
Lawrence Berkeley National Laboratory
LBL Publications

Title
AmoebaNet: An SDN-enabled network service for big data science

Permalink
https://escholarship.org/uc/item/4rf342jn

Authors
Shah, SAR
Wu, Wenji
Lu, Qiming
et al.

Publication Date
2018-10-01

DOI
10.1016/j.jnca.2018.06.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rf342jn
https://escholarship.org/uc/item/4rf342jn#author
https://escholarship.org
http://www.cdlib.org/


Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

AmoebaNet: An SDN-enabled network service for big data science

S.A.R. Shaha,d, Wenji Wub, Qiming Lub, Liang Zhangb, Sajith Sasidharanb, Phil DeMarb,
Chin Guokc, John Macauleyc, Eric Pouyoulc, Jin Kimd, Seo-Young Noha,d,∗

aUniversity of Science and Technology (UST), Daejeon, South Korea
b Fermi National Accelerator Laboratory (FNAL), USA
c Energy Science Network (ESNet), USA
d Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea

A R T I C L E I N F O

Keywords:
Software-defined network
Network as a service
QoS
Data science
Big data
End-to-end path

A B S T R A C T

Data transfer is now an essential function for science discoveries, particularly within big data environments. To
support data transfer for big data science, there is a need for high performance, scalable, end-to-end, and pro-
grammable networks that enable science applications to use the network most efficiently. The existing network
paradigm that support big data science consists of three major components: terabit networks that provide high
network bandwidths, Data Transfer Nodes (DTNs) and Science DMZ architecture that bypasses the performance
hotspots in typical campus networks, and on-demand secure circuits/paths reservation systems, such as ESNet
OSCARS and Internet2 AL2S, which provides automated, guaranteed bandwidth service in WAN. This network
paradigm has proven to be very successful. However, to reach its full potentials, we claim that existing network
paradigm for big data science must address three major problems: the last mile problem, the scalability problem,
and the programmability problem. To address these problems, we proposed a solution called AmoebaNet.
AmoebaNet applies Software Defined Networking (SDN) technology to provide “QoS-guaranteed” network
services in campus or local area networks. AmoebaNet complements existing network paradigm for big data
science: it allows application to program networks at run-time for optimum performance; and, in conjunction
with WAN circuits/paths reservation system such as ESNet OSCARS and Internet2 AL2S; it solves the last mile
problem and the scalability problem.

1. Introduction

Big data has emerged as a driving force for scientific discoveries
(Chen et al., 2013). Large scientific instruments (e.g., colliders, light
sources, and telescopes) generate exponentially increasing volumes of
data. To enable scientific discovery, science data must be collected, in-
dexed, archived, shared, and analyzed, typically in a widely distributed,
highly collaborative manner. Data transfer is now an essential function
for science discoveries, particularly within big data environments.

The emergence of distributed, extreme-scale science applications is
generating significant challenges regarding data transfer. We believe
that two relevant dimensions characterize the data transfer challenges
of the extreme-scale era:

(1) High-performance challenges. Because the sizes of scientific data
sets are growing exponentially, it is important to transfer data in
highest throughputs possible. Thus, scientists can quickly access
and analyze data to facilitate scientific discovery.

(2) Time-constraint challenges. Scientific applications typically have
explicit or implicit time constraints on data transfer. Providing real-
time and deadline-bound data transfer is a challenging task in the
extreme-scale era.

Networks are essential for data transfer. From an end user's per-
spective, we envision networks should provide the following cap-
abilities and features in order to successfully address the high-perfor-
mance and time-constraint challenges of data transfer for big data
science:

• High capacity to provide ample network bandwidth.

• End-to-end network architecture. Many big data science applica-
tions require QoS-guaranteed end-to-end network paths to support
their operations. Network QoS can include bandwidth, delay, loss,
jitter, or their combination.

• Programmability. This feature enables science applications to pro-
gram networks at run-time to suit their needs. A powerful and rich
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set of network programming primitives are necessary to support
various science applications.

• Scalability. Networks must be scalable to concurrently support many
users and a wide variety of science applications.

• Service availability. Networks must allow science applications to use
network services at any time and from anywhere.

Over the years, the U.S. Research and Education(R&E) network
communities have developed new network tools, services, and archi-
tecture in support of big data science. The existing network paradigm
that supports data movement for big data science consists of three
major components: terabit networks that provide high network band-
width, Data Transfer Nodes (DTNs) and Science DMZ architecture (Dart
et al., 2014; Science DMZ, 2017; Data Transfer Nodes, 2017) that by-
passes the performance hotspots in typical campus network, and on-
demand secure circuits/paths reservation systems, such as ESNet OS-
CARS (Guok et al., 2005) and Internet2 AL2S (Internet2's Advanced
Layer 2 Service, 2017), which provide automated, guaranteed band-
width service within the WAN. This network paradigm has been a big
success. However, to reach its full potentials, we claim that the existing
network paradigm for big data science must address three major pro-
blems:

• The last mile problem. An end-to-end network path typically con-
sists of LAN segments (the last mile), and WAN segments. WAN QoS
can be provisioned by utilizing ESNet OSCARS or Internet2 AL2S to
reserve bandwidths between Service Termination Points (STPs)
(Roberts et al., 2014). However, there lacks an automated network
service in campus or local area networks to provision QoS for the
last mile. As a result, end-to-end network paths with guaranteed QoS
cannot be provisioned.

• The scalability problem. The computing models for large-scale sci-
ence applications are becoming ever more globally distributed and
grid-based, typically involving hundreds, even thousands, of com-
puter systems. Often many of these science applications require
QoS-guaranteed end-to-end paths to adequately support their op-
erations. The scalability problem arises when establishing end-to-
end paths between computer systems at numerous, widely dispersed
sites.

• The programmability problem. Within the WAN, services such as
ESNet OSCARS and Internet AL2Sprovide some degree of network
programmability that allows science applications to reserve network
bandwidths between STPs. However, there lacks a network service
within campus and/or local area networks that allow science ap-
plications to program local networks at run-time to suit their needs.
As a result, science applications cannot make the most efficient or
optimum use of underlying network resources.

