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Summary. Often in regionally aggregated spatiotemporal models, a single variance pa-

rameter is used to capture variability in the spatial structure of the model, ignoring the

impact that spatially-varying factors may have on the variability in the underlying process.

We extend existing methodologies to allow for region-specific variance components in our

analysis of monthly asthma hospitalization rates in California counties, introducing a het-

eroscedastic CAR model that can greatly improve the fit of our spatiotemporal process. After

demonstrating the effectiveness of our new model via simulation, we reanalyze the asthma

hospitalization data and note a number of important findings.

Key words: Bayesian methods, Gaussian process, Gradients, Markov chain Monte

Carlo, Spatial process models



1 Introduction

Space-time models can be classified as considering one of the following four settings: (a)

space is viewed as continuous, but time is taken to be discrete, (b) space and time are both

continuous, (c) space and time are both discrete, and (d) space is viewed as discrete, but

time is taken to be continuous. Almost exclusively, the existing literature considers the first

three settings; see the recent books by Banerjee et al. (2015) or Cressie and Wikle (2011)

and references therein for an excellent review of existing approaches falling within the first

three categories. MacNab and Gustafson (2007) and Ugarte et al. (2010) have considered

spline-based methods for discrete-space, continuous time data but have not focused upon

temporal predictions at fine resolutions. Baladandayuthapani et al. (2008) considered spa-

tially correlated functional data modeling but treating space as continuous. We agree with

Delicado et al. (2010) that spatially associated functional modeling of time has received little

attention, especially for regionally aggregated data.

Recently, Quick et al. (2013) departed from the three common settings (a)–(c) by prof-

fering Bayesian space-time models in case (d), based upon a dynamic Markov random field

(MRF, or more specifically a conditional autoregression, or CAR) model that evolves con-

tinuously over time while treating space as a finite set of regions. In addition to permitting

inference at a temporal resolution finer than that at which the data were sampled, they devel-

oped a methodology for conducting inference on infinitesimal rates of change (i.e., temporal

gradients) at arbitrary time points for each county. Such inference provides an understanding

of the local effects of temporal impact in a way that is precluded by discrete-time models.

Despite recent advances, the size of space-time datasets encountered today often presents

computational challenges. For a dataset with N observations, estimating models specified

by general (non-sparse) space-time covariance matrices will involve storing and factorizing or

decomposing N ×N matrices, thereby rendering them computationally infeasible. How we
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model dependencies, therefore, is critical for practical implementation of space-time models.

By using a simple separable model that separates the spatial and temporal associations, one

can achieve computational gains from the resulting Kronecker product form of the space-time

covariance matrix. This structure, however, limits the model to only one variance parameter

for controlling both spatial and temporal variability. Unfortunately, if the true underlying

process is less smooth in some regions, or if there are spatial outliers, such a model may both

oversmooth and undersmooth the space-time effects; i.e., we may oversmooth regions with

extreme values while allowing too much variability in the more moderate regions.

Our current manuscript enriches continuous-time dynamic CAR models with region-

specific variance components for a more thorough analysis of the asthma hospitalization

dataset described in Section 2. Section 3 then provides background on dynamic CAR models

and the methodological motivation for the heteroscedastic CAR (HCAR) model we propose

in Section 4. We then conduct two simulation studies in Section 5, in which we investigate

the ability of our model to estimate the parent and gradient processes and important model

parameters. Our analysis of the California asthma hospitalization rate data using the HCAR

follows in Section 6, in which our model sheds light on features previously overlooked. Finally,

Section 7 summarizes our findings and concludes.

2 Asthma Hospitalization Data

In this paper, we reanalyze the data from Quick et al. (2013). These data consist of Nt = 216

monthly asthma hospitalization rates collected by the California Health and Human Services

Agency from 1991 to 2008 in the Ns = 58 counties of California. The hospitalization rates

were based on all hospital discharges where asthma was listed as the primary diagnosis, and

rates per 100,000 residents were computed. Summary maps of these data can be found in

2



Figure 1. More information regarding these data can be found in Delamater et al. (2012).

The explanatory variables used in our current analysis include ozone level, population

density, percent of the population that was black, and the percent of the population that was

under the age of 18. While the demographic covariates are based on the 2000 Census and only

vary spatially, our ozone covariate represents the number of days each month with average

ozone levels above 0.07 ppm over 8 consecutive hours, the state standard. Unfortunately,

these measurements are aggregated at the air basin level, which cover large areas with similar

weather and geographic conditions; as a result, air basins often span across multiple counties.

As asthma rates are known to vary seasonally, we will nest the effect of ozone within month

and include monthly fixed effects.

3 Dynamic CAR models

Consider a map comprising Ns regions that are delineated by well-defined boundaries, and

let Yi(t) be the outcome arising from region i at time t. While the region-specific outcome

Yi(t) is conceptualized as a continuous function of time, the observations are collected at a

finite collection of distinct time points T = {t1, t2, . . . , tNt}. In this work, we will assume

that the data come from the same set of time points in T for each region — an assumption

that is not necessary for further development but will facilitate the notation.

