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Abstract

A new binding model which can formulate any architectures is presented in this
paper. Seversd simple algorithms which employ this model are proposed to demon
strate the performance on this model. Experimental results show that these algorithms
though are simple yet can obtain better results than previous complex algorithms. In
addition, exchanging sources of functional units and sharing functional units, which
can improve synthesized results by way of reducing MUX inputs required, are also
discussed in this paper.
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1 Introduction

In recent years, behavioral (high-level) synthesis[l,

2] has been recognized as one of the major design

methodologies. It allows us to specify a design in a

purely behavioral form, devoid of £iny implementation

details. For example, we can describe a design us

ing Booleein equations, finite-state machines and other

conceptual models. Then, an implementation for the

design can be generated by automatic synthesis tools,

instead of tedious manual design.

Behavioral synthesis involves the transformation of

a design specification into a set of interconnected RT-

components[2] which satisfy the behavior and some

specified constraints, such as the number of functional

units(FU), performance etc. Three major synthesis

tasks are applied during the transformation[l]: allo

cation, scheduling, and binding. The purpose of allo

cation is to determine the number of resources, such

as registers, buses, and FUs, that will be used in the

implementation. The task of scheduling is intended

to partition the behavioral description into time in

tervals, called control steps. During each control

step, which is usually one clock-cycle long, data will

be fetched from a register, transformed in a FU, and

written back to a register. All register transfers in

any given control step will be executed concurrently.

The binding task assigns variables to storage units,

assigns operations to FUs, and as well as makes sure

that there is a distinct communication path or bus as

signed for each transfer of data between the storage

and FUs.

1.1 Previous works

The binding task not only has to find an assignment

of each of the operations, variables, and data transfers

for the hardware components such that the hardware

can carry out the behavior of the design correctly, but

also makes the assignments coming with best value

toward a certain goal, for example, the hardware cost,

as far as possible. To achieve good binding, several

methods have been proposed. We can categorize these

methods into five groups as explained in the following

subsections:

1.1.1 Constructive methods

The operations are bound to RT-components in a step-

by-step fashion[3, 4,5]. A constructive algorithm starts

with an empty datapath and builds the datapath grad

ually by adding FUs, storages, or interconnections as

necessary.

For each operation, the algorithm tries to find an

FU on the partially designed datapath that is capable

of executing the operation and also idle during the

control step in which the operation must be executed.

On the other hand, if none of the FUs on the partially

designed datapath meet the conditions, the algorithm

adds a new FU from the component library that is

capable of carrying out the operation. Similarly, the

algorithm assigns a variable to an available register

only if its lifetime interval does not overlap with those

of variables already zissigned to that register. A new

register is allocated only when no allocated register

meets the above condition. Finally, as soon as both

the source and sink ofa data transfer have been bound,

the algorithm assigns an available interconnection for

it, or allocates a new interconnection when none of

those allocated interconnection is available.

Sometimes an expensive former binding can make

several very low-cost latter bindings possible. Since

the algorithm can't foresee the best final result, so

lutions derived by constructive approaches often far

away from optimed. Thus, iterative improvement[2],

which tries to optimize the result by inter-changing

bound operations, data transfers, and storage loca-



tions, is usually required[6].

1.1.2 Integer linear programming model

Some researchers[7, 8, 9] have proposed methods to

transform the binding problem into an Integer Linear

Programming(ILP) problem. They formulate the as

signments of operations, variable, and data transfers

by ILP constrains and transform the goal of the bind

ing problem into the cost function for the ILP prob

lem. Once the binding problem is transformed into an

ILP problem, we can use any ILP solvers to find the

point with minimum cost, then transform the coordi

nate of the minimum point back into assignments of

operations, variables, and data transfers for hardware

components. Since the cost of the point is minimum,

the final design is optimal.

The ILP modeling is the only way to find the opti

mal solution for the binding problem. However, since

a ILP problem is NP-complete[10], it would be very

time-consuming to solve a large description by way of

ILP modeling.

1.1.3 Polynomial-time optimal algorithms

In addition to ILP model, some researchers[ll, 12, 13]

have proposed polynomial-time algorithms which can

find optimal or near optimal solutions for some sub-

tasks of the binding task, for example, variable-to-

register assignments or data-trsmsfer-to-interconnection

assignments. However, since there are interdependen-

cies among these subtasks, no optimal solution is guar

anteed even if all of the subtasks are solved optimally.

For example, a design using five registers may need

ten more multiplexor inputs than another design using

six registei^. Therefore, the optimal register alloca

tion may cause a worse final design. Again, to obtain

better solution than those local optimals, iterative im

provement is usually required for this approach[13].

1.1.4 2-D placement model

Since the ILP methodsare too time-consuming, heuris

tic methods which can find good enough solutions in

reasonable time are required. The most populsir bind

ingmodel for heuristic approaches is2-D placement[14].

This model starts with determined resource allocation,

using a 2-D table which employs the resources as col-

' umn index, one column for each resource, and the con

trol steps as row index, one row per control step, then

formulate the binding task as placing all of the opera

tions, variables, and data transfers on the table under

following conditions:

1. Each field can be occupied by only one opera

tion, variable, or data transfer.

2. Each operation has to be placed on a field with

row index (a control step) at which the operation

should be executed and column index which is

an FU and able to execute the operation.

3. Each variable has to be placed on several fields

which is continuous on a column with column

index is a register, start at row index the same

with the control step at which the variable is

born, and end at row index the same with the

control step at which the variable dies.

Many 2-D placement heuri8tic8[14, 15, 16, 13] can

be applied on this model. Once the placement is com

pleted, those operations, variables, or data transfer

on each column will be bound to the same component

which is the same type with the column index. As

soon as the operations, variables, and data transfers

which go through buses are bound, the interconnec

tions can also be determined.

Since resource allocation has to be determined be

forehand, the 2-D placement model is often used for

iterative improvement[14, 13, 15, 16].