We are working on the AmoebaNet project to address these pro-
blems. AmoebaNet applies Software Defined Networking (SDN) tech-
nology (Shenker et al., 2011; McKeown, 2009) to provide “application-
aware” network service in campus or local area networks. AmoebaNet
supports a list of salient features:

• Providing an AMQP interface (Vinoski, 2006) to allow applications
to program networks at run-time. The JSON-RPC style commu-
nication provides dynamic and flexible interaction with networks;

• QoS-based routing and path computation;

• Fast provisioning of end-to-end network paths with guaranteed QoS;

• Fine-grained control of network traffic;

• Network slicing;

• A rich set of network programming primitives to support a wide
spectrum of use cases and application scenarios;

• A full-featured scheduler that allows network resources to be re-
quested on-demand, or scheduled in advance to support complex
network operations.

• Seamless integration of LAN and WAN;

• REST-based network initialization and configuration.

AmoebaNet complements existing network paradigms for big data
science by: (a) allowing science applications to program networks at
run-time to suit their needs, and (b) working in conjunction with WAN
circuits/paths reservation system such as ESNet OSCARS and Internet2
AL2S to provide an end-to-end network service, which solves the last
mile problem and addresses the scalability issue.

The rest of paper is organized as follows. Section 2 presents back-
ground and related works. Section 3 discusses the problems with ex-
isting network paradigms for big data science. Section 4 describes
AmoebaNet design and implementation. In section 5 we discussed the
network paradigm for big data science. Section 6 discusses our eva-
luation of AmoebaNet. And Section 7 concludes the paper.

2. Backgroudns and related work

2.1. DTNs and the science DMZ approach

The computer systems used for wide area data transfers perform far
better if they are purpose-built and dedicated to the function of wide
area data transfer. ESNet originated the DTN idea. A DTN is a computer
system dedicated to the function of wide-area data transfer (Data
Transfer Nodes, 2017), typically having the following features:

• Configured with one or multiple 10/25/40GE NICs. DTNs with
100GE NICs are in the very early stages of deployment.

• Having access to local storage, whether it is a local high-speed disk
subsystem, a connection to a local storage infrastructure such as a
SAN, or the direct mount of a high-speed parallel file system such as
Lustre or GPFS, or a combination of these.

• Running the software tools designed for high-speed data transfer to
remote systems – typical software packages include mdtmFTP
(Zhang et al., 2018), BBCP (BBCP, 2017), and GridFTP (Allcock
et al., 2005).

• No general-purpose computing tasks are allowed on the DTNs to
mitigate security risks.

Science DMZ (Dart et al., 2014; Science DMZ, 2017) refers to a
specialized DTN deployment that is typically local to a site's network
perimeter. The hardware devices, software, configuration, and security
policies of Science DMZ are structured and optimized for high-perfor-
mance data transfer. In addition, Science DMZ has performance mea-
surement and network testing systems that are regularly used to char-
acterize the network and are available for troubleshooting. The Science
DMZ model has been successful in many different science environ-
ments. DOE Leadership Computing Facilities and many university net-
works are now adopting the Science DMZ architecture to deploy DTNs.

2.2. Terabit networks

The U.S. Research and Education network communities are working
toward deploying terabit networks in support of distributed extreme-
scale data movement. ESnet and Internet2 pooled its stimulus resources
together to deploy a massive 8.8 Terabit networks. Existing backbone
networks have been upgraded with ultra-scalable 100-gigabit technol-
ogies (ESNet, 2017). In addition to its production network, ESNet has
also created a national-scale network testbed, available to researchers
and industry for experiments with new network technologies, protocols,
and applications at 100 Gbps (ESNet testbed, 2017). Within the data
centers, server performance growth drives system 40/100GE connec-
tion deployments, with n x 100 GE uplinks at the access layer.

The deployment of terabit networks has increased the physical
network infrastructure capacities by orders of magnitudes, which is
essential to meet the high-performance and time-constraint data
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transfer challenges for big data science. However, rapid growth in
network capacities must be matched by corresponding improvements in
network and transport layer protocols and higher layer tools.

2.3. ESNet OSCARS and Internet2 ION

Different from “commodity” networks, R&E networks must support
data-intensive science applications and large scientific collaborations,
which typically involve supercomputers, advanced instruments, and
scientists distributed around the world. Typically, it can take weeks or
months to manually configure a network to support large scientific
collaborations.

To address this problem, ESNet has developed the OSCARS network
reservation system (Guok et al., 2005), which can reserve and provision
multi-domain, high-bandwidth virtual circuits among sites in a matter
of minutes, instead of weeks. OSCARS gives users the ability to en-
gineer, manage, and automate the network according to user-specified
requirements for using scientific instruments, computation, and colla-
borations.

Similarly, Internet2 AL2S (Internet2's Advanced Layer 2 Service,
2017) is a network service that provides researches and network en-
gineers the ability to automatically provision dedicated circuits across
their networks in order to support bandwidth-intensive science appli-
cations. AL2S leverages ESnet's OSCARS technology.

2.4. SDN and its promise

SDN is a network architecture that disentangles the control plane
from data forwarding, thus allowing the network control to be directly
programmable (Shenker et al., 2011; McKeown, 2009; Kreutz et al.,
2015; Nunes et al., 2014). The promise of SDN is that it allows network
resources to be managed and re-configured automatically and dyna-
mically, offering immense performance advantages for network op-
erations.

Prior work Hedera (Al-Fares et al., 2010) designed a dynamic flow
scheduling system that adaptively scheduled the switching fabric to
reduce traffic collisions. On the PortLand testbed (Niranjan et al.,
2009), Hedera can deliver up to 4× more bandwidth than state of the
art ECMP technique with modest control and computation overhead.
Hedera was designed for multi-root tree network topologies, which
have a larger number of parallel paths between any given source and
destination edge switches. However, Science DMZ networks typically
do not adopt this network architecture. Therefore, Hedera cannot be
readily applied in Science DMZ networks.

Wang et al. (2011) used OpenFlow (McKeown et al., 2008) to install
wildcard packet-handling rules to balance the loads at each server re-
plica while achieving considerably lower processing overhead. Efforts
have also been made to reduce the costs associated with fine-grained
control in OpenFlow (Curtis et al., 2011). This research works help to
improve SDN scalability (Yeganeh et al., 2013).

