel
regime (described in more detail in Section 3). Indeed, we will confirm the findings
of Refs. [18, 19] that this is the only region of parameter space that can successfully
saturate the DM abundance and provide a strong-enough first-order EWPT. In Ref. [21]
it was emphasized that the IDM can be useful for the EWPT even if the LOP provides
only a sub-leading component of DM.

In this work we go beyond previous studies by utilizing a state-of-the-art treatment
of the finite-temperature and zero-temperature effective potential including renormal-
ization group, daisy resummation improvements and one-loop model parameter deter-
mination. As we discuss in great detail in what follows, strongly first-order EWPT in
the IDM requires sizable quartic couplings that enhance quantum corrections to masses.
This is important in the context of DM phenomenology since DM particle production in
the early Universe often relies on resonance and threshold effects [13]. In addition, we
also ensure that the phase transition completes by evaluating bubble nucleation rates.
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Unlike previous studies which primarily utilized large numerical scans of the pa-
rameter space, here we take an orthogonal approach: we restrict our attention to a
few benchmark models, motivated by the requirement of having a viable dark matter
particle candidate and representing different features in the DM phenomenology. Based
on these benchmarks, we then discuss how the EWPT depends on the physical model
parameters. We identify the key physical inputs that drive the phase transition to the
interesting regime where it is strongly enough first-order to accommodate successful elec-
troweak baryogenesis. We will see that in all but one case the demand for a strongly
first-order EWPT is in tension with either the relic abundance requirement or with
experimental probes.

Our central finding is that the main driver of the strength of the phase transition
is the mass difference between the lightest inert scalar and the heavier scalars. Thus, we
extend the results of Refs. [17, 19] to other regions of IDM parameter space. For large
enough mass splittings, but for light enough heavy scalars, we find a phase transition
strength (as measured by the ratio vc/Tc, as we discuss in detail below) which increases
with the mass splitting.

The remainder of this paper is organized as follows: In Section 2 we give a brief
introduction to the IDM, thereby clarifying our conventions, discuss quantum and finite-
temperature corrections to the effective potential, and outline the computation of the
phase transition strength. The essential features of DM phenomenology are reviewed in
Section 3. In Section 4 we study the electroweak phase transition in several benchmark
models motivated by the various DM scenarios available in the IDM. We conclude in
Section 5.

2 Phase Transitions in the Inert Doublet Model (IDM)

2.1 IDM at Tree-Level

The IDM is a particular realization of the general type I Two Higgs Doublet Model
(2HDM) (see, e.g.,, Ref. [22] for a review) which features an additional Z2 symmetry.
The SM doublet H is even under Z2, while the new (inert) doublet Φ is odd. If we take
Φ to have hypercharge +1/2, the most general renormalizable potential consistent with
these symmetries is then given by [13]:

V0 = µ2
1|H|2 + µ2

2|Φ|2 + λ1|H|4 + λ2|Φ|4 + λ3|H|2|Φ|2 + λ4|H†Φ|2 +
λ5

2

[
(H†Φ)2 + h.c.

]
.

(2.1)
Conventionally, within CP -conserving Higgs sectors, the physical states are decom-

posed into CP -even and CP -odd scalars. One should keep in mind, however, that in
the IDM there is no observable that can actually distinguish between the CP -even or
CP -odd character of the inert Higgs bosons. In the absence of a vacuum expectation
value (VEV) for Φ, the doublets decompose as

H =

(
G+

1√
2

(
v + h+ iG0

)) , Φ =

(
H+

1√
2

(H + iA)

)
. (2.2)
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Below we consider the thermal evolution of the effective scalar potential in the early
Universe. In general, spontaneous breaking of Z2 can occur, in which case we must also
include a VEV for the neutral component of Φ which we will indicate with φ.

The lightest Z2-odd particle is stable, and potentially provides a viable particle
dark matter candidate. The Z2 symmetry also forbids Yukawa couplings of Φ to SM
fermions (assumed to be even under Z2), which eliminates tree-level flavor-changing
neutral currents. Either H or A can be the LOP, and since gauge interactions with
SM states do not distinguish between the two, they are effectively equivalent from the
standpoint of phenomenology. Below we will indicate the LOP as H, but all statements
made with respect to DM phenomenology and the electroweak phase transition remain
true after the replacements H → A and λL → λS , where λL = (λ3 + λ4 + λ5)/2 and
λS = (λ3 + λ4 − λ5)/2 determine the coupling of the LOP to the SM Higgs [18].

In the electroweak vacuum, the tree-level masses of the new states are given by

m2
h = µ2

1 + 3λ1v
2,

m2
H = µ2

2 + λLv
2,

m2
A = µ2

2 + λSv
2,

m2
H± = µ2

2 +
1

2
λ3v

2. (2.3)

The determination of model parameters from physical inputs is discussed in the next
section.

