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Cycle flow formulation of optimal network flow

problems for centralized and decentralized solvers

Reza Asadi and Solmaz S. Kia

Abstract

When the underlying physical network layer in optimal network flow problems is a large graph, the

associated optimization problem has a large set of decision variables. In this paper, we discuss how the

cycle basis from graph theory can be used to reduce the size of this decision variable space. The idea is

to eliminate the aggregated flow conservation constraint of these problems by explicitly characterizing

its solutions in terms of the span of the columns of the transpose of a fundamental cycle basis matrix of

the network plus a particular solution. We show that for any given input/output flow vector, a particular

solution can be efficiently constructed from tracing any path that connects a source node to a sink node.

We demonstrate our results over a minimum cost flow problem as well as an optimal power flow problem

with storage and generation at the nodes. We also show that the new formulation of the minimum cost

flow problem based on the cycle basis variables is amenable to a distributed solution. In this regard, we

apply our method over a distributed alternating direction method of multipliers (ADMM) solution and

demonstrate it over a numerical example.

I. INTRODUCTION

In a network flow problem, a physical system consisted of several routes between source and

sink points transfers input flows from the source points to the sink points. The objective of optimal

network flow problems mainly is to minimize the overall cost of transporting flow [1]. Network

flow problems appear in many important applications, such as communication networks [2],

wireless sensor networks [3], wireless routing and resource allocation [4], transportation sys-

tems [5] and power networks [6]. In power network problems, variants of optimal network flow

problems also include optimal generation and storage costs in their objectives [7], [8], [9], [10].
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With the advent of new technologies, the amount of available data and size of networks have

been increasing. Such expansions in the size of physical networks result in increasing the size of

optimization problems associated with optimal network flow problems. The number of decision

variables has a direct relation with the time and space computation complexity of optimization

problems. For large scale optimization problems, there has been efforts to use different vari-

able reduction techniques to reduce problem size. Variable fixing techniques [11], dominance

technique [12] and constraint pairing techniques [13] are some general reduction techniques in

Integer Quadratic Problems (IQP). Moreover, in [14] a new variable reduction techniques for

IQP proposed which fixes some decision variables at zero without loosing optimality. In multi-

objective optimization problems also it is shown that using data mining techniques it is possible

to reduce less effective variables [15]. For evolutionary optimization problems, [16] presents

how variable reduction techniques can be applied to obtain the variable relations from the partial

derivatives of an optimization function. For optimization problems of the form (1), eliminating

affine equality constraint as discussed below is also a method to reduce the number of the search

variables of the problem (c.f. [17])–

x? = argmin
x∈Rn

φ(x), s.t. Ax = b, g(x) ≤ 0, (1)

where φ : Rn → R and g : Rn → Rm are the cost function and the inequality constraint

function, respectively, and A ∈ Rp×n satisfies rank(A) = ρ ≤ p < n. The affine feasible set for

this optimization problem can be characterized as

{x ∈ Rn | Ax = b} = {Fz + xp | z ∈ Rn−ρ}. (2)

where F ∈ Rn×(n−ρ) is a matrix whose columns expand the null-space of A and xp ∈ Rn is a

particular solution of Ax = b. Then, x? in (1) satisfies x? = Fz? + xp where

z? =argmin
z∈Rn−ρ

φ̄(z) = φ(Fz + xp), s.t. (3)

ḡ(z) = g(Fz + xp) ≤ 0.

Compared to (1), in (3) not only the equality constraint is eliminated but also the number of the

search variables are reduced from n to n−ρ. However, the lack of efficient methods to construct

matrix F and particular solution xp can be an impediment in use of affine equality constraint

elimination method.
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Optimal network flow problems are normally cast as a convex optimization problem where

the cost is the sum of convex cost of flow through the arcs subject to capacity bounds for

each arc and flow conservation equations at each node, resulting in optimization problems of

the form (1). In variations of the optimal network flow problem, the cost can be augmented to

include the cost of e.g., generation and storage at nodes. The constraints can also be expanded to

include other components of the problem. Nevertheless, in all network flow problems, an affine

equality constraint that is always present is the flow conservation equation. To reduce the decision

variables, one can use the aforementioned affine equality elimination approach, to eliminate

the aggregated flow conservation equation from the network flow problems. In this paper, we

discuss how the cycle basis structure from graph theory (c.f. [18]) can be used to accomplish

this elimination in an efficient manner. Minimum cycle bases have applications in many areas

such as electrical circuit theory [19], structural engineering [20], surface reconstruction [21].