SWAN (Hong et al., 2013) employed SDN to improve the link uti-
lization of inter-data-center networks by orchestrating traffic and re-
configuring the data plane to match the current traffic demands. Goo-
gle's B4 (Jain et al., 2013) – a private WAN connecting Google's data
centers across the world – addressed a similar problem. By using SDN,
B4's centralized traffic engineering service drives links to near 100%
utilization, while splitting application flows among multiple paths to
balance capacity against application priority/demands. Both B4 and
SWAN adopt a single domain design; a logically centralized controller
orchestrates all activities. They are not designed to address the multi-
domain problems that are typically encountered in R&E networks. By
contrast, AmoebaNet is designed to complement the existing network
paradigm that supports data movement for big data science, which
typically involves multiple domains.

SDN security or applying SDN to address security problems are
discussed in(Zheng et al., 2016; Zhaogang et al., 2016; Scott-Hayward

et al., 2013; Shin et al., 2013; Kreutz et al., 2013) and these are also hot
research areas. However, our research does not address security issues.

Recently, a new high level programming language for routers and
switches named P4 has been developed by some of the original founder
of SDN (Bosshart et al., 2014). Different from OpenFlow which is fo-
cused on the control plane, P4 is designed to program and control si-
licon processor chips in the data plane. With the advent of P4, pro-
grammable networks can be controlled “top-down” to install any
functionality the user wants (Kim et al., 2015; Popescu et al., 2017;
Sivaraman et al., 2015; Laki et al., 2016).

2.5. End-to-end collaborative infrastructure efforts

The DTN and Science DMZ concepts, coupled with terabit WAN
capabilities and emerging SDN technologies, all could be combined to
provide end-to-end high-performance network services required by big-
data science. The Pacific Research Platform (PRP) (PRP, 2017) re-
presents just such an effort to create that type of network environment.
Designed and implemented under the auspices of the Corporation for
Education Network Initiatives in California (CENIC), PNP seeks to
provide a multi-domain network infrastructure for large-scale science
collaboration. The National Science Foundation (NSF) is currently in
the process of expanding the PRP idea to national scale, with a National
Research Platform (NRP) (PRP, 2017). While these initiatives establish
physical infrastructures capable of supporting extreme performance
data movement across multiple organizations, much of the middleware
needed to optimize such large-scale data movement is still missing.
AmoebaNet is proposed here to be one of these missing middleware
elements. It is intended to provide a service capable of implementing
SDN-based network services within the local component of the end-to-
end network path. In addition, it is intended to provide science appli-
cations the capability to dynamically customize those local network
services to meet the application's specific needs.

2.6. QoS-guaranteed end-to-end network path efforts

Many big data science applications require QoS-guaranteed end-to-
end network paths to support their operations. The capability of fast
provisioning of end-to-end paths with guaranteed QoS is a long sought
goal in R&E network communities.

AutoBAHN (Geant AutoBAHN, 2015) is a GEANT-provided provi-
sioning tool that facilitates the multi-domain dynamic circuit provi-
sioning service. AutoBAHN is focusing on interoperability across do-
mains. It easily negotiates the different networking technologies
deployed by the different domains. However, AutoBAHN has a limited
support for layer 3 and application layer operations. Therefore, it is
better suited for WAN deployment.

The DYNES project (Dynamic Network Systems) (Zurawski et al.,
2011) has attempted to deploy OSCARS to provision end-to-end layer 2
paths for large-scale data transfer. In the DYNES framework, OSCARS is
not only deployed in WAN, but also in LAN and campus networks.
However, we argue that the DYNES framework has deficiencies because
OSCARS is not appropriate for campus or local area networks [see
Section 3.1].

The DANCES (Developing Applications with Networking
Capabilities via End-to-end SDN) (Hazlewood et al., 2016) is a NSF-
funded SDN research project. It aims to enable network bandwidth
scheduling via SDN technology and enhance the overall performance of
scientific applications. DANCES develop a bandwidth management
component, the Centralized OpenFlow and Network Governing Au-
thority (CONGA) that schedules network resources. Because CONGA
adopts a centralized architecture, the scalability problem would arise
when it is deployed to support extreme-scale scientific applications.
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3. Problems with existing network paradigm for big data science
and out solution

To successfully meet the high-performance and time-constraint
challenges of data transfer for big data science, we claim that existing
network paradigm must address three major problems: the last mile
problem, the scalability problem, and the programmability problem.

3.1. The problems

3.1.1. The last mile problem
As illustrated in Fig. 1, an end-to-end network path typically con-

sists of LAN segments (the last mile), and WAN segments. WAN QoS can
be provisioned by utilizing ESnet OSCARS or Internet2 AL2S to reserve
bandwidth between STPs. However, there lacks an automated network
service in campus and/or local area networks to provision QoS for the
last mile. As a result, end-to-end network paths with guaranteed QoS
cannot be provisioned.

The last mile problem has been a long-lasting issue that continues to
puzzle the U.S. Research and Education network communities. DOE's
Office of Science Advanced Scientific Computing Research (ASCR) of-
fice funded work on several research projects, such as Lambda station
(Bobyshev et al., 2006) and TeraPaths (Gibbard et al., 2006), to address
this problem. However, these projects only achieved limited success,
and have not been put into practical use. One reason for this limited
success is that the network resources were closed, proprietary, and
difficult to program at the time. It was then difficult to provide a gen-
eric solution to address the problem.

Some researchers and network practitioners have also attempted to
deploy OSCARS at campus and local area networks, in the hopes of
addressing the last mile problem and the programmability problem
(Zurawski et al., 2011, 2012). However, we argue that OSCARS is not
appropriate for campus or local area networks due to several reasons.
First, campus and local area networks need to support complex use
cases and application scenarios. OSCARS does not provide a rich set of
network programming primitives to support such operations. For ex-
ample, OSCARS does not provide lock and/or atomic commit primitives
to support multi-step operations, which are common for complex sci-
ence workflows. Second, OSCARS has a limited support for layer 3 and
application layer operations.

3.1.2. The scalability problem
Two factors contribute to the scalability problem. First, the com-

puting models for large-scale science applications are becoming ever
more globally distributed and grid-based, which typically involves
hundreds, even thousands, of computer systems. Second, many science
applications required QoS-guaranteed end-to-end paths to support their
operations.