2.2 Finite-Temperature Corrections

The effective potential at finite temperature T can be written as

Veff = V0 + V1 + VT , (2.4)

where V0, V1 and VT are tree-level, one-loop temperature-independent and -dependent
pieces, respectively. The tree-level potential V0 has been given in Eq. (2.1). Working
in the Landau gauge (ξ = 0), the temperature-independent one-loop correction has the
Coleman-Weinberg form [23–25]:

V1 =
∑
i

ni
64π2

m4
i (v, φ)

(
ln
m2
i (v, φ)

Q2
− Ci

)
. (2.5)

The sum is over all particle species coupling to the doublets; ni is the number of de-
grees of freedom (positive for bosons and negative for fermions), Ci are renormalization-
scheme-dependent constants (Ci = 1/2 for transverse gauge bosons and 3/2 for every-
thing else in the MS scheme); m2

i (v, φ) is the field-dependent squared mass for each
species. In writing the above, we have implicitly absorbed the counterterms into V1; the
temperature-dependent part is ultraviolet finite. The counterterms and, equivalently,
the renormalized parameters µ2

1 and λ1 are determined by ensuring that the one-loop
potential reproduces the physical values v = 246.22 GeV and mh ≈ 125 GeV. The re-
maining parameters of the model are specified using the three physical masses mH , mA
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and mH± , along with λL and λ2. The masses are related to potential parameters using
the one-loop relations from Ref. [13], while λL and λ2 are taken to be running MS values
defined at scale MZ . These requirements specify the renormalization conditions.

The field dependent masses in the IDM for the SM vector bosons and fermions are,
respectively,

m2
W =

1

4
g2(v2 + φ2), m2

Z =
1

4
(g2 + g′2)(v2 + φ2), m2

γ = 0 (2.6)

and

m2
f =

1

2
y2
fv

2, (2.7)

with the corresponding bosonic degrees of freedom ni = 6, 3, 2 for i = W , Z, A, and
fermionic degrees of freedom ni = −12, −12, −4 for i = t, b, τ .

The field-dependent neutral CP -even, CP -odd and charged scalar mass eigenstates
are obtained by diagonalizing

M2
h =

(
µ2

1 + 3λ1v
2 + λLφ

2 2λLφv
2λLφv µ2

2 + 3λ2φ
2 + λLv

2

)
(2.8)

M2
A =

(
µ2

1 + λ1v
2 + λSφ

2 λ5φv
λ5φv µ2

2 + λ2φ
2 + λSv

2

)
(2.9)

M2
± =

(
µ2

1 + λ1v
2 + 1

2λ3φ
2 1

2(λ5 + λ4)φv
1
2(λ5 + λ4)φv µ2

2 + λ2φ
2 + 1

2λ3v
2

)
. (2.10)

Equations (2.9) and (2.10) include contributions both from physical states and from
Goldstone bosons. Notice that for φ = 0 the (22) components reduce to the expressions
in Eq. (2.3).

The leading order quantum corrections give rise to a renormalization scale-dependent
potential. One can choose the renormalization scale Q to minimize the size of higher
order k-loop corrections which scale with (lnm2/Q2)k. The scale choice can be im-
portant when a parameter in the potential is very different from the electroweak VEV
∼ 246 GeV. We thus choose to use the renormalization group (RG) improved effective
potential to minimize the scale dependence. The potential parameters are replaced by
their running values, evaluated at the scale Q. The relevant one-loop β functions are
given in Appendix A. Our computations are performed with Q = 246 GeV.

The leading order temperature-dependent corrections to the effective potential in
the Landau gauge take the form [25]

VT =
T 4

2π2

( ∑
i=bosons

niJB
[
m2
i (v, φ)/T 2

]
+

∑
i=fermions

niJF
[
m2
i (v, φ)/T 2

])
, (2.11)

where the J functions are defined as

JB(x) =

∫ ∞
0

dt t2 ln
[
1− exp

(
−
√
t2 + x

)]
, (2.12)

JF (x) =

∫ ∞
0

dt t2 ln
[
1 + exp

(
−
√
t2 + x

)]
. (2.13)
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These functions admit useful high-temperature expansions which allow us to study the
phase structure as a function of T analytically (as long as the expansion is justified):

T 4JB
[
m2/T 2

]
= −π

4T 4

45
+
π2

12
T 2m2 − π

6
T
(
m2
)3/2 − 1

32
m4 ln

m2

abT 2
+O

(
m2/T 2

)
(2.14)

T 4JF
[
m2/T 2

]
=

7π4T 4

360
− π2

24
T 2m2 − 1

32
m4 ln

m2

afT 2
+O

(
m2/T 2

)
, (2.15)

where ab = 16af = 16π2 exp(3/2−2γE). The T 2 terms in the expressions above illustrate
symmetry restoration at high temperatures. The non-analytic m3 term in Eq. (2.14) can
be responsible for the barrier between the high T phase (at the field origin) and low T
phase that breaks SU(2)L × U(1)Y .