1.1.5 Clustering model

In addition to 2-Dplacement model, some researcliers[17,

18, 19] developed their heuristic algorithms based on

another model, clustering model. This model starts

with undetermined resource allocation, dealing the bind

ing task as a clustering problem where those opera

tions, variables, or data transfers which are clustered

together will be bound to the same hardware compo

nent. In HAL[18], they use weight-directed clique par

titioning to reduce total cost for MUXes during merg

ing vsiriables into registers, then merge MUXes into

buses to reduce more interconnection cost. In Elf[19],

they use both partition and grouping algorithms to

cluster data transfers into buses.

1.2 Our approach

We follow the clustering concept in our work. The

major contribution in this paper is the generic bind

ing model we proposed in Section 2. Our model can

provide following excellent features:

1. Our model allows to bind operations, variables,

and data transfers concurrently to globally search

a best design.

2. Our model can work for arbitrary architectures,

accept arbitrary component libraries, and be em

ployed by most algorithms.

3. Our model can express complete information for

the binding algorithm to work on detail improve

ments, for example, source exchange and FU

sharing, and to be fine tuned to obtain excel

lent design.

4. Our model can not only accept partial design but

also has partial designs always available during

the whole binding process. This feature is very

important for interactive high-level synthesis en

vironments such as t.?£f20], since design engi

neers would like to monitor the automatic syn

thesis process, add some partial design, and/or

change part of the automatic synthesized design.

This feature also allows people to incorporate

^timation tools, for example, wiring estimation

tools or layout estimation tools, to obtain faster

or more accurate synthesis results.

1.3 Paper organization

Our binding model is proposed in Section 2. Several

simple binding algorithms based on our binding model

are proposed in Section 3 and a source exchange algo

rithm is proposed in Section 4. Our model is so pow

erful that even simple algorithms can produce com

petitive or better results than previous complex bind

ing algorithms. We have done many experiments to

confide our analysis. Statistics on the experimental

results and some typical samples of our experiments

are shown in Section 5. Finally, we conclude our con

tributions and drawbacks in Section 6.

2 The binding model

In this section, we first define our binding model, then

illustrate how popular design rules are formulated in

our binding model.

2.1 Definition

The binding task assigns hardware to a scheduled con

trol/data flow graph (CDFG) to implement a spec

ified behavior while meeting performance and timing

constraints and minimizing implementation cost. To

perform this task, we first transform the scheduled

CDFG into a register-transfer flow-graph, which is de-

flned follow, then group those data structures which
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Figure 1: A scheduled DFG and its corresponding
RTFG

will be bound to one hardware component into one

cluster.

Definition 1 A register-transfer flow-graph

(RTFG) is a directed graph (V^, E) where

1. A vertex v € V represents an operation, a vari

able, or a data transfer.

2. An edge e ^ E indicates a data movement from

one vertex to another.

3. Each vertex is associated with clock stamps in

dicating its life time.

Figure 1 shows an example of the transformation

from a scheduled CDFG to its corresponding RTFG;

Figure 1(a) is a CDFG which has two operations, +

and X, and four input/output variables, VI, V2, ...

V4, and is scheduled into two control steps, Ci and

Cz- Figure 1(a) will be transformed into a 13-vertex

RTFG as Figure 1(b), where vertex -I- and vertex x

represent operations, vertexes VI, V2, ... V5 represent

variables, and vertexes Tl, T2, ... T6 represent data

transfers. Each operation or variable in Figure 1(a)

will be transformed into a corresponding vertex cis-

sociated with the corresponding clock stamps in Fig

ure1(b). Forexamples; the operation -H in Figure 1(a)

will be transformed into the vertex -I- associated with

a clock stamp Ci in Figure 1(b), and the variableV3 in

Figure 1(a) will be transformed into the vertex V3 as

sociated with clock stamps Co and Cj in Figure 1(b).

In addition, vertexes represent temporary variables,

for example V5, will be added into the RTFG, and

corresponding clock stamps, for example, Ci for V5,

will be stamped on them. Finally, each data transfers

between variables and operations will be transformed

into a corresponding vertex. For example, the data

transferfrom V3 to operation x in Figure 1(a) will be

transformed into the vertex T5 associated with a clock

stamp C2 in Figure 1(b).

Once the scheduled CDFG is transformed into a

RTFG, we can formulate the binding task as a clus

tering problem where we cluster all of the vertexes

in the RTFG into clusters such that those vertexes

which are clustered together are assigned to the same

hardware component. In most cases, this formulation

implies:

1. Vertexes associated with same clock stamps will

not be clustered together, since a hardware com

ponent can't perform more th€ui one jobs at the

same time.

2. Operations willnot be clustered together if there

is not a FU which can execute all of those oper

ation in the component library.

On the other hand, there may be some exceptions. For

example, the component library has a super-scalar

FU which can execute two additions parallelly, then

two addition-vertexes associated with the same clock

stamp can be clustered into a cluster.



2.2 Some peuradigms

Our binding model cam work for arbitrary architec

tures, accept eirbitrary component libraries, and be

employed by arbitrary algorithms. Any design rules

which are applied on the architecture style can be

translated into certain restrictions on clustering. In

this section, we are going to illustrate how popular

design rules are formulated in our binding model.

2.2.1 MUX-based design and bus-based de

sign

In case the design rule allows using only single-level

MUX interconnections, we can first cluster every ver

tex which represents a data transfer with its prede

cessor. On the other hand, when the design rule Jil-

lows using both MUX and bus interconnections, any

data transfer vertexes whose time stamps don't con

flict with each other can be clustered together to form

an interconnection. In this case, a cluster with only

one predecessor cluster will be assigned to a MUX,

and so will one with single successor cluster. A clus

ter with both more than one predecessor clusters and

more than one successor clusters will be sissigned to a

bus.

2.2.2 Pipeline FU

We use Figure 2 to show how pipeline components sue

interpreted in our model. In case there is no pipeline

multiplier in component library, two vertex^ which

both represent multiplies and have some coincident

time stamps can not be grouped into a cluster. For

exsimple, three operation vertexes for the scheduled

DFG in Figure 2(a) can only be clustered as in Fig

ure 2(b). On the other hand, in case there are pipeline

multipliers in component library, two vertexes which

both represent multiplies and have some coincident

(a) a scheduled DFG

.YXvYx

\ (>^]

XT'

\ 1 * • • f (c) clustering in case
(b) clustering m case of \ ' . ®.