Assuming a science application involves m sites, with n1 systems at
site 1, n2 systems at site 2, …, and nm system at site m. In the extreme
cases, n n nm1 2∗ ∗…∗ QoS-guaranteed end-to-end paths should be estab-
lished between systems among these sites. Many network practitioners
would establish VLAN-based point-to-point layer 2 circuits to imple-
ment end-to-end paths. Clearly, this model is simple and effective, but
not scalable because it is not possible to have more than 4096 VLANs.

Spoke-hub distribution model (O'Kelly, 1998) is an effective me-
chanism to address the above scalability problem. In this model, point-
to-point layer 2 circuits with guaranteed bandwidth are required only
between STPs, instead of between computer systems (the tips of the
spokes). At each site, traffic between systems in physically disperse sites
are carefully multiplexed/de-multiplexed to/from the corresponding
point-to-point layer 2 circuits between STPs. Multiple traffic flows can
be multiplexed/de-multiplexed to/from a single point-to-point layer 2
circuit, which typically reserve an aggregated bandwidth of its com-
ponent traffic flows. To meet the end-to-end QoS requirements for
network traffic, a network service at each site is required to provide: (a)
QoS-based routing and path selection; (b) fine-grained control of net-
work traffic; and (c) seamless integration of LAN and WAN. Fig. 2 il-
lustrates an example of using spoke-hub distribution model to solve the
scalability problem.

3.1.3. The programmability problem
“Network as a service” is a long-chanted slogan in the U.S. Research

and Education network communities. Network programmability is the
prerequisite for this goal.

At present, the U.S. Research and Education network communities
have developed some degree of network programmability within the
WAN. Science applications can use ESnet OSCARS or Internet AL2S to
reserve network bandwidths between STPs. However, a network service
to support programmability within the campus or local area networks is
lacking. As a result, science applications cannot make efficient and

Fig. 1. The last mile problem.

Fig. 2. Spoke-hub distribution model for the scalability problem.
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optimum use of underlying network resources.

3.2. Our solution

Our analysis indicates that there is the lack of an automated net-
work service in campus and/or local area networks to address the
previously mentioned problems. Our research will help fill this gap.

We believe that SDN is the right paradigm to implement such a
network service. First, application-driven network programmability is a
core component of SDN, facilitating the flexibility, automation, vir-
tualization, and orchestration of network services. With the aid of SDN,
developing an “application-aware” network service becomes feasible,
with science applications directly scheduling network resources.
Second, SDN can control and steer network traffic on a per-flow basis.
Therefore, developing features that support fine-grained control of
network traffic becomes simple and straightforward. Third, SDN pro-
vides centralized network provisioning that enable optimum use of
network resources. Finally, SDN provides centralized network man-
agement that helps to reduce network operation costs.

We have designed and implemented AmoebaNet, an SDN-enabled
network service for big data science. We present AmoebaNet's design
and implementation in the next section.

4. AmoebaNet: the desing and implementation

4.1. Design goals

We have several design goals for AmoebaNet. First, “Network as a
Service” is our primary goal. AmoebaNet must allow applications to
program networks at run-time for optimum performance. Second,
AmoebaNet must provide QoS guarantee for priority traffic. Third,
AmoebaNet must support a wide spectrum of applications. Fourth,
AmoebaNet must provide fine-grained control of network traffic.
Finally, AmoebaNet must be easy to deploy and operate.

4.2. AmoebaNet design and implementation

We implemented AmoebaNet using Java upon the ONOS platform
(ONOS Project, 2017). ONOS provides a number of high-level ab-
stractions and models, through which AmoebaNet can learn about the
state of the network and it can control the overall network dynamically.
To achieve the target specific goal, we extended and reused the core
northbound APIs of ONOS (such as Device, Host, Link, Topology, Flow,
Meter, etc) in our proposed AmoebaNet solution, and we proposed a
new set of purpose-build APIs (such as Path, Topology, Flow, Query,
Reserve, etc). On top on of ONOS platform, we developed a set of new
mechanisms for AmoebaNet, which includes: (a) an AMQP interface to
allow applications to program networks at run-time. The JSON-RPC
style communication provides dynamic and flexible interaction with
networks; (b) a lock mechanism to avoid unsynchronized access to
network resources; (c) a QoS-based routing and path computation
mechanism; and (d) a full-featured scheduler to allow network re-
sources to be requested on-demand, or scheduled in advance to support
complex network operations.

To simplify the implementation of AmoebaNet, we logically splited
the AmoebaNet's design into two different architectures: the data plane
and the control plane. Both architectures are inter-dependent; however,
the data plane architecture mainly considers the design and config-
uration of underlying SDN switches and the control plane represents the
design and configuration of SDN controllers.

4.2.1. AmoebaNet data plane architecture
The key consideration of network operators is the efficient utiliza-

tion of network resources (such as bandwidth). The existing data plane
architectures are based on best-effort approches. However, the re-
quirement of applications and services is not satisfying by this so called
best-effort service approach. From applications or users perspective, the
behaviour of best-effort approach is unpredictable and often in a poor
Quality of Services (QoS). The traditional routing protocols calculates
the optimal routing paths between two endpoints and continuously
send the traffic on that path, even it becomes congested. Considering
the congestion in networks is the key to maximize the utilization of
bandwidth. As shown in Fig. 3; whenever congestion take place in
network, the congestion control mechanisms just send the notification
message to sender to reduce the data transmission rate; in result, the
overall performance degradation in terms of required throughput.

AmoebaNet's data plane architecture is able to take into account of
available bandwidth in network and enables a QoS-aware bandwidth
reservation system for upper layer applications and services. To ensure
the anti-congestion; the reservation system will not exceed more than
the available bandwidth of network. Our proposed AmoebaNet solution
supports two classes of services: priority and best-effort; we exploited
the meters and queuing techniques at data plane level. We used meters
to limits the rate of priority flows and we used queues to priortize the
flows. The priority based flows requested always take place on the
priority queues and the best-effort flows always placed on best-effort
queues. AmoebaNet also provides a flexible mechanism to reallocation
the flows on backup path in case of primary path fails. AmoebaNet
applies the data plane as shown in Fig. 4. At each SDN switch, Amoe-
baNet uses QoS queues to differentiate priority and best-effort traffic;
priority traffic is transmitted first. In addition, it meters which enables
the priority traffic to enfore rate control. AmeobaNet configure the both
queues and meters dynamically on each underlaying devices.