Note that symmetry restoration signals the breakdown of perturbation theory —
higher order diagrams become important. This can be accounted for by performing
a resummation of daisy diagrams [26–28]. The resummation is performed by adding
finite-temperature corrections to the boson masses in Eq. (2.12):

m2 → m2 + cT 2, (2.16)

where c is computed from the infrared limit of the corresponding two-point function.
For the SM Higgs doublet we find

c1 =
1

8
g2 +

1

16
(g2 + g′2) +

1

2
λ1 +

1

12
λL +

1

12
λS +

1

12
λ3 +

1

4
y2
t +

1

4
y2
b +

1

12
y2
τ . (2.17)

The various components of the inert doublet receive similar contributions (but without
contributions from the fermions):

c2 =
1

8
g2 +

1

16
(g2 + g′2) +

1

2
λ2 +

1

12
λL +

1

12
λS +

1

12
λ3. (2.18)

These expressions are in agreement with those in Refs. [19, 29, 30]. We implement these
corrections by replacing µ2

i → µ2
i + ciT

2 in the scalar mass matrices, Eqs. (2.8, 2.9,
2.10).1

The thermal masses of the gauge bosons are more complicated. Only the longitu-
dinal components receive corrections. The expressions for these in the SM can be found
in Ref. [29], but it is easy to modify them to include the contribution of an extra Higgs
doublet. For the longitudinally polarized W boson, the result is

m2
WL

= m2
W + 2g2T 2. (2.19)

This includes contributions from gauge boson self-interactions, two Higgs doublets and
all three fermion families. The masses of the longitudinal Z and A are determined by
diagonalizing the matrix

1

4
(v2 + φ2)

(
g2 −gg′
−gg′ g′2

)
+

(
2g2T 2 0

0 2g′2T 2

)
. (2.20)

1There are subleading thermal corrections to off-diagonal self-energies suppressed by additional powers
of coupling constants and VEVs which are usually neglected.
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The eigenvalues can be written as

m2
ZL,AL

=
1

2
m2
Z + (g2 + g′2)T 2 ±∆, (2.21)

where

∆2 =

(
1

2
m2
Z + (g2 + g′2)T 2

)2

− g2g′2T 2(v2 + φ2 + 4T 2). (2.22)

2.3 Electroweak Phase Transition (EWPT)

Armed with the finite-temperature effective potential, we now proceed to study the
structure of the EWPT. The key property we intend to investigate is the transition
strength, which sets the baryon number wash-out rate inside a bubble of broken phase
(for a recent review of electroweak baryogenesis, see, e.g., Ref. [31]). In order to suppress
sphaleron wash-out in the regions of broken electroweak phase, the relevant condition is
typically quantified by requiring that [32]

vc
Tc

& 1, (2.23)

where vc is the Higgs VEV at the critical temperature Tc, defined as the temperature at
which the origin is degenerate with the electroweak-breaking vacuum.

Note that it has been shown that this baryon number preservation condition (BNPC)
is a quantity which is manifestly not gauge-invariant [33]. A gauge invariant BNPC can
be however derived from the high-T expansion of the dimensionally reduced effective
action and the critical temperature Tc must be obtained using the gauge invariant pre-
scription of Ref. [33], which employs expansions in powers of ~ of the potential and VEV.
Near the critical temperature, O(~) contributions to the potential are as important as
the tree-level terms, so the ~ expansion fails. This is also why an all-orders ring diagram
resummation discussed in Sec. 2.2 is needed. A consistent gauge-invariant method for
implementing the ring resummation for the effective potential evaluated at the mini-
mum was also demonstrated in Ref. [33]. We will be interested in studying tunneling
and nucleation temperatures, which require the evaluation of the potential away from the
minima. For this reason, below we employ the standard BNPC of Eq. (2.23) and use the
full one-loop effective potential to study IDM phases. We will argue that our results do
not depend strongly on the issues of gauge invariance. We leave the full gauge-invariant
treatment of the IDM to future work.

Finally let us note that the physical phase transition does not begin at Tc, but rather
at a lower nucleation temperature Tn, at which the bubble formation rate exceeds the
Hubble expansion rate. If this rate is too slow, the false vacuum is metastable and the
transition does not complete. We evaluate the nucleation temperature for a given model
with a first-order phase transition using the CosmoTransitions package [34].