• ,• 1- there are pipeline multi-no pipeline multiplier

Figure 2: Clusterings with and without pipeline FU

time stamps can be grouped into a cluster as long

as their first time stamps are different. For example,

three operation vertexes for the scheduled DFG in Fig

ure 2(a) can be clustered as in Figure 2(c) if there are

pipeline multipliers available.

2.2.3 Multi-function unit

Our model allows using multi-function units, for ex

ample, implementing additions by using adders, add-

subtractors, and ALUs. Figure 3 shows an exam

ple of using multi-function units. In case there is no

multi-function unit in component library, an RTFG

as shown in Figure 3(a) will be clustered as shown in

Figure 3(b). On the other hsind, in case there are add-

subtractor available, the RTFG in Figure 3(a) can be

clustered either as in Figure 3(b) or as in Figure 3(c),

depending on which cost is smaller.



(a) part of an RTFG
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(b) clustering 1 (c) clustering 2

Figure 3: Clusterings

2.2.4 Multiclock FU and FU chaining

Our model can also express the idea of multiclock FU

and FU chaining. Once an operation is scheduled to

be executed in more than one clock, more than one

time stamps would be attached to the operation when

the scheduled CDFG is transformed into RTFG. On

the other hand, once two operations are scheduled to

be chained together, the same time stamp would be

attached to both operations and those variable ver-

texes and data transfer vertexes between two opera

tions could be removed. Figure 4 shows an example

of how to express operation with or without chaining

in our binding model.

2.2.5 Customer components and binding al

gorithms

Special custom components can be expressed by cer

tain rules on clustering, too. For example, given a

component library with a register design which can

perform shifting, we will allow vertexes which repre

sent variables and vertexes which represent shift op

erations to be clustered together.

Basicly, a binding algorithm is assigning data struc

tures, such as operations, variables, or data transfers

•i»np«i Ca {—

(a) scheduled with no operation chaining

stamped

(b) scheduled with operation chaining

Figure 4: Operation chaining

to hardware components. Thus, we can directly trans

late "assign data structure e to hardware component

C" in any algorithms into "put data structure e to

cluster C" in our binding model, using the same pro

cess, cost functions, priorities, etc. Therefore, our

binding model can work with any algorithms and ex

press any customer components.

3 Simple algorithms

In the previous section, we have formulated the bind

ing task as a clustering problem. In this section, we

are going to propose some simple algorithms based on

our binding model and discuss their performance.

3.1 Preference functions

In general, people measure the quality of binding with

an cost function. This cost function is usually also be

used as the directive metric for the binding process.

Intuitively, the real cost[13, 14] or a real-cost-related

function, for examples, number of selectors, number of



registers, number of FUs, or a weighted combination of

them[6], was used as the cost function for the binding

process. Actually, it is not necessary to use the real-

cost-related cost function as the only directive metric

for the binding process. As long as we can obtain

better binding, any metrics could be used to direct the

binding process. In addition, we may use or switch

around several metrics to direct the binding process

when necessary.

In our experiments, we first followed the intuitive

thought using the real cost and real-cost-related func

tions to direct the binding process. But, we found

out later that using the number of common sources

and sinks as the primary key and the real cost as

the secondary key can obtain even better results than

that of using the real-cost-related functions. To dis

tinguish them from the conventional reeil-cost-related

functions, we call these directive metrics preference

functions. Experimental results about the preference

functions will be given in Section b.i.

The cost function( directive metric ) used in Sec

tion 3.2 and Section 3.3 could be based on the con

ventional real-cost-related functions or based on the

preference functions.

3.2 Deterministic algorithms

3.2.1 Greedy method

Our first solution is to cluster vertexes in the RTFG

using a greedy approach. Started with an initial clus

tering in which each cluster contains only one vertex

(when no partial design is input), we iteratively merge

two clusters with the best gain. At each step, we com

pute the gains from merging every two clusters, then

merge the best pair of clusters. We keep merging clus

ters step-by-step until no more gain can be obtained.

In case partial design was input, each of the clusters

in the initial clustering might contain several vertexes

Algorithm Greedy

begin
clusters = initiaLclusiering;
repeat

max^gain = —oo;
for i , j € clusters do

begin
gain = nierge.gain( i, j );
if gain > max_gain then

begin
ki = i;

kj = j;
maz^ain = gain;

end;

end; /» for ♦/

if max^ain > 0 then
merge_clusters( kj, ki );

until mcLX-gain < 0;
retum( clusters );

end

Figure 5: Algorithm Greedy

to correspond the partial design.

Figure 5 shows the algorithm of our greedy method.

In Algorithm Greedy, the function merge^ainC i, j

) returns the gain from merging two clusters i and

j. When cluster i and cluster j can not be merged,

for example, there are clock stamps which conflict be

tween two clusters, merge^ainC i, j ) returns—00

to prohibit they from being merged. The complexity

of Algorithm Greedy is O(n^), where n is number of

vertexes.

Experimental results in Section 5.2 show that Al

gorithm Greedy though is very simple yet can obtain

excellent results, especially when it deals with small

designs.

3.2.2 Finish one cluster first

Some mishaps might happen on Algorithm Greedy in

which we merge the best pair in every step. Figure 6

shows a typical example of the mishaps. In the figure,

solid circles represent vertexes in a RTFG. Ci, C2, and
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Figure 6: A typical example of the mishaps

C3 represent different time stamps on these vertexes.

In Figure 6(a), six vertex^ are clustered to 4 clus

ters, Xi,X2, ...X4. The prospected gain from merg

ing Xi and X3 is 18, from merging X2 and X4 is 19,

and from merging X3 and X4 is 20. Following Algo

rithm Greedy, X3 and X4 which have the best gain

will be merge next and finally become the clustering

shown in Figure 6(b) with total gain 20. But, if we

merge X2 and X4 first, we can merge Xi and X3 fur

ther more. Thus, we can obtain total gain 37, which

is much better than that of Algorithm Greedy, and

obtain the final clustering with only two clusters as

shown in Figure 6(c).