Fig. 3. Network congestion.

Fig. 4. AmoebaNet data plane model.
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4.2.2. AmoebaNet control plane architecture
Fig. 5 illustrates AmoebanNet's control plane architecture. It con-

sists of the following modules:

• AMQP based APIs module. An AMQP interface that allows applica-
tions to access AmoebaNet services. AMQP APIs are based on JSON-
RPC style communication mechanism which allows dynamic and
flexible interaction between application and AmoebaNet. The AMQP
interface consists of consumer and publisher components, which
enables two-way communication between AmoebaNet and appli-
cation (e.g., BigData Express). The consumer component manages
network service requests from application while the publisher
component sends network status/statistics to application.
AmoebaNet use this module to create or delete the publisher and
consumer queues dynamically before starting the actual AmoebaNet
application inside ONOS controller. Once the queues created, ap-
plications can start two-way communication with AmoebaNet. An
example of AmoebaNet consumer and publisher is illustrated in
Fig. 6.

In this example, when BDE application starts send JSON-RPC
commnads to AmoebaNet's consumer by using rpc queue (aka: sdna-
gent_consumer_queue) and correlation id (aka: fnalserver); an anon-
ymous exclusive callback queue (aka: amqp-xxx-yyy) created to send
reply back to BDE application. The AmoebaNet's consumer always in
waiting state for requests on queue. When a request appears, it perform
the job and send a JSON reply with the results to the BDE application by

using the callback queue. AmoebaNet publisher work similarly and
send JSON-RPC messages to BDE application, but it uses new rpc queue
name (aka: sdnagent_publisher_queue) and BDE application acts as a
consumer. BDE application send reply back to AmoebaNet application
by using its callback queue.

AMQP module also configured with the events delivery service to
dispatch the events to notify its listeners about incoming messages/
commands from applications. Event listeners are the components that
implements the event listener interface. We implemented the event
listener interface for AmoebaNet manager to handle the incoming
messages/commands.

• REST APIs. Similar to AMQP module, REST APIs also provides an
alternative interface for applications to interact with AmoebaNet
services and program the network at runtime. By using RESTful
APIs, any application can interact with AmeobaNet using simple
JSON style format.

• AmoebaNet Manager. AmoebaNet manager is one of the core element
of our proposed solution, it act as the coordinator. It is in charge of
the communication among all modules of AmoebaNet, and it es-
tablish the workflow among each sub-module and internal services.
AmoebaNet manager component handles the upper layer requests
comes from above mentioned modules. This component keeps track
of consumed resources and handling the service resiliency. When
network service requests are received, it schedules and coordinates
with other modules to perform related operations, including QoS-
base path calculation, path reservation, path setting up/tearing
down, and network status reporting. AmoebaNet manager also in
charge of determining whether a newly requested service can be
provide or not. During the entire lifetime of requested service, it
takes into account the available resources (e.g. bandwidth) in the
network.

As shown in Fig. 7, in this module we also implemented the event
listener interfaces to handle the incoming services requests. In addition,
it also listen to the asynchronous events sent by topology manager to
inform applications about the changing conditions in the network.

• QoS-based Routing & Path Computation. This module of AmoebaNet is
in charge of the computation of path. It calculates available paths
between service termination points (STPs). As shown in algorithm 1,
AmoebaNet utilizes the largest bottleneck bandwidth algorithm (a

Fig. 5. AmoebaNet control plane architecture.

Fig. 6. AmoebaNet consumer & publisher examples. Fig. 7. AmoebaNet manager with event listener interfaces.

S.A.R. Shah et al. Journal of Network and Computer Applications 119 (2018) 70–82

75



Dijkstra's shortest path variant) to calculate available paths between
two end points in network, with bandwidth as constraints.
AmoebaNet abstracts SDN network as a graph. Vertices in the graph
represent SDN devices while edges in the graph represent network
links. For each edge in the graph, attributes such as bandwidth is
obtained through the SDN controller. A cost is assigned to each edge
based on available bandwidth of the edge.

Algorithm 1
Largest bottleneck bandwidth.

1. function Dijkstra_AmoebaNet(Graph, source):
2. create vertex set Q
3. for each vertex v in Graph:
4. bandwidth[v] ← 0
5. previous[v] ← UNDEFINED
6. add v to Q
7. bandwidth[source] ← INFINITY
8. while Q is not empty:
9. u ← vertex in Q
10. remove u from Q
11. for each neighbor v of u:
12. alt ← min_bandwidth(u, v)
13. if alt > bandwidth[v]:
14. bandwidth[v] ← alt
15. previous[v] ← u
16. return bandwidth[], previous[]

By using our proposed largest botttleneck bandwidth algorithm, it is
possible to determine the best available path (with maximum available
bandwidth) between a start node and any other node in a graph. Our
proposed algorithm consists of the following steps:

1. Initialization of all nodes with bandwidth "0"; and the starting node
with “Infinity”

2. The bandwidth of all nodes sets up as temporarily and the starting
node as permanent.

3. Starting node sets up as active.
4. To calculation the largest bottleneck bandwidth of all neighbour

nodes of the active node, and checks the available bandwidth of the
edges.

5. If the calculated bandwidth of a node is greater than the current one,
then it updates the bandwidth and sets up the current node as
antecessor.

6. The node with the maximum temporary bandwidth is sets up as
active, and mark its bandwidth as permanent.

7. Repeating of steps 4 to 7 until there aren't any nodes left with a
permanent bandwidth.

• Flow Manager. The module that installs, updates, modifies, and de-
letes the flow rules on underlying network devices. Whenever
AmoebaNet receives a path reservation request from an application
then the flow manager will receive flows related requests from
AmoebaNet manager module, and it will perform flows related op-
erations on each forwarding device independently. In addition,
meter (for rate-control) and queue (for traffic priority) related op-
erations are managed by this flow manager service to support QoS
guarantee.

