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Abstract

Topics in High-Dimensional Data Analysis

With the advancement of technologies, high-dimensional data have become more and

more popular. One aspect of these data is that each subject often contains many features

and has a possibly complicated intrinsic structure. It has motivated enormous research to

tackle these challenges. This dissertation works on three different but related problems.

Two of them are rooted in functional data, an extreme case of high-dimensional data,

where each subject is a smooth curve and has infinite many values. For the third problem,

we analyze the bootstrap method in the context of high-dimensional principal component

analysis (PCA).

In the first proportion of this dissertation, we discuss the scalar-on-function linear

regression model in the sparse observation case and propose two methods to estimate

the linear relationship. This also leads to a new framework for prediction with sparse

functional covariates. Rates of convergence in estimation and prediction are established

for both approaches.

Next, we look at the emerging field of applying modern deep learning to functional

data. We focus on both regression and classification tasks with functional input and finite

(possible non-linear) index relations. The new methodology learns to apply parsimonious

dimension reduction to functional inputs and focus only on information relevant to the

target rather than irrelevant variation in the input function in an end-to-end fashion,

removing the manual selection of principal components in classical solutions.

Lastly, we turn to the bootstrap method and analyze how well it can approximate

the joint distribution of the leading eigenvalues of the sample covariance matrix in high

dimensions and establish non-asymptotic convergence rates of approximation. It is also

demonstrated that applying a transformation to the sample eigenvalues prior to boot-

strapping can lead to inference benefits.
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Chapter 1

Introduction

1.1 Functional Data Analysis

Functional data is a type of data observed continuously on a compact interval and takes the

form as a random function. The statistical analysis of functional data is called functional

data analysis (FDA). In an abstract sense, typical examples of functional data are random

trajectories over a real-valued closed interval. Assume that the interval is [a, b] with a < b.1

Functional data defined on [a, b] are often denoted as Xi(t), t ∈ [a, b], and i is the index

of a sample trajectory. The subject Xi(t) is intrinsically infinite-dimensional, which is a

fundamental property that distinguishes functional data from other data types. In the

literature, it is commonly assumed that Xi(t) are smooth functions (i.e., continuously

differentiable up to some order), which brings benefits when encountering the challenges

posed by high-dimensionality in statistical analysis. In scientific studies and real world

application, functional data appear frequently in datasets of air pollution, fMRI scans,

growth curves, and sensors like wearable devices.

Except for some ideal settings where functional data are fully observed, they are usually

sampled intermittently at discrete time points, e.g., t1, . . . , tm ∈ [a, b]. Depending on the

number m of sampling points, functional data are often categorized into dense, sparse or

neither. For example, with the advance of technology, a machine records data regularly

and intensely with tj+1 − tj = tj − tj−1 and the sampling number m is sufficiently large

1Often the domain interval is called time interval, which refers to the random curves observed during
a period of time. But time is not the only domain measurement. It can be spatial as well.
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often grows with the sample size n. On the other extreme, the case when m is bounded

by a finite small integer is called the sparse sampling scheme. Each subject can have its

own sampling plan, in other words, they have different number of observations. Although

there is no uniform consensus on which case should be considered dense or sparse, Zhang

and Wang (2016) developed a unified theory for functional data and criteria characterizing

sampling plans based on the average number of each curve’s observations. We refer readers

to the theorems and discussions in the paper and the references therein.

In the literature, functional data are also considered smooth stochastic processes. In

fact, there are two different perspectives on functional data. The first view is to treat

functional data as random elements in a Hilbert space, which allows us to develop core

statistical properties, such as mean and covariance. The second view analyzes functional

data from the stochastic process perspective. Classical results such as Mercer’s theorem

and Karhunen-Lòeve theorem are useful in this perspective to study the covariance of

functional data and related problems. The difference between these two perspectives are

subtle and worth clarification. Often not mentioned, a Hilbert space with specific charac-

terization of measurability is necessary to study functional data from both perspectives

simultaneously. We refer readers to Chapter 7 in Hsing and Eubank (2015) for a rigorous

treatment and more discussions. In the rest chapters, we will always assume that this

requirement holds so that tools from both views are available for us to do theoretical

analysis.

Following the random element perspective, we define the mean of functional data as

µ(t) = E[Xi(t)], and then the covariance is computed as Γ(s, t) = E[(Xi(s)−µ(s))(Xi(t)−
µ(t))]. Unlike the finite-dimensional case where mean and covariance can be estimated

as sample averages, most of the time, the estimation for functional mean and covariance

requires careful handle of observations, as functional trajectories are discretely observed

and even contaminated by measurement errors. For dense functional data, we can pre-

smooth individual curves and then treat smoothed versions as fully observed data. For

sparse functional data, pre-smoothing is infeasible, but the estimation is still possible by

borrowing information from neighboring data and across all subjects, such as local poly-
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nomial smoother (Fan and Gijbels, 2018; Yao et al., 2005a; Zhang and Wang, 2016). One

powerful tool that connects functional data to the finite-dimensional world is functional

principal component analysis (FPCA). It works like principal component analysis (PCA)

for finite-dimensional data. Under mild regularity conditions, the covariance Γ(s, t) can

be expressed in a summation of countable eigen-components thanks to Mercer’s theorem.

To be more specific, a typical decomposition is

Γ(s, t) =
∞∑

k=1

λkφk(s)φk(t), (1.1.1)

where λk are eigenvalues and φk(t) are corresponding eigenvectors of the operator defined

by Γ(s, t). Applying Karhunen-Lòeve theorem, a random trajectory Xi(t) can be written

as a seriesXi(t) = µ(t)+
∑∞

k=1Aikφk(t), where the random scores Aik are uncorrelated and

uniquely characterize the properties of Xi(t). Then the functional dimension reduction

can be achieved through the approximate process Xi,M(t) = µ(t) +
∑M

k=1Aikφk(t) for an

appropriate integer M. The selected M scores can also be viewed as a vector summary of

the original process and used in downstream tasks.

There is a wide range of studies on applications and methodologies in FDA, such as

regression (e.g., Brumback and Rice (1998); Cai and Hall (2006); Cardot et al. (1999, 2003);

Cardot and Sarda (2005); Chen et al. (2011); Dou et al. (2012); Hall and Horowitz (2007);

Hilgert et al. (2013); Hu et al. (2004); James (2002); Malfait and Ramsay (2003); Müller

and Stadtmüller (2005); Ramsay and Dalzell (1991); Wang et al. (2010); Yao et al. (2005b);

Zhu et al. (2014) and many others), classification (e.g., Araki et al. (2009); Chang et al.

(2014); Delaigle and Hall (2013); Ferraty and Vieu (2003); Hall et al. (2001); James (2002);

James and Hastie (2001); Leng and Müller (2006b); Matsui et al. (2011); Müller and

Stadtmüller (2005); Rincón and Ruiz-Medina (2012); Wang et al. (2007); Zhu et al. (2012,

2010)) and clustering (e.g., Abraham et al. (2003); Chiou (2012); Chiou and Li (2007);

Coffey et al. (2014); Garcia-Escudero and Gordaliza (2005); Giacofci et al. (2013); Heinzl

and Tutz (2014); Jacques and Preda (2013, 2014); Kayano et al. (2010); Li and Chiou

(2011); Peng and Müller (2008); Serban and Wasserman (2005) and others). Furthermore,

the development in software focusing on FDA makes these methods accessible to various

real problems. For instance, the R project has a page dedicated to various packages of

3



FDA tools (CRAN Task View: Functional Data Analysis), including fda, fdapace, and

many others.

Contributing to the literature, we devote two chapters to two different yet interesting

problems in FDA. In Chapter 2, we study the estimation and predictions problems in the

functional linear model for sparse functional covariates. While the dense case has been

well studied, the sparse case, due to limited observations, is more challenging and not care-

fully examined. Two methods are introduced, one through normal equation and the other

through reproducing kernel Hilbert space, to estimate slope functions in functional linear

models. In addition, our work also proposes a solution to an open problem: the prediction

task in the same setup. The methodology is accompanied with numerical simulations and

real data analysis. In Chapter 3 we explore some possibilities of applying deep learning

to FDA. More recently, thanks to rapid advancements in computing, neural networks and

deep learning become popular again, and they have shown success in various tasks that

are previously considered hard, including computer vision and natural language process-

ing. However, their applications in FDA remain scarce. In this chapter, we introduce a

network architecture called Adaptive Functional Neural Networks (AdaFNN), which oper-

ates on functional input directly and is trained in an end-to-end manner. We establish the

universal approximation theory for this network and empirically illustrate the advantages

of this approach over numerous classification/regression tasks with functional data.

1.2 The Bootstrap Method

Statistics is the science of empirical experience. Population quantities are estimated from

the limited amount of data collected from the real world. Besides, a fundamental task in

statistics is to understand how accurate the estimation is. If we were able to repeat the

estimation on newly collected data many times, the estimate would vary. To know how

trustworthy the estimate from one sample is, we would like to quantify its uncertainty.

Many statistics and probability concepts are developed to serve this purpose. One simple

measure is the variance, which gives a quantitative measurement how far an estimate

deviates from its true value on average. A more informative tool is confidence interval,

4
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or the more general notion confidence region, for a population quantity, and it contains

finer evidence on the estimate’s distribution. Unlike many textbook examples where these

uncertainty measures can computed analytically, the real world problems are more cruel,

and simple formulas seldom exist. In many cases, people rely on asymptotic distribu-

tions to make such quantification, based on a beautiful wish that the sample collected

is large enough and the sample distribution is close to its asymptotic limit. With the

same purpose but in a different direction, the bootstrap methods are developed to tackle

these problems directly without access to exact mathematical derivation. They are com-

putationally intense algorithms based on the concept of resampling from empirical data.

Since the introduction of the method (Efron, 1979), it has gained great popularity across

the subject of statistics, from classical multivariate analysis to high-dimensional problems.

(The original bootstrap paper is among the top papers downloaded from Project Euclid.)

More recently, it has been successfully applied to study the error estimates and uncer-

tainty in randomized algorithms (Chen and Lopes, 2020; Lopes et al., 2020, 2018, 2019;

Lunde et al., 2021).

We illustrate the core of bootstrap in the following example on constructing confidence

intervals for scalar parameters. Let X be a random variable with a distribution function

F (·), and φ(·) is a functional defined in the space of X. Given a sample {X1, X2, . . . , Xn},
of i.i.d. copies of X, we want to estimate the quantity t = E[φ(X)] =

∫
φ(x)dF (x). For

example, if φ(x) = x, then t is the mean E[X]. If we denote the empirical distribution

function as F̂ = 1
n

∑n
i=1 δXi

, where δXi
(·) is a unit point mass atXi, then a sample estimate

of t is t̂ =
∫
φ(x)dF̂ (x) = 1

n

∑n
i=1 φ(Xi). A level (1 − α) (α ∈ (0, 1)) confidence interval

for t can be constructed as [t̂− q1−α/2, t̂− qα/2], where qα/2 and q1−α/2 are the α/2-th and

(1− α/2)-th quantiles of the random quantity t̂− t respectively. Since both quantiles are

often unknown in practice, they need to be estimated from the data. The bootstrap can

be used to achieve this goal. Let {X∗
1 , . . . , X

∗
n} be a bootstrap sample by sampling with

replacement from {X1, . . . , Xn}. The bootstrap distribution is written as F̂ ∗. Then a

bootstrap estimate of t is t̂∗ =
∫
φ(x)dF̂ ∗(x) = 1

n

∑n
i=1 φ(X

∗
i ). Repeating the procedure

many times yields multiple realizations of t̂∗− t̂, whose α/2-th and (1−α/2)-th quantiles,

5



written as q̂α/2 and q̂1−α/2, are available. Under certain regularity conditions, we can use

q̂α/2 and q̂1−α/2 as estimates for qα/2 and q1−α/2. So a bootstrapped confidence interval

for t is [t̂ − q̂1−α/2, t̂ − q̂α/2]. This example is only a glimpse of how to use bootstrap

procedures to quantify estimation uncertainty. Its practical application is much wider.

More generally, bootstrap methods allow us to approximate the distribution of t̂− t using
the bootstrap distribution of t̂∗ − t̂.

The classical theory of bootstrap dates back to 1980s. Bickel and Freedman (1981);

Freedman (1981); Singh (1981) are among the first to establish the theoretical foundation

for applying bootstrap to standard problems, such as mean estimation and linear regres-

sion models. Since then many tools have been developed to understand the bootstrap

method and improve its accuracy in various cases. For example, the Edgeworth expan-

sion (Hall, 2013) uses an approximate series to analyze and improve the performance of

bootstrap. The empirical processes theory (Vaart and Wellner, 1996) is also helpful for

establishing some foundations of bootstrap methods. However, the classical theory stud-

ies bootstrap in low-dimensional cases where the sample size n grows to infinity but the

data dimension remains constant. Conclusions are often developed in asymptotics even

though the method works in finite sample scenarios. It is of theoretical and practical

importance to extend the analysis to higher dimensional scenarios and give finite sample

guarantees for bootstrap methods. Indeed, there has been research studying bootstrap

performance in various high-dimensional cases. To give a few examples, Chernozhukov

et al. (2014, 2017a, 2022); Lopes et al. (2020) analyze the performance of bootstrap for

the max statistics in high dimensions; others (Bunea and Xiao, 2015; Jung et al., 2018;

Koltchinskii et al., 2020; Koltchinskii and Lounici, 2017; Lounici, 2014; Naumov et al.,

2019) study bootstrapping statistics related to spectral decomposition and projections;

and Han et al. (2018); Lopes et al. (2023) look at bootstrapping the operator norm er-

ror for high-dimensional covariance estimation. More recently, Lopes (2022) obtains the

near-1/
√
n rate for the Berry-Esseen bounds for bootstrap approximation in the context

of a sum of n random vectors that are p-dimensional (the data dimension p is allowed to

grow exponentially in n) and have sub-Gaussian or sub-exponential entries.

6



Contributing to the research on high dimensional PCA, we provide some theoretical

supports for bootstrapping the leading eigenvalues of covariance matrices in high dimen-

sions in Chapter 4. We start with a review on the current state of related research and

give an overview of our contributions. Under some reasonable assumptions, we show that

the vanilla and transformed bootstrap can achieve a dimension-free rate. As an evidence

to the theory, several simulation real data analysis studies are provided to demonstrate

the accuracy of the bootstrap and its transformed variants.
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Chapter 2

Prediction in Linear Models for

Sparse Functional Covariates

Estimation and prediction in functional linear models with scalar response and fully or

densely observed functional covariates have been widely studied in the literature. However,

the extension to sparsely observed functional covariates remains an open problem. We

provide a solution by imputing the sample functional path and substituting the imputed

path into the original functional linear model. We show why such a substitution method

works and propose two estimation approaches: one through the normal equation, which

targets the population quantities, and the other estimates the slope function using a

reproducing kernel Hilbert space approach. We establish asymptotic properties of these

estimators and their corresponding prediction methods. Numerical performance of the

proposed methods is evaluated through simulations and illustrated with data from the

Framingham Heart Study.

The prediction in functional linear models with scalar response and fully or densely

observed functional covariates has been widely studied in the literature. However, the

extension to sparsely observed functional covariates remains an open problem. In this

chapter, we provide a solution by imputing the sample functional path and substitut-

ing the imputed path into the original functional linear model. We show that with this

substitution the regression parameters in the original model can still be consistently esti-

mated and propose a prediction procedure based on the imputed path. Two estimation
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approaches are studied: one is done through the normal equation which targets the pop-

ulation quantities, and the other estimates the slope function using a reproducing kernel

Hilbert space penalty. The estimated slope function can be further applied in the pre-

diction task. In addition, we establish asymptotic properties of these estimators and the

prediction method. Numerical performance of the proposed methods is studied through

simulations and illustrated with data from the Framingham Heart Study.

2.1 Introduction

Given a random scalar response Y and its functional predictor X(t), the functional linear

model refers to the relationship

Y = α +

∫ b

a

ζ0(t)X(t)dt+ ǫ, (2.1.1)

where ǫ is a random noise, ζ0(t) is the slope function defined on the closed interval [a, b],

and α is a real number. Without loss of generality, we can take [a, b] = [0, 1] and write the

integral as
∫ b
a
ζ0(t)X(t)dt = 〈ζ0, X〉2. Equation (2.1.1) is called functional linear model

(FLM), it has been studied by many (Cai and Hall, 2006; Cardot et al., 1999; Crambes

et al., 2009; Hall and Horowitz, 2007; Shin, 2009), including its extension to function-on-

function linear model, first introduced in Ramsay and Dalzell (1991) and further explore in

Yao et al. (2005b). It can also be viewed as an extension of the traditional linear regression

model where the inner product is operated on two vectors in a finite-dimensional Hilbert

space.

To carry out the estimation of the unknown slope function ζ0, some constraints are

needed. One option is to assume that ζ0 falls into the space spanned the eigen-functions

of the covariance Γ(s, t) = E[(X(s) − µ(s))(X(t) − µ(t))], where µ(t) = E[X(t)]. Then

the slope function satisfies the normal equation:
∫
Γ(s, t)ζ0(s)ds = cov(X(t), Y ). When

the covariance Γ(s, t) admits the spectral decomposition Γ(s, t) =
∑∞

k=1 λkφk(s)φk(t), the

slope function satisfies: ζ0 =
∑∞

k=1 zkφk(t), which can be estimated through the estimates

of zk and φk. Such an approach has been extensively studied when the sample path Xi is

either fully observed or densely sampled. A caveat is that this approach requires delicate

regularization for the infinite-dimensional functional covariate Xi and synchronization of

9



ζ0 with the eigenfunctions of Γ(s, t) (Cardot et al., 1999; Hall and Horowitz, 2007).

An alternative is to assume that ζ0 belongs to a function space S. Under this condi-

tion, the estimation can be conducted through a constrained least-squares optimization

problem:

min
α∈R,ζ∈S

1

n

n∑

i=1

(
Yi − 〈Xi, ζ〉2 − α

)2
, subject to penalty(ζ) ≤ C,

where {(Xi, Yi)}ni=1 are i.i.d. copies of (X1, Y1), and C is some fixed positive constant that

regularizes the estimated slope function. Solving this optimization problem is equivalent

to solving its penalization form:

min
α∈R,ζ∈S

{
1

n

n∑

i=1

(
Yi − 〈Xi, ζ〉2 − α

)2
+ ρ · penalty(ζ)

}
, (2.1.2)

where ρ > 0 is the tuning parameter corresponding to the constraint constant C. Often the

penalty term determines which space the estimated slope function falls into. So, choosing

a penalty is equivalent to imposing constraints on ζ. For example, using penalty(ζ) =

‖ζ(2)‖22 is equivalent to assuming that ζ is second-order differentiable and ζ(2) has bounded

L2-norm, and it is the same as the assumption that S is a Sobolev space. A more

general constraint can be that the function space S is a Reproducing kernel Hilbert space

(RKHS) and the penalty is the corresponding RKHS norm (Berrendero et al., 2019; Cai

and Yuan, 2012; Crambes et al., 2009; Li and Hsing, 2007; Shin and Lee, 2016; Sun

et al., 2018; Yuan and Cai, 2010). Such an approach typically requires fully observed

sample paths Xi, but can also be employed to densely sampled Xi. see, e.g., Cardot et al.

(2003) for error-free observations and Crambes et al. (2009); Li and Hsing (2007) for

noisy observations. Alternatively, one can pre-smooth each individual path to get a “fully

observed” function, then apply existing methodology for fully observed functional data.

However, the sampling frequency needs to be very intensive in order for the subsequent

inference to go through, so this does not always work. In addition, it’s not obvious how to

assess whether the sampling frequency meets the assumption needed for the pre-smoothing

method.

How to estimate ζ0 when sample curves are only sparsely observed has rarely been

explored. Furthermore, when making predictions, all existing approaches encounter the
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challenge that a reliable estimate of the regression function, i.e. the index 〈ζ0, Xi〉2, is
difficult to attain for subjects with only a few measurements on Xi(t). Recognizing this

challenge, Gajardo et al. (2021) focused on predicting the distributions of a truncated

conditional process of 〈X, ζ〉2 under the assumption that X is a Gaussian process. In this

paper, we target directly the prediction of 〈X, ζ〉2 based on a new observation. To do so,

we first need to resolve the estimation problem of ζ0.

The estimation procedures based on normal equation should still work even when

individual paths cannot be densely sampled, as they target population parameters, such

as covariance and cross-covariance. We provide supporting theory for the normal equation

approach in Section 2.4.1. The estimation is more challenging for the RKHS approach

because the estimation of ζ0(t) involves the evaluation of the 〈ζ0, Xi〉2 as triggered by

the formulation (2.1.2). For instance, when the penalty term is the RKHS norm of a

candidate function ζ, we need to find α ∈ R and ζ ∈ H(K) that minimize the loss

ℓ
(
α, ζ; {Xi}ni=1

)
=

1

n

n∑

i=1

(
Yi − 〈ζ,Xi〉2 − α

)2
+ ρ

∥∥ζ
∥∥2
H(K)

. (2.1.3)

In order to evaluate the loss ℓ we need to have good approximations of 〈ζ,Xi〉2 which

is not feasible for sparsely observed covariates. Thus, sparse functional covariates bring

dual challenges to the RKHS approach in functional linear models (2.1.1), both in terms

of estimation and prediction. We address these challenges for the RKHS approach in

Section 2.4.2 and show that both consistent estimation for the slope function ζ0(t) and

prediction are still possible, for sparsely observed covariates Xi(t), possibly contaminated

with noise. We also aim at prediction for both approaches In Section 2.5 when only

sparsely measured functional covariates are available.

Our approach is simple and aims at imputing each of the unobserved process Xi(t)

by X̃i(t) so that the integral 〈ζ0, Xi〉2 is replaced by 〈ζ0, X̃i〉2, which can be evaluated

effectively. However, in order for this to work, the linear structure between Yi and X̃i(t)

must be retained by the same slope function ζ0(t) and intercept α0, so the surrogate model

should be

Yi = α +

∫ 1

0

ζ0(t)X̃i(t)dt+ ei, (2.1.4)
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where Y, α0 and ζ0(t) are the same as in the original model (2.1.1), but ei is a new random

noise variable that replaces ǫi. One approach to imputeXi(t) is to use the Principal Analy-

sis by Conditional Estimation (PACE) approach in Yao et al. (2005a) on the observed path

points, i.e., for each i = 1, . . . , n, X̃i(t) = E[Xi(t) |Wi(Ti)], where Ti = (Ti1, . . . , TiNi
)

is the vector of sampling schedule for subject i and Wi(Ti) = (Wi(Ti1), . . . ,Wi(TiNi
)) is

the corresponding vector of the noisy observations of Xi(t) at different time points. Note

that both the sampling schedule and number of measurements Ni may vary with subjects.

Indeed such an imputation approach has been explored in the literature for the RKHS

approach. Avery et al. (2014) numerically demonstrates that this method works reason-

ably well in both simulations and real datasets, but no theoretical justification has been

offered. We fill this theoretical gap and show that the imputation approach also works

in a more general setting than previously described in Yao et al. (2005a). At first glance

such an imputation approach should not work for sparsely sampled Xi(t) because X̃i(t)

cannot approximate Xi(t) consistently, so there will be non-ignorable prediction errors

in the imputed process, which normally would trigger a bias in the resulting estimators.

Intriguingly, we show in Theorem 1 that this particular imputation does not induce bias

into the regression estimates.

In practice, the imputed process X̃i(t) cannot be fully observed either and needs to

be approximated from the data. There are two sources of approximation errors, one from

approximating X̃i(t) by a finite dimensional projection and the other from estimating this

finite dimensional projection. We show that under some weak assumptions the estimation

of X̃i(t) does not affect the estimation of ζ0(t) much and establish the consistency of the

proposed estimator in the L2-norm for sparsely observed functional covariates. For the

prediction problem, we propose to replace the new covariate X∗(t) with an estimate of

its imputed process X̃∗(t). Let X̂∗(t) denote its estimate, then the prediction for a new

subject with covariate X∗(t) is thus 〈ζ0, X̂∗〉2. Theoretical properties of the proposed

prediction method are studied in Section 2.5.

To summarize, we consider two different approaches in scalar-on-function linear mod-

els for sparsely observed functional covariates. A main novelty of our approach is the
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discovery that through a Berkson type of measurement errors, the original functional co-

variate Xi and the imputed covariate process X̃i share the same regression parameters.

For each approach, we consider both the estimation and prediction problems. A summary

of the main contributions of this paper follows.

1. We resolve a long-standing open problem to make predictions for functional linear

model based on sparsely observed data.

2. We provide theoretical support to estimate the regression coefficient functions in

sparse case under both the normal equation and RKHS framework.

Section 2.2 contains the model setup and estimation procedures. In Section 2.3 we

discuss the imputation method. The estimation of the slope function under the two

frameworks is presented in Section 2.4. Numerical implementation of the estimators is

provided in Section 2.6. Simulated experiments and data analysis are also conducted to

demonstrate the proposed method in the same section. Lastly, proofs are in Section ??.

2.2 Sampling Plan and Surrogate Model

We will use L2(T ) and L2(T 2) to denote the space of square-integrable functions defined

on T and T ×T . If R(s, t) is a function in L2(T 2), the linear operator LR : L2(T ) 7→ L2(T )
is defined according to LR(f) =

∫
T R(s, t)f(s)ds, and ‖LR‖op denotes its operator norm.

For the sake of brevity, we assume T = [0, 1] and write
∫
T f1(t)f2(t)dt = 〈f1, f2〉2 and

∫
T 2 h1(s, t)h2(s, t)dsdt = 〈h1, h2〉2 whenever the context is clear. Lastly, we use ‖f‖2 to

denote the L2-norm of f .

Assume that X1(t) is a mean-square continuous process in L2(T ) with mean µ(t) =

E[X1(t)] and covariance Γ(s, t) = cov(X1(s), X1(t)), and ǫ1 is a random variable with

mean 0 and finite variance σ2. The sample {(Xi, Yi)}ni=1 are i.i.d. copies of (X1, Y1).

We consider the setting where the full process Xi(t) cannot be observed continuously as

measurements can only be taken at random discrete time points. In addition, the discrete

observations may contain noise. Assumptions on the sampling plan with measurement

errors are summarized in Assumption 1 below.
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Assumption 1 (Sampling Plan).

(A1.1) The integer-valued random variables {Ni}ni=1 are i.i.d., and there exists a constant

c > 0 such that P(supiNi ≤ c) = 1.

(A1.2) The ith sample path Xi(t) is sparsely sampled at Ni time points

Ti = (Ti1, . . . , TiNi
)⊤.

The observation vector is (Xi(Ti1), . . . , Xi(TiNi
))⊤. Each Xi(Tij) is contaminated by

a noise variable ηij and the observed noisy data are

Wi(Tij) = Xi(Tij) + ηij,

where {ηij}Ni
j=1 are measurement errors with mean zero, finite variance σ2

η, and are

independent across i. We write

Wi(Ti) = (Wi(Ti1), . . . ,Wi(TiNi
))⊤. (2.2.1)

(A1.3) For the ith subject, the time points {Tij}Ni
j=1 form an i.i.d. sample from a continuous

random variable T defined on T . The density of T is bounded above and below from

zero. Furthermore, the second order derivative of the density is also bounded.

Remark. Functional data that satisfy Assumptions (A1.1) and (A1.2) are usually referred

to as sparse functional data (Yao et al., 2005a), which occurs frequently in longitudinal

studies. They are harder to handle than fully or densely observed functional data due to

the irregular sampling design in Assumption (A1.1) (Wang et al., 2016). �

Since the mean function µ(t) can be estimated at a faster rates than the covariance

Γ(s, t) (Yao et al., 2005a; Zhang and Wang, 2016) and the slope function ζ0(t) in the

sparse case, it is customary to assume µ(t) ≡ 0 and consider the model

Yi =

∫ 1

0

ζ0(t)Xi(t)dt+ ǫi, (2.2.2)

= 〈ζ0, Xi〉2 + ǫi,
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where both Yi and Xi(t) are centered, and T = [0, 1]. The results in this paper also apply

to the general case when µ(t) 6= 0 with additional technical details.

While the challenges for estimation using sparse functional data have largely been

resolved for estimating the mean and covariance function (Yao et al., 2005a; Zhang and

Wang, 2016), predictions in functional linear model remains unresolved due to the lack

of data to evaluate the index 〈ζ0, Xi〉2 in (2.1.1). We propose to use the imputed process

X̃i = E[Xi|Wi(Ti)] to replace the unobservable Xi and re-write (2.2.2) as

Yi = 〈ζ0, X̃i〉2 + 〈ζ0, Xi − X̃i〉2 + ǫi,

= 〈ζ0, X̃i〉2 + ei, (2.2.3)

where ei = 〈ζ0, Xi − X̃i〉2 + ǫi. Theorem 1 confirms the validity of the surrogate model

(2.2.3) based on the imputed processes.

Theorem 1. Suppose Assumption 1 holds. The new noise ei is uncorrelated with X̃i,

and so model (2.2.3) is a functional linear model with the same slope function ζ0(t) as

model (2.2.2).

Remark. An interesting phenomenon emerges from Theorem 1 as what we did is to

replace the original covariate Xi(t) in (2.2.2) with the imputed X̃(t), which results in

an error-in-variable model as the error (Xi − X̃i)(t) is non-ignorable in size for sparsely

observed X(t). Usually, this will induce a bias but we do not have such a bias issue

because we have a special type of error-in-variable of the Berkson type, where the er-

ror is uncorrelated with the (imputed) covariate (Berkson, 1950). While it seems that

a more efficient imputation method would be to replace E[Xi(t)|Wi(Ti)] in (2.2.3) with

E[Xi(t)|Wi(Ti), Yi] as the latter utilizes the additional information on Yi. However, this

would lead to residuals that are correlated with the covariates, hence this strategy will

not work. �

With the help of Theorem 1, we can use the surrogate model (2.2.3) to predict the

target 〈ζ0, X̃i〉2. However, the imputed process X̃i(t) is unobservable in practice, so we
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need to find a good approximation of X̃i(t). Luckily, this is feasible and will be elaborated

in the next section.

2.3 Imputation

It is common to assume that the covariance Γ(s, t) admits the expansion

Γ(s, t) =
∞∑

k=1

λkφk(s)φk(t), (2.3.1)

where {λk} are eigenvalues of Γ(s, t) and satisfy λ1 > λ2 > λ3 > . . . , and {φk(t)} are

the corresponding eigenfunctions. Hence, for each sample trajectory Xi(t), we have the

following Karhunen-Loève expansion

Xi(t) = µ(t) +
∞∑

k=1

Aikφk(t), (2.3.2)

where Aik = 〈Xi, φk〉2, E[Aik] = 0 and var(Aik) = λk.

Through conditioning and by assuming that µ(t) = 0, the imputed process is

X̃i(t) =
∞∑

k=1

Ãikφk(t), (2.3.3)

where Ãik is defined as Ãik = E[Aik|Wi(Ti)]. Below we introduce some regularity condi-

tions on the process.

Assumption 2 (Regularity on Functional Data).

(A2.1) The process satisfies
∥∥E[X4

1 (t)]
∥∥
1
<∞ .

(A2.2) Let α1 > 1 be a fixed constant not depending on n. For k ≥ 1, λk ≍ k−α1.

(A2.3) Let δk = min1≤l≤k(λl − λl+1). There exist fixed constants c > 0 and γ > α1 such

that δk ≤ k−γ/c.

2.3.1 Truncation of the imputed process

Since the X̃i is defined via an infinite series, we choose a positive integer M◦, which

increases to infinity as n→∞, and truncate X̃i(t) to

X̃i,M◦(t) =
M◦∑

k=1

Ãikφk(t). (2.3.4)
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Proposition 1. Suppose that Assumption 2 holds, then

∥∥X̃i(t)− X̃i,M◦(t)
∥∥
2

= Op

(
M◦

−(α1−1)/2
)
.

2.3.2 Estimation of the truncated imputed process

The PACE method aims at estimating Ãik through its best linear predictor.

Assumption 3 (Conditional score).

(A3) E[Aik|Wi(Ti)] is a linear function of Wi(Ti), i.e. there exists a scalar aik and a

vector bik such that

E[Aik|Wi(Ti)] = aik + b⊤ikWi(Ti).

Remark. In the supplement, we provide an example to show that Assumption (A3)

holds beyond the Gaussian assumption. In particular, Assumption (A3) holds when Xi

and the measurement errors ηij are jointly elliptical (see Bali and Boente (2009); Boente

et al. (2014) for the definition of elliptical distributions). Intriguingly, the jointly elliptical

assumption may not hold for multivariate t distributions in the presence of measurement

errors. Therefore, we propose an alternative assumption and further discussion in the

supplement (Section A.11) that replaces Wi(Ti) by Xi(Ti) in Assumption (A3). This

alternative assumption, which only assume that E[Aik|Xi(Ti)] is a linear function of

Xi(Ti), facilitates consistent estimation of the slope function ζ0 and only requires that Xi

is elliptical.

The fact that all Aij, ηij, Xi(t) are mean zero implies that the scalars aik are all zero,

and the vector bik is the weight in the least square solutions, which leads to

Ãik = cov(Aik,Wi(Ti))
⊤[ cov(Wi(Ti))

]−1
Wi(Ti),

= λkφ
⊤
ikΣ

−1
Wi(Ti)

Wi(Ti), (2.3.5)

where φ1k =
(
φk(Ti1), . . . , φk(TiNi

)
)⊤

andΣWi(Ti) denotes the covariance matrix ofWi(Ti).

Denote λ̂k, φ̂k, Σ̂Wi(Ti) as the estimates of λk, φk, ΣWi(Ti). The relation (2.3.5) thus lead

to the estimate Âik for Ã1ik, with

Âik = λ̂kφ̂
⊤
ikΣ̂

−1
Wi(Ti)

Wi(Ti). (2.3.6)
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Consequently, the truncated imputed process X̃i,M◦(t) will be approximated by

X̂i,M◦(t) =
M◦∑

k=1

Âikφ̂k(t). (2.3.7)

Proposition 2. Let the equal-weight-per-observation scheme ((2.3) and (2.4) in Zhang

and Wang (2016)) be the weighing scheme used to estimate the mean µ(t) and covariance

Γ(s, t). Suppose that Assumptions 1, 2, and 3 hold. Then

∥∥X̃i,M◦(t)− X̂i,M◦(t)
∥∥
2

= Op

(
M◦

γ+1(log(n)/n)1/3
)
.

Remark. The proof of Proposition 2 is based on the bound on sample eigenfunctions,

E[‖φ̂j − φj‖22] . η−2
j E[‖Γ̂−Γ‖2op], which is commonly applied in the literature and can be

found in Bosq (2000); Hsing and Eubank (2015); Li and Hsing (2010). Recently, Zhou et al.

(2022) pointed out that this bound can be sharpened by replacing the eigen-gap assump-

tion (A2.3) with a stronger assumption and by further imposing assumptions on the first

two derivatives of the eigenfunctions. Under their assumptions we are able to improve the

estimation error in Proposition 2 to ‖X̃i,M◦(t)− X̂i,M◦(t)‖2 = Op(M◦
1(log(n)/n)1/3). Con-

sequently, the new bounds on φ̂j and X̃i,M◦ can also be applied to improving Theorem 2

and Theorem 3 with considerable technical tedium. However, their approach requires fine

tuning of the smoothing parameter for eigenfunctions. Details are thus omitted in this

paper.

2.4 Estimation of ζ0

The previous section establishes the validity of making predictions through the imputed

process of conditional expectation and how to estimate the conditional processes. To

predict the response from a new sparsely sampled functional trajectory, we need to know

or be able to estimate the slope function ζ0. This section is devoted to two approaches to

estimate ζ0, one through the normal equation and the other through the RKHS approach.
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2.4.1 Estimation of ζ0 through the normal equation

Assume that the slope function is in the space spanned by {φk(t)}∞k=1. It the follows from

the spectral decomposition of Γ(s, t) in (2.3.1) that ζ0 can be represented as

ζ0 =
∞∑

k=1

zkφk(t), (2.4.1)

where zk = 〈ζ0, φk〉2. We make the following assumption on zk.

Assumption 4 (Decay rate of zk).

There exists fixed constants c > 0 and β1 > 0 such that |zk| ≤ c k−β1.

Then ζ0 also satisfies the following population equality:

E[YiXi(t)] = E[〈ζ0, Xi〉2Xi(t)],

= 〈ζ0(s),Γ(t, s)〉2,

=
∞∑

k=1

λkzkφk(t). (2.4.2)

Write g(t) = E[Y1X1(t)], then it admits the series expansion g(t) =
∑∞

k=1 gkφk(t) with

gk = zkλk. Based on (2.4.1) and (2.4.2), an estimator can be found through

ζ̂M(t) =
M∑

k=1

ĝk

λ̂k
φ̂k(t), (2.4.3)

where ĝk, λ̂k, and φ̂k(t) are empirical estimates from a random sample. In particular,

λ̂k and φ̂k(t) can be estimated from a covariance estimate, e.g., the one in Yao et al.

(2005a,b); Zhang and Wang (2016). Also note that

gk = E[Y1A1k] = E[Y1〈X1, φk〉2] = 〈E[Y1X1(t)], φk(t)〉2, (2.4.4)

where g(t) = E[Y X1(t)] can be estimated through a local linear polynomial smoother

similar to the estimation of E[X1(t)] (Zhang and Wang, 2016). Therefore, gk is estimated

by ĝk = 〈ĝ, φ̂k〉2.
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Theorem 2. Suppose Assumptions 1, 2, and 4 hold. Then

∥∥ζ̂M(t)− ζ0(t)
∥∥2
2

= Op

(
M2α1+1r21 +M2(α1+γ)+1r22 +M−2β1+1

)
,

where r1 = (log(n)/n)2/5 and r2 = (log(n)/n)1/3. With the choice

M = (n/ log(n))2/(5(α1+β1)),

we obtain
∥∥ζ̂M(t)− ζ0(t)

∥∥
2

= Op

((
log(n)/n

) 1
3
− 1

5
2(α1+γ)+1

α1+β1

)
.

2.4.2 Estimation of ζ0 in RKHS

For the normal equation approach above, we adopted the conventional approach of us-

ing a local linear smoother to estimate the unknown components. Although a different

smoother, such as RKHS could also be adopted in principle, the theory would not be

comparable as stronger assumptions are typically imposed on the mean and covariance

estimation of functional data (Cai and Yuan, 2010, 2011). We thus resorted to the com-

mon approach in the literature to assume that ζ0 belongs to an RKHS H(K) with kernel

K(s, t).