To overcome this mishap, another step-by-step ap

proach is proposed. In this approach, we grow one

Algorithm One-Cluster

begin
clusters = initiaLclusiering]
i = find_a_seed( clusters );
vhile i ^ do

begin
repeat

meot^aia = —00;
for j G clusters do

begin
gain = merge-gainC i, j );
if gain > max^ain then

begin

k = j;
nax^ain = gain;

end;

end; /* for ♦/

if max..gain > 0 then
i = Bierge_cluster( i, k );

until max_gain < 0;
i = find^^eedC clusters );

end /» while »/

returaC clusters );
end

Figure 7: Algorithm One-Cluster

cluster at a time. We first compute the gains from

mergingevery two clusters, as that in Algorithm Greedy,

and merge the best pair of clusters into one cluster.

This cluster is then used as a seed. We compute the

gains from merging the seed with its neighbor clusters

and merge it with the best neighbor from which we

can obtain the best gain. We keep growing the seed

by iteratively incorporating the best neighbor cluster

into it until no more gains can be obtained. Once a

seed is grown to the maximum, we select the next seed

by computing the gains from merging every two clus

ters in current clustering again and merging the best

pair into one, which will be used as the new seed. We

keep doing this process, growing a cluster to the max

imum then select Euiother seed, until every cluster is

grown into maximum.

Figure 7 shows the algorithm of this approach. In



Algorithm One-Cluster, the function 1 ind_ajBeed com

putes the gains from merging any two clusters in the

given clustering, then return the cluster formed by

merging the best pair, as what Algorithm Greedy do

within one iteration. The function merge_clnster

merges two clusters which are given to it then return

the merged cluster. And, as in Algorithm Greedy, the

function merge_gain( i, j ) returns the gain from

merging two clusters i and j. The complexity of Al

gorithm One-Cluster is 0(n®), where n is number of

vertexes.

It is easy to guess that there would be more chance

for the mishap mentioned in Figure 6 when dealing

with larger designs. As expected, experimental results

in Section 5.2 show that Algorithm One-Cluster can

obtain better results than that of Algorithm Greedy

when dealing with larger designs.

3.2.3 Spanning

The clusters which are grown by Algorithm Greedy or

Algorithm One-Cluster may not be adjacent to each

other. Some clusters which are later grown and sur

rounded by large existed clusters would have less free

dom to be grown well, since most of their chances to

merge with other clusters were blocked by those large

clusters surrounding them. Thus, another algorithm.

Spanning, is proposed to overcome this problem.

To avoid a later-grown cluster might be surrounded

by other existed large clusters. Algorithm Spanning

works in a best-first spanning-tree[21] style. Similar

to Algorithm One-Cluster, we first select the cluster

created by merging the best pair of clusters as the

seed then iteratively incorporate the best neighbor of

the seed into it until no more gains can be obtained.

Once there are no neighbors that can be incorporated

into the seed, we select a new seed from the neighbors

of the old seeds following the best-first criteria, then

Algorithm Spanning

begin
clusters = inUiaLclusiering;
kernel - <p;
i = find.A_seed( clusters );
vhile i ^ ^ do

begin
repeat

max_gain = —oo;
toT j £ clusters do

begin
gain = merge_gain( i, j );
il gain > mcuc^ain then

begin
k = j:
max-gain = gain;

end;

end; /* lor */

il meuc-gain > 0 then
i = merge_cluster( i, k );

until msoc_gain < 0;
kernel = kernel U { i };
i = lind_a_seed( neighbor( kernel ) );
if i = 0 then

i = findji_seed( clusters );
end /* while */

retumC clusters );
end

Figure 8: Algorithm Spanning



grow the new seed to maximum in the same way. This

process will be continue as far as we can obtain further

gains.

Figure 8 shows the Algorithm Spanning. Similar

to Algorithm One-Cluster, the function find_ajseed

merges the best pair of clusters given and return it

as the seed, the function merge_cluster merges two

clusters which are given to it then return the merged

cluster, and the function merge^ainC i, j ) returns

the gain from merging two clusters i and j. The vari

able kernel is the set of the old seeds and the function

neighborC kernel ) returns all of the neighbors of

the elements in kemel. The complexity of Algorithm

Spanning is 0(n®), where n is number of vertexes.

Unfortunately, experimental results, which would

be given in Section 5.2, show that Algorithm Span

ning did not obtain better results than that of Al

gorithm One-Cluster. It seems that clusters which

are grown independently in RTFG usually have no

problem to fit each other later. Moreover, since Al

gorithm Spanning puts more restrictions on selecting

new seeds, the results may be worse than that of Al

gorithm One-Cluster, and even worse than that of Al

gorithm Greedy,

3.3 Random approaches

There is a partial ordering[22] among all of the valid

clustering for an RTFG. This partial ordering looks

very good for simulated-annealing-like exploding. We

can define the partial ordering as following:

Definition 2 Given an RTFG, let ^ be the set of all

ike valid clusterings for the RTFG. Define

•^1 < ^2 = is equal to or contained in xi

^1,^2 C 3ii C Xi, Var2 G ^2

Then, ("Jf, <) is a partial order.

[pj [pj

•Ci) I I rca); i (£2) 1 ((£2) j! (£3)

@i (§)
S) (cS)!

\ /
^£1) 1

Figure 9: An example of the partial ordering among
clusterings

Figure 9 shows an example of this partial ordering.

In the figure, solid circles represent four vertexes in

an RTFG and Xi, X2, ... Xe are six valid clusterings

for these vertexes. Ci, C2, and C3 represent three

different time stamps. There are two time stamps,

C2 and C3, in the up-right vertex. Xi is the initial

clustering. Thick arrows show possible ways to merge

clusters. Two clusterings connected by a thick arrow

are immediate predecessor and successor in the partial

order, for example, X2 < Xi. As transitivity applied

on partial ordering, a predecessor of one's predecessor

is also its predecessor, for example, X5 < Xi.