3 Dark Matter

The requirement of a thermal relic abundance for the LOP matching the observed DM
density in the Universe of Ωcdmh

2 = 0.1199±0.0022 [35], or at least of not over-producing
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such density via thermal production (“subdominant IDM”, see, e.g., Ref. [21]) naturally
selects four distinct sectors of the model’s parameter space:

1. a low mass regime, with a LOP mass, mH , well below half the observed SM-like
Higgs mass, mH . mh/2;

2. a resonant or funnel region, mH ∼ mh/2, i.e., a mass range where LOP annihila-
tion proceeds predominantly through quasi on-shell Higgs s-channel exchange;

3. an intermediate mass regime, with a LOP mass of mh/2� mH . 500 GeV;

4. a heavy mass regime, with a LOP mass between 500 GeV a few TeV.

In the first case, the low mass regime, the DM pair-annihilation predominantly
proceeds via the pair production of the heaviest kinematically accessible fermion (τ
leptons, b quarks) through h exchange. The lower the LOP mass, the larger the λL,S
couplings need to be in order to produce a large enough pair-annihilation cross section.
The allowed mass values range down to values close to the classical Lee-Weinberg lower
mass limit for WIMPs [36], for this class of models somewhere in between 3 and 4 GeV.
Direct detection limits from XENON10 [37] probe such combinations of masses and
couplings quite tightly, such that only a small mass window below 5− 7 GeV remains.2

As the mass of the LOP approaches the resonant condition mH ∼ mh/2, the res-
onant Higgs exchange allows for much smaller values of the λL,S couplings, and direct
detection constraints can be readily evaded. The relevant mass window left uncon-
strained by XENON100 [39] and LUX [40] has a width of approximately 10 − 15 GeV
centered around mh/2 [41].

The mass regions above and below the resonance mH = mh/2 are actually slightly
different from each other: Above the resonance, the pair production of WW ∗ in the
final state of DM pair annihilation processes becomes increasingly important, even if
λL,S = 0, because the four-point interaction through gauge couplings, independent of
λL,S , starts contributing significantly. As a result the values of λL,S giving the “correct”
relic density are pushed to increasingly (with LOP mass) large, negative values.

For larger and larger LOP masses, the cross section for LOP pair annihilation to
gauge bosons becomes very large, such that the thermal relic density is systematically
below the universal dark matter density for any combination of model parameters. Bar-
ring non-thermal production mechanisms, in this intermediate mass region the LOP
cannot be the dominant dark matter constituent [13, 21].

Finally, at about mH ' 500 GeV, for λL,S ' 0 cancellations between scalar t-
and u-channel exchange diagrams and the four-point interaction diagram alluded to
above allow, again, for a sufficiently large thermal relic density. Such cancellations are
suppressed by driving λL,S away from zero. Thus, tuning λL,S for increasing values
of mH generally allows one to achieve the correct relic density for mass values from
mH & 500 GeV up into the multi-TeV range. This heavy mass regime of the IDM can
be seen as a low energy effective theory of a composite dark sector [42].

2The exact limit depends on the different possible choices of nucleon matrix elements, especially those
connected with the strange quark content of nucleons [38].
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MH MA MH± λL λ2 Tc Tn vc/Tc µγγ
BM1 66 300 300 1.07× 10−2 0.01 113.3 110.3 1.5 0.90
BM2 200 400 400 0.01 0.01 116.1 113.7 1.5 0.93
BM3 5 265 265 -6× 10−3 0.01 118.2 116.3 1.3 0.90

Table 1. Input parameters for the three benchmark scenarios discussed in the text along with
critical and nucleation temperatures, the transition strength and the signal strength for h→ γγ.
The masses, given in GeV, are pole masses and the couplings λi are specified at Q = MZ .
Temperatures are also given in GeV.

4 Benchmark Models

The benchmark models specified in Ref. [13] demonstrated various aspects of DM phe-
nomenology and the possibility for the IDM to influence the h→ γγ rate. Unfortunately,
none of the suggested scenarios exhibits a strongly first-order EW phase transition.
In this Section, we identify alternate benchmark models which can potentially yield a
strongly first-order EW phase transition, while having disparate properties for the light-
est Z2-odd particle. All our benchmark models are compatible with constraints from
Higgs collider bounds and rate measurements, which has been explicitly checked using
the tools HiggsBounds [43–45] and HiggsSignals [46], where the model predictions have
been calculated using a SARAH-generated SPheno version [47–50]. In the following dis-
cussion we mostly focus on the interplay between the dark matter phenomenology and
the strengths of the EWPT.