In this paper, we show that all the solutions of the flow conservation equation is characterized

explicitly in terms of the span of the columns of the transpose of the fundamental cycles basis

matrix of the network plus a particular solution. The fundamental cycle basis of a graph can

be computed in polynomial time using efficient algorithms such as those in [22], [23], [24]

(see Appendix for a breif review). To compute a particular solution, we show that for any

given input/output flow vector, a particular solution can be efficiently constructed from a set

of elementary solutions each obtained from tracing a flow of value 1 over the network from

each node to a common particular sink node. We demonstrate our flow conservation equation

elimination over a minimum cost flow problem as well as an optimal power flow problem with

storage and generation at the nodes.

Parallel and distributed solutions are also sought as a method to solve large scale optimal

network flow problems in an efficient manner. For example, a minimum cost network flow

problem is solved in a distributed manner via dual sub-gradient descent in [1]. For the same

problem, a distributed second order method with a better convergence rate is proposed in [25].

In [26], a distributed algorithm based on the local domain ADMM approach is proposed for

minimum cost flow problem. These algorithms are all arc-based, i.e., to solve the network flow

problem in a distributed manner, each arc or group of arcs are assigned to cyber-layer nodes.

Then, the minimum cost network flow optimization problem is cast in a separable manner

and solved by cyber-layer nodes in a cooperative way. Although in distributed algorithms the

computational cost of the optimal flow problem is distributed among the cyber-layer nodes,
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(b) Node-arc representation of

IEEE bus system 30 with the cy-

cles highlighted by dashed curves

Figure 1: The graph related to IEEE bus system 30 with 41 arcs, 30 nodes and 12 cycles.

the high number of decision variables normally translates to the high number of cyber nodes

or large communication overhead between neighboring cyber nodes. Our next contribution in

this paper is to show that the new formulation of the minimum cost network flow problem

based on the cycle basis variables, which has a reduced set of search variables, is amenable to

distributed solutions. Specifically, we demonstrate implantation of a distributed ADMM solution

method (c.f. [27] and [28]) over this new formulation. To implement this distributed solution

we propose a cyber-layer whose nodes are defined based on the fundamental cycles of a cycle

basis of the physical-layer graph. A preliminary version of parts of our results in this paper has

appeared in [29].

Notations: R, R>0, R≥0, and R≤0 denote the set of real, positive real, non-negative real,

and non-positive real numbers, respectively. We let A> be the transpose of a matrix A and

[A]i indicate its ith column. We let [{zk}nk=1] be the column vector obtained from stacking the

elements of an ordered set {zk}nk=1. For network variables {pi}Ni=1 ⊂ R, defined over N nodes,

N arcs, or N cycles, we represent the aggregate vector of these variables by p = [{pi}Ni=1] ∈ RN .

II. A REVIEW OF CYCLE BASIS IN GRAPHS

In this section, following [18], we review our graph related terminology and conventions. We

also introduce our graph related notations. We represent a graph of n nodes and m arcs with

G = (V , E), where V = {v1, v2, · · · , vn} is the node set and E = {e1, · · · , em} ∈ V × V is the

arc set. The graph is assumed to be undirected and with no self-loop. A walk is an alternating
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sequence of nodes and connecting arcs. A path is a walk that does not include any node twice,

except for its first and last nodes which can be the same. A graph is connected if there is a path

from its every node to every other node. The degree of a node in a graph is the total number

of arcs connected to that node. When there is an orientation assigned to the arcs of a graph

G = (V , E), we represent the oriented graph by Go = (V , Eo). We write ek = (vi, vj) ∈ Eo

if arc ek points from node vi towards node vj . If (vi, vj) ∈ Eo then (vj, vi) /∈ Eo, i.e., there

is no symmetric arc in the oriented graph. For Go, the oriented incidence matrix is the matrix

Io ∈ R|V|×|E|, where Io
ij = 1 if arc ej leaves node vi, Io

ij = −1 if arc ej enters node vi, otherwise

Io
ij = 0. For a connected graph of n nodes with a given orientation, the rank of Io is n− 1.

