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Abstract

Purpose of Review—To provide an overview on recent technical development for quantifying 

marrow composition using magnetic resonance imaging (MRI) and spectroscopy (MRS) 

techniques, as well as a summary on recent findings of interrelationship between marrow adipose 

tissue (MAT) and skeletal health in the context of osteoporosis.

Recent findings—There have been significant technical advances in reliable quantification of 

marrow composition using MR techniques. Cross-sectional studies have demonstrated a negative 

correlation between MAT and bone, with trabecular bone associating more strongly with MAT 

than cortical bone. However, longitudinal studies of MAT and bone are limited. MAT contents and 

composition have been associated with prevalent vertebral fracture. The evidence between MAT 

and clinical fracture is more limited, and, to date, no studies have reported on the relationship 

between MAT and incident fracture.

Summary—Increasing evidence suggests a dynamic role of marrow fat in skeletal health. 

Reliable non-invasive quantification of marrow composition will facilitate developing novel 

treatment strategies for osteoporosis.
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1. INTRODUCTION

Bone marrow, the primary site of hematopoiesis, is one of the largest organs in the body 

that accounts for up to 4–5% body weight. Marrow tissue is composed primarily of 

hematopoietic cells, adipocytes, and supportive stromal cells surrounded by vascular sinuses 

and trabecular bone. Marrow composition changes dynamically with altered hematopoietic 

needs, resulting from aging, pathologies, and other factors. The well-known conversion from 

‘red’ to ‘yellow’ marrow continues throughout life following a pattern from the peripheral 

towards the central skeleton. Historically, marrow fat increasing with age has been viewed 

as a neutral process, with marrow adipose tissue (MAT) serving as a “space filler” in the 

bone marrow. Emerging evidence suggests that MAT is a distinct fat depot with different 

properties and functions from other fat depots, and plays a dynamic role affecting both bone 

quantity and quality (1, 2). The mechanism of this bone-fat interaction, however, is not fully 

understood (3, 4). Hypotheses include allocation shift of mesenchymal stem cells from the 

osteoblast lineage toward the adipocyte lineage (5, 6) (although the definitive lineage of 

marrow adipocytes remains largely unknown and controversial), and potential direct impact 

on bone turnover by secreting an array of factors with autocrine and paracrine effects (7–9).

In parallel of figuring out the underlying mechanism of bone-fat interaction, there is an 

increasing interest of quantifying bone marrow composition using non-invasive imaging, 

which will enable large scale human subject studies and facilitate development of novel 

therapeutic strategies for osteoporosis with marrow fat severing as a novel treatment target. 

This review will discuss recent developments in quantitative MRI assessment of bone 

marrow composition, including water-fat MR imaging, MR spectroscopy, diffusion and 

perfusion MRI, followed by recent findings of interrelationship between MAT and skeletal 

health of human subjects in the context of osteoporosis.

2. MR TECHNIQUES FOR BONE MARROW COMPOSITION 

MEASUREMENT

2.1 MR Imaging and Spectroscopy for Quantifying Marrow Adipose Tissue (MAT)

Water-Fat MRI—MRI provides high resolution, 3D images with superior contrast of 

soft tissues and without ionizing radiation. Clinically, T1-weighted images without fat 

suppression, and fat-suppressed or fluid-sensitive T2-weighted images have been used 

widely for visualizing bone marrow lesions (10–12). T1-weighted MRI has also been used 

to quantify MAT volume based on thresholding methods (13), which however is limited by 

potential bias introduced by MR signal variability. Chemical shift-encoding based water-fat 

MRI (Dixon-MRI or CSE-MRI) has been developed and applied in bone marrow to provide 

superior fat suppression as well as more ‘absolute’ and standardized proton density fat 

fraction (PDFF) maps (14, 15).

The initial 2-point Dixon method (16) suffers from assuming perfect B0 homogeneity while 

Dixon imaging with 3 or more echoes takes into account field inhomogeneity and other 

co-founding factors (17). In Dixon methods, separate water and fat images are generated 

based on parameter estimation using either complex or magnitude signals (normally vendors 
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also provide in-phase and out-of-phase images). Methods based on complex images have 

the advantage of better noise performance and lower sensitivity to fat signal modeling errors 

compared to magnitude-based methods. However, complex-based methods are also more 

prone to phase errors induced by hardware imperfections including concomitant gradients, 

eddy currents and gradient delays (18–21). In addition to phase errors, other co-founding 

factors that need to be considered to minimize bias on PDFF estimate include the presence 

of multiple peaks in the fat spectrum, presence of susceptibility-induced fat resonance shifts, 

T2* effects, and T1 effects (22–26).

