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ABSTRACT OF THE DISSERTATION 
 
 

Modeling Molecular Recognition From Brownian Diffusion to Binding Thermodynamics 
 
 

by 
 
 

Timothy Cholko 
 
 

Doctor of Philosophy, Graduate Program in Chemistry 
University of California, Riverside, June 2021 

Dr. Chia-en Chang, Chairperson 
 

 Molecular recognition is a fundamental part of chemical processes, especially 

those relevant to biology. It refers to the process by which two molecules diffuse and 

eventually bind with one another to form a complex. This can be broken down into to 

broad aspects: kinetics and thermodynamics. Kinetics refers to the motion of molecules 

and the rates of their reactions with each other. Thermodynamics refers to the transfers of 

energy that drive the reaction when molecules bind together. The work in this dissertation 

uses computational methods to study both aspects of  molecular recognition in a range of 

systems, and it includes the application of existing methods and development of new 

tools for simulation and analysis. 

A strong focus is given to protein-ligand systems, in which the ligand is an inhibitory 

drug designed to shut down function of its target protein. The concept of developing 
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drugs (inhibitors) that bind with and disrupt the activity of their targets is the basis for 

much of modern medicine, and has had incredible success. The development of more 

effective inhibitors is a constant challenge. The physical and chemical principles that 

predict an inhibitor’s effectiveness have a complex interplay, and an understanding of 

these principles is challenging and highly sought after. Two projects described here use 

molecular dynamics (MD) simulations to elucidate these principles through better 

understanding inhibitor binding thermodynamics. These techniques are applied to a host 

of inhibitors for the carcinogenic CDK8 protein and to inhibitors of a protease (PLpro) of 

the recent SARS-CoV2 virus. Novel inhibitors of PLpro are also developed and 

validated. 

 The other work described herein studies molecular binding kinetics in both 

natural and engineered systems. Brownian dynamics simulation software is described 

which has been developed by the author and other group members. Its goal is to provide a 

robust tool with which researchers can study molecular recognition and association in a 

range of systems under varied conditions. This program, called GeomBD3, has been 

applied to study association kinetics and mechanisms in enzyme bioconjugates, protein-

ligand systems, and nucleic acid biosensors. These studies are included in this 

dissertation, and we thus demonstrate that Brownian dynamics simulations can aid in 

rational bio/chemical engineering design efforts and supplement experimental analysis.  
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Chapter 1: Introduction 

1.1 Overview of Select Computational Chemistry Methods 

The goal of computer simulations is to generate conformations of a system from which its 

dynamic properties or state functions can be predicted. Achieving this usually involves 

some kind of algorithm to propagate the system forward into new conformational states 

and a potential energy function to evaluate at each state. Various ways of generating the 

new conformational states and modeling the systems in their environment serve as the 

primary distinctions between several widely used classes of simulation. Such simulation 

methods have a range of uses from elucidating molecular recognition processes 

happening in novel engineered systems, to accurately calculating the free energy change 

of a protein-drug binding process. This breadth of application places the field of 

computational chemistry at the confluence of biology, chemistry, pharmacology, and 

materials science.  

One of the simplest approaches taken by researchers to predict the binding affinity of two 

molecules is known as molecular docking. Typically, docking is used to predict the 

binding of a small molecule, or ligand, to a larger receptor molecule, such a protein. 

However, it can also be scaled-up to predict protein-protein binding, for example. 

Docking is extremely widely used in the pharmaceutical industry as a starting point for 

drug discovery and optimization.1, 2 The primary goal is to find the preferred binding site 

and binding orientation, also called the binding pose, of the drug in its target protein.3 

The ideal pose is determined based on a docking “score”, the outcome of scoring function 

that consists of many additive terms. Usually scoring functions are based on a 
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combination of the drug-protein interaction energy, changes in internal energy of the two, 

and solvation energy. The robustness and accuracy of docking methods varies greatly, 

and one should consider the ultimate goal of the process in selecting a method. Often, it is 

necessary to identify potential “hits”, or candidate drugs, from an initial pool of 

thousands. In such a case, docking methods such as shape complementarity, where the 

binding potential is determined solely based on steric considerations can be used. Once 

promising drug scaffolds have been identified, fragment-based optimization may begin, 

in which a scaffold is altered one small fragment at a time, and evaluated with detailed 

docking simulation each time to reach an optimal result. Although docking has become 

firmly entrenched in industry as an indispensable tool, it is inadequate when high 

accuracy is required, and is incapable of simulating dynamic processes. 

 To simulate dynamics, or the sequential changes in a system over time, significantly 

more complicated methods are needed. One such method is Brownian dynamics (BD) 

simulations. BD simulations are generally most useful for studying long-range dynamic 

processes taking place on microsecond to second timescales.4 This includes molecular 

recognition, the process by which a molecule diffuses under the influence of random 

forces from the solvent and intermolecular forces from other solutes to eventually bind 

with a partner. Molecular recognition is relevant in any system in which the association 

of two key molecules is critical for function. In particular, these might include protein-

drug, enzyme-substrate, or target-probe encounters. In the realm of computer simulation, 

spatial scales of 10-6-10-7 m and temporal scales of milliseconds (10-3 s) – both of which 

are often reached in BD simulations – are considered quite long. Studies at these scales 
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therefore require a reduction in detail compared to most other chemical simulation 

methods. The reduction can be achieved most easily by choosing a simplified or coarse-

grained molecular model and description of the ambient environment. Despite the 

necessary loss of detail, BD simulations provide valuable insight into critical processes 

with temporal and spatial resolution that is difficult or impossible to achieve 

experimentally.  

Perhaps the most well-known of the methods that will be discussed here is molecular 

dynamics (MD) simulation. In an MD simulation, a system is propagated through time by 

generating a series of subsequent conformations to yield what is known as a trajectory of 

the system. After obtaining an initial system conformation, often from an experimentally 

determined structure, subsequent system conformations are generated by assigning 

velocities to all constituent parts of the system and allowing it to evolve under the 

influence of some potential energy function. Potential energy functions describing 

chemical systems are often called force fields, and their development and improvement is 

constantly ongoing. Standard force fields like AMBER5 or Charmm6 attempt to fully 

describe molecules in terms of their bond lengths, angles, and dihedrals in addition to 

electrostatic and van der Waals forces arising between non-bonded atoms. The level of 

detail in an MD simulation can vary dramatically, but typically includes an explicit 

representation of all atoms in the solute molecules as well as explicit solvent molecules. 

The applications of MD simulations cover a similarly wide range. Proteins may be the 

most widely studied macromolecules. Their evolution over time in a simulation can 

generate millions of unique conformations which can aid in the understanding of their 
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role in a myriad of vital chemical reactions. The same logic applies to study of drug-

bound proteins, which has led to MD simulation becoming a workhorse in the field of 

medicinal chemistry, particularly as a drug discovery and optimization tool. However, 

applications reach far beyond protein systems to include…. The level of detail in a 

typical MD simulation relegates them generally to time scales less than a few 

microseconds for system sizes of 105-106 atoms. Many methods exist for extending the 

accessible timescales or conformation sampling of molecular dynamics simulations. 

Among these are established techniques like accelerated molecular dynamics (aMD),7 

steered MD8 and metadynamics,9 which increase the likelihood of system crossing high 

energy barriers. The technique known as milestoning partitions a process of interest by 

placing milestones along a reaction coordinate. Many short trajectories are initiated from 

the milestones and stitched together to elucidate a longer process.10, 11  

The following chapters detail several projects which employed a handful of different 

simulation and molecular modeling methodologies. These methods were used to study 

chemical phenomena ranging from binding kinetics to protein-drug complex free energy 

calculations. First, a brief description of the theory underlying chemical simulations is 

given, from statistical mechanics to specific simulation algorithms. Next, common 

simulation protocols and molecular models are discussed in detail. Finally, there is a 

discussion of conventional simulation data analysis methods. 
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1.2 Statistical Mechanics 

The theoretical framework from which one can calculate system properties from 

simulation data is given by statistical mechanics.12, 13 In the statistical mechanics of a 

classical system, the macroscopic properties of a system depends on its microstate, that 

is, the states of all its smallest constituent parts. In simulations, these constituent parts are 

usually the individual atoms. In particular, the energies of the atoms, which depend on 

their position r and momentum p, are required to determine their microstate, and in turn, 

the macrostate of the system as a whole. Experimentally, the macrostate of a system 

would be obtained from a measurement taken over a period of time, so the value is an 

average over the time of the measurement. However, the data produced by simulations 

are instantaneous snapshots of system. A vast number of these snapshots represents an 

ensemble of system configurations. According to the ergodic hypothesis, the average over 

this ensemble equals the time average, thus thermodynamic properties can be measured 

from the series of configurations generated in simulations. Statistical mechanics 

calculates these properties as ensemble averages of a huge number of different 

macrostates of the system 

 〈𝐴〉 = ∬ 𝐴(𝑝𝑁, 𝑟𝑁)𝜌(𝑝𝑁, 𝑟𝑁)𝑑𝑝𝑁𝑑𝑟𝑁 (1.1) 

The angle brackets indicate the ensemble average, A is the property being calculated, and 

ρ is the probability density of the ensemble. Boltzmann statistics is another central 

concept of statistical mechanics that comes up in computational chemistry frequently. In 

a simulation, each configuration of the system in the generated ensemble has an energy, 



 

6 
 

and the configurations sampled should follow the Boltzmann distribution if the dynamics 

are physically realistic.12 The Boltzmann distribution is  

 𝑝𝑖 =
1
𝑄

𝑒
−𝐸𝑖
𝑘𝐵𝑇 (1.2) 

where pi is the probability of state i occurring, Ei is the total energy of state i, and kB is 

Boltzmann’s constant . Essentially, it says that the probability of a state occurring 

decreases exponentially as the state’s energy increases.14 The Q in the denominator is 

called the partition function, which is given as  

 𝑄 =  ∬ 𝑒
−𝐸𝑖
𝑘𝐵𝑇 𝑑𝑝 𝑑𝑟 (1.3) 

The partition function relates the macroscopic properties of a system to its microstates, 

and tells us how the probabilities of the microstates are divided up based on their 

energies. The partition function depends on the conditions of the system e.g., constant 

pressure, constant temperature, constant volume, etc. Since simulations only explicitly 

model an extremely tiny piece of the real world, the surroundings and their effect on the 

system needs to be taken into account. The concept of considering the simulated system 

and the way it interacts with its “surroundings” is known as the thermodynamic 

ensemble. In practice, most simulations are performed in the isothermal-isobaric (NPT) 

ensemble, in which the number of particles, pressure, and temperature are held constant. 

This way, the system can exchange heat with the environment by use of a thermostat,15, 16 

and the simulation mimics real-world chemical reactions more closely than other 

ensembles would allow.17 In simulations, a property called the free energy F is often of 



 

7 
 

interest. The free energy can be used to predict the favorability of a reaction, such as a 

drug binding to a protein. Moreover, the relative free energies of binding are an excellent 

way of ranking the affinities of a set of drug candidates. In statistical mechanics, the free 

energy expressed as  

 𝐹 =  −𝑘𝐵𝑇 ln ∫ exp (
−𝐸(𝑥)

𝑘𝐵𝑇
) 𝑑𝑥 =  −𝑘𝐵𝑇 ln 𝑄 (1.4) 

The relative free energy of two states A and B can therefore be represented as 

 
𝐹𝐵

𝐹𝐴
=  −𝑘𝐵𝑇 ln

𝑄𝐵

𝑄𝐴
 (1.5) 

which is a common relation used in relative free energy methods such as Thermodynamic 

Integration. The free energy can be broken down into enthalpy (potential energy) and 

entropy.  Entropy changes in a system that accompany a reaction are important for 

understanding the favorability and probability of a given state. The entropy can be 

defined in terms of the free energy as 

 𝑆 =  
〈𝐸〉 − 𝐹

𝑇
 (1.6) 

or in terms of probability as 

 𝑆 = 𝑘𝐵 ∫ 𝑝 ln 𝑝 𝑑𝑥  (1.7) 

where p is the probability of a given macrostate of the system. These first equation shows 

that entropy is proportional to the difference between the total energy E and the free 

energy F and to the temperature. The second shows that entropy is proportional to the 

probability of a state, or the number of ways in a which a state can be occupied. 
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Physically, entropy can be related to an increase or decrease of a system’s degrees of 

freedom. 

 

1.3 Simulation Algorithms 

MD simulations allow for observation of system properties or dynamics by generating a 

vast number of conformations that are sequential in time. To do this, one first provides 

initial coordinates of the system. Then, an algorithm to propagate it forward in time is 

employed successively until the desired property or dynamic process can be observed. 

The algorithm in MD simulations typically starts with Newtons second law 

 𝐹𝑖 = 𝑚𝑖𝑎𝑖 (1.8) 

Where F is the force acting on atom i, m is the mass of atom i, and a is the acceleration of 

atom i. The force on an atom can equivalently be related to the gradient of the potential 

energy of atom i 

 𝐹𝑖 =  −
𝑑𝑈
𝑑𝑟

 (1.9) 

 Combining equations 1.8 and 1.9, we have 

 −
𝑑𝑈
𝑑𝑟

= 𝑚𝑖𝑎𝑖  (1.10) 
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This relationship shows that the acceleration of atom i can be calculated from the 

potential energy gradient. The velocity v and position r of atom i have the following 

relationships with acceleration 

 𝑎 =  
𝑑𝑣
𝑑𝑡

 (1.11) 

 𝑣 =  ∫ 𝑎 𝑑𝑡 = 𝑎𝑡 +  𝑣0 (1.12) 

 𝑣 =  
𝑑𝑟
𝑑𝑡

 (1.13) 

 𝑟𝑖+1 =  ∫ 𝑣 𝑑𝑡 =  
𝑎𝑡2

2
+ 𝑣𝑖𝑡 + 𝑟𝑖 (1.14) 

The general algorithm for propagating a system forward in time is then to find the 

acceleration of the atom from the difference in potential energy of the current 

configuration and the previous one, update the velocity of the atom, move the atom to its 

next position rt+∆t according to that velocity, and repeat over all atoms in the systems for 

as many steps as needed.  

 𝑟𝑡+∆𝑡 = −
1

2𝑚𝑖

𝑑𝑈
𝑑𝑟

𝑡2 + 𝑣𝑡𝑡 + 𝑟𝑡 (1.15) 

Different methods of employing this same general algorithm have been developed,18-20 

and details of each will not be discussed. However, all have the pitfall that the 

acceleration is held constant during a finite user-defined simulation timestep. This 

introduces some fundamental error in all molecular simulations. To avoid non-physical 
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dynamics, one must ensure that the timestep is much smaller than the fastest degree of 

freedom in the system. For example, a bond stretch involving hydrogen happens on the 

order of 10-14 s. Following a widely accepted rule-of-thumb, the simulation timestep 

should be no more than 10-15 s, or an order of magnitude shorter. Constraining bond 

stretches involving hydrogen is often permissible and still yields accurate simulations 

while eliminating the fastest degree of freedom. As a result, common MD simulation 

timesteps are between 1-4 femtoseconds. With the choice of a timestep ∆t, in practice, 

each subsequent position of an atom is calculated as 

 𝑟𝑡+∆𝑡 = −
1
2

𝑎∆𝑡2 + 𝑣𝑡∆𝑡 + 𝑟𝑡 (1.16) 

Repeating this algorithm many times produces a molecular dynamics trajectory. It is a 

trajectory because all configurations of the system are generated deterministically and are 

sequential in time. By this algorithm a given set of initial coordinates and velocities will 

always result in the same trajectory. In practice, simulations of a system are often 

repeated using different initial atom velocities and/or slightly different initial coordinates 

to ensure adequate conformational sampling. A typical modern MD simulation will 

repeat these steps until the length reaches tens or hundreds of nanoseconds. Such time 

scales are enough to fully sample a small drug molecule’s binding mode in a protein, for 

example. 

Brownian dynamics (BD) simulations are generally aimed at understanding long time- 

and spatial-scale processes, such as molecular recognition happening across tens or 

hundreds of nanometers. Such a simulation typically has to be performed in an implicit 
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solvent to be tractable. One therefore needs to use a dynamics algorithm that can 

incorporate the solvent’s effect on molecular transport implicitly. The Langevin equation 

of motion is commonly used for this purpose. It is partly similar to Newton’s equation of 

motion used in MD simulations, except that additional terms are included to model 

solvent effects. The Langevin equation is 

 𝑚𝑎 = −∇𝑈(𝑟) − 𝛾𝑣 + √2𝛾𝑘𝑇𝑅 (1.17) 

where m is the particle’s mass, a is the acceleration, U(r) is the interparticle potential, v is 

the particle velocity, k is the Boltzmann constant, T is the temperature, and γ is the 

viscosity of the solvent, also called the damping coefficient. R is zero-mean, stationary 

Gaussian process imparting random forces on the diffusing particle that causes changes to 

its direction due to “collisions” with solvent molecules. As γ grows, the dynamics enter 

the non-inertial, or Brownian regime, where the force on the particle at any step has no 

correlation with any previous step. This is also called over-damped Langevin dynamics, 

where collisions with solvent molecules are extremely frequent, causing the solute 

particle to change direction rapidly.21 

 

1.4 Molecular Mechanics 

Force fields, the set of functions which describe to potential energy of a system, are at the 

heart of all chemical simulations. As described previously, they are central to the 

algorithm for generating new system conformations. As such, their accuracy has 
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immense influence on the ability of simulations to reproduce and predict results of real 

chemical systems.22-24 Typically, force fields describe the potential energy of the whole 

system by calculating interaction energies between pairs or sets of bonded atoms, and 

between pairs of non-bonded atoms. Such description of molecular systems is often 

called molecular mechanics. The bonded atom energy terms include bond stretches, bond 

angles, dihedral angles between three bonded atom pairs, and improper angles between 

three bonded atom pairs. The bond stretching terms represents the changing energy 

between a pair of bonded atoms as the bond stretches and contracts 

 𝐸𝑏𝑜𝑛𝑑 =  
1
2

𝑘(𝑥0 − 𝑥)2 (1.18) 

 

Figure 1.1 A bond distance represented by variable x. Blue balls are atoms. 

where k is a force constant and x0 and x are the current and equilibrium bond lengths. 

Similarly, bond angle terms represent the energy as the angle between three sequentially 

bonded atoms changes  

 𝐸𝑎𝑛𝑔𝑙𝑒 =
1
2

𝑘(𝜃0 − 𝜃)2  (1.19) 

 



 

13 
 

 

Figure 1.2. A bond angle between three atoms (blue balls) shown by the arrow. 

where k is a force constant and θ0 and θ are the current and equilibrium bond angles. 

Dihedral angles between a set of three bonded atom pairs are critical for describing the 

potential energy of differing molecular geometries (Fig XX). A simple example is the 

difference between a cis or trans conformation of 2-butene. The dihedral angle energy for 

any set of three bonded atom pairs is calculated as  

 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 =
1
2

𝑉𝑑(1 + 𝑐𝑜𝑠(𝑛𝜃 − 𝜃0))2 (1.20) 

where Vd is the barrier height, n give the periodicity of the function in a 360° rotation, θ is 

the measured angle and θ0 is an angle dictating where minima occur. 

 

Figure 1.3 Dihedral angle made up of four atoms. As the bond indicated by the arrow rotates, the 

angle between the plane containing the first three atoms from either end changes. 

Another form of dihedral, called an improper dihedral, is used to describe the energy 

related to planarity (and deviations thereof) of a set of four bonded atoms, where three 
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outer atoms are all bonded to the single central atom but not to each other (Fig XX). A 

good example is the sp2 hybridized carbon in a protein backbone. This energy is often 

calculated using the same function as regular dihedrals above 

 𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 =
1
2

𝑉𝑖(1 + 𝑐𝑜𝑠(𝑛𝜃 − 𝜃0))2 (1.21) 

 

 

Figure 1.4 An improper angle between four atoms is the angle between two planes containing 

three of the atoms, as shown by the solid square plane and dashed triangular plane. 

In addition to these four potential energy terms representing the interactions between 

bonded atoms, interactions between non-bonded atoms must also be considered. These 

are described by two additional terms: one to capture electrostatic interactions, and one to 

capture very close-range attractive and repulsive forces. Electrostatic interaction energy 

is described by the Coulomb potential 

 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 =  
𝑞1𝑞2

4𝜋𝜀0𝜀𝑟
 (1.22) 

where q represents the charge on either of the two interacting atoms, r is the distance 

between the atoms, ε0 is the electric permittivity of free space, and ε is the dielectric 
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constant of the surrounding medium or solvent. The Lennard-Jones (LJ) potential [ ] is 

the functional form used to capture the potential energy due to attractive dispersion forces 

and repulsive orbital overlap between two atoms. It is a simplified model which has the 

form  

 𝐸𝐿𝐽 = 4𝜀 [(
𝜎
𝑟

)
12

− (
𝜎
𝑟

)
6

] (1.23) 

where r is the distance between two atoms, ε is the depth of the potential well, and σ is 

the distance at which the potential energy is zero. In a typical implementation, atoms 

repel strongly as their van der Waals radii being to overlap, attract each other at moderate 

distances, and have virtually no interaction at distances beyond about 12 Å. Together the 

bonded and non-bonded potential energy terms make up a full molecular mechanics force 

field that calculates the potential energy of a system being simulated. Modifications 

exists, but the preceding general framework is used in almost all well-known MD 

simulation programs, including Amber5, 25, CHARMM,6 GROMOS,26, 27 NAMD,28 and 

many others. 

 

1.5 Solvent and Ion Models 

Depending on the properties or processes of interest in the simulation, an accurate model 

of the solvent is often just as important as the model of the solute. By far the most 

common solvent in which a simulation takes place is water. Hence, enormous effort has 

gone toward developing effective and computationally efficient models of water 

molecules. The most detailed solvent model in simulation is known as explicit solvent, in 
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which the solute is “solvated” or surrounded with atomic models of water molecules. A 

plethora of models exist, all of which have their own advantages and pitfalls.29, 30 The 

simplest and most commonly used models, such as TIP3P, TIP4P, and SPC/E, model 

water as three to four point charges.31, 32 The molecule is rigid, vastly reducing the 

number of degrees of freedom of the system and having little impact for most uses. 

However, a number other water force fields exist which model the atomic charges 

differently or allow the O-H bond lengths and H-O-H angle to change.33, 34 In explicit 

solvent simulations, the number of water molecules can be enormous, easily exceeding 

106
 in some cases. This drastically increases the time needed to calculate the potential 

energy of the entire system. Hence, many implicit water models have been developed, in 

which the influence of water is represented only mathematically. This usually comes in 

the form of random forces acting on the solute which mimic “collisions” with water 

molecules, and a dielectric screening parameter. Two popular implicit solvent models are 

the Poisson-Boltzmann (PB) and the Generalized Born (GB) models. The PB method 

calculates the electrostatic potential in a solvated system by modeling the water as a high 

dielectric medium.35 The effects of ions in solution are also built into the PB equation 

 𝛻𝜀𝛻𝜙 = 4𝜋𝜌 − 4𝜋 ∑ 𝑒𝑧𝑖𝑐𝑖
𝑖

exp (−𝑒𝑧𝑖𝜙/𝑘𝑇) (1.24) 

where ε is the dielectric, ϕ is the electrostatic potential, ρ is the solute charge density, z is 

the charge of ion type i, c is the density of ion type i, k is the Boltzmann constant, and T 

is the absolute temperature. The PB equation can accurately calculated the electrostatics, 

but it comes at a high computational cost. It is therefore rarely used in actual simulations, 
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and is more commonly used for analysis of simulation data, such as single-point energy 

calculations, or calculations on a small number of simulation trajectory frames. The GB 

implicit solvent model is computationally efficient enough to be used during actual 

dynamic simulations.36, 37 It is an approximation of the PB equation, which models atoms 

as hard spheres with a dielectric lower than the surrounding implicit solvent. The degree 

of electrostatic screening experienced by each atom is embodied in a parameter termed 

the Born radius.38 The GB electrostatic interaction is 

 𝐸𝐺𝐵 =  −
1
2

∑
𝑞𝑖𝑞𝑗

𝑓𝐺𝐵𝑖𝑗

(1 −
𝑒−𝜅𝑓𝐺𝐵

𝜀
) (1.25) 

where q is the magnitude of charge i or j, fGB is a function of the Born radii, κ is the 

Debye-Huckel screening parameter, and ε is the dielectric constant. 

Biological processes and reactions in vitro take place in environments with significant 

dissolved salt concentrations. It is therefore imperative for simulations to be able to 

model the effects of varying salt concentrations. Much like the aforementioned force 

fields for water, many force fields for ions exist as well, as researchers have sought to 

expand and improve the library of salt species covered. Similar to solvent, ions can be 

represented explicitly or implicitly in a simulation. One of the most commonly used 

explicit ion models was developed by Aqvist for cations of alkali and alkaline-earth 

metals.39 Although reproducing experimental data for ion behavior using simulations was 

difficult at first, ion force fields were improved many times over the past three decades. 

Force fields covering anions and cations of almost all metals commonly found in solution 
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in vivo and in vitro are now available. However, if one wishes to use an implicit solvent 

in a simulation, any salt concentration must also be treated implicitly. As mentioned 

above, the PB and GB implicit solvent models can accommodate a built-in salt 

concentration. Another simpler implicit salt concentration model is the Screened 

Coulomb model, in which the salt concentration has the effect of screening (weakening) 

the Coulombic interactions of explicit charges in the system. The Screened Coulomb 

potential is 

 𝐸𝑆𝐶 =  
𝑞1𝑞2𝑒−𝜅𝑟

4𝜋𝜀0𝜀𝑟
 (1.26) 

which is just like the Coulomb potential (eqn. XX) but with an exponential term that 

depends on a parameter κ. κ quantifies the screening effect as 

 𝜅 =  √
∑ (𝑧𝑖𝑒)2𝑐𝑖𝑖

𝜀𝜀0𝑘𝑇
  (1.27) 

where z is the formal charge, e is the elementary charge, and c is the number density of 

the ith ionic species. κ is also called the inverse Debye length, which is the distance at 

which electrostatic forces are effectively screened out.  

Implicit solvent and ion models share one major pitfall. Since they model the 

environment as a continuum of smoothly changing force, rather than a space occupied by 

discrete molecules, they are inherently incapable of reproducing specific interactions, 

such as hydrogen bonds between solute and solvent. Therefore, implicit models should 
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only be used when such interactions are not of interest or have a negligible role in the 

dynamics being studied. 

1.6 Preparing Initial Simulation Models 

One practical aspect of computational chemistry that has not yet been discussed is how 

one obtains the initial system coordinates that feed into the simulation software. The 

algorithm needs some initial set of coordinates from which to generate additional 

structures. These coordinates typically come from one of a few different sources. The 

most common is X-ray crystallographic data. This data, obtained by X-ray diffraction 

experiments, can be downloaded from online databases such as the Protein Data Bank 

(PDB), which currently contains structural information for over 170,000 biological 

macromolecules.40 The coordinate data can be downloaded in the ubiquitous “.pbd” file 

type, which can typically be made simulation-ready with little to no modification. 