If Xi(t) are fully observed, the RKHS estimator of the slope function can be obtained

through

ζ̂ρ(t) = argminζ∈H(K)

{
1

n

n∑

i=1

(
Yi − 〈ζ,Xi〉2

)2
+ ρ

∥∥ζ
∥∥2
H(K)

}
. (2.4.5)

The sparse sampling assumption deprives the index 〈ζ,Xi〉2 a good approximation. Our

proposal is to replace Xi by an imputed process X̃i, which can be estimated well by

X̂i,M◦(t) as shown in Section 2.3. The the slope function can be estimated through the

following penalized regression:

ζ̂ρ,M◦(t) = argminζ∈H(K)

{
1

n

n∑

i=1

(
Yi − 〈ζ, X̂i,M◦〉2

)2
+ ρ

∥∥ζ
∥∥2
H(K)

}
. (2.4.6)

The rest of the section establishes the convergence rate of ζ̂ρ,M◦ .

It is well known, e.g. from Theorem 7.6.4 of Hsing and Eubank (2015), that H(K)

has the property H(K) = LK1/2(L2[0, 1]), where the operator LK satisfies LK(f) =
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LK1/2

(
LK1/2(f)

)
. Hence, there exists a unique element f0 ∈ L2[0, 1]/ ker(LK1/2) such

that the true slope function ζ0(t) can be expressed as ζ0 = LK1/2(f0). Denote Γ̃(s, t) =

cov(X̃1(s), X̃1(t)) as the covariance of the imupted process and define the bivariate kernel

function R(s, t) so that it satisfies LR(f) = LK1/2(LΓ̃(LK1/2(f))). Then LR is compact,

and R(s, t) admits the following spectral decomposition

R(s, t) =
∞∑

k=1

θkϕk(s)ϕk(t),

where {(θk, ϕk(t))}∞k=1 are the eigen-pairs of R(s, t) and θ1 > θ2 > · · · ≥ 0. The function

f0 can be expressed as

f0(t) =
∞∑

k=1

fkϕk(t). (2.4.7)

The following assumption imposes regularity conditions on θk and fk.

Assumption 5.

(A5.1) There exist constants c > 0 and β2 > 1/2, not depending on n, such that |fk| ≤ c k−β2.

(A5.2) There exists α2 > 1, not depending on n, such that θk ≍ k−α2.

Theorem 3. Under assumptions 1, 2, 3, and 5, we have

∥∥ζ̂ρ,M◦(t)− ζ0(t)
∥∥
2

= Op

(
ρν + ρ−2

(
M◦

−(α1−1)/2 +M◦
γ+1(log(n)/n)1/3

))
,

where ν = (2β2−1)/α2

2+(2β2−1)/α2
∈ (0, 1). With the choices

M◦ = (n/ log(n))1/(3(α1+1)/2+3γ)

and

ρ = ((α1 − 1)/2)/(3(2 + ν)((α1 + 1)/2 + γ)),

we have

‖ζ̂ρ,M◦(t)− ζ0(t)
∥∥
2

= Op

((
log(n)/n

) 1
3

ν
2+ν

(α1−1)/2
γ+(α1+1)/2

)
.
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2.5 Prediction

Denote ζ̂ as a generic estimator for ζ0. For the observation vector W∗(T∗) of a new

trajectory X∗ that is independent of the sample, written as (X∗(T ∗
1 ), . . . , X

∗(T ∗
N)), its

truncated estimate using (2.3.7) is X̂∗
M◦

=
∑M◦

k=1 Â
∗
kφ̂k(t), where the eigen-components

φ̂k(t) are estimated from the existing sample, and the scores Â∗
k are calculated according

to (2.3.6) using the new observed vector W∗(T∗). Then 〈ζ̂ , X̂∗
M◦
〉2 can be used to predict

〈ζ, X̃∗〉2, where X̃∗ = E[X∗|W∗(T∗)] is the imputed process of X∗ Our analysis will

focus on the prediction error E[(〈ζ̂ , X̂∗
M◦
〉2−〈ζ0, X̃∗〉2)2 | ζ̂ ] as we have replaced the linear

regression model (2.1.1) with the surrogate model (2.1.4) based on Theorem 1. Theorem 4

establishes the oracle rate for prediction when the slope function is known. Then we show

in Theorem 5 the prediction rate when a generic ζ0 estimator is used.

Theorem 4. Assume that the slope function ζ0 is known. Let X
∗ denote a new functional

trajectory, and its conditional process is X̃∗ = E[X∗|W∗(T∗)]. Then,

E
[(
〈ζ0, X̃∗〉2 − 〈ζ0, X̂∗

M◦
〉2
)2]

= Op

((
log(n)/n

) 2
3

α1−1
α1+2γ+1

)
.

The next theorem quantify the prediction error rate when ζ0 is estimated.

Theorem 5. Suppose that an estimator ζ̂ has the asymptotic property:

‖ζ̂ − ζ0‖2 = Op(δ).

Then using this estimator in replacement of ζ0 in prediction, we have

E
[(
〈ζ0, X̃∗〉2 − 〈ζ̂ , X̂∗

M◦
〉2
)2]

= Op

(
δ2 +M◦

−α1+1 +M◦
2(γ+1)

(
log(n)/n

)2/3 )
.

We note that if the goal is prediction, the estimate with the optimal rate of convergence

for the regression function ζ0 does not lead to the optimal rate for prediction. This

is because optimal prediction involves some level of over-fitting. Fortunately, given a

particular method, it is possible to determine which estimation rate will lead to the

optimal prediction rate. We demonstrate this for both the normal equation (Theorem 6)

and the RKHS (Theorem 7) methods.
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Theorem 6 (Prediction using normal equation). Suppose that Assumptions 1, 2 and 4

hold. If the normal equation is used to estimate ζ0, then

E
[(
〈ζ0, X̃∗〉2 − 〈ζ̂M, X̂∗

M◦
〉2
)2]

= Op

(
(log(n)/n)

2
3

min{α1,2β1}−1
2(α1+γ)+min{α1,2β1}

)
.

Theorem 7 (Prediction using RKHS). Suppose that Assumptions 1, 2, 3, and 5 hold. If

the RKHS approach (2.4.6) is used to estimate ζ0, then

E
[(
〈ζ0, X̃∗〉2 − 〈ζ̂ρ,M◦ , X̂

∗
M◦
〉2
)2]

= Op

(
(log(n)/n)

2
3

2ν◦
4+2ν◦

α1−1
α1+2γ+1

)
,

where ν◦ =
(2β2+3α2−1)/α2

2+(2β2+3α2−1)/α2
.

2.6 Numerical Experiments

2.6.1 Simulation Studies

We consider three different distributions for the functional covariate. The random function

X(t) is generated from X =
∑50

k=1 ζkZkφk(t), where ζk = (−1)k+1k−1, ρ1(t) = 1 and

ρk+1(t) =
√
2 cos(kπt), k ≥ 1. The scores Zk are the random components from one the

following cases:

(1) Z1, . . . , Z50 are i.i.d. uniform random variables defined on [−
√
3,
√
3].

(2) Z1, . . . , Z50 are i.i.d. from standard Gaussian random variables N(0, 1).

(3) The vector (Z1, . . . , Z50)
⊤ is a multivariate t-distribution with uncorrelated coordi-

nates and degree of freedom is 5.

Scenarios (2) and (3) are motivated by the elliptical family of distributions. The noise

of the responses follows Gaussian distribution N(0, 0.52), and the measurement error is

another Gaussian random variable N(0, 0.12). The true slope function is taken as

ζ0(t) =
50∑

k=1

4(−1)k+1k−2ρk(t).

We employ both the normal equation and the reproducing kernel Hilbert space ap-

proach to estimate the slope function. For the first approach, we use the estimator defined
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in (2.4.3). The cross-covariance g(t) and covariance Γ(s, t) are estimated from observed

sample. The number of eigen-components used in the approximation is selected according

to the elbow rule in the scree plot. Two or three components were selected on average in

the simulation.

For the second approach, we first show how to obtain a numerical estimate of the

target function in a generic RKHS. Recall that the proposed estimator is found through

a penalized regression:

argminζ∈HK

{
1

n

n∑

i=1

(yi − 〈X̂i,M◦ , ζ〉2)2 + ρ
∥∥ζ
∥∥2
H(K)

}
. (2.6.1)

Decompose H(K) into two orthogonal subspaces, i.e., HK = H0 ⊕ H1, where H0 =

span{ωk(t)}pk=1 is finite-dimensional with orthogonal basis functions, and H1 is its orthog-

onal complement with kernel K1. It is straightforward to verify (Wahba, 1990) that there

exists d = (d1, . . . , dp)
⊤ ∈ R

p and c = (c1, . . . , cn)
⊤ ∈ R

n such that

ζ̂λ,M◦(t) =

p∑

k=1

dkωk(t) +
n∑

i=1

ciLK1(X̂i,M◦)(t). (2.6.2)

The following result shows how vectors c and d are computed.

Theorem 8. The vectors d and c in (2.6.2) satisfy

Λc+Ψd = y,

Ψ⊤c = d,

where

Λ = nρI + Σ,

Σij =

∫∫

[0,1]2
X̂i,M◦(s)K1(s, t)X̂j,M◦(t)dsdt, 1 ≤ i, j ≤ n,

Ψij =

∫ 1

0

X̂i,M◦(t)ωj(t)dt, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Then, he vectors d and c are given by

c = (Λ + Ψ⊤Ψ)−1y,

d = Ψ⊤(Λ + Ψ⊤Ψ)−1y.
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Theorem 8 can be easily derived using the representer lemma for smoothing splines

(Wahba, 1990) with a new penalized term in the ‖ · ‖H(K) instead of ‖ · ‖H(K1). Using the

H(K)-norm as the penalization term avoids the numerical instability in solving for vectors

d and c (page 13 in Wahba (1990)). We can now estimate the coefficients in (2.6.2) as

long as the RKHS H(K) is known. For this purpose, we select the following RKHS as

our estimation space:

H(K) = W2[0, 1] =
{
β
∣∣ β, β(1) are absolutely continuous and β(2) ∈ L2[0, 1]

}
,

where

K(s, t) =
1

(2!)2
B2(s)B2(t)−

1

4!
B4(|s− t|),

B2(t) = t2 − t+ 1

6
,

B4(t) = t4 − 2t3 + t2 − 1

30
,

and the subspace H0 is span{1, t}. Then, the solution of (2.6.1) in the format of (2.6.2)

can be written as

ζ̂λ,M◦(t) = d1 + d2t+
n∑

i=1

ci

∫ 1

0

X̂i,M◦(s)K(t, s)ds. (2.6.3)

The penalty parameter ρ is selected by GCV as the minimizer of

GCV(ρ) =
1
n

∥∥ŷ − y‖2
(
1− 1

n
tr(H(ρ))

)2 ,

where y and ŷ are the true and estimated response values, respectively, and

H(λ) = (ΨΨ⊤ + Σ)(nρI + Σ+ΨΨ⊤)−1.

For both estimation approaches, the covariance of the functional data and its eigen-

components are estimated using FPCA() provided in the R package fdapace(Zhou et al.,

2022). The Fraction-of-Variance (FVE) threshold used during the SVD of the fitted co-

variance function is 0.95, and the output time grid is a grid of 51 equally spaced points

on [0, 1] including both end points.
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Three different sample sizes n = 50, 200, 500 are considered in the simulation study.

Each experiment was repeated 1000 times. To approximate the integral, we divided [0, 1]

into 50 equal width sub-intervals and used the trapezoidal rule. For each scenario, we

consider 2 sampling schemes:

(a) randomly sample 5 ∼ 10 time points with measurement errors,

(b) sample all time points without measurement errors.

We report three quantities to measure each approach’s relative accuracy normalized by

the L2-norm of the true slope function, the variability of the estimation, and integrated

mean squared error. Denote the average of the estimated slope functions by ζ̄(t) =

1
n

∑n
i=1 ζ̂i(t), and three quantities are computed according to

(i) the relative bias in the L2-norm biasr = ‖ζ0 − ζ̄‖2/‖ζ0‖2,

(ii) the sample estimation variance var = 1
n

∑n
i=1

∫ 1

0
(ζ̂i(t)− ζ̄(t))2dt,

(iii) the integrated mean squared error (IMSE) of the estimator imse = var +
∫ 1

0
(ζ̄(t) −

ζ0(t))
2dt.

Table 2.1 presents the estimation accuracy under models (1)-(3) using both the normal

equation approach (abbreviated as N.) and the reproducing kernel Hilbert space approach

(abbreviated as R.) when measurement error is present and sampling plan (a) is used.

Table 2.2 is organized in the same way except that the results are based on the dense

sampling plan (b) for comparison purpose.

Table 2.1 shows, as expected, that a larger sample size leads to a smaller estimation

error in both estimation methods. A similar pattern is also observed in Table 2.2, where

both the estimation error and variability have smaller magnitude due to the dense sam-

pling plan and no measurement errors. Furthermore, it is interesting that the RKHS

approach works even when Assumption (3) is violated. Model (1) generates functional

covariates using uniform random scores, and in this case equation (2.3.5) is not the true

conditional mean but rather the best linear predictors. Models (2) and (3) are from el-

liptical families, and they satisfy Assumption 3 when no measurement error is present.
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n = 50 n = 200 n = 500

model method biasr var IMSE biasr var IMSE biasr var IMSE

1
N. 0.1719 1.1837 1.6954 0.1322 0.2776 0.5803 0.1280 0.1172 0.4009

R. 0.0996 0.8253 0.9973 0.0567 0.1946 0.2503 0.0479 0.0713 0.1111

2
N. 0.1754 1.3934 1.9260 0.1360 0.3907 0.7109 0.1274 0.1613 0.4424

R. 0.1054 1.0844 1.2766 0.0623 0.2515 0.3188 0.0477 0.0844 0.1238

3
N. 0.1834 2.2424 2.8252 0.1513 0.7914 1.1877 0.1361 0.3485 0.6692

R. 0.1175 1.9404 2.1794 0.0722 0.6776 0.7679 0.0528 0.2826 0.3310

Table 2.1: The relative bias, variance and IMSE of the estimation of both methods under
the sparse sampling plan (a).

The performance of the RKHS approach are indeed satisfactory. This demonstrates the

robustness of this method. We also note that the RKHS approach tends to perform better

in our experiments. In practice, the normal equation approach relies on delicate synchro-

nization between the population covariance (its eigenfunctions) and the slope function,

which is more affected by the covariance estimation and other hyperparameters choices

during the estimation procedure.

n = 50 n = 200 n = 500

model method biasr var IMSE biasr var IMSE biasr var IMSE

1
N. 0.1417 0.2085 0.5562 0.1336 0.0509 0.3601 0.1323 0.0213 0.3247

R. 0.0390 0.2488 0.2751 0.0265 0.0681 0.0803 0.0199 0.0344 0.0413

2
N. 0.1428 0.2230 0.5763 0.1347 0.0536 0.3676 0.1331 0.0214 0.3281

R. 0.0364 0.2622 0.2852 0.0272 0.0640 0.0768 0.0217 0.0326 0.0408

3
N. 0.1486 0.3791 0.7616 0.1359 0.1104 0.4302 0.1341 0.0490 0.3603

R. 0.0363 0.2137 0.2365 0.0233 0.0491 0.0585 0.0192 0.0222 0.0286

Table 2.2: The relative bias, variance and IMSE of the estimation of both methods under
the dense sampling plan (b).
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2.6.2 Framingham Heart Study

We apply the proposed prediction method to the sparse functional data in the Framingham

Heart Study (D’Agostino et al., 2001). The original data consist of the body mass index

(BMI) of 5,209 subjects (2,336 men and 2,873 women) recruited at ages between 28 and

62, but we only have access to the data for 1213 individuals. The BMI is a risk factor for

cardiovascular disease, and it is computed from the height (in meter) h and weight (in

lbs) w of each subject as 703 · w/h2. Our goal is to predict the BMI of an individual at

an older age (65 to 70) using the BMI trajectory of this individual from age 35 to 60. To

avoid complications due to death, we exclude subjects who died before 70. This results

in 880 subjects. Since the BMI values were recorded longitudinally at different ages for

different subjects, we have irregularly and sparsely recorded functional covariates with an

average of 9 BMI measurements per subject. For the response, we use the average BMI

recorded between age 65 to 70 to ensure that all subjects have a scalar response.

Both the normal equation and RKHS approaches described in the previous simulation

section were used to estimate the slope function. For covariance estimation, the FVE

threshold was set at 0.99. Figure 2.1 shows the slope function estimated from both

methods. To avoid the boundary effects, we highlight the results (red and blue) that

are at least one bandwidth away from the boundaries. The two approaches give slightly

different but similar estimates that exhibit an increasing trend, which starts with near

zero slopes before age 45 then a prominent increase in slopes in order ages. This suggests

that more recent BMI values are more predictive of future BMI values. The r2 value is

76.38% for the normal equation approach and 77.63% for the RKHS approach, indicating

a good fit of the functional linear regression model.

To evaluate the performance of both methods in prediction, we randomly hold out

10% of the data (i.e., 80 subjects) for prediction and use the remaining data to estimate

the slope function. The estimate is denoted as ζ̂r. The imputed functional covariates in

the hold-out dataset are estimated using (2.3.6) and (2.3.7). We use the relative absolute

error, defined as 1
m

∑m
j=1 |ŷj − yj|/|yj|, as the quality measure. Here the index j loops

over the hold-out set, and there are m = 80 subjects in this set. The relative absolute
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Figure 2.1: The slope function estimated from the normal equation approach and the
RKHS approach. The x-axis represents the age.

error is 8.39% for the normal equation approach and 7.43% for the RKHS approach,

indicating that both prediction approaches are effective with the RKHS approach slightly

outperforms the normal equation approach.
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Chapter 3

Deep Learning for Functional Data

Analysis via Adaptive Bases

Despite their widespread success, the application of deep neural networks to functional

data remains scarce today. The infinite dimensionality of functional data means standard

learning algorithms can be applied only after appropriate dimension reduction, typically

achieved via basis expansions. Currently, these bases are chosen a priori without the

information for the task at hand and thus may not be effective for the designated task.

We instead propose to adaptively learn these bases in an end-to-end fashion. We intro-

duce neural networks that employ a new Basis Layer whose hidden units are each basis

functions themselves implemented as a micro neural network. Our architecture learns to

apply parsimonious dimension reduction to functional inputs that focuses only on informa-

tion relevant to the target rather than irrelevant variation in the input function. Across

numerous classification/regression tasks with functional data, our method empirically out-

performs other types of neural networks, and we prove that our approach is statistically

consistent with low generalization error.

3.1 Introduction

Deep learning has revolutionized data analysis and predictive modeling as its learned

input representations capture more relevant aspects of a problem than representations

based on manually selected features of the data. While the powerful capabilities of neural
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networks (NN) have been clearly demonstrated for vector/image/text/audio/graph data,

how to best adapt these models to functional data remains under-explored. Functional

data are sample of random functions. The simplest examples are random curves defined

over a (univariate) real-valued interval with one curve per individual subject in our dataset.

Without loss of generality we assume that the interval is [0, 1]. The curve for one subject

is thus a random function X(t), t ∈ [0, 1], which can be viewed as a continuous stochastic

process on [0, 1]. Extensively studied in the statistics literature (Ferraty and Vieu, 2006;

Hsing and Eubank, 2015; Ramsay and Silverman, 2007; Wang et al., 2016), functional data

appear frequently in scientific studies and daily life, such as in datasets of: air pollution,

fMRI scans, growth curves, and sensors like wearable devices.

A fundamental property that distinguishes functional data from other data types is

that they are intrinsically infinite dimensional and generated by smooth underlying pro-

cesses. While high-dimensionality poses challenges in modeling and prediction, it brings

benefits when data are generated from smooth or continuous functions. This is because the

observed measurements at one location t0 can inform us the values of X(t) for t at nearby

locations, thereby increasing the estimation efficiency. The smoothness assumption also

makes functional data resilient to noise contamination as the magnitude of the noise can

be estimated and statistical methods designed for functional data can accommodate noise

in the observed data.

In practical applications, we are interested in using these continuous curves X(t) to

infer their relationship to some response variable Y , often to predict the response. More

formally, we have a dataset {(Xi(t), Yi)}ni=1 of i.i.d. samples of X(t) and the associated

Y , where X(t) is a mean-square continuous process defined over t ∈ [0, 1]. For each

subject i in our dataset, the observations of Xi serve as a functional covariate to predict

scalar response variable Yi, which may be either continuous or discrete. In many practical

applications, the continuous process X(t) is only be observed on a discrete time grid

{t1, . . . , tJ+1} in each observed Xi. Assuming there is an underlying map T : X(t) 7→ Y ,

our goal is to estimate T from the data (e.g. using a neural network).

A common pipeline for functional data analysis (FDA) is to summarize the informa-
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tion contained in each function into a finite-dimensional vector and then carry out the

analysis using existing models for the resulting multivariate data. Two popular dimension

reduction approaches are Functional Principal Component Analysis (FPCA) (Besse and

Ramsay, 1986; Li and Hsing, 2010; Rice and Silverman, 1991; Silverman, 1996; Yao et al.,

2005a) and preselected basis expansions using, for example, B-splines (Cardot et al., 2003;

Rice and Wu, 2001).

Existing approaches to deep learning for functional data rely on a straightforward

pipeline that first applies classic functional data analysis methods and then a neural

network in sequence. Rossi et al. (2002) handled functional data through discretization

and functional parameterization of weight matrices, while Rossi et al. (2005) and Guss

(2016) use basis function expansion to convert functional inputs into a vector form that

can then be directly fed into to a standard neural network. Some universal approximation

theory for functional neural networks has been established by Rossi et al. (2005) and Guss

and Salakhutdinov (2019). However this two-stage fitting process in prior work is unable

to fully leverage the representation-learning power and flexibility of deep learning.

In this paper, we propose to improve existing architectures by replacing these pre-

specified choice of basis functions with adaptively learned bases that are implemented via

micro neural networks (Lin et al., 2013) to which we backpropagate information regarding

the response variable. A similar variant of our basic idea was briefly suggested by Rossi

and Conan-Guez (2005), but their work never pursued the idea beyond a short comment

stating it could be the possibile to implement the weight function of their functional

neural network as an Multilayer Perceptron (MLP). Our design eliminates the need for a

preprocessing step to convert random functions into vector inputs that otherwise typically

requires a manually-prespecified choice of basis functions. Our architecture synchronizes

the dimension reduction step and the nonlinear mapping step by adjusting the learned

basis functions such that they only capture the information in X(t) that is relevant to the

output. Existing basis function representations instead seek to retain as much information

about the input as possible, which may actually make supervised learning more difficult

(Tishby and Zaslavsky, 2015).
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Our main contribution is to propose an alternative neural architecture for end-to-

end FDA that consists of a novel Basis Layer (BL) implemented via micro networks.

We name the new network an Adaptive Functional Neural Network (AdaFNN). We study

some theoretical properties of AdaFNN, establishing convergence and generalization error

guarantees. Adding a BL into a neural network as feature extractors for functional inputs,

the resulting model is empirically more accurate than existing methods and is simultane-

ously more parsimonious (meaning it requires less basis functions to model the random

functions). Two types of regularizers are introduced to encourage basis orthogonality

and basis sparsity. This regularization improves the resulting learned representations as

well as the interpretability of the learned bases (especially when a small number of basis

nodes are used). Moreover, our model can be trained end-to-end and thus composed with

arbitrary differentiable operations without any alteration.

3.2 Related Work

3.2.1 Discretization of Functions

A straightforward application of neural networks to functional data is to treat the dis-

cretely observed functional values {X(t1), . . . , X(tJ+1)} as a high-dimensional vector and

then input this vector into a neural network. This approach has been explored in Guss

and Salakhutdinov (2019); Rossi and Conan-Guez (2005); Rossi et al. (2002, 2005). An

alternative common approach is to treat the discretely sampled data from subjects as

time series. However this approach has several disadvantages as it does not leverage

the smoothness of the underlying data-generating process X(t) and relies on additional

strong assumptions such as stationarity. Lastly, most time-series methods are not de-

signed for replicate observations (here we observe numerous draws of the underlying X(t),

one per subject). Thus we instead review the vector-based approach below. Since the

X(t) process is only observed at discrete time points {tj}J+1
j=1 , one could use the vector

vx = [X(t1), . . . , X(tJ+1)] as the input of a standard neural network. Using the vector

vx, the original mapping T can be approximated by Tfinite : vx 7→ Y . Classical results

imply that Tfinite can be well approximated by a neural network with a sufficient number
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of parameters. Furthermore, by increasing the partition resolution J , we can approximate

T using Tfinite with arbitrarily small error.

Drawbacks. In order to preserve critical information about the functional inputs, the

discretization approach may require a high-dimensional vector, which hampers subsequent

learning due to the curse of dimensionality. Furthermore, these discrete vector dimensions

may fail to reflect the smoothness inherent to many functional covariates if they are

contaminated by noise.

3.2.2 Basis Representation of Functions

To overcome the disadvantage of discretization, Rossi and Conan-Guez (2005) proposed

to make use of the continuity of functional data and find a better finite-dimensional

representation of a functional input before feeding it into a network. To be specific, let

{ϕk(t)}Kk=1 be a set of K continuous basis functions defined on [0, 1]. The task is to

represent X(t) using a vector va = [a1, . . . , aK ] such that:

X(t) ≈
K∑

k=1

akϕk(t). (3.2.1)

Commonly used basis functions are Fourier basis functions, B-splines, or eigenfunctions

obtained via spectral decomposition of cov(X(s), X(t)). After finding a basis expansion

of X(t), we can use the vector va instead of vx as the input to a feedforward network.

Normally the dimensionK of va is much smaller than the dimension J+1 of the discretized

data vx, a clear advantage. Furthermore, the basis expansion in (3.2.1) automatically

produces a smooth approximation of X(t), which can reduce the noise contained in vx.

Drawbacks. While the basis representation approach in (3.2.1) could recover the

underlying smooth process of functional input, it does not take advantage of the key

information contained in the response Y during its dimension reduction stage. Besides,

both dimension reduction of functional inputs and parameterization of weight matrices

(see FMLP on p.55, Rossi and Conan-Guez (2005)) require selection of basis functions.

These bases are typically selected a priori and the number of bases needs to be chosen as

well. We address these questions in this paper by proposing an adaptive approach to find

the optimal bases that utilizes the information on Y and the specific learning task.
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3.2.3 Micro Network Inside of a Network

Embedding smaller neural networks within a larger overall network architecture has been

previously explored. For example, the Network in Network (NIN) model of Lin et al.

(2013) replaces linear convolutions by a micro MLP. Empirically, the enhanced nonlinearity

improves the model’s ability to extract good features. Although NIN is conceptually

related to our proposal, their operations differ in two ways. In our design, a basis node

in a basis layer, which is also a micro MLP, is applied to the whole input. In contrast,

a NIN micro network performs local convolution operations. Second, the micro MLP

in NIN takes a small region of an image as its input and this process is slid across the

whole image via convolution. Our basis micro network instead takes a fixed time point t

as its input and this process operates on a full functional input [X(t1), . . . , X(tJ+1)] via

numerical integration.

3.3 Methodology

To address the drawbacks of discretization and basis representation, we propose a novel

neural network that adaptively learn the best basis functions for supervised learning

tasks with functional inputs. Figure 3.1 shows the basic architecture of such a network

(AdaFNN), and Algorithm 1 details the network computations used to produce predictions

in a forward pass. After the initial basis layer, our network shares the same structure as

a standard feedforward network. Each node in a BL outputs a scalar value computed

as the inner product between the input function and the corresponding basis function

at that node (Figure 3.2). Unlike handcrafted functions used in existing methods, we

parameterize each basis function with a micro neural network that takes a scalar t as its

input and outputs the value the basis function takes at t.

In the network depicted in Figure 3.1, the BL consists of d basis nodes (for some

user-specified value of d). Each node represents the application of some basis function

βi(t), for i = 1, . . . , d and t ∈ [0, 1]. The value output by each basis node, i.e., the score

of X(t) with respect to the basis function βi(t), is computed as:

ci = 〈βi, X〉 =

∫
βi(t) ·X(t) dt. (3.3.1)
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Figure 3.1: Neural network with our Basis Layer

Figure 3.2: The i-th basis node in a Basis Layer.

The BL outputs form a vector c = [c1, . . . , cd] ∈ R
d. This vector is then fed through the

rest of the AdaFNN network’s layers, which after the BL are all standard fully-connected

layers (as in a standard MLP, where Θ denotes the weights of all layers after the BL). The

output of the overall network is Ŷ = T̂ (X) = σL
(
· · · σ1

(
W1c+ b1

))
, where σ1, . . . , σL are

the activation functions at each layer.

The bases βi are used to project the functional input X(t) to a vector representation

c. While the form of these bases could in theory be selected a priori, such ad hoc selec-

tion violates the principle of end-to-end learning that drives deep learning’s success. We

would instead like to backpropagate information about Y through the network in order

to adaptively identify optimal bases βi. For this reason, we prefer the representation of

input functions in (3.3.1) over (3.2.1), as the latter is less amenable to basis learning via

backpropagation.

In the BL, each basis function βi(t) is itself parameterized by another neural network

nnΘi
(t) : t 7→ σiL

(
· · · σi1

(
W i

1t + bi1
))

with parameters Θi consisting of weights {W i
l }Lℓ=1

and biases {bil}Lℓ=1. In this work, these micro networks nnΘi
are simply MLPs whose only

input are the values tj at which the functional covariate X(t) is measured (our micro
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MLPs employ modern techniques such as skip connections, batch/layer normalization,

and dropout). Note that these are the only locations at which we need to evaluate the

learned basis function βi in order to approximate 〈βi, X〉. In practice, the integral in (3.3.1)

must be approximated numerically, for example, using the rectangular or trapezoidal rule.

Suppose that the domain [0, 1] is equally discretized by the partition {tj = (j− 1)/J}J+1
j=1 .

For each i, the score ci is approximated by c̃i =
∑J+1

j=1 ωj · nnΘi
(tj) ·X(tj), where {ωj}J+1

j=1

are weights used in a numerical integration algorithm. For instance, if trapezoidal rule

is used in the network, then we would have ωJ+1 = ω1 = 1/(2J) and ωj = 1/J for

j = 2, . . . , J . Here equal spacing is not necessary. Our method works well as long as the

grid is dense enough for the numerical integration to be accurate (see our provided code

for a demonstration of AdaFNN with non-uniform spacing).

The loss of the network is calculated between a prediction Ŷ and the observed response

Y , and is written as ℓ(Ŷ , Y ). Here we employ a standard loss function for prediction

such as mean-squared-error for regression or cross-entropy for classification. The overall

loss is the average loss across the whole sample (or a mini-batch of data for stochastic

gradient training) and is denoted as L({Θi}di=1,Θ) = 1
n

∑n
i=1 ℓ(Ŷi, Yi). The micro-networks

and subsequent fully-connected network layers are all simultaneously trained (end-to-end)

using this single objective L({Θi}di=1,Θ) applied to the output predictions. In the next

section, we also consider possible addition of orthogonality or sparsity regularization to

this objective.

We make three observations about the proposed model. First, it can clearly be trained

end-to-end with the BL. There is no need to select and even fine tune what type of basis

functions should be used in representing input functions (or weight matrices). Second,

since the parameters Θi are updated to minimize prediction loss, our learned basis func-

tions are likely better suited for the desired task than handcrafted basis functions chosen

without this information. The experiments in Section 3.5 show that our BL architecture

can achieve higher accuracy than existing basis expansion methods while utilizing fewer

basis functions (as each individual learned basis function can capture more predictive sig-

nal). Lastly, since each micro neural network is a composition of continuous functions (as
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Algorithm 1 AdaFNN Forward Pass

Input: data x = [X(t1), . . . , (XJ+1)]

Output: prediction ŷ

Parameters: basis layer NN {Θi}i=1,...,d, output NN Θ, integration weights

ω1, . . . , ωJ+1, e.g. for trapezoid rule with equally-spaced tj: ωj = 1
J
if 2 ≤ j ≤ J ,

else = 1
2J

for i = 1 to d: c̃i ←
∑J+1

j=1 ωj · nnΘi
(tj) ·X(tj)

ṽc ← [c̃1, . . . , c̃d] ∈ R
d

ŷ ← nnΘ(ṽc)

return ŷ

a standard MLP), all of the learned basis functions within our model will be continuous.

3.3.1 Regularization

Encouraging Basis Orthogonality. Without constraints, two BL nodes might learn

similar basis functions and extract redundant information from the same functional input

X(t). To encourage different BL nodes to represent different (uncorrelated) information

about the function, we can regularize them to be orthogonal. Recall that L
(
{Θi}di=1,Θ

)

is the loss function of a BL network. To encourage basis orthogonality, we introduce

a regularization term which penalizes the cosine similarity between each pair of basis

functions. The resulting loss optimized by the regularized network is

Lperp

(
{Θi}di=1,Θ

)
= L

(
{Θi}di=1,Θ

)
+ λ1 ·

1(
d
2

)
∑

j 6=j′

|〈nnΘj
, nnΘj′

〉|
‖nnΘj

‖2‖nnΘj′
‖2
,

where λ1 > 0 controls the strength of the penalty. When a BL contains many nodes,

enumerating all pairs becomes computationally expensive. Instead we randomly sample

a few pairs at each mini-batch update and employ their average absolute cosine similarity

as a stochastic estimate of the regularizer against which we optimize network parameters.

Encouraging Basis Sparsity. We can also regularize the shape of our learned basis

functions. In domain selection problems (James et al., 2009; Wang et al., 2021; Zhou et al.,

2013), the response is only related to the functional input over an (a priori unknown)
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subset of its domain, i.e. Y ⊥⊥ {X(t′)}t′ /∈I | {X(t)}t∈I for some I ⊂ [0, 1]. To encourage

this desired property, it is sensible to learn a basis function whose value is zero outside of

I. While the number of nonzero values taken by the basis function is hard to optimize,

we can penalize their L1 norm as a tight convex relaxation of an L0 norm to enforce basis

sparsity. The resulted loss function is

Lsprs

(
{Θi}di=1,Θ

)
= L

(
{Θi}di=1,Θ

)
+ λ2 ·

1

s

∑

i∈S

∫
|βi(t)| dt,

where S ⊆ {1, . . . , d} indicates which subset of basis functions we wish to sparsify, s is

the number of elements in S, and λ2 > 0 controls the strength of the L1 penalty. Even

when we are not sure whether the domain selection assumption truly hold, learning sparse

basis functions via this L1 penalty can greatly improve the overall interpretability of our

prediction model (Figure 3.6).

3.4 Theoretical Analysis

Here we discuss theoretical properties of the architecture proposed in the previous section.

We provide a universal approximation theorem for this design and prove it achieves low

generalization error under mild regularity conditions.

Let C([0, 1]) denote the space of continuous functions defined on the compact interval

[0, 1]. Assume that the underlying mapping T : X 7→ Y is a composite of a finite-

dimensional linear transformation and a subsequent non-linear transformation. We can

write T = h ◦ g, where g : C([0, 1])→ R
q is a linear continuous map, and h : Rq → R is a

non-linear continuous map. By Riesz representation theorem, there exist square-integrable

function γi with i = 1, . . . , q such that g(X) = [〈γ1, X〉, . . . , 〈γq, X〉]. The approximate

network parameterized by weights {Θi}qi=1 and Θ is denoted as T̂ .

Theorem 9 (Consistency of the network). With the notations defined previously and

following the conventions in the literature, we assume that:

(i) the numerical integration at each basis node can be accurately evaluated as J →∞,

(ii) each network in T̂ can have sufficient capacity.

39



Then for any ǫ > 0, there exists a network T̂ ∗ with weights {Θ∗
i }qi=1 and Θ∗ such that

sup
f∈C([0,1]),‖f‖2≤1

|T̂ ∗(f)− T (f)| < ǫ.

Hence, we have the following result: Let X be a continuous process defined on [0, 1]. For

any δ > 0, there exists a network T̂ ⋆ with weights {Θ⋆
i }qi=1 and Θ⋆ such that

P
(
|T̂ ⋆(X)− T (X)| < δ

)
> 1− δ.

Remark 1. Although Theorem 9 provides the consistency of the proposed architecture,

it is not equivalent to identifying each true basis function consistently. The reason is

that the individual basis functions are not identifiable since there are multiple ways to

parameterize one map.

Remark 2. To make adequate predictions, the number of basis nodes d in AdaFNN should

be sufficiently larger than the dimensionality q of g(X), introduced in the assumptions

of Theorem 1. In practice, we could also vary the choice of the number of basis nodes

to find out which yields the best performance (lowest validation loss or fewest bases with

low validation loss). Once the training is done, by investigating the learned bases, one

can decide which ones seem to be relevant and use those as the basis functions to re-train

a smaller subsequent network.

Next, we prove the proposed architecture can achieve small generalization error. Let

S = {(X1, Y1), . . . , (Xn, Yn)} be n i.i.d. copies of (X, Y ), and there exist two constants

M1,M2 > 0 such that both supt∈[0,1] |X(t)| ≤ M1 and |Y | ≤ M2 hold almost surely. Let

T̂Θ be a model proposed in Section 3.3 with its architecture fixed. In a slight abuse of

notation, we use Θ to denote all the weights, including {Θi}di=1 and Θ, used in T̂Θ. We

use ℓ
(
T̂Θ(X), Y

)
to denote the loss function. The population risk is defined as r(Θ) =

E
[
ℓ
(
T̂Θ(X), Y

)]
, and the empirical risk is rn(Θ) = 1

n

∑n
i=1 ℓ

(
T̂Θ(Xi), Yi

)
. Usually the

weights Θ are estimated via Θ̂ produced by a random algorithm A based on the sample S.

The generalization error is defined as
∣∣ES,A[r(Θ̂)− rn(Θ̂)]

∣∣. Suppose that we use a variant

of stochastic gradient descent to train our model. At the t-th iteration (1 ≤ t ≤ T ),

the weights are updated with Θ̂t+1 = Θ̂t − αt∇Θℓ
(
T̂Θ(Xit), Yit

)∣∣
Θ=Θ̂t

, where the indices
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it are randomly chosen (e.g., uniformly), and the learning rate αt is monotonically non-

increasing with αt ≤ c/t for some fixed constant c > 0. The following result is an

application of Theorem 3.12 in Hardt et al. (2016).