The observation from region i at time tj is modeled by a space-time regression model

Yi(tj) = µi(tj) + Zi(tj) + εi(tj), εi(tj)
ind∼ N(0, τ 2i ), (1)

for i = 1, 2, . . . , Ns and j = 1, 2, . . . , Nt, where µi(tj) = xi(tj)
Tβ captures large scale variation

or trends, xi(tj) is a vector of explanatory variables observed at the county level for each

timepoint, β is the corresponding vector of regression slopes, Zi(tj) is the space-time random
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effect arising from an areally-referenced stochastic process over time, Z(t), that captures

smaller-scale variations in the time scale while also accommodating spatial associations, and

τ 2i captures any residual variation not captured by the other components for region i.

The process Zi(t) can be looked upon as a random function of time that specifies the

probability distribution of correlated space-time random effects. We seek a specification

that permits the functions Zi(t) and Zk(t) from neighboring regions to be more similar than

those from non-neighbors. We achieve this by constructing a joint distribution for the entire

collection of Zi(tj)’s. If we collect the Zi(tj)’s for all the regions into an Ns × 1 vector

function Z(tj) for any timepoint tj and then stack them into an NsNt × 1 column vector

Z = (Z(t1)
T ,Z(t2)

T , . . . ,Z(tNt)
T )T , then the distribution of Z is given by

Z ∼ N(0, R(φ)⊗ σ2(D − αW )−1) , (2)

where σ2(D − αW )−1 is the covariance matrix for the proper CAR model with a 0/1 adja-

cency matrix W , and a diagonal matrix D having ith diagonal element equal to the number

of neighbors for the ith region, ni. A sufficient condition for the precision matrix to be

invertible is α ∈ (0, 1), which ensures a proper distribution for Z(t) at each timepoint t. The

matrix R(φ) is an Nt ×Nt correlation matrix with (j, j′)th element

ρ(tj, tj′ ;φ) = (1 + φ|tj′ − tj|)× exp(−φ|tj′ − tj|) , (3)

which corresponds to the correlation matrix for a temporal Gaussian process with a Matérn

correlation function with smoothness parameter 3/2, denoted Matérn(3/2). The correlation

function in (3) ensures that the Zi(t)’s are mean-square differentiable functions of t, legit-

imizing inference on infinitesimal rates of temporal change (Quick et al., 2013). Henceforth,

we refer to the spatiotemporal CAR model induced by (2) and (3) as the CARST model.
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A limitation of the CARST model in (2) is the presence of a single variance parameter σ2 to

capture the scale of temporal and spatial variations. The diagonal elements in (D − αW )−1

depend upon the adjacencies in the map and adjust σ2 accordingly to offer region-specific

marginal variances. In some settings, however, such as when a particular county exhibits

a trend which is markedly different from its neighbors, this model can prove to be too

restrictive. In this paper, we propose to relax this assumption by extending the CARST

to allow for region-specific variance parameters, σ2
i . In doing so, we permit these so-called

“outlying” counties the flexibility they need to break free from their neighbors.

The issue of differing levels of variability in areal spatial settings is a topic that has been

addressed before. Two primary examples include Lawson and Clark (2002), who split the

spatial process into a mixture of a CAR component (L2) and an L1 process, and Brewer and

Nolan (2007), who developed an Empirical Bayes, pairwise additive approach of the form

π(Zi(t) |Z(i)(t)) ∝ exp

[
−1

2

∑
k∼i

(Zi(t)− Zk(t))2

σ2
ik

]
(4)

where the pairwise-defined σ2
ik = σ2

i + σ2
k have replaced σ2 in the standard CAR model and

Z(i)(t) denotes the vector Z(t) with the ith element removed.

Reich and Hodges (2008) take a similar approach to Brewer and Nolan (2007) with their

fully Bayesian, spatially adaptive CAR (SACAR) model, in which they assume σ2
ik = σiσk,

where σ2
i = exp(s0+si) and s = (s1, . . . , sNs)

′ ∼ CAR(λ) in order to ensure the identifiability

of the parameters; that is, the prior distribution of the σ2
i assumes a spatial structure. In

this approach, the si are constrained such that
∑

i si = 0 and s0 is an intercept term to be

estimated. These techniques are based on the improper CAR model (which sets α = 1) and

designed for purely spatial models, but extending (2) to allow for the proper analogs of these

structures appears straightforward.
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4 The heteroscedastic CAR (HCAR) model

To remedy the situation discussed in Section 3, we now allocate a different variance com-

ponent σ2
i to each region. Rather than assume Z(t) ∼ CAR(σ2) for each time point, we let

Zi(t) =
∑Ns

k=1 aik(α)vk(t), where the vk(t)’s are a set of Ns i.i.d. temporal Gaussian processes

and aik(α)’s are the associated coefficients. Specifically, if we let vk(t) ∼ GP (0, σ2
jρ(·;φ)) —

admitting a different variance σ2
k for each county — and define aik(α) to be the (i, k)-element

of the matrix A(α) where A(α)A(α)T = (D − αW )−1 (i.e., we define A(α) as the Cholesky

decomposition of (D − αW )−1), it can be shown that this yields

Z ∼ N(0, R(φ)⊗ ΣS(D − αW )−1ΣS) , (5)

where ΣS is an Ns ×Ns diagonal matrix with σi as its ith diagonal element. In contrast to

the aforementioned approaches, the conditional distribution for a given t takes the form

π(Zi(t) |Z(i)(t)) ∝ exp

[
−1

2

∑
k∼i

(
Zi(t)

σi
− αZk(t)

σk

)2
]
, (6)

which we denote Z(t) ∼ HCAR(α,σ), letting Z ∼ HCARST (α, φ, σ1, . . . , σNt) denote the

expression in (5). In this structure, the σi can be directly viewed as scaling parameters

for their respective Zi, rather than as components of a pairwise structure. A comparison

between the CAR, the SACAR, and the HCAR is presented in Table 1.