Another method of obtaining initial system coordinates is to use data obtained form NMR 

experiments. Similar to the PDB, structural databases like  

If no experimentally determined structural data exists, computational chemists can use 

any of a number of molecular modeling programs41-43 to construct the molecules 

manually. In such cases, care must be taken to construct a physically realistic system, 

which may require days or weeks of literature research on the relevant topic. Manual 

construction is very often necessary when the system being studied is man-made e.g., 

chemically-engineered bio- and nanotechnologies, or novel materials.  
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No matter the source, initial system coordinates must be refined before simulations can 

begin. Atomic positions are resolved with error of ~2-3 Å in XRD experiments, and H 

atoms cannot be resolved at all. Moreover, user-created structures will undoubtedly 

contain sub-optimal molecular geometries. Therefore, the standard MD simulation 

protocol is to minimize and then equilibrate the system prior to the “production” 

simulation from which data will be collected. Minimization involves bringing the 

molecular geometry of the system to a local minimum of the potential energy function 

used to describe it. This has the effect of quickly removing spatial clashes between atoms 

that would produce unphysical dynamics. Several methods exist to search for a minimum 

of the potential energy function, such as the commonly used conjugate-gradient 

method.44 This method, similar to many others, takes steps in the direction of the minus 

gradient of the energy surface to eventually find a minimum as 

 𝑣𝑘 = −𝑔𝑘 + 𝛾𝑘𝑣𝑘−1 (1.29) 

where vk is the direction to move, gk is the energy gradient at point xk and γk is a scalar. In 

the first step of the search vk-1 does not exists, so the first move is the direction parallel to 

the gradient, given by the unit vector 

 𝑠𝑘 =
−𝑔𝑘

|𝑔𝑘| (1.30) 

After performing minimization, systems are generally allowed to equilibrate for many 

pico- or nanoseconds, depending on the size and conditions. The purpose of the 

equilibration phase is to slowly heat the system and allow it to move out of any far-from-
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equilibrium states that may have arisen as artifacts of the set-up process or the 

experimentally obtained structural data. Minimization is carried out at 0 K, so the 

geometry obtained is still not necessarily a realistic representation of the one that would 

exist at, for example, 298 K. The atoms of the 0 K geometry may experience unphysical 

dynamics if suddenly supplied with kinetic energy corresponding to 298 K, so usually 

systems are “heated” from 0 K to 298 K in 25 or 50 K increments. The equilibration 

should be monitored and continued until system properties such as temperature, pressure, 

total energy, or RMSD reach a plateau, indicating that equilibrium has been reached.12   

 

1.7 Analysis of Simulation Data 

Simulations generate an enormous amount of data. System properties are often calculated 

during the simulation at a frequency much higher than is needed for analysis. This is done 

to ensure accuracy of the dynamics, creating many gigabytes or even terabytes of data. 

Often the raw data can be saved at 1000-fold (or more) lower frequency for analysis. The 

scope of analyses available for simulation data reflects the vast applicability of 

simulations across countless fields of research. Here, we will focus only on the most 

common and popular analysis techniques. Previously, we mentioned that proteins are one 

of the most commonly simulated macromolecules. A commonly goal of such simulations 

is to elucidate protein dynamics. A measure called the root-mean-square deviation 

(RMSD) is a basic way of quantifying structural changes over time. Usually, the 

deviations of interest are those of the atomic coordinates. They are measured with 
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reference to another set of coordinates, often the initial simulation coordinates or the time 

average of the coordinates, and are plotted against time. The RMSD is quantified as 

 𝑅𝑀𝑆𝐷 =  √
1
𝑁

∑(𝑟𝑖 − 𝑟𝑟𝑒𝑓)
2

𝑁

𝑖

 (1.31) 

where N is the total number of atoms, ri and rref and current and reference atom 

coordinates, respectively. A closely related property is the root-mean-square fluctuation 

(RMSF), which averages the deviations of a particular part of a system over time. The 

RMSF is better than the RMSD if the goal is to identify the flexibility of various regions 

of a system e.g., a protein or enzyme. It is quantified as 

 𝑅𝑀𝑆𝐹 =  √
1
𝑇

∑(𝑟𝑖 − 𝑟𝑟𝑒𝑓)
2

𝑇

𝑖

 (1.32) 

where T is the total simulation frames. Often, both RMSD and RMSF are calculated, as 

the former can show structural changes in time, while the latter shows differences 

between regions within a system. Another structural measure is called the radius of 

gyration (Rg), which essentially quantifies the degree of compactness of a molecule. For 

example, it can be used to track the change in shape of a DNA molecule from elongated 

to curled as it diffuses on a surface. The Rg is calculated 
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 𝑅𝑔 =  √
∑ 𝑚𝑖𝑠𝑖

2𝑛
𝑖

∑ 𝑚𝑖
𝑛
𝑖

 (1.33) 

where m is the mass and s is the distance from the center-of-mass of atom i in a molecule 

of n atoms. Often it is useful to know the distribution of parts of a system around a 

central point. For example, one might wish to quantify the distribution of ions around a 

charged protein residue, or the distribution of substrate around an enzyme. This type of 

structural property can be given by the radial distribution function (g(r)) 

 𝑔(𝑟) =  
𝑛(𝑟)

𝜌4𝜋𝑟2𝑑𝑟
 (1.34) 

where n(r) is the number of particles in the range dr, ρ is the bulk number density of 

particles, and 4πr2dr is the volume of the space with thickness dr.  

 

The process of molecular recognition is commonly simulated. Elucidation of this process 

lends itself well to the tools of computational chemistry since it is difficult or impossible 

to observe the entire diffusional process experimentally. The diffusion of a molecule can 

be influenced by many factors, such as the viscosity of the solvent, temperature, ionic 

concentration, and intermolecular potentials. A property called the diffusion coefficient 

(D) can be calculated easily from simulation data as 

 𝐷 = lim
𝑡→∞

 
〈𝑟𝑡 − 𝑟0〉2

2𝑛𝑡
 (1.35) 
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rt - r0 is the displacement of the molecule after time t and n is the dimensionality of the 

diffusion. The diffusion coefficient can be used to calculate molecular association and 

dissociation rates. The diffusion-limited association rate kon of two molecules a and b is 

 𝑘𝑜𝑛 = 4𝜋(𝐷𝑎 + 𝐷𝑏)(𝑟𝑎 + 𝑟𝑏) (1.36) 

where D is the diffusion coefficient and r is the radius of molecule a or b.45 If there is an 

attractive or repulsive potential between the two molecules, kon is 

 
4𝜋(𝐷𝑎 + 𝐷𝑏)(𝑟𝑎 + 𝑟𝑏)

∫ 1
𝑟2

∞
𝑎+𝑏 𝑒−𝛽𝐸(𝑟)𝑑𝑟

 (1.37) 

where β is inverse temperature divided by Boltzmann’s constant and E(r) is the 

intermolecular potential.21  

Another heavily used method in the field of drug discover and design is calculation of the 

drug binding free energy. This is a measure of the change in energy between bound and 

unbound states of a drug-protein complex. The Molecular Mechanics Poisson-Boltzmann 

Surface Area (MMPB/SA) method46 is extremely popular for this purpose. It is relatively 

efficient and offers a useful level of accuracy in most cases, e.g. it can be used to rank the 

binding affinity of a set of drugs.47 The calculation itself has three main parts: the change 

in inter- and intramolecular potential calculated by molecular mechanics functions, the 

polar part of the solvation energy given by the Poisson-Boltzmann equation, and the non-

polar solvation energy which is proportional to the surface area of the drug and protein. 

Overall, this looks like 
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 ∆𝐺𝑀𝑀𝑃𝐵𝑆𝐴 =  ∆𝐺𝑀𝑀 +  ∆𝐺𝑃𝐵 +  ∆𝐺ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 (1.38) 

The ∆GMM is the molecular mechanics part, ∆GPB is calculated from Poisson-Boltmann 

equation (equation 1.24) and ∆Ghydrophobic is the non-polar solvation energy, which can 

have many different empirically-derived forms. All assume the contribution to binding 

free energy is proportional the solvent exposed surface area (SASA), such as  

 ∆𝐺ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 =  𝛾𝑆𝐴𝑆𝐴 + 𝑏 +  𝐺𝑑𝑖𝑠𝑝 (1.39) 

where γ is the solvent surface tension, b is an empirical fitting term, and Gdsip is the 

energy of attractive solute-solvent dispersion forces. ∆GMM  as well can be further broken 

down into two parts 

 ∆𝐺𝑀𝑀 =  ∆𝐸𝑀𝑀 − 𝑇∆𝑆 (1.40) 

To truly estimate the binding free energy, the entropy change ∆S of the ligand (drug), 

receptor (protein) and solvent must also be accounted for. Ignoring the entropy change, 

the binding enthalpy can still be calculated and used to rank the affinity of drug 

molecules for a protein. Methods that include entropy changes have been devised to 

calculate the absolute binding free energy (∆G) of a drug or the relative binding free 

energy (∆∆G) of two or more drugs. The most popular of these are known as Free Energy 

Perturbation (FEP)48, 49 and Thermodynamic Integration (TI).50 These methods involve 

slowly morphing one receptor-bound drug molecule into another during the simulation to 

find the binding free energy difference between the two. To find the absolute binding FE, 

the drug can also be decoupled from the receptor to find the FE difference between bound 
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and unbound states. In a method such as TI, the FE difference is found by integrating 

over a number of intermediate states as the system is interpolated between the initial (0) 

and final state (1) 

 ∆𝐺 = 𝐺(1) − 𝐺(0) =  ∫ 〈
𝑑𝐸(𝜆)

𝑑𝜆
〉𝜆 𝑑𝜆

1

0
 (1.41) 

Here, λ is a function that interpolates between the potential energy function of the two 

ligands. G(1) and G(0) are the FE values of the final and initial states, respectively, in 

which λ is 1 or 0, and E(λ) is the potential energy of the system as a function of λ. 
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CHAPTER 2: GeomBD3: Brownian Dynamics Simulation Package for Biological 

and Engineered Systems 

2.1 Abstract 

GeomBD3 is a robust, efficient Brownian dynamics simulation package designed to 

easily handle natural or novel, engineered systems of almost any size. The package 

described herein allows user to design, execute, and analyze BD simulations. The 

simulations use all-atom, ridged molecular models that diffuse according to overdamped 

Langevin dynamics and interact through electrostatic, Lennard-Jones, and ligand 

desolvation potentials. The program automatically calculates molecular association rates, 

surface residence times, and association statistics for any number of user defined criteria. 

Users can also extract molecular association pathways, diffusion coefficients, 

intermolecular interaction energies, association site probability density maps, and more 

using the provided supplementary analysis scripts. Here we detail the use of the package 

from start to finish and apply it to a protein-ligand system and a large nucleic acid 

biosensor. GeomBD3 provides a versatile tool for researchers from diverse disciplines 

that can aid in rational design of engineered systems or play an explanatory role as a 

complement to experiments. 
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2.2 Introduction 

Biological and chemical processes in vivo and in vitro typically start out with the two 

eventual binding partners separated by long distances which are traversed via Brownian 

motion of one or both molecules, followed by diffusion steered by intermolecular forces 

that leads to binding. This can take place on temporal and spatial scales of microseconds 

and micrometers,1, 2 making it far beyond the reaches of methods such as molecular 

dynamics simulation. However, such long-range diffusional processes must be studied in 

order to elucidate and orientational modifications of systems involving molecular 

recognition can dramatically affect the kinetics and mechanism of important reactions. 

Moreover, structural and orientational variables of the system can dramatically affect the 

reaction, so the ability to rapidly assess these effects is extremely valuable. Researchers 

often lack a tool to guide rational design of novel biotechnologies since most 

experimental techniques lack the ability to resolve subtle differences in device 

functionality that result from nano-scale modifications. 

The Brownian dynamics (BD) simulations carried out in our software, GeomBD3, are 

designed specifically for this purpose. GeomBD3 simulates the molecular recognition 

process of two molecules over relatively long distances and time scales in a vast array of 

different systems and system sizes. The software is easily capable of handling molecular 

models up to hundreds of nanometers in scale, thus allowing simulation of simple 

protein-ligand systems or very large nanoscale technologies, such as biosensors or 

surface-tethered multi-enzyme arrays. For example, the software has been used to study 

enzyme bioconjugates, understand DNA hybridization in biosensors,3 and replicate SPR 
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experiments under diffusive flux.4 In many biosensing and catalyst applications, the 

device surface properties are of high importance, as they can control substrate adsorption 

and diffusion and thus overall efficiency.5, 6 Structural modifications to enzymes, such as 

mutations or conjugation of other macromolecules, can alter catalytic efficiency 

dramatically.7 GeomBD3 provides the ability to study different permutations of a system 

to rapidly assess the effects of such modifications, thus providing a highly useful and 

unique perspective for researchers.  

Here, we present a detailed description of GeomBD3 along with two applications of the 

software and basic analysis of the results. Users are guided through the general 

simulation workflow, from set-up, to execution, and finally basic analysis. We then 

present applications of the program to a simple and well-studied protein-ligand system 

consisting of acetylcholinesterase and acetylcholine, then to a much larger and more 

complex nucleic acid biosensor system.  

 

2.3 Methods 

2.3.1 Implementation 

GeomBD3 source code is written entirely in C++, whereas several pre- and post-

simulation scripts are available in both C++ and Python3 to aid in simulation set-up or 

analysis. Simulation set-up, execution, and analysis are carried out using standard pdb, 

pqr, and dcd file types, generally in that order. The source code can be divided into two 

main categories: pre-simulation code for parameterization of the molecular models and 
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calculation of potential energy grids, and simulation code for running, recording, and 

monitoring the Brownian dynamics. The pre-simulation code consists of Parameterize.py 

for creating pqr files of the molecular model inputs, and the Gridder programs, for 

calculation of potential energy and excluded volume grids. The simulation code is 

implemented in just one program, GBD. All of this code can be found on our group 

GitHub at http://github.com/chang-group.  

2.3.2 Simulation Algorithm 

 

Figure 2.1. Flow chart of GeomBD3 simulations. Blue text represents program input or output; 

yellow boxes indicate programs included in the package. 

The steps carried out by the software package are summarized in Figure 2.1. The basics 

steps are as follows. Initially, users should obtain PDB format molecular models of the 

system, which consists of a ligand and a receptor. The ligand is the molecule which 

diffuses during the simulation, and the receptor is its intended binding partner. Since 

simulation time scales linearly with ligand size, the ligand should always be chosen as the 
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smaller of the two; however, it does not need to be a small molecule. For example, the 

ligand could be a large DNA molecule or protein. Next, the PDBs are converted into 

PQR type files by using the Parameterize.py script. These pqrs are then fed into the 

Gridder programs that pre-compute as much of the potential energy calculations as 

possible to save time. Users are not required to generate all three available potential grids, 

and should choose which are needed for the particular study.  

The remaining steps involve calculating the Brownian dynamics trajectories and 

monitoring output. An input configuration file should be supplied containing the system 

pqr files, desired grid files, and simulation parameters. Upon running the GBD code, first, 

a number of ligand replicates are positioned according to the desired starting conditions. 

If ligands lie on the potential energy grids, the intermolecular forces are calculated by the 

finite difference method. As an example, forces in the x dimension Fx are calculated as 

 𝐹𝑥 =
𝑈(𝑔𝑥 + 1, 𝑔𝑦, 𝑔𝑧) − 𝑈(𝑔𝑥 − 1, 𝑔𝑦, 𝑔𝑧)

2𝛿
 (2.1) 

where the potential U is a function of an atom's location on the grid specified by gx, gy, 

and gz, and δ is the grid spacing. A random force R with the properties 

 𝑅(𝑡) ≥ 0 (2.2) 

 

 𝑅(𝑡)𝑅(𝑡′) ≥ 𝛿(𝑡 − 𝑡′) (2.3) 

generated from a Gaussian process is also applied at this time, and ligands are moved to 

their next positions according to the overdamped Langevin equation  
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 𝑟𝑡+∆𝑡 = 𝑟𝑡 −
𝐷

𝑘𝐵𝑇
𝑑𝑈
𝑑𝑟

∆𝑡 + √2𝐷∆𝑡𝑅 (2.4) 

where r is the ligand position, D is the appropriate diffusion coefficient, kBT is 

Boltzmann’s constant times the absolute temperature, dU/dr is the potential energy 

gradient, and Δt is a linearly-scaled timestep. The translational and rotational diffusion 

coefficients are calculated based on the hydrodynamic radius rh of either the ligand only 

or the ligand and receptor; the former case is used when the receptor is attached to a 

surface i.e., when it is not diffusing. 

 𝐷𝑡𝑟𝑎𝑛𝑠 =
𝑘𝐵𝑇
6𝜋𝛾 (

1
𝑟ℎ,𝑙𝑖𝑔

+
1

𝑟ℎ,𝑟𝑒𝑐
) (2.5) 

 

 𝐷𝑟𝑜𝑡 =
𝑘𝐵𝑇
8𝜋𝛾 (

1
𝑟ℎ,𝑙𝑖𝑔

3 +
1

𝑟ℎ,𝑟𝑒𝑐
3) (2.6) 

At each new position, each binding criterion is checked and, if satisfied, a binding event 

is counted and stored. These steps are repeated until certain simulation parameters 

converge below a defined threshold or the user manually terminates the program. 

Relevant data pertaining to association rates, binding probabilities, site-specific binding 

times, ligand-receptor interactions, and simulation convergence are output to a standard 

log file. Simulation trajectories are output as a .dcd file for viewing and analysis. 

2.3.3 Simulation Set-up 

GeomBD uses all-atom, rigid molecular models with no internal degrees of freedom. 
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The initial step in the simulation workflow is to obtain pqr format input files containing 

the molecular structures of the ligand and receptor. These pqr files can be generated by 

the script Parameterize.py, which takes in pdb files and converts them to pqr format. The 

pdb files should be obtained elsewhere prior to this step. Any file in standard pdb format 

is acceptable, such as those downloadable from the Protein Data Bank.8 GeomBD3 also 

handles non-standard systems easily, as long as PDB molecular models can be created by 

the user and the parameters for new molecules are added to the .gdbp parameter files. 

These parameter files are simple to read and edit, making addition of new parameters 

very straightforward. Instructions for how to prepare a simulation of a novel system are 

provided in the USER MANUAL at http://chemcha-gpu0.ucr.edu/geombd3/. The pqr files 

outputted by Parameterize.py contain the coordinates, partial charges, and vdW radii of 

each atom, which are used later in energy calculations. The values of partial charges and 

vdW radii are taken from the AMBER ff14sb9 and GAFF10 force fields.  

After obtaining properly parameterized pqr files of the ligand-receptor system, users 

should run the series of Gridder programs to pre-compute the potential energy at all 

points in a grid-based representation of the receptor molecule. The following Gridder 

programs are currently available: 

  

Gridder-EX.cc - This creates a grid (the EX grid) defining the excluded volume of the 

simulation space due to the presence of the receptor. In other words, it defines the space 
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occupied by the receptor. The EX grid should always be generated before running a 

simulation. 

 

Gridder-ES.cc - This creates a grid (the ES grid) holding the electric field strength of the 

receptor molecule at each point with the screened Coulomb method.11 During simulation, 

the partial charge on each ligand atom can be multiplied by the appropriate grid value to 

give the electrostatic potential  between that atom and the receptor. The default padding 

value is 40 A. 

 𝐸𝑒𝑙𝑒𝑐 = 𝑘𝑐
𝑞1𝑞2𝑒

−𝑟
𝜅

𝜖𝑟
 (2.7) 

 

 𝜅 = √
∑ (𝑐𝑖𝑞𝑖

2)𝑖

𝜖𝜖0𝑘𝐵𝑇
 (2.8) 

 

where kc is Coulomb’s constant, q1 and q2 are the charges on ligand and receptor atoms, 

respectively, r is the interatomic distance, and ε is the dielectric of water and ε0 is vacuum 

permititivy . κ is the inverse Debye length, where ci and qi are the molar concentration 

and formal charge of ionic species i.  
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Gridder-LJ.cc - This creates grids (the LJ grids) storing the 12-6 Lennard-Jones potential 

ELJ between the receptor and each atom type in the ligand. The default padding and 

spacing values are 12 A and 0.5 A, respectively.  

 𝐸𝐿𝐽 = 4𝜀 [(
𝜎
𝑟

)
12

− (
𝜎
𝑟

)
6

] (2.9) 

 

where eps is the potential well depth, sigma is the interatomic distance of minimum 

potential, and r is the interatomic distance. 

Gridder-D.cc - This creates a grid holding the desolvation potential of the ligand. This 

potential is based on the degree of desolvation of each atom and the atom’s desolvation 

parameter, S. The function used in GeomBD3 borrows the functional form and 

parameters used in AutoDock4.2,12 which is similar to the concept developed by Stouten, 

et al.13 

 𝐸𝑑𝑒𝑠𝑜𝑙𝑣 = ∑ 𝑆𝑖𝑉𝑗𝑒
−𝑟𝑖𝑗

2

2𝜎2

𝑁

𝑗=0

 (2.10) 

 

 𝑆𝑖 = 𝑠𝑜𝑙𝑝𝑎𝑟 + 0.01097𝑞𝑖 (2.11) 

 

where Si is the desolvation parameter of ligand atom i, Vj is the fragmental volume of 

receptor atom j, rij is the distance between them, sigma is 3.5 A and N is the number of 
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atoms in the receptor molecule. In Si, solpar is an empirically-derived part of the 

desolvation parameter specific to each atom type and qi is the partial charge on the atom. 

 

During simulation, the potential at the coordinates of each ligand atom is approximated 

by trilinear interpolation between grid points. Each grid has a user-definable padding and 

spacing value. The padding variable is the distance the grid will extend in each 

dimension beyond the minimum/maximum atomic coordinates. The default padding 

values are 40, 12, and 12 Å for the ES, LJ, and D grids, respectively. The spacing 

variable is the distance between adjacent grid points and has a default 0.5 A for all grids. 

2.3.4 Configuring and Running the Simulation 

Once all the desired pre-computed grids have been made, the simulation configuration 

file should be set. The file consists of keywords followed by either a number or string 

specifying the value of the keyword. A user manual with detailed description of each 

keyword and guidance on selecting appropriate values is provided on our website at 

http://chemcha-gpu0.ucr.edu/geombd3/. Here we will discuss only a brief overview of the 

file.  

The first handful of keywords deal with simulation output. Next, the pqr files generated 

previously should be specified after the ligand and receptor keywords. This is followed 

by the specification of the grid files to be loaded. The grid keyword followed by a 

specific string denoting the grid type e.g., es for electrostatic, should be given first. Then 

the path to the appropriate grid file should follow.  
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The next set of keywords specify the simulation parameters. These include ligandStart, 

boundary, boundWall, and fixedReceptor. For example, with ligandStart and boundary, 

users can select periodic or reflective boundary conditions, and the bounding cell may be 

either cuboid, hexagonal prismatic, or spherical. In addition, ligands may be started from 

an xy-aligned plane, a random point, a specified point. Alternatively, simulations can be 

run under NAM conditions,14 in which ligands start from a spherical plane and exit at a 

larger spherical boundary. These options are made available so that simulations can be 

made to match experimental and natural conditions, or so that more appropriate  

comparisons can be made between simulated and theoretical results. Association rate 

constants in most simulations are calculated as 

 𝑘𝑜𝑛 =
1

𝑐 ∗ 𝑡𝑎𝑣𝑔
 (2.12) 

where tavg is the average association time and c is the ligand concentration. Under NAM 

conditions, the association rate constant is calculated as 

 𝑘𝑜𝑛 =
4𝜋𝐷𝑟𝛽

1 − (1 − 𝛽) 𝑘𝑑(𝑏)
𝑘𝑑(𝑞)

 (2.13) 

 

where D is the relative diffusion coefficient of ligand and receptor, beta is the fraction of 

ligands that bound before exiting, and b and q are the radii of the starting and exiting 

spherical boundaries, respectively. The biasForce keyword allows users to apply a 

biasing force along one dimension to mimic flow of the ligands inside the system. For 

example, such conditions were used to simulate surface plasmon resonance experimental 
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conditions to investigate the effect of flow on ligand association to HIV protease.4 The 

ligand diffusive flux resulting from this force can be calculated as      

 
𝑐𝐹𝑏𝑖𝑎𝑠

𝑓
 (2.14) 

where c is the ligand concentration, Fbias is the biasing force, and f is the friction force on 

the diffusing ligand.  

The bindgroups keyword defines the criteria that must be met in order to achieve binding 

between ligand and receptor. This should be carefully set based on visualization of the 

molecular models and knowledge of the system/process being simulated. Each binding 

criterion consists of an XYZ point, an index number of a ligand atom, and a distance. 

Taken altogether, this represents the distance between the ligand atom and XYZ point 

below which the two molecules are considered bound. For example, the input file line 

bindgroups 5.1 -9.8 15.0 6 12.0 

specifies a condition in which ligand atom number 6 must be less than 12.0 A from the 

cartesian point (5.1, -9.8, 15.0) to record a binding event.  

Simulations can be set to automatically terminate under specific conditions, or they can 

be manually terminated by the user at any time. Most often, simulations are set to 

terminate when some value of interest has converged below a certain threshold. For 

example, if mean binding times tavg are desired, GBD3 can be set to terminate when the 

SEM of binding times is below a threshold set by the convergence input keyword. In such 

a case, setting convergence to 0.01 would cause GBD3 to stop when the SEM/tavg was < 
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0.01. When a large number of replicates are being run e.g., 5000, the initial data in the 

log file is necessarily biased toward fast-binding trajectories, and care should be taken to 

make sure that tavg is actually converged as much as the SEM would suggest. This is 

easily done by visualization of a graph of tavg versus Nbind. An obvious uptrend can be 

seen, as in the beginning, only trajectories that by chance bound quickly have been 

sampled. Generally, one needs to sample several times Nreplicates binding events before 

the curve becomes reasonably flat.     

 

2.3.5 Simulation Output 

Five files are automatically outputted by GeomBD3. The log file (.log extension) 

contains several useful data. It displays updated information about the number of binding 

events, the average binding time, the SD and SEM of binding times, convergence of the 

mean binding time, ligand exit events, and ligand-receptor interaction energies. All 

information about binding events is displayed separately for each specified binding 

criterion. 

The pqr and dcd are needed for viewing the trajectory. These can be loaded together into 

any program which supports these file formats e.g., VMD,15 Pymol, etc., to view the 

simulation. The pqr contains the initial system configuration, that is, the starting positions 

of all ligand replicates; it does not contain the receptor coordinates. The dcd file 

containing the simulation frames should be loaded into the pqr file, and the trajectories 

can be easily visualized. Users will see trajectories of all ligand replicates displayed at 
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once. Individual trajectories can be viewed by selecting the appropriate representation in 

the chosen software. Tips for trajectory visualization and analysis are given in the USER 

MANUAL. The receptor pqr should be loaded separately to view ligand-receptor 

interactions.  

There are two additional data files with the extensions .t and .crd. The former contains 

the restart times and binding information, while the later contains the coordinates for each 

ligand replicate. These files can be used to restart a simulation by restoring the 

coordinates and trajectory lifetimes of all ligand replicates as well as the statistics for all 

binding criteria. 

2.4 Example Applications 

2.4.1 Case 1: Protein-Ligand Binding 

One of the most common and straightforward uses of GeomBD3 is to calculate the rate of 

protein-ligand binding. Here we demonstrate such a simulation applied to the 

acetylcholinesterase-acetylcholine (AchE-ach) system. The ligand and receptor molecular 

models were derived from an X-ray crystal structure of AchE from Torpedo Californica 

(PDB ID: 2ace).16 Naturally, acetylcholine should be chosen as the ligand and 

acetylcholinesterase as the receptor. The total charge on ach and AchE were 1 e and 8 e, 

respectively. Acetylcholine replicates were started from random points in a a 6.54 ✕ 107 

Å3 spherical simulation space with the stationary grid representation of AchE at the 

center. When ligands passed the boundary of the sphere, they were returned to their 

previous position and a new forward step was generated, so the sphere essentially acted 
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as an impenetrable wall. The binding site is chosen as point (1.3, 56.7, 74.2), which 

corresponds to an atom in the gorge leading to the catalytic binding site.17 Here, we are 

only interested in calculating the association (binding) rate. The simulation is set to 

terminate when the SE of the mean binding time has converged below 0.01 of the mean 

binding time. The timestep is scaled between 30 and 500 Å with a fine setting of 0.025 ps 

and coarse setting of 0.5 ps. Since AchE is known to be driven by electrostatics,18 we run 

simulations under several different conditions: full electrostatics, 0.5 M implicit 

monovalent salt, and no electrostatics. All simulations contained LJ and ligand 

desolvation potential grids.  Results are summarized in Table 2.1. 