Two observations on the above partial ordering can

be made as following:

Observation 1 Let ^ denote the set of all the valid

clusterings for an RTFG. Given A,B € 9 , A <

B =>• cost{A) < co8t{B) , where cosi{) is a hard

ware cost function, cost-related function, or preference
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Figure 10: The structure of all the valid clusterings
for an RTFG and the random approach

function.

Observation 2 The cosi(X) for an entity X which is

in the neighborhoods of an entity Y which is associated

with a local or global minima/ cosifY) would also be

small, where AT, y € ^ .

Based on these observations, two simulated-annealing

like algorithms, Best-path and Average-path, are pro

posed in this section. Figure 10shows the idea of these

algorithms: If we sort higher cost clusterings upward

and lower cost clusterings downward, the shape of the

partial ordering structure of all the valid clusterings

for an RTFG will look like the shadow area in Fig

ure 10. The path comprised by solid arrows shows

Algorithm Best-path

begin

clusters = initiaLclustering;
repeat

kc = oo;

repeat

i = pick.a^-cluster( clusters );
j = pick_a_cluster{ clusters );
c = cost-explore( i, j );
if c < kc then

begin
ki = i;

hj = J:
kc = c;

end

tmtil stop.criterion^attsfied;

merge_cluster( kj, ki );
until nojaerging-available( clusters );
retum( best_clustering_ever-found );

end

Figure 11: Algorithm Best.path

the trace of which we search downward the optimal

solution. We start at the initial clustering, which is

always associated with the highest cost, then itera-

tively search downward. At an iteration with tem-

perature(cost) T|̂ ( thick horizontal dashed line ), we

randomly sample a number of leaf descendants of the

current partial design, as those thin dashed arrows

comingout from the dot(the current partial design)on

the thick dashed line, then pick the best branch(the

dot on the head of the thick solid arrow) as the next

partial design and lower the temperature to (

the upper thin dashed line ). Finally, if we can reach

a partial design at the mouth of the optimal solution

valley, for example, the dot on the lower thin dashed

line, we will eventually reach the optimal solution.

Figure 11, Algorithm Best-path, shows an imple

mentation of this idea. In the algorithm, the function

pick_a_cluster randomly selects a cluster. The func

tion cost-explore randomly finds a leaf descendant in

the brzinch where we merge clusters i and j of the cur-



Algorithm Average-path

begin
clusters > iniiiaLclustering;
repeat

kc = oo;

repeat

i = pick^.cluster( clusters );
j = pick^.cluster( clusters );
c = 0 ;

ior count = 1 to ajnumber do

c = c + cost_explore( i, j );
if c < kc then

begin
ki = i;

kj = j:
kc = c;

end

until siop.criierion^aiisfied',
merge-clusterC kj , ki );

until no_merging-available( clusters );
retumC best_clu8teringjBver_found );

end

Figure 12: Algorithm Average-path

rent partial design. If a better clustering is found when

cost-explore is executed, the clustering will be stored

in best-clusteringjsver-found. When there are no

more clusters which can be merged in clusters, the

function nojmerging-available returns true, other

wise it returns false. Several criteria may be used as

the terminating condition for the inner loop, for ex

amples, number of trying, or number of continuous

non-progressing trying. In our experiments, we num

ber of trying as the terminating condition.

Figure 12, Algorithm Average-path, shows another

implementation of the idea. To increase the confidence

of cost exploration in each branch, this algorithm sam

ples ajaumbtr of leaf descendants for each branch and

use the average cost of the leaf descendants of each

branch to decide which brsmch to go, in place of sam

pling just one leaf descendant as we do in Algorithm

Best-path. On the other hand, within a limited time.

pp . "U

fK,
I ,'a - f

k ^ -

'1 ^d, ; i
T> ..-.I /

optimal
solution

Figure 13: An example of going into a wrong valley

Algorithm Average-path can try less branches than

Algorithm Best-path can do.

In stead of returning the final clustering clusters,

both Algorithm Best-path and Algorithm Average-

path returns best-clusteriug-ever-found, which is

the best clustering that has ever been found during

cost exploring. The final clustering would be differ

ent from best-clusteringjBver.found if we unfortu

nately went into a wrong valley. As illustrated in Fig

ure 13, we sample three instances( dashed arrow a, b,

and c ) among leaf descendants of the current partial

design{ dot k ). The best sampled instance a is un

fortunately located in a valley other than the optimal

valley. Thus, the current design will move from k to

m and we would have no chance to reach the optimal

solution any more. In this case, the final clustering

n could be a worse design than a cost exploration d.

However, if only we sample effectively and enough, we

can have just little probability to go into a wrong val

ley.



(a) Operations bound to the adder:

add\{ bus 1 , bus 2 )
add^i bus 2 , bus 3 )
addzi bus 3 , bus 1 )

Before source exchange i After source exchange

Total selector bits s 6 | Total selector bits » 4

Figure 14: An example of saving selectors by exchang
ing sources

Unfortunately, our resewch in random approaches

did not get better results than that of determinis

tic algorithms. However, experimental results in Sec

tion 5.3 show that our methodology is correct but bet

ter exploring strategy is required.

4 Source exchange

There are a number of two-input operations whose

sources are commutative[22], for examples, additions,

multiplications, etc. Properly exchanging the sources

of these operations would save a considerable number

of selectors.

Figure 14 shows an example of how exchanging the

sources can save a number of selectors. In the example,

three additions, as shown in Figure 14(a), are bound

to an adder. They source three buses. Under straight

forward implementation as shown in Figure 14(b), six

selector bits are required. However, we could exchange

the sources of add^., where the functionality of the de

sign won't change, and only four selector bits are re

quired, as shown in Figure 14(c). Two selector bits

are saved after the source exchange.

