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ABSTRACT

In this thesis a theory of the Circular IntenSity
Differential Scattering (CIDS) of chiral molecules as mo-
delled by a helix o%iented with respect to the direction
of incidence of light is presented. It is shown that a
necessary condition for the existence of CIDS is the pre-
sence of an asymmetric polarizability in the scatterer.
The polarizability of the scatterer is assumed generally
complex, so that both refractive and absorptive phenomena
are taken into account.

The theory is derived within the frame of the first-
Born approximation to the internal field. Under these con-
ditions, fhe preferential scattering observed is character-
ized as FORM-CIDS, and shown to be valid for all ranges of
wavelength of the incident radiation.

The symmetry laws governing the spatial distribution
of the scattering intensities are derived for the case of
incidence of light perpendicular to the hélix axis and for
a helix possessing a uniaxial tangential polarizability.

Calculations are presented for the case of a triaxial
polarizability and analytical equations of the CIDS derived
for a helix having a biaxial polarizability. In both cases
anomalous behavior is found and their symmetry rules dis-
cussed.

It is also presented here a first correction to the



internal field by adding to the incident field the dipole
radiation fields generated somewhere else in the scatter-
er. The main result is the presence of non-vanishing for-
ward CIDS. This is not a form-CIDS effect.

Finally, the theory is generalized for the case of a
sample of randomly oriented chiral scatterers of arbitra-
ry geometry.

The result of this study points out the promising
aspects of CIDS as a powerful technique to probe chiral

regions in macromolecular aggregates.
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INTRODUCT ION

The last thirty years have witnessed the fast growth
of the quantitative aspects of Biology. The great success
of Biochemistry ‘in providing better and more efficient
separation methods, rapidly started to open the gigantic
panorama of the molecular anatomy and physiology of the
simplest living organisms{~

At dne side of the spectrum, biologically oriented
researchers have concentrated on the study and character-
ization of the function of the macromolecular components
of the cell. At the other side, there have been workers
trying to elucidate the structural properties of these
macromolecules, by means of more physically oriented ex-
perimental and theoretical methods. While the rationale
of the functional approach is self-evident, the philosophy
behind the structural approach is not as clear.

Certainly, nobody denies that in a body of study such
as Biology, in which the emergent forms are the result of
natural selection, structure is a category reducible to
function. What is not as clear is what is behind the struc-
ture i.e. the dynamical play of forces and interactions
that maintain and expresé themselves in that structure. Is
it possible to reduce in turn the biological function to

this inner dynamics of the structure? Hopefuily yes. And
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this is probably the Platonic archetype limit of the struc-
tural approach. |

Experimentally, the use of a well characterized phy-
sical property can give information on the structural dy-
namics of the molecﬁle which in turn, will help to build
a dynamical structure of the system. Theoretically, one
must resort to idealized models that approach more or less
reality. It might be useful to remember at this point
Plato again. Somewhere he has said that ''some problems on-
ly can be treated by building myths around them..." His
position is not far from Einstein's precept that "theory
cannot be built on experimental results., It must be in-

vented".

The work presented here is an attempt to establish
theoretical grounds of the preferential scattering of
light of circular polarization‘by optically active mole-
cules, and its possible utilization to obtain structural
information of these molecules. |

In Chapter 1, a review of the main experimental evi-
dence for the existence of CIDS in macromolecular ag-
gregates and liquid crystals is done. This is followed
by a general background in classical electrodynamics and
the main resultskof the classical thedry of scattering is
presentedv

Chapter 2 shows the derivation of ‘the integral for-
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malism of scattering theory. We then apply the results

to a unidimensional oriented helix with a polarizability
tangential at each point on the helix. The equations for
the fields are solved along the three orthogonal directions
of incidence of light. The corresponding analytical ex-
pression for the differential scattered intensity (IL—IR)
of right and left circularly polarized incident light is
derived. Also IL+IR and the CIDS ratio:(IL~IR)/(IL+IR) is
obtained. At the end of the chapter the Stokes' parameters
for the scattered light are derived.

In Chapter 3 we present numerical calculations based
on the equations derived in Chapter 2. The general fea-
tures of the scattering pattern are presented in polar
plots of intensity vs. angle and we derive relations to
determine how the parametefs of the scatterer affect these
patterns.

In Chapter 4 the case of an absorptive helical scat-
terer is considered. The equivalent to Friedel's law for
CIDS is established. The symmetry rules of the scattered
intensities in space are then derived. Numerical calcula-
tions are shown.

In Chapter 5, the first-Born approximation in the in-
ternal field is replaced by a dipole-dipole coupling of
the radiating dipoles on the scatterer. We show that in
this case a diffraction effect is responsible for non-

zero CIDS in the forward direction. We present numerical
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calculations of the equations obtained.

Finally, in Chapter 6, we present the spatial ave-
raging of the classical expressions for differential and
total scattering of circularly and plane polarizéd light

respectively.
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Chapter 1
GENERAL REVIEW AND BACKGROUND

I. Differential Scattering: Review on Experimental
Observations and Theoretical Treatments.
1) Experimental and theorétical results in biological
systems. |
A great amount of work on the optical properties of
biological macromolecules has appeared in the literature
in the last two decades. These studies have been directed
towards gaining a better understanding of the structural
and electronic properties of these systems, in the hope
that this, in turn, will clarify their biological functions.
This has been, in part, the result of two major steps
in the area: first, the development of better and more
accurate measuring instruments, and second, the appearance
during this period of very general and useful theories on
the optical properties of macromolecules, in particular on
circular dichroism (CD) and optical rotatory dispersion
(ORD).1 These methods were originally limited to homogeneous
solutions of macromolecules. Within the last decade, they
have also been applied to increasingly complex systems such
as particulate aggregates of biolggical macromolecules,
suspensions of whole or fractured membranes, nucleohistones
complexes, etc. A remarkable common feature of all these

systems was the presence of notorious anomalies in their CD



and ORD spectra.

Urry and co»workers2 were the first peopiebattempting
an explanation of the modifications they observed in the
CD of suspensions of membranes. They also recognized that
the difference between the CD of aggregates of poly-glutam-
ate versus the dispersed solution arose from Duysen's flat-
tening effect and preferential scattering of light of oppo-
site circular polarization, and not from a dependence of
the elecfronic states upon aggregation. These authors
presented a phenomenological analysis in an attempt to
recuperate the original CD signal. Their analysis has been
questiqned by other authors.3

Ottaway and Wetlaufer4 have applied the Rayleigh
Scattering theory modified to account for the.optical acti-
vity of the scattering particle. According to their cal-
culations, very small corrections of the measured CD would
be found. It is clear that this theory, due to its restric-
tive wavelength character (Rayleigh), cannot be applied to
particles of the brder or larger than the waveléngth of
light. Holzwarth3 has classified the three major mechanisms
by which scattering of the sample could affect the intrinsic
CD and ORD signal:

- a) Scattering can decrease the transmission of the signal.
b) Depolarization of the incident light occurs when it
passes through the scattering sample.

¢) Differential scattering of right and left circularly




polarized light might be present and can be inter-
preted as differential absorption.

Schneider et ale5 raised the question of whether the
CD spectral distorions characteristic of membrane systems
reflect a unique and common structure in these systems or
are the result of the combination of scattering and Duysen's
flattening effects. With this purpose these authors carried
out three types of experiments: First the CD spectra of
red blood cell ghosts were compared to the spectra of soni-
cated ghosts. They found that sonication produced a charac-
teristic general increase in the ellipticity as compared to
the intact ghosts, in particular of the band at 208 nm.
Second, CD of hemoglobin in solution was compared with that
of hemoglobin concentrated into red blood cells at different
degrees of hemolysis. It was found that hemolysis restores
the spectra of the hemoglobin in solution as compared to
the flattened spectra observed for the hemoglobin inside
the cells. Third, droplets (approximately 10 nm in diameter)
of a solution of bovine serum albumin, when suspended in
glycerol, showed large amounts’ofvscattering. The ellip-
ticities measured presented a.similar type of distortion
as the one observed in the ghost of red blood cells. These
‘authors attributed these distortions to scattering and
Duysen's flattening "artifacts' and discussed the possibility
of a differential scattering contribution.

In this context, it should be noted that total scattering

and Duysen's flattening have opposite effects in the CD



spectra. We can write the contribution of the scattering

to the ellipticities as:

(IL-S) - (IR-S)
(IL—S) + (IR—S)

cD =

where IL and IR are the transmitted.intensiiies of the
corresponding incident circular polarizations and S is-the
amount scattered by the sample (therefore the minus sign).
Clearly, the scattefing contribution cancels in the numerator
but decreases the denominator, yielding an overall higher
ellipticity. This, as mentioned above, is contrary to the
spectral distortions Qbserved in membranes,6 Conversely,
Duysen's flattening effects tend to decrease the ellipti-
cities. Although possible total scattering effects cannot
be ruled out,it seems that Duysen's flattening and differ-
ential scattering are the dominant contributions to the dis-
tortions observed. Similar conciusions were drawn by Glaser
and Singer7 by applying Urry's phenomenological equations to
their CD data of red blood cell membranes.

Maestre et al,,8 measuring the CD of bacteriophéges
T,, T

and T found that the CD curves presented long

2’ 4 6’
tails extending towards the longer wavelengths of the spec-
trum up to the visible. These authors attributed the effect
correctly to differential scattering. Dorman et al.,g’10
hsing a set of variable acceptance detectors and an integrat-

ing capturing device (fluorscat cell) that captures all but




the back-scattered light, were able to eliminate these
tails effectively,

11,12

Many CD studies of nucleohistones and DNA-poly-

15,14 have been reported. In all cases,

lysine complexes
an important differential scattering contribution is present
showing long tails toward the red and giving rise to enor-
mous ellipticities (of the order of hundreds) within the

15 Another sample of

absorption band of the complexes.
biological material that exhibits similar manifestations
are intact chloroplasts. They show remarkable dependence
of the CD signal on the angular orientation of the sample

with respect to the incident beam.16

Holzwarth et 31.17

have pointed out at the similarities
Between the CD spectra of T-even bacteriophages and those
of the liquid crystals (large ellipticities, positive or
negative tails towards longer wavelengths). These authors
tried to account for the scattering contributions to the
CD by the use of Mie-type calculations. The model, however,
proved unable to reproduce the experimental CD curves.

In an effort to subtract the scattering artifacts
plaguing the ORD and CD measurements of molecular aggregates,

18 has constructed the scattering amplitude matrix19

Schneider
for incident right and left circularly polarized light, to
describe the intrinsic optical activity and all the scattef~
ing properties of the suspension. The author relates the

observed optical activity of the suspension to the elements



of the matrix, through the bulk refractive index of the
suspension. In order to separate the optical activity from
the scattering effects, the author proposes a general (non-
specified) functional dependence between the bulk optical
properties of the suspension represented by the matrix
elements and the true optical activity of the particles
represented by their index of refraction. Unfortunately,
it seems that all the information about the scattering
effects of the sample is buried in this "functional depen-
dence'" whose determination is the central problem in under-
standing these scattering phenomena. However, even pheno-
menologically the analysis appears incorrect,vsince the for-
malism deals only with the forward scattering matrix, fail-
ing to recognize that non-forward total and differential
scattering would also affect the differential extinction
measured at the detector in the forward direction,

Other attempts to fit the classical general scattering
Mie theory by means of the introduction of ad-hoc terms to
account for the optical activity of the particles and the
anomalies in the CD spectra of several particulate suspen-
sions, have appeared in the literature, with quite varied

20-23 " THe most serious attempt in this

degree of succéss.
sense was carried out by C. F. Bohren,z4 who solved the
scattering of an optically active isotropic sphere within
the frame of the Mie-theory, using phenomenological coeffi-

cients to describe its differential reactions to right and




left circularly polarized light. He found in calculations
for polyglutamic acid spheres that even for ratios of radius
of the sphere to wavelength of 1/8 the differential extinc-
tion (including both absorption and scattering) peaked in
the forward direction, although in this 1limit the scattering
was negligible compared to the absorptive contribution.

The recent development of the Fluorescence Detected

25

Circular Dichroism technique (FDCD) has allowed Reich et

al.z6

to measure the 4m-radians integrated differential
scattering of DNA condensates in ethanolic solutions. These
authors found very little forward differential scattering.
Most scattering appeared at right angles to the incident
beam and moderate differential scattering occurred in the
backward direction. Furthermore, CD studies of films of
DNA twisted by shearing the fibers between two quartz plat6527
yielded enormous ellipticities whose sign was reversed by
reversing the sense of the twist. The back scattering inten-
sities measured in these studies indicated that the polariza-
tion of the reflected light was the same as that of the incom-
ing beam. As will be seen later, this is a property of choles-
teric and twisted nematic liquid crystals. To explain the
large CD spectra observed in nucleohistone complexes, ethanolic
precipitates of DNA, and polylysine-DNA aggregates, Maestre et
27

al. advanced the foliowing conclusions: a) the anomalous CD

spectra observed were the result of liquid crystal behavior with



both differential scattering and resonance transmission
near the absorbance band; b) the long tails observed, being
a scattering phenomenon, reflect the size and shape of the
particle; c¢) the sign of the differential scattering contri-
butions singled out by the FDCD technique must reflect the

sense of chirality of the studied structure.

2) Liquid crystals.
Cholesteric mesophases are a special type of nematic
liquid crystals in which the constituent molecules are

optically active,28-30

Under appropriate conditions,

the structure possesses a screw axis normal to the prefer-
ential molecular orientations. The whole mesophase 1looks
like a group of stacked planes each composed of well aligned
parallel moleéules with a definite twist angle between a
given plane and the next.

When the wavelength of light corresponds to the pitch
of the cholesteric helix, there are two opposite cases:
First, éircularly polarized light incident along the helix
axis and having the same handedness as that of the helix is
almost completely reflected. On the contfary, if the cir-
cular polarization of the light is opposite to the handedness
of the helix, the light is almost completely transmitted.
Furthermore, the polarization of the reflected light is the
same as that of the incident radiation. Along its optical
axes the system possesses enormous rotatory power as well |

31

as very large circular dichroism. Mauguin has treated




this problem theoretically seeking to explain the large
ORD signal measured in the twisted nematic phase, when
light is incident along the optical axis. An equivalent
treatment can be done by using Jones calculus,so in which
each plane of the cholesteric phase is treated as a thin
birefringent medium with the principal axes of the succes-
sive planes twisted by a fixed angle. By calculating the
phase retardation matrix which describes the modification
of the incident electric vector in passing through each
plane, it is possible to obtain for N successive planes,

the retarder-rotator matrix J such that:

where D and D' are the incident and emergent displacement
vectors of the light. |

Similar treatments have been presented by Oseen32
and de Vrie533 by solving the wave equation for propagation
along the optical axis of a medium described by a continuous
spiral dielectric tensor. In all cases only forward inten-
sities (transmission) and reflection bands were derived.
By allowing the birefringent planes (in the Mauguin layer
theory) or the dielectric tensor (Oseen, de Vries) to be
dichroic as well as birefringent, and assuming that the
birefringent and dichroic axes coincide, the observed CD
of these cholesterics have been reprodﬁced very successfully.

Analytical solutions for the scattering of polarized light

as a function of wavelength and directions in space have not
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been presented. The observed CD signals can be interpreted
as manifestations of differential scattering reflecting the
long range organization of the crystal and not as intrinsic
dichroism, since the disordered mesophase presents Cﬁ signals
2 or 3 orders of magnitude smaller. Numerical calculations
along the lines described above have been carried out for
light incident at oblique angles with respect to the optical
axis and for’wavelengths close to the pitch of the helix, by

34

Berreman and Scheffer. Only transmission and reflection

bands have been studied. No analytical solutions for the
amplitudes of the scattered fields have yet been found.SO
Approximate expressions for the intensities of polarized
diffraction maxima observed when plane polarized light is
incident pérpendicular to the optical axis have been derived
by the Raman-Nath theory of the diffraction of light by

ultrasonic anes.SS

3) Theoretical treatments.

Some very general treatments of scattering of circularly
polarized light have appeared in the literature.36 Atkins
and Bar?on37 have given general expressions for the differ-
ential scattering of light both for Rayleigh and Raman
processes, from a quantum mechanical point of view. These
authors were able to obtain explicit expressions by construct-
ing the scattering matrix and relating it to molecular para—‘

meters. In their treatment the wavelength of light was large
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compared to the dimensions of the molecules and no absorp-
tive phenomena were taken into account. Later, Barron and

Buckingham38

presented both a classical and quantum mechan-
ical analysis for the elastic and inelastic differential
scattering of circularly polarized light. Harris and

McClain39’4O

have presented a theory for the polarization

of light scattered by polymers emphasizing its applicability
for wavelengths shorter than the polymer dimensions. These
authors construct the Perrin matrix for the scattering of
lighf according to Stokes' formalism41 and relate this
phenomenological treatment to molecular parameters. The
wavelength is assumed to be large compared to the size of
the monomers, but not necessarily large relative to the

polymer. The treatment is general; it does not explicitly

consider any particular geometry.

II. Basic Electrodynamic Relations.

1) The wave equation.

The behavior of the electromagnetic fields and their
interaction with charged particles is the subject of study
of electrodynamics. Between the years of 1860-1870, J. C.
Maxwell formulated his unified theory of all electromagnetic
phenomena that culminated in the fundamental relations of
classical electrodynamics. These are called the Maxwell

equations and their microscopic formulations have the form:
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Vxe + % 5T = 0 (la)
xb - L -2% = igi j(x,t) (1b)
veb = 0 (1c)
Vee = 4n E(x,t) | (1d)

where £ and j are the microscopic charge and current den-
sities, and include all charges free and bound; e and ?
are the microscopic electric and magnetic fields. To -
obtain the corresponding macroscopic relations, a space
averaging on all charges at a given instant of time must

be carried out. In this process the averaged charge density

can be shown42 to take the form:

ECGE) = Epree * Epound (X t) - VeP(x,1) 4

32

eas(x,t) + ... (2) -
o 9Xo0%g

where Efree and gbound are the averaged densities of free

and bound charges, respectively, P is macroscopic polariza-

tion (i.e., the averaged dipole moment of all bound charges)

and 9, the corresponding macroécopic quadrupole density.

B
Given that <b> = B and <e¢> = E, then substituting Equa-

tion (2) into expression (1d) and averaging:
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2

. . ) |
hound ~ Pt L mxans % trot)

veE =v4'ﬂ'(€f.ree + T BXG‘BXB aB

from which a new associated displacement vector can be

defined as:

=) - - O
D, = ) eug Eg = By + 4mP - 4m 1 5y 0.8 (3)
B i B B ?
R Vs
constitutive macroscopically macroscopically
linear relation  averaged electric averaged electric

dipole : quadrupole

The corresponding averaging process for the current density

yields the macroscopic magnetic field

& { = -
H, é Mg BB‘ B, - 4n(M  + ...) (4)
constitutive macroscopically
linear relation averaged magnetic
dipole

where €ap is the electric permitivity and U&B the inverse

magnetic permeability.
The last two equations are the constitutive relations
that express the relationship between the principal (E,B)

and the derived fields (D,H) in material media. § is usually

called the magnetic displacement and H the magnetic field.

We can now write the macroscopic Maxwell equations for

material media equivalent to expression (1):
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e s+ Lot o g (5a)
~ ¢ §§

VIH - % ;% N %; Jeree (5b)

VeB = 0 (5¢)

VeD = dm Eprce (5d)

where all quantities involved are macroscopic averages.

It can be shown that for electro-neutral molecules the con-
tribution of the bound charge density of expression (2)
vanishes and therefore only free charges and currents appear
explicitly in the macrostopic equations. The bound charges
and currents appear instead through the highér moments of
the charge and current distributions (E, M, 9).

Notice that even for zero values of both currents and
charge densities, Equations (5) possess nontrivial solutions.
This is in fact the way Maxwell theory accounts for the
existence of electromagnetic radiation in the absence of
chargés in space,43 It must be clear,on the other hand,
that § and § are the fundamental fields, whereas their
associated fields D and H are introduced to take into account
the average contfibution of the>bound charges.