When it comes to modeling the σi, we use an approach similar to that used by Reich and

Hodges (2008). We let σi = exp(u0+ui) where u0 represents a baseline for our spatiotemporal

variance and the ui are region-specific adjustments with the constraint that
∑

i ui = 0. Unlike

the SACAR model, however, we do not assume a spatial correlation structure on the ui, as

doing so would restrict our model’s flexibility for fitting outlying regions. Instead, we assume
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ui ∼ N(0, γ2); we then place inverse gamma priors on both σ2
0 = exp(2u0) and γ2. Based

on our experience, updating σ2
0 separately in this fashion speeds up the convergence and

increases the stability of our Markov chain Monte Carlo (MCMC) algorithm.

For the remaining parameters, more conventional priors are suitable. Specifically, we

place non-informative, conjugate priors on the regression coefficients β, and assume the τ 2i

follow inverse gamma priors with mean 1 and infinite variance. Conjugate priors do not

exist for our spatial association parameter α or our temporal association parameter φ; as

such, we have chosen a beta prior with mean 0.9 and an infinite peak at 1 for α, and a

Uniform(3/(Nt − 1), 10) prior for φ. These bounds for φ are intended for Nt equally-spaced

time points and are based on an exponential correlation function. Specifically, this lower

bound restricts the effective range of temporal correlation to the length of the study period

(i.e., Covexp (Zi(1), Zi(Nt)) = exp [−φ(Nt − 1)] ≤ 0.05 ≈ exp[−3]), and this upper bound for

φ corresponds to near 0 correlation at |tj+1 − tj| = 1 using (3); typically, these bounds will

be much wider than necessary. For the HCARST model presented in (5), the joint posterior

distribution for our parameters is given by:

p(θ,Z |Y) ∝N(β |µβ,Σβ)×
Ns∏
i=1

[
N(ui | 0, γ2)× IG(τ 2i | aτ , bτ )

]
× IG(σ2

0 | aσ, bσ)× IG(γ2 | aγ, bγ)× U(φ | aφ, bφ)

×Beta(α | aα, bα)× HCARST (α, φ, σ1, . . . , σNt)

×
Nt∏
j=1

Ns∏
i=1

N(Yi(tj) |xi(tj)Tβ + Zi(tj), τ
2
i ), (7)

where we are letting µi(t) = xi(t)
′β and θ = {β, φ, α, σ2

0, u1, . . . , uNs , γ
2, τ 21 , . . . , τ

2
Ns
}. We

will use MCMC to evaluate (7), using Metropolis steps for updating u1, . . . , uNs , φ, and α,

and Gibbs steps for all other parameters.
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4.1 Modeling temporal gradients

In addition to providing a good fit to the data, our model has been specified in order to

permit inference on the temporal gradient process. First developed for two-dimensional

continuous space case in Banerjee et al. (2003), the gradient process can be used to detect

sudden changes in the residual surface. Using real estate prices in Baton Rouge, LA, the

authors show that significant gradients can be used to indicate important predictors (such

as proximity to popular shopping centers) still missing from the mean model. Here, we are

interested in temporal gradients, which may correspond to features such as sudden temporal

changes in weather or public health policy that can affect asthma hospitalization rates.

The development of our temporal gradient process is similar to that in Quick et al.

(2013). As the temporal correlation structure of our model remains a Matérn(3/2), inference

for the temporal gradient process, Z′, simply requires substituting ΣS(D − αW )−1ΣS for

σ2(D − αW )−1 in the covariance structure for Z. The result is ΣZ = R(φ)⊗ΣS(D−αW )−1ΣS

and the expressions for the first and second order derivatives for the matrix-valued covariance

function can be derived as

K ′Z(∆) = −φ2∆ exp(−φ|∆|)
(
ΣS(D − αW )−1ΣS

)
(8)

and K ′′Z(0) = −φ2 (ΣS(D − αW )−1ΣS), respectively, where ∆ is some temporal distance, say

(tj′−tj). Then the conditional distribution for the gradients, Z′, are found to be multivariate

normal with mean and variance-covariance matrix given by

µZ′ |Z,θ = cov(Z′(t0),Z)var(Z)−1Z = −(K ′Z)TΣ−1Z Z

and ΣZ′ |Z,θ = −K ′′Z(0)− (K ′Z)TΣ−1Z (K ′Z) ,
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where (K ′Z)T is an Ns×NsNt block matrix whose j-th block is given by the Ns×Ns matrix

K ′Z(∆0j), with ∆0j = tj − t0. Note that ΣZ is an NsNt ×NsNt matrix, but we can use the

properties of the MRF to restrict to inverting only Nt ×Nt matrices.