Theorem 10 (Small generalization error). Assume that

(i) the weight Θ is restricted on some compact region,

(ii) the loss function ℓ(·, ·) and its gradient ∇ℓ(·, ·) are both Lipschitz.

Then for every pair of observation (X, Y ), both ℓ
(
T̂Θ(X), Y

)
and ∇Θℓ

(
T̂Θ(X), Y

)
are

Lipschitz with respect to Θ. Hence, there exists some constant c > 1 such that

∣∣ES,A[r(Θ̂)− rn(Θ̂)]
∣∣ . T 1−1/c

n
.

Remark 3. Assumption (i) in Theorem 10 is not restrictive since we can convert a con-

straint optimization problem to an equivalent penalized problem. In practice, we could

minimize the regularized empirical risk, i.e., rn(Θ) + ρ‖vec(Θ)‖2, where vec(Θ) is the

vectorized weights Θ, and ρ > 0 is a tuning parameter.

3.5 Experiments

Throughout, our experiments focus on methods that can handle general functional inputs,

rather than approaches tailored for specific tasks like predicting future observations. The

proposed AdaFNN network is compared to three baseline models: ‘Raw data (#) + NN’

(Rossi et al., 2002), ‘B-spline (#) + NN’ (Rossi et al., 2005), and ‘FPCAp + NN’(Rossi

et al., 2005). Here the integer # denotes the input dimension of each network. The

subscript p of ‘FPCA’ is the fraction of variation explained (FVE) used in selecting the

number of principal components. The latter two baselines (B-spline and FPCA) have their

roots in the field of functional data analysis (Cardot et al., 1999, 2003; Dou et al., 2012;

Müller and Stadtmüller, 2005) and classification tasks (Chiou, 2012; Leng and Müller,

2006a; Müller, 2005; Song et al., 2008).

The first baseline simply discretizes the raw functional input as a vector that is fed

into the network, so the dimension of the input vector is the number of points t at which
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X(t) has been observed. The other two baseline models consist of two steps. The first

step involves transforming the functional input into a vector of scores from its B-spline

or FPCA expansion (cf. (3.2.1)). The resulting vector representation is then fed as input

into a network in the second step.

The number of bases used in the two baseline models is often determined by how well

a function can be represented in the functional space spanned by these basis functions.

For example, when using B-splines, we look at how well the selected spline functions can

capture the trend of the raw data. A small number of B-splines may not be able to

recover the trajectory very well. However, too many B-splines might overfit the functions.

The choice of the number of principal components is based on the desired FVE by these

principal components. Often, a sizeable FVE is expected, e.g., 90% to 99%. Similar to

the selection of B-splines, we should not simply choose an FVE as large as possible. Large

FVE may include (functional) principal components whose corresponding eigenvalues are

very small, hence difficult to estimate. A good rule of thumb is to use the first few

components that capture the bulk of the variation.

We write ‘AdaFNN (λ1,λ2)’ to indicate the level of regularization, where λ1 (and λ2)

controls the degree of orthogonality (and L1) regularization. AdaFNN was trained with

9 different combinations of the orthogonal regularization penalty λ1 ∈ {0, 0.5, 1} and L1

regularization penalty λ2 ∈ {0, 1, 2}. The performance of each configuration is reported

for all simulations and real data tasks. Throughout we use * to indicate the λ1, λ2 values

that performed best on the validation data, as these are the hyperparameter values that

would be typically used in practice.

All models, including AdaFNN and the other NN baselines, employ the same archi-

tecture and training hyperparameters. A network with 3 hidden layers and 128 fully

connected nodes per layer was used for Tasks 1-7 (real data) and our simulation studies.

For Tasks 8 and 9 with small sample sizes, we used a smaller network with 2 hidden layers

and 64 nodes and added dropout during training. All networks were trained up to 500

epochs (with 200-epoch early stopping patience) using mini-batches of size 128. AdaFNN

merely uses 2 bases in simulation Cases 1 & 4, 3 bases in simulation Cases 2 & 3, and 4

42



bases in our applications to all 9 prediction tasks with real data. In contrast, we allowed

the B-spline/FPCA baselines to either rely on a similar number or more basis functions

since these models cannot optimize each of their bases (e.g. FPCA0.99 often selected more

than 10 principal components).

3.5.1 Simulation Studies

We demonstrate through simulations that baseline functional neural network models may

miss relevant information but AdaFNN is able to capture the true signal while relying on

fewer basis functions than the baselines. Four different simulation settings were considered,

each is purposefully designed to illustrate a particular conceptual shortcoming of one of

the baseline methods (with an extra fifth setting to highlight the utility of our proposed

regularization).

We first describe the underlying data-generating process in each of the four settings.

For t ∈ [0, 1], define φ1(t) = 1 and φk(t) =
√
2 cos((k − 1)πt), k = 2, . . . , 50. Consider

the process X(t) =
∑50

k=1 ckφk(t), where ck = zkrk, and rk are i.i.d. uniform random

variables on [−
√
3,
√
3]. The actual observations for Xi(t) is the discrete data {Xi(tj), j =

1, . . . , 51}. We report the mean squared prediction error (MSE) achieved by each method

on the test data.

Case 1: We set: z1 = 20, z2 = z3 = 5, and zk = 1 for k ≥ 4. The response is Y = c23,

that is, Y = (〈X,φ3〉)2, where the function φ3 corresponds to the true predictive signal.

This case is designed to show that a small FVE in FPCA may not suffice to capture the

relevant signal.

Case 2: We set: z1 = z3 = 5, z5 = z10 = 3, and zk = 1 for other k. The response is

Y = c25 = (〈X,φ5〉)2. Here the function φ5 corresponds to the true predictive signal and is

more complex than φ3. The squared operation ensures a nonlinear relationship between

the response and functional covariate. This case is designed to show that a small number

of B-splines may not suffice to represent the X(t) information relevant to the response.

Case 3: In Cases 1 & 2, both the response Y is free of noise and the functional input

X(t) is not contaminated by measurement errors. However, this setup is rarely realistic

in practice. The goal here is to evaluate functional estimators in the presence of both
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outcome noise and measurement errors in X(t). We use the same model as Case 2 except

that a mean zero Gaussian noise is added to the response, and the observation of X(t) at

each time point is perturbed by an additive mean zero Gaussian measurement error. The

signal-to-noise ratios (SNR), defined as

SNR(X) =

√∫ 1

0
(X(t))2 dt

standard deviation of measurement error

for the functional input (due to E[X(t)] = 0), is
√
10 to 1.

Case 4: This case studies how well AdaFNN captures multiple signals and its application

in domain selection. The functional covariates Xi(t) are generated similarly as in Cases 1

& 2, except that in Case 4: zi are all taken to be 1. Two signals β1 and β2 are chosen as:

β1(t) = (4− 16t) · 1{0 ≤ t ≤ 1/4} and β2(t) = (4− 16|1/2− t|) · 1{1/4 ≤ t ≤ 3/4}. The
response is Y = 〈β2, X〉 + (〈β1, X〉)2. Centered Gaussian noise is added to Y , and X(t)

is also contaminated by measurement error.

Case 5: The same setup as Case 4, but now with double the noise variance in Y (used

to highlight our regularization).

Table ?? reports the MSEs for all methods. Under columns Cases 1 & 2, we see that

AdaFNN exhibits the best performance in both settings. The performance of the baseline

models is mixed. The top two principal components (with FVE at least 90%) are not

able to detect any useful predictive signal in the data under Case 1, same with four B-

splines bases in the simulation under Case 2. Thanks to its success in capturing the true

basis function, AdaFNN performs strongly in both simulation settings. It is interesting

to observe that each fitted basis function contains a fraction of the true signal function,

and together they are able to recover it (Figures 3.3 and 3.4). That is, the true signal

function can be represented as a linear combination of the fitted bases.

For Case 3, Table ?? (column ‘Case 3’) shows that all methods performed worse

with noise added, but AdaFNN with orthogonality regularization remains superior to

other methods. On the other hand, the L1 regularizer is not helpful in Case 3. This is

expected, because the true signal φ5 does not have any zero region in its domain. Note

that feeding the raw data as a vector into neural networks performs comparably to the two
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Method Case 1 Case 2 Case 3 Case 4

Raw data (51) + NN 0.015 0.038 0.275 0.334

B-spline (4) + NN 0.050 0.984 0.971 0.369

B-spline (15) + NN 0.013 0.019 0.206 0.251

FPCA0.9 + NN 0.917 0.023 0.134 0.855

FPCA0.99 + NN 0.003 0.036 0.239 0.667

AdaFNN (0.0, 0.0) 0.001
∗

0.003 0.979 0.193
∗

AdaFNN (0.0, 1.0) 0.995 0.007 0.978 0.982

AdaFNN (0.0, 2.0) 0.996 0.992 0.978 0.981

AdaFNN (0.5, 0.0) 0.004 0.005∗ 0.137∗ 0.571

AdaFNN (0.5, 1.0) 0.983 0.005 0.978 0.590

AdaFNN (0.5, 2.0) 0.134 0.008 0.978 0.981

AdaFNN (1.0, 0.0) 1.000 0.004 0.127 0.196

AdaFNN (1.0, 1.0) 0.009 0.006 0.974 0.606

AdaFNN (1.0, 2.0) 0.051 0.009 0.978 0.981

Table 3.1: Test-set MSE of predictions in simulation study. For each case, the asterisk
indicates the best AdaFNN hyperparameters on the validation set, and the method with
the best test MSE is marked in bold.

functional baseline models in the noiseless simulations. However, in noisy settings (Cases

3 & 4), this approach is inferior to the other two baseline models. This demonstrates the

importance of exploiting functional properties whenever the input is a smooth function.

The performance of the functional ‘B-spline + NN’ and ‘FPCA + NN’ approaches is

mixed; each has its own advantage over the other in different scenarios.

For Case 4, Table ?? (column ‘Case 4’) shows that AdaFNN outperforms the other

methods in this setting. At the same time, the proposed method also learns meaningful

bases that correctly identify the relevant domain of interest (Figure 3.5). That on [3/4, 1]

both β1 and β2 are zero implies that the values of X(t) over [3/4, 1] have no effect on

the response. None of the baseline methods is able to show this information, and thus

AdaFNN is not only more accurate than existing models, but also more interpretable. In
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Figure 3.3: The left plot shows the true signal φ3 (solid) and the reconstructed signal

φ̂3 (dashed) from AdaFNN(0, 0) (the regularization values with best validation MSE) in

Case 1. The right plot shows each learned bases β̂1 and β̂2 from the same experiment.
Note that: φ3 ≈ φ̂3 = β̂2 − β̂1.

Figure 3.4: The left plot shows the true signal φ5 (solid) and the reconstructed signal

φ̂5 (dashed) from AdaFNN(0.5, 0) (the regularization values with best validation MSE)

in Case 2. The right plot shows each learned bases β̂1, β̂2, β̂3 from the same experiment.
Note that: φ5 ≈ φ̂5 = β̂3 − β̂1 − β̂2.

summary, while some baseline methods perform well in certain simulation settings, none

of these methods can achieve consistently strong performance like AdaFNN across all

cases.

A final simulation, Case 5, demonstrates the utility of our proposed regularizationn. In

this case, Table ?? shows that AdaFNN(0.5, 0) and AdaFNN(0, 0.1) clearly outperform

AdaFNN without regularization, as well as all other methods (despite our regularized

AdaFNN using only 2 bases, under which the other methods performed very poorly).

Without any regularization, AdaFNN(0, 0) learns 2 very similar bases (left plot in
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Figure 3.5: The left plot shows the true signal β1 (solid) and a (scaled) learned signal β̂1
(dashed) from AdaFNN(0, 0) (the regularization values with best validation MSE) in Case 4.
The right plot shows β2 and a (scaled) β̂2 from the same experiment.

Figure 3.6), while using either one of our proposed regularizers helps AdaFNN recover

the true underlying bases (middle/right plots in Figure 3.6) and greatly improves its

predictive performance.

method no. bases MSE

Raw (51) + NN 51 0.339

B-spline (4) + NN 4 0.382

B-spline (15) + NN 15 0.257

FPCA0.9 + NN 20 0.807

FPCA0.99 NN 28 0.693

AdaFNN(0.0, 0.0) 2 0.598

AdaFNN(0.5, 0.0) 2 0.231

AdaFNN(0.0, 0.1) 2 0.207

Table 3.2: Test-set MSE of predictions in Case 5. AdaFNN with active regularization is
highlighted in bold.

3.5.2 Application to Real Functional Datasets

Next, we evaluate the performance of AdaFNN and other neural FDA methods in nine

different regression and classification tasks, using four datasets. In regression tasks, the
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Figure 3.6: The (scaled) bases under simulation Case 5 learned by: AdaFNN(0, 0) on the
left, AdaFNN(0.5, 0) in the middle, and AdaFNN(0, 0.1) on the right.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

Raw data (48) + NN 0.099 0.284 0.124 0.296 0.380 0.488 0.472 0.406 0.373

B-spline (15) + NN 0.094 0.306 0.137 0.326 0.335 0.477 0.429 0.413 0.387

FPCA0.99 + NN 0.119 0.339 0.143 0.306 0.363 0.493 0.431 0.429 0.378

AdaFNN (0.0, 0.0) 0.084
∗ 0.290∗ 0.129∗ 0.311 0.365 0.477 0.410

∗ 0.377∗ 0.375

AdaFNN (0.0, 1.0) 0.094 0.276 0.126 0.327 0.561 0.479∗ 0.498 0.374 0.392

AdaFNN (0.0, 2.0) 0.097 0.276 0.129 0.324 0.596 0.481 0.473 0.381 0.445

AdaFNN (0.5, 0.0) 0.108 0.260 0.130 0.310∗ 0.380∗ 0.490 0.410 0.376 0.368
∗

AdaFNN (0.5, 1.0) 0.089 0.279 0.126 0.324 0.616 0.486 0.494 0.362 0.413

AdaFNN (0.5, 2.0) 0.098 0.280 0.128 0.345 0.392 0.509 0.444 0.373 0.450

AdaFNN (1.0, 0.0) 0.084 0.288 0.118 0.294 0.339 0.485 0.413 0.378 0.406

AdaFNN (1.0, 1.0) 0.097 0.282 0.133 0.320 0.651 0.502 0.456 0.371 0.394

AdaFNN (1.0, 2.0) 0.092 0.279 0.127 0.326 0.371 0.510 0.414 0.374 0.416

Table 3.3: Comparing test-set performance of different methods’ predictions on 9 func-
tional datasets (MSE in regression, 1 − AUC in classification). For each dataset, the
asterisk indicates which AdaFNN hyperparameters performed best on the validation set,
and the best performing method on the test data is indicated in bold.

performance is again measured by MSE, while the performance is measured by the area

under the ROC curve (ROC AUC) in classification tasks. Since our simulations show

that B-spline (4) and FPCA0.9 empirically underperform (Table ??), we subsequently

only consider the use of B-spline (15) and FPCA0.99 on real data.

Electricity Data: Electricity consumption readings for 5567 London homes, where each

household’s electricity usage is recorded every half hour (UK Power Networks, 2015). The
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functional covariate X(t) is defined as the 48 measurements per household that constitute

one day’s electricity usage curve. Based on this X(t), we consider four prediction tasks

with different response variables:

1. Predict a household’s total electricity consumption in the next week (week 2) based

on its X(t). [regression]

2. Predict a household’s total electricity consumption in a later week (week 5) based on

its X(t). [regression]

3. Predict whether a household’s morning (6am-12pm) electricity consumption in week

5 exceeds a certain threshold based on its X(t). [classification]

4. Predict whether a household’s consumption during the day (8am-17pm) exceeds night

usage (17pm-12am) by a threshold in week 5 based on its X(t). [classification]

The threshold values in tasks 3 and 4 are selected to ensure approximate class-balance in

these classification problems. Because household consumption behavior is likely to change

over a longer period, Tasks 2-4 are expected to be harder than Task 1. Results for these

tasks are reported in columns Tasks 1-4 in Table ??.

Wearable Device Data: This data consist of wearable device data from the National

Health and Nutrition Examination Survey (NHANES) (NCHS, CDC 2020). Each sub-

ject in the study wore a device that continuously measures the intensity level of their

physical activities within one week. The functional covariate X(t) is the average activ-

ity levels every 30 minutes for one full day, resulting in a curve of 48 observations per

subject. We examine whether physical activities are predictive of various health outcomes:

5. Predict whether a subject has diabetes. [classification]

6. Predict if subject feels chest pain. [classification]

7. Predict whether a subject experiences shortness of breath on stairs. [classification]

Tasks 6 and 7 aim at predicting a subject’s cardiovascular health. Results for Tasks 5-7

are reported in column Task 5 to column Task 7 in Table ??.
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Mexfly and Medfly Data: The final two datasets pertain to Mexican fruit flies (Mexfly)

(Carey et al., 2005) and Mediterranean fruit flies (Medfly) (Chiou et al., 2003), recording

the number of eggs laid daily for each fly. Our task is to use early trajectories of egg-

laying (daily number of eggs laid) to predict the lifetime reproduction, defined as the total

number of eggs laid by the fly over its lifetime:

8. Predict lifetime reproduction of a Mexfly using its egg-laying curve X(t) from day 1

to 30. [regression]

9. Predict lifetime reproduction of a Medfly using its egg-laying curve X(t) from day 1

to 20. [regression]

The choice of the thresholds, day 20 and 30, is motivated by predicting lifetime reproduc-

tion based on early reproduction pattern in pre-peak period (peak usually occurs after 20

or 30 days depending on the species). Results are presented in Table ?? in columns Tasks

8 and 9.

Results. Empirically, AdaFNN performs better than all baseline methods in all 9

prediction tasks, demonstrating its advantage for diverse forms of real functional data

spanning regression/classification problems. In contrast, none of the baseline methods

consistently outperformed all other baselines across these tasks. Basis orthogonality and

sparsity were used to improve learned representations and possibly get a better fit of the

data (but like all regularization, the effectiveness of our proposed regularizers varies from

dataset to dataset). Many of the best reported results are from AdaFNN with penalty

λ1 > 0, demonstrating that our orthogonal regularization technique improves the learned

functional representations. While λ2 > 0 only produces the most accurate AdaFNN model

for one of the tasks, the L1 penalty can remain useful for interpretability of the model.

As with all regularizers, the optimal degree of regularization to employ also varies from

dataset to dataset. By leveraging its superior representational capabilities, AdaFNN is

also able to achieve superior accuracies with fewer bases than the B-spline + NN or FPCA

+ NN baselines.
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3.6 Conclusion

This work presents a new approach to adapt representation learning techniques for func-

tional data. Our proposed architecture does not require handcrafted bases to handle

functional inputs, and learns the optimal bases for a particular dataset in an end-to-end

manner. The Basis Layer compresses functional covariates in a linear fashion into a

low-dimensional vector that reflects only those factors of variation most relevant to the

response value. Traditional dimension reduction techniques like FPCA instead attempt to

capture all variation in the functional input itself, regardless of its relationship to the re-

sponse. There are many disadvantages to retaining global information about X(t) rather

than merely what is needed to infer Y , some of which are outlined in the information

bottleneck principle of Tishby and Zaslavsky (2015).

Note that AdaFNN can be easily extended to vector-valued functional data, where

either t ∈ R
p or X(t) ∈ R

p for p > 1. In the former case, each basis layer micro NN

simply operates on vector-valued inputs t, while in the latter case, these micro NN would

have larger output layers to produce vectors rather than scalars. Furthermore, our method

can also be applied to data with both multiple functional covariates (can simply employ

separate basis layers for each and pool their outputs) as well as auxiliary vector covariates

in addition toX(t) (can simply concatenate our basis layer output ṽc with these additional

covariates before it is fed into the subsequent feedforward network).

As previously mentioned, AdaFNN is also directly applicable to non-uniform obser-

vations of X(t), where the tj are not equally spaced, although such cases require proper

selection of the integration weights ωj. However, successful application of AdaFNN to

sparsely observed functional data, where the underlying process X(t) is only observed

at few locations tj, remains nontrivial and likely requires improved numerical integration

strategies as well as stronger inductive bias in the micro NN architecture Gunter et al.

(2014). Nonetheless, we expect our adaptive Basis Layer will find broad applicability as

a general-purpose representation learning tool for domains with functional data such as

wearable devices, climatology, genomics, or neuroimaging.
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Chapter 4

Bootstrap for Eigenvalues in

High-Dimensions

In the context of principal components analysis (PCA), the bootstrap is commonly ap-

plied to solve a variety of inference problems, such as constructing confidence intervals for

the eigenvalues of the population covariance matrix Σ. However, when the data are high-

dimensional, there are relatively few theoretical guarantees that quantify the performance

of the bootstrap. In this chapter we analyze how well the bootstrap can approximate the

joint distribution of the leading eigenvalues of the sample covariance matrix Σ̂, and we

establish non-asymptotic rates of approximation with respect to the multivariate Kol-

mogorov metric. Under certain assumptions, we show that the bootstrap can achieve

the dimension-free rate of r(Σ)/
√
n up to logarithmic factors, where r(Σ) is the effective

rank of Σ, and n is the sample size. From a methodological standpoint, our work also

illustrates that applying a transformation to the eigenvalues of Σ̂ before bootstrapping is

an important consideration in high-dimensional settings.

4.1 Introduction

Since the advent of the bootstrap itself (Diaconis and Efron, 1983), the bootstrap method

has been widely applied in principal components analysis (PCA) and become part of

standard practice in multivariate analysis (Davison and Hinkley, 1997; Jolliffe, 2002; Olive,

2017). It is well established in the literature that the bootstrap generally works in the
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context of PCA with low-dimensional data (Beran and Srivastava, 1985; Eaton and Tyler,

1991). Furthermore, in cases where the bootstrap is known to encounter difficulties in

low dimensions, such as in the case of tied population eigenvalues, various remedies have

been proposed and analyzed (Beran and Srivastava, 1985; Dümbgen, 1993; Hall et al.,

2009). Even though it has been widely applied to high-dimensional PCA problems (e.g.,

Fisher et al., 2016; Li and Ralph, 2019; Nguyen and Holmes, 2019; Stewart et al., 2019;

Terry et al., 2018; Wagner, 2015; Webb-Vargas et al., 2017), the theory for bootstrap is

relatively incomplete in this context. Although there is an extensive body of literature on

distributional approximation for sample eigenvalues, their primary focus is establishing

asymptotic properties. By and large, these results can be categorized into two parts,

dealing with either classical asymptotics where p is held fixed as n → ∞ (Anderson,

2003), or high-dimensional asymptotics where p/n converges to a positive constant as p

and n diverge simultaneously (Bai and Silverstein, 2010). (The first case is essentially the

low-dimensional scenario.) One fundamental limitation of both approaches is that the

approximations expressed in asymptotics often do not reflect their practical performance.

For example, it is hard to evaluate how accurate the confidence intervals constructed

from asymptotic distributions can be on a collected data with a finite size. In addition,

approximations based on analytical formulas are often tied to specific model assumptions,

which can make it difficult to adapt such formulas outside of a given model.

Bootstrap methods can be a good solution to the second limitation, as they are data

adaptive and usually used in a very flexible manner. In spite of that, the existing the-

oretical understanding of applying bootstrap to PCA tasks is still limited by the afore-

mentioned problem, since the results are generally asymptotic (Beran and Srivastava,

1985; Eaton and Tyler, 1991; El Karoui and Purdom, 2019). Hence, the motivation of

this chapter is two-fold. First, we want to explicitly quantify the accuracy of bootstrap

approximation in terms of the sample size n and the effective rank of Σ. For example,

our results can be used to quantify how close the coverage probabilities of bootstrap

confidence intervals are to the nominal values. Another motivation is based on the fact

that, until quite recently, most of the literature on bootstrap methods for PCA has been
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limited to low-dimensional settings. It is of general interest to establish a more complete

theoretical description of bootstrap methods for high-dimensional PCA—a point that was

highlighted in a recent survey on this topic (Johnstone and Paul, 2018, §X.C).

In this chapter, we focus on approximating the joint distribution of leading eigenvalues

of sample covariance matrices. Because the top eigenvalues are considered as dominant

components in the spectral decomposition and often contain important summarizing in-

formation of the data in a broad range of applications, such as signal processing (Couillet

and Debbah, 2011), and finance (Ruppert and Matteson, 2015). Accurately estimating

them and understanding their fluctuation play a central role in related inference tasks and

are crucial for domain-specific analysis. To better illustrate how sample eigenvalues and

their uncertainty quantification can be applied in practice, we provide a real-data example

based on stock market returns in Section 4.4.5 with the following two main focuses:

• Selecting principal components. A key step in applying PCA is to select a sub-

set of principal components, often dominant ones, which are then used for tasks,

such as summarizing data, reducing dimensions, and de-noising. Two commonly

used approaches are (1) choosing a threshold (e.g., 95%) based on the proportion

of explained variance (λ1(Σ̂) + · · · + λk(Σ̂))/ tr(Σ̂) and (2) the elbow rule based on

eigengaps λj(Σ̂)−λj+1(Σ̂) in the scree plot of eigenvalues. The componentwise propor-

tions λj(Σ̂)/ tr(Σ̂) are also popular. Besides, the selection rules based on confidence

intervals for the eigenvalues λ1(Σ), . . . , λk(Σ) of the population covariance matrix

Σ ∈ R
p×p are also useful, as the construction of such intervals is directly linked to

the distribution of the eigenvalues of Σ̂. It provides more insights on how accurate

the selection can be based on the sample estimates, i.e., uncertainty quantification,

which will be explained more below. For a general overview of selection rules, we

refer to Jolliffe (2002).

• Quantifying uncertainty. In addition to PCA, the eigenvalues of a population co-

variance matrix plays a crucial role in understanding the performance of statistical

methods for covariance estimation, regression, and classification (Dobriban and Wa-

ger, 2018; Hsu et al., 2014; Ledoit and Wolf, 2012). They also have domain-specific
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meaning in applications ranging from finance to ecology (Chen et al., 2019; Fabozzi

et al., 2007). For instance, finance practitioners uses principal components of a return

vector of a number of cross-section stocks for risk analysis and portfolio selection Con-

nor and Korajczyk (1993); Roll and Ross (1980). Hence, it is necessary to provide

uncertainty quantification for sample eigenvalues to access estimation accuracy of

these parameters, using approaches, such as evaluating variances and constructing

confidence intervals–and again, this leads to the use of distributional approximation

results for the sample eigenvalues.

To give an overall description of our contributions, consider the following setup. Let

X1, . . . , Xn ∈ R
p be centered i.i.d. observations with population covariance matrix Σ =

E[X1X
⊤
1 ]. Also, let Σ̂ =

∑n
i=1XiX

⊤
i /n denote the associated sample covariance matrix,

and let Σ̂⋆ =
∑n

i=1X
⋆
i (X

⋆
i )

⊤/n be its bootstrap version, formed from random vectors

X⋆
1 , . . . , X

⋆
n that are sampled with replacement from the observations. In addition, let the

eigenvalues of a symmetric matrix A ∈ R
p×p be denoted as λ1(A) ≥ · · · ≥ λp(A), and let

λk(A) = (λ1(A), . . . , λk(A)) for a fixed integer k < p.

Following this notation, we study the finite-sample approximation to the distribution

of leading k eigenvalues and establish non-asymptotic bounds on the multivariate Kol-

mogorov distance

∆n = sup
t∈Rk

∣∣∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t
)
− P

(√
n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t

∣∣∣X
)∣∣∣∣∣,

where the relation v � w between two vectors v, w ∈ R
k means vj ≤ wj for all j =

1, . . . , k, and P(· |X) refers to probability that is conditional on X1, . . . , Xn. Under certain

assumptions, our central result (Theorem 11) shows that the dimension-free bound

∆n ≤
Cn r(Σ)√

n
(4.1.1)

holds with high probability, where Cn > 0 is a polylogarithmic function of n, and the

quantity r(Σ) is the effective rank of Σ, defined by r(Σ) = tr(Σ)/λ1(Σ).

Several aspects of the bound (4.1.1) and the parameter r(Σ) are worth our attention.

First, the effective rank always satisfies 1 ≤ r(Σ) ≤ p whenever Σ is nonzero, and can be
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interpreted as a proxy for the number of “dominant” principal components of Σ. Hence,

even in very high-dimensional settings where n ≪ p and unbounded covariance scales

where λ1(Σ)→∞, the bound (4.1.1) shows that the bootstrap can perform well as long

as the number of dominant components is not too large, which is precisely the situation

where high-dimensional PCA is of greatest interest. Meanwhile, even in situations where

r(Σ) is moderately large, e.g. r(Σ) → ∞ with r(Σ) = o(
√
n), the bound (4.1.1) is

still useful and can quantify the accuracy of the bootstrap. Indeed, in Section 4.4, our

experiment results clearly demonstrate both points and confirm that the performance of

the bootstrap is governed more by r(Σ) than the absolute dimension p, and that the

bootstrap can still be accurate when r(Σ) is moderately large. More generally, it should

also be mentioned that the theoretical role of effective rank in many other aspects of

high-dimensional PCA has attracted considerable attention in recent years (e.g. Bunea

and Xiao, 2015; Jung et al., 2018; Koltchinskii et al., 2020; Koltchinskii and Lounici, 2017;

Lounici, 2014; Naumov et al., 2019).

Using a transformation prior to bootstrapping can be beneficial compared to directly

bootstrapping the distribution of
√
n
(
λk(Σ̂) − λk(Σ)

)
. It is a fundamental topic in the

bootstrap literature and has been widely studied (e.g., Chernick, 2011; Davison and Hink-

ley, 1997; DiCiccio, 1984; DiCiccio and Efron, 1996; Konishi, 1991; Tibshirani, 1988). To

be more specific, let h be a univariate scalar function, referred to as a transformation,

and for any symmetric matrix A ∈ R
p×p, let h(λk(A)) = (h(λ1(A)), . . . , h(λk(A))). Then,

the distribution of
√
n(h(λk(Σ̂

⋆)) − h(λk(Σ̂))) conditioning on the observations can be

used to approximate the distribution of
√
n(h(λk(Σ̂))− h(λk(Σ))). Then the confidence

intervals for λj(Σ), 1 ≤ j ≤ k can be constructed by inverting the confidence intervals

for h(λj(Σ)), 1 ≤ j ≤ k. (Extension discussion and algorithm details are provided in

Sections 4.3 and 4.4.) A classical example of transformation is h(x) = log(x), which

is known to be variance-stabilizing under certain conditions when n → ∞ with p held

fixed (Beran and Srivastava, 1985). With this in mind, a second contribution our analysis

is an extended version of the bound (4.1.1) that can accommodate the use of certain

transformations (see Theorem 12).
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From a more methodological standpoint, our numerical experiments also shed new

light on the role of transformations in bootstrap methods for high-dimensional PCA. Al-

though we confirm that the classical logarithm transformation can be beneficial in low

dimensions (small r(Σ), we show that it is less effective when r(Σ) is moderately large.

Consequently, we explore some alternative transformations combined with partial stan-

dardization and data-adaptive parameter selection and provide numerical results demon-

strating that there are opportunities to improve upon h(x) = log(x) in high dimensions.

To put such empirical findings into perspective, we are not aware any prior work investi-

gating how transformations can be used to enhance bootstrap methods in this context.

4.2 Related work

Quite recently, there has been an acceleration in the pace of research on bootstrap methods

for high-dimensional sample covariance matrices, as evidenced in the papers El Karoui

and Purdom (2019); Han et al. (2018); Johnstone and Paul (2018); Lopes et al. (2019,

2023); Naumov et al. (2019). Among these, the most relevant to our work is El Karoui and

Purdom (2019), which examines both the successes and failures of the bootstrap in doing

inference with the leading eigenvalues of Σ̂. In the negative direction, that paper focuses

on a specialized model with λ1(Σ) > 1 and λ2(Σ) = · · · = λp(Σ) = 1, which corresponds to

a very large effective rank r(Σ) ≍ p that makes dimension reduction via PCA inherently

difficult. In the positive direction, that paper deals with a different situation where Σ is

assumed to have a near low-rank structure of the form

Σ =


 A B

B⊤ C(η)


 , (4.2.1)

where A is of size k × k with k ≍ 1, and the diagonal blocks satisfy λ1(A) ≍ 1, and

λ1(C(η)) . n−η for a fixed parameter η > 1/2. Working under an elliptical model, the

paper (El Karoui and Purdom, 2019) shows that the bootstrap consistently approximates

the distribution of
√
n
(
λk(Σ̂) − λk(Σ)

)
in an asymptotic framework where p/n . 1. In

relation to our work, the most crucial distinction is that our results quantify the accuracy

of the bootstrap with non-asymptotic rates of approximation. To illustrate the significance
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of this, note that our bound (4.1.1) provides an explicit link between the size of r(Σ) and

the accuracy bootstrap, whereas in an asymptotic setup, the effect of r(Σ) is hidden—

because it “washes out in the limit”. Our numerical experiments will also confirm that

different sizes of r(Σ) can have an appreciable effect on the finite-sample accuracy of the

bootstrap. In this way, our work indicates that the quantity r(Σ)/
√
n serves as a type

of conceptual diagnostic for assessing the reliability of the bootstrap in high-dimensional

PCA.

Beyond these points of contrast with El Karoui and Purdom (2019), there are several

distinctions with regard to model assumptions. First, we work in a dimension-free setting

where there are no restrictions on the size of p with respect to n. Second, the model based

on (4.2.1) implicitly requires that λj(Σ) . n−η for all j ≥ k+1, whereas this constraint on

Σ is not used here. Third, it is straightforward to check that in the model based on (4.2.1),

the condition η > 1/2 implies r(Σ) = o(
√
n), which means that our bound (4.1.1) ensures

bootstrap consistency in models that subsume the one based on (4.2.1). (As an example,

if p ≍ em(n) for some sequence of integers satisfying m(n) = o(
√
n) and if λj(Σ) ≍ j−1,

then the bound (4.1.1) implies bootstrap consistency, whereas this is not guaranteed by

the previous result even when p ≍ n.)

Other works on bootstrap methods related to high-dimensional sample covariance

matrices have dealt with models or statistics that are qualitatively different from those

considered here. The papers Han et al. (2018); Lopes et al. (2023) look at bootstrap-

ping the operator norm error
√
n‖Σ̂ − Σ‖op, as well as variants of this statistic, such as

supu∈U
√
n|u⊤(Σ̂−Σ)u|/u⊤Σu, where U is a set of sparse vectors in the unit sphere of Rp.

In a different direction, the paper (Lopes et al., 2019) focuses on “linear spectral statistics”

of the form
∑p

j=1 f(λj(Σ̂))/p, where f : [0,∞) → R is a smooth function. In that pa-

per, it is shown that a type of parametric bootstrap procedure consistently approximates

the distributions of such statistics when p/n converges to a positive limit. Lastly, the pa-

per Naumov et al. (2019) deals with bootstrapping statistics related the eigenvectors of Σ̂.

Notation. For a random variable X and an integer q ∈ {1, 2}, define the ψq-Orlicz norm

as ‖X‖ψq = inf {t > 0 | E[exp(|X|q/tq)] ≤ 2}. The random variable X is said to be
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sub-exponential if ‖X‖ψ1 is finite, and sub-Gaussian if ‖X‖ψ2 is finite. In addition, for

any q ≥ 1, the Lq norm of X is defined as ‖X‖q = (E[|X|q])1/q. For any vectors u, v ∈ R
p,

their inner product is 〈u, v〉 = ∑p
j=1 ujvj. For any real numbers a and b, the expression

a≪ b is used in an informal sense to mean that b is much larger than a. Also, we use the

notation a ∨ b = max{a, b} and a ∧ b = min{a, b}. If {an} and {bn} are two sequences on

non-negative numbers, then the relation an . bn means that there is a positive constant c

not depending on n such that an ≤ c bn holds for all large n. When both of the conditions

an . bn and bn . an hold, we write an ≍ bn.

4.3 Main Results

We consider a sequence of models indexed by n, in which all parameters may depend on

n except when stated otherwise. In particular, the dimension p = p(n) is allowed to have

arbitrary dependence on n. Likewise, if a parameter does not depend on n, then it is

understood not to depend on p either. One of the few parameters that will be treated as

fixed with respect to n is the positive integer k < p.

Assumption 6 (Data-generating model).

(a). There is a non-zero positive semidefinite matrix Σ ∈ R
p×p, such that the ith obser-

vation is generated as Xi = Σ1/2Zi for all i = 1, . . . , n, where Z1, . . . , Zn ∈ R
p are

i.i.d. random vectors with E[Z1] = 0, and E[Z1Z
⊤
1 ] = Ip.

(b). The eigenvalues of Σ satisfy min
1≤j≤k

(
λj(Σ)− λj+1(Σ)

)
& λ1(Σ).

(c). Let uj ∈ R
p denote the jth eigenvector of Σ, and let Γ ∈ R

k×k have entries given

by Γjj′ = E[(〈uj, Z1〉2 − 1)(〈uj′ , Z1〉2 − 1)] for all 1 ≤ j, j′ ≤ k. Then, the matrix Γ

satisfies λk(Γ) & 1.

In connection with the model described by Assumption 6, our results will make reference

to a moment parameter defined as βq = max1≤j≤p ‖〈uj, Z1〉2‖q for any q ≥ 1.
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Remarks. Regarding Assumption 6.(b), it ensures that there is some degree of separation

between the leading eigenvalues of Σ. In less compact notation, the assumption states that

there is a fixed constant c > 0 such that the inequality λj(Σ)− λj+1(Σ) ≥ cλ1(Σ) holds

for all j = 1, . . . , k, and all large n. (There is no restriction on the size of c.) In general, a

separation condition on the leading eigenvalues is unavoidable, because it is known both

theoretically and empirically that the bootstrap can fail to approximate the distribution

of
√
n
(
λk(Σ̂)− λk(Σ)

)
if the leading population eigenvalues are not distinct (Beran and

Srivastava, 1987; Hall et al., 2009). In more technical terms, the source of this issue can

be explained briefly as follows: If Sp×p denotes the space of real symmetric p×p matrices,

and if λj(·) is viewed as a functional from Sp×p to R, then λj(·) becomes non-differentiable

at Σ in the case when λj(Σ) is a repeated eigenvalue (i.e. with multiplicity larger than 1).