Our key finding is that the requirement of a strongly first-order phase transition gen-
erally leads to a large mass splitting between the LOP and the other scalars in the IDM.
Our benchmark models are summarized in Tab. 1, along with the corresponding criti-
cal and nucleation temperatures, as well as phase transition strengths, as parametrized
by the ratio vc/Tc. In each case the masses of the A and H± are chosen to ensure a
strongly first-order phase transition. In Fig. 1 we show the dependence of the transi-
tion strength on these parameters. The lines corresponding to BM1 and BM3 terminate
where the potential develops a non-inert (φ 6= 0) vacuum first during thermal evolution.
This vacuum can then either continuously evolve into the SM/inert (φ = 0) vacuum at
T = 0 or it can persist to low temperatures. In the latter case, the EWPT can occur
in two steps. Such models are viable if the inert vacuum is deeper than the new one at
T = 0 and both transitions complete (i.e., nucleation rate(s) are large enough). Two
step electroweak phase transitions have been investigated in detail in Refs. [51, 52]. In
this work we consider only simple one step transitions, hence the truncation. Notice
that in Ref. [19] the strength of the EW phase transition in models with multiple phase
transition steps was always weaker, see Fig. 3 and 4 in Ref. [19].

First, let us consider model BM1, where LOP production in the early Universe is
predominantly set by near-resonant s-channel Higgs exchange. This scenario has been
recently examined in the context of phase transitions in Ref. [19]. Even more recently,
it has also been suggested as a possible explanation [53] of the Fermi-LAT gamma-
ray excess (see Ref. [54] and references therein). As discussed above, the on-resonance
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requirement forces mH ∼ mh/2, but allows λL to be small enough to be consistent with
direct detection constraints. Here DM production does not rely on interactions with A
or H±, so their masses can be essentially chosen freely, as long as the resulting quartic
couplings λi (through Eq. (2.3)) satisfy perturbativity and constraints from electroweak
precision observables (EWPO), which we check with 2HDMC [55]. In order to satisfy
the BNPC of Eq. (2.23) one needs to increase the coupling of the new scalars to h,
which, in turn increases the splitting of A and H± relative to H. For this and the
following models we choose mA = mH± to minimize the impact of splitting these states
from H on the Peskin-Takeuchi T function [3] and to reduce the number of parameters.
This assumption can be easily relaxed, but the results are qualitatively similar. This
benchmark represents the only class of scenarios where the thermal LOP relic density
(which we calculated with the micrOMEGAs code [56]) matches the observed DM universal
density, and where the EW phase transition is strong-enough first order.

When mA, mH± & 340 GeV, the corresponding loop corrections to mH are large
and require µ2

2 < 0. This causes a second minimum to appear in the potential at T = 0.
As mA = mH± is increased further, this minimum quickly becomes deeper than the SM
one, corresponding to the termination of the blue curve in Fig. 1 at mA ∼ 350 GeV.
This behaviour was also observed in Ref. [19].

In this scenario, the LOP mass mH has been chosen slightly above the kinematic
threshold of the decay h → HH in order to evade constraints from direct searches for
invisible Higgs decays and Higgs rate measurements. These however become important
for our benchmark scenario BM3 (see below).

The second benchmark BM2 in Tab. 1 represents the intermediate mass regime.
Here annihilation into gauge bosons is efficient and DM is generally underabundant,
unless there is a cancellation among different amplitudes [13]. The cancellation depends,
as indicated above, on how close λL,S → 0, i.e., on how degenerate the IDM Higgs sector
is. In our benchmark, such a cancellation requires mH ≈ mA ≈ mH± with a maximum
splitting of ∼ 10 GeV. These small splittings lead to small couplings of the new states
to h and therefore an insufficiently strong phase transition. Thus the phase transition
requirement forces thermal relic DM to be underabundant. The observed DM density
can be explained here, however, by invoking non-thermal production mechanisms (e.g.,
the decay of a heavy particle) or with the existence of additional DM particles (e.g.,
axions). The multitude of “non-standard” production mechanisms has been recently
reviewed in Ref. [57].

The final benchmark model, BM3, belongs to the light-mass regime, and is another
example that requires further ingredients to be fully consistent with the phenomenology
of the DM sector. For mH < mh/2, decays of the SM Higgs to invisible final states
become possible, with a decay rate [3]

Γ(h→ HH) =
v2λ2

L

8πmh

(
1−

4m2
H

m2
h

)1/2

. (4.1)

Requiring consistency with the observed 95% C.L. upper limit on the branching frac-
tion, BR(h → HH) ≤ 17% [58], provides a strong constraint on the coupling λL of
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Figure 1. Phase transition strength as a function of the heavier IDM scalar masses, taking
mA = mH± . The remaining parameters are chosen as in the benchmark models of Table 1,
which are shown by black dots. The lines for BM1 and BM3 terminate where the inert doublet
develops a non-zero vev, φ 6= 0, as described in the text.

|λL| . 0.007, while a large value |λL| & 0.4 is required to sufficiently deplete the DM
abundance [13]. These problems can be remedied by softly breaking the Z2, which would
allow H to decay [59, 60]. As in the previous example, another explanation for DM is
then needed. An alternative possibility is to provide the LOP with new annihilation
modes, e.g., to new light vector bosons [61], or a mechanism to dilute the thermal relic
density, such as an episode of late entropy injection [62, 63].