4.2 Diagnostic for Determining Spatial Outliers

Another approach for identifying potentially important covariates missing from our model is

through spatial outliers, i.e., spatial regions which are different than their neighbors. While

many methods focus on the nature of the response surface itself, such as through the use

of a Bayesian p-value (Gelman et al., 1996) or via leave-one-out analyses (e.g., Stern and

Cressie, 2000), these are typically designed to assess the fit of the entire model. Furthermore,

a leave-one-out analysis for our model would depend heavily on the prior specifications for

σi and τ 2i (i.e., removing the ith county prohibits the posterior learning about σi and τ 2i ),

and thus is impractical here. Our work is thus more in line with that of Lu and Carlin

(2005), who developed areal wombling methods for regional boundary analysis. In our case,

geographical features such as mountains are known to affect factors such as air quality, and

access to preventive care may also differ between counties.

Here, we have devised a diagnostic which can be used to identify regions that are potential

spatial outliers using the model for Z in (5). Extending the expressions listed in Table 1

from a single time point to the general space-time case, we find

Zi | Z(i) ∼ NNt

(
α
σi
ni

∑
k∼i

Zk
σk
,
σ2
i

ni
R(φ)

)
. (9)

Using this, we have constructed the following diagnostic:

Qi(Zi | ·) =

(√
ni
σi

Zi − α
√
ni
σi
ni

∑
k∼i

Zk
σk

)T

R(φ)−1

(√
ni
σi

Zi − α
√
ni
σi
ni

∑
k∼i

Zk
σk

)
. (10)
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For the sake of simplicity, we suppress the conditional notation and denote (10) as Qi(Zi).

In essence, Qi(Zi) is a measure of posterior learning, as large values correspond to large

departures from the conditional mean of Zi given by the prior. In this case, however, our

prior distribution for Z assumes a particular degree of spatial smoothing, so large values of

Qi(Zi) also indicate potential outlying regions. In practice, we obtain Qi(Z
(`)
i ) from the `th

iteration of the sampler and obtain a posterior distribution for Qi(Zi). Note that a priori

the expression in (10) follows a χ2
Nt

distribution. As such, we recommend using the upper

95th-percentile of a χ2
Nt

(denoted χ2
Nt

(0.95)) to diagnose whether or not the ith county is

a spatial outlier, based on the posterior distribution for Qi(Zi). Specifically, we compute

P
(
Qi(Zi) > χ2

Nt
(0.95)

)
, the posterior probability that Qi(Zi) exceeds χ2

Nt
(0.95). While it

may suffice to let values greater than 0.5 suggest potential outlying regions, we recommend

a more conservative approach of focusing on regions whose probability exceeds 0.95.

5 Simulation Studies

To verify the effectiveness of our model, we have conducted two simulation studies. The first

example — as presented in Quick et al. (2013) — demonstrates the ability of our model to

accurately capture the underlying process, Z, and its gradient process, Z′, as well as identify

counties where the flexibility of the HCARST model is required. Then, using the posterior

estimates for σi and τ 2i as our true values, we generate data for our second example directly

from the HCARST model in order to ensure that our parameter estimates are accurate and

meaningful. Both simulation studies are illustrated here using the Ns = 58 counties of

California as our spatial grid, Nt = 50 evenly spaced timepoints, and 100 datasets. Each

dataset is analyzed using a single chain run for 3,000 iterations using both the CARST and

HCARST models. In addition, we also considered a spatiotemporal CAR model with an
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AR(1) structure in place of the Matérn(3/2), but this yielded similar results to the CARST

without permitting gradient estimation; as such, results from this model fit are suppressed

for brevity. Parameter estimates will be given as posterior medians (with 95% credible

intervals; 95% CI), and estimates will be evaluated via coverage—the percent of datasets

in which the 95% CI contains the true value—and bias and mean squared error (MSE). A

reference map highlighting a few important counties is provided in Figure 3(c).

5.1 Estimating Z and Z′

In our first simulation study, we fit our models to 100 datasets arising from

Yi(tj)
ind∼ N

(
10

[
xi1 ∗ sin

(
tj
2

)
+ xi2 ∗ cos

(
tj
2

)]
, τ 2i

)
, (11)

where we induced spatiotemporal clustering by letting xi1 and xi2 be the ith county’s % black

and April 1991 ozone level, respectively, and where τ 2i is generated from an inverse gamma

distribution yielding values of τ 2i ≈ 3. Figure 2 displays the posterior bands for Zi from both

the CARST and HCARST models for two particular counties: Alameda and Lassen. Here,

our posterior bands are compared to the true underlying curve (black line) and the mean of

the adjacent regions’ true underlying curve (red line).

In addition to demonstrating the ability of the HCARST to accurately capture the trends

in these two counties, these figures illustrate two distinct patterns that may be difficult

for a standard spatiotemporal model to capture. First and foremost, the time trend for

Alameda County appears to have a shape which is similar to that of its neighbors, but with

values which are much more extreme. If we were to model these data using the CARST

model, however, we would completely miss these extremes (see Figure 2(a)), as the single

σ2 is restricting Alameda County to behave like its neighbors. By using a model with
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region-specific σi, we are able to reduce the MSE for Alameda County from 237.8 to just

7.8 (compared to the average MSE of 5.5). Coverage for this county has also improved

dramatically, increasing from just 34.3% to 100% without unnecessarily large credible bands.

The case of Lassen County is a bit more subtle. To begin with, both the HCARST (Fig-

ure 2(d)) and the CARST (Figure 2(b)) appear to estimate its time trend quite well. What is

perhaps a bit disturbing here is that these models are masking the fact that Lassen County’s

time trend is almost the exact opposite of its neighboring counties, causing researchers to

miss out on what may be a very important feature of these data. This deviation is brought

into focus, however, when we look at Qi(Zi). As shown in Figure 4(a), our diagnostic indi-

cates that Lassen County is markedly different than its neighbors, with a Qi(Zi) estimated

to be 95.7 (72.6, 125.9), dwarfing the suggested cutoff of χ2
50(0.95) = 67.5.