MAT quantification using Dixon imaging were reported to significantly correlate with 

measures from dual source CT (DECT) (r=0.88) and histology (r=0.772) (27), and MR 

spectroscopy (26, 28). A specimen study reported strong correlation between the known 

fat fraction and PDFF measured by 6-point Dixon imaging and iterative decomposition of 

fat and water with echo asymmetry and least-squares estimation (IDEAL) reconstruction 

(R2=0.97). However, a small systematic underestimate (−3.2%) by IDEAL PDFF was 

observed. The authors suggested that, although difficult, signal modeling allowing for 

independent correction of T2* for the different fat components as well as water might be 

useful toward more accurately estimating PDFF in the presence of trabecular bone (29).

Excellent in vivo reproducibility was reported for MAT quantification using water-fat MRI: 

coefficients of variation (CVs) were 1.7%, 3.0% and 4.8% for repeated scans on the same 

day with repositioning, 6 weeks and 6 months apart respectively (30, 31); and Intra-class 

correlation coefficients (ICC) > 0.97 for repeated scans 2-weeks apart (32). A recent study 

involving both 1.5T and 3T scanners from two vendors reported high linearity (r2 = 0.972–

0.978) and small mean bias (0.6–1.5%) with 95% limits of agreement within 3.4% of PDFF 

of lumber vertebral bodies across field strengths, imaging platforms, and readers (33).

MR Spectroscopy—MR spectroscopy (MRS) has been considered as the gold standard 

for quantifying MAT contents and composition. MRS studies in bone marrow have used 

primarily single voxel spectroscopy (SVS), which were acquired by either point-resolved 

spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM). STEAM has several 

advantages over PRESS. First, STEAM allows shorter minimal TE, hence leading to less 

T2-weighting of the signal. Second, by using 900 pulses only (PRESS uses 900 followed 

by two 1800 pulses), STEAM can provide sharper slice profile, and higher bandwidth 

which results in less chemical shift displacement artifact of the selected volume. Lastly, 

it was suggested that STEAM was less affected by J-coupling effects than PRESS, 

and consequently less prone to T2 underestimate and fat peak area overestimation (34). 

However, the major drawback of STEAM is that it provides only 50% SNR compared to 

PRESS at given TR and TE.

Figure 1 shows a typical MR spectrum collected in the vertebrae on clinical scanners. Based 

on peak assignment from high-resolution NMR spectroscopy in acylglycerol mixtures and 

MAT samples (35–37), lipid peak I, IV, V and VI are assigned to resonances of lipid protons 

at 0.90 ppm, 2.77ppm, 4.20 ppm, and 5.31 ppm respectively. Peak II is assigned to the 

superposition of resonances at 1.30 ppm and 1.59 ppm; and peak III is assigned to the 
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superposition of resonances at 2.03 ppm and 2.25 ppm. The water peak is at 4.7ppm. From 

these peaks, two parameters can be derived to characterize the marrow fat:

Fat Content (FC) = All lipids / (All lipids + water) * 100% [1]

Unsaturation Index (UI) = Unsaturated Lipids (5.3ppm) / All Lipids * 100% [2]

The in vivo MRS data analysis for accurate fat quantification in bone marrow, especially 

fat composition, is challenging due to line broadening caused by susceptibilitydifferences 

between bone and marrow, and superposition of spectral peaks. Peak area integration has 

been used, which however has limited capability of quantifying overlapping peaks (38–40). 

Peak fitting methods using LC models with pre-defined base-sets (41, 42) or using line-

shape models with prior information in either frequency-domain (26, 43, 44) or time-domain 

(45, 46) can help to improve the quantification accuracy. Previous studies with line-shape 

model fitting mostly used Lorentzian or Gaussian models for the fitting. A recent study 

showed that using Voigt model reduced the fitting error by 33.8% and 32.3% as compared 

to using Lorentzian and Gaussian models respectively (47), Figure 1b. Using Voigt models 

and time-domain fiting, a fully-automatic algorithm was developed with high reliability 

and repeatability of quantifying MAT contents and composition even for data collected at 

1.5 Tesla (47). Other factors affecting fat contents or composition evaluation include the 

different T2 weights of water and lipids in spectrum acquired with single TE. Acquiring data 

with multiple TEs will allow T2 correction (48).