It is convenient to introduce potentials in terms of
which the electric and magnetic fields can be obtained, so
that Maxwell equations are replaced by a smaller number of

second order differential equations.
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Since Ve¢B = 0, we can define B in terms of a vector

potential A:

B = VXA (6)
Then from Equation (5a), VX(E *z 5% = 0, The quantity

in parenthesis, having a vanishing curl, can be written

as the gradient of a scalar function (potential), so that:

1 24
§=“E'§'€‘V@ | (7)

If the medium is homogeneous €8 and U&B in (3) and (4) are

scalars and Equations (5b) and (5d) become:

eVeE = dmpp . | (8a)

~

)

1 n _ E - (8b)

gfree

with U = (u')—l. Taking the divergency of (7) and using

Equation (8a):

2 am

2 op = 4T
vee 5? A & Pfree ° (9)

O]

also, substituting (6) into (8b):

Q
(3]

. HE 9 el 4
V(v é t s ) =V A + M- J

a i
)
(-3

~free

=g

(10)
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The definitions of the field in terms of the potentials
do not determine these fields uniquely, since the same fields
would be obtained if A >~ A' = A + AA, and & » &' = O - % %% ,
where A is some arbitrary scalar. This lack of uniqueness
of the potentials allows for the poséibility to choose them
in such a way as to satisfy a supplementary condition (Gauge),

according to the nature of the problem being solved. In this

case we impoée the often called Lorentz condition:
° }ig_ ,..g__ =
v é T 5T ¢ 0
which combine with (9) and (10) to give the second order dif-

ferential equations that are completely equivalent to the Max-

well equations. They are frequently called the wave equations:

2
v2o o euafe  MPrree g2 e P2 anm (11)
27 atz € » ~ 27 Btz ¢ =free

For constant fields these equations give the’usual static
solutions (Poisson for the scalar potential and a correspond-
ing one for the vector potential). For problems involving the
emission of electromagnetic radiation by time dependent charge
and current densities, we are interested in the solutions to
these equations as fully written above.

The wave-equations (11) are very important for the:
general theory of scattering. The differential formulation,
despite its inherent difficulty in interpretation, has the
advantage of allowing for the search of solutions in regions
of the space, to which supplementary initial and boundary
conditions (at the frontier between regions) aré added to

obtain unique solutions. Let us suppose that a given body
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possessing both bound and free charges is occupying a finite
Tregion of space. An incident electromagnetic radiation im-
pinges upon the body and it is required to obtain the scat-
tered field far away from the region occupied by the scat-
terer. Away from this region p = 0, J = 0, and ue = 1

so that first, the corresponding homogeneous wave equations
in vacuo must be solved. Next, the solution within the
region of the scatterer must be obtained, for which we need
to solve Equations (11) as fully written. Having both solu-
tions, it is then possible to apply the adequate conditions
at the boundary between the two regions and an initial con-
dition, such as the form of the incident electromagnetic
field at time t = 0, In this way, the scattering problem
can, in principle, be solved from the differential equations.
Notice that if the scatterer is a nonconducting dielectric,
Peree = Jgree = 0 when seeking the inner solution.,

2) Retarded potentials - multipole expansion of the

scattering fields.

A completely formal solution to the wave equations (11)
can be found by linearly combining the solution to the homo-
geneous equatich and a particular solution of the inhomogen-
cous one. It is a well known result of electrodynamics
that the ?articular solution to the inhomogeneous equations
is given by the so-called '"retarded potentials' and that

the general solutions of the inhomogeneous equations are:
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. R
p(fst - Uz
o(r',t') = | dv + ¢,
' ueR (12)
e J(r,t" - c )
A(rt,t') = B2 [ == av + A,
R -

An important point should be made clear here. In
the way Equations (12) have been obtained from (5) through
(11), it is apparent that p and J appearing in these equations
are the free charge and current densities. These are clearly
zero for nonconducting material. However, it is possible to
write Equations (5) for nonconducting material in terms of the
fundamental fields E and B so that they maintain their general

form but Prree and J being replaced by Phound and g

free bound”

The equivalent wave equation (11), as well as the correspond-
ing general solutions (12) can then be obtained explicitly

in terms of Phound and J

bound valid for nonconducting dielec-

tric media. In this way, Equations (12) represent the
general formal solutions for the scattered fields in conduc-
tion or dielectric media. |

In Equation (12),'{' is the observation point, r is
the region where the scattered is bounded and R = Iz' -
(See Fig., 1).

60 and ¢O.are the soiutions to the homogeneous wave
cquations but more generally they are chosen so that the

conditions of the particular problem are satisfied. These

conditions are commonly those imposed for far distances.
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For example, suppose that a given radiation impinges upon
the systems of charges from outside. Here the field that
results from the intefaction can be different from the
incident exterior field only in the radiation originated by
the system itself. At large distances this radiation must
have the form of waves that propagate away from the system,
which corresponds to the retarded potential part of Equation (12),
whereas ¢ and 60 in this equation must be recognized as the
external fields.

We can now make the assumption that the charge and
current densities vary harmonically with time, so that

2mvit
e .

p(t)

J(t) = JeZﬂvlt

Since in most physical problems p and J are restricted
to finite regions of space whose dimensions are small com-

1 (with k = 2mv/c), this suggests a development

pared to k
of the retarded potential formula accdrding to powers of k.

In the expressions:

e -ikR
o(r',t') = g2Mivt J Qg—§- dv
in the far field or radiation zone, R = 7' - ner with n =

1

T
T?%T (see Fig. 1) so that:



Figure 1.
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‘The distance approximation involved in the radiation

zone is shown. 0 is an arbitrary origin of coor-
dinates within the molecule. 71 is the position of
the scattering element and r' is the location of the

observer. n is a unit vector along r'. If

l{'l >> Ifl, then clearly |[R| ~ |r'| - ner.
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. - ikgvr
¥ ‘ (r'-n-r)

Now we do a double Taylor expansion both for the exponential

and the denominator and collecting the terms with the same

44

power of k it can be shown that:

@(I",t') = ei(Z'ﬂ'\)t'—kT') {
~ 7

[pdv + ik(1-pv) feren dv
K% ro . 31,3 7 A1, 2

- L0 G neJerrdVen - 5 for®dv)
1

2
+ > fp‘r dV] + .e.}

But [pdV = 0 and the dipole and quadrupole moments are

defined as:
P = [prdV and 0 = JorrdVv .

Therefore, the potentials up to the second power in k are:

ei(ZﬂVt'—kT')

d(r',t') = . {ik(1-Z)n-P - & k’[n-gen
- P (Gneeen) 1} | (13)
Ji(2mvttkrt) Lo~
A(r',t) = - {ikP - ik(1-pv)nXM

1.2 i 42
gz K (rrine ol
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where M is the magnetic dipole moment and is defined as:

Mg (0 x D)
Expression (13) describes, therefore, the interaction of

the incident radiation with a system of charges and currents
through the induction by the external fields of a series

of moments of the distributions. An observerAplaced at r'

at time t' will therefore receive the radiation contributions
of the electric dipole (the most important), the magnetic
dipole, and the quadrupole induced in the scatterer by the
incident electromagnetic field.

It can be shown45

that the amplitudes of the different
oscillating moments -induced in the system can be written

(keeping only linear terms in the fields):

(0) _ (0) 1 > (0) 1 (0)
Py oye Bgit * Tk Cap Bgi” T 3 Ausy (VeEyi
(0) _ (0) ;
M Ggo Egi * - (14)
(0) _ ' (0)
eaB AYQB EYi + L.

where the subscripts "i'" indicate the amplitudes of the
incident fields. 1In Equations (14) tensor notation has
been used, meaning that the expressions with repeated sub-

indices must be summed over their three spatial components.
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Expressions (14) can be formally obtained by doing a time

dependent perturbation derivation of the induced moments

in a molecule perturbed by an external field;45

Classically,
however, Equation (11) is still valid and we can see that

o represents a symmetric polarizability. Gsa is the co-

o
efficient of the term which is proportional to the time
derivative of the magnetic field (i.e., proportional to the
bcurl of g) and therefore responsible for natural Opticai
activity. This term can be formally derived from the anti-
symmetric part of the polaiizability. AuBY is the hyper-
polarizability connected to the gradient of the electric
field. Each of these polarizabilities can be, in general,
complex and therefore they contain both the absorptive and
refractive properties of the molecular system.

Our derivation up to this point has been based in the

EW ag)

T3
us to obtain the wave equation and has the additional advan-

choice of the Lorentz Gauge: (V-A = 0; this allowed

tage df rendering completely relativistically invariant
equations. However, in dealing with radiation problems, we
are interested in obtaining s0lutions for the electric and
magnetic field that are transverse to the direction of pro-
pagation., The Lorentz Gauge gives transverse magnetic fields
but the electric vector has components parallel and perpen-
dicular to the E vector. To obtain completely transverse
fields that are uniquely determiﬁéd, wé can use the Coulomb

or radiation gauge: V<A = 0 and the additional condition
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® = 0, so that the Lorentz condition is still satisfied

and all our derivations are still valid. 1In this radiation

oA
gauge then: H =V x A and E = - %'5% . Keeping only the

dipole term in (13), we can write, for light scattered along

the y-axis:

E(r',t') = - %3%‘*% pe -1 (wt'-ky) (15)

with w = 27v. From (14):

- (0) aB (0)
B, = —— lao EBl Tk BBl * ? asy
(V4E, )O v ) xe Hlut-ky) (16)

where the primes have been dropped for simplicity.

ITT. Differential Séattering - Classical Formalism.

Suppose the light is incident along the z-axis; then
the signal recorded at the photomultiplier is proportional
to the time-averaged flux of energy given by the real part
of the complex Poynting vector:

R L

where the subscripts "S'" indicate the amplitudes of the
scattered fields, with B = uH as before. The components

of S associated with electric vectors EZ and Ex,can be written:
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- _C (0) p(0)* (0)* L (0)y _
5, = 1 T (Ezs Bxs * Ezs Bxs ) =
c (0) -(0)*
8y Ezs EZS)
o - ity G0 B 5070

S S S S

g

c (0) (0)*
8mu Exs Exs

If the incident radiation is right (plus sign) and left

(minus sign) circularly polarized,

BT - ey

with i, j, k a set of units vector along the x, y, and z

directions,'then the differential scattered intensities are

(with u = 1):
4 .(0)?
4 - w Ei * * _ *
S, 7 5, = PRIV Im{azy ®zx T Yzy Gzy * o Ggx -
e’ T 7
% * ; ;
Gzy Gxx * %x ny (17)

0

where the term proportional to (V, E_.) has been neglected.

B Tyl
Equation (17) shows that within the dipole approximation for
the scattered field (15), the differential scattering inten-
sity can be directly related to the symmetric and anti-sym-

metric parts of the polarizability of the molecular system.
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The possibility of nonvanishing differential scattering
within the dipole radiation field depends therefore on the
symmetry properties of the polarizability tensor of the
molecule and on the validity of neglecting the second term
in the right-hand side of (16). In the next chapter we
will treat with more detail the condition imposed on the
polarizability of a molecule, for the existence of finite

differential scattering intensities in the radiation field.
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Chapter 2

THEORY

I. Introduction.

In the previous chapter a review has been done of the
main experimental evidence for the presence of differential
light scattering phenomena in systems of biological origin,
as well as in the cholesteric and twisted nematic mesophases
of liquid crystals. Some of the theoretical attempts in
characterizing this phenomenon have also been discussed.

Clearly, between the macroscopic phenomenological approa-

1-3 4,5

ches and the completely general theoretical treatments
that have appeared in the literature, a link is necessary:
a theory that will make use of the molecular properties
involved in the differential scattering and will directly
correlate the propertiés of this scattering phenomenon with
the structure of the chiral molecules. The model must
allow for analytical solutions so that the physics of the
process is not buried in implicit expressions.

Chiral media interact differently with the light of
opposite circular polarization. The existence of different
refractive indices for right and left circularly polarized
light gives rise to the well known phenomena of circular

birefringence and circular dichroism. These are connected,

respectively, to differences in the real and imaginary parts
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of the refractive index for the two circular polarizations.
As shown in the previous chapter, classical electro-
dynamics describes light scattering as the result of the ra-
diation emitted by changes in the charge distribution of a
system, induced by an oscillating electromagnetic field.
In the dipole radiation approximation, these changes are
described by the polarizability of the medium, which contains
all the symmetry properties necessary to account for the
differential scattering of light. An appropriate measure
of this is the ratio of the difference of scattered inten-
sities between left and right circularly polaried light to

its sum

where IL and Ip are the scattered intensities for the two
polarizations of the incident light., Atkins and Barron4
have suggested that this ratio be called Circular Intensity
Differential Scattering (CIDS). The above definition is
valid for both elastic and inelastic scattering.

We have chosen an oriented helix as the simplest chiral
structure whose CIDS can be obtained analytically. This '
geometry has many advantages: (a) It can be described in a
mathematically simple way, (b) its chirality can easily be
reversed to study its effect on the CIDS, (c) it is a pre-

ferred form of packing adopted by biological superstructures
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and by cholesteric liquid Crystals.

In the first part of this chapter the derivation of an
integral equation of scattering will be accomplished as a
simple way of obtaining the scattering amplitude of an
arbitrarily shaped structure. In the second part the in-
tegral formalism will bé applied to obtain the CIDS of

helical structures,

I1I. The Integral Equation of Scattéring,
1) Derivation by the tensorial Green's function method.
As mentioned in Chapter 1, all scattering problems can
(in principle) be solved using the Maxwell equation, which
in the absence of free sources and assuming harmonic time

dependence (u = 1) are:

VxE iy (1)

» " iwe (1)
VxH 'TDE'—-~~

(2)

(i}

where ¢ is the dielectric constant of the medium and is

a continuous function with the possible exception of surface
discontinuities. It is assumed that all scattering centers
can bevenclosed within a finitebregion. The wave equations

for E and H are then:

UXUXE - e(r)kZE = ( k™ = 5 (3a)
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and

1 2., .

We will work with the equation for E and regard H as deter-

mined by (2). Next we impose the coulomb gauge:
Ve(eE) = 0
so that

VeE

L]

§
™|
B e}
<
™

which substituted in (3a) gives:

VeE + v[-é-(lﬂ- E-ve(r)] + e(g)kzg =0 4)

The solution of this equation, subject to appropriate
boundary conditions both at infinity and at the surface of
the scatterér, is very difficult for geometries other than
spherical, cylindrical, etc. The alternative is to trans-
form this equation into an integral form. Here we will
follow closely the method of Levine and Schwinger.6 The

first Green's Identity can be written as:

fs n-[B*Vxé~AxVxB]ds = jv Ae (VxVxB-Be (UxUxA))dV

(5)
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Next we introduce the Green's function, T (in general, a

tensor), satisfying the equatioﬁ:

VxuxI(r,7') kT (r,T") = 18(|z-r']) (6)
with 1 = i1 + jj + kk (i, j, k three orthogonal unit vectors
along x, y and z directions). By taking the scalar product
of (6) with an arbitrary vector j(r'), we seen that I'(r,r')e
j(r') is the field at (r) due to a vector point source lo- 4

cated at r'. Taking the divergency of (5) on both sides

we obtain:
k“ver = - ve(|r-r'|) = v'8(|r-1"])
after which (5) can be rewritten as:
(v2+k2)g = ‘(}--}212— vw)s(lr-r'|) : (7)

Introducing the scalar Green's function:

e iklT-1"]

G({pf') = 4TTII'“I"l

which satisfies

(v2+k%) G(r,r') = - s(lr-r']) (8)
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Then replacing this defintion for &§(|r-r'}|) in (7) and since

2 1

the operator (V +k2) commutes with (1- 5 YV') we obtain
o k

I(r,r') = I(r',1) = (1- 2 v9')G(r,r") (9a)
Note that:
r(r,r') = I'(r',r) = I(r',7) (9b)

where ZT is the transpose of T.

Now we apply Green's theorem (5) to E(r') and I'(r',r) * ¢,
where e is an arbitrary constant vector. Integrating over
all space:

B(x)we = Bypere * [y (le(r)-1]E(")

I(r',r)-e)dv’

where the integral over the surface at infinity provides

the incident field. The last expression can be also written:

1]

Binc * Iy kz[e(f')-1]§(§')-r(g',z)dv'

E(r) = &

and from (9b)

i1

B(r) = Bype(r) + [, K*Le(r')-110(r, 1) -B(r)av"

(10)
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We see, therefore, that the field at a position r is the |
sum of the incident fields plus a superposition of the
fields at each point r' by sources of strength kz(e(z)-l)-

E(r"). Notice that Equation (10) incorporates all boundary

conditions of the problem and, since no derivatives of
e(r) or E are involved, this expression is valid even in
the presence of discontinuties of e(r).

Substituting (9a) into (10):

E(r) = By () + K [ [e(r')-1]E(r)6(r,1")

- v [, V6, ) E(r)[e(r)-1davr (1)
Now we notice that:
-ikr sy
6(r,1r") & S @I, r v e

where k is the outgoing wave vector. The first integral

of (10) then becomes:

f, G(r.r )k [e(x")-11E(x )dV" = S
tiker' ,
[, e (e-1)E av

The second integral becomes:

¢ K ey T e D av
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so that the scattered field in the radiation or far field

zone7 is (exchanging r and r' for simplicity):

Kk iy, 42 L
B(r) = (- = o M (g [, o1EE
[e(x)-1]+E(r) av | (12)

where E(f') is the scattered field at position r' and the
integral extends over the whole volume occupied by the
scatterer. This is the result we were seeking. Equation
(12), as said before, is only valid in the far field approx-
imation (i.e., for r' >> r). It is not a solution of the
differential equation (4), since the electric field appears
at both sides of the expression. We must now transform it
into a solution of (4).

2) First Born approximation.

To transform (12) into a solution of the wave equation
(4), we identify the electric field appearing in the inte-
grand with the incident field. This is called thé first
Born approximation and is valid for small values of ¢ - 1.
Since (e-1)/4wm is equal to the polarizability tensor per

unit volume (o) the microscopic equivalent of Equation (12) is:
E(r') = (1-kk/k?) e KT (k%janrry.

f, P E R B Lar) o (13)

-~



40’
£y and 50 are the amplitude and wave-vector of the incident
radiation, respectively, and the integration is to be carried
out over the volume occupied by the scatterer. It should‘bé
noticéd that in the far field approximation, the scattered
field at any point has the character of a spherical wave.
Equation (13) is now a solution to (3) and gives the scat-
tered field at position r' as the superposition of all the
contributions of dipole radiation induced by the incideht
field and it automatically incorporates thfough r the
boundary conditions at the surface of the scatterer.

Figure 1 shows the spatial relations of these quantities,

for a scatterer with the shape of a helix.

111. Theory of Scattering of Radiation by a Helical Structure

A helix can be described parametrically as:
r=e;a cos® + e, a sin® + e, P6/2n (14)

where a is the radius and P the pitch of the helix; 91; €,

and €x

can be thought of as a thin wire in a helical shape; it is

are a set of unit orthogonal vectors. The helix

essentially a one dimensional helix. Our next task is to
write down the polarizability of the helix. At each point
along its length we define a Cartesian coordinate system
(see Figure 2) whose unit vectors are normal to the hélix
(g), tangent to it (}) and perpendicular (E) to these two

and given by:




Figure 1.
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A segment of the helix of radius a, showing the
relations between r, the vector position of the
scatterer; T’ the vector position of the point
of observation S and I" the distance from the

scatterer to the observation point. In the far

field approximation |[r'-r'| is approximately r'.



42

YS90T-/6L 18X




43

Figure 2. A segment of the helix showing the local orthogonal
coordinate system in terms of which the dielectric
tensor is defined. The parameter 6 is shown also.

See text for the definitions of t, p, and n.
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n o= e, cosH + ) sind

o~

dr
%'a% = =~1(3/M)Sin6 + SZ(a/M)Cose + gz(p/zﬂM)

et
il

p = nxt = el(P/ZﬁM)sine - ez(P/ZﬂM)cose.+ 33(a/M)

(15)
where M is a normalization constant given by:
M= (alepl/antyl/?

In the local cartesian system, therefore, the polarizability

can be written as:
o = O tt + o n o+
2 e np T 0

Evaluation of the integral (13) requires the differential

of volume of the helix; this can easily be shown to be:

dv

]

A, Md3

where Ah is the cross-sectional area of the helix. Equation

(13) for the helix can now be written as:

Y8

E(r') = BFefGXP[i(k“kU)er]aojde
T S ~o ~Ty S

B = A M ‘ (16)
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Fo= (1-kk/k%) (K?/r")Egexp(ike') (16)

where L is the number of turns of the helix and J describes
the state of polarization of the incident radiation. We
see that the amplitude of the scattered electric field is
proportional to the length of the helix. Notice also that
the product g-i of the polarizability and the polarization

vector of the incident radiation which appears in the inte-

grand will determine the amplitude of the scattered wavelet

at each point on the helix. In this context, the scattered

electric field appears as the Fourier transform of the

~

a+j product, i.e., a transformation from the real space to

the reciprocal space.

Let us consider first the integration of the exponential

function in Equation (16). As an example, we choose radiation

incident along 55 the exponential is:

exp[i(k-ky)er] = exp{i[kx a cosf + ky a sing +

Ak, Po/2m - (2n/X2) a sin6 ]} (17)
where

kx = §1°§; ky = EZ'E and Akz = (E"EO)°S3'
Introducing two new parameters defined as R? = ki + k;
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and tan ¢y = ky/kx (see Figure 2), we rewrite (17) as:
exp{i[Racos(w—e) + AkZPG/Zﬂ]kxp[—i(Zwa/k)sine] (18)

Next we use Bessel function expansions of the exponentials:
exp{iRacos (y-0)} =IF§&gn(Ra)exp[-in(w—e)]exp(inw/Z)
expl-i(2ra/x)sind] =nP§ﬂ)Jm(2na/A)exp(—ime) (19)

where J, is the cylindrical Bessel function of order n.