Ly et. al.[19] have noticed this fact and exchange

sources of some commutative operations according some

heuristic before running their binding algorithms. On

the other hand, Choi and Levitan[13] randomly ex

change sources of commutative operations to get bet

ter results. However, there are no proposed algorithms

which are able to find the optimal solution in polyno

mial time. Different from their works, we propose a

post-processing algorithm which has linear time com

plexity.

In our work, the sources are exchanged into an op

timal or a nearly optimal combination after the op

erations, variables, and data transfers are bound to

hardware components. We first describe the relation

among the sources of the operations which are bound

to the same FU with an incompatible graph, which is

defined in Definition 3, then use a red-black coloring

sdgorithm to decide which input-port a source should

be bound to.

Definition 3 An incompatible graph {V, E) for an

FU IS an undirected graph where

1. A vertex v represents a source component.

2. An edge e £ E represents an operation which

sources two components connected by the edge e.

Two vertexes(sources) are said to beincompat

ible if they are connected by an edge.

Since two sources of an operation can't be bound to the

same input of an FU, two incompatible vertexes should

be bound to different inputs.

Figure 15 shows an example of the incompatible

graph. As shown in Figure 15(a), there are four op

erations Opi.. .Op4 bound to an FU, which sources



(a) Four operations
which are bound to an

FU and their sources:

Opi{Si,S2)
Op2{Si,S3)
Op3{S2,S4)
Op4{S2, S3)

(b) The corresponding
incompatible graph
/®\ Opi /SN 0P3 /Fi,

Figure 15: An incompatible graph example

four components S1...S4. Figure 15(b) shows the

corresponding incompatible graph. Each edge in Fig

ure i5(b) represents an operationin Figure 15(a). For

example, the edge Opi, which connects Si and S2, rep

resent the operation Opi, which sources Si and S2.

Once we have the incompatible graph, we can color

each vertex with red or black, where two incompatible

vertexes should have different colors, to decide which

input of the FU the vertex(source) will be bound to.

Those which are colored with red will be bound to one

input and those which are colored with black will be

bound to the other. However, there might be some

sources which inevitably have to be bound to both

inputs of the FU. These vertexes will be colored with

both colors. For example, one of the sources Si, S2,

and 53 in Figure 15(a) has to be bound to both inputs

of the FU, and one of the vertexes Si, S2, and S3 in

Figure 15(b) will h£is both colors, too. Finally, if we

can find a coloring for the incompatible graph with

least number of bi-colored vertexes, we can obtain a

design with least number of selector bits.

There are no polynomial time algorithms which can

find out such a coloring so far. lu our work, we use a

quick and effective red-black coloring algorithm which

can find a near optimal solution in linear time com

plexity. Figure 16 shows our coloring algorithm, Al

gorithm Red-black-coloring. The algorithm works in

a breadth-first spanning-tree[21] style. We first select

a seed v from the vertexes which are not colored and

Algorithm Red-black-coloring

begin
repeat /♦ spanning tree */

V = select^eed( incompatible.graph );
V.color = red ;
repeat /* coloring neighbors »/

ii V.color = red then

neb.color = black

else

neb.color = red;
for i E neighbor( v ) do

if i.color = no.color then

if j.color = V.color
or bLcolor or no.coior ,
V j E neighborC i ) then
begin

i.color = neb.color;
addj^ueue( i );

end

else

i. color = bLcolor;
V = popjqueueO;

until V = 0;
until alLvertexes.are-colored;

end

Figure 16: Algorithm Average.path



color it with one color, for example, red, then color

all of v's neighbors with the other color neb-color

or bi-color. When coloring a neighbor i of v with

aeb_color will cause no color conflict with all of i's

neighbors, we color i with neb.color. Otherwise, we

color i with bi-color. Once we have colored all of the

neighbors of the seed v, we follow the breadth-first cri

terion to select a newly uni-colored( black or red ) ver

tex as the next seed and repeat the coloring-neighbor

process. When there are no seed candidates among

newly colored vertexes, we again select a vertex with

no color as the next seed and start another breadth-

first spanning-tree process. This process will not stop

until all of the vertexes are colored.

In Algorithm Red-black-coloring, the function

select_seed selects a vertex with no color as the seed

and the function neighbor returns all of the neigh

bors of the vertex given. We use a queue to main

tain the breadth-first order. New uni-colored vertexes

are stored into the queue and will be popped out

one-by-one to be used as the next seeds. Two sub

routines add-queue and pop.queue are used to access

the queue. When the queue is empty, pop_queue re

turns <j>.

Our approach can find a near optimal solution within

linear time. Actually, we obtained optimal solutions

in almost all of our experiments, which are shown in

Section 5.4.

In the rest of this section, we are going to introduce

a series of theorems which help evaluate the perfor

mance of Algorithm Red-black-coloring in Section 5.4.

Lemma 1 There are only two colorings for a con

nected 2-colorable graph. These colorings are isomor-

phic.

Lemma 2 A graph is 2-colorable if and only if all of

Us connected subgraphs are 2-colorable.

Since Algorithm Red-black-coloring can colorany con

nected 2-colorable graph, we have:

Theorem 1 Given a 2-colorable graph, Algorithm Red-

black-coloring can find a coloring for the graph.

Theorem 1 implies that a graph which is colored by

Algorithm Red-black-coloring with bi-colored vertexes

is not 2-colorable. Moreover, since one is the smallest

positive integer, we have:

Theorem 2 A coloring obtained by Algorithm Red-

black-coloring with only one bi-colored vertex is opti

mal.

Furthermore, with Lemma 2, we have:

Theorem 3 A coloring obtained by Algorithm Red-

black-coloring with only one or no bi-colored vertex in

each connected subgraph is optimal.

5 Experimental results

We have done many experiments to confide our analy

sis, since some algorithms might be good for only one

or two cases. In the rest of this section, we are go

ing to show statistics on our experimental results and

couples of typical examples. In the cases we referred

real cost, we use VLSI Technology Inc. VCC4DP3

Datapath Library[23].

5.1 Preference function vs. real area
cost

To prove that preference function is a better directive

metric than real area cost, we compared results which

are synthesized under same conditions except using

different directive metrics. Some typical examples are

shown in Table 1. Statistic results on performance of

preference function and real area cost are shown in

Table 2.