• Resource Monitoring. This module monitors and keeps track of net-
work resources. The resource monitoring service is mainly in charge
to monitor the resources (such as link cost, bandwidth, etc) related
information and also provides that information to other services.

• Topology Manager. The module that provides the global network
topology view to AmoebaNet manager. It coordinates with topology
service of ONOS to updated information in AmoebaNet's local to-
pology database. If any changes occur in underlying network to-
pology, the Topology manager immediately triggers topology

change events to AmoebaNet's manager by using the its event dis-
patcher service.

4.2.3. AmoebaNet primitives

To target the programmability problem and realize Network as a
Service, AmoebaNet provides a list of primitives to allow applica-
tions to program networks at run-time:

• initial_config(): configure the interfaces/ports of internal switches
that are acting as gateways to external networks. At gateways, VLAN
operations such as pop, push, and swap are typically needed to
stitch path segments at different networks to provision end-to-end
layer 2 paths. As shown in Fig. 8, switch SW A and SW B are con-
figured as gateways for site A and B, respectively. An end-to-end
layer 2 path has been established between DTN A and B, which
actually consists of path segments at different VLANs. VLAN con-
versions of VLAN1 ←→ VLAN2 and VLAN2 ←→ VLAN3 are per-
formed at SW A and SW B, respectively.

• Lock()/unlock(): lock/unlock AmoebaNet services to avoid un-
synchronized access to network resources. It basically executes two
key mechanisms: a lock mechanism to avoid unsynchronized access
to network resources, and a full-featured scheduler to schedule
network resources at user requests.

We give an example to illustrate why AmoebaNet needs a lock
mechanism. Consider a network as shown in Fig. 9. Two scientific ap-
plications – app1 and app2 – need to reserve network resources to
support operations. App1 requires two network paths – path A-B and
path B-C, each with a bandwidth of 8Gbps; while App2 requires the
same paths – path A-B and path B-C, each with a bandwidth of 6Gbps. If
the two applications run simultaneously with no locks, it could lead to a
deadlock situation if the operations proceed in the order shown below.
As a result, neither application can proceed.

App1 App2
Reserve path A-B (succeed)

Reserve path B-C (succeed)
Reserve path B-C (fail)

Reserve path A-B (fail)

Fig. 8. VLAN operations at GWs.

Fig. 9. Why does AmoebaNet need a lock mechanism?.
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The lock ensures one application's network operations are complete
before another application can access the shared network resources as
shown below.

App1 App2
Acquire lock
Reserve path A-B (succeed)
Reserve path B-C (succeed)
Release lock

Acquire lock
Reserve path B-C (succeed)
Reserve path A-B (succeed)
Release lock

The full-featured scheduler allows network resourcesto be requested
on-demand, or scheduled in advance to support complex network op-
erations. Whether the request be immediate network provisioning, or
network reservation in advance, the scheduler works as follows:

1) Call QoS-based Routing & Path computation to check whether re-
quested network resoruces are available. If not, the request is re-
jected, otherwise, continue;

2) Allocate or reserve network resources in control plane;
3) Coordinate with Flow Manager to commit resources in data plane,

immediately or when the reservation starts.
4) Coordinate with Flow Manager to release resources in data plane and

recycle resources in control plane when the reservation ends, or
when a release request is received.

• query_virtual_netslice(): query the setting of a particular virtual net-
work slice;

• query_path(): query the setting of a particular path;

• query_host_to_host(): query the maximum available bandwidth be-
tween two end hosts;

• query_host_to_gateway(): query the maximum available bandwidth
between a host or a list of hosts to gateway;

• create_path(): create or reserve a layer 2/3 path between two end
points with a specified bandwidth and at a specified time slot;

• create_virtual_netslice():given a list of IPs, create or reserves a virtual
network slice among them with a specified bandwidth and at a
specified time slot;

• update_path(): update or modify a particular path's setting;

• update_virtual_netslice(): update or modify a particular virtual net-
work slice's setting;

• release_path(). Tear down a particular path;

• release_virtual_net_slice(): tear down a particular virtual network
slice;

• event_notification_registration(): register notification of particular
network events.

5. A new networking paradigm for big data science

The development of AmoebaNet presents a new network paradigm
for big data science (Fig. 10). In this paradigm, Science DMZ and Terabit
Networks provide high-speed and high-capacity network infrastructures;
AmoebaNet, in conjunction with OSCARS/ION, delivers “network as a
service” to upper layer science applications; science applications in-
telligently program networks at run-time to suit their needs.

Fig. 11 illustrates a deployment example of the new paradigm. A big
data science application runs at multiple sites. Each site is an in-
dependent administrative domain. To support the science application;
each site features a dedicated cluster of high-performance computer
systems, and a SDN-enabled LAN or campus network. The dedicated
computer systems are deployed using the Science DMZ architecture.
The SDN-enabled LAN or campus network consists of either physical or
virtualized SDN-enabled switches or routers and connect the dedicated

computer systems to a BR – a gateway router or switch that connects to
WAN. AmoebaNet is deployed at each site to manage LAN or campus
network, with OSCARS/AL2S running within the WAN to provides on-
demand guaranteed. Although multiple SDN controllers can be de-
ployed at a site, ONOS presents a global network view of the site to
AmoebaNet.

To intelligently program networks at run-time to suit its needs, a
science application typically performs the following operations:

1) Estimate and calculate the system-to-system traffic matrix for the
application, and the related QoS requirements (e.g. throughput,
delay).

2) Calculate the site-to-site traffic matrix of the application, and the
related QoS requirements (e.g., throughput, delay).

3) Call ESnet OSCARS or Internet2 ION circuit service to set up or
modify point-to-point layer 2 circuits among sites.

4) Call AmoebaNet at each site to program LAN or campus network.
Traffic between systems in physically disperse sites are carefully
multiplexed/de-multiplexed to/from the corresponding point-to-
point layer 2 circuits between sites.

6. Evaluation and results

We evaluated AmoebaNet within Fermilab SDN testbed. Our goal is
to verify and validate that AmoebaNet can meet our design objectives.

6.1. End-to-end network path provisioning within a domain

We run AmoebaNet in a single domain SDN testbed (Fig. 12). The
testbed consists of four 40GE DTNs –DTN1, DTN2, DTN3, and DTN4,
and two Pica8 SDN switches – P5101 and P3930. Each DTN is config-
ured with one or multiple VLAN virtual interfaces and is connected to a
Pica8 SDN switch. The two switches are connected back-to-back with a
40GE link.