The integral of the exponential function in Equation (18)

is now:

: 2nk
I = EEJn(Ra)Jm(2wa/A)exp[in(w/z—w)]felp[i(n—m+
nm 0

AkzP/Zn)ejde (20)
For & >> 1, the only terms that contribute signficantly to
this integral are those for which the argument of the expo-
nential function vanishes, therefore m = (AkzP/Zﬂ) +n o=
v + n, and the last expression becomes:
I = 2mp ) J,(Ra) J , (2mra/A)exp[-in(yp-7/2)] (21)
5 ‘

Graff's-theorems provides a further simplification:
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(u)exp(ina) (22)

J, (w)exp(ivy) = ;ngn(v)Jv+n

n

in which the relationships among the variables are given

by the Gegenbauer relations8 (see Figures 3 and 4):

w = (u2+v2~2uv cosa)

u - vV cosa = ;osx

v sino = w sinx | (23)
So that (21) cén be written as:

21l : ' ‘
I = fexp[i(k-k0)°r] = 2m2J, (Qa)expli (4k P/2m):
5 X"K0)°r

(¢*+ﬂ/2)} . | | | (24)
where:
AQZP/ZW =V, V.= (0, £1, 2,
and | o = ("/’2 - V)

W= (x - m/2) (24a)

Connections between the physical variables can now be obtained

from relations (23):




Figure 3.
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Relations between the incident and scattered
vectors EO and E are shown for light incident
along €,y Q is the projection of the vector 3-50
onto the plant gi,‘§2 (x-y plane). w* is the
angle between Q and the eq-axis. The third com-
ponent of k-k, = Akz is also shown in the figure.

The experimentally observed angle of scattering,

Y, is shown.
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The relationship between Gegenbauer's triangle
and the corresponding variables appearing in the

theory are shown for light incident along the €,

direction.
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For incidence along €5
% ' ‘
cosy = (R/Qz) cosy
Q, = (21/2) (1+sin’e - 2sin¢ siny)?/? (25)
For incidence along €1
x®.
siny = (—R/Ql) siny
Q, = (2n/X) (1+sin’y - 2sing cosy)/? (26)

For incidence along € (the helix axis),

o= (27)

where R = (2n/A)sin¢ and relations (24a) have been used.
Figure 4 depicts congruently the variables of Equations (21)
and (22). It is seen that 0 < ¢ < 27 is the azimuthal angle
of scattering; 0 < ¢ < 180 is the polar angle of scattering.
These two are the experimentally measured parameters in

terms of which the whole scattering field can be subtended.
Angle w* is a parameter which can be related to the physic-
ally observed ¢ through Equations (25) and (26). Physically,

it is the angle between the projection of Ak on the e;-¢e,
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plane, i.e., Q and €1 (for incidence along €,, see Figure 3)
or e, (for incidence along e,, not depicted here). In |
the first case it becomes more negative as Yy becomes more

positive:

*
first and fourth quadrant 0°< y < -90°

®
second and third quadrant -90° < ¢ < 180°

For incidence along ey it becomes more positive as

increases positively:

. *
first and second quadrant -90° < y < 0°

% ,
third and fourth quadrant 0° <y < 90°

Equation (24) must now be analyzed carefully. It shows

that if 2 >> 1 (i.e., for large helices) there is a selection
rule that quantizes the allowed values that the e; component
of ak = k-k, can take in space:

~

Akz = 2nv/P, v = integer (28)

Since in general Akz = (2n/X) cos¢ (see Pigure 3), the
maximum magnitude of Akz is 2m/A, and therefore Equation
(28) only has solutions for Akz When P > ). This indicates
that for a long helix (& >> 1) whose pitch is at least the

wavelength of the incident radiation, a discrete scattering
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pattern will be found. For a short helix (& = 1), or for a
pitch smaller than the wavelength, a continuous scattering
pattern is obtained. The planes in space where nonvanishing
scattering intensities are to be found are called the scatter-
ing layer lines. Equations (24) and (28) imply that for a
given layer line (v), only Bessel functions of order Vv
contribute to the scattering intensity. This is the result
originally obtained by Cochran, Crick and Vandg for the
scattering of unpolarized radiation by a helix. It is
clearly seen that their solution corresponds to the case
of a helix possessing a spherically symmetric polarizability,
o = al.
For a general polarizability tensor, the trigonometric
factors appearing’in the integrand are written in exponential
form. These alter the selection rule in Equation (28) with
the result that, for a given layer line, v, Bessel functions
of order v, v £+ 1, v ¢+ 2, etc., may contribute to the scatter-
ing amplitude. These extra trigonometric factors affecting
the selection rules are the result of taking into account
the polarization of the incident light. It is this new re-
sult that determines the spatial symmetry properties of the
scattering of polarized light by a helical structure, and
determines the differential behavior for light of opposite
circular polarization. The latter, it can be seen now,
results from the fact that different kinds of incident polari-
zation are changed differently when the polarizability of

the scatterer is asvmmetric.
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For a thin wire in helix form, we can take the polari-
zability to have only a tangential component, so that g =
a.tt; this is an exact result in the limit of an infinitely
thin wire (a2 one-dimensional helix). Using Equation (15) h ;
and substituting into Equation (16), we can obtain the
scattered amplitudes. For light polarized albng e and

incident along € (use minus sign) or éz (use plus sign),

and for P > A, & >> 1,

*

E(r') = Bay (P/4mM°)AF- (ia[J ) (Qa)E] ;-

Jn—lCQa)°

e ey + ald Q) +J, ;(Qa)e

65 Je,+(P/MJ_(Qa)Ele,) (29)
with €5 = exp[in(yt1/2)]
and n = (Akzp/Zw)‘ (29b)

The equation for the scattered field amplitude on layer
line n for light incident along e polarized €, (for P >
and & >> 1) is:

§(§') = But(a/4M2)RE'{ia[Jnfz(Qa)€;+2-Jn_2(Qa)-

E];_Z:!?l + a[Jn+2(Qa)EI;+Z+2Jn(Qa) °
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EntdnQa)e, ,le, + (P/m)[J . (Qa)E 4+
Ipop(Qade] Jegd | (30)

and for incident along €55 polarized along e, (for P > A

1
and & >> 1) is:

E(r') = Ba,(a/4M°)LF-{-a[J,,,(Qa)E,,,-2J, (Qa)E,

* Jn Qe pley + aildy, (e,

&

- 3, ,Qa)er e, + (P/mild,, (Qa)E

- Jp.1(Qa)g g Jeg) (31)

where Ei has thé same meaning as in Equation (29a). For
light incident along‘gs, Vo= w*. Therefore, the equations '
for incidence €z polarization € are identical to Equation
(31), but with R and ¥ replacing Q and ¥ , respectively.
Again, for incidence €5 polarization €y the equations are
the same as (30), with R, wand.£+ instead of Q, w* apd £,
Clearly n = 0 corresponds to the zeroth layer line.

The maximum number of layer lines that can be observed
is obtained from the selection rule (29b). The total number
of layer lines (including both those above and below the :zero

layer line) 1is:
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(32)

where {P/A} means the integral part of P/A. Equation (16)

can be integrated in general without the restrictions of

P > Xxand & >> 1.

and for

In this general case, i.e., without the above restrictions

a tangential polarizability, the amplitudes for

the scattering field can be written as an infinite sum of

all order Bessel functions. For incidence along e, (plus

sign) or e (minus sign), and polarization along e

with

T

s = (ap[ (ak, /2 - n/P)e - 1Py

K =

~

n

o

=

o

.
:
~3

p - (1), 1y 2(n+1)-
— g.{folangimJn(Qa)sn’ (-1) le,

o (1)
+ [aP )} J (Qa)T S,

n=-o

2(n+1)
('1) ]gz
¢ (g ngngn(Qa)(nTn)'1<-1)“”Jg3}-

sin(PLok_/2)exp(in(p £n/2) (33)

(Akz/ZW - n/P)

r

BF

~

1
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For incidence €55 polarization e,:

i}

(a/2M®)K-{-a[ ] J_(Qa) (PT s'%)

n= -

E(r')

- (1) 1™ le; - [a § I (Qa):
=~
s{2) ()™, - [2 ENCOL
i *
s (.20 D) 96 ysin(prak /2)etn Y *1/2)

(34)

For incidence €1 polarization e,:

(/MK 1[-ia T I, (Qa)s{P (-1)™ e,

n=-e

E(r')

~ e

]

¢ [a § J_(Qa)(®1,8{%) + (r1 )7 h)

n=-o

-1, + [ nj;mJn(Qa)PTnsgl).

(—1)Q(n+1)]gS}Sin(PlAkZ/Z)ein(w*'ﬂ/z)
(35)

where ng) ={WP[(Akz/2ﬂ°n/P)2‘4/p2]}u1, and Sél) and T
are given as in Equation (33).

The case of incidence along €ss polarization €y is
the same as Equation (33) with y and R replacing w* and Q,
respectively, and the plus sign being used. For incidence
Cq, polarization €ss the expression is the same as Equation

(35), with R and exp[in(y+n/2)] replacing Q and exp[in(w*—w/Z)],
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respectively, Equations‘(SS),‘(34), and (35) are the'general
expressions for the scattered electric field. Hence, for

P < X according to these equations, the scattering pattern

is continuous in space. Moreover, even for the case P > 2},
the equations predict a continuous pattern, if the length

of the helix is comparable to the wavelength of light. This

feature is depicted in the general equations by factors such as:
s{2) (-1)™sin (Pask,)
that can be expanded to yield:

sinwpz(-n/p+Akz/zw-z/p) sinmPL(-n/P+Ak +2/P)

n(-n/P+AkZ/2ﬂ~2/P) ﬂ(-n/P+Akz/Zﬂ+2/P)

that behave as Dirac-delta sequences centered at Akz =

(n/P + 2/P). They predict continuous scattering patterns,
for helices of a length comparable to the wavelength of
light for any ratio of P/A, in which the magnitudes of the
scéttered intensities betwéen layer lines‘are of the same
magnitﬁde as those at the layer lines themselves. For

L » o ihese sequences tend to Dirac-delta functions

and quantize the allowed scattered difections provided that
P/Xx > 1. Therefore, these equations reduce to Equations
(29), (30), and (31) for the case of P > A and & >> 1,

The expressions for the scattered fields from right and left

circularly polarized light can be obtained from lincar
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combinations of those obtained for plane-polarized radiation.
Once obtained (the scattered fields for right and left
circularly polarized light) the corresponding scattered
intensities can be obtained. For left circularly polarized

light, the scattered field is:
E (r') = (E.k%Ba,/T')(1-kk/k%)E
" A 0 t e =L,0

where EL 0 is the scattered field without the transversality
<L,

correction.

The intensity measured at the detector is:

—t
i

L ) KB, ) A ) KB 1) 4

2 * 2
L= 1B 1T - (keEp) (K-E )/k

i
1]

Equivalent expressions can be obtained for the right cir-
cularly polarized incident 1light, so that the CIDS can now

be written as:

By 1%~ g |®-[(kgE) () - (kvEp) (k+Ep) 1/&7

CIDS =
B, 12 Bl - [k Eg) (k+Eg)+ (k-E,) (kE;) 1/’

In the special case of P > X and & >> 1, the calculation can
be carried out analytically.
The expressions for CIDS along the three perpendicular

"directions ey, € and €7 arc therefore:

2 b
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For ez~incidence:

-1, = cC {(aP/27M*) [(H+G)a%+ (P2/ 202 ) U Jeosy!

L "R

+ (aP/anM*){(aP/2m)[X /2 sin(2¢'-y)-2 -
sinw]sin2¢~(PZU"/wz)cosw'cosz¢+a2[vm-

cosy' +2U " cosycos(Y'-y)+Y cos(2y-3y')]-
sin?y}} | (36a)

and

1, = cctre1/aM?) £ (a?p?/2nd) (32 - 2Ncos2p ')
+ (P*7ar%) (0-5%) + a%(0-XTcos29m)) - (1/
sMhy [ (a2p? /) [ 2 - 2N(cos (20" - 2v) sin2é
+ cosZW'cosz¢)]+a4[2(O-S+)coszw+8++21cos
(4w‘—2w)—2X+COSWCos(2w'~w)]sinz¢f(P4/w4)-
((0-58%)/2)cos? ¢+ (aP>/n3)U¥sin(v-v' ) sin2o

o (P/m[Y sin (30 -v)+V sin(p-v')-20"
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siny'cosylsin2¢}} , (36b)

*ByBa, /|1 | with y' = (v + n/2)

C = 2k
For incidence along €,
S cc’ 4 2, (P¥2n2)U Y siny’
7 Ig = (aP/27M ) { (H+G)a"+(P /27w°)U }siny
+ (aP/anMMy{(aP/2m)[ (X /2)cos(2y" -v)
- Z'cosw]sin2¢+(PZU’/wz)sinzp'scosz¢=az°
[V siny'+2U sinycos (y'-y)+Y cos(2y-3y')]
.2
sin“¢}} (37a)
and
I +1, = CC {(1/4MM) {(a?P?/202) (32 +2Ncos2y")
+ (PY7an"y (0-s1)+at (042X cosy ) Y- (1/8MY).
t(a%P2/n?y[2%-2N(cos (29" -29) sin’e-cos2y ' -
2 4 +y . 2 + ;
cos“¢)]+a [2(0-S )sin“y+S -2Icos(4y'-2y)

- 2xX singsin(2y' -p) Isin®e+ (PY /vty ((0-81)/2) -

cos?e+(aP> /a0  sin(y-y' )sin2¢+ (a>P/m) [Y*



csin(v-39")+V ' sin(v-v')+2U0  cosy' siny}}

with v' = (v -1/2).

with:

For gs—incidence:

g
]
ot
]

~(P%/n2) 27 sin% ¢}

+1

(PZ/WZ)Z+(1+COSZ¢)}

,G = Jno1Updy-2)

H = Jn+1(Jn+2'Jn)
I Jn+2Jn~2
N Jn+1‘jn~1
2 2 2
0 = 2Jn * Jn+2 * Jn-z
£ 2 2
$° = Unag * Jp-2)
+
o= (Z/Qa)[(n-l)Jg_l x (n+1)J§*1]
ut = £
= InUner * Jpay)

cc*1a[ (s +X )sin?¢-25 "1+ (aP/m)T sin2¢

cc*ta’l (0+x*)sin9+201+ (aP/m)T*sin2¢+

64

(37b)

(38a)

(38b)
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j:ee-
W= Jn+2(Jn+1 * Jn-l)
YE = (g g +J .J
= ( n-1"n+2 = “n+l n-Z)
£ 2 2
27 = Upug * Jq)
*
p' o= (v + n/2)

Equations (38) show that the expression for the CIDS for
light incident along the helix axis is independent of the
azimuthal angle ¢ or w*. This cylindrical symmetry does
not hold along the other two directions of incidence. The
corresponding formulas for the case P < X and & ~ 1 are
combinations of all the sums in Equations (33), (34) and
(35), and numerical calculations must be used. From the
equations obtained for the CIDS, we notice that the actual
value of the tangential polarizability cancels when taking
the ratio of the scattered intensities.

As a result, these equations for CIDS cannot take into
account the dispersidn properties of the scatterer, and will
fail to describe the CIDS of helical structures at wavelengths
inside an absorption band. Effects resulting from band shapes

are also neglected in this model. This is the result of
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having combined two different approximations: a) the assump-
tion that the polarizability is purely uniaxial: @ = a tt,
and b) the approximation of replacing the '"local field" in
the integral Equation (12) by the incident field. Relaxing
either of these will result in a polarizability-dependent
CIDS. In fact, a polarizability of the form: o = a, tt +
o,nn willlnot cancel when the ratio for CIDS is taken and
will be able to describe band effects. In general, it is
useful to choose a complex polarizability. The real part
characterizes the dispersive contribution to the differential
scattering, whereas the imaginary part allows for absorptive
behavior of the scatterer. Use of complex polarizabilities
does not take into account intrinsic optical activity; we
are still only considering form CIDS in which the geometric
arrangement of frequency-dependent polarizabilities determines
the optical properties. Only when actual coupling of the
radiating elements of the scatterer are taken into account
can we properly speak of intrinsic CIDS. This case will be
treated in Chapter 5 of this thesis, by allowing dipole-
dipole interaction among therdipoles induced along the scat-
terer by the incident electromagnetic radiation. We have
only considered here form CIDS in which the ratio of scattered
intensities are independent of the magnitude of the polariz-
ability. ’

From Equations (13) and (16) it is seen that the crucial

feature in the model that accounts for the differential
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behavior of the scatterer with light of opposite circular
polarization is the product o-j appearing in the integrand.
For a spherically symmetric polarizability, o = a%, and
therefore, different states of polarization will be left
unchanged when taking their product with the polarizability.
This product l-j, being independent of the variable of in-
tegration, can be taken outside the integral and as a result,
when the field amplitudes are squared to obtain the intensities,
the difference between these intensities for right and left
circularly polarized light will Vanish, yielding no CIDS.
Thus, differential scattering of light of opposite polariza-
tion is the result of (and a measure of) the asymmetry of

the dielectric properties of the scatterer.

IV. Characterization of the Stéte of Polarization of the

Scattered Light.

A complete characterization of the scattered radiation
must include both its intensity and polarization. Nothing
has been said so far about the polarization of the scattered
light for a given state of polarization of the incident
radiation. It is interesting to establish the effect of the
geometry and the dielectric properties of the scatterer inA
determining the final state of polarization of light. In the
most general case, the polarization vector of monochromatic
light traveling along a given direction describes an ellipse

in spacc.lo Indeed, if x and y are two arbitrarybsets of
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axes and the light is propagating along the z-axis, then

the components of the electric field are (in complex notation)

E.- = a ei(a+61)
X 1

and

E. = a ei(u+62)
y 2

from which we can obtain easily:

Ex.2  Eyo Ey., B 2

(X% + (D* - 25 (=L)coss = sin®s (39)
a a a a

“1 2 1 2

where § = 62—61 is the phase difference between the two
components of the electric field. Equation (39) is the

equation of an ellipse. The following relations can be shown

“to hold:

#

tan2y (tanZa)cossé

i

sin2y (sinZa)sing

with a and b the semi-axes of the ellipse; y is the angle
between the X direction and the major axis of the ellipse (its
inclination is tana = az/ai); and tanx = *b/a, where X is
proportional to the ellipticity of the light wave. Its sign
indicates the sense of rotation of the polarization vector describ-

ing the cllipse. Therefore, characterizing the polarization




69
®

of light is equivalent to determining the polarization
ellipse. For this we need three independent parameters,
e.g., the amplitudes ay and 8y, the phase difference § or
the two axes of the ellipse (a and b), and the angle y
that specifies- the orientation of the ellipse. In 1852
G. G. Stokes11 introduced four parameters that are combina-
tions of the first three independent variable mentioned
above. They are of practical use because they all ha&e the
same dimensions and are frequently called the Stokes’

parameters. In our notation they are:

2 2
+ [E |7 = a] + a;
_ .2 .2
= a; a,.

S *
U = ExEy + ExEy = 2ala2 coss

<3
il

- * * e
1(EXEY - ExEy) = Zala2 51n§

Because these four parameters are defined out of only three
independent variables, there is a relation connecting all

of them; this is:
17 = Q" + U™ + V (40)
I represents the total intensity. Q is the excess in

intensity of light transmitted by a polarizer which accepts

linear polarization in the x-direction over a polarizer that
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accepts linear polarization along the y-direction. U has

a meaning equivalent to Q, but with the polarizers oriented
at 45° and 135° from the x-axis. V describes the excess

in intensity of light transmitted by a device that accepts
right circularly polarized light over that which accepts
the opposite polarization. Since in scattering phenomeha
light is dispersed in all directions, the definition of the
"Stoke's parameters should be the same regardless of the di-
rection of propégatibn of the scattered light. To accomplish
this, it is necessary to choose a reference frame that will
be equivalent for all possible directions of propagation of
the scattered light. It is common use to define these
parameters relative to the scattering plane,12 i.e., fhe
plane which contains both the incident and scattered wave
vector. The scattered electric field is therefore written
in terms of its component (E“) in the scattering plane, but
perpendicular to 5, and its out-of-plane component (EL)'
Defining in-plane (E) and out-of-plane (B) unit vectors

along these components,

(kxk ) /| kx|

[ =)
i

tiso)
]

(kxn) /| oen|

we obtain

Ej = n°Eand By = p°E (41)
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The directions of the components are chosen so that nxp is
along the direction of propagation of the outgoing wave.
The scattering fields to be used in Equation (41) are the
fields without the transversality correction (}—Eg/kz).