In vertebral bodies, the CVs of FC were reported to range from 1.5% to 5.9% for rescans on 

the same day with repositioning between scans (43, 47, 49). The ICCs were 0.97 and 0.95 

and CVs were 9.9% and 12.3% for repeated scans at 6-week and 6-month respectively (50). 

In femur, the ICCs were 0.78–0.85 for repeated scan within a week (51), or CV of 5% within 

10 days (41). UI normally has inferior repeatability compared to FC, with CV reported to 

range 5.1% to 10.7% for scans on the same day with repositioning between scans (43, 47). 

The reliability of UI estimate depends on both the spectral SNR and spectral resolution (47). 

High field strength will help to improve both aspects. Studies reported that FC increases 

significantly from L1 to L4 (39, 43, 47), while UI has no such trend (47).

Compared to MRS, water-fat MRI has the advantages of higher spatial resolution, which 

is valuable especially in areas with heterogeneous marrow distribution. However, it is more 

challenging to quantify marrow fat composition accurately using water-fat MRI. Water-fat 

MRI or CSE-MRI, that can simultaneously quantify fat contents and composition has been 

developed, initially in liver (52, 53). The feasibility of applying this technique in bone 

marrow has been shown recently (54, 55), however, more validation is warranted in the 

trabecularized marrow. On the other hand, with recent novel algorithm developments, in 

vivo MRS showed excellent reliability of quantifying different fat components in marrow. 

However, SVS has limited coverage and only average measures over the whole volume 

is available. MR spectroscopic imaging (MRSI) can provide spatially resolved assessment 

(although normally still at a lower resolution than water-fat MRI). The feasibility of bone 
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marrow MRSI was shown in the knee (56), and more work is needed for evaluating 

osteoporosis in spine and other sites.

2.2 Perfusion and Diffusion MRI in Bone Marrow

Perfusion and Diffusion MRI are established quantitative MR techniques that have been 

applied in bone marrow for characterizing tumors and metastases, metabolic diseases, 

osteoporosis and fractures (15, 57, 58).

Perfusion MRI measures tissue hemodynamics, and perfusion MRI studies in bone marrow 

have been primarily performed using dynamic contrast-enhanced (DCE) MRI. T1-weighted 

MR images are acquired before, during and after rapid intravenous injection of Gd-based 

contrast agents that shorten T1 when the bolus passes through the tissue. Perfusion 

parameters, including maximum enhancement, slope and transit time, can be extracted 

from the perfusion time-signal curve, using empirical quantitative methods. To obtain 

more machine-independent parameters that are physiologically meaningful, including blood 

volume, flow, transit time constants and permeability, tracer kinetic modeling has been 

applied with the requirement of an arterial input function (AIF). In femur, CVs of MR 

perfusion (scan and rescan at one week) ranged from 0.59 (enhancement slope femoral 

head) to 0.98 (enhancement maximum acetabulum) (51). Decreased perfusion was observed 

with decreased BMD in vertebral body (45, 59, 60) and in femur (61, 62). Furthermore, 

femur perfusion parameters (and marrow fat) at baseline predicted bone loss in femoral neck 

over 4 years (63). However, the effect of fat signal on perfusion parameter quantification 

needs to be addressed (64, 65). Despite interesting results, the usage of contrast agent has 

impeded wide applications of perfusion MRI for studying osteoporosis.

Diffusion MRI is sensitive to Brownian motion, or ‘self-diffusion’ of water molecule that 

is related to tissue microstructure and organization by using an additional pair of diffusion-

weighting or dephasing gradient pulses into existing pulse sequences. Diffusion MRI based 

on single-shot echo-planar imaging (ssEPI) is the most commonly used sequences due to 

its fast acquisition and robustness to motion. However, applying ssEPI-diffusion MRI in 

bone marrow is challenging due to the susceptibility difference between bone and marrow 

and the images are prone to geometric distortions especially at high resolution. Methods 

to reduce such distortions include using reduced-FOV EPI, single-shot turbo-spin-echo 

or fast-spin-echo, and steady-state free-precession sequences showed promising results in 

bone marrow applications (58). Apparent diffusion coefficient (ADC) of normal vertebral 

bone marrow were reported to range between 0.2 and 0.6 × 10−3mm2/s, which is lower 

than almost all other tissues except fat in human body (58). The slow diffusion demands 

large diffusion weight which however will result in low SNR. Marrow ADC were reported 

to decrease from L1-L5 (66) and decrease with increasing age (67, 68), which may be 

explained by increased marrow fat from L1-L5 and with increasing age thus more restriction 

to the water diffusion. However, it should be noted that, because fat has very low diffusion, 

data acquisition without fat suppression or with less optimal fat suppression will result in 

underestimates of marrow ADC (65).