 

 kon ✕ 109 M-1s-1  
0.0 M 0.5 M no ES grid 
94.0 6.58 2.95 

Table 2.1 Association rate constant for AchE-ach with full electrostatics (0.0 M ions), 0.5 M 

ions, and no electrostatic interactions. 

 

Our results show the dramatic decrease in association rate as electrostatics are screened 

or completely turned off. We also analyzed the non-specific association of ach to AchE 

with the program ProbDX. This program accepts a PDB-format trajectory and maps 

ligand coordinates to the nearest grid point, then outputs a DX-format density map which 

can be visualized (Figure 2.2a). This revealed that the ligand spends much of its time 

associated to the protein surface and identified multiple association hot spots. All are 

located on one side of the enzyme owing to its strong dipole.  
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Figure 2.2. (a) Acetylcholinesterase with common ligand association sites indicated by pink dots. 

Higher dot density indicates higher probability of association. (b) Model DNA biosensor with 

multiple probes (blue strands) at which the target DNA (yellow strand) can bind. 
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2.4.2 Case 2: DNA Hybridization in a Biosensor   

GeomBD3 is also useful for simulations of large or complex engineered systems that 

span tens or hundreds of nanometers across. As a second GBD3 application, we present 

previously published data3 from a simulation of DNA hybridization (binding) taking 

place in a biosensor (Figure 2.2b). The sensor consisted of ssDNA probes inserted into a 

self-assembled monolayer of functionalized alkanethiol molecules on gold. With 

GeomBD3, it was possible to rapidly study the sensor under different probe surface 

densities and equipped with different functional groups on the SAM. These simulations 

used one or more ssDNA probes inserted into a slab of SAM as the receptor, and a 

ssDNA molecule complementary to the probe strand as the ligand. The simulation space 

was bounded by a cuboid box with periodic boundary conditions in the x and y 

dimensions and a hard wall at the top of the box. The x and y dimensions of the box were 

varied to encompass different amounts of SAM, yielding three different probe surface 

densities. Additionally, hybridization with clusters of five tightly-packed probes was also 

studied. The probe density was varied while also varying SAM functional groups 

between -OH, -COO-, and -CH3, yielding 15 different system permutations in total.  

 

Varying the surface properties by changing SAM functional groups can dramatically alter 

DNA-surface interactions and thus hybridization rates. In some cases, DNA adsorbs and 

diffuses along the SAM 2-dimensionally, which may slow down or speed up 

hybridization depending on the strength and nature of the interaction. We analyzed the 
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fraction of hybridization taking place through a surface-mediated mechanism, which we 

label as 2-dimensional (2D) hybridization.  

 

In the biosensor with a cluster of probes, each probe (labeled 1-5; 5 at center) represented 

a possible binding site. GeomBD3 accepts multiple binding criteria, and can 

independently track binding data for each criterion. We were interested in quantifying the 

proportion of hybridization taking place at each probe in order to understand how tight 

probe packing may influence accessibility. The results are presented in Table 2.2. 

 separation 
(nm) 

𝛕sim (μs) hybridizing probe (%) 𝛾 ΔEelec 
(kcal/mol) 

ΔEvdW 
(kcal/mol) 1 2 3 4 5 

CH3 5.0 22.6 ± 0.7 23 23 26 26 2 0.13 -0.35 ± 0.26 -3.71 ± 1.60 
10.0 14.4 ± 0.1 22 20 27 23 7 0.20 
15.0 15.7 ± 0.4 21 13 24 27 14 0.24 

COO- 5.0 20.6 ± 0.4 15 30 29 24 2 0.03 0.21 ± 0.33 0.00 ± 0.00 
10.0 15.4 ± 0.2 23 19 28 26 4 0.03 
15.0 16.1 ± 0.5 15 19 24 22 20 0.04 

Table 2.2 Hybridization time and probe site, fraction 2D hybridization (𝛾), and DNA-SAM  

interaction energies on the two different SAMs used for probe cluster simulations.  

 

2.5 Conclusion 

GeomBD3 provides researchers with an extremely robust Brownian dynamics software 

package. The program uses rigid all-atom molecular models of a diffusing ligand and 

stationary grid-based representation of a receptor. Molecular recognition is simulated by 

diffusing a molecule according to overdamped Langevin dynamics and evaluating one or 
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more user-defined binding criteria to track binding events. It is capable of quickly 

simulating binding kinetics for drug-protein systems as well as identifying binding 

pathways and non-specific adsorption sites as demonstrated by our application to the 

acetylcholinesterase enzyme. GeomBD3 is also excellent for exploring the effects that 

specific system properties have on molecular recognition. For example, several different 

system permutations may be studied and compared rapidly to assess the factors important 

for optimal design. We demonstrate this in our application of the program to a nucleic 

acid biosensor with varied probe surface density and equipped with three different SAM 

surfaces. This also demonstrates the applicability to non-standard engineered systems 

extending hundreds of nanometers in multiple dimensions. Atomic parameters for novel 

systems can be easily added to the plain-text parameter files. Thus, the package can easily 

and efficiently meet the needs of researchers in a wide range of disciplines as both an 

explanatory and predictive tool.  

 

 

 

 

 

 

 



 

50 
 

References 

1. Berg, O. G.; von Hippel, P. H., Diffusion-controlled macromolecular interactions. Annual 
review of biophysics and biophysical chemistry 1985, 14 (1), 131-158. 
 
2. Jackson, M. B., Molecular and cellular biophysics. Cambridge University Press: 2006. 

3. Cholko, T.; Chang, C.-e. A., Modeling Effects of Surface Properties and Probe Density 
for Nanoscale Biosensor Design: A Case Study of DNA Hybridization near Surfaces. The Journal 
of Physical Chemistry B 2021, 125 (7), 1746-1754. 

4. Kaushik, S.; Chang, C.-e. A., Molecular mechanics study of flow and surface influence in 
ligand-protein association. Frontiers in Molecular Biosciences 2021, 8, 284. 

5. Cholko, T.;  Kaushik, S.; Chia-en, A. C., Dynamics and molecular interactions of single-
stranded DNA in nucleic acid biosensors with varied surface properties. Physical Chemistry 
Chemical Physics 2019, 21 (29), 16367-16380. 

6. Gong, P.; Levicky, R., DNA surface hybridization regimes. Proceedings of the National 
Academy of Sciences 2008, 105 (14), 5301-5306. 

7. Li, Y.-C.;  Chao, T.-C.;  Kim, H. J.;  Cholko, T.;  Chen, S.-F.;  Li, G.;  Snyder, L.;  
Nakanishi, K.;  Chang, C.-e.; Murakami, K., Structure and noncanonical Cdk8 activation 
mechanism within an Argonaute-containing Mediator kinase module. Science Advances 2021, 7 
(3), eabd4484. 

8. Berman, H. M.;  Westbrook, J.;  Feng, Z.;  Gilliland, G.;  Bhat, T. N.;  Weissig, H.;  
Shindyalov, I. N.; Bourne, P. E., The protein data bank. Nucleic acids research 2000, 28 (1), 235-
242. 

9. Maier, J. A.;  Martinez, C.;  Kasavajhala, K.;  Wickstrom, L.;  Hauser, K. E.; Simmerling, 
C., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. 
Journal of chemical theory and computation 2015, 11 (8), 3696-3713. 

10. Wang, J.;  Wolf, R. M.;  Caldwell, J. W.;  Kollman, P. A.; Case, D. A., Development and 
testing of a general amber force field. Journal of computational chemistry 2004, 25 (9), 1157-
1174. 

11. Hassan, S. A.; Mehler, E. L., A critical analysis of continuum electrostatics: the screened 
Coulomb potential–implicit solvent model and the study of the alanine dipeptide and 
discrimination of misfolded structures of proteins. Proteins: Structure, Function, and 
Bioinformatics 2002, 47 (1), 45-61. 

12. Huey, R.;  Morris, G. M.;  Olson, A. J.; Goodsell, D. S., A semiempirical free energy 
force field with charge‐based desolvation. Journal of computational chemistry 2007, 28 (6), 
1145-1152. 

13. Stouten, P. F.;  Frömmel, C.;  Nakamura, H.; Sander, C., An effective solvation term 
based on atomic occupancies for use in protein simulations. Molecular Simulation 1993, 10 (2-6), 
97-120. 



 

51 
 

14. Northrup, S. H.;  Allison, S. A.; McCammon, J. A., Brownian dynamics simulation of 
diffusion‐influenced bimolecular reactions. The Journal of Chemical Physics 1984, 80 (4), 1517-
1524. 

15. Humphrey, W.;  Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of 
Molecular Graphics 1996, 14 (1), 33-38. 

16. Raves, M. L.;  Harel, M.;  Pang, Y.-P.;  Silman, I.;  Kozikowski, A. P.; Sussman, J. L., 
Structure of acetylcholinesterase complexed with the nootropic alkaloid,(–)-huperzine A. Nature 
structural biology 1997, 4 (1), 57-63. 

17. Axelsen, P. H.;  Harel, M.;  Silman, I.; Sussman, J. L., Structure and dynamics of the 
active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and 
X‐ray crystallography. Protein Science 1994, 3 (2), 188-197. 

18. Ripoll, D. R.;  Faerman, C. H.;  Axelsen, P. H.;  Silman, I.; Sussman, J. L., An 
electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. 
Proceedings of the National Academy of Sciences 1993, 90 (11), 5128-5132. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 
 

CHAPTER 3. Modeling Effects of Surface Properties and Probe Density for 

Nanoscale Biosensor Design: A Case Study of DNA Hybridization Near Surfaces 

 

3.1 Abstract 

Electrochemical biosensors have extremely robust applications while offering ease 

preparation, miniaturization, and tunability. By adjusting the arrangement and properties 

of immobilized probes on the sensor surface to optimize target-probe association, one can 

design highly-sensitive and efficient sensors. In electrochemical nucleic acid biosensors, 

a self-assembled monolayer (SAM) is widely used as a tunable surface with inserted 

DNA or RNA probes to detect target sequences. The effects of inhomogeneous probe 

distribution across surfaces are difficult to study experimentally due to inadequate 

resolution. Regions of high probe density may inhibit hybridization with targets, and the 

magnitude of the effect may vary depending on the hybridization mechanism on a given 

surface. Another fundamental question concerns diffusion and hybridization of DNA 

taking place on surfaces and whether it speeds up or hinders molecular recognition. We 

used all-atom Brownian dynamics simulations to help answer these questions by 

simulating the hybridization process of single-stranded DNA (ssDNA) targets with a 

ssDNA probe on polar, non-polar, and anionic SAMs at three different probe surface 

densities. Moreover, we simulated three tightly-packed probe clusters by modeling 

clusters with different inter-probe spacing on two different surfaces. Our results indicate 

that hybridization efficiency depends strongly on finding a balance which allows 
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attractive forces to steer target DNA toward probes without anchoring it to the surface. 

Furthermore, we found that the hybridization rate becomes severely hindered when inter-

probe spacing is less than or equal to the target DNA length, proving the need for a 

careful design to both enhance target-probe association and avoid steric hindrance. We 

developed a general kinetic model to predict hybridization times and found that it works 

accurately for typical probe densities. These findings elucidate basic features of 

nanoscale biosensors which can aid in rational design efforts and help explain trends in 

experimental hybridization rates at different probe densities. 

 

3.2. Introduction 

Nanoscale electrochemical sensors have seen extensive use for detecting a range of 

important biomolecules including viral DNA1, 2, drug-resistant genes3, and dangerous 

damage or mutations in genetic material.4 Among them, electrochemical nucleic acid 

biosensors containing a self-assembled monolayer (SAM) of functionalized alkanethiols 

on gold or other substrates have proven to be excellent designs for detection of 

biomarkers because of their tunability, ease of miniaturization, and greater accuracy than 

current techniques.5-8 In this work, we studied an electrochemical DNA biosensor in 

which immobilized single-stranded DNA (ssDNA) inserted into a SAM acts as a probe 

for its complementary sequence.  The SAM consists of an alkane chain with a thiol head 

group that bonds to a gold substrate and a functional tail group on the solvent-exposed 

end. The tail group largely controls the surface properties of the SAM and can be selected 
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to suit a number of possible applications, including adsorption or repulsion of specific 

molecules such as proteins or ions5, 9, 10, modeling biological surfaces11-13, and 

immobilization of DNA for controlled assembly14, 15. The sensor works by detecting the 

formation of double-stranded DNA from complementary single-stranded target and probe 

sequences –  a process known as hybridization. Hybridization may occur through a bulk 

solvent diffusive encounter or through a surface-mediated mechanism.  

 

Current techniques for characterizing the structure of SAMs, which plays a major role in 

determining the nature of DNA–SAM interactions, lack the resolution to describe 

nanoscale and sub-nanoscale features.16-18 Many unanswered questions remain about the 

organization of the DNA probes on SAMs and its effect on overall sensor function. For 

example, heterogeneity in surface density of inserted DNA probes has been observed, and 

these differences in density may have a substantial effect on molecular recognition 

between the target and probe. Moreover,  the nature of hybridization is believed to be 

much more complicated at a surface than in bulk solution because of the unique 

thermodynamic environment of probes concentrated on a surface.19 Interaction between 

probes and the monolayer or between neighboring individual probes can affect their 

ability to hybridize with incoming target strands. Indeed, Qiao et al. found evidence that 

hybridization on surfaces is slowed compared to in solution20, and that repulsions 

between neighboring probes can hinder hybridization.21  Understanding the effect of all 

these factors on behavior of DNA on various surfaces can help steer rational design of 

nucleic acid biosensors.  
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Surface plasmon resonance, atomic force microscopy, and electrochemical 

measurements17, 22, 23 have been used to study the behavior of DNA on SAMs, but all 

have the drawback of detecting only the hybridized double-stranded DNA and provide 

little to no information about the mechanism of hybridization. Computational modeling 

and simulation can be tremendously useful in this regard, especially for their ability to 

elucidate processes on spatial and temporal scales inaccessible to experimental 

techniques.24-28 Moreover, a computational approach allows for inexpensive study of 

many permutations of a system. This can play an explanatory role by systematically 

varying certain system properties, or can be used to guide design toward optimal 

function. For example, simulation has been successfully used on its own and in 

conjunction with experimentation to elucidate SAM interactions with proteins,29, 30 

surface-bound receptors,31 biosensor dynamics32 and protein-ligand interactions.33, 34 One 

important question concerns the amount of 2-dimensional (2D) hybridization, that is, 

surface-mediated diffusion of target DNA along the SAM leading to hybridization, versus 

the amount of 3-dimensional (3D) hybridization, in which hybridization occurs by 

diffusion of targets through the solvent directly to probes. This property is relevant in 

many fields; genotyping and gene expression profiling take advantage of DNA 

microarrays utilizing special surfaces,35, 36 and catalysis may utilize surfaces with 

immobilized catalysts to enhance reaction rates.37 Such processes can be directly 

observed through simulations to provide essential missing knowledge of sensor function. 
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We performed all-atom Brownian dynamics simulations to answer open questions about 

nanoscale features of these biosensors that can aid rational design. In total, sixteen 

simulations were performed (Table 1). Nine of the simulations modeled a single probe 

inserted into one of three different SAMs (Figure 3.1a), and each SAM was studied at 

three different probe densities. Additionally, six other simulations studied effects of high 

probe density, in which a cluster of five probes on one of two different SAMs was 

modeled with three different inter-probe spacings (Figure 3.1b). We found that 

hybridization rate was highly dependent on electrostatic interaction between the target 

and surface; attractive forces can drastically expedite the search for a probe, but can also 

strongly inhibit hybridization by hindering target desorption from surfaces. Moreover, we 

show that the rate of hybridization eventually saturates and becomes severely hindered as 

inter-probe spacing decreases below a certain threshold. These results indicate that 

efficiency of hybridization is greatest when surface attraction is weak, allowing an 

increased target concentration to form near the sensor without targets becoming strongly 

adsorbed. Furthermore, probe crowding energetically and sterically inhibits the 

accessibility of probes to incoming targets, resulting in greatly slowed hybridization 

kinetics on both a polar and hydrophobic surface. Finally, we develop a general model of 

hybridization kinetics which accurately matched simulations results on all surfaces, but 

suffered slightly at low probe densities. 

 

 

 



 

57 
 

 Single-probe simulations Multi-probe simulations 

probe density (nm-2) probe separation (nm) 

OH-SAM 0.0005 

0.001 

0.002 

-- 

-- 

-- 

CH3-SAM 0.0005 

0.001 

0.002 

5.0 

10.0 

15.0 

CH3-SAM 

(0.35 M) 

0.002 -- 

COO–-

SAM 

0.0005 

0.001 

0.002 

5.0 

10.0 

15.0 

Table 3.1. Summary of all simulations. In total, 16 simulations were performed. In the single-

probe simulations, three different SAMs were used and each was simulated at three different 

probe surface densities. In the multi-probe simulations, two different SAMs with a cluster of five 

probes were used, and each was simulated with three different inter-probe separations. 
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Figure 3.1. The GeomBD3 simulation space. (a) The SAM with inserted ssDNA probe is 

surrounded by a cuboid simulation box with periodic walls at the sides and a hard boundary at the 

top. Three different sized boxes were used to simulate the different probe surface densities: 0.002 

(green),  0.001 (orange) and 0.0005 nm-2 (blue). The SAM extends past the walls enough to 

prohibit targets from hanging off any edges. (b) High probe density simulations used the same 

conditions as stated above, but contained a cluster of five probes space either 5.0, 10.0 or 15.0 nm 

apart. Simulation box size was the same for all three cluster spacings.  

 

 

3.3. Methods 

3.3.1 Sensor and ssDNA target structure 

Simulations were performed with the updated version of the GeomBD2 Brownian 

dynamics simulation program,33 available on our group website: http://chemcha-

gpu0.ucr.edu/software/. All molecules in the simulations are rigid, containing no internal 

degrees of freedom. During simulations, one molecule is allowed to diffuse with full 
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translational and rotational degrees of freedom, while another is held stationary. In the 

present case, the 24-base ssDNA sequence 5’-CGTACTGACTGCTCACGAGGTAGC-3 

(hereafter the “target”) diffused from a randomly selected position on a plane positioned 

42.5 nm above the biosensor surface until it achieved hybridization. The biosensor 

consisted of a SAM with one or more inserted ssDNA probe(s) (hereafter the “sensor”). 

All portions of the sensor remained stationary during the simulations. The probe was the 

29-base ssDNA sequence 5'- GCTACCTCGTGAGCAGTCAGTACGTTTTT-3', where 

the first 24 bases were complimentary to the target sequence. The probe extended 

approximately 10.0 nm above the SAM, which was a 100 × 100 nm square slab (Figure 

3.1). The three SAM surfaces used were undecanethiol (hydrophobic), 11-mercapto-1-

undecanol (polar), or 11-mercaptoundecanoic acid (anionic) on a gold substrate. We refer 

to these as the CH3-, OH-, or COO--SAM, respectively. On the COO--SAM, all 

carboxylic acid tail groups were in the anionic COO- form to model the surface at pH 7. 

 

The simulation space was constructed as follows. The sensor was placed in the bottom of 

a rectangular prism extending 50.0 nm in the z-dimension (perpendicular to the surface). 

A hard boundary was used at the top face of the prism which, if passed, resulted in a 

target molecule being returned to its previous position and a new random component of 

force being generated. The side faces of the prism used periodic walls which were placed 

such that the accessible SAM surface area yielded the desired probe surface density 

(Figure 3.1a). Target trajectories originated from a random point on a plane spanning the 

entire simulation space parallel to the SAM positioned 42.5 nm above it so that they 
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began diffusion free from intermolecular potential. All simulations began at this height 

regardless of box size, so that the only factor being varied was the probe surface density. 

The length and width of the SAM extended well beyond the periodic walls in all 

simulations, so no targets could move below the SAM nor come close to the edges. 

 

3.3.2 Simulation protocol 

Simulations include a stationary grid representation of the sensor’s volume, electric field, 

and 

the van der Waals-like 12-6 Lennard-Jones (LJ) potential. The grid spacing for all three 

grids was 0.05 nm. A screened Coulomb potential was used to model implicit 

monovalent salt concentrations of 0.50 and 0.35 M. The electric field and LJ grids extend 

4.0 nm and 1.5 nm, respectively, beyond all edges of the sensor. Atomic charges and LJ 

parameters for DNA were derived from the AMBER ff14SB force field.38 Atomic 

charges for the SAM molecules were calculated using AMBER’s antechamber program39 

with the AM1-BCC semi-empirical charge method, and LJ parameters were taken from 

AMBER ff14SB. The AMBER force fields have been used successfully in several 

previous studies of nucleic acids and organic surfaces.40-42 During simulation, targets 

diffuse in implicit water solvent according to the over-damped Langevin equation, 

 

 𝑟𝑖(𝑡 + ∆𝑡) = 𝑟𝑖(𝑡) −  
𝐷𝑖

𝑘𝐵𝑇
𝑑𝑈
𝑑𝑟

∆𝑡 + √2𝐷𝑖∆𝑡𝑅 (3.1) 
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where 𝐷𝑖 is the translational or rotational diffusion coefficient, 𝑘𝐵 is Boltzmann’s 

constant, T is the temperature (298.15 K), 𝑑𝑈
𝑑𝑟

 is the potential energy gradient, Δt is a 

distance-dependent variable time step between 0.1 and 1.0 ps, and R is a zero-mean, 

stationary Gaussian process.43 Translational and rotational diffusion coefficients are 

calculated from the Stokes-Einstein equation. Additional details on the simulation 

protocol are given in the supporting information (SI). 

 

3.3.3 Definition of hybridization conditions 

When a target satisfied any one of three hybridization conditions, its trajectory was 

terminated, and its lifetime saved to a log file before a new trajectory was started. The 

average lifetime, or average hybridization time (τsim), was recalculated after each new 

hybridizing trajectory. When the relative standard deviation of the last 100 τsim values 

was less than 0.01 a simulation was considered as converged. One hybridization 

condition required the centers of mass of the target and probe to come within 0.7 nm 

(Figure 3.2a). Another condition was designed to mimic native base pair formation 

between target and probe by requiring a base on the target to come within 0.7 nm of its 

native Watson-Crick base-pairing partner on the probe. The 0.7 nm threshold ensures that 

this condition is only met if the hydrogen bonding atoms on each base are adjacent 

(Figure 3.2b). The third and final condition required end-to-end overlap of five or more 

bases on either end of the target and probe strands, satisfied when the first and fifth 

overlapping bases were both within 0.7 nm of the probe. (Figure 3.2c). All three 

conditions were selected to represent formation of a target-probe complex that would 
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likely lead to full hybridization based on results from prior coarse-grained DNA 

hybridization simulations.44, 45  

 

 

 

Figure 3.2. ssDNA Probe (left strand, SAM not pictured) and ssDNA target (right strand) in the 

three possible hybridization conditions: a) the centers of mass are less than 0.7 nm apart, b) any 

two native Watson-Crick base-pairing partners (indicated by the black arrow), such as the 

thymine (blue) and adenine (green), are less than 0.7 nm apart, and c) any end-to-end overlap of 

five or more bases.  

 

3.3.4 Classification of 2D and 3D hybridization 

To label trajectories as 2D or 3D hybridizers, we used an in-house program to label each 

hybridization event based on the pathway of the DNA target just prior to associating with 

the probe. If targets were adsorbed to the SAM (< 0.4 nm between atomic centers of any 

SAM atom and any DNA atom) in one or more of the 20 frames (~10 ns) prior to 
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hybridization, they were considered 2D hybridizers. All others were labeled as 3D 

hybridizers. 

 

3.4. Results and Discussion 

Two sets of simulations were performed. The set of single-probe simulations was done on 

three different SAM surfaces, the OH-SAM, CH3-SAM, and COO--SAM. Each surface 

was simulated at three different probe densities. To achieve a specific probe density, the 

single probe was placed in the center of a SAM while the length and width of the 

simulation box were varied to encompass the necessary SAM surface area (Figure 3.1a). 

A set of multi-probe simulations was also performed, which contained a cluster of five 

probes on the CH3-SAM or COO--SAM (Figure 3.1b). On each SAM, the clustered 

probes were simulated with three different inter-probe spacings of 5.0, 10.0 or 15.0 nm to 

elucidate the effect of tight probe packing, which may hinder target-probe recognition. 

All were performed with implicit 0.50 M monovalent salt concentrations except for one 

additional test with 0.35 M (Table 1). The additional simulation of the CH3-SAM with 

0.002 nm-2 probe density was performed with a 0.35 M salt concentration to understand 

the effects of ionic screening of electrostatic forces on the dynamics and hybridization 

rates. 
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3.4.1 Single-probe simulations with varied surface properties and probe densities 

OH-SAM On the polar OH-SAM, target-SAM electrostatic interaction was slightly 

repulsive. (Table 2). Target adsorption to the SAM was very short-lived, lasting roughly 

22 µs, and was maintained primarily by close-range vdW attractions. This is similar to  

our previous study which showed transient adsorption of DNA on OH-SAMs using 

molecular dynamics simulations.32 Moreover, hydrophilic SAMs in general are known to 

resist non-specific DNA adsorption.46, 47 Because of the weak adsorption, most of the 

hybridization happened through a 3D mechanism, and no clear relationship can be seen 

between the mechanism and probe density (Table 2). One may expect a greater fraction 

of 3D hybridization as probe density increases, since there is less exposed surface per 

probe; however, this is not what we observed. We calculated the layer-wise distribution 

of targets (Figure S1 and Table S1) during the simulation to understand how the SAMs 

affect diffusion. This analysis shows a substantially increased concentration of targets 

near the SAM, 2.6-fold higher than would be expected if there were no target-SAM 

attractions (Figure 3.3a). The increased concentration near the surface coupled with the 

lack of 2D hybridization indicates that, overall, very weak vdW forces hold targets close 

to the SAM while allowing target DNA to diffuse freely just above it or 2-dimensionally 

along its surface. The average hybridization time dropped sharply with increasing probe 

density, from about 70.3 to 22.7 µs. 

CH3-SAM Behavior on the hydrophobic CH3-SAM was largely similar to that on the 

OH-SAM. Here, vdW forces dominate, which depend less on target sequence or contact 

angle than the electrostatic interactions present on hydrophilic surfaces. Indeed, previous 
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studies have shown that DNA interacts strongly with hydrophobic surfaces through 

“face-down” adsorption of nucleobases on the surface, and that it diffuses across such 

surfaces at a rate nearly the same as in bulk water.32, 48 Although the rigid-body DNA 

molecules used in our study cannot adopt such conformations to maximize intermolecular 

contacts, we observed similar behavior. Only on this surface did the target DNA adopt a 

surface-adsorbed orientation parallel to the surface, which is partly responsible for the 

stronger electrostatics and vdW interactions. Figure 3.3b shows the distribution of 

measured contact angles between the DNA and SAM, with the CH3-SAM showing a 

relatively high fraction of angles < 20°, indicating the DNA is “laying down” almost 

parallel to the surface.  Analysis of target distribution shows a 4-fold increase in 

concentration 0-2.0 nm above the CH3-SAM, but only a 1.5-fold increase in the range 

2.0-4.0 nm above, reflecting the dominance of short-ranged vdW forces (Figure 3.3a).  