The Stokes' parameters can now be written as:
& 2 &
I = Ee(pp+nn)<E = E-(1-kk/k")-E

Q = E-(pp-nn)-E

*.
U = Ee(pn+np) °E
% '
V = iE<(pn-np) -E : (42)
2 2 /2
n = (-cos e, + cosy sinwes)/(l-sin Y sin”¢)
and
. .2 L2 2
p = [-cosy siny sin"¢e; + (l-sin"y sin"¢)e,

-siny sin¢cos¢§3]/(l—sin2w sinzcb)l/2

from which we obtain the matrices needed to compute the
Stokes parameters in (41). Here we will write down these
matrices for light incident along e, and polarized along €1
only:



(1~kk/k2) =

I—COSZWSin2¢
~sin¢coswsin2¢

~cosyPsincosd

L.

coszwsinzwsin4¢
~cos?¢/ (1-sinp

sin2¢)

; ., 2
~cosPsinysin ¢
cospsindcosy

(sinzwsin2¢+1)/

(l~sinZWSin2¢)

-

2cosWsinwsin2¢
c6s¢/(1~sin2w

sin2¢)
~-cosd
sinWsin¢(cosz¢

~c052Wsin2¢)/

(l»sinzwsin2¢)

-

=sin¢cos¢sin2¢
1—sin2wsin2¢

=sinysingcosd

—coswsinwsin2¢

l—sinZWSin2¢

-sinysingcosd

=cosf

cos¥Psind

 sine+1)/ (1-sin’y

~cosysin¢cosd
=sinysingcos¢

sin2¢

(43)

cos¢sin¢cos¢(éin2w~
sin2¢)
~sinysingcosd
sin®¢(sin>yeos’ -

coszw)/(1—51n2¢

sinZW)

(44)

sin¢sin¢(cosz¢*
coszwsin2¢)/(1;

sinzwsin2¢)
cos¥Psind

, .2
~2sinPcosV¥sin” @

cos¢/(1-Sin2W

sin0)

(45)
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0 i cosd -i sinYsing
i(PE“EE) = -i cosd 0 +1 cosYsing
+1 sinysind -1 cosPsind 0

(46)
These matrices, plus the scattered fields, contain all the
necessary information to describe the state of polarization
of radiation scattered by a helix when incident along e,
and polarized along €q1° From Equations (42) we obtain (for
P> Xxand & >> 1):
E
I = cC {(a*/16M")[(S* (1+cos?4)+2(0-8*-X)coszy') (1-
2. .2 L+ o . . 2
cos“ysin“¢)+X sin2y'sin2y-Icos(4y'-2¢)sin“¢l+
(P?a?/16M* %) [ 2% -2Ncos 2y Isin®e+(a P/167MM) [Y*

sin(v-39')+V sin(y'-v) -20 siny ' cosylsin2e} (47)

® 4 4 + + . .2
U= CC {(a’/16M )[(20-S +2Icos4y'-2X cos2¢')sin2ysin”¢
cos¢/(1-sinzﬁsin2¢)+(x+sin2w'—215in4w')cos¢]=

(aZP2/16w2M4)[(Z+=2Nc052w')sin2w51n2¢cos¢/(1-sin2w
. 2 3 4 + . ot +, . .
sin®¢) ]+ (a"P/8sM Y (Y sin3y'-(V +2U )siny')siny

2 ) g
sin¢(cosz¢-cos“ysin2¢)/(1—sin“wsin“¢)+(v+cosw'
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—Y+c053w’)costin¢]} : (48)
_ * 4 4 + o , 3
V= CC{(-a /8M )[S +X cos2y-2Icos4y']cosd+(-a"P/
8nM Y[ -Y sin (p+30')+(W +2U ) cosy' siny-2V siny’
cosy]sing} (49)
where the symbols used here have the same meaning as in
Equation (38). Because of expression (40), the fourth
parameter is automatically determined by the three written

above.

V. Discussion and Conclusions.

In this chapter we have presented analytical expressions

for the circular intensity differential scattering (CIDS)

of a chiral structure (an oriented helix) possessing a polar-
izability tangent to the helix. The general expressions

for the scattered fields, for any ratio of helix pitch to
wavelength (P/A) are Equations (33), (34), and (35); they
may be simplified when P > A and the number of turns of the
helix is large (L >> 1) to give Equations (29), (30), and
(31). In this latter case, a selection rule for the allowed
directions of scattered intensities is obtained as given by
Equation (28). - This is related to the Bragg scatteringylaw‘
found for unpolarized X-ray scattering from helices and for

light scattering from liquid crystals. It is similar to the
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resonance relations for the interactions of helical antennae
with circularly polarized radio waves.13 A helix long with
respect to the wavelength of light, whose pitch is greater
than the wavelength, interacts like a set of slits with the
light. Interference strongly limits the scattered rays to
specific angles, and a diffraction pattern is observed.

The intensities between layer lines become more important

as the size of the helix is reduced relative to the wavelength
of light. When both the wavelength of light and the length

of the helix are of the same order of magnitude, the equations
predict a continuous scattering pattern even when the pitch

is greater than the wavelength. As the length of the helix
increases, these equations approach the discrete solutions
which quantize the allowed scattered directions and lead to
layer lines.

A rematrkable property of the CIDS measurement is that
since it involves a ratio, it may give values of (IL=IR)/
(IL+IR) of the order of 1 even when each of the values for
I are very small. The technique thus depends on the ability
of an instrument to differentiate IL and IR from the stray
light components in the system.

The expressions obtained for the CIDS of a helix show
that the numerator involves helix parameters and differences
in product of the Bessel functions. The latter are important
in determining many of the symmetry features of the scattering

patterns. It is worth pointing out that the scattering of

planc polarized light 1in general shows imaginary components in
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the scattered field, indicating that the scattered light is
always elliptically polarized. This is true for the scatter-
ing from a helix,'regardless of the type of polarization of
the incoming light. For polarizability which is only tangen-
tial to the helix, the equations show that the scattering is
symmetric with respect to the incoming light beam, i.e., it
shows mirror image symmetry in the layer lines above and
below the zero layer line. This behavior is no longer true
for the case of a general, complex polarizability in which
the scattering pattern shows antisymmetric properties. For
light incident alongfthe helix axis the scattering pattern
shows cylindrical symmetry, the equations for this direction.
of incidence being independent of the azimuthal angle Y.

The total scattering (IL+IR) is positive définite and
has no zeros, éxcept for special cases such as helices with
infinite pitch or zero radius. In addition, for iight
incident along the axis of an infinite helix there are cer-
tain angles which give zeros for both IL and IR' A closer
analysis of the equations describing the scattering for
light perpendicular to the helix axis shows that the CIDS
vanishes in the forward direction for all values of pitch,
radius, and wavelength of light. This is contrary to the
experimental observations of liquid crystals and phenomeno-
Jogical computations of differential scattering done by
Bohren14 usingtheﬁﬁe-theory. Form-CIDS is a diffraction

phenomenon and since the scattered electric field is the
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superposition of many waves originated at the scatterer,
their relative phase is what determines the interference
or diffraction of the incident wave. This phase change14
(see Figure 5) is given by ei(A§°§) appearing in all the
equations. It can be seen from the figure that in the
forward direction, no interference takes place; the result
is zero differential forward scattering. It will be seen
in Chapter 5 of this thesis that allowing coupling among
the induced dipoles on the chiral molecule produces finite
differential scattering intensities in the forward direction.
It is apparent, through the results of these equations,
that the existence of nonvanishing form-CIDS of a chiral
object is related to the asymmetry of its polarizability.
CIDS is then a measure of that asymmetry. In general,
spherically symmetric polarizabilities yieid no CIDS.
Finally, we have seen that combining two approximations
(uni—axiality in the polarizability and first Born-approx-
imation in the 1local field) results in CiDS independent
of both the position and shape of the absorption bands.
In Chapter 4, by relaxing the first of these two approx-

imations, the general case of an absorptive chiral scatterer

will be treated.



Figure 5.

Phase difference between two wavelets originated
at two different scatters placed at 0 and at the
position g (labeled 0') from the first,E and E
are the scattered and incidént wave-vectors,
respectively. 2B is the scattering angle. The
path difference between the two wavelets is

Q.E -1§ ~z'= Aﬂez. In the forward diréctioh the

path difference vanishes.

78




79

X
v

phase c¢hange

X

0

A
path difference = Ak T

. XBL 8012-12957



80

Bibliography

1. Urry, D. W., Krivacic, J. (1970) Proc. Natl. Acad. Sci.

USA 65, 845-852,

2. Ottaway, C. A., Wetlaufer, D. B. (1970) Arch. Biochem.

Biophys. 139, 257.

3. Schneider, A. S. (1971) Chem. Phys. Lett. 8, 604-608.

4. Atkins, P. W., Barron, L. D. (1969) Mol. Phys. 16,

453-466.
5. Barron, L. D., Buckingham, A. D. (1971) Mol. Phys. 20,

1111-1119.

6. Levine, H., Schwinger, J. (1950) Commun. Appd. Math.
[1], 3, 355-391. i

7. Saxon, D. S. (1955)"Lectures on the Scattering of Light",
Sci. Rep. No. 9, Contract AF 19(122)-239, Dept. Meteorol.,
University of California, Los Angeles, 100 pp.

8. Abramowitz, M., Stegun, I. A. (1965) Handbook of

Mathematical Functions (Dover: New York).

9. Cochran, W., Crick, F. H. C., Vand, V. (1952) Acta Cryst.

5, 581.

10. Born, M., Wolf, E. (1975) Principles of Optics (Pergamon

Press: Oxford).

11. Shurcliff, W. A. (1962) Polarized Light (Harvard Uni-
versity Press: Cambridge, Mass.).

12. Van de Hulst, H. C. (1957) Light Scattering by Small

Particles (John Wiley § Sons: New York).




13.
14,

81

Kraus, J. D. (1950) Antennas (McGraw-Hill: New York).

Cantor, C. R., Schimmel, P. R.

(1980) Biophysical

Chemistry, Vol. 2 (Freeman: San Francisco).




82

Chapter 3
NUMERICAL COMPUTATIONS

I. Introduction.

In Chapter 2 a general theory ‘on the circular intensity
differential of scattering (CIDS) of chiral stfuctures, as
modeled by helices, has been derived. The theory has been
obtained as a function of the helix parameters, and the anglé
of scattering and is valid for all wavelengths of light.

In this chapter, a detailed analysis of the properties of
the differential scattering patterns of a helical structure
along with numerical calculations for different pérameters
will be presented. All the calculations shown deal with
helical structures whose interactions with the incident
radiation take place through a uniaxial polarizability, its
axis being directed along the tangent to the helix.

According to the theory derived in the last chapter,

a necessary condition for the‘existence of CIDS is that
the scatterer must have an asymmetric polarizability. As

a result, the numerical calculations for this simplified
model illustrate a number of symmetry properties of the
differentiéi scattering patterns, whose physical basis will
be derived and discussed here.

The organi%ation of this chapter is as follows: In

part 11 the numerical methods and strategies used in perform-
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ing the computations are described. Part III shows some

of the results of the calculations. Here the general char-
acteristics of the differential scattering patterns are
outlined in the form of simple rules. In part IV a detailed
analysis of the symmetry properties of the CIDS is presented.
We obtain a general expression that accounts for the func-
tional dependence of the differential scéttering patterns

on the helix parameters and the wavelength of light. In
part V the practical use of the technique as a probe for
chiral structures is discussed. The relation between the
differential intensities and the length and molecular weight
of the chirél regions of a structure is pdinted out, and a
comparison with experimental measurements on a bacterial
membrane is made. The theory of differential scattering

for helical structures as derived in the last chapter seems
to be in good qualitative agreement with the experimental

data.

IT. Numerical Computations.

All the computations presented here correspond to the
scattering properties of a very thin (uni-dimensional) helix.
The polarizability is defined (see Chapter 2, Section II)
as a tensor with three principal axes: along the tangent
to the helix, t, along the normal direction, n, and along

T~

the remaining o}thogonal direction, p, so that a = a_tt +

a nn + o LPp- To simplify the results and facilitate their
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interpretation while preserving the significant scattering
behavior, on and ap are set equal to zero. In Chapter 2,
two different sets of equations were derived to describe
the CIDS of’a chiral structure. Equations (36), (37) and
(38) are the completely analytical solutions valid for
wavelengths of light ()) smaller than or equal to the pitch
(P) of the helix, and when the length of the helix is much
larger than the wavelength of light. In this case, the
scattering patterns are discrete, the polaf angle of scatter-
ing is limited io certain allowed values, and gives rise to
layer lines of scattered intensities in space. For the case
P < A, Equatibns (33), (34) and (35) in Chapter 2, valid
for all ratios of P/XA and for helices of arbitrary length,
must be used and the intensities can be obtained through
numerical computations. As shown in Chapter 2, if P <},
the scattering pattern is continous in space.

Two different computer programs corresponding to these
two sets of equations have been written: PROGRAM CIDSY uses
the analytical expressions of CIDS for light incident along

the C,-axis; PROGRAM VINO uses Equations (33-35) for the

2
same direction of incidence, with the infinite sums appear-
ing in these expressions being carried out to terms of order
0. |

The overlapping regions of P/ served as a check on

the calculations performed by the two programs. A third

program, PAN, that computes the CIDS for light incident




along the helix axis, has been also written. A listing of
PROGRAMS VINO and PAN can be seen in the Appendices to this
thesis. The calculated scattering patterns were used to
study the properties of interactions of helices with cir-
cularly polarized light. These patterns are presented as
polar plots of intensity vs. angle, ¢ (which measures

the angle between the incident and the scattered radiation),
for each layer line (in the case P > X) or for different
chosen values of the altitude ¢ (for the case of P > A).
The plots were generated with the graphics subroutine
library IDDS of the Lawrence Berkeley Laboratory, and the
output obtained optionally in microfiche, 35 mm film, or
paper plots with the Cal-comp. The Bessel functions of
order 0 to # 40 were calculated from Sandia Corporation
subroutines (Sand-75-0147) to obtain the intensities at

one degree increments of ¢ for each layer line, or for

each value of the altitude. Both total intensity of scat-
tering and CIDS = (IL—IR)/(IL+IR), where IL and IR are the
scattered intensities for incident left and right circu-
larly polarized light, will be presented here. All the com-
putations have been carried out in the Computer Center of

the Lawrence Berkeley Laboratory.

ITII. Numerical Results.
Figure 1 gives the CIDS and total scattering for a

helix whose pitch is ten times the wavelength, whose radius
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Polar plots of circular intensity differential
scattering (CIDS vy) and total scattering inten-
sity (SCATT y) of a helix for light incident
along the y (gz)—axis (from right to left in
the figures). »P = piteh of the helix, R =
radius, L = numbér of turns of helix, and W =
wavelength of light. The thick lines indicate
negative values of the CIDS, the light ones,
positive. LYR denotes the numbér of the layer
line being plotted, The total scattéring is
scaled to the maximum scattering intensity in
the zero layer line; the CIDS values (IL—IR)/

(IL+IR)? are not scaled.
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is equal to the wavelength and whose length is twenty times
the wavelength. The scattering patterns are given for layer
lines 0, 4, 8. CIDS is a ratio whose absolute magnitude is
equal to one or less, therefore the éctual value of CIDS 1is
plotted with dark lines representing negative values of CIDS
and light lines representing positive values. The total
intensity, whose magnitude dependes on instrumental parameters,
is plotted relative to the maximum intensity in the zero layer
line. In this figure and in subsequent ones, the light is
incident perpendicular to the helix axis from the right

(along 270°), therefore, the forward scattering is along

90° in the figures.

The first thing to note is that the differential scat-
tering for circularly polarized light is large. For example,
in Figure 1, at angles of +25° from the forward direction,
in the zero layer line essentially only left circularly
polarized light is scattered for a right-handed helix; the
CIDS is close to 1. In generalskthe magnitudes of CIDS do
not correlate with the magnitudes of the total scattering.
The total scattering is a maximum in the forward direction
for the zero layer line, whereas the CIDS is zero in this
direction. Figure 1 illustrates other general properties
of the differential scattering pattern. The CIDS in the
zero layer line shows the following characteristics: A
large and broad, negative back-scattering lobe, zero differ-

ential scattering in the forward direction, 15 zeros, 14 of
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which involve a change of sign. As the number of the layer
line increases, the number of the scattering lobes (zeros)
is reduced, and the sign of the back-scattering lobe alter-
nates between positive and negative for the first few layer
lines. The patterns for both total and differential scatter-
ing are symmetric with respect to the direction determined
by the incident light. The patterns are also symmetric
above and below the zero layer line; that is, the scattering
in the -1 layer line is identical to that in the +1 layer
line. The differential scattering always contains much more
structure than the total scattering. Thus, a small variation
in the parameters of the helix will produce large changes in
the CIDS, whereas the total scattering will change very
slightly both inmagnitude and direction of the scattering
lobes. Moreover, the total scattering will not give informa-
tion about the sense of the helix, but the sign of the CIDS
is a direct measure of the sense of the helix.

| Figure 2 illustrates the scattering patterns as the wave-
length increases relative to the pitch and radius. The helices
are the same as Fig. 1 except that the ratio of pitch/wave-
length is now 1, 1/2, 1/4; only the patterns corresponding
to the zero layer line are shown. Note that the CIDS is still
large (>0.5) for a pitch and radius equal to one-fourth the
wavelength. General characteristics of the scéttering pat-
terns including those illustrated in Figures 1 and 2 are:

(a) There is no differential forward scattering in the zero
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Polar plots of CIDS and total scattering for
increasing values of the wavelength of light
while keeping the same ratio of pitch/radius
of the helix. The labels are the same as in
Figure 1. In the case of pitch less than wave-
léngth (absence of discretellayer lines), LYR
has been replaced by the ALT, indicating the
altitude angle measured from the (gz,gl) plane.
Note that CIDS is greater than 0.5 even for a

wavelength four times larger than the pitch and

radius.
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layer line; this is true for any dimension of the helix.
For all other layer lines the differential forward scatter-
ing is not zero. (b) The pattern of layer lines is symmetric
about the zero layer line. An equivalent statement is that
the scattering is symmetrical above and below the scattering
plane perpendicular to the helix axis. (c) The number of
lobes of the scattering pattern for the zero layer line is
independent of the ratio of pitch/wavelength, but it is an
increasing function of the ratio of radius/wavelength. The
lobes alternate in sign. The number of lobes decreases in
going from the zero layer line to the higher order layer
lines. (d) For each layer line the envelope of the differ-
ential scattering pattern, i.e., a measure of the differen-
tial scattering at all anglés in that layef line, depends
markedly on the ratios of pitch and radius to wavelength.
Maxima and minima in differential scattering occur as a
»function of these ratios. The minima are analogous’to the
"invisible" particles described by Kerker1 and Chew and
Kerkerz for total scattering. (e) Differential back scat-
tering, and differential scattering along the helix axis
and perpendicular to the incident light, changes sign as a
function of pitch/wavelength and radius/wavelength. These
results are related to the sense of circular polarization
of radiation scattered by helical antennae3 and liquid
crystals.4 (f) As the wavelength increases relative to’the

pitch and radius of the helix, the differential scattering
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decreases and its angular dependence approaches that of
Rayleigh scattering. In the 1limit of very long wavelengths
the differential scattering is zero. (g) The total scatter-
ing of the successive layer lines when projected as density
spots on a plane would reproduce the well known X of the
X-ray diffraction patterns of helical molecules.5 (h)
Although not shown here, computations of the CIDS for light
incident along the helix axis give completely symmetrical
intensities with respect to angle ¢ and zero forward CIDS.
In fact, the zero-forward differential scattering is common
to all three orthogonal directions of incidence and is a
direct consequence of having used the first Born-approxima-
tion in the local incident field. The CIDS so obtained has
been called in Chapter 2 form-CIDS.

In the next section we will analyze quantitatively the
zeros and the signs of the CIDS in terms of the helix para-

meters, the layer lines and the wavelength of light.

IV. Symmetry Properties of the Scattering Patterns.

The polarkplots of differential scattering intensities
vs. azimuthal angle, ¢, show a remarkable symmetry for each
layer line; the direction of incidence of the light acts as
a C2 axis. Furthermore, it ié seen that the patterns show
a distinctive lobe structure of alternating signs with zeros
between lobes. To better understand the patterns, it is
appropriate to analyze the equations responsible for this

behavior. The equations and notation are described in Chapter 2.



1) The zeros of the CIDS patterns.