In turn, this lack of smoothness makes it difficult for the bootstrap to approximate the

distribution of
√
n(λj(Σ̂)− λj(Σ)).

To interpret Assumption 6.(c), the matrix Γ serves a technical role as a surrogate for

the correlation matrix of
√
n
(
λk(Σ̂) − λk(Σ)

)
. Hence, the lower bound λk(Γ) & 1 can

be viewed as a type of non-degeneracy condition for the distribution of interest. The

proposition below gives examples of well-established models in which Assumption 6.(c)

holds. Namely, parts (i) and (ii) below respectively correspond to Marčenko-Pastur

models and elliptical models. The latter case also illustrates that the entries of the vector

Z1 are not required to be independent.

Proposition 1. (i) (Marčenko-Pastur case). Suppose that Assumption 6.(a) holds. In

addition, suppose that the entries of Z1 are independent, and there is a constant κ > 1

not depending on n such that min1≤j≤p E[Z
4
1j ] ≥ κ. Then, Assumption 6.(c) holds.

(ii) (Elliptical case). Let V be a random vector that is uniformly distributed on the unit

sphere of Rp, and let ξ be a non-negative scalar random variable independent of V that

satisfies E[ξ2] = p and E[ξ4] <∞. Under these conditions, if Z1 has the same distribution

as ξV , then Assumption 6.(c) holds.

The proof of Proposition 1 is given in Section S1 of the supplementary material.
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Bootstrap approximation. The following theorem is the central result of the paper, and

quantifies the accuracy of the bootstrap when it is used to approximate the distribution

of
√
n(λk(Σ̂)− λk(Σ)).

Theorem 11. Suppose that Assumption 6 holds and let q = 5 log(kn). Then, there is a
constant c > 0 not depending on n such that the event

sup
t∈Rk

∣∣∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t
)
− P

(√
n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t

∣∣∣X
)∣∣∣∣∣ ≤

c log(n)β3
3q r(Σ)

√
n

(4.3.1)

holds with probability at least 1− c/n.

Remarks. The proof of Theorem 11 is given in Section S4 of the supplemenatary material.

It is possible to provide a more concrete understanding of the bound (4.3.1) by looking

at how the factors r(Σ) and β3q behave in some well-known situations. For instance,

consider the class of matrices Σ whose eigenvalues have a polynomial decay profile of the

form λj(Σ) ≍ j−γ, for some fixed constant γ > 0. This class offers a convenient point

of reference, because it interpolates between models that have low-dimensional structure

and those that do not. Specifically, the effective rank can be related to γ as

r(Σ) ≍





1 if γ > 1

log(p) if γ = 1

p1−γ if γ < 1.

With regard to the parameter β3q, its dependence on q is simple to describe in some

commonly considered cases. If the entries of Z1 are i.i.d. and sub-Gaussian, then β3q

grows at most linearly in q, with β3q . q‖Z11‖2ψ2
. Alternatively, if the entries of Z1 are

i.i.d. and sub-exponential, then β3q grows at most quadratically in q, with β3q . q2‖Z11‖2ψ1
.

(See Chapter 2 of Vershynin (2018) for further details.) Hence, a direct consequence of

Theorem 11 in such cases is that bootstrap consistency holds when γ > 1/2, p ≍ n

and ‖Z11‖ψ1 . 1. Likewise, when γ > 1, the bound in Theorem 11 nearly achieves the

parametric rate n−1/2 and is not influenced by the size of p at all. This conclusion also

conforms with the numerical results that we present in Section 4.4.

From a more practical standpoint, it is possible to gauge the size of r(Σ) in an em-

pirical way, by either estimating r(Σ) directly, or estimating upper bounds on it. Some
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examples of upper bounds on r(Σ) for which straightforward estimation methods are

known to be effective in high dimensions include tr(Σ)/max1≤j≤pΣjj and tr(Σ)2/‖Σ‖2F .
(Although guarantees can be established for direct estimates of r(Σ) in high-dimensions,

such results can involve a more complex set of considerations than the upper bounds just

mentioned.)

Transformations. To briefly review the idea of transformations, they are often used

to solve inference problems involving a parameter θ and an estimator θ̂ for which the

distribution of (θ̂− θ) is difficult to approximate. In certain situations, this difficulty can

be alleviated if there is a monotone function h for which the distribution of (h(θ̂)−h(θ)) is
easier to approximate. In turn, this allows for more accurate inference on the “transformed

parameter” h(θ), and then the results can be inverted to do inference on θ. In light of this,

our next result shows that the rates of bootstrap approximation established in Theorem 11

remain essentially unchanged when using the class of fractional power transformations

from [0,∞) to [0,∞). This class will be denoted by H, so that if h ∈ H, then h(x) = xa

for some a ∈ (0, 1].

Beyond the class of transformations just mentioned, the bootstrap can be combined

with another type of transformation known as partial standardization (Lopes et al., 2020).

Letting h ∈ H be a given function, and letting ς2j = var
(
h(λj(Σ̂))

)
for each j = 1, . . . , p,

this technique is well suited to bootstrapping “max statistics” of the form

M = max
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))
ςτj

, (4.3.2)

where τ ∈ [0, 1] is a parameter that can be viewed as a degree of standardization. The

ability to approximate the distribution ofM is relevant to the construction of simultaneous

confidence intervals for λ1(Σ), . . . , λk(Σ). It also turns out that the choice of τ encodes a

trade-off between the coverage accuracy and the width of such intervals, and that choosing

an intermediate value τ ∈ (0, 1) can offer benefits in relation to τ = 0 and τ = 1. This

will be discussed in greater detail later in Section 4.4.

In order to state our extension of Theorem 11 in a way that handles both partial stan-

dardization and transformations h ∈ H in a unified way, we need to introduce a bit more

62



notation. First, when considering the bootstrap counterpart of a partially standardized

statistic such as (4.3.2), the vector ςτk = (ςτ1 , . . . , ς
τ
k ) can be replaced with the estimate

ς̂τk = (ς̂τ1 , . . . , ς̂
τ
k ), whose entries are defined by ς̂2j = var

(
h(λj(Σ̂

⋆))
∣∣X
)
for all j = 1, . . . , p.

Second, the expression v/u involving vectors v and u denotes the vector obtained by en-

trywise division, (v/u)j = vj/uj. (To handle the possibility zero denominators, events of

the form {V/ς̂τk � t} are understood as {V � t ⊙ ς̂τk}, where V ∈ R
k is random, t ∈ R

k

is fixed, and ⊙ is entrywise multiplication. Lemma S5.5 in the supplementary material

also shows that such cases occur with negligible probability.) Lastly, recall that we write

h(v) = (h(v1), . . . , h(vk)) for a k-dimensional vector v and transformation h.

Theorem 12. Suppose that Assumption 6 holds. Fix a transformation h ∈ H and a
constant τ ∈ [0, 1] with respect to n, and let q = 5 log(kn). Then, there is a constant c > 0
not depending on n, such that the event

sup
t∈Rk

∣∣∣∣P

(
h(λk(Σ̂))− h(λk(Σ))

ςτk

� t

)
− P

(
h(λk(Σ̂

⋆))− h(λk(Σ̂))

ς̂τk

� t

∣∣∣∣X
)∣∣∣∣∣ ≤

c log(n)β5
3q r(Σ)

√
n

holds with probability at least 1− c/n.

Remarks. The proof of Theorem 12 is given in Section S5 of the supplementary material.

To comment on the technical relationship between Theorems 11 and 12, it is important to

call attention to the differences between asymptotic and non-asymptotic analysis. When

using asymptotics, the process of showing that bootstrap consistency for
√
n
(
λk(Σ̂) −

λk(Σ)
)
implies the same for (h(λk(Σ̂)) − h(λk(Σ)))/ς

τ
k can typically be handled with

a brief argument, based on the delta method and the consistency of the estimate ς̂τk .

However, when taking a non-asymptotic approach, this process is much more involved.

For instance, it is necessary to establish fine-grained error bounds for ς̂2k , such as in

showing that the uniform relative error ‖(ς̂2k − ς2k)/ς
2
k‖∞ is likely to be at most of order

n−1/2β3
2qλ1(Σ)

2r(Σ) up to logarithmic factors.

4.4 Numerical Results

In this section, we focus on the application of constructing simultaneous confidence in-

tervals for λ1(Σ), . . . , λk(Σ). This will be done in a variety of settings, corresponding

to different values of n and p, as well as different values of effective rank, and different
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choices of transformations. In a nutshell, there are two overarching conclusions to take

away from the experiments: (1) In situations where n ≪ p and r(Σ) ≍ 1, the bootstrap

generally produces intervals with accurate coverage, which provides a confirmation of our

theoretical results. (2) The classical log transformation mostly works well in low dimen-

sions, but it can lead to coverage that is substantially below the nominal level when r(Σ)

is moderately large. Nevertheless, we show that it is possible to find transformations that

offer more reliable coverage in this challenging case. More generally, this indicates that

alternative transformations are worth exploring in high-dimensional settings.

4.4.1 Simulation settings

The eigenvalues of the population covariance matrix Σ were chosen to have two different

decay profiles:

(a) A polynomial decay profile λj(Σ) = j−γ for all j = 1, . . . , p, with γ ∈ {0.7, 1.0, 1.3}.

(b) An exponential decay profile λj(Σ) = δj for all j = 1, . . . , p, with δ ∈ {0.7, 0.8, 0.9}.

As a clarification, it is important to note that the effective rank of Σ increases for larger

values of δ, but decreases for larger values of γ. For the purposes of simulations, the

choices (a) and (b) have the valuable property that the eigenvalues are parameterized

in the same way for every choice of p, which facilitates the comparison of results across

different dimensions. The matrix of eigenvectors for Σ was drawn uniformly from the

set of p × p orthogonal matrices. The dimension p was taken from {10, 50, 100, 200},
and the sample size n ranged from 50 to 500. For each triple (n, p, γ) or (n, p, δ), the

data X1, . . . , Xn were generated in an i.i.d. manner with the following choices for the

distribution of X1:

(i) The vector X1 = Σ1/2ξV was generated with V being uniformly distributed on the

unit sphere of Rp, and ξ2 being an exponential random variable independent of V

with E[ξ2] = p.

(ii) The vector X1 was generated from the Gaussian distribution N(0,Σ).
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For each parameter setting, we generated 1000 realizations of the dataset X1, . . . , Xn,

and for each such realization, we generated B := 1000 sets of bootstrap samples of size n.

When constructing simultaneous confidence intervals for λ1(Σ), . . . , λk(Σ), the value of k

was set to 5.

4.4.2 Bootstrap confidence intervals

For any α ∈ (0, 1), we aim to construct approximate versions of ideal random intervals

I1, . . . , Ik that satisfy

P

(
k⋂

j=1

{
λj(Σ) ∈ Ij

}
)
≥ 1− α. (4.4.1)

To this end, consider the following max and min statistics, based on any choice of partial

standardization parameter τ ∈ [0, 1] and transformation h,

M = max
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))
ςτj

L = min
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))
ςτj

.

Letting qM(α) and qL(α) denote the respective α-quantiles of M and L for any α ∈ (0, 1),

it follows that the desired condition (4.4.1) holds if each interval Ij is defined as

Ij = h−1

([
h(λj(Σ̂))− ςτj qM(1− α

2
) , h(λj(Σ̂))− ςτj qL(α2 )

])
, (4.4.2)

with h−1([a, b]) being understood as the preimage of [a, b] under h.

To construct bootstrap intervals Î1, . . . , Îk based on (4.4.2), it is only necessary to

replace qM(1− α
2
), qL(

α
2
), and ς1, . . . , ςk with estimates. In detail, each ςj is first estimated

using the sample variance of B bootstrap replicates of the form h(λj(Σ̂
⋆)). Next, the

empirical 1− α
2
quantile of B bootstrap replicates of the formM⋆ = max1≤j≤k[h(λj(Σ̂

⋆))−
h(λj(Σ̂))]/ς̂

τ
j is taken as an estimate of qM(1− α

2
), and similarly for qL(

α
2
).

Regarding the use of transformations, the following three options were included in the

experiments:

• log transformation: h(x) = log(x) with τ = 0.

• standardization: h(x) = x with τ = 1.
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• square-root transformation: h(x) = x1/2 with τ ∈ [0, 1] chosen data-adaptively.

In the case of the log transformation, the choice of τ = 0 corresponds to the way that

this transformation has been used in the classical literature (Beran and Srivastava, 1985),

while in the case of standardization, the choice of τ = 1 is definitional. For the square-root

transformation, the use of a data-adaptive selection rule for τ ∈ [0, 1] is more nuanced, and

can be informally explained in terms of the following ideas developed previously in (Lin

et al., 2021; Lopes et al., 2020).

In essence, this choice can be understood in terms of a trade-off between two competing

effects that occur in the extreme cases of τ = 1 and τ = 0. When using τ = 1, the

random variables [λj(Σ̂)
1/2− λj(Σ)1/2]/ςj with ς2j = var(λj(Σ̂)

1/2) and j = 1, . . . , k are on

approximately “equal footing”, which makes the behavior of the statistic M sensitive to

their joint distribution (and likewise for L). By contrast, when τ = 0 is used, the variables

[λj(Σ̂)
1/2 − λj(Σ)1/2] will tend to be on different scales, and the variable on the largest

scale, say j′, will be the maximizer forM relatively often. In this situation, the statisticM

is governed more strongly by the marginal distribution of [λj′(Σ̂)
1/2−λj′(Σ)1/2]. So, from

this heuristic point of view, the choice of τ = 0 can simplify the behavior of M relative

to the case of τ = 1, making the distribution of M easier to approximate. However, the

choice of τ = 0 also has the drawback that it can lead to simultaneous confidence intervals

that are excessively wide, because the widths are no longer adapted to the different values

ς1, . . . , ςk (since ς01 = · · · = ς0k = 1).

To strike a balance between these competing effects, we used the following simple rule

to select τ in the case of the square-root transformation. For a candidate value of τ , let

Î1(τ), . . . , Îk(τ) denote the associated bootstrap intervals defined beneath equation (4.4.2)

(so that the dependence on τ is explicit), and let |Î1(τ)|, . . . , |Îk(τ)| denote their widths.

Also define µ̂(τ) =
∑k

j=1 |Îj(τ)|/k and σ̂(τ)2 =
∑k

i=1(|Îj(τ)| − µ̂(τ))2/k. In this nota-

tion, we selected the value of τ that minimized µ̂(τ) + σ̂(τ) over the set of candidates

{0.0, 0.1, . . . , 0.9, 1.0}. Different variants of this type of criterion minimization rule have

also been observed to be effective in other contexts (Lin et al., 2021; Lopes et al., 2020).
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Figure 4.1: (Simultaneous coverage probability versus n in simulation model (i) with a

polynomial decay profile). In each panel, the y-axis measures P(∩5
j=1{λj(Σ) ∈ Îj}) based

on a nominal value of 95%, and the x-axis measures n. The colored curves correspond to
the different values of p, indicated in the legend.

4.4.3 Discussion of coverage

Figure 4.1 contains nine panels displaying the results for the simultaneous coverage prob-

ability P(∩5
j=1{λj(Σ) ∈ Îj}), based on a nominal value of 95% (i.e. α = 0.05) in the case

of the simulation model (i) with a polynomial decay profile for the population eigenval-

ues. The figure summarizes a large amount of information, because it shows how the

coverage depends on n, p, the eigenvalue decay parameter γ, and the three transforma-

tions described above. For each panel, the x-axis measures n, and the y-axis measures

P(∩5
j=1{λj(Σ) ∈ Îj}). Results corresponding to the dimensions p = 10, 50, 100, 200 are

plotted with colored curves that are labeled in the legend. The three rows of panels from
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top to bottom correspond to the log transformation, ordinary standardization, and the

square-root transformation. The three columns of panels from left to right correspond

to the eigenvalue decay parameters γ = 0.7, 1.0, 1.3. In addition, Figure 4.2 displays

analogous results for exponentially decaying population eigenvalues in model (i). Lastly,

results for model (ii), as well as for a nominal value of 90% (instead of 95%), are provided

in Section S8 of the supplementary material.
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Figure 4.2: (Simultaneous coverage probability versus n in simulation model (i) with an
exponential decay profile). The plotting scheme is the same as described in the caption
of Figure 4.1, except that the three columns correspond to values of the eigenvalue decay
parameter δ.

There are several notable patterns in Figures 4.1 to discuss. The first is that faster

rates of decay tend to lead to better coverage accuracy—as anticipated by our theoret-

ical results. In particular, when the eigenvalue decay parameter is set to γ = 1.3, the
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coverage is rather accurate even when n ≪ p. Furthermore, the accuracy is essentially

unaffected by the dimension p in this situation, as indicated by the overlap of the four

colored curves. On the other hand, as the decay parameter becomes smaller, the three

transformations perform in different ways. For instance, when γ = 0.7, p = 200, and

n < 200, the log transformation yields coverage that clearly falls short of the nominal

level. By contrast, the standardization and square-root transformations tend to err more

safely in the conservative direction when γ = 0.7. To give some indication of the difficulty

of γ = 0.7, it should be noted that if γ were decreased slightly to 0.5 with p & n, this

would imply r(Σ)/
√
n ≍

√
p/n & 1, in which case bootstrap consistency would not be

guaranteed. When considering all three cases γ = 0.7, 0.8, 0.9 collectively, the square-root

transformation seems to yield the best overall coverage results if conservative errors are

viewed as preferable to anti-conservative ones.

Turning to the coverage results for exponential spectrum decay, the log and square-root

transformations continue to follow the pattern that faster decay improves coverage accu-

racy. Also, the log transformation maintains its tendency to err in the anti-conservative

direction, while the square-root transformation maintains its tendency to err in the con-

servative direction. Meanwhile, ordinary standardization yields larger errors in the anti-

conservative direction than it did in the previous context.
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Figure 4.3: (Average width versus n in simulation model (i) with a polynomial decay

profile). In each of the nine panels, the y-axis measures the average width E[|Î1| + · · · +
|Î5|]/5, and the x-axis measures n. The colored curves correspond to the different values of
p = 10, 50, 100, 200, indicated in the legend. The three rows and three columns correspond
to labeled choices of transformations and values of the eigenvalue decay parameter γ.

4.4.4 Discussion of width

Beyond coverage probability, interval width is another important factor to consider when

appraising confidence intervals. In Figures 4.3-C.4, the average width E[|Î1|+ · · ·+ |Îk|]/k
is plotted on the y-axis as a function of the sample size n on the x-axis, with the un-

derlying parameter settings being organized in the same manner as in Figures 4.1-C.2.

(Corresponding results for settings based on model (ii) and a nominal value of 90% are

presented in Section S8 of the supplementary material.) With regard to the three transfor-

mations, they produce intervals that have roughly similar widths across most parameter

settings. However, at a more fine-grained level, the results in the case of polynomial spec-

trum decay show that the log transformation tends to yield slightly shorter widths than

the square-root transformation, which in turn, tends to yield slightly shorter widths than

ordinary standardization. In the case of exponential spectrum decay with δ = 0.9, the

same pattern is also apparent, while for smaller values of δ, there is not much difference

among the transformations.

Aside from the transformations, there are two other general trends to notice. Within

each of the 18 panels of Figures 4.3-C.4, there is a monotone relationship between width

and the dimension p, with the width generally increasing as the dimension increases. Sim-

ilarly, the width generally also increases as the effective rank r(Σ) increases.
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Figure 4.4: (Average width versus n in simulation model (i) with an exponential decay
profile). The plotting scheme is the same as described in the caption of Figure 4.3, except
that the three columns correspond to values of the eigenvalue decay parameter δ.

4.4.5 Illustration with stock market data

Within the context of finance, PCA is often applied to stock market return data for

the purposes of risk analysis and portfolio selection (Fabozzi et al., 2007; Ruppert and

Matteson, 2015). Here, we look at several high-dimensional datasets of stock market

returns to illustrate how the bootstrap can be applied to do inference on parameters of

interest in PCA.

Starting from one dataset of S&P 500 returns during the period February 2013 to

December 2017 (Nugent, 2017), we isolated four distinct datasets in the following way.

First, we ranked the 500 stocks based on their average monthly trading volume over the
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stated time period. Second, we selected four subsets of the 500 stocks, corresponding

to the top 50, 150, 200, and 300 members of the ranked list. Third, for each stock, we

extracted its biweekly log returns over the time period, resulting in 118 log return values

per stock. (The use of log returns rather than ordinary returns is a standard practice

in finance (Ruppert and Matteson, 2015).) Altogether, this produced four data matrices

of size n × p with the same number of rows n = 118, but differing numbers of columns

p = 50, 150, 200, 300. In addition to being high-dimensional, these datasets also conform

with our interest in settings that are well suited to PCA, since the empirical effective rank

satisfies r(Σ̂) ≤ 4 for every dataset.

4.4.5.1 Inference on population eigenvalues

When PCA is used to analyze stock market returns, the leading eigenvectors and eigen-

values of the population covariance matrix Σ have special interpretations. Namely, the

eigenvector corresponding to λ1(Σ) is often viewed as representing an overall “market

portfolio”, while subsequent eigenvectors represent “principal portfolios”, which produce

returns that are uncorrelated with the overall market return (Laloux et al., 2000). Also,

the eigenvalues can be interpreted as the variances (or volatilities) of the returns associated

with the principal portfolios. For this reason, the population eigenvalues are important

for risk assessment, and so it is of interest to quantify the uncertainty in these unknown

parameters.

For each of the four datasets described above, we applied the bootstrap method with

square-root transformation from Section 4.4.2 to construct simultaneous confidence in-

tervals for the leading ten eigenvalues λ1(Σ), . . . , λ10(Σ). The bootstrap intervals are

plotted in Figure 4.5, based on a simultaneous coverage probability of 95%, with a black

dot representing the sample eigenvalue λj(Σ̂) in the jth interval for j = 1, . . . 10. Upon

close inspection, it can be seen that λj(Σ̂) tends to sit slightly above the midpoint of

the jth interval. This is encouraging, because it means that the bootstrap intervals are

able to counteract the well-known phenomenon that the leading sample eigenvalues tend

to be biased upwards in high-dimensional settings (Yao et al., 2015, Ch.11). In addi-

tion, as a way to gain extra empirical support for the bootstrap intervals, we carried out
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the following exercise with estimates of λ1(Σ), . . . , λ10(Σ) computed via the method of

QuEST (Ledoit and Wolf, 2015), which is designed for use in high-dimensional settings,

and has been adopted frequently in the literature. Specifically, we verified that the QuEST

estimate of λj(Σ) was contained in the jth bootstrap interval for every j = 1, . . . , 10 and

p = 50, 150, 200, 300. Hence, this makes it more plausible that the bootstrap intervals

also contain the population eigenvalues.

To comment further on the numerical results in Figure 4.5, first note that in every

panel, the interval for λ1(Σ) is well separated from the intervals for λ2(Σ), . . . , λ10(Σ),

while there is substantial overlap among the latter intervals. This type of situation oc-

curs frequently when PCA is applied to stock market return data, and this is generally

interpreted to mean that the overall behavior of the market has a much more dominant

effect on returns than other types of economic factors (Laloux et al., 2000; Ruppert and

Matteson, 2015). A second observation is that the bootstrap intervals can provide some

additional insight into the relationship between λ2(Σ) and λ3(Σ). On one hand, a user

who only looks at the sample eigenvalues λ2(Σ̂) and λ3(Σ̂) might be tempted to conclude

that there is a clear difference between the population eigenvalues λ2(Σ) and λ3(Σ). On

the other hand, a user who looks at the overlap of the second and third intervals would

have more information to see that the difference between λ2(Σ) and λ3(Σ) might actually

be negligible. Lastly, one more aspect of Figure 4.5 to mention is that the relative po-

sitions of the ten intervals stay approximately the same for each of the four dimensions

p = 50, 150, 200, 300. Given that the empirical effective rank satisfies r(Σ̂) ≤ 4≪ p for ev-

ery dataset, this makes sense from the standpoint of our theoretical results, which indicate

that the bootstrap should be relatively insensitive to the ambient dimension compared to

the effective rank.
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Figure 4.5: (Simultaneous confidence intervals for λ1(Σ), . . . , λ10(Σ).) In each panel, the
y-axis corresponds to the magnitude of eigenvalues, and the x-axis corresponds to the
index j = 1, . . . , 10. The intervals are based on a simultaneous coverage probability of
95%, and the black dots represent the sample eigenvalues λj(Σ̂) for each j.

4.4.5.2 Inference on proportions of explained variance

The proportions of explained variance, denoted πj(Σ) =
∑j

i=1 λi(Σ)/ tr(Σ) for j = 1, . . . , p,

often play a decisive role in applications of PCA, since they form of the basis of standard

decision rules for selecting an appropriate number of components. To complement our

previous example dealing with the population eigenvalues λ1(Σ), . . . , λ10(Σ), this subsec-

tion looks instead at inference with simultaneous confidence intervals for the parameters

π1(Σ), . . . , π10(Σ). As before, the bootstrap method with square-root transformation from

Section 4.4.2 was used to construct the intervals based on a simultaneous coverage prob-

ability of 95%. The results are given in Figure 4.6, with black dots showing the locations

of the empirical proportions πj(Σ̂) within the jth interval.

Due to the fact that the proportions π1(Σ), . . . , πp(Σ) are unknown, one of the most

widely used rules for selecting the number of components is to choose the smallest number
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k for which πk(Σ̂) exceeds a given threshold. Although this rule may be appropriate when

dealing with low-dimensional data, it is known in the literature that this rule can be unre-

liable in high-dimensional settings, because it tends to select too few components (Ledoit

and Wolf, 2015). One way of avoiding this pitfall is to consider the following simple mod-

ification, based on simultaneous bootstrap confidence intervals for the proportions: If l̂j

denotes the lower endpoint of the jth interval, then the bootstrap-based rule selects the

smallest number k for which l̂k exceeds the threshold. Consequently, if the intervals per-

form properly with a simultaneous coverage probability of 95%, then the bootstrap-based

rule will select a sufficient number of components with at least 95% probability.
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Figure 4.6: (Simultaneous confidence intervals for the proportions of explained variance
π1(Σ), . . . , π10(Σ).) In each panel, the y-axis corresponds to the magnitude of proportions,
and the x-axis corresponds to the index j = 1, . . . , 10. The intervals are based on a
simultaneous coverage probability of 95%, and the black dots represent the empirical
proportions πj(Σ̂) for each j.

To illustrate the difference between the two rules, a red line corresponding to a par-

ticular threshold of 0.4 has been drawn in each panel of Figure 4.6. (The value of 0.4
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has no special importance, and is used only for ease of presentation.) In each of the four

cases p = 50, 150, 200, 300, the original rule selects the respective values k = 2, 3, 3, 4. By

contrast, the bootstrap-based rule selects the respective values k = 4, 6, 7, 8, and hence,

it clearly counteracts the problem of selecting too few components. Moreover, from a

financial standpoint, it makes sense that extra components are needed as p increases, be-

cause as a wider variety of stocks are included in the data, there is greater opportunity for

the returns to be influenced by economic factors that are not captured by the previously

leading components.
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Appendix A

Supplementary Material for

Chapter 2

Organization. We prove the major theorems in the first 7 sections. Intermediate results

on truncation and its estimation are presented in Propositions A.8 and A.9. Supporting

lemmas are put in Section A.10. Notations follow from those defined in the main text.

We also note that the symbols c, C, . . . are constants not depending on the sample size n

throughout the proofs. Their dependence on the parameters can change from line to line.

Whenever the domain of a function is clear, we suppress its argument. For example, we

use X̃ to denote X̃(t) when there is no ambiguity.

A.1 Proof of Theorem 1

To show that model (2.2.2) and model (2.2.3) are equivalent, we need to show the following:

1. X̃i(t) has mean µ(t).

2. The new noise e1 has mean 0 and finite variance.

3. X̃i(t) and ei are uncorrelated.

It is straightforward to verify that E[X̃i(t)] = µ(t) and E[ei] = 0. Next, we have

var(ei) = E
[
〈ζ0, Xi − X̃i〉2 + ǫi

)2]

= E
[
〈ζ0, Xi − X̃i〉22

]
+ σ2 + 2E

[
ǫi〈ζ0, Xi − X̃i〉2

]
.

77



Assumption (2) implies that the first and the third terms are finite. For (c), it suffices

to show that Xi(t)− X̃i(t) and X̃i(t) are uncorrelated. By the discussion in Chapter 11,

Section 2 in van der Vaart (1998), for every t, s ∈ [0, 1], we have

E[(Xi(t)− X̃i(t))X̃i(s)] = 0.

Combining E[Xi(t)] = E[X̃i(t)] = 0, we have, for s, t ∈ [0, 1],

cov(X(t)− X̃(t), X̃(s)) = E[(X(t)− X̃(t))X̃(s)] = 0.

�

A.2 Proof of Theorem 2

Recall that ζ̂M =
∑M

k=1 ẑkφ̂k and ζ0 =
∑M

j=k zkφk. The triangle inequality implies

‖ζ̂M − ζ0‖22 ≤ 2
M∑

k=1

(ẑk − zk)2 + 2

∥∥∥∥
M∑

k=1

zkφ̂k − ζ0
∥∥∥∥
2

≤ 4
M∑

k=1

(ẑk − žk)2 + 4
K∑

k=1

(žk − zk)2 + 2

∥∥∥∥
M∑

k=1

zkφ̂k − ζ0
∥∥∥∥
2

2

,

where žk is defined through gk = zkλk = λ̂kžk. Lemmas A.10.1, A.10.2, and A.10.3 control

each term on the right hand side. Substituting these results into the inequality yields the

stated outcome. �

A.3 Proof of Theorem 3

At a high level, the proof for the estimators of ζ0(t) consists of three steps. In the first

step, we try to solve a surrogate problem, i.e, minimizing the loss ℓ(ζ; {X̃i}ni=1), where

{X̃i}ni=1 are the theoretically imputed functions. In the second step, we aim at solving

minζ∈H(K) ℓ(ζ; {X̃i,M◦}ni=1), where X̃i,M◦(t) is the truncated M◦-dimensional approximation

of X̃i(t).

We then evaluate the distance between minimizers of ℓ(ζ; {X̃i}ni=1) and ℓ(ζ; {X̃i,M◦}ni=1).

Since X̃i,M◦ is not observed, we estimate it in the third step by X̂i,M◦ and then solve

minζ∈H(K) ℓ(ζ; {X̂i,M◦}ni=1). The third step is concluded by showing the distance between
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the minimizers of ℓ(ζ; {X̃i,M◦}ni=1) and ℓ(ζ; {X̂i,M◦}ni=1) is small. It will become obvious

later that the distance in the last step dominates all other errors in the first two steps.

Recall the estimator from (2.4.6) is ζ̂ρ. The estimation error can be broken into three

pieces:

‖ζ̂ρ,M◦ − ζ0‖2 ≤ I + II + III,

where I, II, and III are defined as:

I = ‖ζ̃ρ − ζ0‖2, (A.3.1)

II = ‖ζ̂ρ,M◦ − ζ̃ρ,M◦‖2, (A.3.2)

III = ‖ζ̃ρ,M◦ − ζ̃ρ‖2, (A.3.3)

and ζ̃ρ and ζ̃ρ,M◦ are

ζ̃ρ(t) = argminζ∈H(K)

{
1

n

n∑

i=1

(
Yi − 〈ζ, X̃i〉2

)2
+ ρ

∥∥ζ
∥∥2
H(K)

}
, (A.3.4)

ζ̃ρ,M◦(t) = argminζ∈H(K)

{
1

n

n∑

i=1

(
Yi − 〈ζ, X̂i,M◦〉2

)2
+ ρ

∥∥ζ
∥∥2
H(K)

}
. (A.3.5)

The difference between (A.3.5) and (2.4.6) is that X̂i,M◦(t) is replaced by its theoretical

counterpart X̃i,M◦(t) in (2.4.6). We complete the proof in the subsequent paragraphs by

showing that the three terms on the right hand side of (A.3) are small. �

Proof of term I

First, we introduce a few notations to help present the proof. The sample covariance of

{X̃i(t)}ni=1 is

Γ̃n(s, t) =
1

n

n∑

i=1

X̃i(s)X̃i(t).

Recall that the kernel R satisfies

LR(f) = LK1/2(LΓ̃(LK1/2(f))), f ∈ L2[0, 1].

Based on Γ̃(s, t), the empirical estimate Rn of R satisfies

LRn(f) = LK1/2(LΓ̃n
(LK1/2(f))), f ∈ L2[0, 1].
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Also recall thatH(K) = LK1/2(L2[0, 1]). So there exist unique functions f0, fρ ∈ L2[0, 1]/ ker(LK1/2)

such that ζ0 = LK1/2(f0) and ζ̃ρ = LK1/2(fρ). The optimization problem (A.3.4) is equiva-

lent to

fρ = argminf∈L2[0,1]

{
1

n

n∑

i=1

(
Yi − 〈X̃i, LK1/2(f)〉2

)2
+ ρ ‖f‖22

}
.

Some algebra gives us the solution

fρ = (LRn + ρ1)−1(LRn(f0) + hn),

where hn = 1
n

∑n
i=1 eiLK1/2(X̃i). We write the population counterpart of fρ as

f∗ρ = (LR + ρ1)−1LR(f0).

It is straightforward to verify the following inequality

∥∥ζ̃ρ − ζ0
∥∥2
2
=
∥∥LK1/2(fρ − f0)

∥∥2
2
≤ c

∥∥fρ − f0‖22. (A.3.6)

The term ‖fρ − f0‖2 on the left hand side can be further bounded by

∥∥fρ − f0
∥∥
2
≤
∥∥fρ − f∗ρ

∥∥
2
+
∥∥f∗ρ − f0

∥∥
2
. (A.3.7)

To bound the first term, we apply the triangle inequality again and obtain

∥∥fρ − f∗ρ
∥∥
2
≤ E1 + E2, (A.3.8)

where two terms on the right hand side are defined as

E1 =
∥∥((LRn + ρ1)−1 − (LR + ρ1)−1

)
(LRn(f0) + hn)

∥∥
2
,

E2 =
∥∥(LR + ρ1)−1

(
LRn(f0) + hn − LR(f0)

)∥∥
2
.

For the term E1, we have

E1 ≤
∥∥(LRn + ρ1)−1 − (LR + ρ1)−1

∥∥
op

∥∥LRn(f0) + hn
∥∥
2
,

≤ ρ−2‖Rn −R‖2
∥∥LRn(f0) + hn

∥∥
2
,

≤ ρ−2‖Γ̃n − Γ̃‖2
∥∥LRn(f0) + hn

∥∥
2
, (A.3.9)
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where the second last line follows from Lemma A.10.5, and

E2 ≤ ρ−1
(∥∥LRn(f0)− LR(f0)

∥∥
2
+
∥∥hn

∥∥
2

)
, (A.3.10)

Applying large sample results for functional data (e.g., Theorems 7.7.2, 7.7.6, 8.1.1, and

8.1.2 in Hsing and Eubank (2015)), we obtain

‖Γ̃n − Γ‖2 = Op(n
−1/2),

LRn(f0)− LR(f0) = Op(n
−1/2),

hn = Op(n
−1/2).

Hence, by substituting these results into (A.3.9) and (A.3.10), we obtain

E1 + E2 = Op

(
ρ−2n−1/2

)
,

and (A.3.8) implies that

‖fρ − f∗ρ‖2 = Op

(
ρ−2n−1/2

)
. (A.3.11)

The second term is easily handled by Lemma A.1

∥∥f∗ρ − f0
∥∥
2
= O(ρν). (A.3.12)

Substituting (A.3.12) and (A.3.11) into (A.3.6) yields

‖fρ − f0‖2 = Op(ρ
−2n−1/2 + ρν),

which completes the proof. �

Remark. The same rate also holds for the RKHS-norm of ‖ζ̃ρ − ζ0
∥∥
H(K)

due to the

inequality ‖ζ̃ρ − ζ0
∥∥
H(K)

≤ c0‖̃fρ − f0‖2, where c0 = sup‖h‖2=1 ‖LK1/2(h)‖H(K).

Proof of terms II and III

Both terms II and III can be handled together using Lemma A.10.6, which provides the L2

distance of the RKHS estimators based on the imputed process and an approximation of

it. For example, if we know how to control the difference ‖X̃i − X̃i,M◦‖2, we can measure

81

EQN:rkhs_b_II
EQN:rkhs_b_III


the asymptotic order of ‖ζ̃ρ − ζ̃ρ,M◦‖2. Likewise, knowing ‖X̃i,M◦ − X̂i,M◦‖2 yields the

asymptotic order of ‖ζ̃ρ,M◦ − ζ̂ρ,M◦‖2. Hence, combining Propositions 1 and 2, we obtain

II = Op

(
ρ−2M◦

γ+1(log(n)/n)1/3
)
,

III = Op

(
ρ−2M◦

−(α1−1)/2
)
.