Targets showed weak electrostatic attraction and greater vdW attraction on this surface 

than the OH-SAM, which resulted in a marginally higher fraction of 2D hybridization 

(Table 2). Notably, this higher 2D fraction corresponds with slightly faster hybridization 

times for the 0.001 and 0.002 nm-2 probe densities on this surface compared to the OH-

SAM. (Table 2), indicating that hybridization time was decreased by the high surface 

concentration of targets. This increased molecular association rate due to reduced search 

dimensionality has been demonstrated elsewhere both computationally29 and 

experimentally49 for other biomolecules, so long as desorption from the surface is not 

impeded by attractive forces. Indeed, striking a balance between attractive forces that 

shuttle targets to a surface and subsequently to the probes, while allowing rapid 2D 
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diffusion and desorption from the surface is the key factor if the goal is to expedite 

association kinetics. Our simulations of the same CH3-SAM system at a lower salt 

concentration of 0.35 M provide strong evidence for this point, which is discussed in a 

later subsection.  

COO--SAM The COO--SAM is a negatively charged surface, as the carboxylic acid tail 

groups are in a deprotonated carboxylate form near pH 7. Since DNA carries a net 

negative charge of about -1 e per nucleotide, electrostatic repulsion between the SAM 

and incoming targets results in almost entirely 3-dimensional hybridization (Table 2). 

The repulsion is also evident in the target distribution, which shows that most probes 

resided in the range 2.0-4.0 nm above the SAM. The range 0-2.0 nm above the SAM had 

a concentration equal to the bulk (Figure 3.3a). However, the high target concentration in 

the second layer indicates that there was still a greatly increased concentration near the 

surface, which effectively channeled targets to probes to the same degree as the other 

SAMs. Despite the discrepancy in hybridization mechanism compared to the others, the 

average hybridization time was quite similar to that on the OH- and CH3-SAMs, and 

exhibited the same increasing trend as probe density decreased (Table 2). The weak 

repulsion of 0.21 kcal/mol, or roughly 0.35 kT, which is within the range of thermo-

fluctuation, did not significantly affect τsim. Hybridization time at the lowest probe density 

was faster than that on the other SAMs, and notably, had the greatest 3D hybridization 

fraction of the three densities simulated (Table 2). 
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surface probe 

density 

(nm-2) 

γ τsim (µs) τtheo (µs) ∆Eelec 

(kcal/mol) 

∆EvdW 

(kcal/mol) 

OH-SAM 0.0005 0.14 70.3 ± 1.5 52.7 0.22 ± 0.21 -2.91 ± 2.20 

0.001 0.11 38.1 ± 0.5 35.2 

0.002 0.13 22.7 ± 0.1 23.4 

CH3-SAM 

(0.35 M) 

0.002 0.18 40.1 ± 2.5 37.0 -0.96 ± 0.28 -4.10 ± 1.34 

CH3-SAM  0.0005 0.16 70.5 ± 1.9 53.1 -0.35 ± 0.26 -3.71 ± 1.60 

0.001 0.17 36.4 ± 0.9 39.3 

0.002 0.16 20.4 ± 0.2 28.8 

COO–-

SAM 

0.0005 0.01 65.5 ± 1.5 57.6 0.21 ± 0.33 0.00 ± 0.00 

0.001 0.01 36.2 ± 1.8 38.3 

0.002 0.01 20.8 ± 0.4 25.3 

Table 3.2. Fraction of 2D hybridizers (γ), average simulated hybridization time (τsim), predicted 

hybridization time (τtheo), and target-SAM electrostatic (∆Eelec) and van der Waals (∆EvdW) 

interaction energy for the four single-probe scenarios at different probe densities. τsim values with 

± standard deviation were computed after completion of 500 replicates. ∆E values are ± standard 

deviation between each analyzed simulation frame. 
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Figure 3.3 (a) Distribution of target ssDNA strands  as a function of their distance above the 

SAM in the four different single-probe scenarios simulated at the 0.001 nm-2 probe density. The 

space was partitioned into equally-sized slices with a height of 2.0 nm. A target was considered to 

reside in the closest slice to the SAM containing any of its atoms. The number of frames in which 

the target resided in a slice divided by the expected number of appearances in a slice (assuming 

totally random diffusion) is calculated for each replicate simulation. The final result is averaged 

over all replicates. This ratio (g(z)) is plotted on the y-axis. (b) Distributions of contact angles 

measured between surface-adsorbed ssDNA targets and the SAM for each different surface and 

for the two salt concentrations on the CH3-SAM. Angles were measured between the vector 

running from tip-to-tip of the DNA and the plane of the SAM (x-y plane). 

 

 

3.4.2 Effect of Ionic Strength on DNA Hybridization 

Because DNA is a highly charged biomolecule, we examined  the effect of ionic 

concentration on hybridization. We ran a second simulation on the CH3-SAM at the 

0.002 nm-2  probe density with the same settings except that the implicit ion 
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concentration was lowered from 0.50 M to 0.35 M. Because the  electrostatic interactions 

are  less screened, the target-SAM electrostatic attraction (ΔEelec) was strengthened from 

-0.35 kcal/mol (0.5M) to -0.96 kcal/mol (0.35M), and ΔEvdw was ~0.4 kcal/mol stronger 

with 0.35M ionic concentration (Table 2).  These stronger attractions nearly doubled the 

target concentration in the range 0-2.0 nm above the SAM (Figure 3.3a). Interestingly, 

despite the high surface concentration of targets, the target-SAM interaction is still 

insufficient to attract the ssDNA to produce more 2D hybridization. As a result, the 2D 

hybridizing fraction increased negligibly (Table 2). Moreover, the stronger electrostatics 

induced more of the targets to adopt a side-on adsorption orientation, as opposed to end-

on, which can be seen in the strikingly high fraction of DNA making a small contact 

angle with this surface (Figure 3.3b). These orientations contribute to the increased 

strength of attraction anchoring targets to the SAM. This, coupled with the increased 

concentration of targets near SAM, resulted in longer times needed for the targets to 

overcome the energy barrier associated with leaving the surface and reorienting for 

hybridization, causing τsim to nearly double relative to the 0.50 M simulation (Table 2). 

This highlights the importance of the balance between long-range attractive steering 

forces and mobility of targets once they reach the surface. Steering target DNA toward 

probes is obviously helpful for fast kinetics, as shown in the 0.50 M single-probe 

simulations. However, the same forces responsible for steering may be disruptive. 

Adsorption of targets to a surface can increase their hybridization rate as long the 

desorption energy is not prohibitively high. Otherwise, the attractive forces originating 

from the sensor surface actually hinder the rate dramatically.  
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3.4.3 High-probe density multi-probe simulations 

While a higher density of probes increases the chances of a target-probe encounter, there 

may be a density beyond which hybridization becomes sterically or energetically 

hindered by  neighboring probes. To study hybridization at tightly-packed probes, we ran 

multi-probe simulations that included a cluster of five probes on either the CH3- or COO--

SAM  spaced 5.0, 10.0 or 15.0 nm apart in simulation boxes of identical volume (Figure 

3.1b). These were performed to test the effect of inter-probe spacing on hybridization. 

The trend in hybridization time with decreasing separation shows that the hybridization 

rate has already saturated at inter-probe spacings of 15.0 nm, and hybridization becomes 

hindered at inter-probe spacings of 5.0 nm or less (Table 3). We saw no change in 

hybridization time between the 15.0 and 10.0 nm separation cases, but observed a 

roughly 1.5-fold increase from 10.0 to 5.0 nm, indicating that hybridization is inhibited in 

such highly crowded probe environments. To understand the source of the inhibition, we 

counted the total number of trajectories that hybridized with each of the five different 

probes (labeled 1-5, Figure 3.1b), to elucidate how the neighboring probes affect one 

another’s availability for hybridization. The result shows an unequal distribution of 

hybridization events. Specifically, hybridization at the central probe is severely limited at 

the 10.0 and 5.0 nm spacings, and the effect is greater for the smaller spacing (Table 3). 

In that case, only about 2% of the hybridization happened at the central probe for both the 

CH3- and COO--SAMs, while the outer probes experienced a much more equal share. 

This effect was less pronounced, but still substantial, at the 10.0 nm spacing. The high 
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negative charge of the DNA molecule makes it difficult for targets to adopt an 

energetically favorable orientation in the crowded probe environment. Steric limitations 

may begin to play a role here as well, especially when then target length is approximately 

equal to the probe spacing, as the target may adsorb to multiple probes at the same time. 

This was the case in our 5.0 nm-spacing simulation, and was partially responsible for the 

sharply increased hybridization time observed on both surfaces. Notably, the target and 

probe are both roughly 10 nm long, indicating that, more generally, tight probe clustering 

may become an obstacle as the spacing nears the length of the target DNA. The layer-

wise distribution of targets in the multi-probe scenarios was virtually the same as in the 

single-probe scenarios. Overall, both the CH3- and COO--SAM sensors showed inhibited 

hybridization when the probe spacing was equal to or smaller than the target DNA length. 

We should also note that the cluster of probes here differs from what would exist on a 

real biosensor surface in an important way: a real surface of the same probe density 

would present essentially a periodic array of such clusters, in which virtually all the 

probes would be analogous to the central probe (probe 5, figure 3.1b). Hence, the present 

simulations contain an unrealistic amount of space surrounding the cluster, and the 

hybridization times measured for these scenarios should only be compared relative to the 

other simulated clusters. 
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   hybridizing probe (%)  

 separation 

(nm) 

τsim (µs) 1 2 3 4 5 γ 

CH3-SAM 5.0 22.6 ± 0.7 23 23 26 26 2 0.13 

10.0 14.4 ± 0.1 22 20 27 23 7 0.20 

15.0 15.7 ± 0.4 21 13 24 27 14 0.24 

COO–-

SAM 

5.0 20.6 ± 0.4 15 30 29 24 2 0.03 

10.0 15.4 ± 0.2 23 19 28 26 4 0.03 

15.0 16.1 ± 0.5 15 19 24 22 20 0.04 

Table 3.3 Inter-probe separation, average hybridization time (τsim), percentage of hybridization at 

each probe (labeled 1-5, see Fig. 1b), and fraction of 2D hybridization (γ) for multi-probe 

simulations on the CH3- and COO–-SAMs. Probes 1-4 are the outer probes of the cluster, and 

should be energetically and sterically equivalent for incoming targets. Probe 5 is at the center of 

the cluster, and shows greatly reduced accessibility dependent on the probe separation. 

 

3.4.4 Phenomenological model and comparison with simulation results 

A model that relates hybridization time to a sensor’s basic properties can aid in the 

rational design of high-performance biosensors. Real-time hybridization kinetics can be 

measured experimentally,49 but it is impossible to determine the mechanism of 

hybridization, and the details of target interactions with surfaces and probes cannot be 

discerned. Here we developed a model using kinetic theory of particle association and the 

simulated percentage of 2D hybridization to predict the average hybridization time, τtheo. 

We adopt the theoretical framework for predicting the rate of collisions, α, between a 
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diffusing molecule and a spherical target containing a small reactive patch. This sphere 

can also be imagined as a flat surface containing a small reactive hemispherical bump50, 

where in the present case, the flat surface is the SAM and the hemispherical bump is the 

probe. In that case α is the rate of collisions with the SAM 

 𝛼 =
4𝜋𝐷

∫ 1
𝑟2 𝑒

𝑈(𝑟)
𝑘𝑇  𝑑𝑟∞

𝑎+𝑏

                     (3.2) 

where D is the 3-dimensional diffusion coefficient, a is the radius of the diffusing 

molecule, b is the radius of the surface or reactive patch of surface, and r is the distance 

between them. U(r) is the potential energy between the two molecules. For diffusion from 

the bulk to the SAM, the driving force is the long-range Coulombic potential  

 𝑈(𝑟) =  
𝑞1𝑞2

4𝜋𝜖0𝜖𝑟
                     (3.3) 

After integration (1) becomes   

 𝛼 = 4𝜋𝐷𝑟 (
𝑈(𝑟)

𝑒𝑈(𝑟) − 1
) (3.4) 

Multiplying equation 3 by Avogadro’s number gives units of M-1s-1. The distance r here 

is the sum of the relevant radii (a + b in equation 1). Since DNA has a rod-like geometry, 

the radius of the target DNA, a, is approximated as 

 𝑟𝑑𝑛𝑎 =  
𝑠1

ln 2𝑠1
𝑠2

 (3.5) 
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Where s1 and s2 are the major and minor semi-axes.51 In studies of molecular association 

with surface-bound receptors, it has been shown that short-range (vdW) forces which 

hold the diffusing molecules to the surface can result in molecular association rates as if  

the entire surface were reactive. This is because an encounter with the secondary search 

target (probe) is very likely and happens rapidly compared to an encounter with the 

primary target (SAM surface).52 Adopting this idea, our model uses the radius of the 

SAM as b in equation 1, which is taken as the radius of a sphere having equal surface 

area. Our results show that this model works well for the present system (Table 2). As a 

comparison, if it is assumed that hybridization times will correspond to the rate of target 

DNA collision with the probe rather than with any portion of the surface, then the times 

are overestimated more than 2-fold in most cases (see SI for additional details).  

Some fraction of targets will encounter the probe while diffusing 2-dimensionally. This 

fraction must then overcome an energy barrier associated with desorbing from the surface 

before hybridizing, and the time of this process is added to the time to diffuse from the 

bulk to the SAM. The barrier is determined primarily by the strength of short-range 

forces holding targets to the SAM (Table 2). Borrowing ideas from Kramers’ theory for 

diffusion across an energy barrier, in which there is an exponential dependence on barrier 

height E† and a dependence on the diffusion coefficient D along the reaction coordinate,47 

we approximate the time to cross the barrier, τb, 

                                                            𝜏𝑏 =
𝑏2

𝐷
𝑒

𝐸†

𝑘𝑇 (3.6) 
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The term before the exponential gives the time needed to diffuse a distance b, which we 

take as 1.0 nm, since at this distance above the SAM, all short-range vdW forces are 

broken. We analyzed all hybridizing simulation trajectories and labeled each as either a 

2D or 3D hybridization event according to a simple criterion related to the diffusional 

pathway taken by the target. While the hybridization time from 3D diffusion can be 

directly approximated using the collision rate α (Equations 1 and 3), the average 

hybridization time for surface-adsorbed DNA needs to consider the barrier height 

(Equation 5) to account for the extra time spent desorbing from a surface. As a result, the 

overall τtheo for all trajectories is  

 𝜏𝑡ℎ𝑒𝑜 = 𝛾 [
1

𝛼𝐶
+

𝑏2

𝐷
𝑒

𝐸†

𝑘𝑇] + (1 − 𝛾)
1

𝛼𝐶
                     (3.7) 

where C is the target DNA concentration in mol/L, and γ is the fraction of trajectories 

that hybridized 2-dimensionally. A fully detailed calculation is shown in the SI. In all but 

one case, the predicted hybridization times τtheo agree quite closely with simulations for 

probe densities 0.001 and 0.002 nm-2; however, they are underestimated when the probe 

surface density is low (Figure 3.4). Equation 6 relies on the prior assumption that the time 

spent on or near the surface before achieving 2D hybridization is negligible. This 

assumption holds when probe density is high and most targets diffusing on the SAM 

rapidly undergo 2D hybridization, but it becomes less applicable as probe density 

decreases. Notably, at normal densities used in biosensors, typically > 0.001 nm-2, the 

assumption holds reasonably well. On all surfaces, predictions have similar accuracy, and 

suffer from much larger error at the lowest probe density of 0.0005 nm-2. Results from 
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the 0.35 M CH3-SAM simulation demonstrate the importance of capturing surface 

interactions in models of hybridization. While the 0.5 M simulation at the 0.002 nm-2 

density yielded τsim = 20.4 µs, the stronger target-SAM attraction at 0.35 M resulted in 

τsim doubling to 40.1 µs. The model seems to have difficulty capturing such effects. The 

green points in Figure 3.4 correspond to the CH3-SAM, which had the most attractive 

potential with the target DNA. They show that τsim was overestimated, estimated 

accurately, and then underestimated by the model as probe density decreased. The same 

trend can be seen for the anionic COO-SAM, indicating that some of this error is due to 

the changing probe density. However, the fact that it is more pronounced on the CH3-

SAM is an indication that the amount of surface interaction has still not been well 

measured. An improved method for estimating the amount of 2D hybridization could 

vastly improve such measurements. Additionally, target-probe interactions that form as 

targets desorb from a surface need to be characterized in detail to allow accurate 

estimation of the 2D hybridization timescale. Despite this, the model’s overall accuracy is 

still reasonable, which highlights the major influence that surface interactions play in the 

hybridization process. In summary, this model of hybridization works well under the 

assumption that the search for a probe is dominated by the 3-dimensional part, which is 

true under typical conditions. As probe density decreases, the model suffers from larger 

inaccuracy as 2D search time becomes non-negligible. Additionally, accurately 

estimating the amount of 2D hybridization and strength of surface interactions is essential 

for accurate predictions of hybridization rates, as 2D hybridization can take considerably 

longer than 3D hybridization. 
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Figure 3.4 Comparison of simulated (τsim) and predicted (τtheo) hybridization times for the single-

probe scenarios at 0.002 nm-2 (circles), 0.001 nm-2 (squares), and 0.0005 nm-2 (triangles) probe 

densities. Error bars are ± standard deviation of τsim to show that the value has converged after 

500 replicate simulations are completed; some error bars are too small to be displayed.  

 

3.5 Conclusions 

High performance biosensors require specific and efficient target-probe association, 

which depends highly on the surrounding surface properties, probe surface density, and 

the ionic strength of the solution. In this study, across three surfaces with anionic, polar, 

or hydrophobic nature, the rate of target DNA hybridization with the probes was largely 
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unchanged at 0.5 M monovalent salt concentration However, upon decreasing the ionic 

strength of solution to levels where target DNA attraction to the sensor surface was 

significant, hybridization was markedly slowed as DNA desorption form the surface was 

impeded, which in turn inhibits hybridization with probes. On the polar and hydrophobic 

surfaces, a significant fraction of the hybridization took place 2-dimensionally, through a 

surface mediated mechanism. Simulation of three probe clusters with different inter-

probe spacings revealed that hybridization rate eventually reverses as probe density 

increases since incoming target DNA becomes sterically and energetically hindered from 

hybridizing with tightly packed probes. Shrinking the probe spacing from 10.0 to 5.0 nm 

resulted in a doubling of the average hybridization time, revealing that clusters of high 

probe density in biosensors can severely disrupt hybridization, especially when the 

spacing is equal to or less than the target DNA length.   

We’ve developed a model DNA of hybridization rate, and found that the key parameter is 

the fraction of surface-mediated hybridization, since this requires a significant energy 

barrier to be crossed prior to hybridization. The model accurately predicted hybridization 

times across all surfaces at typical probe densities, but suffered slightly at low densities 

where certain assumptions fail to hold. The greatest hybridization efficiency requires 

striking a balance between attractive forces that enhance target DNA concentration near 

probes without inhibiting the process by anchoring DNA to the surface. Due to the 

generality of the model, it can be applied to a variety of other natural or engineered 

systems to aid in rational design or to help explain experimentally measured reaction 

rates. 
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Supporting Information 

Explanation of target DNA diffusion coefficient calculation, details for simulation 

equation of motion, additional details on simulation protocol and models, explanation for 

analysis of target distribution above the surfaces, full calculation and discussion of 

modeled hybridization times and comparison to simulated results. 
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CHAPTER 4. Simulation-Guided Enzyme Bioconjugate Engineering For Precise 

Control of Effective Concentration and Enhanced Catalysis 

 

 

4.1 Abstract 

Chemical conjugation of polymers and other macromolecules to enzymes is a widely 

used strategy to enhance enzyme stability, in vivo circulation, and create immobilized 

and encapsulated structures. However, rational design of such bioconjugates is limited by 

a lack of control over the position and quantity of conjugated molecules. Moreover, the 

catalytic enhancements achieved are often difficult to explain and predict. Here, we 

demonstrate precise control of DNA conjugation to the phosphotriesterase (PTE) enzyme 

and show that this technique can be used to predictably control PTE’s catalytic rate. 

Computational modeling and simulation are used to explain and quantify rationally 

designed DNA’s influence on effective substrate concentration around the enzyme. By 

conjugating DNA at 8 different sites on PTE, our collaborators achieve a 1- to 7- fold 

decrease in KM of the reaction by increasing the effective substrate concentration and the 

substrate capture radius. A model which encapsulates these effects is developed and 

applied to the PTE-DNA bioconjugate and a previously studied horseradish peroxidase 

(HRP) bioconjugate. It predicts the reduction in KM with remarkable accuracy and is 

general enough to apply to other similar systems. Using computational insight to guide 

experiments, we overcome common obstacles in bioconjugate design by showing how 

catalytic enhancements can be precisely controlled and predicted. 
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4.2 Introduction 

In recent decades, considerable attention has been paid to chemical conjugation of 

polymers and other nanomaterials on enzymes for enhancement of multipurpose 

biocatalysts.1  For example, PEGylation shielding L-asparaginase via covalent attachment 

reduces its immunogenicity and short half-life along with high maximum saturation 

velocity (Vmax) and Michaelis constant (Km).2 The non-degradation and hypersensitivity 

of PEG in the human body, which raises potential concerns of cumulative chronic 

toxicity, has been remedied by PEPylation.3 The obstacles of low overall reusability and 

cost-effective ratio, usually caused by free biomolecules in solution, have been overcome 

by immobilization.4 Additionally, nanoparticles exhibit enzymes’ potential applications. 

Covalent attachment of enzymes on electrodes has emerged as an interest in developing 

enzymatic fuel cells and biosensors. The immobilized glucose dehydrogenase and 

bilirubin oxidase on nanoporous AuNPs showed strong oxidative properties compared to 

free enzymes.5 Carbon nanotubes covalently attached to high-content glucose oxidase 

have been used for novel reagentless glucose biosensors.6 However, controlling the 

conjugation location precisely remains a challenge. This inability to understand how and 

where to modify can lead to deleterious effects and loss of a biomolecule’s catalytic 

activity.  

Typically, enzymes exist in a non-substrate-rich environment. Thus, the natural metabolic 

pathway often utilizes a multi-enzyme complexes, which possess structural features to 

control substrate flux and enhance diffusion toward the active site. This complex 

promotes the efficient transport and processing of substrates toward the target.8 Two 
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salient examples are the enzyme superoxide dismutase (SOD) and the bifunctional 

enzyme thymidylate synthase-dihydrofolate reductase (TS-DHFR). SOD uses charge 

complementarity to produce substrate-enzyme interactions that enhance enzyme kinetics 

by directing the substrate to its active site.9  A positive-charge patch on the surface of TS-

DHFR restricts diffusion of a negatively charged reaction intermediate to a pre-defined 

channel between two active sites, thus promoting substrate channeling and enhancing 

pathway kinetics.10 Similarly, kinase proteins are often aided by scaffold proteins that 

generate high effective substrate concentrations by tethering the kinase and substrate 

together.11, 12  

Taking inspiration from nature,  DNA modification with a rationally designed sequence 

has shown promise as a method for controlling substrate flux.13 The strategy uses 

sequence-specific DNA, which has a strong binding affinity for the target substrate, 

allowing tunability of the kinetic enhancement by controlling substrate-DNA interactions. 

The goal is to enhance the substrate’s effective concentration around the enzyme, which, 

in turn, increases substrate flux through the active site, boosting the catalytic rate.14  

Phosphotriesterase (PTE), an organophosphate hydrolase, has emerged as an impressive 

candidate to defend against the organophosphate nerve agent VX.15, 16 Our collaborators 

previously found that random cross-linked PTE conjugated by rationally designed DNA 

produces a roughly 3-fold enhancement of the initial degradation rate of VX by PTE. 

Even though DNA conjugation unlocks the critical bottleneck of the PTE hydrolysis rate 

for VX, uncertainty in the amount and position of DNA after conjugation impedes 

progress. Different mutants yield a 1- to 7- fold change in KM when reacting with 
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paraoxon after the same DNA conjugation.13  Moreover, a similar effect was seen for the 

horseradish peroxidase (HRP) enzyme conjugated with DNA (HRP-DNA). HRP 

contained two attachment positions, one very close to and one very far from the active 

site, which had widely differing influences on the reaction kinetics.17 Though the 

modification at different sites can have strikingly different effects on kinetics, the 

correlation between the two has not been characterized in detail. This uncertainty 

currently limits the precise rational design of recombinant proteins. Gentry et al. 

proposed an enzyme kinetic model in which the improvement is ascribed to an increase in 

the effective substrate concentration.14 As a result of the DNA modification, the substrate 

flux is intensified around the rationally designed DNA. Notably, the DNA fragment also 

enlarges the capture window to help the active site catch the target substrates.18 However, 

very little work has been carried out to optimize and quantify the local concentration 

effects, and the impact of the site-specific modification on PTE is still unpredictable. 

Although engineered bioconjugates have shown significant promise, experimental 

techniques alone often lack the resolution or precision to accurately explain and predict 

the associated enhancements. Computational modeling and simulation can be 

tremendously helpful in this regard since the structure and dynamics of the bioconjugates 

and their substrates can be studied at sub-nanometer- and picosecond-resolution with 

methods like molecular dynamics (MD) or Brownian dynamics (BD) simulations. 

Additionally, computational studies allow for a quick, inexpensive study of countless 

permutations of a system in order to guide rational design efforts toward the optimal 

result. Such work has been performed for a range of systems such as nucleic acid 
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biosensors19, DNA-conjugated enzymes,20 nanoparticles for drug delivery,21, 22 and DNA 

origami nanostructures23. Experimental work guided by computational insight therefore 

presents itself as an extremely powerful method in bioengineering. 

Here, we have used a combination of simulation, experiment, and modeling to achieve 

and accurately predict reductions in KM after DNA conjugation on PTE. We also 

compare our model to previous experiments on HRP-DNA. Simulations quantified the 

effective substrate concentration increase around DNA at two different substrate 

concentrations. Next, our collaborators created a conjugated system by inducing pAzF 

mutations at which the DNA was site-clicked to form the complex, PTE-DNA. The PTE-

DNA's viability was checked with experimental assays to confirm the correct attachment 

of DNA and that catalytic enzyme activity was intact. Kinetic assays revealed the 

reduction in KM corresponding to each conjugation site, ranging from 1.1- to 7.4-fold. 

Starting from the substrate concentration data gathered from the simulations, a model 

created accurately predicts the fold change in KM after DNA conjugation. Our results 

show that the KM decreases because of a combination of increased effective substrate 

concentration around the DNA and an enlarged substrate capture radius of the conjugated 

complex. 
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4.3 Computational Methods 

4.3.1 Molecular dynamics simulation protocol 

Molecular dynamics (MD) simulations contained the DNA sequence surrounded by 

substrate molecules in a cuboid simulation box of explicit TIP3P water solvent (Figure 

4.1a). Both substrates were simulated at concentrations of 16 mM and 8 mM, requiring 

64 or 32 of the molecules, respectively, in a simulation box of approximately 6.5 × 106 

Å3. Systems were minimized using the conjugate gradient method in three steps: first 

water only, then solute only, and finally the entire system, for 40000, 10000, and 20000 

steps, respectively. This was followed by two-stage equilibration, first for water only then 

for the entire system, for 20-50 ps at 50, 100, 150, 200, 250, 275 and 298 K before 

production MD runs. Paraoxon and DDVP molecules started their trajectories from the 

same positions to avoid biasing their relative distribution. Simulations were run for 100 

ns in the isothermic-isobaric (NPT) ensemble with three-dimensional periodic boundary 

conditions and a 2 fs timestep using the NAMD 2.12 simulation software.24 The Amber 

force fields Parmbsc125 and GAFF26 were used to model the DNA and substrate, 

respectively. Parameters for both substrate molecules were assigned by Amber’s 

antechamber program using the AM1-BCC semi-empirical charge method.27 40 Na+ ions 

were added to neutralize the overall system charge. Long-range electrostatics were 

calculated using the particle mesh Ewald method and a 12 Å cutoff was employed for 

non-bonded force calculations. The SHAKE algorithm was used to constrain all bonds 

involving hydrogen and the Langevin thermostat was used to maintain constant 

temperature.  
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4.3.2 Brownian dynamics simulation protocol 

To study the interaction of paraoxon and DDVP with DNA at 60 µM, it was necessary to 

use Brownian dynamics (BD) simulations in implicit water in order to sample a 

statistically significant number of trajectories. Simulations were performed with our in-

house BD simulation program, GeomBD320, for 750 ns using a 2 fs timestep. The set-up 

was very similar to the MD simulations, except that, to achieve a 60 µM concentration, 

only one substrate molecule was present in the 2.75 × 107 Å3 simulation box at once, 

starting its trajectory from a randomly selected point around the stationary DNA 

positioned at the center. All molecules in these simulations were modeled as all-atom 

rigid bodies (no internal degrees of freedom) and the solvent and ions were both implicit. 