We will analyze the patterns for long helices with
pitch > wavelength, therefore a layer line structure will
exist. The analysis will be done only for light incident
along the ez~axis, i.e., perpenditulér to the axis of the
helix. Since for each layer line the zeros of the CIDS
are the zeros of I, - IR’ it will suffice to consider the
behavior of the numerator of the CIDS formulas. We can

use the recurrence formulas for the derivatives of the

Bessel functions:6

é% Jn(v) - Jnal(v) ) % Jn(v)
d 5 v = v) +2u )
dv “n Jn+1
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to simplify the numerator of Equations (36a) in Chapter 2

and equate it to zero, to obtain:

Pn P} 2 d 2 2 2
mQ ? 9(Qa) In * 3(Qa) {a [(Jn+1 *Jn-1)%

2Pn _ '
21901050 ¢ In(0y - T o)) = 0 (1)

where:
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¢ = [sin(2y'-y) + sinylsin2g
o, = cosw'(sin2¢~2)

cos(ZwQSw‘)sin2¢

©
W
i

¢, = {[cosy'-2cosycos(y'-y) + COS(Zw-Sw')}aZ i

2
EZ cosW'}Xsin2¢
m

¢ = sin(2y'-y)sin2¢

Here n specifies the layer line and the order of the Bessel
functions, Jn(Qa); a is the radius, P is the pitch and Q =
(Zw/x)(1+sin2¢-Zsin¢sinw)1/2. The angles ¢ and y are the
polar angle and the azimuthal angle of the scattering
pattern; for’each layer line ¢ is constant and ¢ varies
from 0 to 2n. The ¢ depend on the scattering angles, vy,

y' and ¢, where y' (defined,in Chapter 2) depends on vy,

¢ and wavelength. Let us consider the zero layer line,

as a similar analysis applies to all the layer lines.

For the zero layer line, ¢ = 90°, n = 0, and after some

algebraic manipulation the zeros are found to be:

J;(Qa) = 0

2
57 cosy'J,(Qa) + aZ{JZ(Qa)[cos¢'-cos(2¢-3¢')]

- 2J4(Qa)lcosy’-cosycos (v'-y) I} = 0 (2)
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It is clear that the Bessel functions control the zeros
of the scatterihg pattern. For the zero layer line the
zeros of J; are exact zeros and for P > 10a, the zeros
of JO are approximate zeros. As the radius, a, increases
relative to the pitch, P, the zeros of J, also contribute.
It is interesting to point out that the theorem of inter-
laced zeros of Bessel functions states that Bessel func-
tions of different orders have no common zeros.6 This
prevents Equation (2) from being satisfied‘by simultaneous
nulling of‘JO, Jl’ and JZ’ therefore the zeros which appear
are either a manifestation of the predominance of one term,
or a very rare case in which both phases and Bessel functions
combine to satisfy Equation (2) at particular values of V.
To find the values of ¥ corresponding to the zeros
of the Bessel functions, we need an expression for Qa vs. V.
As cos ¢ for each layer line equals (nA/P), we can use the
definition of Q above to relate Q to ¥ for any layer line.

For the zero layer line

_ 22 ﬂa(l—sinW)l/z | (3)

Qa N

For a helix with P = 10, a = 1, X = 1 as shown in Figure 1,
the zeros of Jl(Qa) aﬁd JO(Qa) determine the scattering
pattern in the zero layer line. Thé values of ¢ correspond-
ing to these zeros are in excellent agreement with those
seen in Figure 1. The trigonometric factors appearing in

Equation (2) do not contribute to any of the change of sign
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of the differential scattering; they mainly govern the
envelope of the scattering pattern.

As the ratio of P/a decreases, we can no longer neglect
the second term and some of the zeros contributed by JO will
start disappearing and a few of those due to JZ will appear.
This behavior is complicated by the fact that the number of
zeros of JO(Qa), Jl(Qa), and JZ(Qa) depends on the radius,
a, of the helix and in fact is approximately a linear func-
tion of a. We can analyze the pattern if the pitch, P, of
the helix 1s changed while the radius and wavelength are
held constant. This is shown in Figure 3, where one sees
the same zeros as in Figure 1 due to Ji» but some of the
zeros from JO disappear as P/a changes from 8 to 2.

A similar énalysis for the other layer lines can be
done; the main difference is that higher order Bessel func-

tions control the scattering patterns.

2) Dependence of the zeros of the CIDS on helix geometry.

As the zeros of a few Bessel functions determine the
zeros of the CIDS in each layer line, we can understand
the patterns from learning how the Bessel function zeros
depend on pitch, radius and wavélength. - We make use of the
theorem7 that the number of zeros of z'vJv(z) between 0 and
[m + (2v+1)/41m is exactly m. However, we must realize
that between 0 and [m # ¢ + (2v+1)/4]1n (where € is an arbi-
trarily small number), there may be m * 1 zeros. That is,

there is an inherent uncertainty of #1 in the number of zeros
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Polar plotskof CIDS for differént ratios of
pitch/wavelength while keeping the ratio of
radius/Wavelength constant. The labels are
the same as before. The number of zefos in
the scattering pattern increases with increas-

ing pitch.
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calculated for a Bessel function over the range of our
variable, Qa. As we want to know how the number of Zeros
in the scattering pattern changes with‘helix parameters
and wavelength, rather than the exact number of zeros,
this small uncertainty is not sighificant.

For each layer line, n,

2.2 2.2 :
Qa = 212 [2 . 3-1;;— - 201 - 3—;‘7‘—)”2 siny1t/?

(4)
The maximum and minimum values of Qa on each layer line
occur when siny = 1., To apply the theorem we must compare
the maximum and minimum values of Qa with (2v+1)n/4. First
we obtain the number of zeros between 0 and the minimum

value of Qa by writing
min Qa = [m + (2v+1)/41n

and solving for m. Similarly, we obtain the number of
zeros between 0 and the maximum value of Qa. The difference
is the number of zeros in the interval (min Qa, max Qa),
i.e., in the intervals 90° < y < 270°,

The number of zeros of the v-order Bessel function in

the interval 0 < Qa < min Qa is:

mmln - (l

2\)+1)f
v b

min Qa - == f i

and in the interval 0 < Qa < max Qa
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max _ .1 2v+1l
m = (F max Qa - “7r”)fmax

v
The factors f_._ and f ‘are introduced to assure that the
min max
number (m) of zeros for any given interval is always positive

or zero. They are defined as Heaviside functions:

%0 if min Qa < (2v+1)/4
f .
min

1 otherwise

0 if max Qak< (2v+1)/4

f
max él otherwise

The number of zeros of the v-order Bessel function in the

interval min Qa < Qa < max Qa will be therefore:

m = % (min(Qa)fmax” min(Qa)f )”

v min

2v+l (

SR £

max” fmin’ -
There are three possibilities which must be considered
for each layer line to estimate the number of zeros, m, of

each Bessel function Jy,e First, for a layer line in which

m = % (max Qa - min Qa) = 92 (1-“2A2)1/2 (5a)
ﬁ 5 L ”;7”

Second, if min Qa < (2v+1)/4 and max Qa < (2v+1)/4, then
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m = 0 (min Qa and max Qa < Lﬁﬁ%&lﬂ)

. . . 1 .y . 2v+tl
Third, the intermediate case, m‘— = (max Qa) —z— SO that

2,2 2.2
_ nea n“i“,1/2+1/2 2v+1
m = -~ [2 - _._P;Z... + 2(1 - _.___.2.__) ] -

(min Qa < £33%£l£ ; max Qa >

(szl)n) ‘ (5¢)
In obtaining the derivation of Equations (5a)-(5c) the
expression for Qa given in Equation (4) has been used with
sinw‘= 1. These equations>provide the general results we
need. They show that the number of zeros in each layer liné
depends linearly on a/i, but depends only slightly on P/X;
for the zero layer line the number of zeros is independent
of P/X. The number of zeros decreases with increasing layer
line and becomes zero for the maximum layer line (n = P/)).
In applying these equations, we should remember the restric-
tions. The actual number of zeros of each Bessel function
is an integer near m * 1, and Equation (5) is derived for
P/Xx > 1, which is a necessary condition for the existence
of layer lines, |

Figure 1 clearly illustrates the decreasing number of
zeros in the differential scattering pattern with increasing.
iayer line; for the maximum layer line there are no zeros as
expected. In this figure a/X = 1 and P/A = 10, thus we know

that only J, and J, contribute to the pattern of zeros in the
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zero layer line, and we can easily calculate their number.
The minimum value of Qa here is zero and the maximum is 8w,
so Equation (5c¢c) must be used. The calculated values of m
are 7.5 for Jo and 6.5 for Jqs their sum of 14 agrees with
the 14 (plus one zero at ¢ = 90°) seen for the zero layer
line. Figures 3 and 4 illustrate the strong dependence of
the number of zeros on radius (compare Figure 4a with a/A

= 5 with Figure 4b with a/X = 0.5) and the weak dependence
on pitch (see Figure 3 with P/) = 2,4,6,8), the behavior of
which is correctly predicted by Equation (5b).

A few more differential andktotal scattefing patterns
for helices of different structural and electronic parameters
can be found in the microfiches attached at the end of this
thesis.

3) Vanishing of CIDS at specific angles of scattering.

It is possible to find helix parameters for which the
differential scattering at certain directions in space van-
ishes. The differential back scattering (i.e., differential
reflection) can easily be shown to possess an inversion point
for certain ratios of P/a and a/X, for which no reflection is
observed. The differential reflection (Y = -w/2) in the zero
layer line can be obtained from Equation (1). For light

incident along e, and for the case of P > A:

2
ap 2 P
™ ﬂ
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Figure 4. The dependencerf the number of zeros of CIDS
| on the ratio of radius/wavelength. In the
upper figure there is no attempt to indicate
the sign of the CIDS because of the large number

of zeros.
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Setting this equation equal to zero, we obtain the value

of P/a at which no differential reflection exists:

ISR o

At the inversion point, the argument of the Bessel functions
(Qa) is a constant equal to 4ma/A, so that the ratio obtained
is an implicit function of (a/l). To prove that it is notb
‘a minimum or a maximum, but a point of inversion, we must
show that this value of P/a does not satisfy the equation
obtained by setting the derivative with respect to P of

Equation (6) equal to zero. Although not shown here, it

~does not satisfy the equation, therefore P = wa/Z(l—Jz/JO)
is an inversion point for the differential reflection.
Notice from Equation (6) that the differential reflection
has the opposite sign for a left-handed helix (pitch = -P)
than for a right-handed helix (pitch = P). ' The equations

we have derived in this‘section provide a quantitative basis

for understanding the scattering patterns.

V. Applications.

From the analysis of the preceding section, it is apparent
thatkthe CIDS signal as a function of wavelength or of the
azimuthal angle of scattering can give important information
about the conformation of chiral structures. In fact, it was

seen that the sign of the CIDS contains the information on the
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handedness of the molecule, whereas the intensity is directly
related to the geometrical parameters of the chiral scatterer.
As a technique, the most significant advantages of CIDS
depend on the fact that it is a ratio of intensities,
(IL-IR)/(IL+IR), and that it can be positive'or negative.
Both of these characteristics make it more sensitive than
the total scattering to structure and conformation. Right-
and left-handed helices, otherwise identical, will have
identical CIDS except with the opposite sign. To determine
the sense of a helix from the sign of its CIDS at a chosen
scattering angle, we need to know the pitch, P, and radius,
a, of the helix. For long helices with P > A, layer lines
occur and the total scattering can be used to obtaiﬁ P and
a,8 The spacing between successive layer lines is inversely
proportional to P, and the angle between the arms of the
characteristic X pattern produced by the scattering of a
helix leads to the ratio of P/a. Thus, the geometry and

the sense of the helix can be determined by the combined
techniques. For helices with P < A, layer lines do not
occur and the usefulness of the CIDS increases relative

to the total scattering. The sign and angular dependence

of CIDS can provide the sense and helical parameters when

the total scattering pattern is indistinguishable from that

2 4

of a point or line. That is, values of CIDS of 10 “° to 10
should be measurable and interpretable, when the only geo-.

metrical information available from the total scattering
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is that both P and a are less than A/10.
1) Length of helix.
" The intensity of scattered light is proportionalbto
the square of the length of the helix (Equation (36),
Chapter 2), and therefore proportional to the square of the
molecular weight of the helix. The CIDS is independent of
length; it only depends on the helical geometry. The CIDS
and total scattering have very different angular depéndence;
the maxima for CIDS tend'to'occur where the total intensity
is small. These properties can belused tofmeasure the
amounts of helical (or chiral) structures in a mixture.
For example, in cholesteric or twisted nematic liquid crys-
‘tals, it is only the helical regions that give rise to the
very strong circularly polarized differential scattering.
In,princiﬁle, it would be possible to measure the amount
9f helix in a protein from the CIDS.
: 2) Experimental results.

Al though the model is a very simple one, it allows
immediate experimental applications as a first approximation
to the measured CIDS of such structures as bacteriophages,9
nucleohistones,lo, DNA aggregates,lo membranes, chromomsomes,
etc. (Maestre, unpublished), all of which have been shown
to have (D scattering components. The CIDS is independent
of the molecular weight of the helix and for a uniaxial
.polarizability,even the actual value of this polarizability

cancels and has no influence on the measurement. The behavior
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of the incoming circularly polarized light is affected only
by the geometry of the helix. Thus, for example, we can
obtain information about the possible supercoiling of a DNA
molecule without knowing the details of the interaction of
the chromophores with light.

As we have seen in this and the preceding chaptef, the
number of layer lines, the sign of the scattering lobes,
and the number of lobes or zeros in each layer line can be
used to give the main characteristics of any sample of he-
lices. The computed values for the helical models are simi-

lar to those found experimentally.lo

Thus, liquid crystals
with reflection coefficients of the order of 80 to 95% |
would give CIDS of the order of 1 (i.e., almost complete
reflection for one sense of polarization). DNA films with
ellipticities of nearly 4 degrees (AL—AR = 0.14) have been
reported and many measurements of ellipticities in the range
from 0.1 to 10'3 are routinely measured by CD scattering
methods for large, optically active, biological aggregates.l0
Thus models which give CIDS values in the range from 1 down
to 107 % will have applicability in the interpretation of
experimental measurements. In extreme cases in which the
pitch is much larger than the radius of the helix or the
radius much larger than the pitch, simple formulas can be
derived that will give approximate values for the scattering

intensities. For the zero layer lines these formulas reduce

to approximations that have been used for computational pur-
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poses in the field of helical antennae.3 The values obtained
for these cases can be used to check the ratios of’pitch to
radius as determined by the number of zeros measured for the
CIDS scattering envelope. If the whole scattering envelope .
cannot be measured, simple formulas for specific angles can
be used to determine roughly the helical parameters.

Here we will diScuss only one case of experimentally
measured CIDS. This system has been chosen for its simpli-
city and because it allows easy correlation with the calcu-
lated values. These are the membranes of the bacterium

.Spirillum serpens, which show differential scattering for

circularly polarized light when suspended in solution (Chiu,
Maestre and Giaeser, in preparation). These flat, sheetlike
membranes should not show CIDS, and only small corrections
to the circular dichroism for Mie type scatteringl1 is
expected. However, a strong signal was measured at right
angles to the incident light beam, in the wavelength range
of ZOO-SOO nm (Figure 5). Electron micrographs showed that
rodlike membranes with a diameter of approximately 160 nm
were mixed in with the flat membranes (Figure 6).. Célcula~
tions fdr a helix with ratios of pitch énd radius to wave-
length which corfespond to the experimental conditions give .
the scattering pattern shown in Figure 7. Although the com-
puted CIDS is for an oriented helix with the scattering
plane perpendicular to the helix axis, and the experiment

is for an unoriented sample, the results can be qualitatively
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Figure 5. CD plots and CIDS of Spirillum serpens membranes.

Normal CD measurement is solid line. CD(FDCD)
measurement is the forward scattering cone.
Curves labeled "CD(FDCD) side scattering' are

- two different measurements of the sample at
right angles. The back-scattering cone is de-
picted by xxxxxx. From Chiu, Maestre and Glaeser,

unpublished.
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Figure 6.
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‘Electron micrograph of Spirillum membranes.

It shows both sheet-like membranes and fubular
arrangements. Magnification is ~40,000f Pre-
sumably it is the cylindrical arrangement that
gives tﬁe measured CD scattering. (Chiu, Maestre

and Glaeser, unpublished.)
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Figure 7.
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Total scattering and CIDS plots of a helix with
geometrical parameters similar to those of the

rods of Spirillum serpens as seen in the electron

microscope (Figure 6). Pitch = 2.6 nm, radius

= 208 nm, 6 turns and wavelength = 260 nm. The
label CD/MAX indicates that the calculated values
of CIDS have been scaled to 1.00; the actual

maximum value calculated is 6.7 x 10_3.
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compared. The computed and experimentally observed scatter-
ing patterns agree well in the angular dependence as well as
in the magnitude of the signal. It is clear that even the
simple model discussed here can be usefully applied to bio-
logical structures.

We think that the theory of CIDS for chiral structures
as developed in Chapter 2, in addition to the conclusions
drawn in this chapter, justifies a sérious effort to imple-
ment more refined techniques to measure the CIDS as a func-’
tion of angle and wavelength for oriented samplese12 In
Chapter 6, a general theory of total and differential form-
scattering for unoriented samples will be presented. It is

expected that this theory would provide information on biolo-

gical chiral structures in solution.

VI. Conclusions.

In this chapter, numerical and analytical calculations
of the total and differential scattering of an oriented
helical structure have been presented. The numerical calcula-
tions were carried out as a function of the scattering angle
in each layer line (if the pitch and the length of the helix
are large compared to the wavelength of light) or at different
altitude angles, if no layer lines exist. The scattering pat-
terns have been found to be extremely sensitive to changes in
the geometrical parameters of the helix. The sign of the

CIDS signal is opposite for chiral objects of opposite handed-
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ness, therefore CIDS can be a useful technique to determine
the sense of chirality of these objects.

For values of pitch and radius greater than the wave-
length, the CIDS will show lobes that alternate in sign for
most layer lines; this lobular structure disappears when
either pitch or radius is less than the wavelength. For
the first case we have presented approximate expressions
that govern the dependence of the number of lobes on the
structural parameters of the helix as well as on the layer
line that is being considered. These expressions show that
the lobe structure of the differential scattering patterns
"is linearly proportional to the ratio of the radius to the
wavelength of light. In general, the number of lobes decreases
with increasing order of the layer line. The dependence
of the number of lobes on the ratio of pitch to wavelength
is weak in most layer lines and absent in the zeroth layer
line. The overall symmetry of the scattering patterns is
comprised of two factors: the positions of the zeros that
determine the lobes are governed by the Bessel functions,
whereas the envelope of the pattern is mostly determined by
trigonometric functions of the scattering angle, ¢. The
signs of the lobes and the positions of the zeros (the scatter-
ing pattern) will not be affected by the usual experimental
difficulties associated with light scattering. Dust and other
nonchiral contaminants can change the magnitudes, but not
the general pattern of scattering.

It is possible to find specific directions for which
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the CILS vanishes at a given ratio of pitch, P, and radius,
a, of the helix, to the wavelength of light. We have derived
an expression relating the ratio of P/a as a function of
wavelength of light at which differential back scattering
(differential reflection) vanishes. This geometrical condi-
tion constitutes a point of inversion of sign of the differ-
ential reflection.

A wide range of samples have been experimentally studied

with values of CIDS ranging from 1 (liquid crystéls)4 to 10—4

10 Qualitative interpretation

(macromolecular aggregates).
of these results can be made from our simple model. One
application to rodlike structures observed in membranes of

Spirillum serpens is discussed. We think that measurement

of the differential scattering of polariZed light and X-rays

can become a very useful method for structure determination

in macromolecules.
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Chapter 4

THE GENERAL POLARIZABILITY TENSOR
AND ANOMALOUS SCATTERING |

I. Introduction.

All the theoretical work and the calculations pre-
sented so far on the CIDS of chiral structures have been
restricted to the case of an ofiented helix with a uni-
axial (tangential) polarizabiiity° As pointed out before,
this particular choice of the polarizability has a twofold
effect: 1) the values of the circular intensity scattering
were independent of the magnitude of the polarizability, in
particular of its wavelength dependence, and therefore the
model could not take into account any absorptive phenomena;
2) all differential scattering patterns were symmetric
around the direction of incidence of light (see Chapter 2).
| In this chapter, numerical computations of the CIDS of
a helix possessing a triaxial polarizability along the
main axes of the tensor, as a function of the geometrical
parameters of the chiral scatterer and the wavelength of
light, are considered. The analytical expressions for the
case of a biaxial polarizability will be derived and a
careful analysis of the symmetry rules involved will be
done. The last part of this chapter involves a discussion

of the dispersion dependence of the differential scattering




121

intensities for the particular case of a Lorentzian-shaped

polarizability.

II. Numerical Calculatioﬁs°

1) Equations and results.