What’s worth noting here is that while our diagnostic is highlighting Lassen County as

a potential outlier, it is not doing this for Alameda County. In this example, the features

of the time trends from (11) are primarily being driven by xi1, the percent of the county’s

population which is black. Here, the fact that Lassen County has a large black population

and is surrounded by counties with small black populations is causing it to have a different

time trend than its neighbors. Because of this, the model is forced to give Lassen County a

large σi (as shown in Figure 3(a)) in order to allow it deviate from its neighbors, resulting

in a large Qi(Zi). Alameda County, on the other hand, has the highest % black in the state

and is surrounded by counties that are also higher than the state average. Here, the model

simply attributes a large σi to Alameda County, yielding a similar trend on a different scale.

We now move on to the more “global” properties of the model. Overall, our model

performed quite well, with 96% of the Zi(tj) from the underlying curves being covered by

their respective 95% credible intervals. Furthermore, the coverages for the Zi are now more

tightly concentrated around the desired 95%, with the variability of our coverages only 1/4 of

12



that from the CARST model. Furthermore, in addition to achieving improved performance

in counties such as Alameda County — where coverages were much lower than desired —

we’ve also reduced undersmoothing in a number of regions by allowing them to have a small

value of σ2
i . Lastly, this improvement in the estimation of Z allows us to more accurately

estimate the temporal gradients, Z′, although a large amount of variability exists, leading to

extremely high coverage.

5.2 Parameter Estimation

Our second simulation study focuses on parameter estimation; specifically, our goal is to

verify that our estimates of σi are reasonable. We generated data from

Yi(tj) = β0 + xi(tj)β1 + Zi(tj) + εi(tj), i = 1, . . . , Ns, j = 1, . . . , Nt (12)

where xi(tj) is a continuously-varying covariate generated from a standard normal distribu-

tion, Z ∼ HCARST (α, φ,σ), and εi(tj) ∼ N(0, τ 2i ), using the posterior medians of σi and

τi from Section 5.1 and letting β0 = 3, β1 = 2, α = 0.85, and φ = 0.75. Here, our model

performs again performs quite well, with an average of 94.2% coverage for Zi(tj), 95% for β,

and 91.6% for our τi. As demonstrated in Quick et al. (2013), both φ and α remain difficult

to estimate accurately. In particular, our coverage for α is 74%, while our coverage for φ

is 85%, with biases for both α (-3.8%) and φ (+3.2%) in favor of less spatial and temporal

association, respectively. Finally, the spatiotemporal variance parameters, σi, are generally

well estimated, with 94.7% of their credible intervals containing the true value. We have also

considered alternative values for α and φ and have obtained similar results.

Given that these data sets were generated directly from our model, it is not surprising

that none of our estimated Qi indicate spatial outliers in these data. Throughout all of our
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datasets, our estimated Qi(Zi) closely resemble samples from a χ2
50 distribution, suggesting

that this distribution should serve as a good guide for which to diagnose outlying counties.

6 Data Analysis

As mentioned in Section 1, we model the asthma hospitalization rates using our covariates —

ozone level, population density, percent under the age of 18, and percent black — and fixed

effects for each of the 12 months of the year. Convergence of the MCMC algorithm was rapid,

but we ran our sampler for 10,000 iterations to ensure the stability of our estimates. Using

the deviance information criterion (DIC; Spiegelhalter et al., 2002), our HCARST model

improves upon that of (2) by 2087 units despite being more complex, with pD indicating

that our model contains 1285 more effective parameters. As seen in our first simulation

study, much of this improvement in DIC is attributable to a small number of counties, with

four counties accounting for 40% of this change. While a number of these counties simply

have more accurate fits, one of these counties is a strong candidate for being a spatial outlier,

and we will revisit this county in our discussion of Qi. In addition to assessing fit, we also

assessed the sensitivity of our results to the informative priors used for α and γ2 and also

considered using a CAR structure for our ui’s, and obtained nearly identical results.

In Table 2, we present the posterior estimates for our HCARST model parameters β,

α and φ compared to those from the CARST . Here, we find that the median for φ has

increased 33%, indicating less temporal association in our model; this may be due to an

increase in spatial association, as evidenced by the increase in α. A number of our regression

coefficients have also changed. For instance, the median for β2, the effect for percent black,

has increased 44%, while the monthly effects for the summer have reduced in magnitude

— the change in β2 will be discussed in more detail later. With regard to the monthly
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effects, it seems as though our random effects have absorbed much of this temporal change,

which will become more apparent when we discuss our temporal gradient analysis. Finally,

while counter-intuitive, the negative effects of ozone are common to all standard statistical

approaches (e.g., an OLS fit) for these data.

Figure 3(b) displays our estimated HCARST variance parameters, σi. As shown in our

first simulation study, large values of σi can indicate regions with high within-county variabil-

ity (e.g., Alameda County) or high between-county variability (e.g., Lassen County). In this

case, the cluster of large σi in the northern counties likely indicates the latter explanation,

a claim supported by the lack of spatial smoothness in the raw data (Figure 1). The error

variance parameters, τi, are strongly negatively correlated with population (i.e., counties

with low population have a higher error variance), which coincides with the variance of the

rate estimate from a normal approximation to the binomial distribution.