Greedy

One-Cluster

Spanning

Elliptic Filter[24J : use registers
dir. metric bus reg sel total + *

area

real cost 8 10 12 26 38 48 2 2 78.0
preference 11 9 8 18 26 35 3 2 66.4

real cost 10 8 17 24 41 : 49 , 2 B
B
B

76.8

preference 8 , 8 9 22 31 39 2 66.8
real cost 10 8 17 24 41 49 2 76.8

preference 8 7 13 25 38 45 2 2 71.7

Elliptic Filter[24] : use register files
algorithm [ dir. metric j bus RF sel drv muxin I total I mem

Greedy

One-Cluster

Spanning

real cost

preference
real cost

preference
real cost

preference

6 21

6 2

84.4

72.8 14%

79.6

64.0 20%

Table 1: Some samples of results obtained by using preference function and real area cost as the directive metric

algorithm reg muxin total area
Greedy 0^9 0^55 098 0.908

One-Cluster 0.984 0.409 0.613 0.873

Spanning 0.984 0.444 0.651 0.906
overall | 0.983 | 0.434 | 0.6^ 0.895

Table 2: Average reduction ratio of results obtained
by using preference function as the directive metric
over results obtained by using real area cost

Table 1 shows some synthesized results of an El

liptic Filter[24]. The first and second columns are

the algorithms and the directive functions used. The

columns entitled by 'sel' and 'muxin' are the numbers

of selector bits required and the summations of selec

tor bits and bus drivers. The column entitled by 'total'

are the total numbers of selector bits, bus drivers, and

registers/register files. The column entitled by 'mem'

are total memory in register files. The last column are

improvements( reduction in area ) obtained by using

preference function as the directive metric in place of

using real area cost.

Table 2 shows the statistics of improvements in

numbers of registers/register files, MUX inputs, MUX

inputs plus registers/register files, and area. The num

ber in each field is the average reduction ratio of results

obtained by using preference function over results ob

tained by using real area cost. 16 cases are tested on

each algorithm for the comparison. The last row are

the overall averages. From this statistics, we can see

using preference function as the directive metric can

reduce more than 50% MUX inputs. The area reduc

tion for whole design is approximately 10% in aver

age, since MUXes occupy approximately 20% area in

a design and there is only little reduction in either

registers/register files or FUs.

5.2 Deterministic algorithms

To show our algorithms though are simple yet can ob

tain results as well as that of complex algorithms in

previous works, wecompareour results with Schalloc[25],

STAR[6], and M&M[13], which have their scheduling

available in the articles. In Table 3 and Table 4, to

make comparison with their works[25, 6], we restricted

our algorithms to use the same numbers of FUs with



algorithm bus reg muxin
Schalloc 11 6 11

Greedy 9 5 4
One-Cluster 7 4 6

Spanning 7 4 6

Table 3: Results for the HAL

algorithm I bus I RF I mem I sel I drv I muxin
STAR T5 ^3 11 16 13 29

M&M U 5 9 12 13 25

Greedy 11 6 11 21 12 33

One-Cluster 8 5 10 16 2 18

Spanning 9 5 10 12 15 27

Table 4: Results for the Elliptic Filter

^Because M&M and STAR use different bus counting rule from
ours, the number of buses in our work looks much larger than
that of theirs. In fact, the numbers of buses required in their

works are similar to that of ours.

^ In addition to register files, STAR iises a ROM.

what they used, where our algorithms might be de

graded a little since our algorithms are designed to

target the best total cost. However, our algorithms

still obtained better results than theirs. On the other

hand, since different scheduling certainly results in dif

ferent binding, we are not able to make fair compari

son with other previous works.

Table 3 shows experimental results of Schalloc and

our work. The d^ign tested comes from HAL[26]

which is scheduled into 6 control-steps as in[25]. Ta

ble 4 shows experimental results of M&M, STAR, and

our work. The design tested is an Elliptic Filter[24]

which is scheduled into 17 control-steps as in[6]. The

numbers of MUX inputs and select bits required for

our algorithms in both tables are the amounts required

after performing source exchange. Simileu- to our work,

M&M performs source exchange, too.

Table 5 shows the statistics on results among our

algorithms. We use Algorithm Greedy as the basis for

algorithm ^reg muxin total mem area
Greedy 1.000 1.000 1.000 1.000 1.000

One-Cluster 0.883 0.786 0.814 0.900 0.960
Spanning | 0.883 | 0.914 | 0.925" 0.950 1.018

Table 5: Average ratio of results obtained by each
algorithm over results obtained by Algorithm Greedy

^ number ofregisters or register files

comparison. The number in each field is the average

ratio of results obtained by each algorithm over results

obtained by Algorithm Greedy. 18 cases are tested on

all of the algorithms for this comparison. When calcu

lating MUX inputs, we ignore samples which result in

different numbers of FUs from majority, since a design

using one extra FU may reduce tremendous number of

MUX inputs required. However, the area ratios have

reflected this impact. The column entitled by 'mem'

are ratios for total memory in register files.

From Table 5, we can see Algorithm One-Cluster

performs the best. Actually, when dealing with smedl

design, for example, the HAL in Table 3, three algo

rithms perform similar. One algorithm may be better

in some cases but worse in other cases. However,when

dealing with Ijirger design, for example, the Elliptic

Filter in Table 4, Algorithm One-Cluster becomessig

nificantly better than others.

5.3 Random approaches

Our research in random approaches did not get better

results than that of deterministic algorithms. How

ever, experimental results strongly support our model

for random approaches.

Table 6 shows some typical results of our random

approaches. The second column are numbers of RTFG

vertexes in the designs. The last column indicates

whether or not the final clustering is the same with the

best clustering which is found during cost exploring.