In the numerical calculations presented here, Equa-
tions 33, 34, and 36 of Chapter 2 have been used. Since
these equations give the amplitude and the intensity of the
scattered electric field for a tangential polarizability,
equivalent equations along the other two main axes of the
polarizability have been derived. The derivation follows
the same lines as in Chapter 2. Here we only write down
the additional results. Perpendicular axis, incidence €,

polarization e

by - P =P 2 (2) _ -15,
E(r) = SEg Kt 2 @) 0T, (7))
C(-1)™ey
-2 2 J_(Qa)s_ () (-1)"te, (1)

P2y g ays, M -ntte )
. *+'n\
sin(PRAkz/Z)eln(w 3

perpendicular axis; incidence €y polarization e
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E(rv) = i_z L"\’P.{[%Z Jn(Qa)Sn(l)('i)z(n+l)]gl
n=-o .

'
é?%

| (1), 412 (n+1)
mJn(Qa)PTnSn (-1) ﬁ le,

=~ 8

(2)

00

(a2 9,2 () 1M ed

n=-o

. o
sin(Pok_/2)e'™(V *7)

where
K = o BF
~P P ~
B = AhM
- 2y (12 ;
F o= (1-kk/k™) (k"/r") EO exp (ikr')

where & is: the number of turns of the helix as before, Qa
and M have the same definition as in Chapter 2, Ah the

cross-sectional area of the helix, and a, is the value of

P
the polarizability along the perpendicular axis defined in
Equation (15) of Chapter 2. The equation for the scattered
fields associated with the normal axis are: normal axis,

incidence e,, polarization e:

g(fy) - %gn'{[§=-mJn(Qa)(ansn(Z) * (ﬂTn)ﬂl)e
-1)™7e

1
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o0

+ [z Jn(Qa)sn(z)(»1)““]gz}sin(pzAkz/2) (3)

=-00

*
Qin (v +3)
with gn = aan

We assume now that the electrons in the scatterer are

harmonically bound, so that their response to an external

field can be simply expressed as:1
a = £
L 12 . Zi%x -
Z —(Ax
T e O S md B

where f is the strength of the absorption band centered at
wavelength XO and AXx is equal to its width at half-height.
In the numerical computations we have used polarizability
tensors with two or three principal values along principal
axes oriented tangent to the helix, t; normal to the helix,
n; and perpendicular to these axes, P (Chapter 2). Total
and differential scattering patterns were calculated as a
function of the pitch and radius of the helix, the wave-
length of incident light, and for various strengths (f),
widths (A)), and positions (Ay) of the absorption bands
along the axes defined. Figure 1 shows the results of the
total and differential scattering for the case of a tri-

axial polarizable helix of pitch = 3.6 and radius = 1.1;
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Polar plots of intensity versus scattering angle
¢ showing the +1, 0, and -1 layer lines (LYR) of
the CIDS and total scattered intensities (SCATT
Y) for light incident alongAthe y-axis (from
right to left along 270° on the 0 layer line).

The parameters are: pitch P = 3.6, radius R =

1.1, wavelength W = 1.0, length L = 20 turns and

a triaxial polarizability, with a tangential

.absorption band AOt centered at 1.0, a perpendic-

ular band xOp = 1.5, and a normal band AOn = 2.0,
The strengths of the bands are all 1.0 and their
half-height width chosen equal to 0.15. Heavy

and light lines indicate negative and positive

-values of CIDS, respectively.
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the wavelength A = 1.0, and centers of bands are AOt = 1.0,'

A = 2.0, A = 1.5, with strengths, f = 1 and widths,

On Op
Ax = 0.15. Figure 2 shows the total scattering and the
CIDS for a helix of the same dimensions, but with uniaxial
(tangential) polarizability. In both cases, +1, 0, and -1
layer lines are shown. The main feature of the general
polarizability results is that the differential scattering
patterns are now asymmetric when the wavelength of the
incident radiation is within an absorption band of the
polarizability. This contrasts with the uniaxial model
where the 270°-90°-axis (see Figure 1) is a C2=axis for
each of the layer lines. For a general polarizability,
only the zefo layer line has this property. The asymmetry
is seen both in the CIDS and in the total scattering; it is
called anomalous scattering in X-ray diffraction. One sees
in Figure 1 that the +1 and -1 layer lines are the mirror
images of each other. A second feature of these general
polarizability calculations is that the lobes of differen-
tial scattering have decreased invnumber (compared to the
ones appeafing in the uniaxial patterns) as well as having
become sharper and restricted to smaller domains of the
scattering angle y. Apparently each polarizability pro-
duces its independent pattern; the superposition of these
patterns produces sharper and more localized lobes.

| We found that the use of purely real or purely imagin-

ary polarizabilitiés had-the effect of producing total and

-

it
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The corresponding polar plots of the same helix
as in Figure 1 but having a uniaxial polari:za-
bility along the tangential direction with Aot =
1.0, band strength = 1.0, and width = 0.15 as

before. Notice that both the CIDS and the total

- scattering away from the zero-layer line have

regained their symmetry across the 270°-90° axis.
As in Figure 1 the negative values are depicted

with heavier lines.
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differential scattering patterns symmetric about the 270°-
90° axis. This is shown in Figure 3 for é helix of the same
dimensions of those used in Figure 1 and with the polariza-
bilities a, = Re at,ap = Re ap, and a, = Re o, . It should
be pointed out that the number of lobes for the zeroth-layer
line in Figure 3 is the same as in the corresponding layer
in Figure 1, but here, three negative lobes are too small

to be seen in the figure. As discussed in Chapter 3, the
number of lobes of the CIDS pattern is determined by the
geometry of the scatterer and not by the values and direc-
tions of the transitions in the scatterer.

In order to gain a better understanding of the symme-
try laws involved in the patterns of total and differential
scattering, the theory of CIDS for helical mélecules is
explicitly applied to the case of a biaxial polarizability.
It will be shown that by writing the polarizabiiities in
the form o« = R exp (iy), a phase.change is introduced in
the angular dependence of the scattering intensity, which
is equal to the difference in the complex phases between
the polarizabilities iﬁvolved; this phase change is respon-
sible for the antisymmetric properties observed. A detailed
analysis of the symmetry of the scattering patterns will
show their relations to the dispersive and absorptive prop-

erties of the polarizabilities.
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Polar plots for the same helix as in Figure 1,
with a triaxial polarizability but with

a, = Re O Re a_, and a_ = Re G - Every-

t P D n
thing else in the calculation was the same as in
Figure 1. The CIDS and the total scattering are

completely symmetric across the 270°—90° axis.
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2) A biaxial polarizability.
We choose a biaxial polarizability with principal axes

along n and t. We can define the scattering matrix for the

o 2
helix as: (where A = (kzr')AhM Eoexp(ikr'))

S = A(1-kk) P elkeTey ¢t + o nn)de (2)
~ N | ~~ ~

| whereA% = k/|k| is;é unit vector along the diréction of

scattering, F includes constants and distance dependent

factors, & is the number of turns of the helix, oy and o

are the magnitudes of the principal‘polarizabilities, and r

is the vector position of the segments in the scatterer.

Now the scattered field can formally be written as:

! =
gscatt (r') 5 ginCident

The electric field of the scattered light for right
circularly polarized light and left circularly polarized
incident light with polarization vector defined by (e3 +
ielj and (e3 - iel), respectively, and incident wave-vector
50 along €, (y-axis) is:

la e Q‘
E = A(1-kk)-/S

YT g

T iAaker :
oyt (e granincey)

(3)

ti(a t(tre;)va n(n-e;))]do
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The plus sign gives the scattered field for right circu-
larly polarized light and the minus sign for left circularly
polarized light, with Ag = § - EO' For a helix oriented
along € (§°§ = 0), we can write the terms that must be
added to the ones calculated with the purely tangential
polarizability (see Chapter 2) to obtain IL-IR. These
additional terms are:

eiAge(f°f'))(n°t')

% & 2 % ’
E E, - EgEp = 4A%{//Im(a, o

L™L R™R n

(t'-ez)(n-e )dede’
4
+ffIm(ata; eiAB'(I‘E'3)(E-§)(3-§3)

0+ (n' ve;)dods )

where Im means the imaginary part of the expression should
be used, and where the limits of integration have been
omitted for simplicity. To perform the integrations indi-
cated in (4), we rewrite the polarizabilities oy and a, as
ay = Rteth and a, = Rneiyn where Rt’ Rn, Yeo and Y, are
real numbers.

The integration of Equation (4) allows the calculation
of the contributions of the cross-terms involving both the

tangential and normal axes of the polarizability, to the

differential scattering. The terms that depend only on t
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have been presentéd in Chapter 2 whereas in taking the dif-

ference the terms in n cancel as seen in Equation (4). The cor-

rection terms for IL-IR for a biaxial polarizability along

t and n axes are therefore

2
A R R {z;aj [(ZJn 1 n-2 Jan+1)COS(¢’+5)

°(2Jn+1Jn+2 Jnjnnl)cos(w’-s)]

+k2XaP

*Z;ﬁjn [Jn+1Jn»2C°s(Sw'+6)+(2JﬁJn+1'Jn-1Jn~2)

-cos(w'+6)-Jn+an_1cos(3w'—6)

“(23,3) 17T, 2Tnag )08 (07 -6)]

+kxk aP

5 sin(3y'-8)

[J 51n(3w +§)-J

n+1Jn 2 n+2 n-1

2nM

+J sin(y'+8)

n+11

'JnJh-l sin(y'-8)]

+k2ap :
[Jn+2Jn_]cos(3w -6) - Jn+1Jn 2cos(3¢'+5)

4nM

+Jn+2Jn¥1cos(Q'v6),

-Jn_lJn_zcos(w'+§)]
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+kxkzP2
. . ) . )
W- [Jn—ZJn sin (29 '+8) Jan+2 sin(2y'-8)]
+kzk PZ
V. -
I [Jan+2 cos(2¢'-8§) Jan_Z cos (2y'+8)]}

with 6=ytayn and the arguments of the Bessel functions, which
are Qa, the angle ¢' , and the constant M have the same ’
definition as in Chapter 2, and kz and kx are the e and ey

components of the scattered wave-vector, respectively.

III. Symmetry Analysis.

In this section, an analysis of the Symmetries involved
in the scattering pattern of an absorptive chiral structure
is carried out. - It is clear that since the coefficients
appearing in Equation (5) are different for each term, each
one of them in turn must show all the symmetry behavior of
the overall scattering pattern. Therefore it will be suf-
ficient to do the analysis for only one of the terms in
expression (5). Here we will do this for the term:

k k P

améme

[J.J

Ty sin(2ete(y v )T T

n"n+2

(6-1) : (6)

sin(29'- (vg-vy)) ]

(6-2)
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In all the correction terms, the use of a general
polarizability has the effect of introducing phase changes
(Yt'yn) in the trigonometric functions of thevscattering
angle Yy and related angles yY'. These phase shifts are
related to the scattering patterns which show differential
scattering intensities in more restricted and smaller
domains of the scattering angle y as discussed above. It
is therefore clear that the new symmetry properties must be
contained in the crossed terms of t andkg, and consequently,
our analysis does not have to consider the contribution to
the scattering intensities of the purely tangential solu-
tion given in Chapter 2. Figure 4 shows a diagrammatic
description of the symmetries involved in the differential
and total anomalous.scattering. The lines drawn from the
scatterer to the plane A represent actual directiohs of the
wave vector of the scattered light. Any point in the plane,
fherefore,whefe nonvanishing differential or total scatter-
ing is observed, can be described completely by the coorai~
nates (kx,kz), its sign of polarization (in the case of the
differential scattering), and the observed intensity at
that point. One sees that the point 0 represents an inver-
sion point for the pattern in plane A, the differential or
total scattered intensities of the point (kx,kz) being the
same as that of (~kx,-kz), and that of (»kx,kz) being the
same as that of (kx,-k ). Through our symmetry analysis of

z
the differential scuattering, we should be able to show the




Figure 4,

Graphic depiction of the antisymmetry involved
in the anomalous scattering of plane or circu-
larly polarized light by a chiral structure.

The plane A can be a photographic plate, for

example. The point 0 labels the direction of
forward scattering and it represents an inver-
sion point for the intensities recorded at the

plate.
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existence of the following properties: (a) when the polar-
izabilities are purely real or imaginary, the patterns must
be invariant for a change of kx > -kX and will also be

invariant for a change kz + -k_; (b) when the polarizabili-

z
ties are complex, the equations should be invariant only

for a simultaneous transformation of kx + -kx and kZ > =kz;
(c) the zeroth-layer line is completely symmetric to inde-
pendent changes of kx > -kx and to changes of kz > -kz
regardless of the use of complex polarizabilities; (d) the

total scattering shows the same asymmetric behavior as the

differential scattering. Equation (6) can be rewritten as:

k_k

Xz 2
=== P" {(J
4ﬂ2M2

Janan+2) sin2y'cosd+ (Jn=2Janan+2)°

(7~1) (7-2) (7)

n;Z

cos2y' sing}
Equation (7) has the general form:

C1xC1.P18

zplB cosd§ + CZXCZZPZstind
where C stands for coefficient, P for phase (sin2y' or
cos2y' in this case) and B for the combination of Bessel
functions.

For light incident along e, (see Chapters 2 and 3),

the argument of the Bessel functions (Qa) is given by:
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_ 2ma kaznz ‘ I—inz 1[2 1/2
~;§~) siny)

Now, when k> -k_then y - 180 - y and ¥ + 180 - y . So
we see that Qa and therefore the Bessel terms (B's) are
invariant to changes of kx > —kx. The transformation

kZ > -kz implies n + -n but since this term appears squared
'in the expression above, Qa is also invariant to changes
of_kZ -+ 4kz. However, the transformation_kZ > -kz has an
effect in the term B through the order n, n-2, n-4, etc.,
appearing in each of the Bessel functions. Finally, since
w’=w*+ﬂ/2 then the transformation kx > —kx will certainly
affect the term P although it will be invariant to the
transformation kZ > —kz. :In what follows we will analyze
the transformation properties of expression (7) when

kx + —kX and kz -> —kz.

1) term 7-1: for kx + -k

X
a). Cyyp > ~Cyx

b) Clz -> +C12 (invariant).
c) B1 > B1 (invariant).

' * *
d) Since: sin 2y' = sin 2 (y +n/2) = -sin 2y
*
and: when kx -> —kx then w* = 180 - vy
*® *
we have -sin 2y =-sin 2 (180-y ) = sin 2y .
So: P1 > —P1

for k. » -k
z z
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term 7-2: for kx + -k

a)
b)
c)
d)

b)

c)
d)

C1x - Clx (invariant).

Clz > -Cqy

P1 > PI (invariant).
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Since n = 0 is the zeroth layer line, we take,

for example:
k. :n-=1 J JJ, - JJd

-k.:n = -1 J Jdy - Jd

Z ‘ - 371

X

C,, + -C

2x 2x

C,, >+ Cy, (invariant)

2z
B2 -> B2 (invariant)

*
Since: cos 2¢y' = cos 2 (v + 7w/z)

and: k> -k 3" > 180 - 3"
*

then: - cos 2¢ =+ - cos Zw*
So: Pl - P1 (invariant)

for kz > —kz

CZX + CZX (invariant)

Coz » "€y

Pl > Pl (1nvarlant)

kZ: n =k1‘ J1J-1 + J3J1
-k n = -1 J LI + J.J

So B, - - B

*.
- cos 2y

1> By

(invariant)

So: B
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It can be shown that the above term, under the double

reflexion (x - -Xx; 2 » -z), transforms as:

C C P.B,cosé + C, C, P,B,sin§

Ix71z° 171 2x72z2° 272
S\ [+ /+\ [+ SN\ [+3/+\ [+
v ¢l Yy vty Ny | (8)
- L“J 4 A - - I\+/ 1+

where the terms affected by changes of kz > ek% ére shown
in square brackets while the ones affected by changes of
kx > -kX are shown in parentheses. From expressions (8)
and (7) we see the term (7-1) is symmetric with respect to
~changes of ko > -k as well as to changes of k, ~» -k_,
whereas (7-2) is antlsymmetrlc with respect to either of
these transformations. This different behavior of the two
terms is responsible for the asymmetry observed in the dif-
ferential patterns. When the polarizabilities are purely
real, then 8§ = 0, and the asymmetric term vanishes, leaving
only the term (7-1) invariant to changes kX - —kx as well
as to changes in‘kz + -k . Similarly, when purely imagin-
ary polarizabilities are used, this means that Yy =
(Znt + 1)n/2 and Y, = (Znn + 1)n/2 for ne, n = 0, 1, 2
therefore the difference § = Ye Yp T Z(nt=nn)w/2 and
sin § = 0, leaving also in this case only the symmetric
terms. When the polarizabilities involved are complex, it

is clear from (7) that the term will still be symmetric for
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the simultaneous transformation (kX - =kx; kZ ¢,°kz)'
Finally, in the zeroth-layer line, even though the polariz-
abilities might be complex, this term vanishes, either
because kz = 0 in the zeroth layer line, or because the
Bessel term B evaluated at n = 0 vanishes. Expression (7)
contains, therefore, all the antisymmetric properties
depicted by the differential scattering pattern. The other
terms in Equation (5) can be analyzed in an identical fash-
ion as was the term of Equation (6). All of them show the
same antisymmetric behavior for the simultaneous reflexion
(kx > -ky; kZ > -kz). In what follows, we indicate the
symmetry transformation of the terms of expression (5)

under this double reflexion:

The ki - term transforms:

Clx P1 B1 cosd + CZX P2 B2 sind
+ +\ '+ + +\ 1+
+ Yoy v ity
+ +/ |+ + - -

The kxky - term transforms:

Clx P1 B1 cosé  * sz P2 BZ 51n§
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The ki - term transforms:

C1 Pl B1 coss + Cz ?2 B2 sing
N\ NT+ +\ AN+
YRV Y vy Yy
+7 W/ 1+ YAYAE
The ky kz - term transforms:
C12 P1 Bl cosd + CZz Pz,Bz sing
+ +\ [+ + +\ [+
¥ ¥ ¥ ¥
- TAE - WAL

The k =Uindependent term transforms:

P. B cos8 - P B2 sing

1 71 2
+\ I+ N\ T+
2 | R v
+/ 1+ -/ L-

From the ébove results, therefore, it is clear that
all fhe»terms in Equation (5) show the same antisymmetric
behavior under the simultaneous reflexion (kx > -kx;
kz -+ -kz). Their symmetry diagrams characterize uniquely
the reaction of the helix to opposite circularly polarized




light near the absorption band. Essentially, the same
findings are applicable to the symmetry properties of the
total scattering (seekFigure 1). The correction terms for
the total (IL+IR) scattering can be obtained from expres-
sion (3). Squaring the amplitudes of opposite circular
polarization and adding them, after some algébra, we obtain
a formal expression for the correction term as:

1+ = 2A2RZ e T T (i Y (nve)

L "R

[ne(1-kk) -n']dede’
(9)

HIR R, SSC08 (8K (1T 1)+ (1 1)) (e
(0 e [n'+ (1-kK) +t1dedo )

where n' and n indicate the dependence of the normal axes
with respect to variables 6' and 6, respectively.

Equation (9) shows that the total scattering involves
a cross-term of the values of the polarizability along the
two axes t and n, and includes the phase difference § =
(yt-yn); this accounts for the antisymmetry shown by the
total scattering patterns. Clearly, if the polarizability
is spherically symmetric, then the phase changes (yt~yn),
(yt=yp), etc., will all vanish and the patterns will regain

their symmetry. This behavior is indeed shown in Figure 5,



Figure 5.
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Polar plots for the total scattering for a helix
with the same structural;parameters as those of
Figure 1 but possessing a spherically symmetric
polarizability'with ‘ot = Xop = Aon ° 0.85; band
strengths = 1.0; and band widths = 0.15. The
CIDS patterns are all zero. The total scatter-

ing appears symmétric as expected (see text).
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where all three principal values of the polarizability are
identical. The total scattering patterns appear symmetric,
while the differential scattering patterns vanish as
expected from our discussion in Chaptérs 2 and 3.

A1l the results obtained in this section are com-
pletely general and independent of the particular choice
of the polarizability. In the following section, an analy-
sis will be presented on the dispersion dependence of the
differential scattering intensities for the case of a
Lorentzian-shaped pdlarizability, The asymmetry of the
polarizability will be related to ﬁhe positioﬁ of the
<absbrption,band with respect to the wavelength of the inci-
dent light.

Although thé details of the expansions are only valid
for this particulér case, most of the cdnclusion will be

valid for a Gaussian-shaped band as well.

IV. The Dispersion Dependence of the Scattering

Intensities.

We have shown above that the use of complex polariza-
bilities, i.e., allowing for the scatterer to possess
absorptive as well as refractive properties, has the effect
of producing scattering patterns which are quite asymmetric.
Indeed, the axis defined by the direction of incidence of

light is a C,-axis only for the zeroth layer line; the

2
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remaining layer lines have lost their biaxial symmetry in
the direction 270°-90° (see figures).