We used iperf to run data transfer between DTNs with two classes of
traffic. The data transfer includes three jobs, which last for 20min.

• Priority traffic 1, which is sent from 192.3.3.2 (vlan3 nic@DTN2) to
192.3.3.4 (vlan3 nic@DTN4). The data transfer starts at 4th min,
and ends at 15th min, wherein the maximum bandwidth is capped at
10Gbps.

• Priority traffic 2, which sent from 192.4.4.3 (vlan4 nic@DTN3) to
192.4.4.4 (vlan4 @DTN4). The data transfer starts at 7th min and
ends at 18th min, wherein the maximum bandwidth is capped at
15Gbps.

• Best-effort traffic, which is sent from 192.2.2.1 (vlan2 nic@DTN1)
to 192.2.2.4 (vlan2 nic@DTN4). The data transfer starts at 1st min
and ends at 20th min.

An end-to-end path is established for each data transfer job. The
path details are listed in Table 1. We developed a simple application to
send AMQP JSON-RPC commands to AmoebaNet to program the

Fig. 10. A new network paradigm for big data science.
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testbed at run-time to set up the paths. Essentially, AmoebaNet per-
forms these tasks:

1) Calculate and route local LAN paths.
2) Install flow rules to set up local LAN paths.
3) Install meters and queues to enforce rate control and QoS guarantee

for priority traffic.

For example, here is an AmoebaNet command for setting up a local
LAN path for priority traffic 1.

{
"cmd":"create_path",
"hosts":

[{
“startTime”: “immediate”,
“endTime”: “2017-09-07 13:00”,
"srcIp":"192.3.3.2″,
"rate":"10000″, // in Mbps
"dstIp":"192.3.3.4″,
"trafficType":"priority traffic",
"vlanId":"3″,
“routeType”: “host-to-host”

}]
}

We collected throughput measurements for the data transfer jobs.
The evaluation results illustrated in Fig. 13. It can be seen that: (a) from
1 to 4min, best-effort traffic consumes the entire 40Gbps bandwidth of
the 192.2.2.1–192.2.2.4 path. (b) from time 4–7min, priority traffic 1
achieves a capped throughput of ∼10Gbps, with the best effort traffic
consuming the remaining ∼30Gbps. (c) For time 7–15min, priority
traffic 2 is sent and attains a throughput of ∼15Gbps, which reduces
the best-effort traffic throughput to ∼15Gbps, and priority traffic 1
remains unchanged at ∼10Gbps. (d) between time 15 and 20min, both
priority traffic 1 and 2 transfers are completed, allowing the best-effort
traffic's throughput to increase to ∼40Gpbs. The best-effort traffic
consumes the entire bandwidth of the end-to-end path.

This experiment clearly demonstrates that (1) AmoebaNet provides
“Application-aware” network services. It allows application to program
network at run time. (2) AmoebaNet supports differentiated services,
and provides QoS guarantee for priority traffic. And (3) AmoebaNet
provides fine-grained control of network traffic.

6.2. QoS-guaranteed network slicing within a domain

The goal of this experiment is to verify and validate that AmoebaNet
is able to program the underlying network to create virtual network
slices within an SDN-enabled network. The experiment was run in the
same SDN testbed as shown in Fig. 7. We sent commands to AmoebaNet
to create three virtual network slices:

Fig. 11. A typical AmoebaNet use case for big data science.

Fig. 12. End-to-end network path provisioning within a domain.

Table 1
End-to-end network paths.

Srcip Dstip vlan bandwidth Class

Path 1 192.3.3.2 192.3.3.4 3 10Gbps Priority
Path 2 192.4.4.3 192.4.4.4 4 15Gbps Priority
Path 3 192.2.2.1 192.2.2.4 2 N/A Best-effort

Fig. 13. Evaluation results.
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• Slice 1 includes three hosts, with a rate of 3Gbps
○ h1: 192.2.2.1 (vlan2 nic@DTN1)
○ h2: 192.2.2.2 (vlan2 nic@DTN2)
○ h3: 192.2.2.4 (vlan2 nic@DTN4)

• Slice 2 includes two hosts, with a rate of 5Gbps
○ h1: 192.3.3.3 (vlan3 nic@DTN3)
○ h2: 192.3.3.4 (vlan3 nic@DTN4)

• Slice 3 includes three hosts, with a rate of 10Gbps
○ h1: 192.4.4.1 (vlan4 nic@DTN1)
○ h2: 192.4.4.3 (vlan4 nic@DTN3)
○ h3: 192.4.4.4 (vlan4 nic@DTN4)

Here is an AmoebaNet command to create Slice 1 with a bandwidth
of 3Gpbs:

{
"cmd":"create_virtual_netslice",
"hosts": [192.2.2.1, 192.2.2.2, 192.2.2.4],
“startTime”: “immediate”,
“endTime”: “2017-09-07 13:00”,
"rate":"3000″, // in Mbps
"vlanId":"2″

}
Once the virtual network slices were created, we used the iperf tool

to run data transfer between any pair of hosts in the virtual network
slices created above. The results are shown in Table 2.

The experiment shows that (1) the hosts within a virtual network
slices can communicate with each other, while the hosts at different
slices cannot communicate. (2) each virtual network slice can be cre-
ated with a specified bandwidth. Therefore, the experiment verifies that
AmoebaNet supports the feature of network slicing. This feature allows
multiple science applications to share a common network infra-
structure, with the advantages of performance isolation, security iso-
lation, and easy management.

6.3. End-to-end network path provisioning cross domains

As illustrated in Fig. 14, we set up two logically independent sites –
A and B. Site A is comprised of three 40GE DTNs – DTN1, DTN2, and
DTN3, and a Pica8 P5101 SDN switch, with Port 4/1 configured as
gateway connecting to the WAN. Site B consists of a 40GE DTN (DTN4),
and a 1GE DTN (DTN5), and a Pica8 P3930 SDN switch, with Port 49
configured as gateway connecting to the WAN. For both sites, each DTN
is configured with one or multiple VLAN virtual interfaces. AmoebaNet
runs at each site.