The simulations use a stationary grid representation of the DNA’s electric field computed 

by a screened Coulomb potential, which extended 100 Å beyond the edges of the DNA. 

The program ran 500 independent trajectories of both paraoxon and DDVP under 

identical conditions except for their randomly-chosen starting positions. For both 

substrates, we repeated another set of 500 trajectories to ensure consistency in the 

observations (Figure S1). 

 

4.3.3 Radial distribution of paraoxon and DDVP around DNA 

To quantify the influence of DNA on the distribution of surrounding paraoxon or DDVP 

molecules, we calculated the radial distribution of both substrates. The simulation space 

was partitioned into cylindrical shells centered on DNA (Figure 4.1a). The number of 
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substrate molecules mi appearing in each cylindrical shell in a given frame i was summed 

over n total simulation frames and then divided by n to give the average number of 

molecules in each shell per frame. This quantity divided by the volume V of the shell is 

[S], the effective substrate concentration in a shell 

 [𝑆] =
1
𝑛

∑ 𝑚𝑖
𝑛
𝑖 =1

V
  (4.1) 

The bulk concentration [S]0 is the number of substrate molecules being simulated divided 

by the total simulation volume, which can be compared to [S] to yield the ratio [S]/[S]0, 

the effective concentration enhancement in each shell. 

 

4.3.4 Calculation of paraoxon and DDVP residence time on DNA 

The duration of substrate adsorption onto DNA was quantified at both the 16 mM and 8 

mM concentrations from the MD simulation trajectories. We refer to the amount of time 

over which a molecule remained adsorbed to the DNA as the “residence time” of the 

molecule. The residence time was calculated by counting the number of consecutive 

frames in which a molecule was less than a cutoff distance (4.5 Å) from the DNA, 

measured between the closest atomic centers. A molecule had to below this cutoff for 

three consecutive frames before being considered as “associated” or beyond this cutoff 

for three consecutive frames before being considered as “dissociated”.  
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4.4 Results and Discussion 

In our previous work  we showed that rationally designed DNA randomly conjugated on 

PTE  resulted in a decrease in KM without changing kcat.13 The central hypothesis is that, 

instead of changing the active site, the rationally designed DNA increased the effective 

substrate concentration around the enzyme, more effectively shuttling substrate to the 

active site for catalysis. To prove this concentration increase, we used a combination of 

MD and BD simulations of two substrates, paraoxon and DDVP, surrounding the DNA 

sequence and analyzed their distributions and interactions with DNA. Paraoxon is known 

to have a high affinity for DNA, whereas DDVP, used here as a negative control, 

experiences much weaker attraction. We ran the simulations at two different 

concentrations, 16 mM using MD and 60 µM using BD. We then conjugated DNA onto 

PTE at eight sites covering a wide range of distances from the active site, which resulted 

in a 1.1- to 7.4-fold KM decrease. Finally, a predictive model is developed and applied to 

our PTE-DNA system and a previously studied HRP-DNA system, and shows 

remarkably high agreement with the experimental KM enhancement data. 

 

4.4.1 Modeling effective substrate concentrations with MD and BD simulations 

Effective substrate concentrations in zones around the DNA were simulated by starting 

with a bulk concentration of 16 mM in the MD and 60 µM in the BD simulations. We ran 

two replicates of each simulation to ensure consistency in the results, but we present data 
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from only one set of simulations in the main text. Data from both sets is available in the 

supporting information (Figure S1). MD simulations are significantly more detailed than 

BD, and are especially more effective at capturing close-range intermolecular 

interactions, but come a much greater computational cost. A 16 mM substrate 

concentration allows for simulation of the maximum number of substrate molecules (64 

in total) within a tractable simulation volume, while avoiding concentrations many orders 

of magnitude higher than experimental conditions. The BD simulations were carried out 

at 60 µM to match experimental substrate concentrations. 

4.4.2 16 mM substrate MD simulation  

The plot of [S]/[S]0 versus distance calculated from the MD simulations in Figure 4.1b 

shows an increase in effective concentration of both paraoxon and DDVP which grows as 

the distance from DNA decreases. This effective concentration effect was clearly stronger 

for paraoxon, especially in the first shell. The value of 16.2 for this shell indicates that the 

effective concentration there was 16.2 times higher than would be expected if the 

substrate distribution were totally uncorrelated with the position of DNA. As expected, 

DDVP showed a value of 5.45 in this range, indicating some correlation, but significantly 

less than paraoxon. Some of the substrate in the closest shell was adsorbed to the DNA, 

and would therefore be unavailable to the enzyme. This presents a slight complication 

when trying to classify substrate concentration, since adsorbed molecules don’t 

necessarily contribute to the concentration in a relevant way, and should therefore not be 

counted. Re-analyzing the distribution, but excluding adsorbed molecules in the count, 

results in a [S]/[S]0 value of 3.6 for paraoxon and 1.0 for DDVP in the first shell. In more 
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distant shells, both substrates show effective concentrations significantly above the bulk, 

i.e. [S]/[S]0 values greater than 1, that gradually decrease with distance. 

 

4.4.3 60 µM substrate BD simulation  

Distributions of substrate at 60 µM were obtained from Brownian dynamics simulations 

(Figure 4.1b). In these simulations, only one substrate molecule diffused in the simulation 

space around the stationary DNA sequence. In this way, we were able to perform 500 

replicate trajectories of 800 ns each, at concentrations more than 100-fold lower than in 

the MD simulations in order to match the experimental conditions. These simulations 

were performed with only electrostatic forces present and no van der Waals forces. By 

simulating the substrates under the influence of only electrostatics, no adsorption to DNA 

is observed. This allows substrate to diffuse freely for the entire period, and it is revealed 

that paraoxon experiences a greater effective concentration increase in all shells.  
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Figure 4.1 (a) An MD simulation snapshot of paraoxon molecules around a segment of dsDNA. 

Substarte concentration in a 5A-thick cylindrical shells was averaged over simulation time. (b) 

The effective concentration of paraoxon and DDVP in close proximity to DNA as determined by 

MD and Brownian dynamics simulations. Left y-axis: MD-determined substrate concentration as 

a function of distance from the DNA scaffold. Right y-axis: substrate concentration as determined 

by BD simulations. (c) Combined MD and BD concentration curves. 

 

4.4.4 Interpretation of Simulated Substrate Distributions 

Comparing BD simulations to the MD simulations helps discern an effect occurring due 

to the low number of substrate molecules (64) in the latter. Such a small number results 

in artificially low concentrations in shells beyond the first, since, when a substrate 

adsorbs to the DNA, nearby shells become depleted of substrate since there is so 
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surrounding bulk solution from which other molecules can fill in behind it. This results in 

the dip seen in Figure 4.1a, which causes the gradual uptrend to reverse. Concentration 

reaches a minimum in the second shell before spiking upward in the closest shell due to 

the van der Waals (vdW) forces between substrate and DNA that become appreciable at 

intermolecular distances around 8-10 Å. However, in the BD simulations, this depletion 

artifact is not present since those simulations included only electrostatic interactions and 

excluded vdW forces, preventing substrate adsorption. The resulting substrate 

distributions show a smooth uptrend in all shells, and show that this effect is stronger for 

paraoxon than for DDVP, in agreement with experimental measurements.13 This indicates 

that even with close-range intermolecular vdW forces absent, paraoxon experiences an 

increase in effective concentration greater than DDVP that intensifies as the distance to 

DNA decreases. The effects of close-range intermolecular forces were characterized in 

our MD simulations, and showed stronger attraction between paraoxon and DNA, but 

caused both substrate concentrations to spike. We therefore use a combination of the MD 

and BD substrate distribution data to represent the most accurate true distribution. The 

concentration in the first shell, closest do DNA, is more accurately captured by the MD 

simulations, while the concentrations in all other shells are more accurately captured in 

the BD simulations since they do not suffer from the substrate depletion artifact. 

Combining the data in this way produces Figure 4.1c, with which we proceed to model 

the overall effect on KM in later sections.  

Additionally, the PTE is conspicuously absent from simulations, which contained only 

the DNA and substrate. The PTE was excluded from the MD simulations for 
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computational efficiency; including it would have increased the already-large simulation 

size considerably. BD simulations also excluded PTE in order to make them more 

comparable to the MD. More importantly, the substrate distribution is certainly driven 

primarily by DNA due its high concentration of negative charge (-40 e overall) compared 

to PTE, which is just +1 e at physiological pH including the two Zn ions in the active 

site.29 Therefore, the exclusion of the PTE should introduce no sizeable artifacts. 

 

4.4.5 Adsorption and residence time of substrates on DNA 

The effective concentration produced by the conjugated DNA should reflect the increased 

number of substrate molecules available for catalysis. Therefore, we calculated the 

average residence time of the two different substrates on the DNA molecule from the MD 

trajectories to ensure that substrate is available for the chemical reaction. The residence 

time is the amount of time for which one substrate molecule stayed adsorbed to the DNA. 

Average residence times for paraoxon and DDVP were 208 ps and 86 ps, respectively. 

The number of distinct substrate-DNA contacts for each substrate was similar, meaning a 

roughly equal number of DDVP and paraoxon molecules encountered the DNA, but 

paraoxon stay adsorbed about 2.4 times longer. This is in agreement with experimental kd 

measurements indicating that DDVP dissociates from DNA faster than does paraoxon.13  

We observed paraoxon adsorbing stably to the minor groove of DNA and to the terminal 

DNA bases through pi-stacking interactions (Figure 4.2a). At least one paraoxon 

molecule adsorbed to the major groove of the DNA and subsequently intercalated 
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between two bases (Figure 4.2b), forming a very stable interaction that lasted at least 70 

ns, the longest we observed. Intercalation of paraoxon has also been observed 

experimentally30, and likely helps maintain a high effective concentration very close to 

DNA. DDVP interactions with DNA were shorter-lived and electrostatic in nature, 

mainly taking place near the highly polar backbone and ends of the strand (Figure 4.2c). 

Overall, the average residence times of both substrates were tens to hundreds of 

picoseconds, much shorter than the catalytic rate of PTE, which is on the order of 2000 s-

1.28 The simulations show that our rationally-designed DNA sequence successfully brings 

more substrate molecules near the enzyme and that they are all available for catalysis.   

 

Figure 4.2 MD simulation frames showing various binding modes for paraoxon (a and b) and 

DDVP (c) with DNA. Paraoxon frequently adsorbed to the major and minor grooves. 
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4.4.6 Prediction of KM Enhancement  

We have developed a physically intuitive model to predict the fold enhancement of KM 

achieved for any conjugation site. To demonstrate the effectiveness of the model, we 

compare the predictions to experimental data obtained in this work for PTE-DNA as well 

as experimental data obtained in our previous study on HRP-DNA.17 KM is inversely 

proportional to the enzyme-substate association rate, kon, and can be expressed as 

 𝐾𝑀 =
𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡

𝑘𝑜𝑛
 (4.4) 

where kcat is the rate of the chemical step and koff is the rate of dissociation of substrate 

from the enzyme.36 The rate of the chemical step is unchanged by conjugation (Table 1), 

and it can be safely assumed that koff has little to no change as well. This means the 

change in KM is only dependent on the change in kon, and a model that effectively 

captures this change can predict the change in KM. A correlation is seen between the 

effective substrate concentration increase, [S]/[S]0, and the enhancement in KM 

(KM/KM,app) in which the two are directly proportional (Figure 4.3)  

 
𝐾𝑀

𝐾𝑀,𝑎𝑝𝑝
∝

[𝑆]
[𝑆]0

 (4.5) 

Although the [S]/[S]0 ratios from the simulation data are proportional to the KM/KM,app, 

they are clearly not the only factor contributing to the decrease (Figure 4.3). The size of 

the conjugated DNA may also have a dramatic effect, as it can effectively act as an 

extension of the enzyme itself, drastically increasing the capture radius of the PTE-DNA 
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complex relative to unconjugated PTE. The standard kinetic theory for collisions per unit 

time, α, between to molecules experiencing attractive intermolecular forces is 

 𝛼 =
4𝜋𝐷

∫ 1
𝑟2

∞
𝑟0

𝑒
−𝑈(𝑟)

𝑘𝑇
= 4𝜋𝐷𝑟∗ (4.6) 

where D is the relative diffusion coefficient of the molecules and r is the sum of the radii 

of the reactive portions of the two molecules. The new radius r* is the larger effective 

radius after accounting for intermolecular attraction37, 38. In the present case, we have 

modeled the effect of DNA conjugation as an increase in r* since the DNA strand acts as 

a lure for substrate both energetically and sterically. The energetic contribution to the 

molecular collision rate i.e., the attractive potential between substrate and DNA, is 

already accounted for in the substrate distribution quantified by the simulations . So, with 

the [S]/[S]0 ratio as a starting point, we construct a model to predict the fold change in 

KM by next accounting for the effective increase in size of the active site after DNA 

conjugation 

 
𝑟𝐴𝑆+𝐷𝑁𝐴

𝑟𝐴𝑆
 (4.7) 

where rAS is the radius of the active site and rAS+DNA is the radius of the active site plus 

the radius of the DNA fragment. The radii of the active site and DNA were measured 

manually with the VMD39 molecular modeling software. Since both the active site and 

DNA can be approximated as ellipsoids, the following formula can be used to estimate 

their effective radii 
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 𝑟 =
𝑎

ln 2𝑎
𝑏

 (4.8) 

Where a  and b are the major and minor oval semiaxes38. However, simply accounting for 

the linear extension of the active site’s radius for capturing substrate is not adequate. As 

the conjugation site becomes more distant from the active site, the angle between DNA 

and the active site grows, and the efficiency of substrate capture diminishes. We call this 

angle the offset angle, denoted θDNA (Figure S4). The overall effect of the conjugated 

DNA, γ, is then modeled as 

 𝛾 = 1 + 𝛽 [
𝜋 − 𝜃𝐷𝑁𝐴

𝜋
(

𝑟𝐴𝑆+𝐷𝑁𝐴

𝑟𝐴𝑆
− 1)] (4.9) 

In the parameter γ, the offset angle is allowed to cover the range pi radians, or 180 

degrees. When θDNA is 0, the enlargement of the active site due to DNA conjugation can 

be fully exploited. When θDNA is π, the effective extension from DNA conjugation is 0 

since the DNA is too far from the active site to increase the flow of substrate there. The 

factor β is what we refer to as the “blocking factor”, and it represents the spatial overlap 

of the conjugated DNA and active site. If the active site is completely unobstructed, β = 

1. If it is 30% blocked, β = 1 - 0.3 = 0.7, and so on. We note that in all of the modeled 

KM/KM,app values for PTE-DNA in Figure 4.3, β has not been adjusted to fit experimental 

values; it was assumed to be 1 in all cases and thus has no effect on the model output. 

Altogether, the fold decrease in KM can then be predicted as 



 

102 
 

 
𝐾𝑀

𝐾𝑀,𝑎𝑝𝑝
=

[𝑆]
[𝑆]0

𝛾 (4.10) 

 

4.5. 9 Application of the Model to PTE-DNA and HRP-DNA and Comparison to 

Experiment 

The model matches the experimentally measured KM/KM,app of the PTE-DNA system 

quite well (Figure 4.3). Fully detailed example calculations are available in the 

supporting material. The offset angle effect is evident in the experimental results for 

Lys294 and Ala364, located 70 Å  and 73 Å from the active site, respectively. At these 

positions, the fold change in KM was approximately the same as [S]/[S]0, indicating that 

the DNA was not effective in shuttling substrate to the active site; it only served to 

increase the effective substrate concentration in the vicinity of the enzyme. This is 

consistent with our model, which produces γ = 1 for both Lys294 and Ala364, indicating 

there is no effective extension of the active site and subsequently KM/KM,app = [S]/[S]0. 

Agreement between modeled and experimental KM/KM,app remains strong for the next 7 

conjugation sites between roughly 55 to 8 Å from the active site, where γ > 1. However, 

agreement diverges at the closest conjugation site, Asp133. This site, just 6 Å from the 

active site, demonstrates the importance of β, the blocking factor. Conjugation here 

yielded only 4.41-fold KM enhancement, significantly less than that for Lys175, which is 

10 Å from the active site (Figure 4.3). We hypothesize that the reason for this sudden 

reversal is that access to the active site has become severely obstructed by the DNA at 
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Asp133. This is confirmed by our molecular models which show between a 5-40% 

blocking of the active site entrance depending on the rotational state of the DNA (Figure 

S5). Based on our results, a β value for Asp133 of about 0.31 brings the model and 

experiment into agreement. However, 0.31 implies about 69% reduction in active site 

accessibility, indicating the blocking effect was underestimated. We discuss the likely 

causes at the end of this section. 

To test the robustness of the model, we applied it to a DNA-conjugated HRP enzyme 

(HRP-DNA) for which we have previously obtained KM enhancement data.17 The DNA 

used in those experiments was the same fragment used in the current study, and the 

substrate, tetramethylbenzidine (TMB), has a very similar affinity for the DNA as 

paraoxon.17 In the HRP-DNA experiment, conjugation was done at two sites, Lys149 and 

Lys174, which are 8 and 40 Å, respectively, from the HRP active site. Under the 

experimental conditions, the DNA is conjugated at one or the other site, but never both, 

so the measured KM/KM,app of 2.9 reflects the average of both sites. Assuming the active 

site is completely unobstructed, the model predicts an 11.68- and 2.67-fold decrease in 

KM for Lys149 and Lys174, respectively, yielding an average of 7.17. This is much 

greater than the experimentally obtained value of 2.9. However, as with Asp133 on PTE, 

conjugation at Lys149 of HRP appears to severely disrupt the active site. In this case, 

there can be roughly 5-30% blocking of the active site surface area (Figure S5), which 

again underestimates the effect. A β value of 0.27 (implying 73% loss of accessibility) for 

Lys149 is required to reach agreement with experiment, in which case the model predicts 

KM/KM,app = 3.15, and the average for the two sites then becomes 2.91. 
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As we have shown, the factor β can be difficult to estimate, as the blocking of the active 

site in both cases was worse than would be estimated by simply assuming that 

accessibility is decreased by the percentage of blocked active site surface area. In reality, 

the dynamics of the conjugated complex make the effect quite complicated. DNA may 

lean considerably or even adsorb to the surface of the enzyme, or it could change the 

conformation of key active site residues. Our results show the effect of conjugating too 

close to the active site is approximately 2- to 3-fold greater than predicted based simply 

on the spatial overlap. Fortunately, our results also indicate that this disruption is only an 

issue at distances less than roughly 8 Å, so β can be entirely ignored the vast majority of 

the time. The reliance of parameter γ on only the size of the active site, size of the DNA, 

and conjugation site means it can be generalized to any enzyme-DNA system. 

Measurement of the enzyme active site is somewhat at the discretion of the user. We 

measured the maximum distance between residues at the perimeter of the oval-shaped 

cavity housing the catalytic residues in PTE and HRP (Figure S6b). The reliance of the 

overall model on [S]/[S]0 means it is substrate-dependent, as the substrate distribution 

will depend on its unique interactions with the particular DNA sequence used for 

conjugation. However, the rough substrate distribution can be easily acquired in a matter 

of hours from molecular simulation techniques such as Brownian dynamics.  
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Figure 4.3. Mechanistic modeling captures position-dependent kinetic enhancement PTE-

DNA conjugates. Left y-axis: Experimental and modeled  KM,app enhancement. Right y-

axis Effective susbstrate concentration predicted by combined MD and Brownian 

dynamics simulations.  

 

4.5 Conclusions 

We showed that computationally-guided enzyme bioconjugate design can result in a 

predictable KM enhancement. Here, rationally designed DNA conjugated on PTE 

preferentially attracts paraoxon over DDVP, creating a significantly increased effective 

concentration around the enzyme, which subsequently decreases KM of the reaction. Our 

simulations showed that the concentration increase is due to both electrostatic attraction 
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and short-range vdW forces, and allowed the concentration gradient around DNA to be 

quantified. Using the site-click method, our collaborators performed precise conjugation 

of DNA onto PTE at sites covering a wide range of distances from the PTE active site to 

test the effect on KM. The results showed that a greater decrease in KM is seen as DNA is 

conjugated closer to the active site. This, coupled with simulation data that shows a 

substrate concentration increase that intensifies closer to DNA, supports a conclusion that 

KM enhancement is due in part to an effective substrate concentration increase around the 

enzyme.  

Our best result saw a 7.4-fold decrease with DNA conjugated 10 Å from the active site. 

Moreover, the KM is decreased further by the DNA itself increasing the effective size of 

the active site, resulting in faster shuttling of molecules to the enzyme. These effects are 

captured in our simple and intuitive model that accurately predicts the fold change in KM 

for two different DNA-conjugated enzymes. Both our model and experiments show that 

the KM enhancement is maximized by conjugating DNA as close to the active site as 

possible without obstructing access by the substrate. The model relies only on active site 

and DNA size as well as  the angle between conjugation site and active site, meaning it 

can be applied to other similar systems with little or no modification of the current 

parameters. 
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CHAPTER 5. A Molecular Dynamics Investigation of CDK8/CycC and Ligand 

Binding: Conformational Flexibility and Implication in Drug Discovery 

 

 

5.1 Abstract 

Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein 

cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using 

molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-

CycC system and we obtained detailed breakdowns of binding energy contributions for 

four type-I and five type-II CDK8 inhibitors. We revealed system motions and 

conformational changes that will affect ligand binding, confirmed the essentialness of 

CycC for inclusion in future computational studies, and provide guidance in development 

of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve 

CDK8-CycC systems, including apoproteins and protein-ligand complexes, then 

performed principal component analysis (PCA) and measured the RMSF of key regions 

to identify protein dynamics. Binding pocket volume analysis identified conformational 

changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction 

calculations, and MM/PBSA were performed to characterize protein-ligand interactions 

and find the binding energy. We discovered that CycC is vital for maintaining a proper 

conformation of CDK8 to facilitate ligand binding and that the system exhibits motion 

that should be carefully considered in future computational work. Surprisingly, we found 

that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand 
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binding is driven by van der Waals interactions, but electrostatic energy and entropic 

penalties affect type-II binding as well. Binding of both ligand types affects protein 

flexibility. Based on this we provide suggestions for development of tighter-binding 

CDK8 inhibitors and offer insight that can aid future computational studies. 

 

5.2 Introduction 

Cyclin-dependent kinases (CDKs) are among the major regulators of the cell cycle and 

transcription [1]. The functions of CDKs depend on binding with regulatory proteins 

called cyclins. CDK8 together with cyclin C (CycC), mediator complex subunit 12 

(MED12) and MED13 forms a regulatory kinase module of the mediator complex [2-4], a 

large protein assembly that couples gene-specific transcriptional regulators to the general 

RNA polymerase II transcription machinery [5, 6]. A number of studies have shown that 

CDK8 modulates the transcriptional output from distinct transcription factors involved in 

oncogenic control [7]. These factors include the Wnt/β-catenin pathway, Notch, p53, and 

transforming growth factor β [8, 9]. 

CDK8 has recently attracted considerable attention after it was discovered to have key 

roles in oncogenesis. The gene expression of CDK8 is related to the activation of β-

catenin, a core transcriptional regulator of canonical Wnt signaling in gastric cancers [10-

12]. CDK8 is essential in cell proliferation in melanoma and acts as an oncogene in colon 

cancer in that its expression is amplified in about 60% of colorectal cancer cases [13, 14]. 

CDK8 gene expression is also related to prognosis in breast and ovarian cancers [15]. 

Additional cancer-relevant activities of CDK8 include growth factor-induced 
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transcription [16], modulation of transforming growth factor β signaling [17] and 

phosphorylation of the Notch intracellular domain [18, 19]. 

 

The research on selective CDK8 ligands has started only recently but has quickly become 

highly active. The steroidal natural product cortistatin A was the first-reported high-

affinity and selective ligand for CDK8, with IC50 value 12 nM in vitro and complete 

selectivity against 387 kinases [20]. The existing ligands have two categories based on 

the major conformations of CDK8 to which they bind. Type I ligands bind to the DMG-in 

conformation (aspartate-methionine-glycine near the N-terminal region of the activation 

loop) and occupy the ATP-binding site. The Senexin-type, the newer CCT series, and 

COT series compounds, which possess 4-aminoquinazoline [21], 3,4,5-trisubstituted 

pyridine [22] and 6-azabenzothiophene [23] scaffolds, respectively, belong to this 

category. Type II ligands bind to the DMG-out conformation and occupy mainly the 

allosteric site (deep pocket) and in some cases the ATP-binding site. The deep pocket is 

adjacent to the ATP-binding site and is accessible in CDK8 by the rearrangement of the 

DMG motif from the active (DMG-in) to the inactive state (DMG-out). This pocket is 

inaccessible in the active conformation (DMG-in), where the Met174 side-chain is 

reoriented to open up the ATP binding site [24]. Typical type II CDK8 ligands are 

sorafenib and imatinib analogs that contain an aryl urea core [25]. Research and 

development of new CDK8 ligands has made significant progress in recent years, and 

many promising compounds were identified [26-28]. Very recently 4,5-
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dihydrothieno[3’,4’:3,4]benzo[1,2-d] isothiazole derivatives were found to have sub-

nanomolar in-vitro potency (IC50: 0.46 nM) against CDK8 and high selectivity [29]. 

 

Since Scheneider et al. revealed the first crystal structure for human CDK8/CycC 

complexed with sorafenib (PDBID: 3RGF), in 2011 [30], a total of 25 crystal structures 

have been made available for this kinase system, thereby providing plenty of structural 

information for computational approaches to help in understand the atomistic detail of 

molecular functions and interactions with substrates and ligands. As compared with other 

CDKs, CDK8 displays additional potential recognition surfaces for interactions, possibly 

for recognition of MED12, MED13, or the substrates of CDK8. However, all of the 

crystal structures are lacking 10-20 residues within the activation loop in both the DMG-

in and DMG-out conformations, suggesting that the activation loop is highly flexible. 

However, without structural details of this region, how its motion affects other regions of 

the protein is unclear and its impact on overall stability and ligand binding is unknown. In 

addition, although the presence of CycC is crucial in the biological function of CDK8 

[30], whether CycC plays a role in ligand binding or protein stability is less clear. 

Therefore, it is important to gain an understanding of the effect of CycC on the dynamics 

of CDK8 regions, especially those near the binding sites. If the influence is negligible, 

CycC could be ignored, thus significantly speeding up calculations. Otherwise CycC 

must be included in the system to keep calculations accurate and meaningful.  
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Such information is not available from crystal structures, and one aspect of our study 

aims to elucidate this relationship. Moreover, we attempt to understand the interaction of 

ligands with surrounding residues, the stability of the binding modes in crystal structures, 

and the possibility of alternative binding modes. Computational methods such as 

molecular dynamics (MD) allow for complementary approaches to understand the details 

of structural changes during the process of ligand binding [31]. Wu Xu et al., with 50 ns 

of all-atom MD studies of human CDK8, provided insights into two-point mutations, 

D173A and D189N, within the activation loop by using hydrogen bond (H-bond) 

dynamic study of the activation loop residues and the MM/PBSA method [32]. Donatella 

Callegari and coworkers ranked the residence time of a series of CDK8 type-II inhibitors 

using metadynamics and the ranking was roughly consistent with the experimental 

data[33]. 