In all the computations we have presented, the simple
harmonically bound electron model has been used for the
dispersion properties of the polarizability. Here, start-
ing from expression (1), we will derive the wavelength
dependence of the scattering intensities for this
Lorentzian-shaped polarizability. Expression (1) can be}

rewritten as:

2
1 1 1 1 .2 AA
S o A 204 Y S S 2 S .y v 2
A A A A AT (An = (5
: : 0o - G55 .
if 8 e N I 2 a2 -
AOg - GRH T L AP afog - BhH?

From this expression we see that in resonance, AO = A, and
the polarizability becomes purely imaginary. In view of
the results presented above, for wavelengths of light cor-
responding to the center of the absorption band, completely
symmetric scattering patterns must be observed for IL~IR as
well as for IL+IR, if the polarizability has a single
absorption band common to all axes. Away from the absorp-
tion band the anomalous behavior of the scattering disap-
pears. We must show, therefore, that the phase difference

¢ =(yt»yn) responsible for the antisymmetry of the patterns,
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vanishes at wavelengths far outside the absorption bands.
To demonstrate this we compare the polarizability
o = R(cosy - i siny) with Equation (10) to obtain an

expression for the phase angle v:

-AA
O - [83/21%)
tan y = — T
(= - =)
AO A

Since AX/2 << AO; then

cany e gax)xz
R

Away from the absorptidn band we can expand around

AO/A:

3 '
‘ X 0 ' AX
tan y =y = '%“ (- X7 * ;3'* coe e vy

(away from the absorption band)

Again AX/x << 1, since, in general, the width of the bands
spans over a restricted domain.

_ 1 . '
§ = (yt~yn) =5 (Akn AXt) ~ 0
| (11)

(away from the absorption band)
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This is the result we were seeking. It predicts that far
away from the absorptive band the antisymmetric terms
(proportional to sind) vanish, rendering compeltely sym-
metric patterns of scattering. Figures 6 and 7 show in
fact that this is the case. (See details in figure cap-
tions.) By using essentially the same approximations, it

can be shown from Equation (10) that away from resonance:

| c?
£ Ao
Re a = i ~ f (1 + *7—*7)
. AX Ao-ag
-
(A -xg)xg
2
with c2 = 8A°
Ao 12
0

And in a similar fashion:

“f A
Im a =
2 .2 2 .. AN2
(A 'AO) 0(1 - z;ifx

2.2
020

2
fc*o cAO
7., @+ =)
AAO(A2~AO) (A mxg)

&

Comparing the last two expressions, we obtain:
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Plots of CIDS and total scattering for the +1,
0, and -1 layer lines for a helix of P = 12,

R 0.6, L = 20 turns. The wavelength of light

B

W 6.0 coincides with the center of the tangen-

tial band (AOt) and is close to the perpéndicular

Agp = 6.20 and the normal band A, = 5.00. The
p ; On

band strengths are 1.0 for all three bands and
the width is 0.30. Notice that the +1 and the
-1 layer lines are asymmetric for the CIDS as

well as the total scattering.
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Equivalent plots to those of Figure 6 for the
same ratios of pitch/wavelength and radius/
wavelength and the same band positions. How-
ever, the wavélength ofllight is W = 10.0, i.e.,
away from any of the absorption bands of the
scatterer. The widths and strehgths of the bands
are the same as in Figure 6. CD/MAX indicates
that‘the CIDS intensities have been normalized

to 1.0 in this case and therefore cannét be com-
pared to the CIDS values of Figure 6 on a quan-
titative basis. The patterns as discussed in

text are all symmetric.
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s

In o = 0 Re o | (12)
My (A28

From this last expression we see that in a first approxima-
tion, away from resonance, the contribution of the imagin-
ary part of the polarizability to the scattered fields is
of the order of A" % times smaller than that of the real
part. Therefore the iméginary part will not contribute sig-
nificantly to the scattering for regions of the spectrum

outside of the absorption band.

V. Discussion.

The asymmetry obser?ed in the scattefing patterns is
the result of‘having chbsen for the scatterer argeneral
polarizability. As discussed in Chapter 2, this choice
implies that in calculating the CIDS, the dispersion depen-
dence of the polarizability cannot be cancelled when the
 CIDS ratio is taken . The effect is to make thé calcu-
lated differential scattering intensities, as well as the
total scattering, dependent on the absorptive properties
of the scatterer. This behavior ié a manifestation of
"anomalous scattering' described in crystallography.3
Thus, Friedel's law of symmetry of the scattered intensi-
ties above and below the equator of the diffraction pattern

is violated when the wavelength of the incident radiation

falls inside the absorption band of some of the scattering
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elements in the lattice. As the wavelength of light moves
away from the absorption band, the asymmetry gradually dis-
appears to eventually recover the symmetry of the pattern
far away from resonance. However, the antisymmetry shown
by the absorptive helix is a property peculiar to the geom-
etry and symmetry of the scatterer studied. In this way,
whereas the symmetry of the scattering patterns is a gen-
eral manifestation of anomalous scattering, the antisymme-
try shown by the patterns is peculiar to the highly symmet-
ric chiral scatter discussed.

It is well known that the phenomenon of anomalous
scattering is used in crystallography as a method to deter-
mine the absolute configuration of the scatterers and to
recover the phases of the scattered fields,4 In Figure 8
the CIDS of a left-handed helix for layer lines +1, 0, and
-1 is depicted. It should be compared with the correspond-
ing layer lines in Figure 1. It is seen that the total
scattering has a reflection plane defined by the direction
of the incident light, and pérpendicular to the plane of
the figure. The CIDS, on the other hand, gets reflected
through this plane and also changes sign when a transforma-
tion from a right- to a left-handed helix is done. Thig
effect is important, since it can immediately be used to
determine the sense of the helix. Shown in Figure 9 is
the effect on the scattering of light incident perpendicu-

lar to the helix axis and plane polarized first along this



Figure 8.
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The effect of going from a right- to a left~
handed helix can be observed by‘comparing this
figure to Figure 1. A left-handed helix is
obtained by using a negative pitch (P = 3.6 in
this case). Everything else is the same as in
Figure 1. The total intensities get reflected
through a plane containing the 270°-90° axis and
perpendicular to the plane of the figure, whereas
the CIDS is reflected and has changed sign. The
zero layer line is the same in both the CIDS and
the total scattering but the sign of the CIDS is

changed..
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Figure 9. The figure illustrates the fact that plane
‘polarized light can be used to determine the
handedness of an oriented scatterer when the
wavelength of light'félls within an absorption
band. Only the +1 layer line is shown. The
zero layer lines are symmetric and}indiétin-

guishable for right- and left-handed helices.
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axis (IPOLZ) and then perpendicular to it (IPOLX). Again
here the scattered intensities are asymmetric and differ-
ent for the two different polarizations. For a left- handed
helix the patterns invert as expected.

Anomalous scattering is a phenomenon known to be inde-
pendent of the state of polarizatidn of the inéident radia-
tion, and therefore independent of the symmetry properties
of the polarizability. On the other hand, we have shown
that the assumption of spherically symmetric polarizabili-
ties in our case eliminates allAthe anomalous behavior of
the scatterer. The reason for this apparent conflict is
that anomalous scattering is independent of the symmetry
properties of the polarizability only when some, but not
all, of the scattering elements of the ﬁnit cell are anoma-
lous scatterers. If all of them are anomalous scatterers,
then the violations of Friedel's Law will take place only
if the polarizability of the scatterers is nonspherically
symmetric.5 This last caSe:correspohds to our choice for
the helix. It must be pointed out that the model of absorp-
tive scattering that has been described above must still be
described as FORM—CIDS,6 since no asymmetricaliy coupled
radiation elements have been included in the model.

Qualitatively, fhe asymmetry observed in the scatter-
ing patterns is the result of a breakdown in the symmetry
of the form contribution to the scattering. By allowing

absorption bands to be present along the optical axes of
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the polarizability? the helix scatters with a different
efficiency, according to the position of the point in the
scatterer excited by the front wave of the incident radia-
tion. The symmetry observed in the nonabsorptive case cor-
responds to equal scattering efficiency of the points on
the scatterer. The dispersive equations derived for the
CIDS in this paper should give information about the handed-
ness of the helical (chiral) structure as well as about the

symmetry properties of the polarizability.
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Chapter 5

CORRECTION OF THE INTERNAL FIELD
BY DIPOLE-DIPOLE INTERACTION

I. Introduction.

In Chapters 2 to 4 the theory of the form-contribution
to the CIDS of chiral molecules has been presented along
with numerical calculations for different parameters of the
scatterer. In Chapter 2, form-CIDS is obtained by using the
first-Born approximation in the internal field,1 i.e., by i-
dentifying the internal field at any point in the scatterer,
with the incident field. It was also shown that combining
this approximation with the use of a uniaxial polarizability
along a helix predicts a form-CIDS independent of the posi-
tion and shape of the absorption bands of the scatterer. In
Chapter 4, we were able to account for absorption band ef-
fects by using a general triaxial polarizability. Here, u-
sing a uniaxial (tangential) polarizability for a helix, we
will correct the internal field, by taking into account the
interaction among the dipoles induced in the scatterer. It
will be shown that, in this case, the model will depend on
the position and shape of the absorption bands.

In order to compare the results with those obtained in
the preceding chapters, the calculations will be made for a

helix of defined radius and pitch. However, an essential



166

difference between this model and those in the previous chap-
ters is that, due to the nature of the dipole-dipole inter-
action, the distance between the dipoles must remain finite
for the interaction to remain bounded. Therefore, a dis- |
continuous helical array of point dipoles eqﬁally spaced

will replace the continuous scatterer of before.

II. The dipole-dipole interaction.

In Chapter 2, we saw that the scattered electric
field at a point in space is given by the superposition
of the radiation fields of the dipoles induced in the
scatterer. In all derivations then, the effective per-
turbing field at a given point«polarizablé group was assumed
to be the incident field §°(£i)= .This‘is the first Born
approximation for the local field. A rather more realistic
approach to describe the mutual actions between the incident
field and the polarizable points in the scatterer must
take into account the energy of interactions between the

dipoles induced along the field. This energy takes the form:z’3

' 1 Fee Ta. | -

Vij = Elo[._%__ -3 ll_l_S:.u]oEJ (1)

T. . . . :
1] 1]

where rij is the unit distance vector between the two
' 4

~

dipoles ui_and My Expression (1) has the form:
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where Tij is called the dipole interaction tensor. Vij
can be interpreted as the potential energy of dipole i in

the field created by dipole j:

Vij = uitEs(ry) | | (2)

From the last two expressions, we obtain:

E. ) = T..eus. 3
~3(31) ~i3 85 ; (3)

Our next step is to write the induced dipole at group i as:5

N

= s (0) | - °
My = oogtEr(ry) jzigi Ej(ry) (4

where oy is the polarizability tensor of group i, E(O)(ri)
is the applied field at position T and Ej(ri) has the

meaning given above. Substituting (3) in (4),

N
= -] (O) o -2 L]
uy = oy Ero(ry) j;igi Tij°¥; (5)

Strictly speaking, Equation (5) constitutes a set of N
linear equations, whose simultaneous solutions render the
dipole induced in group i. In practice, the dipole induced

at group j is approximated by:

0)
c= o e (O (r,
W o5 BT (xy)
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50 that (5) becomes:

N

uy =0 B0 - s 50 (2,0 (6).

~1 ‘U
j=ii &)

The term in parenthesis in Equation (6) is the "correctéd
field" we were seeking. It says that the "effective" field
atgroup i is given by the linear combination of the applied
field and the fields caused by the electric dipoles that
were inducedkat all the other groups, by the same initial
field. The result is therefore to go from an external field
to a "local" field description. |

It was shown in Chapter 1 that the scattered electric
field is proportional to the induced dipole and therefore

from Equation (6) we can write:

ikr k

. € 1L ikerp
Escatt = — o7~ kk/k ) 2 e

o (B o 1K0'Tn . Y 1 g g e"ik0'Ti

xn ~0' _~ ~ -; znj zj ~'0' s ~

j#n
(7)
A helical array of point dipoles can be described by:

g _ é PnGO ;

TS cos(neo)% + ﬁ»51n(n60)2 * o E (8)

The polarizability of each group is defined now in terms of
axis tangential to the helical array of these point dipoles,

so that:




%0 ° o ity
and
a . . a
t = - g sin(n 1+ =
4 j sin(neégli + g
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cos(ne,)j + k (9

2TM

where M is a normalization constant defined in Chapter 2.

0 is the angular sepafation between each polarizable point

along the helix, and n = 1,...,

In the case of the con-

tinuos scatterer, the polarizability (at) was defined per

unit length.

a point dipole we must set: o, =

the distance between two dipoles

Wwriting r. =.1r. - T
g ~jn ~j -0

iAk-

, Equation

Accordingly, to define a polarizability for

atGOM

expressed in radians. By

, Where GOM is

(7) becomes:

E .= F.{ L e Tn t_ [a (t E)O.M - I a_a.
scatt ~ n=1 ~nt'nt<n < 0 j#n n-j
. a2 2 -ik,eT.
(Ej°~0)(gn znj'fj)eo M™ e "~0 ~jn 1} (10)
with
ikr , 2
_ € k ERAIN A
E = —7rr (% Kk/k™)
From Equation (8) , an expression for Tjn can be obtained
and used with Equation (9) to get:
52
- 1 2 p )
En°an°Ej" Ajn - D {a Cosejn * Z;?
2 (11)
2 . P 2 ~
3(a“sin in 7 ZFYASjn) }

p2/3
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where ejn = (Jvn)eo and

2

p 2 3/2
[Za (1- cose )+ ;;7 eJn]

Equation (11) allows us to write the summation on j in
Equation (10) in terms of GJn and the dlstance vector fjn
This summation contains the interaction between each dipole
and all the other dipoles induced in the scatterer. Next
it can beAeasily seen that except for a few dipoles at both
ends on the scatterer, the interaction of each dipole with
all other dipoles is the Same,regardless of its position

on the scatférer. This is true because of the symmetry

of the array and because the dipole-dipole interaction,
being a l/r3 interaction, is short-ranged enough so that
not too many dipoles at both sides of a given group must

be considered when the summation in j is evaluated. Here
we will explicitly neglect those 'end effects'" and regard
the second summation in Equation (10) as independent of n.
This approxihation is of course valid if N >> 1. 1In the
limit of N » «, the neglect of the end effects does not
involve any approximation. The important point for us

here is that neglecting the end effects amounts to separating
the two summations in Equation (9). This is of great value

for performing numerical computations. Equation (10) then

becomes:
’§ P8kt m<;<N
E = Feof e "% 0 ¢ [(t_E )B.M - ) o o. (t *E.)
~scatt ~ nel ~n-+in <0770 j#q qJ ~0

AjOG%MZe 1K) Tiqy (12)
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where the second summation has been evaluated for say n = q.
The first term in (12) has been already derived before ih

an equivalent way for the continuous helix. Here we will
make use of (8) and (9) and write down the correction terms
for the scattereed fields (second term in (12)).

For incidence along €95 polarization along ey

Ak Pnb

. N . ® z 0

int - i(Qa cos(nb, -y )+ i a o
Escatt nzle 0 zm L g sin(ndy)e,

Zra . . .
. m 2223 sin(je,)

a P 2 A 0

+ y cos(négle, + oy €3l jzlqu“ e
j#q

(- & sin(jo,))elM’ (13a)

For incidence along €5 polarization along e,:

Ak _Pn®
. N ‘ ) # 7 0
it - § etQ2 cosmBe Y )t o 2 sinno e,
. n=1 k )
o 2rwai Sin(jeo)
a P L
L+ M,COS(HQO)EZ + 7 M ?3} JZlAJqO‘ © :
j#q
(P/27M) 02M° .
0

One final remark should be made here about Equation (12).
This equation shows that the scattered field has the form
of a linear plus a quadratic term in the polarizability,
so that when these fields are squared and the CIDS ratio

taken, the actual value of the polarizability will not cancel,
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and the CIDS will depend on the position and shape of the

absorption bands in the scatterer.

IIT. Numerical Calculations.
1) The transmission band.

| A general result of the fdrijIDS theory developed in
Chapters 2-4 is that the CIDS in the forward direction is
always zero, regardless of the geometrical and electronic
properties of the scatterer. This result is still true when
a generél polarizability is used and‘the wavelength of light
is within an absorption band of the scatterer. As explained
in Chapter 2, when light interacts with; ééy, two groups,.
i and j, two effects take place. First, each of the groups
is perturbed by the incident field and in turn radiate or
"scatter" light in ‘all directions. Second, phase shifts
between the wavelets originated in different groups in the scat-
terer introduce a diffraction phenomenon in this séattered
field. This interference effect is a function of the relative
position of the two groups, and is more pronounced as the
wavelength of light approaches the distance between the
scattering groups. In Figure 5 of Chapter 2, it was shown
that the phase difference responsible for the interference

phenomenon is given by the term ellk-kq)er

~appearing in
all scattering equations. Indeed,,(k—ko)-g is the path
difference traveled by light scattered from two different

groups. Cléarly, in fhe forward direction E-BO'= 0 and
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the phase difference vanishes. As a result, no diffraction
phenomenon of the scattered fields takes place along the
direction of the incident light. Since form-CIDS is a
diffraction phenomenon, in the forward direction CIDS is
unable to differentiate between two opposite handed struc-
tures. Indeed, let i and j be two similar groups in the
écatterer. The scatterer field for incident right circularly
polarized light can be written (through a proportionately

constant c):

ESC&tt

1Ak °Ty . idker;
R + asEpes ~)

= c(a~ERe

where ER is the amplitude of the incident field. For left
circularly polarized light the scattered field is:
iAkery

e "< 1 + g
L acEye

ESCAtt | C(o.p

1Ak T3
~L ~7)

In the forward direction Ak = k k = 0 and it can be shown that:

scatt. ,.scatt

scatt *
(Ep-**h) (g

scatt
[0 (Bp

L ) ]forward =

(14)
Result (14) shows that the forward form-CIDS obtained within
the frame of the first-Born approximation lacks any diffraction
contribution and therefore cannot give any information regard-

ing the chiral array of the dipoles in the scatterer.
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On the other hand, in the dipole coupling case of
Equation (12), the scattered field for incident right (R)
and left (L) circularly polarized light is of the form

(for groups i and j):

Escatt 1Ak°ri +

- . . idker;
SRR WAL - S AR

R T PR e R TS B €15

Again, for forward scattering AE = 0; however, the dipole-
dipole interaction has introduced in expression (15) a
phase difference proportional to the vector distance between
group i and j. When IL-IR is obtained from (15), it can
be shown that the expression is not zero. The result is
that within the dipole-dipole approximation to the local
field, interference in the forward direction is present
and forward scattering should give information on the
relative position of the dipoles. 1In particular, forward
CIDS values éarry information on the relative chiral orienta-
tions of the scattering dipoles.

2) Forward CIDS vs. CD.

An iméortant point to make clear here is that the
forward differential scattering intensities predicted by
the dipole coupling model must not be interpreted as cir-
cular dichroism, since it is present regérdless of the exis-

tence of an ahsorption band in the scatterer. Forward CIDS
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is a purely diffraction phenomenon carrying an equivalent
information to that given by CD, but not involving, as the
latter, a differential absorption. Equation (12) shows

that the phase difference responsible for the forward inter-

ference has the form:

Zm

U P e Y
P Iyl (e ryg)

where """ label unit vectors. Clearly for A >> [qul, this
phase difference tends to zero and the forwafd CIDS should
vanish in the limit of A » very large. On the other hand,
if A is large the terms corresponding to groups very far
apart so that |r. | ~ A will not contribute significantly,

~

since the dipole-dipole interaction term @i'Tij°93 dies

off quite fast with the distance between thewdipoles. The
two arguments presented above are the rationale of why, in
most cases, the CD signal measured in the forward direction
will not be perturbed by a sizeable CIDS contribution. Only
when the wavelength of light is not too large as compared

to the distance between the groups, would the forward-CIDS
contribute significantly to the observed CD. Some molecular
arrays such as cholesteric liquid crysta156 or macromolecular
aggregates7 seem to fulfill these requirements, showing huge
ellipticities in the forward direction. When circularly
polarized X-rays become available, forward CIDS intensities

would be a powerful technique to determine the structure in

chiral molecules.
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3) Programming strategies.

Numerical computations to correct the scatteriﬁg fields
for a dipole-dipole interaction were carried out in the com-
puter center of the Lawrence Berkeley Laboratory. In these
calculations, Equations (13a) and (13b) were used, together
with equivalent equations for the non-interacting fields of
point dipoles in a helical array. The summations on n in
these equations were carried out to n = 360 to obtain reason-
ably symmetric patterns. The summation on index j, label-
ing the range of dipole-dipole interation, was carried out
from j = -10 to j = +10. This last choice wés pfoven to be
good enough, since the angular distance between the discrete
dipoles was never smaller than 60 = ,3 radians or ~ 18 de-
grees. |

The program‘called COCO was set to obtain the value of
the CIDS and total scattering for‘varied values of the scat-
terer's parameters and polarizabilities. (A listing can be
seen in the appendix). The polarizabilities were chosen uni-
axial along the tangent to the helical array. In all cases

computed, a Lorentzian-shaped polarizability of the form:

was used, where f and Ag are the strength and position of

the absorption bands, respectively (see Chapter 4).
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4) Results.