A cycle of G is any sub-graph in which each node has even degree. A simple cycle is a path

that begins and ends on the same node with no other repetitions of nodes. A cycle vector c ∈ Rm

is a binary vector with ci = 1 if ei is in the cycle and ci = 0, otherwise. A cycle basis of G is

a set of simple cycles that forms a basis of the cycle space of G. Every cycle in a given cycle

basis is called a fundamental cycle. A fundamental cycle basis of a graph is constructed by its

spanning tree, in a way that cycles formed by a combination of a path in the tree and a single arc

outside of the tree. For every arc outside of the tree, there exist one cycle. Each cycle generated

in this way is independent of other cycles, because it has one arc, not exist in other cycles (see

Fig. 1). The dimension of cycle basis of a graph is µ = m − n + 1. For cycles in an oriented

graph Go = (V , Eo), we assign the counter clockwise direction as positive cycles orientation and

define the oriented cycle vector co ∈ Rm with co
i = 1 if ei is in the cycle and aligned with its

direction, co
i = −1 if ei is in the cycle but opposing the direction of the cycle and finally co

i = 0

if ei is not in the cycle. Given a cycle basis, we define the oriented fundamental cycle basis

matrix Bof ∈ Rµ×m as a matrix whose rows are each the transpose of the oriented cycle vector

of the fundamental cycles of this cycle basis. This matrix satisfies rank(Bof) = µ.

Theorem II.1 (relationship between the oriented incidence matrix and an oriented cycle vector

(c.f. [18])). In an oriented graph Go, every oriented cycle vector co is orthogonal to every row

of oriented incident matrix Io, i.e., Io co = 0n. �

III. DECISION VARIABLE REDUCTION IN NETWORK FLOW PROBLEMS

In this section, we show how two well-known network flow problems can benefit from affine

equality elimination method to reduce their search variables. We study our optimal network

June 6, 2017 DRAFT
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flow problems of interest over a network of n nodes where each node is connected to a subset

of other nodes through some form of routes. For example, in a power network the route is

a transmission line, while in a transportation network the route is the road connecting two

conjunction nodes on the road map. The physical layer topology is described by a connected

graph Gphysic = (Vphysic, Ephysic), where |Vphysic| = n and |Ephysic| = m. The flow can travel in both

directions in every route, however, we assume a pre-specified positive orientation for each route

and based on it we describe the flow network in the physical layer by the oriented version of

Gphysic, i.e., Go
physic = (Vphysic, Eo

physic). This physical network transfers flow(s) from a set of source

nodes to a set of sink nodes (see physical layers in Fig. 3 and Fig. 4), while respecting the

conservation of the flow constraints, i.e., the total inflow into each node must be equal to the

total outflow from that node. We let xi be the flow across the arc ei ∈ Eo
physic = {e1, e2, · · · , em}.

Every arc ei ∈ Eo
physic has a pre-specified capacity, i.e., bi ≤ xi ≤ ci, for some known bi, ci ∈ R.

For any external flow fi, we use the sign convention of fi > 0 for input flow and fi < 0 for

output flow, and fi = 0 otherwise.

A. Minimum cost flow problem

We consider a minimum cost flow problem over Go
physic with a given set of input and output

flows at specific source and sink points. In this problem, there is a convex cost φi : R → R

associated with flow across each arc ei ∈ Eophysic, and our objective is to find the network

minimizer x? ∈ Rm in the following optimization problem

x? = argmin
x∈Rm

φ(x) =
∑m

i=1
φi(xi), s.t., (4a)∑m

j=1
Io
ij xj = fi, i ∈ {1, . . . , n}, (4b)

bj ≤ xj ≤ cj, j ∈ {1, · · · ,m}, (4c)

where f = (f1, · · · , fn)> is the given input/output flow vector which satisfies
∑n

i=1 fi = 0.