�

A.4 Proof of Theorem 4

Recall that X∗ denotes a new functional trajectory, and X̃∗ is the conditional expectation

conditioning on its observations. We use the proposed imputation method to approximate

X̃∗ by a truncated estimate X̂∗
M◦

. Then the expected prediction error is

E
[(
〈ζ0, X̃∗〉2 − 〈ζ0, X̂∗

M◦
〉2
)2]

= E
[
〈ζ0, X̃∗ − X̂∗

M◦
〉22
]

≤
∥∥ζ0
∥∥2
2
E
[∥∥X̃∗ − X̂∗

M◦

∥∥2
2

]

≤ c
(
E
[∥∥X̃∗ − X̃∗

M◦
‖22
]
+ E

[∥∥X̃∗
M◦
− X̂∗

M◦

∥∥2
2

])
,

= Op

(
M◦

−α1+1 +M◦
2(γ+1)

(
log(n)/n

)2/3 )
,

where the last line has used Propositions 1 and 2. Taking M◦ = (n/ log(n))2/(3α1+6γ+3)

yields the stated result. �

A.5 Proof of Theorem 5

By the triangle inequality, it is straightforward to verify

E
[(
〈ζ0, X̃∗〉2 − 〈ζ̂ , X̂∗

M◦
〉2
)2] ≤ c

(
E
[
〈ζ0 − ζ̂ , X̃∗〉22

]
+ E

[
〈ζ̂ , X̃∗ − X̂∗

M◦
〉22
])

= Op

(
‖ζ̂ − ζ0‖22

)
+Op

(
‖X̃∗ − X̂∗

M◦
‖22
)

= Op

(
δ2 +M◦

−α1+1 +M◦
2(γ+1)

(
log(n)/n

)2/3 )
,

where the last line has used Proposition 1 and 2. �
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A.6 Proof of Theorem 6

The proof follows from substituting the result of Theorem 2 into δ and taking M = M◦ =

(n/ log(n))2/(6α1+6γ+3min{α1,2β1})). Note that the choice of M◦ here is different from its

choice in Theorem 2. �

A.7 Proof of Theorem 7

Let X∗(t) be a new process independent of the original sample and X̃∗(t) be its theoretical

imputation. The estimated truncated process consisting of the first M◦ scores is denoted as

X̂∗
M◦

(t). Since the estimated slope function ζ̂ρ,M◦ does not depend on X∗(t), the prediction

error is

E
[(
〈X̂∗

M◦
, ζ̂ρ,M◦〉2 − 〈X̃∗, ζ0〉2

)2] ≤ 2
(
T1 + T2 + T3

)
,

where

T1 = E
[
〈X̂∗

M◦
− X̃∗, ζ̂ρ,M◦〉22

]
, (A.7.1)

T2 = E
[
〈X̃∗, ζ̂ρ,M◦ − ζ̃ρ〉22

]
, (A.7.2)

T3 = E
[
〈X̃∗, ζ̃ρ − ζ0〉22

]
. (A.7.3)

Denote rn = (log(n)/n)2(α1−1)/(3(α1+2γ+1)). The first term T1 has a convergence rate

Op(rn) due to the triangle inequality and Proposition 1 and 2. The proof of (A.3.2)

and (A.3.3) in Theorem 3 implies that the second term T2 has a convergence rate

Op(ρ
−4rn). It remains to prove a bound for the third term T3.

To this end, we further break down T3 according to

E
[
〈X̃∗, ζ̃ρ − ζ0〉22

]
=
∥∥LR1/2fρ − LR1/2f0

∥∥2
2

≤ 2
(∥∥LR1/2(fρ − f∗ρ)

∥∥2
2
+
∥∥LR1/2(f∗ρ − f0)

∥∥2
2

)
, (A.7.4)

where LR1/2 satisfies LR(f) = LR1/2(LR1/2(f)). Next, we will provide a bound for the
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second term. It is straightforward to verify

∥∥LR1/2(f∗ρ − f0)
∥∥2
2
=

∥∥∥∥∥LR1/2

( ∞∑

k=1

(
θk

ρ+ θk
fk − fk

)
ϕk

)∥∥∥∥∥

2

2

=
∞∑

k=1

ρ2 θk f
2
k

(ρ+ θk)2
.

Let q′ = 2/(2+(2β2+α2−1)/α2) such that (K ′
ρ+1)−α2 < ρq

′ ≤ (K ′
ρ)

−α2 . Then following

a similar argument in the proof of Lemma A.10.4, we have

∞∑

k=1

ρ2 θk f
2
k

(ρ+ θk)2
. ρ2−2q′

∫ K′
ρ

1

x−(2β2+α2)dx+

∫ ∞

K′
ρ+1

x−(2β2+α2)dx

. ρ2−2q′ + ρq
′(2β2+α2−1)/α2 (A.7.5)

= ρ2ν◦ ,

where we define ν◦ =
(2β2+α2−1)/α2

2+(2β2+α2−1)/α2
. Thus we conclude that

∥∥LR1/2(f∗ρ − f0)
∥∥2
2

= O(ρ2ν◦). (A.7.6)

Now we turn to the first term in (A.7.4), whose proof is more involved. Consider the

following breakdown:

LR1/2(f∗ρ − fρ) = LR1/2(LR + ρ1)−1LR1/2LR1/2(f∗ρ − f0) (A.7.7)

+ LR1/2(LR + ρ1)−1(LRn − LR)(f∗ρ − f0) (A.7.8)

+ ρLR1/2(LR + ρ1)−1f∗ρ (A.7.9)

− LR1/2(LR + ρ1)−1hn (A.7.10)

+ LR1/2(LR + ρ1)−1(LRn − LR)(f∗ρ − fρ). (A.7.11)
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For term (A.7.7), we have

∥∥LR1/2(LR + ρ1)−1LR1/2LR1/2(f∗ρ − f0)
∥∥2
2

≤
∥∥LR1/2(LR + ρ1)−1LR1/2

∥∥2
op

∥∥LR1/2(f∗ρ − f0)
∥∥2
2

≤ sup
k≥1

θk
θk + ρ

·
∥∥LR1/2(f∗ρ − f0)

∥∥2
2

= O(ρ2ν◦).

Turning to the term (A.7.8)

∥∥LR1/2(LR + ρ1)−1(LRn − LR)(f∗ρ − f0)
∥∥2
2

≤
∥∥LR1/2(LR + ρ1)−1

∥∥2
op

∥∥LRn − LR
∥∥2
op

∥∥f∗ρ − f0
∥∥2
2

≤
(
sup
k≥1

√
θk

θk + ρ

)2

· ‖Γ̃− Γ‖22 · ρ2ν (A.7.12)

= Op

(
n−1ρ2ν−1

)
,

where in the second last line, we have used ‖f∗ρ − f0
∥∥
2
= O(ρν) from Lemma A.10.4 and

the relation
∥∥LR1/2(LR + ρ1)−1

∥∥
op

= sup
k≥1

1√
θk + ρ/

√
θk
≤ 1

2
√
ρ
, (A.7.13)

and the last line follows from ‖Γ̃ − Γ‖2 = Op(n
−1/2) (Theorems 7.7.6 and 8.1.2 in Hsing

and Eubank (2015)).

For the term (A.7.9), we apply the argument in (A.7.5) and obtain

∥∥ρLR1/2(LR + ρ1)−1f∗ρ
∥∥2
2
=

∞∑

k=1

ρ2 θ3k f
2
k

(θk + ρ)4
. ρ2ν

′

,

where the last line defines ν ′ = (2β2+3α2−1)/α2

4+(2β2+3α2−1)/α2
. Note that ν ′ > ν◦.

To handle the term (A.7.10), we re-use (A.7.13) and hn = Op(n
−1/2) and obtain

∥∥LR1/2(LR + ρ1)−1hn
∥∥2
L2

= Op(n
−1ρ−1).
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For the term (A.7.11), using (A.3.11) and (A.7.12) we conclude that

∥∥LR1/2(LR + ρ1)−1(LRn − LR)(f∗ρ − fρ)
∥∥2
2

≤
∥∥LR1/2(LR + ρ1)−1(LRn − LR)

∥∥2
op

∥∥f∗ρ − fρ
∥∥2
2

= Op(n
−2ρ−5).

Combining all these five results yields a bound for the second term in (A.7.4):

∥∥LR1/2(f∗ρ − fρ)
∥∥2
2

= Op(ρ
2ν◦ + ρ−1n−1).

Lastly, taking ρ = r
1/(4+2ν◦)
n in (A.7.1), (A.7.2), and (A.7.3) completes the proof. �

A.8 Proof of Proposition 1

Recall Ãik = E[Aik|Wi(Ti)]. Jensen’s inequality implies

E
[∥∥X̃i(t)− X̃i,M◦(t)

∥∥
2

]
= E

[( ∞∑

k=M◦+1

Ã2
ik

)1/2]

≤
( ∞∑

k=M◦+1

E[Ã2
ik]

)1/2

= c

( ∞∑

k=M◦+1

k−α1

)1/2

≤ cM◦
−(α1−1)/2.

An application of Markov inequality leads to the stated result. �

A.9 Proof of Proposition 2

The local linear smoothing method is used to estimate the mean function µ(t) and covari-

ance function Γ(s, t). Zhang and Wang (2016) assume that the number of observations

per subject Ni is fixed, while in this paper Ni are random. With a slight modification of

the proof in of Corollaries 5.2 and 5.4 in Zhang and Wang (2016), we can obtain

sup
t∈[0,1]

|µ̂(t)− µ(t)| = O

(
h2µ +

√
log(n)

nhµE[N1]

)
a.s.,

sup
s,t∈[0,1]

|Γ̂(s, t)− Γ(s, t)| = O

(
h2µ +

√
log(n)

nhµE[N1]
+ h2Γ +

√
log(n)

nh2ΓE[N1]

)
a.s.,
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where hµ, hΓ are bandwidth choices for estimating mean and covariance. Using these

results, we can improve the rates in Corollary 1 and Theorem 2 of Yao et al. (2005a) with

the choices of hµ = (log(n)/n)1/5 and hΓ = (log(n)/n)1/6. Hence we obtain

sup
t∈[0,1]

|µ̂(t)− µ(t)| = O
(
(log(n)/n)2/5

)
a.s., (A.9.1)

sup
s,t∈[0,1]

∣∣Γ̂(s, t)− Γ(s, t)
∣∣ = O

(
(log(n)/n)1/3

)
a.s., (A.9.2)

|σ̂2
η − σ2

η| = Op

(
(log(n)/n)1/3

)
. (A.9.3)

By Assumption (A2.3) and applying Theorem 5.1.8 of Hsing and Eubank (2015), we

obtain

‖φ̂k − φk‖2 = Op

(
kγ (log(n)/n)1/3

)
. (A.9.4)

With (A.9.1), (A.9.2) and (A.9.4) in hand, we have

∣∣Âik − Ãik
∣∣ = Op

(∥∥Σ̂−1
Wi(Ti)

− Σ−1
Wi(Ti)

∥∥
op

+
∥∥λ̂kφ̂ik − λkφik

∥∥
2

)
.

For the first term on the right hand side, we apply Lemma A.3 in Facer and Müller

(2003) and obtain

∥∥Σ̂−1
Wi(Ti)

− Σ−1
Wi(Ti)

∥∥
op
≤ c

∥∥Σ−1
Wi(Ti)

∥∥2
op

∥∥Σ̂Wi(Ti) − ΣWi(Ti)

∥∥
op
.

Since ‖Σ−1
Wi(Ti)

‖op ≤ σ−2
η , we can further obtain

∥∥Σ̂−1
Wi(Ti)

− Σ−1
Wi(Ti)

∥∥
op

= Op

(∥∥Σ̂Wi(Ti) − ΣWi(Ti)

∥∥
op

)

= Op

(
sup

1≤j1,j2≤Ni

∣∣∣[Σ̂Wi(Ti)]j1j2 − [ΣWi(Ti)]j1j2

∣∣∣
)

= Op

(∣∣σ̂2
η − σ2

η

∣∣+ sup
s,t∈[0,1]

∣∣Γ̂(s, t)− Γ(s, t)
∣∣
)

= Op

(
(log(n)/n)1/3

)
, (A.9.5)

where the last line has used (A.9.1) and (A.9.3).
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For the second term, notice that

∥∥λ̂kφ̂ik − λkφik

∥∥
2
≤
√
Ni sup

1≤j≤Ni

∣∣λ̂kφ̂k(Tij)− λkφk(Tij)
∣∣,

and

λkφk(t) =

∫ 1

0

Γ(s, t)φk(s)ds.

The triangle inequality implies

sup
1≤j≤Ni

∣∣λ̂kφ̂k(Tij)− λkφk(Tij)
∣∣

= sup
1≤j≤Ni

∣∣∣
∫ 1

0

Γ̂(s, tij)φ̂k(s)ds−
∫ 1

0

Γ(s, tij)φk(s)ds
∣∣∣

≤ sup
t∈[0,1]

∣∣∣
∫ 1

0

(Γ̂(s, t)− Γ(s, t))φ̂k(s)ds
∣∣∣+ sup

t∈[0,1]

∫ 1

0

Γ(s, t)
∣∣φ̂k(s)− φk(s)

∣∣ds

≤ c

(
sup
t∈[0,1]

(
(Γ̂(s, t)− Γ(s, t))2

)1/2
+ sup

s,t∈[0,1]
|Γ(s, t)|

∥∥φ̂k(t)− φk(t)
∥∥
2

)

≤ c
(

sup
s,t∈[0,1]

∣∣Γ̂(s, t)− Γ(s, t)
∣∣+ ‖φ̂k − φk‖2

)
.

Thus,
∥∥λ̂kφ̂ik − λkφik

∥∥
2
= Op

(
kγ(log(n)/n)1/3

)
. (A.9.6)

Substituting (A.9.5), (A.9.6) into (A.9) and using (A.9.4), we have

∥∥X̂i,M◦(t)− X̃i,M◦(t)
∥∥
2

=
M◦∑

k=1

|Âik − Ãik|Op(1) +
M◦∑

k=1

|Ãik|‖φ̂k − φk‖2

= Op

( M◦∑

k=1

kγ (log(n)/n)1/3
)

= Op

(
M◦

γ+1(log(n)/n)1/3
)
.

�

A.10 Supporting Lemmas for Theorems

A.10.1 Lemmas for Theorem 2

As a preliminary step, we argue that the convergence rate of the local linear estimator of

g(t) is a 1-D rate. The proof of Theorem 1 in Yao et al. (2005a) establishes the convergence
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rate of ĝ(t), where Yij is replaced by ViUij with

Vi = Yi + ei,

Uij = Xi(Tij) + εij.

The substitution does not change the local linear estimator shown in (29). This is because

the corresponding Nadaraya-Watson estimator, when Yij is replaced by ViUij , satisfies

E

[∑
i

∑
j wijViUij/E[N ]

∑
i

∑
j wij/E[N ]

]
= E[ViUij] = E[YiXi(Tij)].

Lemma A.10.1. Suppose the Assumptions in Theorem 2 hold. Then

M∑

k=1

(ẑk − žk)2 = Op

(
M2α1+1 r21 +M2(α1+γ)+1 r22

)
. (A.10.1)

Proof. Recall that ẑk = ĝk/λ̂k and gk = zkλk = λ̂kžk. We have the following equality,

ẑk = žk + λ̂−1
j (T1k + T2k + T3k), (A.10.2)

where T1k, T2k, and T3k are defined as

T1k = 〈ĝ − g, φj〉2,

T2k = 〈g, φ̂k − φk〉2,

T3k = 〈ĝ − g, φ̂k − φk〉2.

Combining the relation sup1≤k |λ̂k − λk| ≤ ‖Γ̂− Γ‖op, the rate (A.9.2) in the proof of

Proposition 2 implies

max
1≤k≤M

|λ̂k − λk| = O
(
(log(n)/n)1/3

)
a.s..

So there exists n(M) ≥ 1 such that for all n ≥ n(M),

max
1≤k≤M

|λ̂k − λk| ≤ λM/2 a.s.,
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and thus λ̂k ≥ λk/2 a.s. for all n ≥ n(M). Substituting (A.10.2) into (A.10.1) yields

M∑

k=1

(ẑk − žk)2 ≤ 3
M∑

k=1

λ̂−2
k

(
T2

1k + T2
2k + T2

3k

)

≤ 12
M∑

k=1

λ−2
k

(
T2

1k + T2
2k + T2

3k

)

≤ 12
M∑

k=1

λ−2
k

(
T2

1k + T2
2k

)
+ 12‖ĝ − g‖22

M∑

k=1

λ−2
k ‖φ̂k − φk‖22, (A.10.3)

where the last line follows from Cauchy-Schwarz inequality. The proof is complete once

we derive a bound for each term on the right hand side of (A.10.3).

First, we apply Cauchy-Schwarz inequality again to T1k,

|T1k| ≤ ‖ĝ − g‖2,

and thus obtain

|T1k|2 = Op

(
r21
)
. (A.10.4)

For the term T2k, using the bound

‖φ̂k − φk‖2 ≤ c δ−1
k ‖Γ̂− Γ‖op, (A.10.5)

and the perturbation theory (Hsing and Eubank, 2015, Chapter 5), we have

|T2k| ≤ c‖φ̂k − φk‖2 (A.10.6)

≤ c δ−1
k ‖Γ̂− Γ‖op.

Hence,
M∑

k=1

λ−2
k T2

2k ≤ c
M∑

k=1

j2γ+2α1‖Γ̂− Γ‖2op,

and
M∑

k=1

λ−2
k T2

2k = Op

(
M2(α1+γ)+1 r22

)
. (A.10.7)

Lastly, note that due to (A.10.6),
∑M

k=1 λ
−2
k ‖φ̂k−φk‖22 has the same convergence order

as
∑M

k=1 λ
−2
k T2

2k. Hence, combining (A.10.4), (A.10.7), and (A.10.5) yields the stated

outcome.
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Lemma A.10.2. Suppose the assumptions in Theorem 2 hold. Then

M∑

k=1

(ẑk − zk)2 = Op

(
M2(α1−β1)+1 r22

)
. (A.10.8)

Proof. Recall that gk = zkλk = žkλ̂k. Then we have the following equality

žk − zk = gk/λ̂k − gk/λk

=
(
λ̂kλk

)−1
(λk − λ̂k)gk.

Using this equal relation and Wely’s inequality, we can further derive

M∑

k=1

(žk − zk)2 ≤ c
M∑

k=1

λ−2
k z2k(λ̂k − λk)2

≤ cM2(α1−β1)+1 ‖Γ̂− Γ‖2op. (A.10.9)

Substituting ‖Γ̂− Γ‖op = Op(r2) into (A.10.9) finishes the proof.

Lemma A.10.3. Suppose the assumptions in Theorem 2 hold. Then

∥∥∥∥
M∑

k=1

zjφ̂j − ζ0
∥∥∥∥
2

2

= Op

(
M2(γ−β1)+1 r22 +M−2β1+1

)
. (A.10.10)

Proof. The triangle inequality implies

∥∥∥∥
M∑

k=1

zkφ̂k − ζ0
∥∥∥∥
2

2

≤ 2
M∑

k=1

z2k‖φ̂k − φk‖22 + 2
∞∑

k=M+1

z2k

≤ c ‖Γ̂− Γ‖2op
M∑

k=1

z2kδ
−2
k + 2

∞∑

k=M+1

z2k. (A.10.11)

For the two summations, we have

M∑

k=1

z2kδ
−2
k =

M∑

k=1

k2(γ−β1) = O
(
M2(γ−β1)+1

)
, (A.10.12)

and
∞∑

k=M+1

z2k =
∑

k=M+1

k−2β1 = O
(
M−2β1+1

)
. (A.10.13)

Substituting (A.10.12) and (A.10.13) into (A.10.11) completes the proof.
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A.10.2 Lemmas for Theorem 3

Lemma A.10.4. Suppose that the Assumptions in Theorem 3 hold. There exists a

constant ν = (2β2−1)/α2

2+(2β2−1)/α2
∈ (0, 1) such that

‖f∗ρ − f0‖2 = O(λν).

Proof. It is straightforward to verify

‖f∗ρ − f0‖22 =
∞∑

k=1

(
θkfk
ρ+ θk

− fk
)2

=
∞∑

k=1

ρ2 f 2
k

(ρ+ fk)2
.

Recall that |fk| ≤ ck−β2 and θk ≍ k−α2 . Some algebra gives us

∞∑

k=1

ρ2 f 2
k

(ρ+ θk)2
.

∞∑

k=1

ρ2 k−2β2

(ρ+ k−α2)2
.

Without loss of generality, we may assume that 0 < ρ < 1. For a fixed ρ, there exists

an integer Kρ such that

(Kρ + 1)−α2 < ρq ≤ K−α2
ρ ,

where q = 2/(2 + (2β2 − 1)/α2) ∈ (0, 1). Due to this inequality, we have

∞∑

k=1

ρ2 k−2β2

(ρ+ k−α2)2
≤

Kρ∑

k=1

ρ2 k−2β2

(ρ+ ρq)2
+

∞∑

k=Kρ+1

k−2β2

. ρ2−2q

∫ Kρ

1

x−2β2dx+

∫ ∞

Kρ+1

x−2β2dx

. ρ2−2q + ρq(2β2−1)/α2

= ρ2ν ,

which completes the proof.

Lemma A.10.5. Let A,B be two self-adjoint and compact linear operators. Define U =

A+ λ1 and V = B + λ1, λ > 0. Assume that

‖A−B‖op = ∆,

92



and ∆→ 0. Then we have

‖U−1 − V −1‖op ≤ λ−2∆.

Proof. Let M = 2max{‖U‖op, ‖V ‖op}. Define two scaled operators, U0 = U/M and

V0 = V/M . It is straightforward to verify that ‖U0‖op, ‖V0‖op ∈ (0, 1) and

‖U−1 − V −1‖op = M−1‖U−1
0 − V −1

0 ‖op. (A.10.14)

It is sufficient to find a bound for ‖U−1
0 − V −1

0 ‖op in order to bound the right hand

side of (A.10.14). Note that we also have ‖1 − U0‖op, ‖1 − V0‖op ∈ (0, 1). To verify

this, take v ∈ L2[0, 1] with ‖v‖2 = 1. Let {(λk, ψk(t))}∞k=1 be the eigen-pairs of U with

λ1 ≥ λ2 ≥ · · · ≥ λ. Write v =
∑∞

k=1 vkψk where vk = 〈v, ψk〉. Then we can verify

‖1− U0‖op = sup
‖v‖2=1

‖(1−M−1U)v‖2,

= sup
‖v‖2=1

∥∥∥∥
∞∑

k=1

(
vk −

1

M
λkvk

)
ψk

∥∥∥∥
2

= sup
‖v‖2=1

( ∞∑

k=1

v2k

(
1− λk

M

)2)1/2

= 1− λ

M
< 1.

The same line of argument applies to ‖1− V0‖op.
Expanding U−1

0 and V −1
0 using Neumann series yields

U−1
0 =

∞∑

k=0

(1− U0)
k, V −1

0 =
∞∑

k=0

(1− V0)k.

The triangle inequality gives us

‖U−1
0 − V −1

0 ‖op ≤
∞∑

k=1

∥∥(1− U0)
k − (1− V0)k

∥∥
op
. (A.10.15)

Denote

M0 = ‖1− U0‖op = ‖1− V0‖op = 1− λ

M
.
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For each k ≥ 1 we have

∥∥(1− U0)
k − (1− V0)k

∥∥
op

=
∥∥∥(U0 − V0)

k∑

i=1

(1− U0)
k−i(1− V0)i−1

∥∥∥
op

≤ ‖U0 − V0‖op
k∑

i=1

M
(k−i)+(i−1)
0

= ‖U0 − V0‖op kMk−1
0 . (A.10.16)

Now we are ready to bound (A.10.14) using (A.10.15) and (A.10.16),

‖U−1 − V −1‖op = M−1‖U−1
0 − V −1

0 ‖op

≤ M−1‖U0 − V0‖op
∞∑

k=1

kMk−1
0

= M−1‖U0 − V0‖op
( ∞∑

k=1

xk
)′∣∣∣

x=M0

= (1−M0)
−2M−2‖A−B‖op

= (M − (M − λ))−2‖A−B‖op

= λ−2‖A− B‖op,

which completes the proof.

Lemma A.10.6. Let {z1i(t)}ni=1 and {z2i(t)}ni=1 be samples of two processes. Assume

that for each i = 1, . . . , n, z2i is an approximation for z1i, and the approximation error is

uniform across all i,
∥∥z1i − z2i

∥∥
2

= Op(∆).

Let ζj, j = 1, 2 be the minimizers of the penalized regressions

ζj = argminζ∈H(K)

{
1

n

n∑

i=1

(
Yi − 〈ζ, zji〉2

)2
+ ρ

∥∥ζ
∥∥2
H(K)

}
.

Then

‖ζ1 − ζ2‖2 = Op(ρ
−2∆).
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Proof. The original minization task is equivalent to finding the minimizer of the following

quadratic function

Lj(f) =
1

n

n∑

i=1

(
Yi − 〈zji, LK1/2(f)〉L2

)2
+ ρ

∥∥f
∥∥2
L2
, j = 1, 2,

whose solution is

f̂j =
(
Cn,j + ρ1

)−1
LK1/2

{
1

n

n∑

i=1

Yizji

}
,

where

Cn,j(f) = LK1/2(LCn,j
(LK1/2(f))),

and

Cn,j(t, s) =
1

n

n∑

i=1

z1i(t)z1i(s),

is the sample covariance. Then the solutions to the original problems are ζ̂j = LK1/2(f̂j).

Given that for each i = 1, . . . , n, two processes z1i and z2i are close, the goal is to compare

how close f̂1 and f̂2 are, which further implies how close β̂1 and β̂2 are.

By the triangle inequality, we have

∥∥f̂1 − f̂2
∥∥
L2
≤ I + II,

where the two terms on the right side are defined according to

I =

∥∥∥∥(Cn,1 + ρ1)−1LK1/2

{
1

n

n∑

i=1

Yi(z1i − z2i)
}∥∥∥∥

2

, (A.10.17)

II =

∥∥∥∥
(
(Cn,1 + ρ1)−1 − (Cn,2 + λ1)−1

)
LK1/2

{
1

n

n∑

i=1

Yiz2i

}∥∥∥∥
2

. (A.10.18)

To handle (A.10.17), we have

slowromancapi@ ≤
∥∥(Cn,1 + ρ1)−1

∥∥
op

∥∥∥∥∥LK1/2

{
1

n

n∑

i=1

Yi(z1i − z2i)
}∥∥∥∥∥

2

≤ c ρ−1 · 1
n

n∑

i=1

|Yi|
∥∥z1i − z2i

∥∥
2

= Op(ρ
−1∆).
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For (A.10.18), we can verify that

∥∥∥∥∥LK1/2

{
1

n

n∑

i=1

Yiz2i

}∥∥∥∥∥
L2

≤
∥∥LK1/2

∥∥
op
· 1
n

n∑

i=1

|Yi|
∥∥z2i

∥∥
2
= Op(1).

So it suffices to find the rate of ‖(Cn,1+ρ1)
−1−(Cn,2+ρ1)

−1‖op. Note that both Cn,1+ρ1

and Cn,2 + ρ1 are invertible due to the addition of ρ1. Moreover, we have

∥∥(Cn,1 + ρ1)− (Cn,2 + ρ1n)
∥∥
op

=
∥∥LK1/2 ◦ (LCn,1 − LCn,2) ◦ LK1/2

∥∥
op

≤ c
∥∥Cn,1 − Cn,2

∥∥
2
,

and

‖Cn,1 − Cn,2
∥∥
2

=

∥∥∥∥
1

n

n∑

i=1

z1i(t)z1i(s)−
1

n

n∑

i=1

z2i(t)z2i(s)

∥∥∥∥
2

≤
∥∥∥∥
1

n

n∑

i=1

z1i(t)(z1i(s)− z2i(s))
∥∥∥∥
2

+

∥∥∥∥
1

n

n∑

i=1

(z2i(t)− z1i(s))z2i(s)
∥∥∥∥
2

(A.10.19)

≤ 1

n

n∑

i=1

(
∥∥z1i

∥∥
2
+
∥∥z2i

∥∥
2
)
∥∥z1i − z2i

∥∥
2

(A.10.20)

= Op(∆).

Hence, we have
∥∥(Cn,1 + ρ1)− (Cn,2 + ρ1)

∥∥
op

= Op(∆).

Then Lemma A.10.5 implies that

∥∥(Cn,1 + ρ1)−1 − (Cn,2 + ρ1)−1
∥∥
op

= Op(ρ
−2∆).

Combining bounds on (A.10.17) and (A.10.18) completes the proof.

A.11 Discussion on Assumption 3

We propose to impute the process Xi(t) based on the short vector Wi(Ti) collected from

the subjects, i.e., X̃i(t) = E[Xi(t)|Wi(Ti)]. By and large this strategy still works, but its
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theoretical justification needs more discussion. This section is devoted to closing this gap.

We will first introduce elliptical distributions and then discuss how this class of random

elements fit in our theory.

Elliptical distributions

For a comprehensive survey on this topic, see, e.g., Frahm (2004). An introduction to

elliptical random process can be found in Bali and Boente (2009) and Boente et al. (2014).

Let X ∈ R
d be a d-dimensional random vector. Cambanis et al. (1981) showed that

X is an elliptical random vector E(µ,Σ), if and only if X
D
= µ+RΛU(k), where µ ∈ R

d

is a non-random constant, R is a non-negative random variable, Λ is a d× k non-random

matrix with rank k(≤ d), and U(k) is a k-dimensional random vector independent of R
and uniformly distributed on the sphere Sk−1. With this definition, we have

E[X] = µ and cov(X) =
E[R2]

d
Σ, (A.11.1)

where Σ = ΛΛ⊤ has rank k. Note that both the multivariate normal and multivariate t

distributions are elliptical distributions.

Next we derive the conditional distribution of an elliptical distribution. Let µ =

(µ⊤
1 ,µ

⊤
2 )

⊤ and X = (X⊤
1 ,X

⊤
2 )

⊤ with X1 the vector of the first k coordinates of X (k < d)

such that cov(X1) is not singular. Let

Σ =


Σ11 Σ12

Σ21 Σ22


 ,

where Σ11 is a k × k matrix and Σ12 is a k × (d − k) matrix. Then we have (Cambanis

et al., 1981),

E[X2|X1 = x1] = µ2 +Σ21Σ
−1
11 (x1 − µ1). (A.11.2)

Although Σ11 and Σ21 are unobservable, using (A.11.1) we can re-write (A.11.2) as

E[X2|X1 = x1] = µ2 + (E[R2]Σ21/d)(E[R2]Σ11/d)
−1(x1 − µ1),

= µ2 + cov(X2,X1) cov(X1)
−1(x1 − µ1). (A.11.3)

In the case where µ2 = 0, this mirrors the conditional expectation relation (2.3.5). We

provide two examples that satisfy the linearity Assumption (3).
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Example.

(E1) Xi(t) is a Gaussian process, and the measurement errors {ηij}Ni
j=1 are i.i.d. indepen-

dent Gaussian random variables.

(E2) The scores {Aik}∞k=1 and measurement errors {ηij}Ni
j=1 are jointly elliptical.

Note that multivariate Gaussian is a special case of elliptical distributions. So it is

straightforward to verify that the conditional expectation of scores under (E1) and (E2)

satisfy the relation (2.3.5) and thus Assumption 3. Furthermore, (E2) is intriguing. Be-

cause it is not implied by ellipticalXi(t) and i.i.d. elliptical measurement errors {ηij}Ni
j=1 as

(Aik,Wi(Ti)) need not be jointly elliptical under these assumptions. This is very different

from the Gaussian case in (E1), where Gaussian Xi(t) and i.i.d. Gaussian measurement

errors {ηij}Ni
j=1 imply that (Aik,Wi(Ti)) are jointly Gaussian, hence Assumption 3 is sat-

isfied. The lack of a similar result for elliptical distributions is best understood through

the fact that the sum of two independent t-distributed random variables no longer follows

a t-distribution.

Alternative assumption on conditional scores

The joint elliptical assumption is not innocent. It does not hold if the measurement errors

ηij are independent across j, as commonly assumed in the literature. To accommodate

independent measurement errors, we can make the following alternative assumption to

replace Assumption (A3′) by

(A3′) The linear relationship

E[Aik|Xi(Ti)] = aik + b⊤ikXi(Ti)

holds, and the measurement errors {ηij}Ni
j=1 are i.i.d. across both i and j.

However, a very different proof for the consistency of estimating ζ0(t) is needed with

such an assumption, as Proposition 2 does not hold under Assumption (A3′).
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Below we provide a short argument to show why X̃i,M◦(t) can not be consistently

estimated under Assumption (A3′).

To begin, it is straightforward to verify

Ãik = E[Aik|Xi(Ti)] = γkφ
⊤
ikΣ

−1
Xi(Ti)

Xi(Ti).

The quantities γk,φik,ΣXi(Ti),µi(Ti) can be estimated, but Xi(Ti) is unobservable. So

we can only use Wi(Ti) and obtain the score estimate

Ã⋆ik = γkφ
⊤
ikΣ

−1
Xi(Ti)

Wi(Ti). (A.11.4)

Due to measurement errors, the difference dik = Ãik−Ã⋆ik does not vanish as n→∞. Thus

Ãik cannot be consistently approximated by Ã⋆ik. Hence, Proposition 2 no longer holds.

Luckily, one can show that collectively the impact of measurement error is asymptotically

negligible for estimation in the RKHS approach. (Note that the normal equation approach

directly targets population quantities, thus it is not restricted by this assumption.)

An important difference between Ãik in (2.3.5) and Ã⋆ik is the covariance matrix in the

conditional scores. Due to measurement error, the smallest eigenvalue of ΣWi(Ti) in Ãik is

at least σ2
η, which is not guaranteed in ΣXi(Ti). So we need another restriction on ΣXi(Ti),

that is, P(λmin(ΣXi(Ti)) ≥ c) = 1 for some fixed constant c, which prevents Σ−1
Xi(Ti) from

blowing up.

Now we turn to the estimation part. Let Â⋆ik = γ̂kφ̂
⊤
ikΣ̂

−1
Xi(Ti)

Wi(Ti) be an estimate

for Ã⋆ik. There is a non-negligible error dik = Ãik − Ã⋆ik in estimating Ãik by Â⋆ik that

would not go to zero as the sample size n increases. Furthermore, we can find out their

difference between X̂⋆
i,M◦

(t) =
∑M◦

k=1 Â
⋆
ikφ̂k(t) and X̃i,M◦(t), that is,

X̂⋆
i,M◦

(t)− X̃i,M◦(t) =
M◦∑

k=1

(Â⋆ik − Ã⋆ik)φ̂k(t) +
M◦∑

k=1

dikφk(t)−
M◦∑

k=1

2dik(φ̂k(t)− φk(t)).

If we substitute z1i(t) and z2i(t) with X̃i,M◦(t) and X̂
⋆
i,M◦

(t) respectively, the first term in
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(A.10.19) becomes

1

n

n∑

i=1

X̃i,M◦(t)
(
X̃i,M◦(t)− X̂⋆

i,M◦
(t)
)

= − 1

n

n∑

i=1

X̃i,M◦(t)
M◦∑

k=1

(Â⋆ik − Ã⋆ik)φ̂k(t)

− 1

n

n∑

i=1

X̃i,M◦(t)
M◦∑

k=1

dikφk(t)

+
1

n

n∑

i=1

X̃i,M◦(t)
M◦∑

k=1

2dik(φ̂k(t)− φk(t)).

The first term and the third term retain the same convergence rates as Â⋆ik (consistent

for Ã⋆ik) and φ̂k(t) (consistent for φk(t)) respectively. Note that for each i = 1, · · · , n,
X̃i,M◦(t)

∑M◦

k=1 dikφk(t) has mean zero and variance at most of order O(M◦), and they are

independently and identically distributed. Hence the second term is of order at most

Op(M◦ · n−1/2), which is negligible compared to the asymptotic orders of the first and

third terms. The second term in (A.10.19) can be handled using the same argument.

This effectively shows that the asymptotic convergence rate of the RKHS estimator stays

the same. As a last comment, we note that although it is possible to retain the consistency

of estimator with Assumption (A3′), the prediction results are no longer valid, since the

imputed processes cannot be consistently estimated due to (A.11.4).
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Appendix B

Supplementary Material for

Chapter 3

B.1 Proof of Theorem 1

Proof. Let τi : R
q → R be a projection such that τi(v) = vi for v = (v1, . . . , vq) ∈ R

q. It

is straightforward to verify that τis are linear and continuous and v =
(
τ1(v), . . . , τq(v)

)
.

Using this property, we can write g =
(
τ1◦g, . . . , τq◦g

)
with each τi◦g : C([0, 1])→ R being

a continuous linear functional. We further denote ci = τi◦g(f) and write vc = (c1, . . . , cq)
⊤.

By Riesz representation theorem, for each i = 1, . . . , q, there exists bi ∈ L2([0, 1]) such

that τi ◦ g(f) = 〈f, bi〉 for every f ∈ C([0, 1]) and ‖τi ◦ g‖op = sup‖f‖=1 |〈f, bi〉| = ‖bi‖2.
Since ‖f‖2 ≤ 1, we can check that ‖vc‖2 ≤ K where K =

√
qmaxi ‖bi‖2.

Classical universal approximation results (Cybenko, 1989; Funahashi, 1989; Hornik, 1991;

Stinchcombe, 1999) imply that for any ǫ > 0, there exists a network with weights Θ∗ such

that sup‖v‖2≤2K |nnΘ∗(v) − h(v)| < ǫ/2. Since h is uniformly continuous on the compact

set D = {v ∈ R
q | ‖v‖2 ≤ 2K}, there exists 0 < ρǫ < K such that for any v1, v2 ∈ D,

‖v1 − v2‖2 < ρǫ implies |h(v1)− h(v2)| < ǫ/2.

On the other hand, it is well known that C([0, 1]) is dense in L2([0, 1]). For each i =

1, . . . , q, there exists b̃i ∈ C([0, 1]) such that ‖b̃i − bi‖2 < ρǫ/(2
√
q). Classical universal

approximation results imply that there exists a set of networks, each of which has weights

Θ∗
i , such that supt∈[0,1] |nnΘ∗

i
(t) − b̃i(t)| < ρǫ/(2

√
q). Denote c̃i = 〈nnΘ∗

i
, f〉 and write
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ṽc = (c̃1, . . . , c̃q)
⊤. Then, we have

|c̃i − ci| ≤ |〈nnΘ∗
i
− b̃i, f〉|+ |〈b̃i − bi, f〉| < ρǫ/

√
q

and thus ‖ṽc − vc‖2 < ρǫ.

Therefore, by linking these steps together, we have

sup
f∈C([0,1])
‖f‖2≤1

|T̂ ∗(f)− T (f)| ≤ sup
‖ṽc−vc‖2<ρǫ
vc,ṽc∈D

|nnΘ∗(ṽc)− h(vc)|

≤ sup
v∈D
|nnΘ∗(v)− h(v)|+ sup

‖v1−v2‖2<ρǫ
v1,v2∈D

|h(v1)− h(v2)|

< ǫ/2 + ǫ/2 = ǫ.

For the second part of the claim, first note that X is a continuous random process defined

on a compact interval. Its norm ‖X‖2 is a random variable on R and thus ‖X‖2 is stochas-
tically bounded. In other words, for any δ > 0, there exists a constant Mδ > 0 such that

P(‖X‖2 ≤Mδ) > 1−δ. Then, it is easy to verify that by using ‖X‖2 ≤Mδ in replacement

of ‖f‖2 ≤ 1 in the arguments above, we can obtain supf∈C([0,1]),‖f‖2≤Mδ
|T̂ ⋆(f)−T (f)| < δ

for a suitable T̂ ⋆.