A number of studies reported decreased ADC with decreased BMD (67, 69, 70), other 

studies reported either no correlation between ADC and BMD (60), or even a slight increase 
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of ADC with decreased BMD (71). The different results between studies may be explained 

by different diffusion sequences and parameters, post-processing methods and study cohorts. 

In general, to accurately quantify marrow water diffusion is technically challenging 

(susceptibility inhomogeneity, low diffusion, requirement for optimal fat suppression). More 

technical development and clinical evaluations are needed to define the clinical values of 

diffusion MRI to evaluate and monitor marrow composition in osteoporosis.

3. Marrow Adipose Tissue and Skeletal Health

3.1 Marrow Fat and Bone

An early study reported an association between increased MAT and osteoporosis, 

using biopsy assessments of marrow composition (72). The availability of non-invasive 

measurements of marrow adiposity has allowed an expansion of research into associations 

with bone. A range of studies have reported a cross-sectional relationship between higher 

MAT and lower bone density, measured with dual x-ray absorptiometry (DXA) (45, 49, 60, 

73, 74). For example, studies in Hong Kong reported that average MAT was 68% vs 59% in 

women and 58% vs 50% in men, for those with osteoporosis and normal BMD, respectively, 

based on spine BMD by DXA (45, 60).

BMD measured by DXA is central to clinical assessment of fracture risk, but QCT measures 

of bone have important advantages for research, including a volumetric bone density 

(vBMD) measurement, ability to distinguish cortical and trabecular bone, and estimates 

of bone strength parameters. As with DXA measures of aBMD, lower vBMD by QCT is 

associated with increased MAT (49, 75–78). Trabecular bone appears to be more strongly 

associated with MAT than cortical bone. In a cohort of older adults in Iceland, higher MAT 

was associated with lower levels of trabecular vBMD at the spine, total hip and femoral 

neck, but was not significantly associated with cortical vBMD at total hip or femoral neck in 

women (49). For example, for a 1 SD increase in MAT (+8%), older women had 4.0% (95% 

CI −7.6 to −0.1%) lower trabecular vBMD and only 0.5% (95% CI −1.7 to 0.7%) lower 

cortical vBMD at the total hip. Negative correlations between MAT and vBMD have also 

been reported in obese patients measured prior to bariatric surgery (76, 77).

A limitation of these studies, which have used single energy (SE) QCT to assess the 

association between vBMD and MAT, is the artifact introduced by partial volume averaging, 

resulting in lower vBMD measurement due to bone voxels that contain fat. Thus, higher 

MAT artificially lowers SE QCT measurements of bone (78–80). The effects appear to be 

larger for trabecular versus cortical vBMD. A recent study assessed the effect of this artifact 

by comparing results using SE QCT and dual energy (DE) QCT which is less confounded 

by marrow fat levels. This study of 129 early postmenopausal women recruited at the Mayo 

Clinic reported that SE QCT under-estimates bone compared with DE QCT by 17.6% for 

trabecular spine vBMD but only 3.2% for cortical femoral neck vBMD (78). In spite of 

this under-estimation, the correlations between MAT, measured with DE QCT, and the two 

different estimates of vBMD, by SE QCT and by DE QCT, appeared similar. The correlation 

coefficient for the association between femur MAT and total vBMD was −0.33 for both 

SE QCT and DE QCT. For trabecular spine vBMD, the correlations with femur MAT were 
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−0.28 for SE QCT and −0.29 for DE QCT; correlations with spine MAT were −0.57 for SE 

QCT and −0.56 for DE QCT.

High resolution peripheral QCT (HR-pQCT) provides measurements of bone 

microarchitecture but is currently only available at distal sites. To date, one study of marrow 

fat and HR-pQCT has been published (81). In a study of young adults with anorexia (N=47) 

and healthy controls (N=55), total vBMD at the distal radius was negatively correlated 

with vertebral MAT (r=−0.35, p =0.03), measured by MRS. The negative correlation was 

limited to trabecular vBMD (r=−0.30, p=0.05) and not evident for cortical vBMD (r=−0.10, 

p=0.51). Stiffness of the distal radius, assessed with finite element analysis, was also 

negatively correlated with MAT (−0.37, p=0.02).