Here, (4b) captures the flow conservation at nodes across the network and (4c) describes the arc

capacity constraints. The number of search variables in the optimization problem (4) is equal to

the number of the arcs of the network, i.e., |Eophysic| = m. Our result below uses Theorem II.1 to

eliminate the affine equality constrains (4b) and reduce the search variables to m− n+ 1.
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Theorem III.1 (Eliminating the flow conservation constraint from (4)). Consider the optimal

network flow problem (4) over a connected physical network Go
physic. Then, x? in (1) satisfies

x? = Bof >z? + xp where

z? = argmin
z∈Rm−n+1

φ(z) =
m∑
i=1

φi(z
>[Bof]i + xp

i ), s.t. (5)

bj ≤ z>[Bof]j + xp
j ≤ cj, j ∈ {1, · · · ,m},

and Bof is an oriented fundamental cycle matrix of Go
physic and xp is a particular solution of

Io x = f .

Proof. The equality constraint (4b) in aggregated form is

Io x = f. (6)

Invoking the same argument that is used to relate solutions of the optimization problem (1) to

those of (3), the proof relays on showing that the null-space of Io is spanned by columns of

Bof >. By virtue of Theorem II.1, we have IoBof > = 0. Recall that for a connected oriented

graph rank(Io) = n−1. Because rank(Bof >) = m−n+1, null-space of Io ∈ Rn×m is spanned

by columns of Bof >. This completes our proof.

The effectiveness of the decision variable reduction method in Theorem III.1 depends on

how efficiently one can construct matrix Bof and particular solution xp, especially in large scale

networks. In regards to matrix Bof, as reviewed in Appendix, there are efficient algorithms that

can construct cycle basis in polynomial time. Next, we propose a simple method to construct a

particular solution xp using graph topology. Our method relies on the superposition property of

linear algebra equations, and the fact that a particular solution for a unit flow fi = 1 entering the

network at node vi and leaving it at node vj can simply be constructed by assuming that fi = 1

flows along a path from node vi to node vj .

Lemma III.1 (Particular solution of (6)). Given an input/output flow vector f over Go
physic which

satisfies
∑n

i=1 fi = 0, a particular solution for (6) is xp =
∑n−1

i=1 fi x̄p,vi . Here, x̄p,vi ∈ Rm,

i ∈ {1, . . . , n − 1}, is constructed from a path that connects node vi to node vn such that

xp,vi
j = 1 (resp. xp,vi

j = −1) if ej , j ∈ {1, . . . ,m}, is on this path and is along (resp. opposing)

the direction of the path, otherwise xp,vi
j = 0.
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Figure 2: An schematic representation of a network flow problem with generation and storage

at nodes

Proof. For every i ∈ {1, . . . , n−1}, consider a virtual scenario where a unit flow f̄i = 1 enters the

network at node vi and leaves it at node vn. Using a simple flow tracing over the network we can

see that x̄p,vi ∈ Rm as described in the statement satisfies Io x̄p,vi = f̄
vi , i ∈ {1, . . . , n−1} where

f̄vii = 1, f̄vin = −1 and f̄vij = 0, j ∈ {1, . . . , n}\{i, n}. For a given network flow vector f because

fn = −
∑n−1

i=1 fi, we can write f =
∑n−1

i=1 fi f̄
vi . Therefore, Io∑n−1

i=1 fi x̄p
vi

=
∑n−1

i=1 fi f̄
vi = f,

which completes our proof.

A few remarks are in order regarding the particular solution. First, note that construction

of the ‘elementary’ particular solution set {x̄p,vi}n−1i=1 is regardless of the value of the network

flow vector f . Second, for problems with single source and single sink nodes, we can label the

source node v1 and the sink node vn and compute the elementary solution set only for node v1.

More particularly, if in a given network flow problem the sink and the source nodes are fixed

we only need to compute the elementary particulars solution set for the collection of sink and

source nodes (see Section IV-B for an illustrative numerical example). Finally, to obtain sparse

elementary solutions, we can use a shortest path between nodes vi and vn.