Figure 4(b) displays the estimated values of our outlier diagnostic, Qi. Here, the darker

the shade of red, the stronger the evidence that region i is an outlier. This figure highlights

Imperial County, whoseQi(Zi) has median (95% CI)Qi = 335 (306, 416). This is significantly

larger than χ2
216(0.95) = 258, indicating that this county is quite different than its neighbors.

Giving credence to this result is a recent article in the LA Times focused on Imperial County:

“Imperial County is different because it leads the state for asthmatic children going to the ER

and being hospitalized, but experts are unable to pinpoint the cause. Doctors and public health

officials said that a combination of whipping winds, pesticide-tinged farmland dust and large

numbers of low-income families lacking health insurance contribute to high rates of asthma

hospitalizations and ER visits.” – Gorman (2012)

While this article proposes a number of possible explanations for Imperial County’s ab-

normally high rates of asthma hospitalization, our analysis can help public health officials

narrow this list even further by identifying risk factors in Imperial County that are not ap-

plicable to its neighbors. For instance, its geographical location is such that the two counties
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it neighbors — San Diego and Riverside — have their most densely populated areas near the

Pacific Ocean, rather than in the desert valley. Also, as mentioned in that article, its close

proximity to an industrial portion of northern Mexico may be magnifying these effects.

Turning our attention to temporal gradients, Figure 5 shows striking results. Previous

research has shown that asthma hospitalization rates are lowest during the summer and

highest during the winter months. Here, we map the average month-to-month temporal

gradients. These results indicate that the underlying random effects achieve their apex

during the late fall and early winter (Figures 5(d) and 5(e)), decline for most of the spring

(Figures 5(a) and 5(b)), remain steady through July and August (Figure 5(c)), and then

increase heavily during August and September, a cycle that may coincide with agricultural

activity in some of the more rural areas of the state, particularly those in the Imperial and San

Joaquin Valleys, where dry, windy conditions and stagnant air can lead to prolonged periods

of poor air quality. Compared to the results using the CARST model in equation (2), our

results contain more extreme estimated gradients. This is not surprising, as (i) the single

variance model led to oversmoothing and thus more gradual rates of change and (ii) the

spatiotemporal process under the HCARST has absorbed more of the seasonal trend that

was previously contained in the monthly fixed effects.

In addition to affecting the monthly fixed effects, the HCARST model also had a quite

dramatic effect on β2, the coefficient for % black, as first seen in Table 2. Upon further

investigation, it appears that many of the counties with large σi are influential with regards

to β2; i.e., if you fit an ordinary least squares model to these data, remove one or more of

these counties from the analysis, and then refit the model, you’ll find that β2 increases. This

is largely due to the fact that many of the counties with large σi have the smallest black

populations, yet are typically underestimated, and increasing β2 to better accommodate

the majority of the data leads to further underestimation in these counties. This suggests
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that the σi in the HCAR also serve to counter influential observations by allowing enough

flexibility in Zi to compensate for poorer fits in the regression component of the model.

7 Discussion

In this paper, we have provided a brief overview of dynamic CAR models, and proposed a

novel heteroscedastic CAR (HCAR) method for permitting region-specific variance parame-

ters in a spatiotemporal process, motivated by efforts to analyze asthma hospitalization data

from California. We also examined the validity of our model via simulation, and illustrated

its use by reanalyzing the California dataset. Not only did our model produce a better fit to

the real data and dramatically alter the estimated effect of race, it was also able to correctly

single out a known outlying region. Coupled with improved gradient estimation (by virtue of

the improved fit of Z), these results demonstrate the ability of our model to highlight features

of spatiotemporal data that can be used by researchers to identify important predictors and

risk factors missing from their statistical model.

One point of discussion is the interpretation of the σi. In our first simulation study,

we discovered that large values of σi indicate one of two possibilities — (a) the process Zi

has a large temporal variance or (b) the process Zi is a potential spatial outlier — and in

our analysis of the asthma data, we suggest that large σi may also correspond to influential

counties. Because of this, one must be careful not to interpret σ2
i as the variance of the

temporal process Zi(t), but rather the variance of the temporal process vi(t). A more accurate

interpretation of σi is as a scale parameter. For instance, we can use the σi to construct

a spatiotemporal process U = (INt ⊗ ΣS
−1)Z with unit variance, where Ui(tj) = Zi(tj)/σi,

suggesting that our model smooths Zi/σi rather than directly smoothing Zi. Similarly, these

roles of σi suggest that the σi themselves are likely to be spatially associated with outlying
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values corresponding to outlying Zi. It was for this reason that in Section 5 we chose to

use posterior estimates from our first simulation to generate data for our second simulation,

rather than generating true values for σi randomly (say, from their prior distributions).

On the subject of region-specific variances, one may wonder how the HCARST performs

with τ 2i = τ 2, i.e., using a single error variance parameter. In the case of the asthma

hospitalization data, removing the region-specific τ 2i from the model actually leads to our

model overfitting the data. Here, the estimated posterior medians of the τ 2i in our model

range from 0.13 to 250, reflecting the vast differences in the populations between the counties

of California. When we require the counties to share a single error variance parameter, the

model is forced to absorb the variability due to population into the σi, and our estimate for

τ 2 reduces toward 0. In situations where the error variances are not substantially different

from one-another, as in the case of our simulation study, this problem does not arise. In

practice, however, we recommend always including the region-specific τ 2i in the model, as

their inclusion does not lead to any noticeable increases in computational burden.