B.2 Proof of Theorem 2

Proof. Without loss of generality, we may assume that the model T̂Θ has one basis node

in its BL and one hidden layer (with m nodes) in the subsequent network. Suppose that a

numerical integration algorithm with weights {ωj}J+1
j=1 and grid {tj}J+1

j=1 is used. Then, the

model T̂Θ can be expressed as T̂Θ(X) = σ
(∑m

l=1 θl1σ
(
θl2
∑J+1

j=1 ωjX(tj)·nnΘ̃(tj)+θl3
)
+θ4

)
,

where σ is a nonlinear Lipschitz activation function (e.g., sigmoid or ReLU), and Θ̃ denotes

the parameters of the basis function network nnΘ̃. Note that here Θ denotes the collection

of Θ̃, θl1s, θl2s, θl3s, and θ4.

It is straightforward to verify that both T̂Θ and ∇ΘT̂Θ are bounded Lipschitz functions

in Θ with bounded Lipschitz constants due to the condition supt∈[0,1] |X(t)| ≤ M1 and

Assumption (i). We may also assume that the the loss function ℓ(·, ·) is non-negative,
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since we can always shift the bounded loss function by a positive constant so that its

minimum value is non-negative. Using the condition |Y | ≤ M2, Assumption (ii), chain

rule, and the fact that a composition of two Lipschitz functions is also a Lipschitz function,

we conclude that ℓ
(
T̂Θ(X), Y

)
and ∇Θℓ

(
T̂Θ(X), Y

)
are also Lipschitz in Θ with bounded

Lipschitz constants. Therefore, the second part of the theorem follows directly from

Theorem 3.12 in Hardt et al. (2016) by checking its conditions.

B.3 Experiment Details

Table ?? summarizes the number of bases used in each of the four simulation settings and

each of the nine tasks in the data experiments.

Method Case 1 Case 2 Case 3 Case 4 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

Raw data + NN 51 51 51 51 48 48 48 48 48 48 48 30 20

0.015 0.038 0.275 0.334 0.099 0.284 0.124 0.296 0.380 0.488 0.472 0.406 0.373

B-spline (4) + NN 4 4 4 4 4 4 4 4 4 4 4 4 4

0.050 0.984 0.971 0.369 - - - - - - - - -

B-spline (15) + NN 15 15 15 15 15 15 15 15 15 15 15 15 15

0.013 0.019 0.206 0.251 0.094 0.306 0.137 0.326 0.335 0.477 0.429 0.413 0.387

FPCA0.9 + NN 2 3 4 20 5 5 10 11 1 1 1 4 3

0.917 0.023 0.134 0.855 - - - - - - - - -

FPCA0.99 + NN 4 19 20 28 17 17 24 24 5 4 2 12 7

0.003 0.036 0.239 0.667 0.119 0.339 0.143 0.306 0.363 0.493 0.431 0.429 0.378

AdaFNN 2 3 3 2 4 4 4 4 4 4 4 4 4

0.001 0.003 0.127 0.193 0.084 0.260 0.118 0.294 0.339 0.477 0.410 0.362 0.368

Table B.1: Number of bases used for the four simulation settings and nine tasks on
datasets. The error rate of each method (already in the main paper) is also reported right
below the method. The smallest error is marked in bold.

B.3.1 Model description

Preprocessing before training. For all tasks, the functional input is standardized

entry-wise using function StandardScaler in Python package sklearn.preprocessing.

The response is also standardized using the same function in all regression tasks.

Basis Layer in AdaFNN. As each basis node in the Basis Layer is implemented as

a micro network, the scale of its output can vary with the initialization of the micro net-

work weights. To stabilize the numerical integration at a basis node, we can normalize
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the output of the micro networks, i.e., scale the output of each basis node such that its nu-

merical integral is equal to 1. Another benefit of this normalization is that we do not have

to normalize the learned basis functions again when applying the orthogonality/sparsity

regularization.

B-spline scores. The B-spline scores used to represent functional inputs as a baseline

method are computed using the spline functions (e.g., smooth.spline) in R, and the

coefficients are computed individually for each curve.

FPCA scores. We use the function FPCA in the R package fdapace (Zhou et al., 2022)

to compute functional principal component scores. Principal components are estimated

and selected based on the training dataset first and then used to compute the principal

component scores of curves in the test dataset.

B.3.2 Data description

Simulated Datasets: Simulation datasets are generated based on the following model

X(t) =
50∑

k=1

ckφk(t), t ∈ [0, 1],

where terms on the right hand are defined as:

1. φ1(t) = 1 and φk(t) =
√
2 cos((k − 1)πt), k = 2, . . . , 50;

2. ck = zkrk, and rk are i.i.d. uniform random variables on [−
√
3,
√
3].

Four simulation cases correspond to different configurations of zks:

1. In Case 1, z1 = 20, z2 = z3 = 5, and zk = 1 for k ≥ 4. The response is y = (〈φ3, X〉)2;

2. In Case 2, z1 = z3 = 5, z5 = z10 = 3, and zk = 1 for other k. The response is

y = (〈φ5, X〉)2.

3. Case 3 has the same configurations as Case 2. The observed response is

ỹ = y + ǫ = (〈φ5, X〉)2 + ǫ, ǫ ∼ N(0, 3/10).

For each time point tj, the observed X(tj) is

X̃(tj) = X(tj) + ηj, ηj
i.i.d.∼ N(0, 114/10).
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4. In Case 4, zk = 1 for all k. The response is y = 〈β2, X〉+ (〈β1, X〉)2, where

β1(t) = (4− 16t) · 1{0 ≤ t ≤ 1/4}

and

β2(t) = (4− 16|1/2− t|) · 1{1/4 ≤ t ≤ 3/4}.

The observed response is

ỹ = y + ǫ, ǫ ∼ N(0, 1/10).

For each time point tj, the observed X(tj) is

X̃(tj) = X(tj) + ηj, ηj
i.i.d.∼ N(0, 5).

5. Case 5 has the same setup as Case 4, but with double the noise variance in Y .

In each case, 4000 curves are generated, among which 3200 are used for training while

the rest 800 are left for testing. During training, 20% of the training data, i.e., 640 curves,

are held out as a validation set.

Case 1 is designed to illustrate the weakness of the FPCA+NN approach, where the

first two principle components explain at least 90% of the variability of the functional

input X and are selected, but the true signal φ3, which explains a very small fraction of

the variability of X, is in the later principal components.

Case 2 is designed to illustrate the weakness of the B-spline+NN approach; here the

true signal φ5 in the functional covariate cannot be well represented by a small set of, e.g.,

four, B-splines.

Case 3 is designed to illustrate that AdaFNN is able to learn meaning basis functions

and does better than other baseline methods in the appearance of both measurement error

and noise.

Case 4 is designed to illustrate that AdaFNN can be used to select relevant domains

and achieve smaller prediction error.

Case 5 is designed to illustrate the effectiveness of the regularizers.
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Real Datasets:

Electricity Data (UK Power Networks, 2015). The study contains electricity con-

sumption readings for 5567 London households which participated in the Low Carbon

London project from November 2011 to February 2014. Every half hour, there is a record-

ing of the total electricity usage during the past half hour, so the total number of daily

observations is 48. The observation periods vary among households. So, we select a pe-

riod of 5 weeks in which the number of households in the project is the highest. This

results in 5503 households. Since daily consumption is noisy, we take the average daily

consumption during the first week period (to produce a smoother curve) as our functional

covariate X(t) for all prediction tasks. The training and test split is 4 : 1, and 20% of the

training data are held out for validation during the training process.

NHANES Data (NCHS, CDC 2020). The study contains wearable device readings

of physical intensity of 7742 subjects during a one week period. According to the data

documentation, the device was the ActiGraph AM-7164 (formerly the CSA/MTI AM-

7164), manufactured by ActiGraph located in Ft. Walton Beach, FL. It is programmed

to detect and record the magnitude of acceleration or “intensity” of movement. The

original intensity readings were summed over 1-minute epoch. To construct the functional

input, we further aggregate the readings over 30 minute intervals, and this results in 48

observations per day. We take the average daily intensity curve for the whole week as the

functional input X(t). The prediction tasks here is to classify the health conditions of

individual subjects using their physical intensity curve X(t). Since not everyone reported

their health conditions and there are invalid and incomplete information in some subjects,

we ended up with 6555 subjects for Task 5, 2416 for Task 6, and 2412 for Task 7. The

training and test split is taken to be 4 : 1, and 20% of training data are held out for

validation during the training process.

Mexfly (Carey et al., 2005) and Medfly(Chiou et al., 2003). These two datasets

are very similar, so we describe them together. The Mexfly data contain 1072 subjects

and the Medfly data consist of 1000 subjects. For both data, the number of eggs laid daily

was recorded for individual flies in the study until death. It is of biological interest to
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explore how early reproduction shapes lifetime reproduction, defined as the total number

of eggs laid in a lifetime, which is perhaps the single most important biological question

from the evolution point of view. We thus aim to predict the lifetime reproduction of a

fly using its early reproduction trajectory X(t), which is the number of eggs laid daily

from birth till a specified day M shortly before peak reproduction period. This day M

is 20 for the Medflies and 30 for the Mexflies. Next, we remove flies that died before day

M and the resulted sample size is 872 for Mexflies (Task 8) and 870 for Medflies (Task

9). The training and testing split 4 : 1 is the same as before.
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Appendix C

Supplementary Material for

Chapter 4

Organization. In Appendices S4 and S5, we prove Theorems 11 and 12 respectively.

The building blocks for these results are Theorems 13 and 14, which are presented in

Appendices S2 and S3 respectively. Technical lemmas are given in Appendix S6. Propo-

sition 1 from the main text is proved in Appendix S1. Background results are stated in

Appendix S7. Appendix S8 provides additional plots of simulation results. Appendix 4.4.5

presents real-data examples based on stock market returns. Appendix S9 describes the

computational cost of implementing the bootstrap. Lastly, Appendix S10 provides sensi-

tivity analysis with regard to Assumption 1(b).

Conventions. Throughout the proofs of Theorems 11 and 12, we may assume without

loss of generality that n ≥ 3, and that for any constant ǫ ∈ (0, 1) fixed with respect to n,

the following inequality holds

log(n) β3
3q r(Σ)

n1/2
≤ ǫ, (C.0.1)

where q = 5 log(kn). (If n < 3 or if (C.0.1) does not hold, then the constant c in the

statements of Theorems 11 and 12 may be taken as c = 3 ∨ 1
ǫ
, which makes the results

trivially true.) In addition, we will frequently re-use the symbol c to denote a constant

that does not depend on n, and we will allow its value to vary with each appearance.
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Notation. The spectral decomposition for Σ will be written as

Σ = UΛU⊤, (C.0.2)

where Λ = diag(λ1(Σ), . . . , λp(Σ)) ∈ R
p×p, and the jth column of U ∈ R

p×p is the jth

eigenvector of Σ. For a vector v ∈ R
p, the ℓ∞ and ℓ2-norms are denoted as ‖v‖∞ =

max1≤j≤p |vj| and ‖v‖2 = (
∑p

j=1 v
2
j )

1/2. For a p1×p2 matrixM , the following three norms

will be used: ‖M‖op = sup‖v‖2=1 ‖Mx‖2, ‖M‖1 = max1≤j≤p2
∑p1

i=1 |Mij|, and ‖M‖∞ =

max1≤i≤p1
∑p2

j=1 |Mij|. If A is a symmetric p × p matrix and j ∈ {1, . . . , p}, then Λj(A)

denotes the j × j diagonal matrix formed by the largest j eigenvalues of A,

Λj(A) = diag
(
λ1(A), . . . , λj(A)

)
.

Also, for each j = 1, . . . , p, let dj(A) = Ajj be the jth diagonal element of A, and let

dj(A) be the vector of the first j diagonal entries

dj(A) = (d1(A), . . . , dj(A)).

If B is another symmetric p × p matrix, then the relation B < A means that B − A

is positive semidefinite. The symbol 1j denotes the j-dimensional all-ones vector. For

a univariate scalar function h with first derivative h′, define h′(v) = (h′(v1), . . . , h
′(vp)).

Lastly, for two vectors u and v, the symbol u ⊙ v denotes the vector obtained from

entrywise multiplication, (u⊙ v)j = ujvj.

S1 Proof of Proposition 1

Proof of Proposition 1(i). For each l = 1, . . . , p, let κl = E[Z4
1l]. Also recall that in

part (i) of the proposition, the entries of Z1 are assumed to be independent. For any pair

of indices (j, j′) satisfying 1 ≤ j, j′ ≤ k, it follows from the equation (9.8.6) in Bai and

Silverstein (2010) that the corresponding entry of Γ ∈ R
k×k is

Γjj′ = E
[(
Z⊤

1 (uju
⊤
j )Z1 − tr(uju

⊤
j )
)(
Z⊤

1 (uj′u
⊤
j′)Z1 − tr(uj′u

⊤
j′)
)]

= 2 · 1{j = j′}+
p∑

l=1

(κl − 3)u2jlu
2
j′l.
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If we let H denote the p× k matrix whose jth column is equal to (u2j1, . . . , u
2
jp), then the

previous entrywise expression for Γ can be written in matrix form as

Γ = 2Ik +H⊤(D − 3Ip)H,

where D = diag(κ1, . . . , κp). Now recall the assumption that there is a constant κ > 1

not depending on n such that min1≤l≤p κl ≥ κ. If we consider the case when κ ≥ 3, then

it is clear that D − 3Ip < 0, which implies Γ < 2Ik, and hence λk(Γ) ≥ 2.

On the other hand, in the case when κ < 3, we have

Γ < 2Ik − (3− κ)H⊤H

<
(
2− (3− κ)‖H‖2op

)
Ik.

(S1.1)

With regard to the quantity ‖H‖2op, observe that

‖H‖2op ≤ ‖H‖1‖H‖∞

= max
1≤j≤k

‖uj‖22 · max
1≤i≤p

k∑

j=1

u2ji

≤ 1.

Combining this with (S1.1) gives Γ < (2− (3− κ))Ik, and hence λk(Γ) ≥ κ− 1, which

completes the proof.

Proof of Proposition 1(ii). For 1 ≤ j, j′ ≤ k, it follows from Lemma A.1 in Hu et al.

(2019) that

Γjj′ = cov
(
Z⊤

1 (uju
⊤
j )Z1 , Z

⊤
1 (uj′u

⊤
j′)Z1

)

=
E[ξ4]

p(p+ 2)

(
1 + 2 tr(uju

⊤
j uj′u

⊤
j′)
)
− 1

= 2 · 1{j = j′} · E[ξ4]

p(p+ 2)
+

E[ξ4]

p(p+ 2)
− 1.

When written in matrix form, this is equivalent to

Γ = a Ik + b 1k1
⊤
k
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where a = 2 E[ξ4]
p(p+2)

and b = E[ξ4]
p(p+2)

− 1. Consequently, one eigenvalue of Γ is equal to a+ kb,

and the rest are equal to a. Furthermore, due to the basic inequality E[ξ4] ≥ (E[ξ2])2 = p2,

and the fact that p ≥ 2, we have the lower bounds

a ≥ 2
1+2/p

≥ 1

and

a+ kb ≥ 2
1+2/p

+ k
(

1
1+2/p

− 1
)

= 2(1−k/p)
1+2/p

≥ 1− k
p

& 1,

which completes the proof.

S2 Gaussian Approximation

Theorem 13 (Gaussian approximation). Suppose that the conditions of Theorem 11 hold

and let ζ ∼ N(0,ΛkΓΛk). Then,

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t
)
− P

(
ζ � t

)∣∣∣ .
log(n) β3

2q r(Σ)

n1/2
. (S2.1)

Proof. For each i = 1, . . . , n, let X̃i = Λ1/2U⊤Zi, and let the associated sample covariance

matrix be denoted as

Σ̃ =
1

n

n∑

i=1

X̃iX̃
⊤
i .

This implies Σ̃ = U⊤Σ̂U , and so the eigenvalues of Σ̂ may be equivalently written as

λj(Σ̂) = λj(Σ̃) for every j = 1, . . . , p. For future reference, it will also be helpful to note

that E[Σ̃] = Λ.

To partition Σ̃ into suitable blocks, we will write

Σ̃ =

(
Σ̃[1, 1] Σ̃[1, 2]

Σ̃[1, 2]⊤ Σ̃[2, 2]

)
, (S2.2)

111



where the matrix Σ̃[1, 1] is of size k× k, and the matrix Σ̃[2, 2] is of size (p− k)× (p− k).

Based on the notation above, the desired result can be broken down as follows:

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂)− λk(Σ)

)
� t
)
− P

(
ζ � t

)∣∣∣ ≤ I + II

where the two terms on the right are defined as

I = sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̃)− λk(Σ)

)
� t
)
− P

(√
n
(
dk(Σ̃[1, 1])− λk(Σ)

)
� t
)∣∣∣, (S2.3)

II = sup
t∈Rk

∣∣∣P
(√

n
(
dk(Σ̃[1, 1])− λk(Σ)

)
� t
)
− P

(
ζ � t

)∣∣∣. (S2.4)

For each of these terms, Lemmas S2.4, and S2.3 respectively give the following bounds

I .
log(n) β3

2q r(Σ)

n1/2

II .
β3
4

n1/2
,

completing the proof.

S2.1 Lemmas for Gaussian approximation

Lemma S2.1. Suppose that the conditions of Theorem 13 hold. Then, there is a constant

c > 0 not depending on n such that the event

∥∥∥
√
n
(
λk(Σ̃)− λk(Σ̃[1, 1])

)∥∥∥
∞
≤ c log(n) β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1− c
n4 .

Proof. Recall the partition (S2.2) of the matrix Σ̃ in the proof of Theorem 13. By

Wielandt’s inequality (Lemma S7.2), the following inequality holds when the event {λk(Σ̃[1, 1]) >
λ1(Σ̃[2, 2])} occurs,

max
1≤j≤k

∣∣λj(Σ̃)− λj(Σ̃[1, 1])
∣∣ ≤

‖Σ̃[1, 2]‖2op
λk(Σ̃[1, 1])− λ1(Σ̃[2, 2])

. (S2.5)

We will derive a high-probability upper bound for the right side of (S2.5) by separately

handling the numerator and denominator.
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To control the numerator in the bound (S2.5), we may apply Lemma S6.1 to conclude

that
∥∥‖Σ̃[1, 2]‖2op

∥∥
q
.

q β2q λ1(Σ) tr(Σ)

n1−3/(2q)
.

Then, for any t > 0, Chebyshev’s inequality yields the tail bound

P
(
‖Σ̃[1, 2]‖2op ≥ e t

)
≤

e−q
∥∥‖Σ̃[1, 2]‖2op

∥∥q
q

tq
.

Recalling the choice q = 5 log(kn) and taking t = c
n
log(n)β2qλ1(Σ) tr(Σ) for a sufficiently

large constant c, it follows that the event

‖Σ̃[1, 2]‖2op ≤
c log(n) β2q λ1(Σ)

2 r(Σ)

n
(S2.6)

holds with probability at least 1− 1
n4 .

To handle the denominator in the bound (S2.5), let Π ∈ R
k×p denote the matrix whose

ith row is the ith standard basis vector in R
p. Then, Weyl’s inequality implies

max
1≤j≤k

|λj(Σ̃[1, 1])− λj(Σ)| ≤
∥∥Π(Σ̃− Λ)Π⊤∥∥

op

≤ ‖Σ̃− Λ‖op.

Similarly, we have

max
k+1≤j≤p

|λj−k(Σ̃[2, 2])− λj(Σ)| ≤ ‖Σ̃− Λ‖op.

Combining the last two steps yields the following bound for some positive constant c1 not

depending on n,

λk(Σ̃[1, 1])− λ1(Σ̃[2, 2]) =
(
λk(Σ̃[1, 1])− λk(Σ)

)
+
(
λk(Σ)− λk+1(Σ)

)
−
(
λ1(Σ̃[2, 2])− λk+1(Σ)

)

≥ c1λ1(Σ)− 2‖Σ̃− Λ‖op, (S2.7)

where Assumption 6.(b) has been used in the last line.

To complete the proof, it suffices to show that ‖Σ̃ − Λ‖op ≤ c1
4
λ1(Σ) holds with high

probability. This may be accomplished using Lemma S7.3, which gives the following

bound,
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(
E‖Σ̃− Λ‖qop

)1/q
.

(√
q
(
E‖X̃1‖2q2

) 1
2q
∥∥E[X̃1X̃

⊤
1 ]
∥∥1/2
op

n1/2−3/(2q)

)
∨ (

q
(
E‖X̃1‖2q2

)1/q

n1−3/q

)
. (S2.8)

This bound can be simplified by noting that E[X̃1X̃
⊤
1 ] = Λ and

(
E‖X̃1‖2q2

)1/q
=
∥∥‖X̃1‖22

∥∥
q

=

∥∥∥∥
p∑

j=1

λj〈uj, Z1〉2
∥∥∥∥
q

≤ tr(Σ) βq.

(S2.9)

Therefore, the bound (S2.8) reduces to

(
E‖Σ̃− Λ‖qop

)1/q
.

√
q βq λ1(Σ)2 r(Σ)

n1−3/q

∨ q βq λ1(Σ) r(Σ)

n1−3/q

.

√
q βq λ1(Σ)2 r(Σ)

n1−3/q
, (S2.10)

where the second line has used the condition (C.0.1).

To apply the previous bound, Chebyshev’s inequality implies that for any t > 0,

P
(
‖Σ̃− Λ‖op ≥ e t

)
≤

e−q E‖Σ̃− Λ‖qop
tq

.

Recalling the choice q = 5 log(kn) and taking t = cλ1(Σ)√
n

√
log(n)βqr(Σ) for a sufficiently

large constant c not depending on n, we conclude that the event

‖Σ̃− Λ‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
(S2.11)

holds with probability at least 1− 1
n4 . Furthermore, if we apply this bound to (S2.7) and

use the condition (C.0.1), then the bound

λk(Σ̃[1, 1])− λ1(Σ̃[2, 2]) ≥
c1
2
λ1(Σ) (S2.12)

holds with probability at least 1− 1
n4 .
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The stated result is obtained by combining the bounds (S2.5), (S2.6), and (S2.12).

The next result shows that the random vector
√
n
(
λk(Σ̃[1, 1]) − λk(Σ)

)
is well approxi-

mated by
√
n
(
dk(Σ̃[1, 1])− λk(Σ)

)
in an entrywise sense.

Lemma S2.2. Suppose that the conditions of Theorem 13 hold. Then, there is a constant

c > 0 not depending on n such that the event

∥∥∥
√
n
(
λk(Σ̃[1, 1])− dk(Σ̃[1, 1])

)∥∥∥
∞
≤ c log(n) β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1− c
n4 .

Proof. We will use an iterative argument. As an initial step, first partition the matrix

Σ̃[1, 1] as

Σ̃[1, 1] =


d1(Σ̃[1, 1]) V1

V ⊤
1 D1


 ,

where d1(Σ̃[1, 1]) is a scalar, and D1 is a (k−1)×(k−1) matrix. To lighten the notational

burden of subscripts when handling matrices of different sizes, we will write λ(A) =

(λ1(A), . . . , λr(A)), as well as d(A) = (A11, . . . , Arr) for any symmetric matrix A ∈ R
r×r

and integer r ≥ 1. By the triangle inequality, we have

∥∥∥λ(Σ̃[1, 1])− d(Σ̃[1, 1])
∥∥∥
∞
≤
∥∥∥∥λ(Σ̃[1, 1])−


d1(Σ̃[1, 1])

λ(D1)



∥∥∥∥
∞

+

∥∥∥∥


d1(Σ̃[1, 1])

λ(D1)


− d(Σ̃[1, 1])

∥∥∥∥
∞
,

= T+ T′

(S2.13)

where we have defined the random variables T and T′ through the last line. Later on, we

will show that the event

T ≤ c log(n) β2q tr(Σ)

n
(S2.14)

holds with probability at least 1− 2
kn4 .
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Next, to handle T′, we partition the matrix D1 as

D1 =


d1(D1) V2

V ⊤
2 D2


 ,

where d1(D1) = d2(Σ̃[1, 1]) is a scalar, and D2 is a (k − 2) × (k − 2) matrix. Proceeding

in a similar manner to (S2.13), and noting that d1(Σ̃[1, 1]) is the same as the first entry

of d(Σ̃[1, 1]), we have

T′ ≤
∥∥∥∥λ(D1)−


d1(D1)

λ(D2)



∥∥∥∥
∞

+

∥∥∥∥


d1(D1)

λ(D2)


− d(D1)

∥∥∥∥
∞
,

= T′′ + T′′′,

(S2.15)

where the random variables T′′ and T′′′ have been defined through the last line. The

argument that will be used to prove (S2.14) can also be used to show that the event

T′′ ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− c
kn4 . Likewise, we can combine k − 1 iterations of this

process by summing the bounds on T, T′′,T′′′′, . . . appearing at each iteration.

To complete the proof, it remains to validate the claim (S2.14). Let D0 = Σ̃[1, 1], and

observe that

T = |λ1(D0)− d1(D0)| ∨ max
2≤j≤k

|λj(D0)− λj−1(D1)|. (S2.16)

Wielandt’s inequality (Lemma S7.2) gives the following bounds when the event {d1(D0) >

λ1(D1)} occurs,

|λ1(D0)− d1(D0)| ≤
‖V1‖2op

d1(D0)− λ1(D1)

and

|λj(D0)− λj−1(D1)| ≤
‖V1‖2op

d1(D0)− λ1(D1)
,

for all j = 2, . . . , k. So, in light of the formula for T given in (S2.16), we conclude that

the bound

T ≤
‖V1‖2op

d1(D0)− λ1(D1)
. (S2.17)
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holds whenever the event {d1(D0) > λ1(D1)} holds. By using the argument at (S2.12)

from the proof of Lemma S2.1, it can be shown that the denominator in the previous

bound satisfies

d1(D0)− λ1(D1) ≥ cλ1(Σ)

with probability at least 1 − 1
kn4 for some constant c > 0 not depending on n. Next, in

order to derive an upper bound on ‖V1‖op, note that for any value of k, the matrix V ⊤
1

is contained in the submatrix of Σ̃ indexed by {2, . . . , p} × {1}. Hence, ‖V1‖op is upper

bounded by the operator norm of that submatrix, which is the same as Σ̃[1, 2]⊤ in the

particular case when k = 1. Due to this observation, it follows from Lemma S6.1 that

there is a constant c > 0 not depending on n, such that for any choice of k, the bound

‖V1‖2op ≤
c q β2q λ1(Σ) tr(Σ)

n
(S2.18)

holds with probability at least 1 − 1
kn4 , where we continue to use q = 5 log(kn). Thus,

combining the last few steps establishes the claim (S2.14).

To comment on how this argument can be applied iteratively to T′′ and its successors,

the previous reasoning involving Weilandt’s inequality shows that the bound

T′′ ≤
‖V2‖2op

d1(D1)− λ1(D2)

holds whenever the event {d1(D1) > λ1(D2)} holds. In turn, a lower bound on the

denominator d1(D1) − λ1(D2) that is proportional to λ1(Σ) can be established in the

same manner as for d1(D0) − λ1(D1). Meanwhile, the numerator can be handled by

noting that for any value of k, the matrix V ⊤
2 is contained in the submatrix of Σ̃ indexed

by {3, . . . , p} × {1, 2}. The latter matrix is the same as Σ̃[1, 2]⊤ in the particular case of

k = 2, and consequently, Lemma S6.1 can be used to establish a bound on ‖V2‖2op that is

of the same form as (S2.18). This completes the proof.

The next lemma provides a Gaussian approximation result for
√
n
(
dk(Σ̃[1, 1])−λk(Σ)

)
.
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Lemma S2.3. Suppose that the conditions of Theorem 13 hold, and let II be as defined

in (S2.4). Then,

II .
β3
4

n1/2
.

Proof. For each i = 1, . . . , n, let the random vector Wi ∈ R
k have its jth entry defined

as Wij = 〈uj, Zi〉2 − 1, where uj is the jth eigenvector of Σ. Letting Yi = ΛkWi, we have
√
n
(
dk(Σ̃[1, 1]) − λk(Σ)

)
= 1√

n

∑n
i=1 Yi. Also, note that the covariance matrix of Yi is

given by E[YiY
⊤
i ] = ΛkΓΛk, with Γ as defined in Assumption 6.(c).

Applying Bentkus’ multivariate Berry-Esseen theorem (Lemma S7.5) yields

sup
t∈Rk

∣∣∣∣P
(

1√
n

∑n
i=1 Yi � t

)
− P

(
ζ � t

)∣∣∣∣ .
E
∥∥(ΛkΓΛk)−1/2Y1

∥∥3
2

n1/2
. (S2.19)

The proof is complete once we derive a bound on E
∥∥(ΛkΓΛk)−1/2Y1

∥∥3
2
. Due to Assumption

6.(c), we have
∥∥(ΛkΓΛk)−1/2Y1

∥∥2
2
= W⊤

1 Γ−1W1 ≤ c‖W1‖22 ,

almost surely for some constant c > 0 not depending on n. In turn, Lyapunov’s inequality

implies

E
∥∥(ΛkΓΛk)−1/2Y1

∥∥3
2

. E
[
(W⊤

1 W1)
2
]3/4

=

∥∥∥∥
k∑

j=1

(
〈uj, Z1〉2 − 1

)2
∥∥∥∥
3/2

2

≤
( k∑

j=1

∥∥〈uj, Z1〉2 − 1
)2∥∥

2

)3/2

. β3
4 .

Substituting this bound into (S2.19) completes the proof.

Lemma S2.4. Suppose that the conditions of Theorem 13 hold, and let I be as defined

in (S2.3). Then,

I .
log(n) β3

2q r(Σ)

n1/2
. (S2.20)
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Proof. For any ǫ > 0 and t ∈ R
k, define the two events

A(t) =
{√

n
(
dk(Σ̃[1, 1])− λk(Σ)

)
� t
}
,

B(ǫ) =
{√

n
∥∥λk(Σ̃)− dk(Σ̃[1, 1])‖∞ ≥ ǫ

}
.

It follows from Lemma S7.6 that

I ≤ P
(
B(ǫ)

)
+ sup

t∈Rk

∣∣∣P
(
A(t+ ǫ 1k)

)
− P

(
A(t− ǫ 1k)

)∣∣∣. (S2.21)

The first term P(B(ǫ)) can be handled by Lemmas S2.1 and S2.2, which show that there

is a constant c > 0 not depending on n such that if ǫ = c√
n
log(n) β2q λ1(Σ) r(Σ), then

P(B(ǫ)) . 1
n
.

Next, the anti-concentration term in (S2.21) can be bounded through an approximation

involving the Gaussian vector ζ ∼ N(0,ΛkΓΛk),

sup
t∈Rk

∣∣∣∣P
(
A(t+ ǫ1k)

)
− P

(
A(t− ǫ1k)

)∣∣∣∣ ≤ 2 II + sup
t∈Rk

∣∣∣∣P
(
ζ � t+ ǫ1k

)
− P

(
ζ � t− ǫ1k

)∣∣∣∣

= 2 II + J(ǫ),

where the quantity J(ǫ) is defined by the last line, and II . β3
4/n

1/2 holds by Lemma S2.3.

To handle J(ǫ), we need the following lower bound

min
1≤j≤k

var(ζj) = min
1≤j≤k

λj(Σ)
2 Γjj & λk(Σ)

2,

where we have used Assumption 6.(c). Based on this lower bound, Nazarov’s inequality

(Lemma S7.4) yields

J(ǫ) .
ǫ

λk(Σ)

.
log(n) β2q r(Σ)λ1(Σ)/λk(Σ)

n1/2
.

(S2.22)

Combining the previous bounds and noting that Assumption 6.(b) implies λ1(Σ)/λk(Σ) .

1, we obtain the stated result.
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S3 Bootstrap Approximation

To introduce some notation, first note that the bootstrapped vectors X⋆
i can be repre-

sented theoretically as X⋆
i = Σ1/2Z⋆

i for each i = 1, . . . , n, where Z⋆
1 , . . . , Z

⋆
n are sampled

with replacement from Z1, . . . , Zn. Also, let Σ̂
⋆ = 1

n

∑n
i=1X

⋆
i (X

⋆
i )

⊤, and let the diagonal

matrix of the largest k sample eigenvalues be denoted as

Λ̂k = diag
(
λ1(Σ̂), . . . , λk(Σ̂)

)
.

For each i = 1, . . . , n, recall the vector Wi ∈ R
k whose ith entry is defined as Wij =

〈uj, Zi〉2 − 1, where uj is the jth eigenvector of Σ. Also let W̄ = 1
n

∑n
i=1Wi. In light of

the fact that Γ = E[W1W
⊤
1 ] with E[W1] = 0, the empirical counterpart of Γ is defined as

Γ̂ =
1

n

n∑

i=1

(Wi − W̄ )(Wi − W̄ )⊤. (S3.1)

Lastly, recall that P(·|X) and E[·|X] refer to probability and expectation that are condi-

tional on X1, . . . , Xn.

Theorem 14 (Bootstrap approximation).Suppose that Assumption 6 holds, and let q = 5 log(kn).

Also, let ξ ∈ R
k be a random vector that is conditionally distributed as N

(
0,ΛkΓ̂Λk

)
, given

the observations X1, . . . , Xn. Then, there is a constant c > 0 not depending on n such

that the event

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t
∣∣∣X
)
− P

(
ξ � t

∣∣∣X
)∣∣∣ ≤

c log(n) β3
3q r(Σ)

n1/2
(S3.2)

holds with probability at least 1− c
n
.

Proof. For each i = 1, . . . , n, define

X̃⋆
i = Λ1/2U⊤Z⋆

i ,

as well as the matrix

Σ̃⋆ =
1

n

n∑

i=1

(Λ1/2U⊤Z⋆
i )(Λ

1/2U⊤Z⋆
i )

⊤.

Based on this definition, we have Σ̃⋆ = U⊤Σ̂⋆U , and hence

λj(Σ̃
⋆) = λj(Σ̂

⋆)
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for all j = 1, . . . , p. By analogy with the proof of Theorem 13, we partition Σ̃⋆ as

Σ̃⋆ =


 Σ̃⋆[1, 1] Σ̃⋆[1, 2]

Σ̃⋆[1, 2]⊤ Σ̃⋆[2, 2]


 , (S3.3)

where the matrix Σ̃⋆[1, 1] is of size k×k, and the matrix Σ̃⋆[2, 2] is of size (p−k)× (p−k).

To proceed, consider the bound

sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̂

⋆)− λk(Σ̂)
)
� t
∣∣∣X
)
− P

(
ξ � t

∣∣X
)∣∣∣ ≤ Î + ÎI

where the terms on the right are defined as

Î = sup
t∈Rk

∣∣∣P
(√

n
(
λk(Σ̃

⋆)− λk(Σ̂)
)
� t
∣∣∣X
)
− P

(√
n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)
� t
∣∣∣X
)∣∣∣,

(S3.4)

ÎI = sup
t∈Rk

∣∣∣P
(√

n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)
� t
∣∣∣X
)
− P

(
ξ � t

∣∣∣X
)∣∣∣. (S3.5)

Lemmas S3.4 and S3.3 ensure that there is a constant c > 0 not depending on n such that

the following events

Î ≤
c log(n) β3

3q r(Σ)

n1/2
(S3.6)

ÎI ≤
c β3

3q

n1/2
. (S3.7)

each hold with probability 1− c
n
. Combining these bounds gives the stated result.

S3.1 Lemmas for bootstrap approximation

Lemma S3.1. Suppose that the conditions of Theorem 14 hold. Then, there is a constant

c > 0 not depending on n such that the event

P

(∥∥∥
√
n
(
λk(Σ̃

⋆)− λk(Σ̃
⋆[1, 1])

)∥∥∥
∞
≥ c log(n)β2q λ1(Σ) r(Σ)

n1/2

∣∣∣∣X
)
≤ c

n4
(S3.8)

holds with probability at least 1− c
n
.

Proof. Let π(X) denote the conditional probability on the left side of (S3.8). By Markov’s

inequality, we have

P(π(X) ≥ 1
n4 ) ≤ n4

E[π(X)],
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and so it is sufficient to show that there is a constant c > 0 not depending on n such that

E[π(X)] ≤ c/n5. In other words, it is enough to show that the event

∥∥∥
√
n
(
λk(Σ̃

⋆)− λk(Σ̃
⋆[1, 1])

)∥∥∥
∞
≤ c log(n)β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1− c/n5.

Whenever the event
{
λk(Σ̃

⋆[1, 1]) > λ1(Σ̃
⋆[2, 2])

}
holds, Wielandt’s inequality (Lemma

S7.2) implies

max
1≤j≤k

|λj(Σ̃⋆)− λj(Σ̃⋆[1, 1])
∣∣ ≤

‖Σ̃⋆[1, 2]‖2op
λk(Σ̃⋆[1, 1])− λ1(Σ̃⋆[2, 2])

. (S3.9)

The denominator in (S3.9) can be controlled by analogy with the proof of Lemma S2.1:

It follows from Weyl’s inequality and Assumption 6.(b) that

λk(Σ̃
⋆[1, 1])− λ1(Σ̃⋆[2, 2]) ≥

(
λk(Σ)− λk+1(Σ)

)
− 2‖Σ̃⋆ − Λ‖op

≥ c1λ1(Σ)− 2‖Σ̃⋆ − Λ‖op,
(S3.10)

for some constant c1 > 0 not depending on n. So, controlling the denominator in (S3.9)

amounts to showing that the random variable ‖Σ̃⋆−Λ‖op is small with high probability. We

will proceed by upper bounding ‖Σ̃⋆− Σ̃‖op + ‖Σ̃−Λ‖op with high probability. Applying

Lemma S6.3 with the choice q = 5 log(kn), it follows from a simple marginalization

argument that the event

‖Σ̃⋆ − Σ̃‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
(S3.11)

holds with probability at least 1− c
n5 . Next, recalling the bound (S2.11) in Lemma S2.1,

there is a constant c > 0 not depending on n, such that the event

‖Σ̃− Λ‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
(S3.12)

holds with probability at least 1 − c
n5 . Combining the last two bounds with (S3.10) and

the condition (C.0.1) implies that the event {λk(Σ̃⋆[1, 1])− λ1(Σ̃∗[2, 2]) > c1
2
λ1(Σ)} holds

with probability at least 1− c/n5, where q = 5 log(kn).
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Lastly, to address the numerator in (S3.9), it follows from Lemma S6.2 and a simple

marginalization argument that the event

‖Σ̃⋆[1, 2]‖2op ≤
c log(n) β2q λ1(Σ) tr(Σ)

n
(S3.13)

holds with probability at least 1− c
n5 . This completes the proof.