B. Optimal power flow with storage and generation at nodes

Next, we consider an optimal power flow problem over a network described by Go
physic with

storage, generation and load at its nodes (see Fig. 2). The objective in this problem is to minimize

the cost of power generation along with energy loss at the transmission lines over some finite

time interval T = {1, · · · , T}. Mathematical modeling of this problem over various scenarios

including deterministic and stochastic generators is considered in the literature, e.g., [7], [8], [9],

[10]. All these models, at each time t ∈ T , include a flow conservation equation at each node.

June 6, 2017 DRAFT
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As a result for a network with m arcs, the flow conservation equation introduces m |T | decision

variables into the optimization problem.

In our study below, without loss of generality, we use the deterministic form (no renewable

generation source) of the optimal network flow problem studied in [7], which states the problem

as a direct current (DC) power flow problem (see (7)). Without loss of generality, we assume

that at each time t ∈ T , each node vi ∈ Vphysic has a generator which supplies a bounded δi(t)

power, a battery with a bounded storage level si(t) and a charge/discharge variable ui(t), and a

known demand di(t) ∈ R≤0. If a node does not have either of the generation, storage, or load

components, we simply remove the respective variables from our formulation below. Then, given

a known load profile {d(t)}Tt=1, where d(t) = [{di(t)}ni=1], the optimization problem of interest

is

{x?(t), δ?(t),u?(t), s?(t),θ?(t)}Tt=1 = (7a)

argmin
1

T

∑T

t=1

(∑n

j=1
gj(δj(t)) +

∑m

i=1
φi(xi(t))

)
, s.t.

for t ∈ T , i ∈ {1, . . . , n}∑m

j=1
Io
ij xi(t) = δi(t) + ui(t) + di(t), (7b)

si(t+ 1) = λisi(t) + ui(t), (7c)

Bij(θi(t)− θj(t)) = xi(t), j ∈ N e(i), (7d)

δi ≤δi(t)≤ δ̄i, ui ≤ui(t)≤ ūi, si ≤si(t)≤ s̄i, (7e)

bj ≤ xj(t) ≤ cj, j ∈ {1, · · · ,m}, (7f)

where, gj , j ∈ {1, . . . , n} and φi, i ∈ {1, . . . ,m} are cost functions for generators and power

flows, respectively. Here, N e(i) is the set of the nodes that are connected to node vi through an

arc, and λi ∈ (0, 1] is the storage energy dissipation factor. Moreover, (si, s̄i) ∈ R×R, (ui, ūi) ∈

R×R, (δi, δ̄i) ∈ R×R, are, respectively, known (lower bound, upper bound) values on storage

level, battery charge/discharge and power generation by the generator. Finally Bij(θi(t)− θj(t))

is the DC approximation for alternating current power flow. Here, θi(t) is the voltage phase

angle of node (bus) vi ∈ Vphysic at time t and B ∈ Rn×n is the imaginary part of the admittance

matrix under DC assumption.

The following result shows that, the number of search variables related to the flow across the

arcs in the optimization problem (7) can be reduced from m|T | to (m−n+1)T via eliminating
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the flow conservation constraint at each t ∈ T . An interesting, observation in the result below

is that in order to eliminate the flow conservation equations (7b), we need to introduce a new

set of affine equality constraint (8b) which ensure balance between the external input and output

flows.

Proposition III.1 (Eliminating the flow conservation constraint from (7)). Consider the optimal

power flow problem (7) over a physical network described by Go
physic with a given set of loads

{d(t)}Tt=1. Then, {Bof >z?(t) + xp(δ?(t),u?(t),d(t)),u?(t), s?(t),θ?(t)}Tt=1 is a minimizer of the

optimization problem (7) where

{z?(t), δ?(t),u?(t), s?(t),θ?(t)}Tt=1 =

argmin
1

T

∑T

t=1

(∑n

j=1
gj(δj(t)) + (8a)∑m

i=1
φi(z(t)>[Bof]i + xp

i (δ(t),u(t),d(t))
)
, s.t.

for t ∈ T , i ∈ {1, . . . , n}∑n

j=1
(δj(t) + uj(t) + dj(t)) = 0, (8b)

si(t+ 1) = λisi(t) + ui(t), (8c)

Bij(θi(t)− θj(t)) = z(t)>[Bof]i + xp
i (δ(t),u(t),d(t)),

j ∈ N e(i), (8d)

δi ≤δi(t)≤ δ̄i, ui ≤ui(t)≤ ūi, si ≤si(t)≤ s̄i, (8e)

bj ≤ z(t)>[Bof]j + xp
j(δ(t),u(t),d(t)) ≤ cj, (8f)

j ∈ {1, · · · ,m}.