Site A and B are connected through an OSCARS layer-2 loopback
path, which can be dynamically set up and tear down using the ESnet
OSCARS circuit service.

In this experiment, we used iperf to run data transfer from site A to
B. The data transfer includes three jobs, which last for 20min.

• Data transfer job 1, which sent from 192.2.2.1 (vlan2 nic@DTN1) to
192.2.2.4 (vlan2 nic@DTN4). The data transfer starts at 1st min,
and ends at 20th min, wherein the maximum bandwidth is capped at
300Mbps.

• Data transfer job 2, which is sent from 192.3.3.2 (vlan3 nic@DTN2)
to 192.3.3.4 (vlan3 @DTN4). The data transfer starts at 6th min and
ends at 15th min, wherein the maximum bandwidth is capped at
200Mbps.

• Data transfer job 3, which is sent from 192.4.4.3 (vlan4 nic@DTN3)
to 192.4.4.5 (vlan4 nic@DTN5). The data transfer starts at 11th min
and ends at 15th min, wherein the maximum bandwidth is capped at
500Mbps.

An end-to-end network path is established for each data transfer job
(Table 3). In this experiment, each end-to-end network path runs across
three domains – Site A, ESnet, and Site B. Therefore, each end-to-end
network path consists of a LAN segment @site A, a WAN segment @
ESnet, and a LAN segment @site B. We used the Spoke-hub distribution
model to set up these paths. A single layer-2 point-to-point circuit with
an aggregated bandwidth of 1Gbps is established between site A and B.
AmoebaNet is responsible for setting up the local LAN path segments
between DTNs and gateway at site A and B, respectively. All cross-site
traffic is multiplexed/de-multiplexed to/from a single point-to-point
layer 2 circuit. We developed a simple application to dynamically
program the LANs (i.e. site A & B) and WAN by using AmoebaNet APIs
and ESnet NSI service, respectively. Here is how it operates:

1) Call ESnet OSCARS service to establish a loopback WAN path to
connect site A and B. The loopback path has a bandwidth of 1Gbps
and a RTT of ∼92ms, with vlan 3200 at one end and vlan 3201 at
the other end. List 1 illustrates an ESnet NSI command for setting up
the loopback WAN path.

2) Send AMQP JSON-RPC commands to AmoebaNet at site A and B,
respectively, to set up LAN segments for the paths. Here is the se-
quence of AmoebaNet commands that are needed to set up a LAN
segment:
a. lock();
b. query_host_to_gateway();
c. create_path();
d. unlock();

For example, here is the create_path() command for setting up the
LAN segment (i.e., the last mile) for data transfer job 1 at site A.

{
"cmd":"create_path",
"hosts":

[{
“startTime”: “immediate”,
“endTime”: “2017-09-07 13:00”,
"srcIp":"192.2.2.1″,
"rate":"500″, // in Mbps
"dstIp":"192.2.2.4″,
"trafficType":"priority traffic",
"vlanId":"2″,
“routeType”: “host-to-gateway”

}]
}

3) Send PING packets to verify that end-to-end paths are successfully
established.

4) Launch data transfer jobs.

The experiment results are illustrated in Fig. 15. It can be seen in
results that, from 1 to 20min, data transfer job 1 has a throughput of
∼300Mpbs; from time 6–15min, data transfer job 2 has a throughput

Table 2
Data transfer results.

Rates (Gbps) Slice1 Slice 2 Slice 3

h1 h2 h3 h1 h2 h1 h2 h3

Slice1 h1 n/a 2.94 2.95 0 0 0 0 0
h2 2.94 n/a 2.94 0 0 0 0 0
h3 2.94 2.96 n/a 0 0 0 0 0

Slice2 h1 0 0 0 n/a 4.97 0 0 0
h2 0 0 0 4.95 n/a 0 0 0

Slice3 h1 0 0 0 0 0 0 9.98 9.96
h2 0 0 0 0 0 9.97 n/a 9.98
h3 0 0 0 0 0 9.98 9.97 n/a
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of ∼200Mbps; and from 7 to 15min, data transfer job 3 has a
throughput of ∼500Mbps.

This experiment clearly demonstrates that, in addition to the pro-
grammability and fine-grain control already stated in the “End-to-end
network path provisioning within a domain” test, AmoebaNet can ad-
dress the last mile issue by acting as a campus network or local area
network controller in conjunction with WAN connection services, such
as ESnet OSCARS, to provision end-to-end network paths with guar-
anteed QoS across domains. In addition, AmoebaNet can multiplex/
demultiplex multiple traffic flows to/from a single point-to-point layer
2 WAN circuit, with end-to-end QoS guaranteed, thereby addressing the
scalability problem.

7. Conclusions

In the US, existing network paradigm that support big data science
consists of three major components: terabit networks that provide high
network bandwidths, Data Transfer Nodes (DTNs) and Science DMZ
architecture that bypasses the performance hotspots in typical campus
networks, and on-demand secure circuits/paths reservation systems,
such as ESnet OSCARS and Internet2 AL2S, which provides automated,
guaranteed bandwidth service in WAN. This network paradigm has
proven to be very successful. However, to reach its full potentials, we
claim that existing network paradigm for big data science must address
three major problems: the last mile problem, the scalability problem,
and the programmability problem.

We proposed the AmoebaNet solution to address these problems.
AmoebaNet applies Software Defined Networking (SDN) technology to
provide “QoS-guaranteed” network service in campus or local area
networks. An initial version of AmoebaNet has been tested in Fermilab
SDN testbed. The evaluation results show that AmoebaNet comple-
ments existing network paradigm for big data science: it allows appli-
cations to program networks at run-time to suit their needs; and, in
conjunction with WAN circuits/paths reservation system such as ESnet
OSCARS and Internet2 AL2S, it solves the last mile problem and the
scalability problem.

Ideally, AmoebaNet should be compared with alternative solutions
in terms of performance and capabilities. However, it is difficult for us
to find alternative solutions to compare with AmoebaNet, due to several
reasons. First, there are few alternative solutions that provide similar
features as AmoebaNet in support of big data science. Second, although
there many SDN research projects and efforts, few projects have de-
veloped software packages or systems that can be physically deployed.
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