Cross-sectional studies have demonstrated a negative correlation between marrow fat 

and bone using different measurement techniques and in different populations. However, 

longitudinal studies of marrow fat and bone are crucial to establish the temporal relationship 

of changes. Few longitudinal studies are available to date. Griffith and colleagues reported 

that in postmenopausal women (average age 74 years) higher levels of MAT predicted 

greater bone loss at the femoral neck over four years (63). Those with MAT levels above 

the median had mean bone loss of 4.7% while those below the median had mean loss 

of 1.6%, although the comparison was not statistically significant (p=0.06). Among older 

adults in Iceland followed for an average of 3 years, we found that trabecular spine vBMD, 

spine compressive strength (derived from density and cross-sectional area), and trabecular 

femoral neck vBMD decreased more rapidly in those with higher BMAT in women but 

not in men (82). The difference in changes in trabecular spine vBMD was −0.9% (95% 

CI −1.7 to −0.1%) for each 1 SD (~8%) increase in baseline MAT. In contrast, the Mayo 

Clinic study did not find negative correlations between baseline MAT and changes in vBMD 

measured with SE QCT or DE QCT (78). However, this study also reported the correlations 

between changes in MAT and changes in vBMD and found a negative correlation between 

changes in femur MAT and trabecular spine vBMD (DE QCT) (r=−0.19%/year, p<0.05). 

Correlations between changes in MAT and BMD in the setting of bariatric surgery have also 

been reported (76). Those with increases in spine MAT had more BMD loss in spine vBMD 

(r= –0.58,p<0.01), six months after surgery.

3.2 Marrow Fat and Fracture

There is consistent evidence from cross-sectional studies, using different methods to 

measure marrow adiposity, that higher MAT is associated with prevalent vertebral fracture, 

identified morphometrically (49, 73, 83, 84). Iliac crest biopsies were used to assess marrow 

adiposity in women with prevalent vertebral fracture compared with controls (63% vs 54%, 

p=0.02) (83). An examination of MAT in the lumbar spine and proximal femur, using MR 

imaging, reported higher MAT at both locations in those with prevalent vertebral fracture 

(73). The mean MAT at the spine was 55% and 45% (p<0.001) in women with and without 

prevalent vertebral fracture. Among older adults (mean age 79 ± 3 years) participating in 

the Iceland AGES-Reykjavik study, vertebral MAT, measured by MRS, was 57% vs 54% 

(p=0.01) comparing those with and without vertebral fracture, adjusted for spine trabecular 

vBMD (49). Vertebral MAT is also associated with vertebral fracture among patients with 
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active Cushing’s syndrome (84). Average vertebral MAT by MRS was 65% vs 24% (p=0.03) 

in patients with (N=13) and without (N=7) vertebral fracture.

The evidence regarding clinical fracture is more limited. In a cross-sectional study 

comparing postmenopausal women with (N=36) and without (N=33) history of clinical 

fracture (primarily non-vertebral), vertebral MAT measured with MRS was similar between 

groups (44). In contrast, a recent cross-sectional study in women aged 40–70 comparing 

cases (N=77) with a recent non-vertebral fracture and controls (N=226) without fracture 

history reported increased odds of fracture with higher marrow adiposity index (MAI) (85). 

MAI was estimated from high resolution pQCT (HR-pQCT) scans with MAI = adipose 

volume (AV)/ total marrow volume (TV) * relative medullary density. For each 1SD increase 

in MAI, the odds of fracture history increased by 3.6 (95% CI 2.2–5.9) for distal tibia 

MAI and 4.2 (95% CI 2.5–7.2) for distal radius MAI. To date, there are no longitudinal 

studies reporting the relationship between MAT and incident fracture. Such an assessment is 

a critical component of research efforts to determine the effects of MAT on skeletal health.

3.3 Composition of Marrow Fat and Skeletal Health

Marrow fat is composed of differing proportions of saturated and unsaturated lipids, 

which may be important for skeletal health. As discussed above, MRS can distinguish the 

relative proportion of different carbon-carbon bonds within the marrow fat. These bonds 

do not correspond directly to specific lipids but do provide a non-invasive estimate of the 

proportion of saturated versus unsaturated lipids present. Methylene protons at 1.3 ppm are 

considered a marker for saturated bonds while olefinic protons at 5.3 ppm are a marker for 

unsaturated bonds. Results are generally reported as an “unsaturation index (UI),” calculated 

as the ratio of the 5.3ppm peak to all lipid peaks, as shown in Eq [2]. The UI differs by 

skeletal site, with higher UI at the more distal sites (86). In young adults, UI is reported to 

increase with age (87). However, a comparison of younger (mean age 28 years) and older 

(mean age 70 years) women found lower UI levels in vertebral marrow fat with older age 

(46). Similarly, in a study of marrow fat in the femoral head, measured with CSE-MRI, 

postmenopausal women had lower UI than pre-menopausal women (54). These studies on 

age and saturation index need further confirmation but suggest an increase in UI with 

skeletal maturation followed by a decrease in older age, at least for women.