Here, Bof is a fundamental cycle basis matrix of Go
physic and xp(δ(t),u(t),d(t)) =

∑n−1
i=1 (δi(t) +

ui(t) + di(t)) x̄p,vi , where {x̄p,vi}n−1i=1 is as described in Lemma III.1.

Proof. The equality constraint (7b) in aggregated form is

Io x(t) = δ(t) + u(t) + d(t), t ∈ T . (9)

Note that rank of Io ∈ Rn×m is n − 1 and also that 1>nI
o = 0, where 1n is the vector of

n ones. Left multiplying (9) by 1>n results in (8b). Then, for δ(t),u(t),d(t) ∈ Rn that satisfy

(8b), following the method discussed in Lemma III.1, we can show that xp(δ(t),u(t),d(t)) =

June 6, 2017 DRAFT
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∑n−1
i=1 (δi(t) + ui(t) + di(t)) x̄p,vi is a particular solution of (9), i.e., Io xp(δ(t),u(t),d(t)) =

δ(t) + u(t) + d(t). Therefore, for any given load vector d (to simplify the notation we drop

argument t), we have{
x ∈ Rm | Iox = δ + u + d, δ ∈ Rn,u ∈ Rn} ={
Bof >z + xp(δ,u,d)

∣∣∣ xp(δ,u,d)=
∑n−1

i=1
(δi+ui+di) x̄

p,vi ,∑n

i=1
(δi + ui + di) = 0, z ∈ Rn−m+1, δ ∈ Rn,u ∈ Rn

}
.

As a result, at each t ∈ T , we can eliminate the affine equation (7b) and arrive at the equivalent

optimization problem (8) whose minimizers are related to minimizers of (7) in a way that is

described in the statement.

IV. A CYCLE-BASIS DISTRIBUTED ADMM ALGORITHM FOR MINIMUM COST NETWORK

FLOW PROBLEM

In this section, we consider the minimum cost network flow problem (4) and show that its

equivalent form (5) based on the cycle basis variables is amenable to a distributed solution.

We start by introducing some notation related to the oriented fundamental cycles of Go. Let

Cof = {Cof
i }

µ
i=1, where µ = m−n+1, be the set of fundamental cycles of Go whose cycle matrix

Bof is used to eliminate the flow conservation equation as explained in Section III. We represent

the set of arcs of any Cof
i ∈ Cof, i ∈ {1, . . . , µ}, by ECi = {ej ∈ Eo, j ∈ {1, . . . ,m} |Bof

ij 6= 0}.

For a given cycle basis Cof, we refer to the cycles that share an arc as neighbors and represent

the set of (cycle) neighbors of any fundamental cycle Cof
i ∈ Cof, i ∈ {1, . . . , µ}, by N C

i =

{j ∈ {1, . . . , µ}\{i} | ∃ k ∈ {1, . . . ,m} s.t. Bof
ik 6= 0 and Bof

jk 6= 0}. We let Cof(ei) be the set

of indexes of the fundamental cycles that arc ei ∈ Eo belongs to them, i.e., Cof(ei) = {j ∈

{1, . . . , µ} | ei ∈ ECj }.

Recall that to eliminate the flow conservation equation we used x = Bof >z+xp, or equivalently

xi = z>[Bof]i + xp
i , i ∈ {1, . . . ,m}. Notice that one can think of every zi, i ∈ {1, . . . , µ} as

a cycle flow variable (with positive direction in counterclockwise direction) of the fundamental

cycle Cof
i . Recall that, for a given arc ei ∈ Eo

physic, every element of Bof
ji is zero except if cycle

Cof
j contains arc ei, i.e., ei ∈ ECj . As a result, we can deduce that every xi, i ∈ {1, . . . ,m}, is an

affine function of xp
i and {zk}k∈Cof(ei), indicating that every arc flow is a function of its particular

solution and the cycle flow of fundamental cycles that contain the arc. Given such relationship,

then the cost function of every arc as φi(xi) = φi(z
>[Bof]i + xp

i ) = ψi({zk}k∈Cof(ei)).
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Figure 3: Physical and cyber layers of an optimal network flow problem: Physical layer has

n = 16 nodes and m = 24. In this layer, the arrows indicate the positive flow directions. The

cyber layer is constructed using the minimum wight cycle basis of the physical layer graph. The

cyber layer has N = 9 agents with processing and communication capabilities.