Another feature introduced in this paper is the outlier diagnostic, Qi(Zi), which we have

demonstrated can be a powerful tool for identifying important covariates missing from the

model. While this diagnostic has been presented under the HCARST framework, it is also

worth noting that Qi(Zi) can be estimated for any spatiotemporal process. For instance,

calculating Qi(Zi) under the CARST model in (2) yields similar results; however, due to the

potential to both over- and undersmooth the Zi, this leads to more extreme values of Qi(Zi)

on both ends of the spectrum.

As illustrated here, one strength of the modeling framework used in Quick et al. (2013)

— which itself is related to the third case of order-free multivariate CAR distributions in

Jin et al. (2007) — is its flexibility. An obvious generalization of their work would be to

replace R(φ) with other temporal correlation structures, as many applications will not require
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mean-square differentiable temporal processes. In this paper, we extended their approach to

allow for region-specific variance parameters in situations with a large number of temporal

observations. Should there be a limited number of temporal observations, however, our

methods here could easily be adapted to ensure the stability of our σi estimates; for instance,

we could induce spatial association in the σi as in Reich and Hodges (2008). One may also

wish to embed this model structure into a generalized linear model; such a model would

still permit inference on the gradient process Z′ but would require Metropolis updates for

Z, increasing the necessary computational burden.

Finally, we remark about future explorations with non-separable versions of HCARST .

The separable covariance structures considered here impose a common temporal decay term

for each county. This assumption can be relaxed by formulating non-separable models. A

rich class for continuous time areal models has been described in the supplemental material

for Quick et al. (2013). For instance, we can replace the specification of vj(t) in Section 4

with one of the form vj(t) ∼ GP (0, σ2
jρ(·;φj)), which admits both a different variance σ2

j for

each county (like the HCARST ) and also a different φj for each county (unlike the separable

HCARST ). While this may impact the gradient process — where gradients are estimated

directly from the model and the estimated Z — we do not anticipate substantial changes in

model fit, where the flexibility of the HCARST model, coupled with information from the

data, will lead to Z which are nonseparable a posteriori.

Acknowledgements

The findings and conclusions in this report are those of the authors and do not necessarily

represent the official position of the Centers for Disease Control and Prevention.

19



References

Baladandayuthapani, V., Mallick, B., Hong, M., Lupton, J., Turner, N., and Carroll, R.

(2008). “Bayesian hierarchical spatially correlated functional data analysis with applica-

tion to colon carcinoginesis.” Biometrics , 64, 64–73.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2015). Hierarchical Modeling and Analysis

of Spatial Data. Chapman & Hall/CRC.

Banerjee, S., Gelfand, A. E., and Sirmans, C. F. (2003). “Directional rates of change under

spatial process models.” Journal of the American Statistical Association, 98, 946–954.

Brewer, M. and Nolan, A. (2007). “Variable smoothing in Bayesian intrinsic autoregressions.”

Environmetrics , 18, 841–857.

Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. Hoboken, NJ:

Wiley.

Delamater, P. L., Finley, A. O., and Banerjee, S. (2012). “An analysis of asthma hospitaliza-

tions, air pollution, and weather conditions in Los Angeles County, California.” Science

of the Total Environment , 425, 110–118.

Delicado, P., Giraldo, R., Comas, C., and Mateu, J. (2010). “Statistics for spatial functional

data: some recent contributions.” Environmetrics , 21, 224–239.

Gelman, A., Meng, X.-L., and Stern, H. (1996). “Posterior predictive assessment of model

fitness via realized discrepancies.” Statistica Sinica, 6, 733–807.

Gorman, A. (2012). “Imperial County leads state in treatment of children

with asthma.” LA Times . http://articles.latimes.com/2012/jul/16/local/

la-me-imperial-county-asthma-20120716.

20



Jin, X., Banerjee, S., and Carlin, B. P. (2007). “Order-free co-regionalized areal data models

with application to multiple-disease mapping.” Journal of the Royal Statistical Society,

Series B , 69, 817–838.

Lawson, A. and Clark, A. (2002). “Spatial mixture relative risk models applied to disease

mapping.” Statistics in Medicine, 21, 359–370.

Lu, H. and Carlin, B. P. (2005). “Bayesian areal wombling for geographical boundary

analysis.” Geographical Analysis , 37, 265–285.

MacNab, Y. C. and Gustafson, P. (2007). “Regression B-spline smoothing in Bayesian disease

mapping: with an application to patient safety surveillance.” Statistics in Medicine, 26,

4455–4474.

Quick, H., Banerjee, S., and Carlin, B. P. (2013). “Modeling temporal gradients in regionally

aggregated California asthma hospitalization data.” Annals of Applied Statistics , 7, 154–

176.

Reich, B. and Hodges, J. (2008). “Modeling longitudinal spatial periodontal data: a spatially

adaptive model with tools for specifying priors and checking fit.” Biometrics , 64, 790–799.

Spiegelhalter, D. J., Best, N., Carlin, B. P., and van der Linde, A. (2002). “Bayesian measures

of model complexity and fit (with discussion).” Journal of the Royal Statistical Society,

Series B , 64, 583–639.