 

In this study, we used all-atom unbiased MD simulations to observe the dynamics of the 

CDK8-CycC system both with and without bound ligands. The simulations revealed 

some protein regions that were significantly stabilized by the ligands and showed the 

effect that other regions may have on ligand binding. We examined and confirmed the 

importance of CycC to the stability of the CDK8 and found that it facilitates key 

interactions that stabilize ligand binding modes. Binding of type-I and type-II ligands to 

CDK8 in DMG-in and DMG-out conformations, respectively, was also simulated. By 

extensively studying the native bound states of these CDK8/CycC-ligand complexes as 
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well as binding site volume changes, we developed detailed binding energy profiles for 

each ligand and gained insight that may help improve ligand design. 

 

5.3 Methods 

5.3.1 System Description 

The subject of this study is the CDK8 protein associated with its partner protein, CycC, 

along with nine inhibitors of CDK8. CDK8 has two distinct regions known as the N-lobe 

and the C-lobe. The binding pocket lies between these two lobes and has two regions: the 

allosteric site, or deep pocket, and the ATP binding site. CDK8 can be in two different 

conformations, DMG-in or DMG-out, based on the position of a 3-amino-acid sequence 

called the DMG motif comprising aspartate, methionine and glycine, which are residues 

173-175 (Figure 5.1). Type-I ligands bind to the DMG-in conformation and occupy the 

ATP binding site; type-II ligands bind the DMG-out conformation and occupy the deep 

pocket and the ATP binding site. CycC associates mainly with the N-lobe and has 

significant contacts with regions of CDK8 important to the stability of the binding 

pocket, such as the αC helix. 
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Figure 5.1. (a) CDK8 (green) and Cyclin C (red). (b) a close-up view of the binding pocket of 

CDK8. Residues that engage in strong interactions with type-I or type-II ligands are labeled with 

one-letter amino acid codes and shown in licorice. The yellow and blue ovals roughly encircle the 

ATP and allosteric binding sites, respectively. 

 

We studied DMG-in and DMG-out CDK8/CycC apoproteins, four type-I and five type-II 

(structure-kinetic relationship series, SKR) CDK8/CycC–ligand complexes. The PDB 

IDs of the crystal structures used as initial structures and the corresponding MD indices 

are listed in Table 1. We manually mutated the crystal structure 4F7N and obtained the 

complex of CDK8/CycC–SKR10, whose crystal structure is not available. For the 

CDK8/CycC apoproteins in the DMG-in conformation, we used two initial structures, 

4G6L and 5CEI, with ligand 50R removed. For the DMG-out apoprotein, we used the 

initial structure of 4F6W, with ligand SKR1 removed. The molecular structures of the 
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nine ligands are in Figure 5.2. We retained residues 1 to 359 for CDK8 and residues -2 to 

257 for CycC for the MD simulations. To build the missing activation loop, we used p38 

(PDB ID: 1W82 for the DMG-out conformation and PDBID: 1A9U for the DMG-in 

conformation) as the reference structure and constructed homology models of the CDK8 

activation loop by using SWISS-MODEL [34-36]. Then we aligned residues Asp173 and 

Arg200 and manually added the homology model of the activation loop to CDK8. We 

added the other two missing loops αD-αE and αF-αG by using SWISS-MODEL with the 

native crystal structures as the references. 
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Figure 5.2. Direct H-bonds and water bridges between ligands and CDK8. Green arrows and 

black arrows indicate direct H-bonds and water bridges between atoms on the ligand with a 

residue in CDK8, respectively. The occurrence percentages of the H-bonds and water bridges are 

labeled below the residue name. For water bridges, numbers of observed bridge water molecules 

are given below the percentage. 
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MD Index DMG Conformation Ligand PDB ID Manipulation 

1 DMG-In 
 

4G6L [25] 
 

2 DMG-In 
 

5CEI [24] Removal of Ligand 

3 DMG-In 50R 5CEI [24] 
 

4 DMG-In 5XG 5FGK [23] 
 

5 DMG-In 5Y6 5HBE [23] 
 

6 DMG-In 5Y8 5HBJ [23] 
 

7 DMG-Out 
 

4F6W [25] Removal of Ligand 

8 DMG-Out SKR1 4F6W [25] 
 

9 DMG-Out SKR2 4F7L [25] 
 

10 DMG-Out SKR5 4F6U [25] 
 

11 DMG-Out SKR10 4F7N [25] Manual Ligand Mutation 

12 DMG-Out SKR11 4F7N [25] 
 

 

Table 5.1. Initial structures and indices of MD simulations of CDk8/CycC 

complexes. The references to the crystal structures are provided with PDB IDs. 

 

5.3.2 Unbiased MD simulation 

The Amber 14 package with an efficient GPU implementation [37-39] was used for the 

MD simulations. Amber 99SB and General Amber Force Field (GAFF) [40-42] were 

used for CDK8/CycC and the 10 ligands, respectively. Single protonation states were 

used for all histidine residues according to predictions from comparing results for MCCE 
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[43, 44], ProPKa [45, 46], and DelPhiPKa [47, 48]. Six Cl- ions were placed to maintain 

a neutral system. Minimization was performed on the hydrogen atoms, side chains and 

the entire protein complex for 500, 5000, and 5000 steps, respectively, and the system 

was then solvated with a rectangular TIP3P water box [49] such that the edge of the box 

was at least 12 Å away from the solutes. The system went through 1000-step water and 

5000-step full-system minimization to correct any inconsistencies. Then we equilibrated 

the water molecules with the solutes fixed for 20 ns at 298K in an isothermic-isobaric 

(NPT) ensemble. Next, we relaxed the system by slowly heating it during an equilibrium 

course of 10 ps at 200, 250 and 298 K. We performed the production run in an NPT 

ensemble with a 2-fs time step and used the Langevin thermostat [50, 51] with a damping 

constant of 2 ps-1 to maintain a temperature of 298 K. The long-range electrostatic 

interactions were computed by the particle mesh Ewald method [52]. The SHAKE 

algorithm [53] was used to constrain water hydrogen atoms during the MD simulations. 

We performed 500 ns of MD production runs on each complex and the apoprotein by 

using CPU parallel processing and local GPU machines. We collected the resulting 

trajectories every 2 ps and re-saved the trajectories for analysis at intervals of 20 ps. 

 

5.3.3 System Dynamics and Flexibility Calculations 

Cartesian Principal Component Analysis. To observe major protein motions, we 

performed classical PCA [54-56] of α-carbon atoms in the 500-ns trajectories saved every 

20 ps (25000 frames in total). Using PCA, the complex data set of all α-carbon motions 

throughout the MD trajectory is reduced to its principal components (PC), the directions 
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which contain the greatest amount of variation (largest motion). The principal 

components are obtained as the eigenvectors of a covariance matrix consisting of 

displacements of α-carbons during the trajectory. The first PC mode is the dimension of 

data with the largest variation, and these were saved and analyzed to reveal the dominant 

motions. In order to observe motions in different periods of the MD simulations, we 

divided the aligned 500-ns trajectories of each system into five successive 100-ns 

trajectories and performed PCA on α-carbon atoms of the entire system in Cartesian 

coordinates. We calculated the first PC modes of 0-100, 100-200, 200-300, 300-400 and 

400-500 ns of MD1, instead of the first PC mode of the entirety of trajectory. In this way, 

distinct motions of the system occurring in these periods could be captured rather than 

blending the motion over all 500 ns into one mode. The average positions of the α-carbon 

atoms were used as a reference to compute the covariance matrix.  

 

Root-mean-square Fluctuation (RMSF) Calculations. The RMSF values of twelve regions 

of the systems were measured over the 500-ns MD trajectories. We chose regions that 

were distinct from one another and could plausibly have impacts on ligand binding and or 

the stability of the CDK8-CycC complex, such as the activation loop, αB helix, and αC 

helix, among others. A full illustration of the twelve regions and their tabulated RMSF 

values are shown in Figure 5.4. The RMSF of a region is the average displacement of that 

region with respect to a reference position taken over the trajectory time, 

𝑅𝑀𝑆𝐹 =  √1
𝑇

∑ (𝑥𝑖(𝑡) − 𝑥𝑖,𝑟𝑒𝑓(𝑡))
2𝑇

𝑡=1 where xi(t) is the position of region i at time t, 

xi,ref is the reference position of region i, and T is the time interval over which the 
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average is taken. The reference position used here is the average position during the 

trajectory. The angled brackets mean that the displacement of a region is computed as the 

average deviation of the atoms that make up that region.  

 

5.3.4 Characterization of Ligand Binding Modes and Binding Energies 

Hydrogen bonding analysis. Hydrogen bonds (H-bonds) contribute significantly to the 

binding interactions of all ligands included in this study. To understand which atoms of 

the ligands and CDK8 are involved in these interactions, which may provide information 

that can be used in the design of stronger-binding ligands, we analyzed the trajectory of 

each protein-ligand complex for H-bonds. In this study, an H-bond (X-H…Y) was 

considered formed if the distance between H and Y was <2.5 Å and the complimentary 

angle of X-H…Y was < 30º (Figure S1). We used an in-house script to scan the 

trajectories for direct H-bonds between ligands and CDK8 as well as mediating water 

molecules that connect ligands and CDK8. H-bonds between ligands and different atoms 

on the same residue were merged into one residue–ligand H-bond formation. The 

occurrence (%) of a H-bond was calculated as the number of the frames containing the H-

bond divided by the total frames (25000). 

 

Residue-wise interactions. Further classifying the binding modes, ligand interactions with 

the 359 CDK8 residues were computed for each of the nine ligands studied. For each 

residue, we computed the sums of vdW, Coulombic, and Generalized Born (GB) energy 

terms for the ligand with the residue (EL+R), the ligand alone (EL), and the residue alone 
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(ER), then computed the interaction energy ΔE = (EL+R) - EL - ER. The vdW term is 

calculated as a Lennard-Jones  

potential, EvdW = (A_ij/(r_ij^12 )-B_ij/(r_ij^6 )), with A = 4εσ12 and B = 4εσ6, where ε 

is the potential well depth in kcal/mol and σ is the distance at which the potential is zero, 

and r is the distance between atoms i and j. The Generalized Born energy approximates 

the solvation energy and was calculated using the Still model [57]. We report only 

residues that closely interact with the ligands in this analysis. 

  

MM/PBSA. We used the MM/PBSA method [58] to evaluate the intermolecular 

interactions between a ligand and CDK8/CycC. The method computes the energy (E) of a 

system from the protein (EP), ligand (EL) and complex (EPL), with the interaction 

energy computed by  

Δ<E> = <EPL> - <EP> - <EL>. <E> denotes the computed average energy from a given 

MD trajectory. The total binding energy term was computed as EMM/PBSA = Ebonded 

+Eelec + EvdW + GPB + Gnp; where Ebonded is the bonded energy, Eelec and EvdW 

are electrostatic and vdW energy, GPB is the solvation energy computed by solving the 

Poisson Boltzmann (PB) equation, and Gnp is the nonpolar energy estimated from the 

solvent accessible surface area. Because <EPL>, <EP> and <EL> terms were computed 

using the same bound state trajectory, the bonded term was canceled and is not shown in 

Table 2. 
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Binding pocket volume analysis. We used a grid-based in-house program to evaluate the 

volume of the ATP binding site in order to quantify conformational change of the pocket 

that accompanies binding. For each conformation, we measured the minimum and 

maximum of the Cartesian coordinates of the α-carbons of CDK8 binding pocket residues 

Val27, Gly30, Glu66, Asn156 and Ile171, and divided the space determined by these 

coordinates into a grid with a spacing of 1 Å along the  x, y and z axes. If a grid point is 

within 1.4 Å (radius of a water molecule) of any atoms of CDK8, it is removed. 

Otherwise, the grid point is kept in the space. Because the grid spacing is 1 Å, the solvent 

accessible volume for water of the CDK8 binding pocket is approximated by the number 

of grid points left over in units of Å3. The same procedure is repeated for each 

conformation in the trajectories. 

 

5.4 Results and Discussion 

Our major areas of analysis were i) CDK8-CycC system dynamics ii) the effect of 

excluding CycC from MD simulations on dynamics and ligand binding and iii) ligand 

binding modes and binding site conformational changes with the objective of developing 

detailed binding energy profiles for four type-I ligands and five type-II ligands (Figure 

S2). We first present results related the overall system dynamics and regional flexibility. 

The effects of CycC exclusion are presented next. We repeated MD runs on all twelve 

systems without the presence of CycC in order to observe the differences in dynamics. 

These were obtained by measuring RMSF values of twelve major regions of the system 

and by using PCA on sequential 100-ns portions of the 500-ns MD trajectories of all 
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twelve systems to observe the major global motions. Next, we present binding energy 

profiles for all nine ligands studied. An in-house script was used to identify all hydrogen 

bonds (Figure S1) between CDK8 and the ligands and to find their occurrence 

percentages. Residue-wise interaction analysis was done for all ligand-CDK8 residue 

pairs to quantify electrostatic, vdW, and desolvation energies important to binding. 

Finally, MM/PBSA was employed to find the overall binding energies of the ligands. 

Binding pocket volume analysis for apoproteins and protein ligand complexes in both 

DMG-in and DMG-out conformations allowed us to assess how the pocket may change 

to accommodate ligand binding and differences caused by the orientation of the DMG 

motif. 

To further ensure the motions observed in these simulations were not the result of random 

fluctuations and truly characterized the dynamics of this system, we ran secondary 

simulations for 200 ns for all twelve of the systems both with and without CycC. These 

are shorter repeats of the first simulations, run under the exact same conditions but 

starting with a different random number seed, so that a different trajectory is obtained. 

The dynamics seen in the secondary runs should recreate that seen in the primary 

production run and help provide assurance that the observations were not due to 

randomness and were not strange artifacts of any particular simulation. In our secondary 

simulations, the same dynamics seen in the first set of simulations was observed in all 

cases. 

 

 



 

126 
 

5.4.1 CDK8-CycC Dynamics 

We examined the first PC modes of the twelve systems over five 100-ns intervals and 

identified five common global protein motions related to ligand binding and unbinding. 

These major motions were observed in both DMG conformations, with and without 

ligands, in all twelve systems. Figure 5.3 shows the five motions: (A) is a breathing 

motion in which the system bends and unbends about the hinge region connecting the N 

and C lobes; (C) is rotational motion in which the two lobes rotate back and forth relative 

to each other; (B) and (D) are the bending and rotational motions between CDK8 and 

CycC, respectively; (E) consists of the motions of the αB helix, the activation loop, and 

the loop connecting the αD and αE helixes. All five recurred periodically for all systems 

over 500 ns but never were all five found within a single 100-ns interval, showing at least 

100 ns is required to fully sample system dynamics and indicating that unique motions 

are unlikely beyond 500 ns. Motions (A) through (D) have considerable impact on ligand 

binding and unbinding. Because binding sites of proteins are usually enclosed areas, 

global motions such as these facilitate ligand binding by opening the sites and improving 

accessibility. The breathing motion was found to be closely related to the 

binding/unbinding pathways of p38 MAP kinase [61, 62]. Motion (E) may be related to 

the conversion between DMG-in and DMG-out conformations [63-65]. Projecting MD 

trajectories onto these PC modes provide a well-defined way to cluster conformations 

from MD simulations and therefore can be used as a rational way for selecting 

conformations for molecular docking or other studies that require multiple 

conformations. 
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128 
 

Figure 5.3. The first PC modes from Cartesian PCA of apo CDK8/CycC or CDK8/CycC-

Ligand complexes using 100 ns trajectories. The breathing motion between N-lobe (cyan) 

and C-lobe (green) (A), breathing motion between CDK8 and Cyclin (yellow) (B), 

rotational motion between N-lobe and C-lobe (C), rotational motion between CDK8 and 

Cyclin (D), and loop motions (E) are indicated by gray arrows for DMG-In (Left) and 

DMG-Out (Right) conformations. The way of computing the first PC modes is detailed in 

Method 2.3 (1). The DMG-In PC modes use MD1 100-200 ns (A), MD3 0-100 ns (B), 

MD1 200-300 ns (C), MD5 0-100 ns (D), MD5 200-300 ns (E). The DMG-Out PC modes 

use MD11 100-200 ns (A), MD7 100-200 ns (B), MD11 300-400 ns (C), MD8 100-200 ns 

(D), MD9 100-200 ns (E). 

 

RMSF measurement of the twelve systems revealed the flexibility of key regions and, 

most notably, showed that the large motions of the activation loop do not affect binding. 

The RMSF plots of the twelve systems are shown in Figure 5.4. For clarity, we provide 

the RMSF values within twelve regions of CDK8. A major difference between RMSFs of 

DMG-in and DMG-out conformations is in the flexibility of the activation loop (Region 

9). Our DMG-in systems consistently showed smaller RMSF values for this region than 

DMG-out systems (1.2-1.7 vs 2.2-3.0 Å). This finding is supported by DMG-out crystal 

structures which, due to the higher flexibility, almost always have fewer resolved 

residues in the activation loop compared to DMG-in structures. Crystal structure 5FGK is 

missing 17 residues in the activation loop, which indicates a level of flexibility consistent 

with the abnormally high RMSF we observed of 3.15 Å. Our simulations have revealed 
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that despite the different degrees of flexibility of the activation loop, both type-I and 

type-II ligands have stable binding conformations, as characterized in section 3.1. 

Therefore, the natural dynamics of the activation loop may have very limited effects on 

ligand binding modes in the ATP binding site and allosteric binding site, and it may be 

unnecessary to consider various loop conformations in future docking-based drug 

development for CDK8. 

 

Figure 5.4. RMSF for all the studied CDK8/CycC systems. The color bar on the x-axis 

marks the regions of CDK8. The table beneath the plot lists the 12 regions with large 

motions and highlighted with colors that correspond to the color bar. 
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Ligand binding has minor effects on the dynamics of the CDK8/CycC complex and 

influences DMG-in and DMG-out conformations differently. In the apo-form of CDK8, 

DMG-out CDK8 shows significantly more flexibility in the αC helix and activation loop 

areas (Figure 5.4). Upon ligand binding, the αC helix of the DMG-out conformation is 

largely stabilized by the formation of two highly stable H-bonds via the urea linker of 

type-II ligands with Glu66 on the αC helix and Asp173 on β8, which leads to the 

activation loop. This stabilizes the binding pose of type-II ligands, in turn stabilizing the 

αC helix. Type-I ligands form a less stable H-bond with Lys52 (40-50% duration), which 

forms an H-bond with Asp173, but this interaction is also present in the apo-form CDK8, 

so ligand binding seems to confer no further stability. The C-terminus (region 12 in 

Figure 5.4) is also stabilized by ligands. For the DMG-in apo-form of CDK8, the RMSF 

for this region can be very large depending on initial conformations and sampling, but is 

greatly reduced upon ligand binding by the π-stacking interaction between the ligand and 

Arg356. Type-II ligand SKR1 also forms this interaction and stabilizes this region. The 

recently discovered 4,5-dihydrothieno[3’,4’:3,4] benzo[1,2-d] isothiazole derivative 

achieved sub-nanomolar potency despite the fact that the corresponding docking study 

suggested this ligand had no interaction with Arg356 [29], suggesting this interaction 

may not be essential. Because our study showed significantly reduced CDK8 flexibility 

in the C-terminus due to ligand binding, investigation of ligands that avoid this 

interaction while maintaining the other key interactions is worthwhile and may result in 

ligands that produce lower entropic penalties. Except for the αC helix and C-terminus, we 

observed no other important stabilized regions. Ligand binding affects the dynamics of 
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CDK8 via local, direct interactions and is unable to induce long-range or allosteric 

effects. 

5.4.2 Importance of CycC to CDK8 Stability and Ligand Binding 

We performed MD simulations for the systems without CycC, and the results clearly 

show that CycC stabilizes CDK8 by reducing the fluctuation in the N-terminus, αC helix, 

and activation loop. The activation of CDKs requires the binding of cyclins and 

phosphorylation of Thr, Ser, and Tyr on their activation loop [67, 68]. This binding 

changes the conformation of CDK8 markedly [32,68] and enables ligand binding in the 

allosteric site [25], which is supported by our observation that in the absence of CycC, 

the αC helix of CDK8 adopts an αC-out conformation, whereby Glu66 moves away from 

the DMG motif. By losing the H-bond from Glu66 and interactions from the entire αC 

helix, the allosteric binding site collapses, thereby disabling the binding of type II 

ligands. 

Figure S3 compares the RMSF of CDK8-50R complexes with and without CycC. 

Without CycC, the N-terminus of CDK8, αC helix, and activation loop have much larger 

RMSF values (Figure 5.4). Crystal structures show that the N-terminus of CDK8 rests 

stably on CycC, however, in our simulations omitting CycC, the N-terminus exhibits 

extremely large motions, leading to a totally different conformation of this region. Crystal 

structures show that the αC helix is part of the binding interface of CDK8 and CycC. If 

CycC is absent in simulation, the αC helix has a wider range of motion and moves toward 

the space that CycC would normally occupy, becoming too distant form the binding site 

to form the characteristic H-bond via Glu66 with type-II ligands (Figure 5.5). Although 
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the activation loop is not in direct contact with CycC, the reduced motion of the N- and 

C-lobes and αC helix by CycC provides stability to this region as well. 

Among the three regions stabilized by CycC, the αC helix has the largest impact on 

ligand binding. The conformation of this helix is characterized as αC-in or αC-out 

according to the distance between Cα carbon atoms of Glu66 and Asp173 [66]. Structures 

with a short DMG-αC-helix distance (4−7.2 Å) are classified as αC-in, whereas structures 

with long distances (9.3−14 Å) are classified as αC-out. Structures with distances in 

between are classified as αC-out–like structures. Figure S4 shows this distance in MD2 

and MD3 and suggests that CDK8 is usually in the αC-out conformation when CycC is 

absent and αC-in when CycC is present. All type-II ligands included in this study form a 

very strong H-bond with Glu66 on the αC-helix. This is only possible in the presence of 

CycC which causes CDK8 to adopt the αC-in conformation. Moreover, although the αC 

helix is not in direct contact with type-I ligands, it helps stabilize the binding pocket via a 

key salt bridge between Glu66 and Lys52. Lys52 is one of the most important residues 

for type-I ligand binding, providing a stable H-bond for in all cases studied here, and in 

this sense CycC also affects type-I ligands. In the trajectory of CDK8-5Y6 complex 

without CycC, 5Y6 leaves the native bound state characterized by the crystal structure 

and found an incorrect binding state conformation due to the absence of CycC and the 

unstable binding cavity (Figure 5.6). In this conformation, the αC helix moves away from 

the ligand and the salt bridge between Lys52 and Glu66 is broken. This situation causes 

the beta sheets β1-2 above the binding site to move upward, providing the ligand with 

more room to explore the binding site. 5Y6 still keeps a V-shape but rotates by 90 
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degrees to pick up contacts with Tyr32 and Phe97. The MMPB/SA interaction energy 

(∆EMM/PBSA) of this trajectory is -25.5±3.8 kcal/mol and is significantly weaker than 

its counterpart including CycC (-29.4±4.4 kcal/mol), further indicating the importance of 

CycC in maintaining proper binding conformations.  

 

 

Figure 5.5. Conformation change of the αB and αC helices in MD8 (apo CDK8 in DMG-

out conformation) in the absence of CycC. The αB helix is in yellow, and the αC helix is 

in green. GLU 66 is shown in licorice. 
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Figure 5.6. Comparison of CDK8-5Y6 complex without CycC at a) 0 ns and b) 200 ns. 

Two binding modes are observed when CycC is absent, one at 0 ns which is a typical 

type-I ligand binding mode, and the other at 200 ns which is partially due to loss of the 

important salt bridge formed between K52 and E66 (red circle in a). (c) is a superposition 

of the two aligned trajectory frames with 0 ns in green and 200 ns in red showing the 

large conformational changes that occur in CycC’s absence.  

 

5.4.3 Ligand Binding Modes and Binding Pocket Volume Analysis 

Our MD simulations revealed binding modes for both type-I and type-II ligands that 

matched crystal structures and provide a level of detail previously unavailable (Figure 

5.7). By calculating the binding energies of the ligands with the MM/PBSA method, we 

identified the driving forces behind ligand binding to CDK8. The energy breakdowns are 

shown in Table 2. Type-I ligands formed H-bonds with Lys52, Ala100, and Asp173 in 

the ATP binding site. Additionally, we found significant vdW interactions with Val27, 
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Val35, Ile79, Tyr99, Leu158, and Arg356. Type-II ligands formed H-bonds with Asp173 

and Glu66, which are stabilized by a salt bridge between Glu66 and Lys52 and 

experience large vdW forces with Leu69, Leu70, Ile79, Phe97, Leu142 and Ala172. 

Tables 2 and 3 list the strength and durations of these interactions and Figure S7 shows 

the patterns of H-bond formation and loss for a type-I and type-II ligand. We also 

computed the total solvent accessible volumes for the ATP and allosteric binding sites for 

all twelve systems. For type-I ligands, more contacts between ligand and protein lead to 

better binding affinity through vdW attractions, whereas for type-II ligands, the structural 

locker formed by Glu66 and Asp173 contributes more significantly. The computed 

volumes and a few representatives of the volume change over time are in Figure 5.8. The 

specifics of each ligand binding mode vary and are presented in the following sections.  
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Figure 5.7. Typical binding modes for a) type-I ligands and b) type-II ligands with H-

bonds shown by red dotted lines and the strongest-interacting residues labeled and shown 

in licorice. 

 

5.4.4 Type-I Ligands  

H-Bonds. Type-I ligands all share the same direct H-bonds to CDK8 at Lys52 and 

Ala100, but the H-bond with Ala100 has higher occurrence (56-76% vs. 38-48%) in all 

cases because of its position in the relatively stationary hinge region and the relative 

instability of the β-sheet containing Lys52 (Figure 5.2). 50R has a nitrogen on the 

benzothiophene ring forms a H-bond with Ala100 with an occurrence of 64%, and its 

amide moiety forms another H-bond with Lys52. The other type-I ligands show a similar 

binding pattern with the ketone oxygen forming an H-bond with Lys52, and the nitrogen 
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on the pyridine forming an H-bond with Ala100. The 3-aminoindazole moiety of 5XG 

forms a very highly stable H-bond with Val27, with occurrence 78%, which is a unique 

feature among the type-I ligands studied here. 

 

Electrostatic, vdW, and other interactions. For all type-I ligands, the overall interaction 

energy is stronger with Lys52 than Ala100 due to both better vdW and electrostatic 

interactions despite the greater desolvation penalty. These ligands form vdW interactions 

(-2.2 to -3.2 kcal/mol) with Leu158, Arg356, Val35, and a few other residues (Table 3). 

Other important interactions include formation of a cation-π interaction with Arg356 by 

the aromatic rings of type-I ligands (Figure 5.7). The benzene ring of 50R forms a cation-

π interaction with Arg356 and the other three type-I ligands have the same scaffold by 

which the indazole or its analogue part forms the same cation-π interaction with Arg356. 

Type-I ligands also form some bridge water interactions with Glu66 (3 to 14%), Asp173 

(25 to 38%), and some other residues, but these bridge water molecules are not very 

stable and are rapidly displaced by bulk water molecules. Bridge waters function as 

mediating water molecules that hold the interaction between the protein and ligand and 

may stabilize the binding pose of the ligand, but in this case are unlikely to cause any 

appreciable decrease in desolvation penalty since they are easily displaced [59, 60]. 