Cyber layer architecture: based on the observation above, we propose to assign a cyber-layer

node to each fundamental cycle (see Fig. 3 as an example). We assume that the cyber-layer

nodes of neighboring fundamental cycles can communicate with each other in bi-directional

way. For bi-connected physical layer graphs this procedure will result in a connected graph of

µ nodes for cyber layer (see Fig. 3 and Fig. 4 for examples). To obtain fundamental cycles with

fewest number of arcs we propose to use minimum weight cycle basis algorithms to generate

the fundamental cycle basis for the cyber layer (see Appendix).

A. Cycle Basis distributed ADMM solution for minimum cost network flow problem

In this section, we derive an equivalent representation of optimization algorithm (5) which can

be solved in a distributed manner using the ADMM algorithm of [26] by our cycle-based cyber

layer. To this end, for every cyber-layer node i ∈ {1, . . . , µ}, we define yi = (ȳi, ỹi) ∈ R|NC
i |+1,

where ȳi ∈ R is the local copy of zi and ỹi is the local copy of {zk}k∈NC
i

at cyber node i. With

this definition, we assume that every cyber node, besides its own corresponding cycle flow, has

also a copy of cycle flow variable of its neighbors. Next, we cast the cost function of each cyber

node in terms of its decision variable yi. Let yi(ek) be the component(s) of yi corresponding
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to {zj}{j∈Cof(ek)}. For every cyber-layer node, we define its cost function as

θi(yi) =
∑
∀ek∈ECi

1

|Cof(ei)|
ψk(yi(ek)). (10)

Then, we can cast the minimum cost network flow problem (5) in the following equivalent form

y? = argmin
y1,··· ,yµ

∑µ

i=1
θi(yi), s.t. (11)

set of constraints at each cyber agent i ∈ {1, . . . , µ} :yi(ek) = [{ȳj}j∈Cof(ei)],

bk ≤ yi(ek)
>[{Bof

jk}j∈Cof(ek)] + xp
k ≤ ck,

∀ek ∈ ECi .

In this formulation, every cycle-based cyber node has a copy of the cycle flows that go through

its arcs, i.e, yi. The equality constraint at each node ensures that local copies of the cycle flows

of the neighboring agents are the same, while the inequality constraint ensures that the flow

through the arcs’ of each cycle respect the capacity bounds.

The new formulation (11) fits the standard framework developed for distributed ADMM

solutions and can be solved for example using the algorithm of [26]. The details are omitted

for brevity. In this distributed implementation we assume that elementary particular solution set

{x̄p,vi}n−1i=1 are computed off-line and are available at cyber nodes. At operation times, we only

need to broadcast the input/output flow vector f to the cyber-layer agents. For networks with

large fundamental cycle sizes, one can split a cycle among several cyber nodes. In this case the

length of the ȳi of these agents will be 0 and we can still use the distributed ADMM algorithm

to solve the problem. Similarly, two or more cycles can be assigned to one cyber layer.

B. Numerical Example

In this section, we demonstrate the use of distributed cycle-based ADMM algorithm for a

minimum cost optimal flow over the network shown in Fig. 1. We assign positive flow orientation

to the arcs as represented in Fig. 4. We generate the cyber layer based on the minimum weight

cycle basis as shown in the bolder network with gray nodes in Fig. 1. In this problem, we set

bi = − ci, and ci ∈ R>0, i ∈ {1, . . . , 18}. We assume that the cost of the network flow at each

arc is given as φi(xi) = (xi
ci

)2, where xi = z>[Bof]i + xp
i is the arc flow and z = (z1, · · · , z8)>

are cycle flows. In the physical layer network in Fig. 4, there are two source nodes v1 and v4

and two two sink nodes v9 and v11.
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Figure 4: A physical network with a cycle-based cyber layer network overlaid atop . The physical

layer network has two source nodes v1 and v4 and two sink nodes v9 and v11.