DM phenomenology aside, it is again easy to get a strongly first-order phase tran-
sition with a large mass splitting between H and A, H±. We note that this scenario
requires a significant tuning of parameters, because a small LOP mass requires near can-
cellation of tree-level and loop contributions. For λL > 0, this leads to negative values
of µ2

2 which can result in the appearance of a new φ 6= 0 minimum.
In all three cases, the first-order transition is driven by the non-analytic (m2)3/2

terms (see Eq. 2.14) due to A and H±, while the gauge boson contributions are not
as important. This explains the common feature of large splittings between H and
A, H± among the benchmark scenarios. These lead to large couplings between h and
the new states, enhancing the size of thermal corrections. This appears to be a generic
requirement for increasing the strength of the phase transition in the IDM. In particular,
for the benchmark scenarios BM1, 2 and 3 we have (λ3, λ4 , λ5) ≈ (3.3,−1.7,−1.5),
(4.6,−2.3,−2.0) and (2.7,−1.4,−1.2), respectively, at the scale Q = 246 GeV. These
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coupling constants are large, but remain perturbative at energy scales of interest, which
we checked using the RG equations in Appendix A. It is also important to emphasize
that thermal corrections to the crucial (m2)3/2 terms from A and H± are not subject to
gauge invariance issues that affect the gauge sector contributions. As a result, we expect
these arguments to remain valid in the context of a fully gauge invariant treatment. This
can be further tested in a toy model with all gauge coupling constants set to 0, thereby
completely eliminating gauge dependence from the effective potential.3 We checked that
such a simplified analysis gives quantitatively similar results for critical temperatures
and transition strengths when the scalar couplings are large.

The high-T expansion of the effective potential also provides a simple explanation
for the shape of the curves in Fig. 1. In this limit the transition strength is proportional
to the coefficient of the v3 term [25]. For the IDM scalars such terms arise from the
non-analytic contributions proportional to (µ2

2 + λSv
2
c )

3/2 (assuming mA = mH± , as
above, and ignoring daisy contributions for simplicity), which behaves as v3 only when
λSv

2
c � µ2

2. Thus when λSv
2
c � µ2

2, the transition strength is independent of IDM
parameters, corresponding to the plateau of the green curve in Fig. 1. In the opposite
limit, the IDM gives an additional contribution to the cubic coefficient, so the transition

strength scales as vc/Tc ∼ λ
3/2
S ∼ m3

A, as illustrated by the monotonically increasing
sections of the curves in Fig. 1.4

For heavy masses m2/T 2 � 1 (with T ∼ 100 GeV), the IDM states thermally
decouple, but this does not mean that they have no impact on the phase transition.
When µ2

2 � |µ1|2, the heavy doublet can be integrated out to yield a SM effective
theory with the potential

V0 = µ2|H|2 + λ|H|4 + κ|H|6 + . . . (4.2)

where the dots stand for higher mass dimension operators. The parameters µ2, λ and κ
can be related to those in the fundamental IDM by equating the effective potentials for
the two models at a matching scale Q ∼ µ2. For example, one-loop matching yields

κ =
1

24π2µ2
2

(λ3
L + λ3

S + λ3
3/4), (4.3)

while µ2 and λ are determined below the matching scale by fixing the VEV and the
Higgs mass. With the presence of a dimension-six term in the potential, the barrier
required for a strongly first-order transition can be generated if λ . 0 and µ2 + cT 2 > 0
for T ∼ Tc, where c encodes thermal corrections from SM states only [29]. Scenarios of
this type have been considered, e.g., in Refs. [64–67]. One immediate difficulty is that in
the IDM κ is generated only at one-loop, so in order for this operator to be significant
for field values of around the electroweak VEV, one must overcome the loop suppression,
suggesting that the combination λ3

L+λ3
S +λ3

3/4 cannot be too small. This again forces a

3We thank Michael Ramsey-Musolf for pointing this out to us.
4The precise scaling is modified by Daisy corrections, O(µ2

2/λSv
2
c ) terms, finite-T and renormalization

group effects.
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large splitting between the IDM states, meaning that the heavy DM scenario described
in Section 3 cannot be realized together with a strongly first-order phase transition.
Such large couplings can run into perturbativity problems and invalidate the expansion
used to generate the effective field theory.