These interactions are not as strong as direct H-bonds but could still increase ligand 

binding affinity.  
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MM/PBSA Binding Energy. All type-I ligands possess a similar scaffold that occupies a 

nearly identical space in the ATP binding site (Figure S5) and have MM/PBSA 

interaction energies (ΔEMMPBSA) of about -25 to -32 kcal/mol. This is the net effect of 

a negative vdW interaction energy term (ΔEvdW) ranging from -40 to -49 kcal/mol and a 

positive electrostatic plus PB term (ΔEelec+PB) from 15 to 23 kcal/mol. The vdW 

interaction is the major driving force for binding; the ATP binding site has a small 

volume in the free state and opens to accommodate the ligands which experience tight 

contacts once they are established. With this scaffold, these ligands have better binding 

affinity when the ligand is bulkier, so there may be room to further exploit this property 

using slightly larger type-I ligands. Figure S6 shows the relationship between binding 

pocket volume and experimental binding affinity.  

 

5.4.5 Type-II Ligands 

H-Bonds. All Type-II ligands form two strong H-bonds with Glu66 and Asp173 via the 

urea linker, with occurrences of roughly 90-96% and 76-93%, respectively (Figure 5.2). 

These two H-bonds function as anchors that stabilize the type-II ligands in the allosteric 

binding site. The moiety that extends into the ATP binding site for SKR5 and SKR11 has 

a size and shape which allows these ligands to form an H-bond with Asp98 with 

occurrences of 8.77 and 10.34%, respectively, that is not seen with the other three type-II 

ligands. SKR5 has a terminal [3-(morpholine-4-yl)propyl] group that forms another H-

bond with Ala100 in the hinge region. Although the occurrence of this H-bond is as low 

as 17%, it provides SKR5 with detectable residence time [25] 
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Electrostatic, vdW, and other interactions. The scaffold of all type-II ligands in the 

allosteric binding site is nearly identical and forms vdW interactions with Leu69 of about 

-1.0 kcal/mol and with Leu70 of about -2.8 kcal/mol. These ligands have very different 

structures that extend into the ATP binding site, however, and the vdW interaction in this 

site and structural flexibility largely account for the variability in binding affinities. 

SKR1 is the largest ligand and extends into and occupies the entire ATP binding site as 

well (Figure S5), which results in a very strong vdW interaction (ΔEvdW) with CDK8 at 

-89 kcal/mol. Because ligand size roughly decreases from SKR2 to SKR11, the vdW 

interaction (ΔEvdW) decreases from -62 to -50 kcal/mol. Other differences in the ATP 

site moiety of type-II ligands result in variations of other interactions and may change 

flexibility. For example, SKR10 cannot form the H-bond with Asp98 that SKR11 can, 

and its absence causes the analogous part of SKR10 to fold onto the protein surface 

resulting in a stronger vdW interaction than SKR11. 

The benzene ring of SKR1 in the ATP binding site interacts with Arg356 via cation-π 

stacking in the same way as type-I ligands, but it does not have contacts with the hinge 

region. SKR1 also forms a few stable bridge water interactions with Asn156 and Asp173. 

SKR2 binds similarly to SKR1 but occupies less of the ATP binding site and has less 

vdW interaction in that region, and rather than cation-π stacking, has vdW interaction 

with Arg356. In addition, the smaller structure extending into the ATP binding site is 

very flexible during the MD simulations, so SKR2 should have a smaller entropic penalty 

than SKR1.  
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The electrostatic plus PB term (ΔEelec+PB) opposes the binding of type-II ligands and 

decreases with ligand size; however, the electrostatic term (ΔEelec) alone is very similar 

among the five type-II ligands, except for SKR5. This finding indicates that the greater 

presence of polar functional groups in the larger type-II ligands doesn’t necessarily form 

favorable interactions with the binding pocket of CDK8 and that the binding of these 

ligands is driven by non-polar interactions.  

 

MM/PBSA Binding Energies. Type-II ligands share the same scaffold, the minimal 

compound 7 in [25] that binds to the allosteric binding site of CDK8, but have different 

structures that extend into the ATP binding site, and MM/PBSA interaction energies of 

these ligands vary widely due to this difference. MM/PBSA calculations showed that 

SKR1 has stronger binding energy than SKR2, but experimental data favor SKR2 by 0.5 

kcal/mol. Because entropy contributions are not considered in our MM/PBSA 

calculations, neglected entropic effects may account for this discrepancy. Compared with 

SKR1, the smaller SKR2 is less confined and retains more freedom, therefore paying less 

entropic penalty. In addition, RMSF measurements showed that CDK8 bound to SKR2 is 

more flexible than when bound with SKR1 (Figure 5.4), which suggests that the protein 

also pays less entropy penalty bound to SKR2. SKR10 and SKR11 have less bulky 

structures than SKR1, SKR2, and SKR5, and thus less favorable vdW interactions with 

the ATP binding site, which is largely the reason for their less favorable MM/PBSA 

energies (Table 2). 
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Figure 5.8. Volumes of the ATP binding site in Å3. Plot: Volume change along the MD 

time for four selected systems; Table: average volumes with standard deviations of all 12 

MD systems. 
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Type I 

MD Index 3 4 5 6 

Ligand 50R 5XG 5Y6 5Y8 

PDB ID 5CEI 5FGK 5HBE 5HBJ 

∆EvdW -39.8±2.8 -45.9±2.7 -48.5±2.9 -43.9±3.0 

∆Eelec -13.0±4.6 -28.7±6.4 -24.6±7.0 -26.0±5.5 

∆GPB 31.2±3.6 47.2±5.7 48.0±6.6 41.4±4.9 

∆Eelec+PB 18.2±3.5 18.5±4.3 23.4±4.1 15.4±3.3 

∆Gnp -3.6±0.1 -4.2±0.1 -4.3±0.1 -4.2±0.1 

∆Egas -52.8±5.7 -74.6±6.8 -73.1±8.1 -69.9±6.1 

∆Gsolv 27.6±3.5 43.1±5.6 43.7±6.6 37.3±4.9 

∆EMM/PBSA -25.2±4.1 -31.5±4.1 -29.4±4.4 -32.6±3.9 

∆GExpt -11.4 -12.0 -11.9 -11.3 

Type II 

MD Index 8 9 10 11 12 

Ligand SKR1 SKR2 SKR5 SKR10 SKR11 

PDB ID 4F6W 4F7L 4F6U 4F7N 4F7N 

∆EvdW -88.5±3.4 -62.4±3.3 -59.9±4.9 -50.6±2.8 -49.5±3.0 

∆Eelec -20.4±4.1 -20.0±4.8 -28.3±7.6 -20.9±4.6 -19.0±6.0 

∆GPB 66.4±4.7 49.9±5.0 52.6±9.0 40.4±5.0 38.3±5.4 

∆Eelec+PB 46.0±4.6 22.9±4.3 24.3±5.2 19.6±4.1 19.3±4.2 
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∆Gnp -7.9±0.1 -5.8±0.1 -5.5±0.1 -4.8±0.1 -5.0±0.1 

∆Egas -

108.8±4.8 

-82.4±5.9 -

88.2±10.4 

-71.5±4.6 -68.5±6.8 

∆Gsolv 58.5±4.7 37.0±5.0 47.1±9.0 35.6±5.0 33.3±5.4 

∆EMM/PBSA -50.3±4.7 -45.3±4.9 -41.1±5.0 -35.9±3.9 -35.2±4.5 

∆GExpt -10.2 -10.7 -8.4 -8.0 -9.7 

 

Table 5.2. MM/PBSA energy breakdowns for the binding energy of 9 ligands with 

CDK8/CycC in kcal/mol. ∆EvdW and ∆Eelec are the van der Waals and electrostatic energy 

contributions, respectively, and ∆Egas is the sum of those two terms. ∆GPB and ∆Gnp are the 

polar and non-polar solvation energies, respectively, and ∆Gsolv is the sum of those two 

terms. ∆EMM/PBSA is the binding energy predicted by MM/PBSA.   
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Type I 

MD Index 3 4 5 6 

Ligand 50R 5XG 5Y6 5Y8 

PDB ID 5CEI 5FGK 5HBE 5HBJ 

LEU158 -2.7±0.6 -2.8±0.6 -2.7±0.6 -2.7±0.6 

ARG356 -2.5±0.6 -2.7±0.7 -2.7±0.7 -3.2±0.6 

VAL35 -2.4±0.5 -2.4±0.6 -2.5±0.7 -2.2±0.6 

LYS52 -2.0±1.2 -3.0±1.1 -2.7±0.9 -2.6±1.2 

TYR99 -1.7±0.4 -1.8±0.4 -1.6±0.4 -2.0±0.5 

ALA100 -1.2±0.7 -1.2±0.7 -1.4±0.6 -1.5±0.5 

PHE97 -1.0±0.4 -1.0±0.4 -1.1±0.3 -0.7±0.3 

TYR32 -0.6±0.6 -2.3±1.0 -2.8±1.0 -2.0±1.0 

VAL27 -1.0±0.5 -1.7±0.7 -0.9±0.5 -0.9±0.5 

ILE79 -0.8±0.4 -1.1±0.4 -1.1±0.4 -0.8±0.5 

ASP103 +0.1±0.6 +1.2±0.7 +1.9±0.8 +1.4±0.6 

Type II 

MD Index 8 9 10 11 12 

Ligand SKR1 SKR2 SKR5 SKR10 SKR11 

PDB ID 4F6W 4F7L 4F6U 4F7N 4F7N 

GLU66 -5.2±1.1 -5.4±1.2 -4.6±1.4 -5.2±1.1 -4.4±1.4 

MET174 -3.3±0.8 -2.8±1.0 -1.1±0.8 -1.4±0.8 -0.7±0.8 
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ARG356 -2.8±0.9 -0.1±0.5 0.0±0.4 0.0±0.3 0.0±0.3 

LEU70 -2.7±0.8 -2.7±0.8 -2.8±0.8 -2.7±0.7 -2.9±0.8 

LEU158 -2.4±0.8 +0.9±0.6 -0.6±0.6 0.0±0.4 0.0±0.6 

ASP173 -2.0±1.0 -2.3±1.0 -1.8±1.0 -2.2±1.0 -1.7±1.0 

PHE97 -1.9±0.7 -2.2±0.8 -2.3±0.7 -1.4±0.8 -1.7±0.8 

VAL35 -1.9±0.7 -1.7±0.8 -1.0±0.6 -0.1±0.6 -0.3±0.7 

ALA172 -1.7±0.8 -1.7±0.9 -2.0±0.7 -1.7±0.7 -1.6±0.7 

ILE79 -1.7±0.8 -2.1±0.9 -2.2±0.8 -1.5±0.8 -1.8±0.9 

LEU69 -1.1±0.7 -1.0±0.7 -1.0±0.6 -1.0±0.7 -1.0±0.6 

ARG178 0.0±0.1 0.0±0.3 -1.2±1.0 0.0±0.2 0.0±0.4 

LEU142 -0.9±0.5 -1.0±0.6 -0.9±0.6 -1.0±-0.6 -0.9±0.7 

 

Table 5.3. The major residues that have interaction energies stronger than -1.0 kcal/mol 

with type I and type II ligands. All values are in kcal/mol. The standard deviation is 

marked by ±. 

 

5.5 Conclusion 

In this work, we performed MD simulations for nine CDK8/CycC-ligand complexes and 

three CDK8/CycC apoproteins which included both DMG-in and -out conformations. 

Our analysis of system dynamics and flexibility shows that the highly flexible activation 

loop has little effect on ligand binding. Further, ligand binding stabilizes the α-C helix 
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and C-terminus of CDK8 through direct interactions with residues in these regions but 

does not affect the large-scale dynamics. PCA analysis on sequential 100-ns portions of 

the MD trajectories revealed the range of protein global motions which are relevant to 

binding, such as a bending motion about the hinge region, and our simulations provide 

well-sampled conformations for use in future docking or MD studies.  

 

By repeating simulations with CycC excluded, we were able to discern its stabilizing 

effect on the system. We found that CycC is critical to maintain the structure of CDK8 

and provide proper interactions for ligand binding, namely the stabilization of Glu66 on 

the αC helix, which forms a critical H-bond with type-II ligands and makes an important 

salt bridge with Lys52, which H-bonds with type-I ligands.  

 

Analysis of four type-I and five type-II ligand binding modes along with volume 

measurements of the binding pocket elucidated the protein-ligand interactions. Residues 

Lys52 and Ala100 form very strong H-bonds with all type-I ligands, and Asp173 and 

Arg356 provide highly favorable vdW interactions. Additionally, the binding pocket has 

a smaller volume with type-I ligands, and vdW interactions with the surrounding resides 

are a major driving force of binding. These ligands can reduce protein flexibility, so 

entropic penalties need to be taken into consideration. H-bonds may be used to optimize 

the enthalpic attractions, and, assuming the rigidity of the scaffold can be retained, 

slightly larger compounds can increase the vdW interaction to optimize the binding 

affinity.   
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Type-II ligands bind in both the allosteric and ATP binding site. They all form H-bonds 

with Glu66 and Asp173; the main variability in type-II binding affinities is due to the 

varying structures that extend into the ATP binding site. We found that larger structures 

extending into the ATP site result in favorable vdW interactions and H-bonds. 

Optimization of type-II binding affinities depends on proper design of the group 

extending into ATP binding site that achieves a balance between rigidity and size to keep 

the entropic penalty upon binding minimal while providing enough bulk to stay firmly in 

the binding pocket and achieve favorable vdW interactions and H-bonds. 
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CHAPTER 6. Insights Into Inhibitor and Ubiquitin-like Protein Binding in SARS-

CoV-2 Papain-like Protease 

 

6.1 Abstract 

Covid-19 is caused by a novel form of coronavirus for which there are currently no 

vaccines or anti-viral drugs. This virus, termed SARS-CoV-2 (CoV2), contains Papain-like 

protease (PLpro) involved in viral replication and immune response evasion. Drugs 

targeting this protease therefore have great potential for inhibiting the virus, and have 

proven successful in older coronaviruses. Here, we introduce two effective inhibitors of 

SARS-CoV-1 (CoV1) and MERS-CoV to assess their potential for inhibiting CoV2 

PLpro.. We ran 1 µs molecular dynamics (MD) simulations of CoV2, CoV1 and MERS-

CoV ligand-free PLpro to characterize the dynamics of CoV2 PLpro, and made 

comparisons between the three to elucidate important similarities and differences relevant 

to drug design and ubiquitin-like protein binding for deubiquitinating and deISGylating 

activity of CoV2. Next, we simulated the inhibitors bound to CoV1 and CoV2 PLpro in 

various poses and at different known binding sites to analyze their binding modes. We 

found that the naphthalene-based ligand shows strong potential as an inhibitor of CoV2 

PLpro by binding at the putative naphthalene inhibitor binding site in both computational 

predictions and experimental assays. Our modeling work suggested strategies to improve 

naphthalene-based compounds, and our results from molecular docking showed that the 

newly designed compounds exhibited improved binding affinity. The other ligand, 

chemotherapy drug 6-mercaptopurine (6MP), showed little to no stable intermolecular 
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interaction with PLpro and quickly dissociated or remained highly mobile. We demonstrate 

multiple ways to improve the binding affinity of the naphthalene-based inhibitor scaffold 

by engaging new residues in the  unused space of the binding site. Analysis of CoV2 PLpro 

also brings insights into recognition of ubiquitin-like proteins that may alter innate immune 

response. 

 

6.2 Introduction 

Covid-19, caused by a novel form of coronavirus, has created a global health crisis due to 

the lack of vaccines and anti-viral drugs. Over the past two decades, coronaviruses such 

as the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-1 or CoV1) and 

Middle East Respiratory Syndrome coronavirus (MERS-CoV) have caused mass human 

fatality. In late 2019, the novel form of coronavirus, known as SARS-CoV-2 (CoV2), 

spread rapidly from Wuhan, China to all continents of the world within months, causing 

widespread mortality and worldwide panic (CDC, 2020). The only way to curtail the 

spread of the virus thus far has been through strict, indefinite quarantine of millions of 

people. Clearly, development of anti-viral drugs capable of inhibiting CoV2 is of 

paramount importance. 

CoV2 contains a Papain-like protease (PLpro) that is vital for viral replication (Harcourt 

et al., 2004). PLpro is responsible for the proteolytic processing of the product of open 

reading frame 1a (ORF1a) in the replicase gene of CoV2, a large viral polyprotein 

containing nonstructural proteins which form the replicase complex (Wertz and Murray, 

2019). PLpro exists as a monomer in biological settings and has the USP fold, typical for 
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the ubiquitin-specific proteases (USP) family in humans, which is topologically 

organized into four domains – UBL, thumb, palm, and fingers (Ye et al., 2009) (Figure 

6.1a). The peptide bond cleavage in the active site is catalyzed by a conserved catalytic 

triad comprised of residues Cys111, His272 and Asp286 (Baez-Santos et al., 2015). In 

addition, PLpro possesses deubiquitinating and deISGylating capabilities (Sulea et al., 

2005) which interfere with critical signaling pathways leading to the expression of type I 

interferons, resulting in antagonistic effect on host innate immune response (Bekes et al., 

2016; Devaraj et al., 2007). Therefore, inhibition of PLpro activity can halt viral 

replication and disrupt its role in host immune response evasion, making it an excellent 

anti-viral drug target. 

CoV2 PLpro exhibits a high sequence similarity to CoV1 PLpro (Figure S1); in 

particular, the binding site and active site residues are nearly identical. We have 

introduced a leading naphthalene-based inhibitor, 3k, and chemotherapy agent 6-

mercaptopurine (6MP) (Figure 6.1a), which successfully inhibited CoV1 PLpro and 

MERS-CoV PLpro, respectively (Baez-Santos et al., 2014; Cheng et al., 2015; Chou et 

al., 2008), to assess their binding affinity for CoV2 PLpro. The 3k binding site is adjacent 

to the catalytic triad and sterically inhibits the binding of ubiquitin (Ub) and Interferon-

stimulated gene 15 (ISG15) by occupying the space normally reserved for their C-

terminal (LXGG cleavage site) at ubiquitin binding subsite 1 (SUb1) (Figure 1a). 

Compounds capable of binding to this site therefore exhibit high inhibitory capabilities.  

In this work, we carried out several molecular dynamics (MD) simulations of ligand-free 

and ligand-bound CoV2, CoV1, and MERS-CoV PLpro (Table 1). Based on detailed 
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examination of the CoV2 3k binding site, we provide guidance and suggestions for 

optimization of compounds targeting this site. Moreover, by simulating 3k bound to 

CoV2 and CoV1 PLpro, we show that it exhibits a highly similar binding mode in both 

proteins, suggesting that 3k and similar compounds should have an inhibitory effect on  

CoV2 PLpro. After analyzing the binding mode and binding site, we constructed and 

docked new ligands based on the 3k scaffold which showed improved binding affinity 

over the current molecule. Additionally, we carried out experimental assays to validate 3k 

binding to CoV2 PLpro and inhibit enzymatic function. We show that the overall 

dynamics of ligand-free PLpro in all analyzed systems is highly similar, with comparable 

flexibility in BL2 loop, zinc-binding region and UBL domain. Our detailed description of 

3k binding in the protein provides insight into the essential interactions necessary for 

successful fragment-based drug design. Additionally, we provide well-sampled dynamics 

of the available CoV2 PLpro crystal structures for wider use as a guide to potential drug 

binding sites or in docking and drug screening studies. 
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Summary of Simulations 

Simulation 

Index 

PDB Protein system Length 

MD1 (1, 2) 6W9C CoV2 PLpro 1 µs, 500 ns 

MD2 (1, 2) 6WRH CoV2 PLpro 1 µs, 500 ns 

MD3 (1, 2) 4OW0 CoV1 PLpro 1 µs, 500 ns 

MD4 (1, 2) 4RNA MERS-CoV  PLpro 1 µs, 500 ns 

MD5a (1-

3) 

6W9C CoV2 PL pro 

complexed w/ 3k 

(pose A) 

1 µs, 500 ns, 200 ns 

MD5b (1-

3) 

6W9C CoV2 PL pro 

complexed w/ 3k 

(pose B) 

3 × 200 ns 

MD5c (1-

3) 

6W9C CoV2 PL pro 

complexed w/ 3k 

(pose C) 

3 × 200 ns 

MD5d (1-

3) 

6W9C CoV2 PL pro 

complexed w/ 3k 

(pose D) 

3 × 200 ns 

MD6 (1-3) 4OW0 CoV1 PLpro 

complexed w/ 3k 

1 µs, 500 ns, 200 ns 
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MD7a (1-

3) 

6W9C CoV2 PLpro 

complexed w/ 6MP 

(in putative site) 

3 × 200 ns 

MD7b (1-

3) 

6W9C CoV2 PLpro 

complexed w/ 6MP 

(in active site) 

3 × 200 ns 

Table 6.1. Summary of all simulations performed. All ligand-free proteins were 

simulated twice under identical conditions except for the initial random number seed, 

first for 1 µs, followed by a 500 ns secondary run to confirm consistency in the observed 

dynamics. Similarly, all ligand-bound proteins were simulated three times for at least 200 

ns. Where necessary, secondary and tertiary runs are referred to by a dash and number 

after the main designation e.g., MD1-2 means the second run of simulation MD1. These 

trajectories are available on our group webpage: http://chemcha-gpu0.ucr.edu/software/ 

and the COVID-19 Molecular Structure and Therapeutics Hub: https://covid.molssi.org/. 

 

6.3 Results and Discussion 

We analyzed 1 µs trajectories of ligand-free CoV2, CoV1 and MERS-CoV PLpro to 

uncover the overall protein dynamics of the novel coronavirus protease and to make 

comparisons to older conronavirus PLpro for which inhibitors have been developed. In 

addition, we simulated ligand-bound trajectories of CoV1 and CoV2 PLpro to assess 

potential effectiveness of one naphthalene-based and one thiopurine inhibitor – 3k and 

6MP, respectively – in the 2019 coronavirus. We showed that 3k formed stable 

http://chemcha-gpu0.ucr.edu/software/
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interactions with CoV2 PLpro, suggesting that the compound can bind to the protein, 

which was verified by experimental assays. Moreover, we designed and docked new 

ligands based on the 3k-scaffold to CoV2 PLpro, and show the they achieve improved 

binding affinity. Protein flexibility, entropy, and conformational changes were analyzed 

in the ligand-free protein simulations to characterize the overall protein dynamics and to 

assess similarities and differences relevant to inhibitor or Ub binding in CoV2 PLpro. 

The ligand-bound MD simulations were analyzed for a detailed characterization of ligand 

binding modes by analyzing residue-wise interactions, binding energy, and ligand-

induced conformational changes.  

 

6.3.1 Structure and Dynamics of Ligand-free CoV2 PLpro and Implications for Drug 

Discovery 

Dynamic regions of potential importance to small molecule drug  or Ub binding in CoV2 

PLpro include portions of the thumb domain (containing SUb2), the fingers region 

(adjacent to SUb1) and the BL2 loop (directly adjacent to the 3k binding site). Principal 

component analysis (PCA) shows that the dominant overall motion of CoV2 PLpro 

occurs due to high flexibility of the fingers domain – especially the zinc-binding region, 

the BL2 loop, and the UBL domain (Figure S2). The fingers domain is the most mobile 

region of PLpro, and has been shown to crystallize in different conformations (Baez-

Santos et al., 2015). Because this region is highly flexible and challenging for a small 

molecular inhibitor to bind tightly, it is not considered as an ideal  druggable site.  
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This study focuses on the binding site of naphthalene inhibitors (Figure 6.1a), a 

druggable site reported in previous studies (Baez-Santos et al., 2014) that is directly 

adjacent to the PLpro active site to prevent off-target binding to the highly similar active 

site of human proteins (Kemp, 2016). Flexibility of the BL2 loop, which can result in an 

open or closed conformation, indicates potential of this binding site to accommodate 

compounds with new scaffolds or different derivatives of 3k, which may include larger 

substitutions to strengthen binding with underutilized regions. One such region is the 

hydrophobic portion lined by residues Met208, Pro247 and Pro248 (Figure 6.1b). Closer 

to the BL2 loop, Gly266 may be able to provide inhibitor binding specificity through 

hydrogen bond formation . The portion of the binding site extending just past the BL2 

loop in the direction of the UBL domain presents substantial space to engage PLpro 

residues with larger ligands (Figure 6.1b). 
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Figure 6.1. Cartoon representation of the entire CoV2 PLpro structure and close-ups of regions 

important to ligand binding. a) PLpro with the four domains and other major regions indicated as 

follows: fingers – orange, palm – green (BL2 loop – yellow), thumb – blue, UBL – magenta, 

SUb1 and SUb2 – yellow and green circles, respectively. The putative 3k binding site is shown as 

a grey surface and the active site as a teal surface. 6MP was docked to the putative 3k site and 

active site. b) important binding site residues. c) 3k (light grey) engaging in hydrogen bonds with 

D164 and Y268, and the important BL2 loop-stabilizing hydrogen bond between Y264 and N267. 
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One very prominent motion of CoV2 PLpro is partial rotation of the UBL domain and its 

relative position to “ridge” helix (Asp62 – His73) in the SUb2 region (Figure 6.2). The 

function of the UBL domain is unknown, and although some studies suggest that it has no 

effect on function of PLpro (Clasman et al., 2017), we observed one noteworthy 

interaction involving this domain. Transposition of UBL towards the thumb domain 

results in hydrophobic interactions between Pro59 of the UBL domain and Pro77 and 

Thr75; Thr75 then interacts with Phe69 of the “ridge” helix and can alter the latter 

residues conformation. Mutating this Phe was shown to affect the binding affinity of 

ISG15 and K48 linked diUb in CoV1 PLpro (Ratia et al., 2014), so the conformational 

dynamics of this residue may also be important in CoV2. Since CoV1 exhibits this same 

interaction between UBL residues and this Phe residue, we compared the conformation 

populations for Phe69/70 (residue numbering differs by 1 between Cov2/CoV1) between 

the two PLpros. Notably, Cov1 contains Leu at position 75 (rather than Thr75 as in 

Cov2) and its concerted motion with Phe70 yields four different conformations. The 

Phe69-Thr75 interaction in CoV2 affects Phe69 to a lesser extent, resulting in just two 

distinct conformations of the same sidechain (Figure S3). In contrast to the dynamic 

SUb2 region, SUb1, the binding site for distal Ub, does not show any significant 

structural fluctuation. Ub-interacting hydrophobic residues Met208 and Pro247 are 

exposed to the solvent to potentially engage in ligand interactions (Figure S4), which may 

be an alternative method to disrupt Ub binding at SUb1 in aside from blocking its C-

terminal from the LXGG cleavage site.  
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Figure 6.2. The movement of UBL in CoV2 allows for interactions between UBL residue Pro59 

and the thumb domain residues Thr75 and Pro77. These interactions subsequently result in 

different rotameric states for the nearby key Ub-interacting residue Phe69/Phe70 in CoV2/CoV1. 

Green arrow indicates the major motion of UBL; green circle indicates SUb2. 

 

Overall, the dynamics of the CoV2, CoV1 and MERS-CoV ligand-free PLpro is quite 

similar. Figure S2 shows the first principal component of overall motion for all three 

systems, which reveals similarly high mobility in the zinc-binding domain, BL2 loop and 

UBL domain. CoV2 simulations MD2 and MD3 showed similar flexibility to CoV1 in 

most of the highly flexible regions during the entire course of the 1 µs MD simulations. 