We follow Lemma III.1 to generate a particular solution for given input output flow vector

f = (f1, 0, 0, f4, 0, 0, 0, 0, f9, 0,−(f1 + f4 + f9))
>– recall that f11 = −(f1 + f4 + f9) (recall that

input flows have positive and output flows have negative values). We compute the elementary

particular solutions for nodes v1, v4 and v9 using shortest path from them to node v11: x̄p,v1 =

(0, 0, 1,01×4, 1, 0, 1,01×7, 1)>, x̄p,v4 = (01×7, 1, 0, 1,01×7, 1)>, and x̄p,v9 = (01×16, 1, 0)>. Then

x̄p = f1 x̄p,v1 + f4 x̄p,v4 + f9 x̄p.

In our simulation, the lower and upper capacity bounds are selected uniformly randomly from

[2, 50], i.e., ci ∈ [2, 50], i ∈ {1, . . . ,m}. Specifically, at arcs connected to sink and source points

we have c1 = 30, c2 = 2, c3 = 27, c8 = 50, c13 = 49, c14 = 23, c15 = 21, c16 = 11, c17 = 16,

and c18 = 37. For our selected capacity bounds, using Edmonds-Krap algorithm [30] we obtain

the maximum input flow f1+ f4 to be 82. In our simulation, then we set f1 = 32 and f4 = 50. The

output follows are f9 = −52 and f11 = −30. After, 50 iteration the input/output flows change to

f1 = 15, f4 = 30, f9 = −15, and f11 = −30.

We use Matlab ‘quadprog’ to solve the problem in a centralized manner to generate reference

values to compare the performance of our distributed cycle basis distributed ADMM algorithm

as outlined in Section IV. The results are depicted in Fig. 5. In Fig. 5, plots show the distance

of arc flow values from their optimum solution during execution of distributed ADMM. During

the first 50 iteration the distributed ADMM converges to the optimum solution. Then, for the
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Figure 5: Each plot depicts xi(k)− x?i , for ei’s in that sub-captioned fundamental cycle. As this

figure shows, every cyber node asymptotically calculates the optimal arc flow for its arcs.

second external flows, it converges to the optimum solution again.
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V. CONCLUSION AND FUTURE WORKS

We considered optimal network flow problems and investigated how the decision variables of

these problems can be reduced by eliminating the affine flow conservation equations. Our study

was based on exploiting cycle basis concept from graph theory to eliminate flow conservation

equation in an efficient manner. In particular, we showed that the computation regarding the

proposed variable reduction can be done in a systematic manner, in polynomial time, using

existing algorithms. Moreover, we showed that the new formulation of the optimal network flow

problems with reduced variables is amenable to distributed solvers. In this regard, we constructed

a cyber-layer structure based on cycles in the physical-layer network. We also demonstrated the

use of a distributed ADMM solver for minimum cost flow problem.
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APPENDIX

Minimum weight cycle basis problem is defined as the problem of finding an unoriented

fundamental cycle matrix in which the total length of cycles is minimum. For graphs with

positive arc weights, a solution can be found in polynomial time [22]. Here, our graph arc

weights are 0 and 1. This algorithm generates a set of fundamental cycles, but restricts the

generated cycles to a small set of O(nm) cycles, called Horton cycles. Each shortest path tree
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of the given graph has a set of fundamental cycles. The bound on Horton cycle is defined as m

fundamental cycles of n shortest path trees. Every cycle in the minimum weight cycle basis is a

Horton cycle [22]. Dijkstra’s algorithm finds n shortest path trees and the Gaussian elimination is

used to find independent cycles on an increasing ordered set of cycles. Figures 1, 3 and 4 depict

graphs with their minimum weight cycle basis highlighted. Improvement for worst case time

complexity of this algorithm was provided for undirected graphs [23], and planar graphs [24].
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