Lemma S3.2. Suppose that the conditions of Theorem 14 hold. Then, there is a constant

c > 0 not depending on n such that the event

P

(∥∥∥
√
n
(
λk(Σ̃

⋆[1, 1])− dk(Σ̃
⋆[1, 1])

)∥∥∥
∞
≥ c log(n) β2q λ1(Σ) r(Σ)

n1/2

∣∣∣∣X
)
≤ c

n4
(S3.14)

holds with probability at least 1− c
n
.

Proof. As in the proof of Lemma S2.2, we will lighten the use of subscripts by writing

λ(A) = (λ1(A), . . . , λr(A)) and d(A) = (A11, . . . , Arr) for any symmetric matrix A ∈
R
r×r and integer r ≥ 1. By the same reasoning used at the beginning of the proof of

Lemma S3.1, it is sufficient to show that the event

∥∥∥
√
n
(
λ(Σ̃⋆[1, 1])− d(Σ̃⋆[1, 1])

)∥∥∥
∞
≤ c log(n) β2q λ1(Σ) r(Σ)

n1/2

holds with probability at least 1 − c
n5 . Overall, the current proof is similar to that of

Lemma S2.2. Let D⋆
0 = Σ̃⋆[1, 1], and for each r = 1, . . . , k − 1, partition the matrix

Σ̃⋆[1, 1] recursively as

D⋆
r−1 =


d1(D

⋆
r−1) V ⋆

r

(V ⋆
r )

⊤ D⋆
r


 ,

where d1(D
⋆
r−1) is a scalar, and D⋆

r is of size (k − r) × (k − r). Based on the proof of

Lemma S2.2, it suffices to show that there is a constant c > 0 not depending on n, such

that for any r = 1, . . . , k, the event

∥∥∥∥λ(D
⋆
r−1)−


d1(D

⋆
r−1)

λ(D⋆
r)



∥∥∥∥
∞
≤ c log(n) β2q λ1(Σ) r(Σ)

n
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holds with probability at least 1− c
kn5 .

Using the reasoning that led to (S2.17) in the proof of Lemma S2.2, Wielandt’s in-

equality (Lemma S7.2) implies that if the event {d1(D⋆
r−1) > λ1(D

⋆
r)} holds, then the

following event also holds

∥∥∥∥λ(D
⋆
r−1)−


d1(D

⋆
r−1)

λ(D⋆
r)



∥∥∥∥
∞
≤

‖V ⋆
r ‖2op

d1(D⋆
r−1)− λ1(D⋆

r)
. (S3.15)

The numerator in this bound (S3.15) can be controlled with Lemma S6.2 and a simple

marginalization argument, which imply that under the choice q = 5 log(kn), there is a

constant c > 0 not depending on n such that the event

‖V ⋆
r ‖2op ≤

c log(n) β2q λ1(Σ) tr(Σ)

n

holds with probability at least 1− 1
kn5 .

To control the denominator in the bound (S3.15), Weyl’s inequality and the reasoning

in the proof of Lemma S2.2 based on Assumption 6.(b) imply

d1(D
⋆
r−1)− λ1(D⋆

r) ≥ c2λ1(Σ)− 2‖Σ̃⋆ − Λ‖op,

for some constant c2 > 0 not depending on n. Next, by combining the bound (S2.11) and

Lemma S6.3, it follows that the event

‖Σ̃⋆ − Λ‖op ≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
(S3.16)

holds with probability at least 1− c
kn5 . Therefore, condition (C.0.1) implies that the lower

bound

d1(D
⋆
r−1)− λ1(D⋆

r) ≥ c2
2
λ1(Σ)

holds with probability at least 1− 1
kn5 . This completes the proof.
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Lemma S3.3. Suppose that the conditions of Theorem 14 hold, and let ÎI be as defined

in (S3.5). Then, there is a constant c > 0 not depending on n such that the event

ÎI ≤
c β3

3q

n1/2

holds with probability at least 1− c
n
.

Proof. LetW1, . . . ,Wn and W̄ be as defined at the beginning of Appedix S3. Also, define

the vector W ⋆
i ∈ R

k with jth entry W ⋆
ij = 〈uj, Z⋆

i 〉2 − 1, and define Y ⋆
i = Λk(W

⋆
i − W̄ ).

These definitions give the relation

√
n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)

=
1√
n

n∑

i=1

Y ⋆
i .

Also note that E[Y ⋆
i |X] = 0, and

E
[
Y ⋆
i (Y

⋆
i )

⊤∣∣X
]

= ΛkΓ̂Λk.

Due to Bentkus’ multivariate Berry-Esseen theorem (Lemma S7.5), we have

sup
t∈Rk

∣∣∣∣P
(

1√
n

n∑

i=1

Y ⋆
i � t

∣∣∣∣ X
)
− P

(
ξ � t

∣∣ X
)∣∣∣∣ ≤

c E
[
‖(ΛkΓ̂Λk)−1/2Y ⋆

1 ‖32
∣∣X
]

n1/2
. (S3.17)

Applying Lemma S6.5 with q = 5 log(kn) and using Chebyshev’s inequality, there is a

constant c > 0 not depending on n such that the event

E
[
‖(ΛkΓ̂Λk)−1/2Y ⋆

1 ‖32
∣∣X
]
≤ c β3

3q

holds with probability at least 1− c
n
.

Lemma S3.4. Suppose that the conditions of Theorem 14 hold, and let Î be as defined

in (S3.4). Then, there is a constant c > 0 not depending on n such that the event

Î ≤
c log(n) β3

3q r(Σ)

n1/2
(S3.18)

holds with probability at least 1− c
n
.
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Proof. In a similar manner to the proof of Lemma S2.4, the left side of (S3.18) can be

bounded by the sum 2ÎI+ Ĝ1(ǫ)+ 2Ĝ2(ǫ)+ 2Ĝ3, with the last three terms defined for any

ǫ > 0 according to

Ĝ1(ǫ) = P

(∥∥∥
√
n
(
λk(Σ̃

⋆)− λk(Σ̂)
)
−
√
n
(
dk(Σ̃

⋆[1, 1])− dk(Σ̃[1, 1])
)∥∥∥

∞
≥ ǫ

∣∣∣∣X
)
,

G2(ǫ) = sup
t∈Rk

∣∣∣P
(
ζ � t+ ǫ1k

)
− P

(
ζ � t− ǫ1k

)∣∣∣,

Ĝ3 = sup
t∈Rk

∣∣∣P
(
ζ � t

)
− P

(
ξ � t

∣∣X
)∣∣∣.

First, recall from Lemma S3.3 that there is a constant c > 0 not depending on n such

that ÎI ≤ cβ3
3q/n

1/2 holds with probability at least 1− c/n.

Next, when handling the terms Ĝ1(ǫ), G2(ǫ), and Ĝ3 below, we will take ǫ to be of the

form ǫ = c√
n
log(n)β2qλ1(Σ)r(Σ). Using the choice q = 5 log(kn), Lemmas S2.1, S2.2, S3.1

and S3.2 imply that there is a constant c > 0 not depending on n such that the event

Ĝ1(ǫ) ≤
c

n

holds with probability at least 1− c
n
. With regard to G2(ǫ), observe that it is deterministic

and equal to J(ǫ) in the proof of Lemma S2.4. Therefore, the bound (S2.22) gives

G2(ǫ) .
log(n) β2q r(Σ)

n1/2
.

Lastly, the bound (S4.1) (to be established in Appendix S4) implies that the event

Ĝ3 ≤
c log(n) β2

2q

n1/2

holds with probability at least 1− c
n
. Combining the last several bounds yields the stated

result.

S4 Proof of Theorem 11

By comparing the bounds (S2.1) and (S3.2) in Theorems 13 and 14, it is enough to show

that there is a constant c > 0 not depending on n such that the event

sup
t∈Rk

∣∣∣P
(
ξ � t

∣∣X
)
− P

(
ζ � t

)∣∣∣ ≤
c log(n) β2

2q

n1/2
(S4.1)
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holds with probability at least 1− c
n
. To this end, define the three matrices

Ck = ΛkΓΛk,

Ĉk = ΛkΓ̂Λk,

B̂k = C
−1/2
k ĈkC

−1/2
k − Ik.

By Lemma S7.7, there is a constant c > 0 not depending on n such that the bound

sup
t∈Rk

∣∣∣P
(
ξ � t

∣∣X
)
− P

(
ζ � t

)∣∣∣ ≤ c ‖B̂k‖op

holds almost surely. Furthermore, due to Assumptions 6.(b) and 6.(c), the following

bounds also hold almost surely,

‖B̂k‖op ≤
∥∥C−1/2

k

∥∥2
op
‖Ĉk − Ck‖op

≤ c
(
λ1(Σ)
λk(Σ)

)2∥∥Γ̂− Γ
∥∥
op

≤ c
∥∥Γ̂− Γ

∥∥
op
.

Next, Lemma S6.4 implies that the event

‖Γ̂− Γ‖op ≤
c q β2

2q

n1/2

holds with probability at least 1− e−q, and in light of the stated choice of q = 5 log(kn),

the proof is complete.

S5 Proof of Theorem 12

A simple rescaling argument can be used to show that the left side of the bound in

Theorem 12 is the same as

sup
t∈Rk

∣∣∣∣P
(
h(λk(Σ̂)/λ1(Σ))− h(λk(Σ)/λ1(Σ)) � t

)
− P

(
h(λk(Σ̂

⋆)/λ1(Σ))− h(λk(Σ̂)/λ1(Σ))

(ς̂k/ςk)τ
� t

∣∣∣∣X
)∣∣∣∣,

(S5.1)

where we note that the quantity (ς̂k/ςk)
τ is invariant to rescaling of the observations.

Hence, without loss of generality, we may assume that λ1(Σ) = 1 in the remainder of

this appendix. Consequently, Assumption 6.(b) implies there is a positive constant c◦ not
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depending on n such that λj(Σ) ∈ [c◦, 1] holds for all j = 1, . . . , k. (These points will

sometimes be used without being explicitly mentioned in this appendix.) The proof is

completed by combining Lemmas S5.1 and S5.2 given below.

S5.1 Lemmas for bootstrap with transformations

Lemma S5.1. Suppose that the conditions of Theorem 12 hold.

(i) Let ζ ∈ R
k be a random vector that is distributed as N(0,ΛkΓΛk). Then,

sup
t∈Rk

∣∣∣P
(√

n
(
h(λk(Σ̂))−h(λk(Σ))

) � t
)
−P

(
h′(λk(Σ))⊙ ζ � t

)∣∣∣ .
log(n) β3

2q r(Σ)

n1/2
.

(ii) Let ξ ∈ R
k be a random vector that is conditionally distributed as N

(
0,ΛkΓ̂Λk

)
given

the observations X1, . . . , Xn. Then, there is a constant c > 0 not depending on n

such that the event

sup
t∈Rk

∣∣∣∣P
(√

n
(
h(λk(Σ̂

⋆))− h(λk(Σ̂))
)

(ς̂k/ςk)τ
� t

∣∣∣X
)
−P
(
h′(λk(Σ̂)) ⊙ ξ

(ς̂k/ςk)τ
� t

∣∣∣∣X
)∣∣∣∣ ≤

c log(n)β3
3q r(Σ)

n1/2

holds with probability at least 1− c
n
.

Proof. Part (i). Applying a Taylor expansion for each j = 1, . . . , k, we obtain

√
n
(
h
(
λj(Σ̂)

)
− h
(
λj(Σ)

))
=
√
nh′
(
λj(Σ)

) (
λj(Σ̂)− λj(Σ)

)

+
√
n
(
λj(Σ̂)− λj(Σ)

)2
∫ 1

0

(1− t)h′′
(
λj(Σ) + t(λj(Σ̂)− λj(Σ))

)
dt.

Let S, T , V , and R be random vectors in R
k whose entries are defined by

Sj =
√
n
(
h
(
λj(Σ̂)

)
− h
(
λj(Σ)

))
,

Tj = h′
(
λj(Σ)

)
ζj,

Vj =
√
nh′
(
λj(Σ)

) (
λj(Σ̂)− λj(Σ)

)
,

Rj =
√
n
(
λj(Σ̂)− λj(Σ)

)2
∫ 1

0

(1− t)h′′
(
λj(Σ) + t(λj(Σ̂)− λj(Σ))

)
dt.

Lemma S7.8 implies that for any r > 0,

sup
t∈Rk

∣∣∣P
(
S � t

)− P
(
T � t

)∣∣∣ . sup
t∈Rk

∣∣∣P
(
V � t

)− P
(
T � t

)∣∣∣ +
r

min1≤j≤k
√
var(Tj)

+ P(‖R‖∞ ≥ r).

(S5.2)
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Theorem 13 gives a bound on the first term,

sup
t∈Rk

∣∣∣P
(
V � t

)
− P

(
T � t

)∣∣∣ .
log(n) β3

2q r(Σ)

n1/2
. (S5.3)

Next, recall from the discussion at the beginning of this appendix that we may assume

there is a constant c◦ > 0 not depending on n such that λj(Σ) ∈ [c◦, 1] holds for all

j = 1, . . . , k. In turn, combining this with Assumption 6.(c) implies

var(Tj) = λj(Σ)
2 · Γjj · h′

(
λj(Σ)

)2

& 1. (S5.4)

It remains to find a bound for the last term in (S5.2) and to choose a suitable value

for r. For each j = 1, . . . , k, define the event

Aj =
{∣∣λj(Σ̂)− λj(Σ)

∣∣ ≤ c◦
2

}
.

Then,

P
(
|Rj| ≥ r

)
≤ P

(
{|Rj| ≥ r} ∩ Aj

)
+ P

(
Acj
)
.

Using the choice q = 5 log(kn) and Weyl’s inequality, the bound (S2.10) implies that

max
1≤j≤k

∥∥λj(Σ̂)− λj(Σ)
∥∥
q
≤
∥∥‖Σ̃− Λ‖op

∥∥
q

.
λ1(Σ)

√
log(n)βqr(Σ)

n1/2

≤ c◦
2e
, (S5.5)

where the condition (C.0.1) has been used in the last step, and the rationale for the

constant c◦
2e

will be seen in the next step. By Chebyshev’s inequality, we have

max
1≤j≤k

P(Acj) ≤ max
1≤j≤k

∥∥λj(Σ̂)− λj(Σ)
∥∥q
q

(c◦/2)q
≤ (c◦/(2e))

q

(c◦/2)q
= e−q ≤ 1

kn
. (S5.6)

In order to handle P
(
{|Rj| ≥ r} ∩ Aj

)
, first let C denote the following supremum

C = sup
{
|h′′(x)|

∣∣∣ c◦/2 ≤ x ≤ 1 + c◦/2
}
, (S5.7)
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which is finite and does not depend on n. Taking r = c√
n
λ1(Σ)

2 log(kn)βqr(Σ) for a

sufficiently large constant c, we have

P
(
{|Rj| ≥ r} ∩ Aj

)
≤ P

(√
n
(
λj(Σ̂)− λj(Σ)

)2 · C
2
≥ r
)

≤ P

(∣∣λj(Σ̂)− λj(Σ)
∣∣ ≥ λ1(Σ)

n1/2

√
(2c/C) log(kn)βqr(Σ)

)

≤ 1
kn
, (S5.8)

where the previous step uses (S5.5). Combining the last several steps shows that P(|Rj| ≥
r) ≤ 2

kn
holds for all j = 1, . . . , k and so a union bound gives

P(‖R‖∞ ≥ r) . 1
n
. (S5.9)

Substituting the bounds (S5.3), (S5.4), and (S5.9) into (S5.2) proves the statement (i).

Part (ii). First note that by rescaling, it is enough to show that the event

sup
t∈Rk

∣∣∣∣P
(√

n
(
h(λk(Σ̂

⋆))−h(λk(Σ̂))
) � t

∣∣∣X
)
−P
(
h′(λk(Σ̂))⊙ ξ � t

∣∣∣∣X
)∣∣∣∣ ≤

c log(n) β3
3q r(Σ)

n1/2

holds with probability at least 1− c/n. Similar to (S5.2), the left side can be decomposed

as

sup
t∈Rk

∣∣∣P
(
S⋆ � t |X

)
− P

(
T ⋆ � t |X

)∣∣∣

. sup
t∈Rk

∣∣∣P
(
V ⋆ � t |X

)
− P

(
T ⋆ � t |X

)∣∣∣+ r

min1≤j≤k
√
var(T ⋆j |X)

+ P(‖R⋆‖∞ ≥ r |X),

(S5.10)

where S⋆, T ⋆, R⋆, V ⋆ are vectors in R
k defined as

S⋆j =
√
n
(
h
(
λj(Σ̂

⋆)
)
− h
(
λj(Σ̂)

))
,

T ⋆j = h′
(
λj(Σ̂)

)
ξj,

V ⋆
j =

√
nh′
(
λj(Σ̂)

) (
λj(Σ̂

⋆)− λj(Σ̂)
)
,

R⋆
j =

√
n
(
λj(Σ̂

⋆)− λj(Σ̂)
)2
∫ 1

0

(1− t)h′′
(
λj(Σ̂) + t(λj(Σ̂

⋆)− λj(Σ̂))
)
dt.
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The first term of the bound (S5.10) is handled by Theorem 14. For the middle term, first

note that var(T ⋆j |X) = λj(Σ)
2 · Γ̂jj · h′(λj(Σ̂))2. Using the condition (C.0.1), it follows

from (S2.11) and Lemma S6.4 that for each j = 1, . . . , k, the events

λj(Σ̂) ≥ c λj(Σ),

Γ̂jj ≥ cΓjj,

h′(λj(Σ̂)) ≥ c h′(λj(Σ))

each hold with probability at least 1− c
kn
. Hence, Assumptions 6.(b) and (c) imply that

the event

min
1≤j≤k

var(T ⋆j |X) ≥ c

holds with probability at least 1− c
n
. Next, define the event

A⋆j =
{∣∣λj(Σ̂⋆)− λj(Σ̂)

∣∣ ≤ c◦
2

}

with the constant c◦ having the same definition as in Part (i). For the last term on the

right side of (S5.10), we claim that the event

P(‖R⋆‖∞ ≥ r |X) ≤ c

n

holds with probability at least 1 − c
n
when r is appropriately chosen. This can be estab-

lished with a union bound

P(‖R⋆‖∞ ≥ r |X) ≤
k∑

j=1

P
({
|R⋆

j | ≥ r
}
∩ A⋆j

∣∣X
)
+ P

(
(A⋆j)c |X

)
. (S5.11)

Analogously to (S5.6), we can apply Lemma S6.3 with q = 5 log(kn) and the condi-

tion (C.0.1) to conclude that for each j = 1, . . . , k the event

max
1≤j≤k

P
(
(A⋆j)c |X

)
≤ c

kn

holds with probability at least 1− c
kn
. For the first term on the right side of (S5.11), we may

use an argument similar to the one leading up to (S5.8) with r = c√
n
λ1(Σ)

2 log(kn)βqr(Σ)

to show that for each j = 1, . . . , k the event

P
(
{|R⋆

j | ≥ r} ∩ A⋆j
∣∣X
)
≤ c

kn
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holds with probability at least 1 − c
kn
. Combining the last few bounds completes the

proof.

Lemma S5.2. Suppose the conditions of Theorem 12 hold. Then, there is a constant

c > 0 not depending on n such that the event

sup
t∈Rk

∣∣∣∣P
(
h′(λk(Σ))⊙ ζ � t

)
− P

(
h′(λk(Σ̂))⊙ ξ

(ς̂k/ςk)τ
� t

∣∣∣∣X
)∣∣∣∣ ≤

c log(n) β5
2q r(Σ)

n1/2
(S5.12)

holds with probability at least 1− c
n
.

Proof. Define the matrices

Ck = diag
(
h′(λk(Σ))

)(
ΛkΓΛk

)
diag

(
h′(λk(Σ))

)

Ĉk = diag

(
h′(λk(Σ̂))

(ς̂k/ςk)τ

)(
ΛkΓ̂Λk

)
diag

(
h′(λk(Σ̂))

(ς̂k/ςk)τ

)

B̂k = C
−1/2
k ĈkC

−1/2
k − Ik.

By Lemma S7.7, the following bound holds almost surely

sup
t∈Rk

∣∣∣∣P
(

h′(λk(Σ̂))⊙ ξ
(ς̂k/ςk)τ

� t

∣∣∣∣X
)
− P

(
h′(λk(Σ))⊙ ζ � t

)∣∣∣∣ ≤ c ‖B̂k‖op (S5.13)

for some constant c > 0 not depending on n. Using several applications of the triangle

inequality, the following bound holds almost surely,

‖B̂k‖op ≤
∥∥C−1/2

k

∥∥2
op
‖Ck − Ĉk‖op

≤
∥∥C−1/2

k

∥∥2
op
·
∥∥∥h′(λk(Σ))

∥∥∥
∞

·
∥∥∥ΛkΓΛk

∥∥∥
op
·
∥∥∥h′(λk(Σ))−

h′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

(S5.14)

+
∥∥C−1/2

k

∥∥2
op
·
∥∥∥h′(λk(Σ))

∥∥∥
∞

·
∥∥∥Λk(Γ− Γ̂)Λk

∥∥∥
op
·
∥∥∥h

′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

+
∥∥C−1/2

k

∥∥2
op
·
∥∥∥h′(λk(Σ))−

h′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

·
∥∥∥ΛkΓ̂Λk

∥∥∥
op
·
∥∥∥h

′(λk(Σ̂))

(ς̂k/ςk)τ

∥∥∥
∞

.

The leading factor satisfies
∥∥C−1/2

k

∥∥2
op

. 1

because we may assume that there is a constant c◦ > 0 not depending on n such that

λj(Σ) ∈ [c◦, 1] holds for all j = 1, . . . , k (as discussed at the beginning of this appendix),
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and also because λk(Γ) & 1 by Assumption 6.(c). Also, the quantity ‖Γ̂−Γ‖op is handled

by Lemma S6.4, which shows there is a constant c > 0 not depending on n such that the

event

‖Γ̂− Γ‖op ≤
c log(n) β2

2q

n1/2
(S5.15)

holds with probability at least 1− c
n
. Combining this with the condition (C.0.1) and the

bound ‖Γ‖op . β2
2 , it follows that

‖ΛkΓ̂Λk‖op ≤ ‖ΛkΓΛk‖op + ‖Λk(Γ̂− Γ)Λk‖op ≤ c β2
2

holds with probability at least 1− c
n
. To handle the remaining quantities in the bound (S5.14),

note that the triangle inequality yields

∥∥∥∥
h′(λk(Σ̂))

(ς̂k/ςk)τ
−h′(λk(Σ))

∥∥∥∥
∞

≤
∥∥(ς̂k/ςk)−τ

∥∥
∞

∥∥h′(λk(Σ̂))−h′(λk(Σ))
∥∥
∞
+
∥∥h′(λk(Σ))

∥∥
∞

∥∥(ς̂k/ςk)−τ−1k
∥∥
∞
.

(S5.16)

Using Lemmas S5.3, S5.4, and S5.5, as well as some elementary inequalities, the following

bounds hold with probability at least 1− c/n for any τ ∈ [0, 1],

∥∥(ς̂k/ςk)−τ − 1k
∥∥
∞ ≤

∥∥∥1k − ςk/ς̂k

∥∥∥
∞

≤
∥∥∥ ς̂2k−ς2k

ς̂kςk

∥∥∥
∞

(S5.17)

≤
c log(n) β3

2q r(Σ)

n1/2
.

Furthermore, using the condition (C.0.1), this implies that the event

∥∥(ς̂k/ςk)−τ
∥∥
∞ ≤ c (S5.18)

also holds with probability at least 1−c/n. Next, we derive upper bounds for ‖h′(λj(Σ̂))
∥∥
∞

and ‖h′(λj(Σ̂))−h′(λj(Σ))
∥∥
∞. Using (S2.11) in the proof of Lemma S2.1, it follows that

the bounds

∥∥h′(λk(Σ̂))− h′(λk(Σ))
∥∥
∞ ≤ c ‖Σ̂− Σ‖op

≤ cλ1(Σ)

√
log(n) βq r(Σ)

n
(S5.19)
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hold with probability at least 1 − c
n
. Substituting bounds (S5.17), (S5.18), and (S5.19),

into (S5.16), it follows that the event

∥∥∥∥
h′(λk(Σ̂))

(ς̂k/ςk)τ
− h′(λk(Σ))

∥∥∥∥
∞
≤

c log(n) β3
2q r(Σ)

n1/2
(S5.20)

holds with probability at least 1− c
n
. Lastly, observe that similar reasoning implies that

the event

∥∥h′(λk(Σ̂))
∥∥
∞ ≤

∥∥h′(λk(Σ))
∥∥
∞ +

∥∥h′(λk(Σ̂))− h′(λk(Σ))
∥∥
∞ ≤ c (S5.21)

holds with probability at least 1− c
n
. By combining the last several bounds with (S5.14),

the proof is complete.

Lemma S5.3. Suppose that the conditions of Theorem 12 hold. Then,

max
1≤j≤k

∣∣E[λj(Σ̂)]− λj(Σ)
∣∣ .

log(n) β2q tr(Σ)

n
(i)

and

max
1≤j≤k

∣∣ var
(
λj(Σ̂)

)
− λj(Σ)2 Γjj/n

∣∣ .
log(n) β2

2q λ1(Σ) tr(Σ)

n3/2
. (ii)

Also, there is a constant c > 0 not depending on n such that the events

max
1≤j≤k

∣∣E[λj(Σ̂⋆)|X]− λj(Σ̂)
∣∣ ≤ c log(n) β2q tr(Σ)

n
(iii)

and

max
1≤j≤k

∣∣ var
(
λj(Σ̂

⋆)
∣∣X
)
− λj(Σ)2 Γ̂jj/n

∣∣ ≤
c log(n) β2

2q λ1(Σ) tr(Σ)

n3/2
(iv)

each hold with probability at least 1− c
n
.

Proof. Part (i): Recalling the choice q = 5 log(kn) from the statement of Theorem 12,

it follows from Lemmas S2.1 and S2.2 that there is a constant c not depending on n such

that the event

max
1≤j≤k

∣∣λj(Σ̂)− dj(Σ̃[1, 1])
∣∣ ≤ c log(n) β2q tr(Σ)

n
(S5.22)

holds with probability at least 1− c
n4 . To simplify presentation, let δ be a number of the

form δ = c
n
log(n)β2q tr(Σ) and define the event

Ej =
{
|λj(Σ̂)− dj(Σ̃[1, 1])| ≤ δ

}
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for each j = 1, . . . , k. Also, as a temporary short hand, let Uj and Vj denote the random

variables

Uj = λj(Σ̂)− λj(Σ) and Vj = dj(Σ̃[1, 1])− λj(Σ).

Noting that E[dj(Σ̃[1, 1])] = λj(Σ), we have

∣∣E[λj(Σ̂)]− λj(Σ)
∣∣ = |E[Uj]− E[Vj]|

≤ ‖Uj − Vj‖2

≤
∥∥|Uj − Vj| · 1{Ej}

∥∥
2
+
∥∥|Uj − Vj| · 1{Ecj }

∥∥
2

. δ + ‖λ1(Σ̃)‖4
(
P(Ecj )

)1/4
,

(S5.23)

where the fact dj(Σ̃[1, 1]) = dj(Σ̃) ≤ λ1(Σ̃) = λ1(Σ̂) has been used in the last step. Due

to (S5.22), we have P(Ecj ) ≤ c/n4, and so it is adequate to derive a simple upper bound

on ‖λ1(Σ̃)‖4 using (S2.10) and condition (C.0.1) as follows

‖λ1(Σ̃)‖4 ≤ λ1(Σ) +
∥∥‖Σ̃− Λ‖op

∥∥
q
,

≤ c λ1(Σ). (S5.24)

Hence, using the last bound in (S5.23) completes the proof of Part (i).

Part (ii): First note that

∣∣ var
(
λj(Σ̂)

)
− λj(Σ)2 Γjj/n

∣∣ = | var(Uj)− var(Vj)|

≤ 2 (‖Uj‖2 + ‖Vj‖2) ‖Uj − Vj‖2.
(S5.25)

Also note that the intermediate steps in Part (i) give

‖Uj − Vj‖2 .
log(n) β2q tr(Σ)

n
.

From the proof of Lemma S2.3, we have the identity

Vj = dj(Σ̃[1, 1])− λj(Σ) =
1

n

n∑

i=1

(ΛkWi)j,
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which leads to

‖Vj‖22 =
∥∥∥ 1
n

n∑

i=1

(ΛkWi)j

∥∥∥
2

2
.

β2
2 λ1(Σ)

2

n
.

Also, we can bound ‖Uj‖22 as follows

‖Uj‖22 ≤ 2‖Vj‖22 + 2‖Uj − Vj‖22

.
β2
2 λ1(Σ)

2

n
+

(
log(n)β2q tr(Σ)√

n

)2
1

n

.
β2
2 λ1(Σ)

2

n
, (S5.26)

where the third step uses the condition (C.0.1). Combining the last several bounds com-

pletes the proof of Part (ii).

Part (iii): The proof is similar to that of Part (i). Lemmas S3.1 and S3.2 imply that the

event

P

(∥∥∥
√
n
(
λk(Σ̃

⋆)− dk(Σ̃
⋆[1, 1])

)∥∥∥
∞
≥ c log(n)β2q tr(Σ)

n1/2

∣∣∣∣X
)
≤ c

n4
(S5.27)

holds with probability at least 1− c
n
. Letting δ have the same form as in Part (i), define

the event

E⋆j =
{
|λj(Σ̂⋆)− dj(Σ̃⋆[1, 1])| ≤ δ

}

for each j = 1, . . . , k. Also, define

U⋆
j = λj(Σ̂

⋆)− dj(Σ̃[1, 1]) and V ⋆
j = dj(Σ̃

⋆[1, 1])− dj(Σ̃[1, 1])

as the bootstrap counterparts of Uj and Vj. To proceed, note that E[dj(Σ̃
⋆[1, 1])|X] =

dj(Σ̃[1, 1]), and so

∣∣E[λj(Σ̂⋆)|X]− λj(Σ̂)
∣∣ ≤ |E[U⋆

j |X]− E[V ⋆
j |X]|+ |dj(Σ̃[1, 1])− λj(Σ̂)|. (S5.28)

The first term on the right side can be handled similarly to (S5.23),

|E[U⋆
j |X]− E[V ⋆

j |X]| ≤ E
[
(U⋆

j − V ⋆
j )

21{E⋆j }
∣∣X
]1/2

+ E
[
(U⋆

j − V ⋆
j )

21{(E⋆j )c}
∣∣X
]1/2

≤ c
(
δ +

(
E
[
λ41(Σ̃

⋆)
∣∣X
])1/4 (

P(∪kj=1(E⋆j )c|X)
)1/4 )

,
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where the fact dj(Σ̃
⋆[1, 1]) = dj(Σ̃

⋆) ≤ λ1(Σ̃
⋆) has been used in the last step. Due to

(S5.27), we have P(∪kj=1(E⋆j )c|X) ≤ c/n4 with probability at least 1 − c/n. Furthermore,

it follows from Lemma S6.3 and (S2.11) that the event

(
E
[
λ1(Σ̃

⋆)4
∣∣X
])1/4 ≤ λ1(Σ) + ‖Σ̃− Σ‖op +

(
E
[
‖Σ̃⋆ − Σ̃‖qop

∣∣X
])1/q

≤ λ1(Σ) + c λ1(Σ)

√
log(n)βqr(Σ)

n

≤ c λ1(Σ)

(S5.29)

holds with probability at least 1− c
n
, where the last line has used condition (C.0.1). Thus,

the event

max
1≤j≤k

|E[U⋆
j |X]− E[V ⋆

j |X]| ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− c/n. For the second term on the right side of (S5.28),

note that (S5.22) implies that the event

max
1≤j≤k

|dj(Σ̃[1, 1])− λj(Σ̂)| ≤
c log(n) β2q tr(Σ)

n

holds with probability at least 1− c/n. Applying the last several steps into (S5.28) com-

pletes the proof of Part (iii).

Part (iv): The proof is essentially analogous to that of Part (ii), and so the details are

omitted.

Lemma S5.4. Suppose that the conditions of Theorem 12 hold. Then,

max
1≤j≤k

∣∣ var
(
h(λj(Σ̂))

)
− h′(λj(Σ))2 var

(
λj(Σ̂)

)∣∣ .
log(n) β2

2q λ1(Σ) tr(Σ)

n3/2
. (i)

In addition, there is a constant c > 0 not depending on n such that the events

max
1≤j≤k

∣∣ var
(
h(λj(Σ̂

⋆))
∣∣X
)
− h′(λj(Σ̂))2 var

(
λj(Σ̂

⋆)
∣∣X
)∣∣ ≤

c log(n) β2
2q λ1(Σ) tr(Σ)

n3/2
(ii)

and

max
1≤j≤k

∣∣ var
(
h(λj(Σ̂

⋆))
∣∣X
)
− var

(
h(λj(Σ̂))

)∣∣ ≤
c log(n) β3

2q λ1(Σ) tr(Σ)

n3/2
(iii)

each hold with probability at least 1− c
n
.
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Proof. Part (i): For each j = 1, . . . , k define the random variables

Sj = h(λj(Σ̂))− h(λj(Σ)) and Tj = h′(λj(Σ))
(
λj(Σ̂)− λj(Σ)

)
. (S5.30)

In this notation, we have

max
1≤j≤k

∣∣ var
(
h(λj(Σ̂))

)
− h′(λj(Σ))2 var

(
λj(Σ̂)

)∣∣ = max
1≤j≤k

∣∣ var(Sj)− var(Tj)
∣∣

≤ max
1≤j≤k

2(‖Sj‖2 + ‖Tj‖2)‖Sj − Tj‖2.

(S5.31)

As a way of handling ‖Sj−Tj‖2, first note that the argument used to establish (S5.9) can

also be used to show that the event

max
1≤j≤k

|Sj − Tj| ≤
c log(n) β2q tr(Σ)

n
(S5.32)

holds with probability at least 1− c
n4 . Using the bound (S5.32) and an argument analogous

to the one leading up to (S5.23), we obtain

‖Sj − Tj‖2 .
log(n)β2q tr(Σ)

n
+
‖Sj‖4 + ‖Tj‖4

n
. (S5.33)

With regard to ‖Tj‖4 we use (S5.24) to obtain the following conservative but adequate

bound,

‖Tj‖4 . ‖λj(Σ̂)− λj(Σ)‖4

≤ ‖λj(Σ̂)‖4 + λj(Σ)

. λ1(Σ). (S5.34)

To handle ‖Sj‖4, first note that the concavity of h implies that Sj ≤ Tj almost surely,

and so

0 ≤ h(λj(Σ̂)) ≤ Tj + h(λj(Σ)).
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In turn, this yields

‖Sj‖4 = ‖h(λj(Σ̂))− h(λj(Σ))‖4

≤ ‖h(λj(Σ̂))‖4 + h(λj(Σ))

≤ ‖Tj‖4 + 2h(λj(Σ))

. λ1(Σ). (S5.35)

So, substituting (S5.34) and (S5.35) into (S5.33) gives

‖Sj − Tj‖2 .
log(n) β2q tr(Σ)

n
. (S5.36)

Now we turn to bounding ‖Tj‖2 and ‖Sj‖2 in (S5.31). Using Lemma S5.3 and the

condition (C.0.1) we have

‖Tj‖2 .

√
var
(
λj(Σ̂)

)
+
∣∣E[λj(Σ̂)]− λj(Σ)

∣∣

.
λj(Σ) β2√

n
+
( log(n) β2q r(Σ)√

n

)λ1(Σ)√
n

.
λ1(Σ) β2√

n

Likewise, we may bound ‖Sj‖2 as

‖Sj‖2 ≤ ‖Tj‖2 + ‖Sj − Tj‖2

.
λ1(Σ) β2√

n
+
( log(n) β2q r(Σ)√

n

)λ1(Σ)√
n

.
λ1(Σ) β2√

n
,

which completes the proof of Part (i).

Part (ii): Define random vectors S⋆, T ⋆ ∈ R
k with entries given by

S⋆j = h(λj(Σ̂
⋆))− h(λj(Σ̂)) and T ⋆j = h′(λj(Σ̂))

(
λj(Σ̂

⋆)− λj(Σ̂)
)
.
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As an initial step, it can be shown that there is a constant c > 0 not depending on n such

that the event

P

(
‖S⋆ − T ⋆‖∞ ≥ c log(n)β2q tr(Σ)

n

∣∣∣∣X
)
≤ c

n4
(S5.37)

holds with probability at least 1− c
n
. Verifying this is similar to the proof of Lemma S3.1,

and can be handled by showing that

‖S⋆ − T ⋆‖∞ ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− c
n5 . In turn, this can be shown using the condition (C.0.1)

and the entrywise Taylor expansion

S⋆j − T ⋆j =
(
λj(Σ̂

⋆)− λj(Σ̂)
)2
∫ 1

0

(1− t)h′′
(
λj(Σ̂) + t(λj(Σ̂

⋆)− λj(Σ̂))
)
dt.

along with (S3.11) and (S3.12).

To proceed with the rest of the proof, we can bound the left side of (ii) in a manner

that is similar to (S5.31),

max
1≤j≤k

∣∣ var(S⋆j |X)−var(T ⋆j |X)
∣∣ ≤ max

1≤j≤k
2
(
(E[(S⋆j )

2|X])1/2+(E[(T ⋆j )
2|X])1/2

)(
E
[
(S⋆j−T ⋆j )2

∣∣X
])1/2

.

(S5.38)

It follows from an argument analogous to (S5.23) and an application of (S5.37) that the

event

max
1≤j≤k

(
E
[
(S⋆j−T ⋆j )2

∣∣X
])1/2 ≤ c

n

(
log(n) β2q tr(Σ)+max

1≤j≤k

(
(E[(S⋆j )

4|X])1/4+(E[(T ⋆j )
4|X])1/4

))

holds with probability at least 1 − c/n. Bounds on the conditional fourth moments can

also be derived similarly to the way that the bounds (S5.34) and (S5.35) were. Namely,

by using (S2.11) and (S5.29), it can be shown that the events

max
1≤j≤k

(E[(T ⋆j )
4|X])1/4 ≤ c λ1(Σ)

and

max
1≤j≤k

(E[(S⋆j )
4|X])1/4 ≤ c λ1(Σ)
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each hold with probability at least 1− c
n
. Hence, the event

max
1≤j≤k

(
E
[
(S⋆j − T ⋆j )2

∣∣X
])1/2 ≤ c log(n) β2q tr(Σ)

n

holds with probability at least 1− c
n
.