Notably, in MD1, the initial crystal structure conformation shows a unique conformation 

of Asn267 and Tyr268 (Figure 6.3), resulting in larger root-mean-square fluctuation 

(RMSF) and dihedral entropy values than those computed for the other ligand-free 
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PLpros (Figure 6.4), as well as additional rotameric states (Figure S5). Around 420 ns 

into MD1-1 and just 20 ns into MD1-2 the residues change conformation to ones highly 

similar to those in MD2 (CoV1) and MD3 (CoV2), at which point the RMSFs become 

nearly identical (Figure S6). This unique conformation of key ligand-binding residue 

Tyr268 (Chaudhuri et al., 2011) is not preorganized for protein-ligand complex 

formation, thus it may incur a cost in conformational energy or entropy which can affect 

inhibitor binding. Figure S7 compares backbone dihedral angle populations of several 

binding pocket residues between CoV1 and CoV2 PLpro over the simulation time. In 

terms of dihedral entropy as well, CoV1 and CoV2 are quite similar. The entropy 

calculations for the backbone torsion show only a few regions with higher conformational 

sampling in CoV2, mainly in the zinc binding region of the fingers domain and BL2 loop 

(Figure 6.4). In MERS-CoV, the amino acid composition of the BL2 loop is entirely 

different from CoV2 with the exception of two flanking Gly residues (Lee et al., 2015). 

Although the entropy and RMSF show similar flexibility of the loop, its overall 

conformation relative to the palm domain is more open than in CoV1 and CoV2. BL2 

remains in this open conformation, which appears to be stabilized by hydrophobic 

interactions of  Gln270, Glu273, Thr274 and His278 sidechains, for the entirety of MD4 

(Figure S8).  
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Figure 6.3. Conformation of Asn267 and Tyr268, 3k binding site is indicated with dotted 

surface. a) common conformation of these residues observed in CoV2 (6WRH) and 

CoV1 simulations. b) unique conformation observed only in CoV2 (6W9C) simulation. 
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Figure 6.4. Quantifying the overall dynamics and conformational flexibility of PLpro. 

Top: RMSF of alpha C atoms over the 1 µs trajectory of all four ligand-free PLpros. The 

spike at the BL2 loop (~ residues 265-275) is larger for CoV2 (6W9C) and MERS-CoV 

because of their more open conformations during all or part of the simulations. Residues 

1-56 (UBL domain) and 300-311 (C-terminal) have been omitted for clarity. Bottom: 

Dihedral entropy of the psi angle for CoV2, CoV1 and MERS-CoV systems. PLpro 

regions indicated by color bar: thumb – blue, fingers – yellow, palm – green, BL2 loop – 

grey. Entropy calculated at 298 K. 
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6.3.2 Comparison of Ligand-free and Ligand-bound Structures CoV1 and CoV2 PLpro 

 

Revealing detailed protein conformational changes after ligand binding provides insight 

to the key binding interactions relevant to drug development. We compared ligand-free 

and ligand-bound systems to identify how binding shifts the populated conformations of 

surrounding residues.  

 

Simulations show the CoV2 PLpro BL2 loop having significant flexibility in ligand-free 

proteins. Residues Asn267, Gln269, and most importantly Tyr268, account for most of 

this motion, which resembles opening and closing of the loop (Figures 6.5a and 6.5b). 

MD5a-d all show that the BL2 loop in CoV2 PLpro is highly stabilized by ligand binding 

, as most residues interacting with the ligand are confined to a single conformation 

(Figure 6.5c). Most notably, the sidechain and backbone rotation of key residue Tyr268 is 

minimized through a hydrogen bond and strong vdW interactions with the ligand, as 

detailed in next subsection. The very same ligand-induced stabilization of the BL2 loop is 

seen for CoV1 PLpro (Figure 6.6). The central portion of this binding pocket, which 

houses the piperidine, carboxyl and amide moieties of 3k, is narrower and may already be 

maximized in terms of inhibitor binding potential. Two key hydrogen bonds form here 

(Figure 6.1c), and it has been shown that substitutions larger than a methyl group or 

hydrogen at the benzylic-naphthyl or benzyl position, respectively, on naphthalene 

inhibitors lowered their effectiveness (Baez-Santos et al., 2014). 
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Residues involved in consistent interactions with the ligand show a significant difference 

in dihedral entropy. Hydrogen bonds formed with 3k substantially restrict conformational 

exchange for the associated residues. Asp164 and Tyr268 appear to be a key aspect in the 

3k-CoV2 PLpro interactions, which is reflected by the decreased dihedral entropy (Figure 

S9).  

 

Comparison of MD5a-d to MD6 (Table 1) reveals that 3k binds very similarly in CoV2 

and CoV1 PLpro, inducing a closed, ordered conformation of the BL2 loop around the 

ligand. Moreover, the RMSD values of 3k over 200 ns in MD5a and MD6 of 1.06 and 

0.95 Å, respectively, reveal similar stability in the CoV2 and CoV1 putative binding 

sites. The naphthalene moiety occupies the hydrophobic cleft of the pocket and the 

fluorophenyl ring protrudes from the opposite end of the pocket while retaining a high 

degree of mobility relative to the rest of the compound. The high similarity of these 

binding modes indicates strong potential of naphthalene inhibitors to have an inhibitory 

effect on CoV2 PLpro through a similar mechanism as in CoV1 PLpro.  
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Figure 6.5. Plot of entropy for 3k binding site residues and pictures of their 

conformations. a) Sidechain dihedral angle entropy for 3k binding site residues in ligand-

free and 3k-bound CoV1 and CoV2 PLpro shows the stabilization of these residues after 

ligand binding. b) An overlay of several MD frames shows the range of conformations 

adopted by BL2 loop (dark green) residues in the ligand-free state. Tyr268 in the ligand-

bound conformation is shown in light green. c) The conformational sampling of these 

residues is dramatically reduced upon binding of 3k (teal). Entropy calculated at 298. 
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Figure 6.6. RMSF of all atoms in the BL2 loop in ligand-free and 3k-bound CoV1 and CoV2 

PLpro. In both systems, ligand binding induces a closed, ordered BL2 loop conformation 

resulting in dramatically reduced mobility of this region. The x-axis indicates the range of atoms 

in each BL2 loop residue.  

 

6.3.3 Ligands Binding Modes in CoV2 PLpro and Strategies for Drug Design 

Because the putative naphthalene inhibitor binding site of CoV2 PLpro is comprised by 

the same residues as in CoV1 PLpro, we examined  one of the most effective second 

generation naphthalene inhibitors of CoV1 PLpro  (Baez-Santos et al., 2014), 3k, to 

reveal structural information regarding binding to CoV2 PLpro for future structure-based 

drug development. After analyzing free and ligand-bound CoV1 PLpro simulations, we 

docked 3k to one CoV2 PLpro conformation to obtain four different binding poses 

(Figure 6.7) and ran three simulations for each pose (MD5a-d). Poses A and B were 

nearly the same, except B was docked with unconstrained side chain rotations allowed, so 

3k starts slightly rotated with respect to A. MD5c and MD5d start with a 180° rotation of 
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the naphthalene or piperidine moiety, respectively, compared to MD5a. Ultimately, 

MD5a, b and d all establish the same major interactions with PLpro. The majority of our 

discussion focuses on MD5a , where the initial conformation (Figure 7a)  is the most 

similar to the CoV1 PLpro-3k crystal structure. Our results indicated that 3k binds 

strongly and suggest that the ligand can inhibit the enzymatic function of CoV2 PLpro. 

Experimental results have confirmed 3k binding by showing the NMR spectrum for 

ligand-free and -bound CoV2 PLpro (Figure S10). 
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Figure 6.7. Ligand poses A-D from which the CoV2 PLpro-3k complex simulations began. Key 

binding site residues are shown in grey to show the difference in relative orientation of the ligand 

in each pose. 

 

In the hydrophobic portion of the binding site, the naphthalene moiety sits stably between 

residues Pro247 and Pro248 to one side and Tyr268 on the other (Figure 6.8) However, 

additional space exists in this pocket to engage more residues. Specifically, it may be 

possible to increase the hydrophobic interactions here with a methyl (or larger) 

substitution on the naphthalene to further engage in vdW interactions with Pro248 or 
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Tyr264 (Figure 6.8, blue dots). Pro248 and Met208 can also be further engaged in 

hydrophobic interactions with substitutions at the appropriate positions on naphthalene 

(Figure 6.8, yellow dots), or potentially even a substitution of the entire naphthalene 

moiety for a larger aromatic structure such as anthracene or phenanthrene (Figure 6.8). 

MD5c (Figure 6.7c) , in which the naphthalene in the initial 3k conformation is flipped 

180° relative to MD5a, provides support for this idea, as the flipped moiety is seen 

making closer contact with residues Met208 and Pro248, resulting in greater attraction to 

these residues (Figure S11) and slightly lower overall binding energy (Table 2) than in 

MD5a. Lastly, a hydrogen bond donor or acceptor substitution at the correct naphthalene 

position (Figure 6.8, blue dots) may be able to engage with the Gly266 backbone.  

 

3k engages in two strong hydrogen bonds with the protein: one to Asp164 and the other 

to the backbone of Tyr268. Notably, even in MD5d, which began with the piperidine 

nitrogen and its hydrogen pointed in the opposite direction of Asp164, the entire moiety 

rotates after 25-140 ns (varying between the three runs) to establish the hydrogen bond 

with this residue. Previous studies found that bulky ligand substitutions that occupy this 

portion of the pocket decreased inhibition1. A possible explanation is that the specific 

ligand orientation needed to maintain both of these strong hydrogen bonds was not 

attainable due to the additional bulk. Moreover, we observed a consistent intra-protein 

hydrogen bond between Tyr264 and Asn267 in ligand-bound CoV2 that could be 

disrupted by larger ligand substitutions here, which may destabilize the closed BL2 loop. 

Indeed, analysis of this interaction shows very high correlation between formation of the 
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hydrogen bond and a closed loop conformation (Figure S12). A small hydrophobic 

pocket formed by Tyr264, Tyr273 and Thr301 accommodates the methyl group at the 

benzylic-naphthyl position.  

 

The fluorophenyl ring of 3k appears to interact mostly with the hydrocarbon portion of 

Gln269, but also engages in  vdW interactions with Tyr268 (Figure 6.8). However, 

because of the openness of PLpro in this region, the position of the ring fluctuates widely, 

and it rotates freely with the fluorine observed at several positions consistent with 360-

degree rotation. Increasing ligand engagement with PLpro residues is achievable in this 

region, although previous attempts at doing so in CoV1 PLpro had mixed results. 

Substitutions on the benzyl ring in first generation naphthalene inhibitors found that 

anything bulkier than methyl at the ortho position decreased inhibition (Baez-Santos et 

al., 2014); however, the linkage between the amide and benzene ring was one carbon 

shorter than in the second generation, possibly causing the added bulk to disrupt one of 

the two important hydrogen bonds with Tyr268 or Asp164. With a longer linkage to the 

benzene in second-generation naphthalene inhibitors, various benzene substitutions were 

tested, but showed no clear trend in effectiveness. Ultimately, the fluorine substitution at 

the meta position, as seen in 3k, showed the best result. Extending the linkage between 

the amide and benzene ring by one additional carbon was found to weaken inhibition, 

providing evidence that benzene ring primarily contributes to binding through vdW 

interactions with Tyr268 and Gln269, and so needs to be close to those residues. This is 

consistent with our observations and residue-wise force calculations as well (Figure S11). 
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One method to increase binding affinity in this region may be through increasing the 

hydrophobic surface area of the benzyl end of the ligand. This can be achieved either 

through substitution of methyl or larger hydrocarbon groups onto the benzene ring, or by 

replacing the benzene with a bulkier group, such as naphthalene. Although, as previously 

stated, it has been shown that both increasing ligand bulkiness near the benzene end and 

extending the linkage to benzene can sometimes lead to decreased inhibition, changing 

these two factors simultaneously has not been tested. A longer linkage may accommodate 

increased bulk, while the added hydrophobic mass can still reach residues Tyr268 and 

Gln269 for attractive interactions. Moreover, since no clear trend in ligand effectiveness 

from substitutions on the benzyl ring has been found, we suggest exploration of the 

available space in this portion of the binding site.  

To validate some of our proposed modifications to the current naphthalene-based 

scaffold, we docked these modified ligands to the same CoV2 PLpro conformation used 

to dock 3k. First, to investigate the potential for making additional hydrophobic contacts 

in the cleft near SUb1, we substituted anthracene or phenanthrene to the naphthalene 

position. Results for both substitutions show more favorable docking scores than for 3k, 

with anthracene showing slightly better performance than phenanthrene (Figure 6.9). The 

favorable contacts arise from interaction with Asp166, a residue that rotates freely in the 

CoV2-3k simulations, indicating that it may be available to form a stable interaction with 

ligands capable of reaching it. Additionally, both the anthracene and phenanthrene-

substituted ligands maintained all the other essential interactions we identified for 3k. In 
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an attempt to increase polar interactions, we added a hydroxyl to the naphthalene moiety 

to form a hydrogen bond with Gly266 or other hydrogen bond acceptors in the area. We 

found that the hydrogen bond with Gly266 does indeed form as expected, with a distance 

of just 1.74 Å. However, in this conformation, the important hydrogen bonding group on 

the ligand that usually interacts with Asp164 is slightly out of position (Figure 6.9). 

Despite this, the binding is still more favorable than that of 3k. Also, notably, our MD 

simulations of CoV2-3k that started without the 3k-Asp164 hydrogen bond quickly 

formed that hydrogen bond after the simulation began, providing evidence that the same 

will likely happen in the case of the new ligand. Taken altogether, the MD and docking 

results show that the 3k scaffold should be capable of exploiting bulkier hydrophobic 

groups or polar groups at the naphthalene end to establish both favorable hydrophobic 

and polar contacts while maintaining the essential residue interactions that made 3k 

successful in CoV1. These are but a few of many possible enhancements to the 

naphthalene-based scaffold, and they require further validation through MD simulation or 

experimental assays. However, this serves as a strong proof-of-concept for future CoV2 

PLpro design directions. 

 

Pair-wise force distribution analysis (Figure S11) and interaction energies (Table S1) 

indicate that the binding mode of 3k in CoV2 is dependent on both strong vdW 

interactions and hydrogen bonds (Figure S13), highly similar to that of 3k in CoV1 

(Table 2). The interaction with Tyr268 is a dominant one in all ligand-bound simulations. 

The residue engages in a hydrogen bond donated by the amide nitrogen of 3k and a T-
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shaped pi-stacking interaction with the naphthalene moiety (Figure 6.8), which is seen 

with all naphthalene-based inhibitors (Baez-Santos et al., 2015). The hydrogen bond 

between 3k and Asp164 (Figure 6.1c) is another strong protein-ligand interaction shared 

in CoV1 and CoV2. All major ligand interactions with binding site residues are shown in 

Figure S11 and listed in Table S1. 

 

In addition to 3k, 6-mercaptopurine (6MP) from the thiopurine class of inhibitors has 

been reported to reversibly inhibit CoV1 (Chou et al., 2008) and MERS-CoV (Cheng et 

al., 2015) PLpro activity. To assess its potential for inhibiting CoV2 PLpro, we docked 

6MP in the active site of the enzyme and the putative ligand binding site (Figure 6.1a) 

based on the proposed binding poses from existing studies. We ran three independent 

simulations of the two complexes for 200 ns each (MD7a and MD7b). The compound 

dissociated from the putative ligand binding site within 80 ns or less and no stable 

intermolecular interactions were established. The compound stayed within the active site 

during two of the three MD7b simulations; however, it remained highly mobile and 

unstable in the pocket (Figure S14). Because the ligand was unstable in both binding 

sites, we did not compute interaction energies between 6MP and Cov2 PLpro. Our 

analysis suggests that ligand 6MP is a weak binder and may be a poor inhibitor of Cov2 

PLpro.  
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Figure 6.8. Ligand 3k (grey) in the CoV2 PLpro binding site. Residues with which new 

interactions are achievable or current ones can be strengthened are labeled and shown in 

ball-and-stick representation. Top-right: 2D molecular structure of ligand 3k indicating 

proposed substitution positions for increased binding affinity. Substitutions at the yellow 

positions may be capable of additional hydrophobic contacts with Pro247, Pro248, or 

Met208. Substitutions at blue positions may be capable of additional hydrophobic 
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contacts with Pro248 or Tyr264, or hydrogen bonds with the backbone carboxyl of 

Gly266. Finally, substitutions at the green position in combination with an extended 

benzene linkage may be capable of increased attractive interactions with Gln269 or other 

nearby residues. The naphthalene moiety is indicated by the dashed box, with the 

proposed anthracene or phenanthrene substitutions indicated above. 
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Figure 6.9. The modified ligands (teal) docked to CoV2 PLpro. a) 3k with anthracene substituted 

for naphthalene, b) 3k with phenanthrene substituted for naphthalene, and c) 3k with a hydroxyl 

substituted on the napthyl moiety; the hydrogen bond with Gly266 is clearly visible. S is the 

docking score given by MOE, and the difference between the pictured docked conformation and 

the best 3k score is show in brackets. 

 

MM/PBSA Binding Energies 
 

CoV1-3k  CoV2-3k A CoV2-3k B CoV2-3k C CoV2-3k D 

∆Eelec+PB 11.9 11.8  11.6  11.0  14.7  

∆EvdW+np -28.9 -26.2 -28.1 -28.7 -27.0 

∆EMM/PBSA -17.0 ± 3.9 -14.5 ± 4.3 -16.5 ± 4.5 -17.7 ± 3.6  -12.3 ± 5.4 

Table 6.2. MM/PBSA energy breakdowns for the binding energy from simulations of the four 

different starting poses (A-D) of CoV2 PLpro-3k and CoV1 PLpro-3k. ΔEelec+PB is the 

electrostatic plus polar solvation energy contributions, and ΔEvdW+np is the van der Waals plus 

non-polar solvation energy contribution. ΔEMM/PBSA is the binding energy predicted by 

MM/PBSA. Energies are in kcal/mol; values are ± SD. 

 

6.4 Conclusions 

By analyzing the dynamics of ligand-free and ligand-bound CoV2 PLpro, we have gained 

insight to the important dynamics and intramolecular interactions relevant to its function 

and the development of small molecule inhibitory drugs. The BL2 loop, zinc binding 

region, and UBL domain are the most mobile protein regions, and CoV2 PLpro overall 
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dynamics are extremely similar to those of CoV1 PLpro. SUb1 contains hydrophobic 

residues that contact the ligand in the 3k binding site, while SUb2 is adjacent to the 

highly mobile UBL domain and is affected by contacts to its Ub-interacting residues 

brought about by UBL domain rotation.  

 

We docked two ligands, 3k and 6MP, known to inhibit CoV1 and MERS-CoV PLpro, 

respectively, into CoV2 PLpro to assess their ability as CoV2 inhibitors and identify 

opportunities for further optimization of the ligand scaffolds. We found that not only can 

3k bind strongly to CoV2 PLpro, but that there is room for further optimization of 

binding affinity by exploitation of space in the small hydrophobic cleft near Pro247, 

Pro248 and Tyr264, or by making additional residue contacts in the open pocket region at 

the opposite end of the binding site. By docking newly designed ligands based on 3k, we 

validated our optimization suggestions, which showed better docking scores than 3k and 

exhibited binding modes in agreement with our proposed concepts that still maintained 

the intermolecular interactions that characterize successful naphthalene-based inhibitors. 

6MP was unable to bind stably in the 3k site and dissociated quickly in all three 

simulations. It associated for longer to the active site; however, even when it remained 

bound, the compound was unstable. 

 

Our results show that naphthalene-based inhibitors or similar compounds should have an 

inhibitory effect on CoV2 PLpro, and we have provided detailed suggestions for how this 

ligand scaffold can be furthered improved by engaging residues in underutilized space of 
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the binding site. This study also generates an ensemble of CoV2 PLpro conformations 

that illustrate potential inhibitor-protein interactions for structure-based inhibitor design 

and elucidates protein dynamics relevant to Ub or Ub-like protein binding.    

 

6.5 Methods 

6.5.1 MD Simulation Protocol 

MD simulations were prepared and run using the Amber18 molecular dynamics package 

with GPU acceleration (D.A. Case, 2018; Götz et al., 2012). Force fields ff14SB (Maier 

et al., 2015) and the general Amber force field (GAFF2) (Wang et al., 2004) were used 

on proteins and ligands, respectively. Ligands 3k are 6MP were parameterized using 

Amber’s antechamber program with the AM1-BCC charge assignment method (Jakalian 

et al., 2002). All systems were solvated with a rectangular box of explicit TIP3P water 

extending 12 Å beyond the solute edges, and each contained no more than 1-3 Na+ or Cl- 

counterions, which were added only to neutralize overall system charge. Systems were 

minimized in four steps. First, using Generalized Born implicit solvent (Chen et al., 

2008), we minimized the hydrogen atoms, then protein sidechains, and finally the entire 

protein for 500, 1000, and 5000 steps, respectively. Next, the entire solvated structure 

was minimized for 5000 steps. Solvated systems were equilibrated in the isothermic-

isobaric (NPT) ensemble from 50 to 275 K in 25 K increments for 100 ps each, and 

finally at 298 K for 500 ps. Production simulations were performed in the NPT ensemble 

at 298K using the Langevin thermostat with a 2 fs timestep. A 12 Å cutoff distance was 

used for direct non-bonded energy calculations and long-range electrostatics were 
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calculated by the particle mesh Ewald method (Sagui et al., 2003). The SHAKE 

algorithm (Ryckaert et al., 1977) was employed to constrain all bonds involving 

hydrogen. Raw trajectories were saved every 2 ps and then processed using Amber’s 

cpptraj (Roe and Cheatham, 2013) for analysis.  

 

6.5.2 Selection of Initial Structures for MD Simulation 

Initial coordinates for CoV2 PLpro simulations were obtained from two crystal structures 

of the ligand-free protein, PDB IDs 6W9C  and 6WRH . The ligand-bound complexes for 

CoV2 were obtained by docking ligands into a protein conformation selected from MD1; 

details are provided in the following subsection.  CoV1 PLpro simulations began from a 

crystal structure of a 3k-bound complex, PDB 4OW0 (Baez-Santos et al., 2014). Ligand 

3k was manually removed from the binding site for our ligand-free CoV1 PLpro 

simulation. MERS-CoV PLpro was simulated only in the ligand-free state, starting from 

crystal structure 4RNA (Lee et al., 2015). For simplicity, we have indexed these 

simulations as shown in Table 1. 

 

6.5.3 Ligand Docking to CoV2 PLpro  

Force distribution analysis tool (FDA) (Stacklies et al., 2011) was used to identify the 

residues interacting with 3k in CoV1 PLpro (Figure S15), and since these residues are 

identical in CoV2 PLpro, we used them as a ligand docking site.  To choose a CoV2 

PLpro conformation that was highly similar to the minimized CoV1 3k-bound crystal 

structure, we found the CoV2 frame from MD1-1 with minimum RMSD between key 
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binding site residues to use for docking. (Figure S15). The ligands were docked to this 

single PLpro conformation using Molecular Operating Environment (MOE) (2018). Four 

poses (Figure 6.7) of 3k in this site were selected for MD simulations. To obtain poses A 

and D, we used the induced fit docking option with constrained/tethered side chain 

rotations allowed; poses B and C were obtained using the same induced fit option with 

free sidechain rotation allowed. Poses A and B closely resemble  the Cov1 PLpro–3k  

crystal structure, PDB 4OW0. Pose C is a rotamer of A with a 180° rotation of the 

naphthalene moiety, while in pose D the piperidine moiety is rotated 180° with respect to 

A. In addition to the 3k binding site, 6MP was also docked to the active site following the 

same method. The designed ligands reflecting our suggested modifications to the 3k 

scaffold were docked in the 3k site by the same protocol as above to the same CoV2 

PLpro conformation as 3k. 

 

6.5.4 Simulation Analysis  

Trajectory Visualization and Dihedral Analysis. The simulations were visualized using 

Visual Molecular Dynamics (VMD) (Humphrey et al., 1996) and MOE. Dihedral angle 

populations and entropy were calculated using T-Analyst (Ai et al., 2010). MD 

simulations trajectories have been made available on our group website: http://chemcha-

gpu0.ucr.edu/software/ and are deposited at the COVID-19 Molecular Structure and 

Therapeutics Hub: https://covid.molssi.org/. The trajectories there have been stripped of 

water and counterions and were saved every 10 ps. Trajectories with water are available 

upon request. 
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Cartesian Principal Component Analysis. To observe major protein motions, we 

performed 

 

principal component analysis (1933; Hotelling, 1992) of α-carbon atoms in the 1 µs 

trajectory of ligand-free CoV2 PLpro. PCA reduces the high-dimensional data set of all 

α-carbon motions throughout the MD trajectory to its principal components (PCs), the 

directions which contain the largest motions. We used the average α-carbon positions as 

references. The first and second largest PCs were analyzed to reveal the dominant 

motions. 

 

MM/PBSA. We used the MM/PBSA method (Wang et al., 2018) to evaluate the 

intermolecular interactions between ligands and PLpro. From a total of 20,000 MD 

frames making up the 200 ns ligand-bound trajectories, system conformations were 

analyzed every 2 ns. This method computes the energy (E) of a system from the protein, 

ligand, and protein-ligand complex, and computes the interaction energy as Δ<E> = 

<Ecomplex> - <Eprotein> - <Eligand>. <E> denotes the computed average energy from 

a given MD trajectory. The default values of a solute dielectric of 1.0 and solvent 

dielectric of 80.0 were used. The total binding energy term was computed as 

EMM/PBSA = EMM + GPB + Gnp, where EMM includes standard molecular mechanics 

force field terms, GPB is the solvation energy computed by solving the Poisson 

Boltzmann (PB) equation, and Gnp is the nonpolar energy estimated from the solvent 

accessible surface area (A) as γA + b + Gdisp. Here γ is the surface tension, b is a 
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correction term, and Gdisp is the free energy of forming attractive solute-solvent van der 

Waals interactions. In this work, γ = 0.03780 kcal mol-1 Å-2 and b = -0.5692 kcal mol-1.  
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Chapter 7. Future Work 

7.1 Development of GeomBD3 Brownian Dynamics Simulation Software 

My plan is to expand and improve the GeomBD3 Brownian dynamics simulation 

program. My goal is to make the program as versatile as possible. This will entail 

programming additional functionality so that it is of use to all kinds of researchers. For 

example, future functions will include a variety of ligand starting conditions and different 

simulation cell shapes and boundary conditions. These options will allow users to 

replicate natural or engineered systems and to make better comparison to theoretical and 

experimental results. Another addition will be to make the simulations restart-able. This 

allows simulations of very large systems more practical, as they may take many days to 

produce converged results, in which case saving simulation data to restart later is useful – 

or even required – when working on remote supercomputing servers. Additionally, we 

will add ligand and receptor desolvation energy calculations to the software. The 

desolvation energy generally opposes binding of two partner molecules as they have to 

strip away water from each other, breaking favorable interactions. This addition should 

make comparisons between simulation and experiment see better agreement. Finally, 

another challenge facing the program is the simulation of very large systems ( > 25000 

nm3). Such systems require potential energy grids that can be many tens of GB in size, 

which becomes impractical on most computers. To circumvent this problem, I will create 

a more efficient grid shape, that better follows the contours of the system, potentially 

producing a many-fold decrease in grid size. 
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7.2 Simulation Force Fields and Sampling Techniques 

One major challenge in molecular mechanics-based computational chemistry is to design 

a force field that is highly accurate and generally applicable. This is because much of the 

fundamental physics is too costly to calculate, so it is replaced with effective terms that 

attempt to capture net effects. Thus, force field inaccuracy will always be the limiting 

factor of simulation reliability. I would like to devise better ways to capture the important 

physics, such as polarizable atoms, halogen bonds, and hydrophobic effects, which are 

currently lacking. A second challenge is to adequately sample all conformational states of 

a system in a reasonable amount of time. For example, in order to calculate accurately the 

free energy change of a ligand-protein binding process, or drug association/dissociation 

rates, full sampling of relatively long events is required. That is why I would like to 

continue developing and applying enhanced sampling techniques in the future. 

Milestoning is one method that simulates long-scale events by dividing them into many 

shorter trajectories. Also, machine learning shows some promise as a data-driven method 

of conformational generation that is worthy of further exploration.  

 