We briefly comment on the discovery prospects of the new IDM states at the LHC.
Due to the Z2 symmetry, the IDM states can only be produced pairwise at colliders.
Successive decays of the heavier IDM states A and H± into the LOP and a Z or W boson,
respectively, can give rise to multilepton signatures [10, 68, 69]. In a recent analysis [69]
of LHC searches for supersymmetric particles with two leptons plus missing transverse
energy in the final state in the context of the IDM, mass limits of up to mA . 140 GeV
for LOP masses mH . 55 GeV and charged Higgs masses around 85 − 150 GeV have
been derived. While these limits partly exceed previous limits from the LEP collider,
they are not yet sensitive to the parameter regions that yield a strongly first-order phase
transition as required for successful electroweak baryogenesis, see Fig. 1.

The Higgs portal coupling λL can be probed directly at the LHC by searching
for, e.g., jets plus missing energy [70]. However, the small magnitude of λL in our
benchmarks (as required by direct detection or relic abundance constraints) suggests
that these searches will not be sensitive to the models in Tab. 1.

The new IDM states can also have an indirect effect on precision Higgs measure-
ments. In particular, the new charged state H± provides an additional contribution to
the loop-induced h → γγ and γZ rates. These effects have been recently studied in
Refs. [71, 72] in the context of the 125 GeV Higgs boson. Modifications of these branch-
ing fractions by O(10%) are a generic feature of our benchmark scenarios, as we show
below. The h→ γγ rate has the form [22, 71–75]

Γ(h→ γγ) =
α2GFm

3
h

128
√

2π3

∣∣∣∣ASM +
λ3v

2

2m2
H±

A0

(
m2
h

4m2
H±

)∣∣∣∣2 , (4.4)

where the leading contributions to the SM amplitude ASM ≈ −6.56 + 0.08i come from
W bosons and top quarks. The second term is the new contribution from H±, where
A0 is a loop function with the property limx→0A0(x) = 1/3 [75]. For our benchmarks
we have λ3 > 0, so one expects a suppression of h→ γγ relative to the SM.5 Note that
for fixed µ2

2, the amplitude for the H± contribution tends to a constant value 1/3 as
λ3 is increased. This means that in the limit of a large mass splitting between H and
H±, which is required for a strongly first order phase transition, the branching fraction is
reduced by ∼ 10%. This effect was also noticed in Refs. [18, 21] for models similar to our
BM1 and BM2, respectively. The deviations to BR(h→ γγ) induced by H± are shown
in Tab. 1 in terms of the SM normalized signal strength µγγ = (σ BR)/(σ BR)SM. While
they are still consistent with the present measurements from ATLAS [76] and CMS [77],
the LHC should reach a precision of 4–8% for µγγ [58, 78], thereby definitively testing
the benchmark scenarios in Tab. 1.

5Various limits on LOP-Higgs coupling discussed above force |λL| to be small, such that the H mass
is primarily determined by µ2

2 (at tree level, see Eq. (2.3)). If the charged Higgs H± is heavier than H
then this forces λ3 > 0.
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While our benchmarks feature sizable deviations of BR(h → γγ) from the SM
expectation, we note that it is possible to avoid this by takingH± to be nearly degenerate
with H, and using A alone to drive the phase transition to be strongly first order.
However, in this case, efficient coannihilation of H with H± during freeze-out generally
results in a very small relic abundance [79]. The near degeneracy is also required by
constraints on the oblique T parameter when mA � mH± [3]. For example, taking
mH± = 70 GeV, mA = 370 GeV and other parameters as in BM1 results in a strongly
first order phase transition, an order of magnitude smaller relic abundance and only a
∼ 3% depression of µγγ relative to the SM.

5 Discussion and Conclusions

We studied the structure of the electroweak phase transition in the inert Higgs doublet
model, utilizing a set of three benchmark scenarios that feature a potentially viable dark
matter particle. Our choices for the three benchmark models essentially exhaust all
possible prototypical setups for particle dark matter in the inert doublet model. While
only one of the benchmarks has a dark matter particle with a thermal relic density
matching the observed dark matter density, the other two (under- and over-abundant)
can be made viable by invoking additional production mechanisms or a scenario where
the thermal relic density is diluted away, respectively.

The key finding of our study is that in all cases where the model possesses a
reasonable particle dark matter candidate, the inert scalar spectrum can be arranged in
such a way so as to produce a strongly first-order electroweak phase transition. Central
to achieving such a phase transition is to postulate a large enough splitting between the
dark matter candidate and the heavier inert scalars. The physics driving this result is
simple: Large mass splittings generically correspond to large couplings between the inert
scalars and the Standard Model-like Higgs; These, in turn, increase the magnitude of
non-analytic ∼ (m2)3/2 terms in the temperature-dependent effective potential and thus
the potential barrier between the field origin and the SU(2)×U(1)-breaking phase. It is
clear that this physical effect is generic, and, in fact, it has also been observed in other
implementations of Two Higgs Doublet models [80–82].