To address the conditional L2 norms of T ⋆j and S⋆j in (S5.38), first note that

(E[(T ⋆j )
2|X])1/2 ≤ h′(λj(Σ))

(
var(λj(Σ̂

⋆)|X)1/2 +
∣∣E[λj(Σ̂⋆)|X]− λj(Σ̂)

∣∣),

In turn, Lemmas S5.3 and S6.4 as well as the condition (C.0.1) imply that the event

max
1≤j≤k

(E[(T ⋆j )
2|X])1/2 ≤ c λj(Σ) β2√

n
+
( log(n)β2qr(Σ)√

n

)c λ1(Σ)√
n

≤ c λ1(Σ) β2√
n

holds with probability at least 1− c
n
. Furthermore, this implies that the event

max
1≤j≤k

(E[(S⋆j )
2|X])1/2 ≤ (E[(T ⋆j )

2|X])1/2 +
(
E
[
(S⋆j − T ⋆j )2

∣∣X
])1/2

≤ c λ1(Σ) β2√
n

+
( log(n)β2qr(Σ)√

n

)c λ1(Σ)√
n

≤ c λ1(Σ) β2√
n

holds with probability at least 1− c
n
. The proof is completed by combining the last several

steps with (S5.38).

Part (iii): Using several applications of the triangle inequality, we have

∣∣ var
(
h(λj(Σ̂

⋆))
∣∣X
)
− var

(
h(λj(Σ̂)

)∣∣ ≤
∣∣ var

(
h(λj(Σ̂

⋆))
∣∣X
)
− h′(λj(Σ̂))2 var

(
λj(Σ̂

⋆)
∣∣X
)∣∣

+
∣∣ var

(
h(λj(Σ̂)

)
− h′(λj(Σ))2 var

(
λj(Σ̂)

)∣∣

+
∣∣h′(λj(Σ̂))2 var

(
λj(Σ̂

⋆)|X
)
− h′(λj(Σ))2 var

(
λj(Σ̂)

)∣∣

The first and second terms on the right side have been handled by Parts (ii) and (i)

respectively. To handle the third term, we may use the triangle inequality to obtain

∣∣h′(λj(Σ̂))2 var
(
λj(Σ̂

⋆)
∣∣X
)
− h′(λj(Σ))2 var

(
λj(Σ̂)

)∣∣ ≤ Mj +M′
j,
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where the two terms on the right are defined as

Mj = h′(λj(Σ̂))
2 ·
∣∣ var

(
λj(Σ̂

⋆)
∣∣X
)
− var

(
λj(Σ̂)

)∣∣

M′
j = var

(
λj(Σ̂)

)
·
∣∣h′(λj(Σ̂))2 − h′(λj(Σ))2

∣∣

Using (S2.11) and the mean value theorem, it can be shown that the event

max
1≤j≤k

∣∣h′(λj(Σ̂))2 − h′(λj(Σ))2
∣∣ ≤ c

√
log(n) βq r(Σ)

n

holds with probability at least 1− c
n
. Also, using Lemma S5.3 and the condition (C.0.1),

it follows that

max
1≤j≤k

var
(
λj(Σ̂)

)
.

λ1(Σ)
2 β2

2

n
.

Hence, the event

max
1≤j≤k

M′
j ≤

c λ1(Σ)
2 log(n) β

5/2
2q r(Σ)

n3/2
(S5.39)

holds with probability at least 1− c
n
.

Regarding the quantity Mj, observe that the bound

∣∣ var(λj(Σ̂⋆)|X)− var(λj(Σ̂))
∣∣ ≤

∣∣ var(λj(Σ̂⋆)|X)− λj(Σ)2Γ̂jj/n
∣∣

+
∣∣ var(λj(Σ̂))− λj(Σ)2Γjj/n

∣∣

+
λj(Σ)

2 ‖Γ̂− Γ‖op
n

holds almost surely. Consequently, it follows from Lemmas S5.3 and S6.4, that the event

max
1≤j≤k

Mj ≤
c log(n) β2

2q λ1(Σ) tr(Σ)

n3/2
(S5.40)

holds with probability at least 1− c
n
. Combining (S5.39) and (S5.40) completes the proof

of Part (iii).
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Lemma S5.5. Suppose that the conditions of Theorem 12 hold. Then,

min
1≤j≤k

var
(
h(λj(Σ̂))

)
& λ1(Σ)2

n
,

and there is a constant c ≥ 1 not depending on n such that the event

min
1≤j≤k

var
(
h(λj(Σ̂

⋆))
∣∣X
)
≥ λ1(Σ)2

cn

holds with probability at least 1− c
n
.

Proof. For any j = 1, . . . , k, and any t > 0, Chebyshev’s inequality and the triangle

inequality give

var
(
h(λj(Σ̂))

)
≥ t2 P

(∣∣h(λj(Σ̂))− E
[
h(λj(Σ̂))

]∣∣ ≥ t
)

≥ t2 P
(√

n
∣∣h(λj(Σ̂))− h(λj(Σ))

∣∣ ≥
√
n
(
t+
∣∣E
[
h(λj(Σ̂))

]
− h(λj(Σ))

∣∣)
)
.

(S5.41)

Next, let Sj and Tj be as defined in (S5.30). Applying Part (i) of Lemma S5.3 along with

(S5.36) shows that the bounds

∣∣E
[
h(λj(Σ̂))

]
− h(λj(Σ))

∣∣ ≤ |E[Tj]|+ |E[Sj]− E[Tj]|

. |h′(λj(Σ))|
∣∣E
[
λj(Σ̂)− λj(Σ)

]∣∣+ ‖Sj − Tj‖2

.
log(n) β2q tr(Σ)

n
,

hold for every j = 1, . . . , k. Hence, by taking t = λ1(Σ)/
√
n in (S5.41), and using

Lemma S5.1 with the condition (C.0.1), there is a constant c > 0 not depending on n

such that

var
(
h(λj(Σ̂))

)
≥ t2 P

(√
n
∣∣h(λj(Σ̂))− h(λj(Σ))

∣∣ ≥ c
)

&
λ1(Σ)

2

n

{
P

(
h′(λj(Σ)) ζj ≥ c

)
−

log(n) β3
2qr(Σ)

n1/2

}

&
λ1(Σ)

2

n
,

for every j = 1, . . . , k. Lastly, the proof for the corresponding lower bound on var(h(λj(Σ̂
⋆))|X)

is analogous and so the details are omitted.
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S6 Proof of Technical Lemmas

Lemma S6.1. Suppose that Assumption 6 holds and let q ≥ 5 log(kn). Then,

∥∥‖Σ̃[1, 2]‖2op
∥∥
q

.
q β2q λ1(Σ) tr(Σ)

n1−3/(2q)
.

Proof. We will need two auxiliary matrices to extract Σ̃[1, 2] from Σ̃. Define matrices

Π1 ∈ R
k×p and Π2 ∈ R

p×(p−k) according to

Π1 =
[
Ik 0

]
and Π2 =


 0

Ip−k


 ,

which allow us to write Σ̃[1, 2] = Π1Σ̃Π2. Next, let Bk and B
p−k denote the unit ℓ2-balls

in R
k and R

p−k, and let T = B
k × B

p−k. With this notation in hand, it follows that

‖Σ̃[1, 2]‖op = sup
(u,v)∈T

u⊤Π1Σ̃Π2v

= sup
(u,v)∈T

(UΛ1/2Π⊤
1 u)

⊤
(
1

n

n∑

i=1

ZiZ
⊤
i

)
(UΛ1/2Π2v). (S6.1)

Observe that the vectors UΛ1/2Π⊤
1 u and UΛ1/2Π2v both lie in the ellipsoid E := UΛ1/2(Bp),

and are orthogonal. Therefore,

‖Σ̃[1, 2]‖op ≤ sup
(u,v)∈E×E
〈u,v〉=0

1

n

n∑

i=1

〈u, Zi〉〈v, Zi〉. (S6.2)

It will be convenient to write the summands in terms of the matrixQ(u, v) := 1
2
(uv⊤+vu

⊤),

namely

〈u, Zi〉〈v, Zi〉 = Z⊤
i Q(u, v)Zi.

Under this definition, it can be checked that if u and v are any pair of orthogonal vectors,

then E[Z⊤
i Q(u, v)Zi] = 0. Hence, if we subtract E[Z⊤

i Q(u, v)Zi] from the ith term in (S6.2)

for each i = 1, . . . , n, and subsequently drop the constraint 〈u, v〉 = 0 from the supremum,

then we obtain the bound

‖Σ̃[1, 2]‖op ≤ sup
(u,v)∈E×E

(
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi − E[Z⊤

i Q(u, v)Zi]
)
. (S6.3)

144



Next, for a given pair of vectors u, v ∈ E , define two associated vectors

w = u/2 + v/2,

w̃ = u/2− v/2,

which satisfy the algebraic relation

Q(u, v) = ww
⊤ − w̃w̃

⊤.

To proceed, define the matrixA ∈ R
p×2p as the column concatenationA =

(
UΛ1/2, UΛ1/2

)
,

and note that both w and w̃ lie in the ellipsoid E ′ := A(B2p). As a result, if we write

ξi = A⊤Zi, then we have

‖Σ̃[1, 2]‖op ≤ sup
(w,w̃)∈E ′×E ′

(∣∣∣∣
1

n

n∑

i=1

〈Zi,w〉2 − E[〈Zi,w〉2]
∣∣∣∣+
∣∣∣∣
1

n

n∑

i=1

〈Zi, w̃〉2 − E[〈Zi, w̃〉2]
∣∣∣∣
)

≤ sup
w∈B2p

∣∣∣∣
2

n

n∑

i=1

〈A⊤Zi, w〉2 − E[〈A⊤Zi, w〉2]
∣∣∣∣

=

∥∥∥∥
2

n

n∑

i=1

ξiξ
⊤
i − E[ξ1ξ

⊤
1 ]

∥∥∥∥
op

. (S6.4)

Next, Lemma S7.3 implies that
∥∥∥∥
∥∥∥ 1
n

n∑

i=1

ξiξ
⊤
i − E[ξiξ

⊤
i ]
∥∥∥
op

∥∥∥∥
q

≤ c

(√
q

n1−3/q

∥∥E[ξ1ξ⊤1 ]
∥∥1/2
op

(
E‖ξ1‖2q2

) 1

2q

)∨(
q

n1−3/q

(
E‖ξ1‖2q2

)1/q
)
.

(S6.5)

We can further compute

∥∥E[ξ1ξ⊤1 ]
∥∥
op

=
∥∥A⊤

E[Z1Z
⊤
1 ]A

∥∥
op

= ‖A‖2op

. λ1(Σ), (S6.6)

and

(
E‖ξ1‖2q2

)1/q
= 2

∥∥Z⊤
1 UΛU

⊤Z1

∥∥
q

= 2

∥∥∥∥
p∑

j=1

λj(Σ)〈uj, Z1〉2
∥∥∥∥
q

. tr(Σ)βq. (S6.7)
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To finish, we use the relation
∥∥‖Σ̃12‖2op

∥∥
q
=
∥∥‖Σ̃12‖op

∥∥2
2q
. Specifically, the previous two

bounds can be substituted into (S6.4) and (S6.5) while replacing q with 2q and using the

condition (C.0.1).

Lemma S6.2. Suppose that Assumption 6 holds and let q ≥ 5 log(kn). Then, there is a

constant c > 0 not depending on n such that the event

(
E
[
‖Σ̃⋆[1, 2]‖2qop

∣∣X
])1/q

≤ c q β2q λ1(Σ) tr(Σ)

n1−3/(2q)

holds with probability at least 1− ce−q.

Proof. We will follow the same notation that was used in the proof of Lemma S6.1.

Repeating the argument from that proof up to (S6.3) and using 2q in place of q we have

(
E
[
‖Σ̃⋆[1, 2]‖2qop

∣∣X
]) 1

2q ≤
(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆
i )

⊤Q(u, v)Z⋆
i − E[Z⊤

i Q(u, v)Zi]
)2q∣∣∣∣X

]) 1
2q

Next, observe that

E
[
(Z⋆

1 )
⊤Q(u, v)Z⋆

1

∣∣X
]

=
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi

and so the triangle inequality for the conditional L2q norm gives

(
E
[
‖Σ̃⋆[1, 2]‖2qop

∣∣X
]) 1

2q ≤
(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆i )
⊤Q(u, v)Z⋆i − E

[
(Z⋆i )

⊤Q(u, v)Z⋆i
∣∣X
])2q∣∣∣∣X

]) 1
2q

(S6.8)

+ sup
(u,v)∈E×E

(
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi − E[Z⊤

i Q(u, v)Zi]
)
.

With regard to the second term in the last bound, the proof of Lemma S6.1 shows (via Cheby-

shev’s inequality and condition (C.0.1)) that the event

sup
(u,v)∈E×E

(
1

n

n∑

i=1

Z⊤
i Q(u, v)Zi − E[Z⊤

1 Q(u, v)Z1]

)
≤ c

√
qβqλ1(Σ) tr(Σ)

n1−3/q
. (S6.9)

holds with probability at least 1− ce−q, for some constant c > 0 not depending on n. Therefore,

the proof of the current lemma is complete once we derive a similar bound for the first term on
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the right side of (S6.8).

Let ξ⋆i = A⊤Z⋆i , with A as defined in the proof of Lemma S6.1. Then, by following the

argument leading up to (S6.4) and applying Lemma S7.3, there is a constant c > 0 not depending

on n such that

(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆
i )

⊤Q(u, v)Z⋆
i − E

[
(Z⋆

1 )
⊤Q(u, v)Z⋆

1

∣∣X
])2q ∣∣∣∣X

]) 1

2q

≤ c

(
E

[∥∥∥∥
1

n

n∑

i=1

ξ⋆i (ξ
⋆
i )

⊤ − E
[
ξ⋆1(ξ

⋆
1)

⊤
∣∣X
]∥∥∥∥

2q

op

∣∣∣∣X
]) 1

2q

≤ c

(√
2q

n1− 3

2q

·
(∥∥E[ξ⋆1(ξ⋆1)⊤ |X]

∥∥
op

)1/2 ·
(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

4q

)∨(
q

n1− 3

2q

·
(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q

)
.

(S6.10)

Next, the triangle inequality implies

∥∥E
[
ξ⋆1(ξ

⋆
1)

⊤ ∣∣X
]∥∥

op
=

∥∥∥∥
1

n

n∑

i=1

(A⊤Zi)(A
⊤Zi)

⊤
∥∥∥∥
op

≤
∥∥∥∥
1

n

n∑

i=1

(A⊤Zi)(A
⊤Zi)

⊤ − A⊤A

∥∥∥∥
op

+ 4λ1(Σ),

where we have used ‖A⊤A‖op ≤ 4λ1(Σ) and E[(A⊤Z1)(A
⊤Z1)

⊤] = A⊤A. By applying

Lemma S7.3 to the first term (along with the condition (C.0.1) and Chebyshev’s inequal-

ity), it follows that the event

∥∥E
[
ξ⋆1(ξ

⋆
1)

⊤ ∣∣X
]∥∥

op
≤ cλ1(Σ) (S6.11)

holds with probability at least 1− e−q, for some constant c > 0 not depending on n.

It remains to develop an upper bound for
(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q . According to the defini-

tion of ξ⋆i , we have

‖ξ⋆1‖22 = (Z⋆
1)

⊤AA⊤Z⋆
1

= 2(Z⋆
1 )

⊤ΣZ⋆
1 ,
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and so

(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q = 2

(
1

n

n∑

i=1

(Z⊤
i ΣZi)

2q

) 1
2q

= 2S,

where the non-negative random variable S is defined by the last line. For any t > 0,

Chebyshev’s inequality implies

P(S ≥ e t) ≤ e−2q
E[S2q]

t2q

=
e−2q ‖Z⊤

1 ΣZ1‖2q2q
t2q

= e−2q

(
1

t

∥∥∥∥
p∑

j=1

λj(Σ)〈uj, Z1〉2
∥∥∥∥
2q

)2q

≤ e−2q
(β2q tr(Σ)

t

)2q
.

(S6.12)

Combining the last few steps and using the choice t = β2q tr(Σ), it follows that there is a

constant c > 0 not depending on n such that the event

(
E
[
‖ξ⋆1‖4q2

∣∣X
]) 1

2q ≤ c β2q tr(Σ) (S6.13)

holds with probability at least 1 − e−2q. Hence, we may substitute (S6.11) and (S6.13)

into (S6.10), and use the condition (C.0.1) to conclude that the event

(
E

[(
sup

(u,v)∈E×E

1

n

n∑

i=1

(Z⋆i )
⊤Q(u, v)Z⋆i −E

[
(Z⋆1 )

⊤Q(u, v)Z⋆1
∣∣X
])2q ∣∣∣∣X

]) 1
2q

≤ c

√
2q β2q λ1(Σ) tr(Σ)

n1− 3
2q

(S6.14)

holds with probability at least 1 − ce−q. Finally, the proof is completed by combin-

ing (S6.14) and (S6.9) with (S6.8).

Lemma S6.3. Suppose that Assumption 6 holds and let q ≥ 5 log(kn). Then, there is a

constant c > 0 not depending on n, such that the event

(
E
[
‖Σ̃⋆ − Σ̃‖qop

∣∣X
])1/q ≤ c

√
q βq λ1(Σ) tr(Σ)

n1−3/q
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holds with probability at least 1− ce−q.

Proof. Letting ξ⋆1 = Λ1/2U⊤Z⋆
1 and using Lemma S7.3, we have

(
E
[
‖Σ̃⋆−Σ̃‖qop

∣∣X
])1/q ≤ c·

(√
q

n1−3/q
‖Σ̃‖1/2op

(
E
[
‖ξ⋆1‖2q2

∣∣X
]) 1

2q

)∨(
q

n1−3/q

(
E
[
‖ξ⋆1‖2q2

∣∣X
]) 1

q

)
.

(S6.15)

Using (S2.10) in the proof of Lemma S2.1, as well as the condition (C.0.1), it follows that

the bound

‖Σ̃‖op ≤ ‖Σ̃− Λ‖op + ‖Λ‖op

≤ c λ1(Σ)

√
q βq r(Σ)

n1−3/q
+ λ1(Σ)

≤ c λ1(Σ) (S6.16)

holds with probability at least 1−e−q. Also, recall that the argument leading up to (S6.13)

implies that the event
(
E
[
‖ξ⋆1‖2q2

∣∣X
]) 1

2q ≤ c
√
βq tr(Σ) (S6.17)

holds with probability at least 1 − e−q, for some constant c > 0 not depending on n.

Combining (S6.16) and (S6.17) with (S6.15) and the condition (C.0.1) completes the

proof.

Lemma S6.4. Suppose that Assumption 6 holds and let q ≥ 5 log(kn). Then, there is a

constant c > 0 not depending on n such that the bound

‖Γ̂− Γ‖op ≤
c q β2

2q

n1/2
(S6.18)

holds with probability at least 1− e−q.

Proof. Let W1, . . . ,Wn and W̄ be as defined at the beginning of Appendix S3. Note that

Γ = E[W1W
⊤
1 ], and that the definition of Γ̂ in (S3.1) gives

Γ̂ =
1

n

n∑

i=1

WiW
⊤
i − W̄W̄⊤.
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We may apply Lemma S7.3 to obtain

(
E
∥∥Γ̂− Γ

∥∥q
op

)1/q
≤
(
E

∥∥∥∥
1

n

n∑

i=1

WiW
⊤
i − E[W1W

⊤
1 ]

∥∥∥∥
q

op

)1/q

+
(
E‖W̄W̄⊤‖qop

)1/q

.

(√
q

n1−3/q

(
‖E[W1W

⊤
1 ]‖op

)1/2 (
E‖W1‖2q2

)1/(2q)
)∨(

q

n1−3/q

(
E‖W1‖2q2

)1/q
)

+
(
E‖W̄‖2q2

)1/q
.

(S6.19)

It is straightforward to verify that

‖E[W1W
⊤
1 ]‖op ≤ tr(Γ) . β2

2 .

Also, we have

(
E‖W1‖2q2

)1/q
=

∥∥∥∥
k∑

j=1

(
〈uj, Z1〉2 − 1

)2
∥∥∥∥
q

≤
k∑

j=1

∥∥〈uj, Z1〉2 − 1
∥∥2
2q

. β2
2q.

To handle the term involving W̄ , observe that the previous bound and Lemma S7.1

lead to

(
E‖W̄‖2q2

) 1
2q

. q

(
(
E‖W̄‖22

)1/2
+
(∑n

i=1 E‖ 1nWi‖2q2
) 1

2q

)

. q

((
E‖W1‖22

)1/2
n1/2 +

(
E‖W1‖2q2

) 1
2q

n
1− 1

2q

)

. q

(
β2
n1/2 +

β2q

n
1− 1

2q

)

.
q β2q
n1/2

(S6.20)

Using condition (C.0.1), we may substitute the last few bounds into (S6.19) to obtain

(
E
∥∥Γ̂− Γ

∥∥q
op

)1/q
.

q β2
2q

n1/2
(S6.21)

Combining this result with Chebyshev’s inequality completes the proof.
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For the next lemma, let Y ⋆
1 be as defined at the beginning of the proof of Lemma S3.3.

Lemma S6.5. Suppose that Assumption 6 holds and let q ≥ 5 log(kn). Then, there is a

constant c > 0 not depending on n, such that the event

E

[∥∥(ΛkΓ̂Λk)−1/2Y ⋆
1

∥∥3
2

∣∣∣X
]
≤ c β3

3q.

holds with probability at least 1− ce−q.

Proof. Note that

∥∥(ΛkΓ̂Λk)−1/2Y ⋆
1

∥∥2
2
= (W ⋆

1 − W̄ )⊤Γ̂−1(W ⋆
1 − W̄ )

≤ (W ⋆
1 − W̄ )⊤(W ⋆

1 − W̄ )

λk(Γ̂)

≤ 2

λk(Γ̂)

( k∑

j=1

(
〈uj, Z⋆

1〉2 − 1
)2

+ W̄⊤W̄

)
.

This implies

E

[∥∥(ΛkΓ̂Λk)−1/2Y ⋆
1

∥∥3
2

∣∣∣X
]
≤ c

λk(Γ̂)3/2

(
1

n

n∑

i=1

( k∑

j=1

(
〈uj, Zi〉2 − 1

)2)3/2
+ (W̄⊤W̄ )3/2

)

=
c
(
T + (W̄⊤W̄ )3/2

)

λk(Γ̂)3/2
,

(S6.22)

where the first line has used the convexity of the function x 7→ x3/2, and the non-negative

random variable T is defined in the second line. By the triangle inequality for the Lq

norm, we have

‖T‖q ≤
(∥∥∥∥

k∑

j=1

(
〈uj, Z1〉2 − 1

)2
∥∥∥∥
3q/2

3q/2

)1/q

. max
1≤j≤k

∥∥∥〈uj, Z1〉2 − 1
∥∥∥
3

3q

. β3
3q.

(S6.23)
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So, by Chebyshev’s inequality, there is a constant c > 0 not depending on n such that the

event

T ≤ c β3
3q

holds with probability at least 1 − e−q. The bound (S6.20) in the proof of Lemma S6.4

and the condition (C.0.1) also imply that there is a constant c > 0 not depending on n

such that the bound

(W̄⊤W̄ )3/2 ≤
(c q β2q
n1/2

)3/2
≤ c

holds with probability at least 1− e−q.

Now we turn to showing that λk
(
Γ̂
)
is greater than a positive constant with high prob-

ability. Due to Weyl’s inequality we have λk(Γ̂) ≥ λk(Γ)−‖Γ̂−Γ‖op. Using Lemma S6.4,

Assumption 6.(c), and the condition (C.0.1), it follows that there is a constant c > 0 not

depending on n such that the bound

λk(Γ̂) ≥ c, (S6.24)

holds with probability at least 1 − e−q. Combining the bounds (S6.23) and (S6.24)

with (S6.22) completes the proof.

S7 Background Results

Lemma S7.1 (Theorem 1 in Talagrand (1989)). Let X1, . . . , Xn be independent centered

random elements of a Banach space with norm ‖ · ‖. Then, there is an absolute constant

c > 0 such that the following inequality holds for any q ≥ 1,
(
E

∥∥∥
n∑

i=1

Xi

∥∥∥
q
)1/q

≤ cq

1 + log(q)

(
E

∥∥∥
n∑

i=1

Xi

∥∥∥+
(
E max

1≤i≤n
‖Xi‖q

)1/q)
.

Lemma S7.2 (Weilandt’s inequality Eaton and Tyler (1991); Wielandt and Meyer (1967)).

Consider a real symmetric p× p matrix

A =


 B C

C⊤ D


 ,
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where B is k × k and D is (p− k)× (p− k). If λk(B) > λ1(D), then

0 ≤ λj(A)− λj(B) ≤ λ1(CC
⊤)

λj(B)− λ1(D)
, j = 1, . . . , k

and

0 ≤ λp−k−i(D)− λp−i(A) ≤
λ1(CC

⊤)

λk(B)− λp−k−i(D)
, i = 0, . . . , p− k − 1.

Lemma S7.3 (Proposition 1 in Lopes et al. (2023)). Let ξ, . . . , ξn ∈ R
p be i.i.d. random

vectors, let q ≥ 3, and define the quantity

r(q) = q ·
(
E‖ξ1‖2q2

)1/q
∥∥E[ξ1ξ⊤1 ]

∥∥
op

.

Then, there is an absolute constant c > 0 such that

(
E

∥∥∥∥
1

n

n∑

i=1

ξiξ
⊤
i − E[ξ1ξ

⊤
1 ]

∥∥∥∥
q

op

)1/q

≤ c ·
∥∥E[ξ1ξ⊤1 ]

∥∥
op
·
(√

r(q)

n1−3/q

∨ r(q)

n1−3/q

)

The following anti-concentration lemma originates from Nazarov (2003), and was fur-

ther elucidated in (Chernozhukov et al., 2017b, Theorem 1).

Lemma S7.4 (Nazarov’s inequality). Let Y = (Y1, . . . , Yp) be a centered Gaussian random

vector in R
p and suppose that the parameter σ2 = min1≤j≤p E[Y

2
j ] is positive. Then for

every y ∈ R
p and δ > 0,

P(Y � y + δ1k)− P(Y � y) ≤ δ

σ

(√
2 log(p) + 2

)
.

The following lemma is Bentkus’ multivariate Berry-Esseen theorem.

Lemma S7.5 (Theorem 1.1 in (Bentkus, 2003)). Let V1, . . . , Vn be i.i.d. random vectors

R
d, with zero mean and identity covariance matrix. Furthermore, let ζ be a standard

Gaussian vector in R
d, and let A denote the collection of all Borel convex subsets of Rd.

Then, there is an absolute constant c > 0 such that

sup
A∈A

∣∣∣P
( 1√

n

n∑

i=1

Vi ∈ A
)
− P(ζ ∈ A)

∣∣∣ ≤ c · d1/4 · E[‖V1‖32]
n1/2

.

153



For the statement of Lemma S7.6 below, we need to introduce a bit of notation. For any

r > 0 and set A ⊂ R
p, define the outer r-neighborhood as Ar =

{
x ∈ R

p | d(x,A) ≤ r},
where d(x,A) = inf{‖x − y‖ | y ∈ A}, and ‖ · ‖ is any norm on R

p. The corresponding

inner r-neighborhood may be defined as A−r =
{
x ∈ A |B(x, r) ⊂ A}, where B(x, r) =

{y ∈ R
p|‖x− y‖ ≤ r}.

Lemma S7.6 (Lemma 7.3 in (Lopes, 2022)). Let ‖·‖ be any norm on R
p, and let ζ, ξ ∈ R

p

be any two random vectors. Then, the following inequality holds for any Borel set A ⊂ R
p,

and any r > 0,

|P(ζ ∈ A)− P(ξ ∈ A)| ≤ P
(
ξ ∈ (Ar \ A−r)

)
+ P

(
‖ζ − ξ‖ ≥ r

)
.

The following lemma is a consequence of Pinsker’s inequality and the proof of Lemma

A.7 in the paper Spokoiny and Zhilova (2015).

Lemma S7.7 (Spokoiny and Zhilova (2015)). Let ζ and ζ̃ be centered Gaussian vectors

in R
k with respective covariance matrices C and C̃. Also, suppose that C is invertible,

and let B = C−1/2C̃C−1/2 − Ik. Then, there is an absolute constant c > 0 such that

sup
t∈Rk

∣∣∣P(ζ � t)− P(ζ̃ � t)
∣∣∣ ≤ c

√
k‖B‖op.

The last background lemma follows from the proof of (Lopes et al., 2020, Lemma D.3),

Lemma S7.6, and Nazarov’s inequality (Lemma S7.4).

Lemma S7.8. Let U , V , and R be random vectors in R
k that satisfy U = V + R. Also,

let W = (W1, . . . ,Wk) be a centered Gaussian random vector in R
k and suppose that the

parameter σ2 = min1≤j≤k E[W
2
j ] is positive. Then there is an absolute constant c > 0,

such that the following bound holds for any r > 0,

sup
t∈Rk

∣∣P(U � t)−P(W � t)
∣∣ ≤ 3·sup

t∈Rk

∣∣P(V � t)−P(W � t)
∣∣+ cr

√
log(k)

σ
+P(‖R‖∞ ≥ r).
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S8 Additional Numerical Results

Nominal value of 95% in model (ii). The following four figures are presented in the

same manner as in the main text for a 95% nominal value, except that they are based on

simulation model (ii).
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Figure C.1: (Simultaneous coverage probability versus n in simulation model (ii) with a
polynomial decay profile). The plotting scheme is the same as described in the caption of
Figure 4.1 in the main text.
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Figure C.2: (Simultaneous coverage probability versus n in simulation model (ii) with an
exponential decay profile). The plotting scheme is the same as described in the caption
of Figure 4.2 in the main text.
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Figure C.3: (Average width versus n in simulation model (ii) with a polynomial decay
profile). The plotting scheme is the same as described in the caption of Figure 4.3 in the
main text.
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Figure C.4: (Average width versus n in simulation model (ii) with an exponential decay
profile). The plotting scheme is the same as described in the caption of Figure 4.4 in the
main text.
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Nominal value of 90% in models (i) and (ii). The following eight figures are

presented in the same manner as in the main text, except that they use a nominal value

of 90%, and are based on both models (i) and (ii).
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Figure C.5: (Simultaneous coverage probability versus n in simulation model (i) with a

polynomial decay profile). In each panel, the y-axis measures P(∩5
j=1{λj(Σ) ∈ Îj}) based

on a nominal value of 90%, and the x-axis measures n. The colored curves correspond to
the different values of p, indicated in the legend. The three rows and three columns corre-
spond to labeled choices of transformations and values of the eigenvalue decay parameter
γ.
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Figure C.6: (Simultaneous coverage probability versus n in simulation model (ii) with a
polynomial decay profile). The plotting scheme is the same as described in the caption of
Figure C.5 above.
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Figure C.7: (Simultaneous coverage probability versus n in simulation model (i) with an
exponential decay profile). The plotting scheme is the same as described in the caption
of Figure C.5 above, except that the three columns correspond to values of the eigenvalue
decay parameter δ.
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Figure C.8: (Simultaneous coverage probability versus n in simulation model (ii) with an
exponential decay profile). The plotting scheme is the same as described in the caption
of Figure C.5 above.
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Figure C.9: (Average width versus n in simulation model (i) with a polynomial decay

profile). In each of the nine panels, the y-axis measures the average width E[|Î1| + · · · +
|Î5|]/5, and the x-axis measures n. The colored curves correspond to the different values of
p = 10, 50, 100, 200, indicated in the legend. The three rows and three columns correspond
to labeled choices of transformations and values of the eigenvalue decay parameter γ.
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Figure C.10: (Average width versus n in simulation model (ii) with a polynomial decay
profile). The plotting scheme is the same as described in the caption of Figure C.9 above.
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Figure C.11: (Average width versus n in simulation model (i) with an exponential decay
profile). The plotting scheme is the same as described in the caption of Figure C.9 above,
except that the three columns correspond to values of the eigenvalue decay parameter δ.
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Figure C.12: (Average width versus n in simulation model (ii) with an exponential decay
profile). The plotting scheme is the same as described in the caption of Figure C.11 above.
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S9 Computational cost

The cost to compute a single bootstrap sample of λk(Σ̂
⋆)−λk(Σ̂) can be broken into two

steps. The first step is to sample n points with replacement from the original set of n

observations, which has a cost of O(n log(n)). The second step consists of computing the

largest k eigenvalues of Σ̂⋆. This can be done by computing the largest k singular values

of the n× p matrix of resampled observations, which has a cost of O(npk) (Halko et al.,

2011). (Note that the largest k eigenvalues of Σ̂ only need to be computed once, before any

resampling is done.) So, the cost to compute B bootstrap samples of λk(Σ̂
⋆)− λk(Σ̂) on

a single processor is O(B(n log(n) + npk)). However, it is common to compute bootstrap

samples in a parallel manner, across say m processors, and in this case the cost per

processor becomes O(B
m
(n log(n)+npk). In order to simplify this expression, it is natural

to consider a scenario where B/m = O(1) and log(n) = O(p), which leads to a cost per

processor that is O(npk).

S9.1 Empirical computational cost

Table C.1 displays the time, in seconds, to compute a single bootstrap sample of λk(Σ̂
⋆)−

λk(Σ̂) for different choices of n and p. Each entry reflects an average over 1000 trials with

data generated under simulation model (i). The computations were done on a single Intel

Xeon E5-2699v3 processor. Notably, even when (n, p) = (500, 200), the computing time

for each bootstrap sample is on the order of just 10−3 seconds. Hence, it is possible to

generate hundreds bootstrap samples within about 1 second.
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p

n 10 50 100 200

10 1.9e-04 4.2e-04 8.7e-04 2.6e-03

50 2.0e-04 4.4e-04 9.0e-04 2.8e-03

100 2.1e-04 4.6e-04 9.6e-04 2.9e-03

200 2.2e-04 5.1e-04 1.1e-03 3.0e-03

500 2.4e-04 6.5e-04 1.5e-03 4.0e-03

Table C.1: (Average time, in seconds, to compute one bootstrap sample from simulated
data.) The rows correspond to the values of n = 10, 50, 100, 200, 500, and the columns
correspond to the values of p = 10, 50, 100, 200.

Table C.2 displays analogous computing times for λk(Σ̂
⋆)− λk(Σ̂), in seconds, based

on the stock market data. Here, the computations were done on a single 3.5 GHz Dual-

Core Intel Core i7 processor. The results show that there is little difference in computing

time compared to the setting of synthetic data in Table C.1.

p

n 50 150 200 300

118 3.8e-04 1.4e-03 2.0e-03 4.0e-03

Table C.2: (Average time, in seconds, to compute one bootstrap sample from the stock
market data.) The single row corresponds to the value of n = 118, and the columns
correspond to the values of p = 50, 150, 200, 300.

S10 Additional discussion on Assumption 1(b)

Recall that Assumption 1(b) requires the condition min1≤j≤k(λj(Σ) − λj+1(Σ)) & λ1(Σ),

which ensures that there are gaps between the leading eigenvalues λ1(Σ), . . . , λk+1(Σ). To

inspect whether or not this type of condition holds in practice, the paper (Hall et al.,

2009) proposes a diagnostic method that constructs a preliminary set of conservative

simultaneous confidence intervals for λ1(Σ), . . . , λk+1(Σ). In exchange for their conser-

vatism, these intervals have the property that they are not sensitive to the existence of
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gaps. (See also (Lopes et al., 2023) for theoretical analysis related to this technique.) If

none of the intervals overlap, then the user may conclude that the eigenvalues are ad-

equately separated. However, if some of the intervals do overlap, then the paper (Hall

et al., 2009) recommends that an adjusted form of bootstrapping be used to approximate

the distribution of the statistic λk(Σ̂)− λk(Σ).

S10.1 Sensitivity analysis

To study the sensitivity of the bootstrap to Assumption 1(b), we now discuss some nu-

merical experiments with varying gaps between the leading population eigenvalues. The

first three eigenvalues were specified as (λ1(Σ), λ2(Σ), λ3(Σ)) = (1 + g, 1, 1 − g) for a

gap parameter g ∈ {0, 0.1, 0.2}, and the remaining eigenvalues were chosen to follow the

polynomial decay profile λj(Σ) = j−1 for j ≥ 4. Next, we applied the bootstrap (as in

Section 4.4) to construct simultaneous confidence intervals for (λ1(Σ), . . . , λ5(Σ)) based

on a nominal level of 95%. Figure C.13 contains a grid of plots in which the columns cor-

respond to increasing values of the gap parameter g, and the rows correspond to the three

transformation rules considered in Section 4.4. These plots are based on data generated

from simulation model (i), and an analogous set of plots based on simulation model (ii)

are given in Figure C.14.

As expected, Figures C.13 and C.14 show that the coverage accuracy of the bootstrap

confidence intervals improves as the gap parameter increases. In the case when g = 0,

the coverage accuracy is poor for all three transformation rules, even at large sample

sizes. Next, when g = 0.1, the coverage is mostly accurate for sample sizes n ≥ 400,

but at smaller sample sizes the coverage generally falls below the desired level. Lastly,

when g = 0.2, the coverage becomes more accurate when n < 400, especially when the

square-root transformation is used.
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Figure C.13: (Simultaneous coverage probability versus n in simulation model (i) with
the decay profile: (λ1)(Σ), λ2(Σ), λ3(Σ)) = (1 + g, 1, 1 − g) and λj(Σ) = j−1 for j ≥ 4).

In each panel, the y-axis measures P(∩5
j=1{λj(Σ) ∈ Îj}) based on a nominal level of 95%,

and the x-axis measures n. The colored curves correspond to the different values of p,
indicated in the legend.
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Figure C.14: (Simultaneous coverage probability versus n in simulation model (ii) with
the decay profile: (λ1)(Σ), λ2(Σ), λ3(Σ)) = (1 + g, 1, 1 − g) and λj(Σ) = j−1 for j ≥ 4).
The plotting scheme is the same as described in the caption of Figure C.13.
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