In the third column, those algorithms indicated by '*5'



overall

bus reg sel drv muxm total ; area

13.0% -6.9% 20.0% i 26.6% 23.2% 17.3% 8.7%
same clustering^ 6.5% -7.7% 16.7% 20.2% I 18.4% | 13.3% | 5.3%

different clustering^ | 17.4% | -6.4% | 22.2% 30.8% 26.4% 20.0% 10.8%

Table 7: Average increasing ratio ofresults obtained by our random approach over results obtained by Algorithm
Greedy

^Occasions where the final clustering is the same with the best clustering
^ Occasions where the final clustering is different from the best clustering

HAL Elliptic Filter
algorithm-^ before after imp before | after | imp
Greedy 6 2 "67^ 24

One-Cluster ^ 4 33% 23 16 30%
Spanning | 6 | 4 | S3%~ 22 12 45%

Table 9: Numbers ofselector bits required before and after source exchange

edso can see that our red-black-coloring algorithm can

obtain optimal solutions in more than 97% cases from

this table. Some examples of improvement obtained

by source exchange are shown in Table 9.

5.5 Functional unit sharing

To show the improvement obtained by FU sharing, we

compared results which are synthesized under same

conditions except allowing using different FUs. Ta

ble 10 shows average improvement obtained by FU

sharing, where 8 designs are tested by every algo

rithm. The second column are average improvements

obtained by allowing using add-subtractors, which can

perform both additions and subtractions, from that of

allowing using only single-function components, which

can perform only one type of operations. The third

column are improvement obtained by allowing using

both add-subtractors and ALUs from that of allowing

using only single-function components. The ALU we

used Cein performs comparison and logic operations, in

addition to addition and subtraction.

In practical works, there used to be several types of

Greedy
One-Cluster

Spanning
overall

add-sub add-sub

k ALU

4.90%

5.19%

5.19%

5.12%

7.03%

7.98%

7.31%

7.41%

Table 10: Average improvement obtained by FU shar
ing

operations in a design. There is trade-off between us

ing multi-function FUs and using mono-function FUs

to implement these operations. Using multi-function

FUs can reduce the number of FUs required, since

the utilization of FUs is increased. However, a multi

function FU is more expensive than a mone-function

FU. Total FU cost for using less number of multi

function FUs may be higher than total FU cost for

using more number of mono-function FUs.

In addition to the cost for FUs, there is another

even bigger impact when using multi-function FUs.

Since there are more selections for each operation to

be bound to, better interconnection can be obtained.

Thus, the number of MUX inputs required is reduced.



case#2

algorithm bus reg sel drv muxin total area same

Greedy 7 9 19 17 36 , 45 76.0 -

Best-path 8 9 23 22 45 54 85.0 N

m 8 25 20 45 53 82.9 N

Average-path 7 8 19 22 41 Y

Average-path*5 ma 36 43 73.9 Y

Greedy 12 14 27 30 57 71 984 -

Best-path 12 13 56 69 125 138 1643 N

Average-path 11 13 50 65 115 128 1543 N

Table 6: Some experimental results of our random approach, compared with results of Algorithm Greedy

explore 5 times of branches while making each deci

sion. We can see that more branch exploring can ob

tained better results. As we understand in Section 3.3,

more branch exploring, less chance to go into a wrong

valley.

Table 7 shows the statistics on experimental results

of our random approach. The number in each field

is the average increasing percentage of the resource

required for the occasions over the resource required

for results obtained by Algorithm Greedy. From this

table, we can see that the random approaches so far

didn't do better than the deterministic approaches in

general, except using less registers/register files.

It is a necessary condition (but not sufficient) for

going into the optimal valley that the final clustering is

the same with the best clustering which is ever found

during cost exploration. In our experiment, there are

10 out of 16 occasions where the final clustering is dif

ferent from the best clustering. It implies that the

number of instances we sampled in both of our ran

dom algorithms is not capable of providing enough

stochastic confidence. Moreover, in case the final clus

tering is the same with the best clustering, the results

are better in average, as shown in Table 7. Actually,

only 1 out of 16 occasions obtained better result than

the deterministic algorithms. That is to say that the

probability where our random algorithms obtain op-

number of instances tested 2496

average selector bits reduced ) 34.00%

non-optimal results less than 54

less than 2.16%

Table 8: Summary of experiments on source exchange

timal designs is less than — so far. Although there

is only one case successful, yet it shows that our ran

dom approach has potential to find optimal designs.

Our methodology is correct but better cost exploring

strategy is required.

5.4 Source exchange

To show the improvement obtained by performing source

exchange, we computed the numbers of selector bits

saved. It is amazing that properly exchanging sources

of commutative operations can improve results as much

as very time-consuming iterative improvement[6].

Table 8 shows the summary of our experiments

on source exchange. We can see that a considerable

amount of selector bits are saved by performing source

exchanges. Moreover, Theorem 3 provides a neces

sary condition for non-optimal instances. According

to the theorem, we can determine the upper bound

on the number of non-optimal results by those de

signs where each has more than one bi-colored ver-

texes within one connected subgraph. As a result, we



Actually, after we inspected the final designs, we un

derstand that the improvement for using multi-function

FUs sometimes is not obtained by reduction in the cost

for FUs but is obtained by using less MUX inputs.

6 Concluding remarks

A clear binding model which can formulate any archi

tectures is presented in this paper. This model which

provides complete binding information can help people

working on detail implementations and fine tune their

binding algorithms. In addition, this model can also

be used in interactive synthesis environments. Several

simple algorithms which employ this model are pro

posed to demonstrate the performance on this model.

It is not necessary to use a real-cost-related function

as the only directive metric for a binding algorithm.

Some other metrics may work even better. In addi

tion, sharing FUs can reduce the cost of a synthesized

result by increasing utilization of FUs and more im

portant, reducing a considerable number of MUX in

puts required. Moreover, it is amazing that properly

exchanging sources of FUs can save more than 30%

selector bits. A linear-time post-processing source ex

change algorithm, which can find an optimal solution

in most cases( more than 97% ), is edso presented in

this paper.

Experimental results show that our binding model

is very useful in performing the binding task. Using

our binding model, even simple algorithms can obtain

better or competitive results than previous complex

algorithms did. However, better sampling strategies

are needed for our random approaches.
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