A few studies have considered the relationship between marrow fat lipid composition and 

skeletal health. A study in Hong Kong reported that a lower proportion of unsaturated lipids 

is associated with lower bone density (46). Older women with osteoporotic BMD had a 

mean unsaturation level of 0.091 compared with 0.114 in those with normal BMD. In a 

study of lipid composition of marrow at the calcaneus, the ratio of saturated to unsaturated 

lipid was lower in those with normal BMD compared with osteopenic or osteoporotic BMD 

(42). In a study that included anorexic and healthy young women, higher levels of saturated 

lipids were associated with lower spine BMD while there was no association between 

saturated lipids and BMD (41).

A study using marrow fat specimens (N=24), obtained by iliac crest aspiration during hip 

surgery, also found lower unsaturation, measured with 11.7 T MRS, in the women with 

lower BMD (37). In contrast, in a study in Hong Kong using marrow fat specimens from 
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elective orthopedic surgery at different skeletal sites, including the tibia (N=80), proximal 

femur (N=38) and spine (N=8), analysis of fatty acid composition with gas chromatography 

found similar composition across levels of BMD (88). One published study has assessed 

unsaturated lipids and fracture, reporting that the unsaturation index was 1.7% lower (95% 

CI: −2.8% to −0.5%, p =0.005), in postmenopausal women with versus without prevalent 

fracture (44).

Importantly, these initial findings on lipid composition suggest that the different components 

of marrow fat have divergent associations with bone health. If these results are confirmed 

by further studies, it suggests that our current use of total marrow fat content in studies of 

marrow fat and bone, measured by either PDFF from water-fat MRI or all lipid components 

from MRS, may be obscuring relationships. We would predict that the same MAT content 

with different ratios of unsaturated and saturated fat would have different associations 

with BMD and with fracture. Future investigations should include separate assessment of 

unsaturated and saturated lipids in order to clearly distinguish the effects on bone.

CONCLUSIONS

Increasing evidence suggests a key role of marrow fat in skeletal health, affecting bone 

quantity and quality, although the mechanisms of such effects remain to be fully understood. 

There have been significant technical advances in reliable quantification of total marrow fat 

content, or PDFF, using MR techniques. One exciting area with new promising results is 

to explore the relationship between marrow fat composition and skeletal health. However, 

reliable in vivo quantification of marrow fat composition remains challenging due to the 

heterogeneous environment of marrow with presence of trabecular bone, as compared 

to other adipose tissues. Non-invasive imaging techniques need to be further developed, 

optimized and validated in marrow. Reliable, standardized and automatic post-processing 

is also urgently needed, especially for large scale multi-center studies that will be needed 

to assess the relationship between marrow fat and incident fracture. Accurate and reliable 

quantification of marrow fat contents and composition will help to deepen our understanding 

of bone-fat interaction, provide useful guidance on developing novel treatment strategy for 

osteoporosis with marrow fat as a treatment target, and serve as potential biomarkers and 

outcome measures for trials.
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Figure 1. 
A. Single voxel MRS data in L2 using PRESS sequence at 1.5 Tesla (female, 92 years old); 

B. Lipid peak I, IV, V and VI were assigned to resonance of lipid protons at 0.90 ppm [–

(CH2)n–CH3)], 2.77ppm [–CH=CH–CH2–CH=CH–], 4.20 ppm [–CH2–O–CO–], and 5.31 

ppm [–CH=CH–], respectively. Peak II was assigned to the superposition of resonances at 

1.30 ppm [–(CH2)n–] and 1.59 ppm [–CO–CH2–CH2–]; and peak III was assigned to the 

superposition of resonances at 2.03 ppm [–CH2–CH=CH–CH2–] and 2.25 ppm [–CO–CH2–

CH2–]. The water peak was at 4.7ppm. The spectrum was fitted using Voigt model (left 
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column), pure Lorentzian model (middle column) and pure Gaussian model (right column). 

Blue, red and green curves represent the experimental spectrum, the fitting spectrum, and 

the spectra of separated components, respectively. Fitting residuals are plotted in black and 

enlarged in bottom row. (Adapted from reference (47)).
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