Stern, H. S. and Cressie, N. (2000). “Posterior predictive model checks for disease mapping

models.” Statistics in Medicine, 19, 2377–2397.

Ugarte, M. D., Goicoa, T., and Militino, A. F. (2010). “Spatio-temporal modeling of mor-

tality risks using penalized splines.” Environmetrics , 21, 270–289.

21



(a) 1991 Rates (b) 2000 Rates (c) 2008 Rates

Figure 1: Raw asthma hospitalization rates per 100,000 people for select years.
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Table 1: Comparison of the CAR, SACAR, and HCAR models for Z(t) = (Z1(t), . . . , ZNs(t)).
Here, S is a diagonal matrix with Sii = 1

σi

∑
j∼i

1
σj

and ΣS is a diagonal matrix with (i, i)-

element σi. Note that the CAR model is a special case of both the SACAR and HCAR
models where σi = σ for all i.

Median (95% CI) Median (95% CI)
Parameter CAR(σ2) HCARST (σ) Parameter CAR(σ2) HCARST (σ)
β0 (Intercept) 9.89 (8.83, 11.05) 9.49 (8.53, 10.43) β15 – β26 (Ozone)
β1 (Pop Den) 0.59 (0.50, 0.70) 0.64 (0.55, 0.71) — January 0.88 (-0.65, 2.57) 0.51 (-0.92, 1.94)
β2 (% Black) 1.23 (1.13, 1.33) 1.78 (1.37, 1.89) — February 0.52 (-0.91, 1.81) 0.39 (-0.62, 1.47)
β3 (% < 18) 1.13 (1.02, 1.24) 1.24 (1.13, 1.34) — March 0.44 (-0.03, 0.86) 0.41 (-0.06, 0.89)
β4 (Feb) -0.16 (-0.52, 0.20) -0.10 (-0.42, 0.23) — April 0.25 (-0.03, 0.53) 0.20 (-0.05, 0.49)
β5 (Mar) -0.63 (-1.86, 0.52) -0.25 (-1.34, 0.82) — May -0.17 (-0.34, 0.00) -0.17 (-0.34, 0.00)
β6 (Apr) -2.15 (-3.44, -0.99) -1.60 (-2.66, -0.52) — June -0.35 (-0.50, -0.18) -0.36 (-0.52, -0.20)
β7 (May) -1.95 (-3.25, -0.74) -1.40 (-2.46, -0.32) — July -0.24 (-0.38, -0.1) -0.22 (-0.35, -0.09)
β8 (June) -3.45 (-4.76, -2.24) -2.45 (-3.60, -1.39) — August -0.28 (-0.42, -0.13) -0.20 (-0.33, -0.07)
β9 (July) -4.47 (-5.77, -3.26) -3.29 (-4.49, -2.21) — September -0.39 (-0.56, -0.22) -0.28 (-0.42, -0.12)
β10 (Aug) -4.21 (-5.49, -2.98) -3.16 (-4.35, -2.09) — October -0.05 (-0.23, 0.14) 0.05 (-0.14, 0.25)
β11 (Sep) -2.55 (-3.84, -1.37) -1.94 (-3.05, -0.89) — November 0.48 (-0.02, 1.02) 0.51 (0.04, 1.05)
β12 (Oct) -2.13 (-3.41, -1.02) -1.79 (-2.83, -0.72) — December 3.31 (1.48, 5.21) 3.14 (1.44, 5.01)
β13 (Nov) -1.08 (-2.36, 0.05) -0.87 (-1.93, 0.22) α 0.78 (0.74, 0.82) 0.88 (0.85, 0.90)
β14 (Dec) 2.34 (1.06, 3.55) 2.42 (1.13, 3.65) φ 0.93 (0.87, 0.99) 1.24 (1.18, 1.29)

Table 2: Posterior medians and 95% credible intervals (CI) for β and φ from our asthma
hospitalization rate data.
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(a) Alameda County: CARST (b) Lassen County: CARST

(c) Alameda County: HCARST (d) Lassen County: HCARST

Figure 2: 95% CI (gray bands) of Z for Alameda (left) and Lassen (right) Counties from
the simulation study. Results from the CARST are displayed in the top row, and those from
the HCARST are displayed in the bottom row. Solid black lines denote the true underlying
curves and dashed red lines denote the mean of each county’s neighboring regions.

(a) Simulation: σi (b) Asthma Data: σi (c) Reference Map

Figure 3: Posterior medians of the σi from the simulation study in Section 5.1 and the
analysis of the asthma hospitalization data in Section 6. The third panel is a reference
for identifying key counties mentioned in the text. Here, Alameda County is shaded black,
Imperial County is shaded blue, Lassen County is shaded red, and Orange County is shaded
orange.
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(a) Simulation: P
(
Qi(Zi) > χ2

50(0.95)
)

(b) Asthma Data: P
(
Qi(Zi) > χ2

216(0.95)
)

Figure 4: Posterior probability of Qi(Zi) being greater than χ2
Nt

(0.95), the suggested cutoff
to determine outlying regions. Higher values correspond to a stronger indication that a
particular county is a spatial outlier.

(a) February → March (b) March → April (c) July → August

(d) August → September (e) September → October

Figure 5: Selected month-to-month temporal gradients from the California asthma hospital-
ization data.
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