The mass splitting under consideration cannot be arbitrarily large. For large enough
values, for example, the phase structure of the model becomes more complicated, with
possible non-zero vacuum expectation values for the inert doublet and multiple-step
phase transitions. While, based upon the results of Ref. [19] the latter possibility is not
expected to yield stronger electroweak phase transitions than in the single-step case, this
is an interesting possibility which we leave for future studies.

The question of how to embed large-enough CP violating sources in detail was
also left unanswered here. It will be interesting to study whether such a source (for
example an additional gauge-singlet complex scalar, see Ref. [83]) significantly impacts
the electroweak phase transition and dark matter phenomenology, and, with this, the
conclusions reached in the present study.
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A Renormalization Group Equations

Here we list the beta functions for the inert 2HDM at one-loop order. The general form
of the RG equations is

dλ

dt
=

1

16π2
βλ, (A.1)

where t = lnQ/Q0 and Q0 is a reference scale. We take Q0 = MZ . The U(1)Y gauge
coupling has the GUT normalization: g1 =

√
5/3g′. The beta functions below have been

checked with SARAH [50]. Partial one loop results can be found in Refs. [13, 22, 84] for
dimensionless parameters only. These agree with the formulae below.

The gauge coupling evolution is determined by

βg1 =
21

5
g3

1 (A.2)

βg2 = −3g3
2 (A.3)

βg3 = −7g3
3. (A.4)

For the third generation Yukawas we have

βyt = −17

20
g2

1yt −
9

4
g2

2yt − 8g2
3yt +

9

2
y3
t +

3

2
y2
byt + yty

2
τ (A.5)

βyb = −1

4
g2

1yb −
9

4
g2

2yb − 8g2
3yb +

3

2
yby

2
t + yby

2
τ +

9

2
y3
b (A.6)

βyτ = −9

4
g2

1yτ −
9

4
g2

2yτ + 3y2
t yτ + 3y2

byτ +
5

2
y3
τ . (A.7)

Next we consider the scalar potential parameters. The evolution of the dimension-
less quartic couplings λi is governed by
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βλ1 = −9

5
g2

1λ1 − 9g2
2λ1 +

27

200
g4

1 +
9

20
g2

2g
2
1 (A.8)

+
9

8
g4

2 + 24λ2
1 + 2λ2

3 + λ2
4 + λ2

5 + 2λ3λ4

+ 12λ1y
2
t − 6y4

t + 12λ1y
2
b − 6y4

b + 4λ1y
2
τ − 2y4

τ

βλ2 = −9

5
g2

1λ2 − 9g2
2λ2 +

27

200
g4

1 +
9

20
g2

2g
2
1 +

9

8
g4

2 + 24λ2
2 (A.9)

+ 2λ2
3 + λ2

4 + λ2
5 + 2λ3λ4

βλ3 = −9

5
g2

1λ3 − 9g2
2λ3 +

27

100
g4

1 −
9

10
g2

2g
2
1 +

9

4
g4

2 (A.10)

+ 4λ2
3 + 2λ2

4 + 2λ2
5 + 12λ1λ3 + 12λ2λ3 + 4λ1λ4

+ 4λ2λ4 + 6λ3y
2
t + 6λ3y

2
b + 2λ3y

2
τ

βλ4 = −9

5
g2

1λ4 − 9g2
2λ4 +

9

5
g2

2g
2
1 + 4λ2

4 + 8λ2
5 (A.11)

+ 4λ1λ4 + 4λ2λ4 + 8λ3λ4 + 6λ4y
2
t + 6λ4y

2
b + 2λ4y

2
τ

βλ5 = −9

5
g2

1λ5 − 9g2
2λ5 + 4λ1λ5 + 4λ2λ5 + 8λ3λ5 (A.12)

+ 12λ4λ5 + 6λ5y
2
t + 6λ5y

2
b + 2λ5y

2
τ

The beta functions for the mass parameters are given by

βµ21 = − 9

10
g2

1µ
2
1 −

9

2
g2

2µ
2
1 + 12λ1µ

2
1 + 4λ3µ

2
2 + 2λ4µ

2
2 (A.13)

+ 6µ2
1y

2
t + 6µ2

1y
2
b + 2µ2

1y
2
τ

βµ22 = − 9

10
g2

1µ
2
2 −

9

2
g2

2µ
2
2 + 12λ2µ

2
2 + 4λ3µ

2
1 + 2λ4µ

2
1. (A.14)

Finally, the anomalous dimensions for the Higgs and the inert scalar are

γh = − 9

20
g2

1 −
9

4
g2

2 + 3y2
t + 3y2

b + y2
τ (A.15)

γφ = − 9

20
g2

1 −
9

4
g2

2. (A.16)
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