Figure 1 shows the total scattering and the CIDS for
a helix of pitch P = 5.0, radius R = 1.0 and for wavelength
of light A = .5 and Mg = 3.0. The light is incident along
the 270°-90° axis (gz-incidence). Only the zeroth layer
line is shown. The strength of the band was chosen to be
f = .10. The angular distance between the point dipoles is
6y = .3. As predicted by the theory, forward differential
scattering is observed in the zeroth layer line. According
to the discussion in the last section, the magnitude of
the forward scattering depends on the relative size 6f the
correction term with respect to the non-interaction part
of the field. Figure 2 illustrates this effect for a helix
of the same parameters as in Figure 1, but with the band
strength £ = .5,

When f >> 1 the dipole-dipole interaction term dominates
and the scattering pattern becomes spherically symmetric.
This result is genéral and valid for any combination of
the structural parameters of the scatterer. For moderate
values of the strength of the band, both terms in the field
contribute to the scattering behavior, |

In Figure 3 the effect of reducing the wavelength of
light to the size of the distance between the dipoles in the
scatterer is shown (see figure captions for details). It
can be seen that the ratio R/X (in this case, greater than 3)

still controls the number of zeros of the scattering pattern,



Figure 1.

Polar plotkof CIDS corrected for dipole-dipole inter-
action of a helix made out of discrete points, polariza-
ble along the tangent to the helix and separated by an
angular distance 60=.3 radians. The helix parameters
are: pitch = 5.0, radius = .1, wavelength = .5, the
band position A= 3.0 and the band strength f = .1.

The main feature is the existence of a non-vanishing

forward CIDS. There are many lobes alternating in sign

but the negative ones in this case are too small to be

-~ seen in the figure.
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Figure 2. Polar plot for the same helix as in figure 1, but with a
band strength of .5. This means that the interaction
term has grown in magnitude as compared to the contribu-
tion of the pure field. Notice that many zeros have
disappear and the pattern moves towards the Spherical
symmetry found when f >> 1 (not shown here). In the for-
ward direction, the CIDS has ihcreased significantly

with respect to figure 1.
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Figure 3. Polar plot of a helix of pitch = 10.0, radius = 1.0, wave-
length = distance between the polarizable points = .3,
Notice the number of zeros of the scattering pattern

- which correlates with the ratio of radius/wavelength,




@.00

TB=3.00,
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as found before for the form-CIDS.

In all cases studied, when f << 1, the form-CIDS
contribution dominated. This served as an internal check
in the program. |

The effect of going through an absorption band is
shown in Figure 4. The +1 and -1 layer lines are shown
(the structural and electronic parameters are described in
the caption of the figure). It can be seen that the anti-
symmetry described in the last chaptef as characteristic
of anomalous scattering is also present in this case.
The results presented here are preliminary and by no means
complete. Clearly, thorough analytical and numerical studies
must be carried out to characterize;thé influence of the
dipole-dipole coupling in the CIDS of a‘molecular system.

5) Liquid crystals. |

In Chapter 2, the equations to describe the form-CIDS
contribution of a helix for light incident along the helix
axis were presented. The cOrresponding numerical ¢omputa-
tions, however, were not presented in Chapter 3.- This case
is of particular interst, for it can model some of the most
striking effects observed in the optical activity of choles-.
teric liquid crystals.8 Program PAN (see listing in appendix)
was used to perform the calculations. For P/A = 1 and
incidence along the helix axis, only three scattering directions
in space are allowed: 1) in therback direction (reflexion),

2) the scattering perpendicular to the helix axis, and 3) in




Figure 4.

Polar plot of the CIDS of the same helix as in figure 1
but now with the waveiength of the incident 1ight with-
in the absorption band of the scatterer. Notice that

the pattern is asymmetric but shows the anomalous anti-
symmetry for layer lines equidistant from the in-plane

scattering (zeroth layer line).
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the forward direction (transmission). The latter is not
present for the CIDS within the first Born approximation.
When the pitch of the helix matched the wavelength
of light, it was found that only one of the circular polar-
izations of the light was reflected. The other polarization
was not reflected at all. The polarization reflected
matched the handedness of the helix, so that CIDS in the
backward direction is -1 for a right-handed helix (see
Figure 5) and +1 for a left-handed helix. This effect is
unique for the ratio P/A = 1 but is independent of the radius
of the helix, which seems to affect only the relative size
of the perpendicular intensities. The reflexion effect
described above is precisely what is found in cholesteric
liquid crysta158 (see also Chapter 1) for the reflexion
band, when P/X = 1. 1In the cholesteric mesophases the
radius R has no meaning, of course, which is equivalent in
our model to the independence of the result on the radius
of the helix. The total scattering for the case just des-
cribed can be seen in Figure 6. This figure shows that only
three layer lines exist. The back scattering is found to be

50% of the forward scattering when P/A = 1. Since:
o oy ° o
IL(O ) + IR(O ) Z(IL(ISO ) o+ (IR(180 ))
and 1, (180°) = 0 and I,(0°) = I,(0 ). Then, it follows that:

1,(180°) = 1,(0°)



Figure 5.

Polar plot of the form CIDS of a helix for light incident
along the helix axis. This is a plot of intensities vs.
the polar angle, for’a fixed value of the azimuthal an-
gle (y). The plane of the plot is therefore perpendicu-
lar to the plane of the polar plots of figures 1 to 4.
The pitch of the helix is 1.0, radius = 2.0 and the wave-
length matches the pitch of the helix. Notice that

CIDS = -1 for a right handed helix in the reflexion band.

No form-CIDS is obtained in the forward direction.
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Figure 6. The total scattering corresponding to the case of figure 5.
It shows that the transmitted intensity is twice as much
as the reflected intensity. This result is only valid for

P/x = 1.
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i.e., the polarization that matches the handedness of the
helix is scattered in the forward and backward direction
with the same intensity in the first Born approximation.
The equivalent transmission effects in liquid crystals,
in which one of the polarizations of light, depending on
the handedness of the helix, is mostly transmitted while
the other is not at all, cannot be described by form-CIDS.
At this point, we have_made no calculations for the dipole

coupling model of light incident along the helix axis.

IV. Conclusions.

In this chapter a correction:of the internal field by
a term of dipole-dipole coupling in the total and differ-
ential scattering of a helix has been presented. The scat-
terer was assumed to be made out of groups in a helical array,
each one characterized by a uniaxial polarizability, tangential
to the spatial curve described by the array.

In calculating thekdipole correction, the number of
dipoles affecting the local field at a given group was
truntated. Furthermore, it was assumed that, due to the
symmetry of the array, the field is independent of the
position of the-group, except for a few dipoles at both ends
of the array, whose different behaviof was effectively
neglected in the model. This simplification was neceséary
in order to obtain simpler equations as well as to reduce the

cost of the programming. The number of dipoles considered
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at each side of a given group was 10. Under these conditions
it has been found that the dipole-coupling correction of
the internal field allows for diffraction phenomena of the
scattered fields to occur in the forward direction. This
appears as a phase shift in the correction terms, which
does not Vanish‘when 5 = 50. The result is that finite
CIDS values in the forward direction are predicted by this
model. For wavelengths of light large compared to the
distance between the coupled dipoles, the corresponding
phase factors become very small and the forward CIDS vanishes.
Numerical computations of the CIDS along the axis of
a helix and within the first Born approximation show that
for values of the pitch close to the wavelength of light,
reflexion of only one of the polarization occurs, giving
CIDS reflexion bands of %1 depending on the handedness of
the helix. This phenomenon observed in cholesteric liquid
crystals seems therefore to be a purely form—efféct. On
the cohtrary, the corresponding transmission bandé cannot
be observed within the first-Born approximation used in the
computation. These results are preliminary and the basis |
of more careful characterization of the 'local field"
corrections to the total and differential scattering of

chiral molecules.
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Chapter 6

SPATIAL AVERAGING OF DIFFERENTIAL
AND TOTAL SCATTERING

I. Introduction.

In the main body of this thesis, our objective has
been to characterize and derive analytically the equations
to describe the Circular Intensity Differential Scattering
of a chiral molecule. As a result, we have shown the pos-
sibility of interpreting the measured differential scat-
tered intensities in terms of the structure of the chiral
scatterer, Indeed, we think CIDS will become important as
a new technique to probe chiral regions in biologically
relevant structures,

The,effort to obtain analytical solutions from which
we have learned some of the physical properties and symme-
try laws involved in the total and differential scattered
intensities imposed certain limitations in the treatment
of Chapters 2 and 3. The main one has been that the scat-
terer was assumed to have a fixed orientation in space.
Clearly, the experimental difficulties in orienting the
samples to be studied greatly limits the potential capabil-
ities of CIDS as a useful technique. It is therefore of
prime importance to obtain spatial averages of the total

and differential scattered intensities so as to provide the
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theoretical basis for the intérpretation of data obtained
from the analysis of samples in solution. This objective
will be accomplished in this chapter.

Since the measured signal at the photomultiplier for a
tumbling sample is < I - Ip > , our goal will be to obtain
the corresponding averages for fhe differential and total
scattering.

The total scattering intensity for a given sample is
the same regardless of the two independent, orthogonal
states of polarizations used to describe the incident radia-
tion. Therefore, instead of derivingbthe averaged total
scattered intensity for right and left circularly polafized
incident radiation (i.e.:.IL + IR), we will deriVe I“+ Il

where I, and I are the scattered intensities for incident

I
light polarized parallel and perpendicular to the scatter-

ing plane, respectively. There are two reasons for this

choice: first, the derivations of IL+ IR are more involved
than thoée of I“ + Ii’ and second, choosing these polariza-
tion states, it is easy to calculate also < In - Il >

av

from which the quantity < I“ f'Il >av/ < I“ + I , often

>
av

called the dichroic ratio, can be obtained.

IT. Averaging of I - Ip. |
1) The molecule-fixed and the space-fixed coordinate
systems.
The field scattered by a set of polarizable groups in

space, for a given incident field EO, can be written as:
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"'ikr' A A iAk.I‘j

E(r') = Ce (1-kk).Ze “al.E
< R < 0 1
j ~J (1)

where fj is the position vector of group jth defined in a

suitable molecular frame, o, is the polarizability tensor

~

-~

of the jth-group and C is a constant of proportionality
containing some inverse distance factors. As before,
Ag = § - 50, i.e., the momentum transfer vector and g and
¥O are the wave-vectors of the scattered and incident radi-
ation, respectively. g is a2 unit vector in the direction
of the scattered light.

Now we define a molecule-fixed coordinate system,
whose orthogonal unit vectors are i', i', and g' (see Fig-

ure 1).. The polarizability tensor of the j-group can now

be written as (see Figure 1):

where the subindex j labels the group. The E‘s are unit
vectors in the molecular éoordinate system whose three com-
ponents along this frame determine uniquely the axes of the
polarizability of group j. Since this frame is defined

arbitrarily, we orient it so that (see Figure 1):

t, = £. k' + sii' (2a)

~1 ~ ~



Figure 1.
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The molecule-fixed coordinate system with basis

vectors i', j', k' is shown. The frame is orient-

-~

ed so that the polarization vector t, of the group

ithAis in the plane (i', k') and the polariiation
.th

 vector tj of the group j = is in the plane defined

by k' and 13, The unit vector T' is shown in the

plane (i', j'). Notice that Rij’ the distance

vector between groups ith and jth, is along k'.
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and

t. = £.kK' + s.1! 2b
g is Tt %53 | (2b)

~

with ! a unit vector perpendicular to k'and defined by:

-~

Tj =mi' + nj' v - (3)
Clearly
2 + 57 = 2% + 85 =m” + n” =1 (3a)

Furthermore, we require that the k' axis of the molecular
frame is oriented along the distance-vector Rij between

groups it ang jth, with R, . = lri - r.| (Figure 1).

j ~J

We define also a space-fixed coordinate system whose
orthogonal unit vectors are labeled a, E, c. This frame
is oriented so that one of its axes (in this case the c-
axis) is along the momentum transfer vector of the light,
AEFE k - k- Additidnally, the frame is rotated around
this axis so that E and E are in the C, E plane (see Fi-

gure 2). From Figure 2, then: -

Ak

~

i

4w/x  sinB c
(4)

PR
it

cosB b + sinB ¢




Figure 2.
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The space-fixed fraﬁewwith basis vectors a, b, ¢
is oriented so that Ag = 5—50 is along the direc-
tion 6f the basis vector c. The wave-vectors of
light (5, EO) are in the plane (9, g) that coin-
cides with the scattering plane. The polariza-
tion vectors of the incident light are defined
parallel and perpendicular to thisﬂplane (See

text).
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kO = cosB b - sinB ¢

where """ indicates that these vectors are unit vectors
along the incident and scattered directions of propagation
of the light. From Figure 2, it is easy to derive the
right and left circular polarization unit vectors of the

incident 1light:

E) = A+ iB=-1 [az:i (sing b + cosp c)] (5)
- ~ vZ ot ¥ ~

Using the last expression, the scattered electric field for

the opposite circular polarizations of the incident light

can be obtained, from which the differential scattered

intensity for left and right circularly polarized light

takes the form:

iske (r;-T;) |
I.- I, = 2iC%Ife o.a.*T(A x B) - (t; x t)]

L R ij joi
- (6)
L(tyety) - (k) (25 0K)]
From (2) we find:
By ox ty = xkt ey (7)
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where t' is a unit vector perpendicular to k'and defined

by:

(8)

it >
i
o
fede
<
)
LSS

Similarly, from (5):
Ax B _ % (sinB ¢ - cosB b) - (9)

It should be clear that the somewhat particular choice
of the molecule-fixed and space-fixed frames has the advan-
tage of rendering ti, k, and kO as two-component vectors in

1 This will simplify the deriva-

their respective frames.
tions. 1In the next section a more important justification

for this choice will be made clear.

2) The Euler transformations.

Our task is to perform the spatial averaging of Equa-
tion (6). The space integrations involved in the averag-
ing process can become very difficult due to the term
eiAg'(fj - Tr5) comprising the product of a space-fixed
vector Ag and a molecule-fixed Qector (fj - Ty Bij)' Our
choice of orienting the space—fixed coordinate system with
one of its axes along Ak and the molecule-fixed frame with

onc of its axes along Rij can now be understood.
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Indeed, with this choice, the product Bij'AE is a cons-
tant for any orthogonal transformation between the two
coordinate systems, with the exception of the transforma-
tion involving the angle between the polar axes (E' and E)
of these cartesian systems. In this way the factor
eiA§°8ij can be dealt with in the last step of the spatial
integrations evaluated in the averaging process.

In what follows we will use the three orthogonal
transformations proposed by Euler and frequently called the
Euler angles2 (see Figure 3) to relate the space-fixed
quantities to the molecule-fixed expressions appearing in
expression (6).

The transformation matrix between these frames, often
~called the Euler-matrix, allows us to express any produét
between space-fixed and molecule-fixed basis-vectors, in

terms of the three Euler angles. The Euler matrix relates

these basis vectors by:
e' = £ e (10)

where e' and e denote a space-fixed and a molecule-fixed
basis vector, respectively. The matrix &, for the three

successive transformations in Figure 3, takes the form:



Figure 3.
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The three orthogonal transformations that define
the Euler angles between the space-fixed and the
molecule-fixed coordinate system, are seen in suc-
cession. In the text ¢ and k' are called the po-

lar-axes of these frames.
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a b c
g cosb cosy cosé siny cos¢ - 8in® cosy
- - siny sing¢ + cos® cosy sing
E= 3 - cosf siny cos¢ cosy cosd sind siny (11)
v - cosy sing = cosb siny sin¢g
k' sin® cos¢ sin¢ sind cos@

The spatial averaging involves the integration over
the three Euler angles of the quantity to be averaged.
Indeed, the averaging of any function f (6, X5 ¢) can be
accomplished by:

nm.2n 27

<E(8,x,0)> =/ f [ £(0,x,9¢)sinededyde/
av o0 o0

(12)

™ 27 2w
S/ [ sino6déedyde
00 O :

3) Averaging of IL - IR.
In expression (6) there are two terms that must be

averaged. First, the nontransversal term, which with (9)

and (7) beccomes:

(5 x B) - (Ej x Ei) = %[x sing (geg') - xcosB(bek:)
+y sine(g-;')

-y cosB(P«f')]
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Using the Euler-matrix, it can be shown that the only term
that does not vanish in the process of averaging is the

first of the right-hand side:

™

<(ck") e145°§ij>av = [ sinfcosH elqcosede
R 0
(13)
=ij; (a)
where q ¥ %- Rij sinB and i1 is the first-order spherical

Bessel function4 and is defined as:

. _ sing _ cosq
Jp @ o2 g

Next we average the transversality term in expression (6):

iqcosse

By x ty) (20K (ty0k) e

After expanding this expression in terms of (2), (7), and

(9), we obtain:
<%-{xsin8 (g=§') - xcosB(Peg') + ysinB(geg')
- ycosB(§~§')}{zizj(kﬂ k)z + (T"§) (B"§)

~ ~ ~ -y e
) . iqcos
tsyss (AT k) (ri0k)) e > av
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, $ = g 28
where T _(sizji +£isj2 )

It can be shown that only a few terms of this product sur-
vive the averaging process. The demonstration is tedious
and here we will write down the terms that do not vanish

along with their corresponding average-value:

D1 xﬁiﬁjsinB(c,g')(g',EjzeiqC056>

™

av

]

x; 251sin’8i(jy (@) 25, () /a)

DI bt

4sin8c05281 iy (a)/ql

XSiSjSinB(CQEE)(zt‘gj(zg.k)eiQC056>

2)
av

8

. ol
mx315351n8[51n B1 JZCQ)/Q

L
[ FR

: COSZB% (3@ - J,@@)/a)]

3) .

-1 xz.z.coss(b,k')(keak)Zelqcose
z T T av

2

[

- xty;(sing - sin®8)i j,(a)/a
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4 1 ce s 0L
) > xsisjcosB(E.g‘)(}',E)(zj.g)elqcose > v

A
8

e 2.,
= 7 xms;s sinBcosgi j,(a)/q

°) < 2 ysing(c.t') (k.T") (k.k")eqc0SE
el <~ ~ . av
1 .. 3 . 2. 4.
= 7 s;tyy(psin™g - pmsinBcos™B)i j,(a)/q
+ % Kisjy(pmsinss - psinBcosZB

+ gn (sin® - sinfcos’8))i j,(a)/q

< g yeoss (0T (KT (ke %0

_ 1 . 2
= 5 ysingRcos B[Eisj(pm + gn) + siljp]

(3 (@) - j(@) /) (14)

where jl(q) is, as before, the first-order spherical Bessel
function and jz(q) is the second-order spherical Bessel

function defined as:

j,(a) =(3/a° - 1/q) sing - 3 cosq/q’ (15)
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in performing the above averagings, integrals of the form:

T . . -
; etdC0S8 g in 9)]sinede; S 9950 [cos™ (0)]sinode
0 ‘ 0

for n =1, 2, 3 must be found. In the appendix at the end
of this thesis some of the integralsbused in the averaging
of IL -1
tions.

R and I“ + 1, are written along with their solu-

It is possible to relate the coefficients such as 2 J
or zizj, etc., to the parameters of the scatterer. We will
simply list the main results needed to express the answer

in terms of the scatterer parameters:

A~

x =ty x ty)eRyy = osysym

yp ® ns; 2y

vg =”si£j - msj'SLi R (16)
Qigj = ( ~1J)(t ~'j)

~ ~

sysym o= (ty x Rys)r (ty < Ryg)

Replacing expression (16) in the results (14) and (13), we

can make use of (6) to write down, after some algebraic
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manipulations, the result for the averaged IL -1

R :

- * ~ ) 3 - -
Jp s Tps o ERoafag(ty o< ti) Ry (et (Gy/a -3g)
———T av = 13 5

(17)

"~

o X . . .3
‘(gi-Rij)(Ej-Rij)(SJZ/q -j;)1(sing + sin”g)}
The argument of the spherical Bessel functions is q as
before. Expression (17) is the result we were seekiﬁg.
Notice that the whole expression is multiplied by a

common factor

~ A

(t; x Rys)-ty

[H]

STRS TORLIY:

This is a form-factor that resembles the expression for the

A

R

rotational strength in optical activity theorysz t.x ij is

~1
the magnetic dipole (mi)‘associated with the transition di-

pole ti so that

t.Xt.}).R.. = m..t.
(~J ~1) ~1] ~1 ~]

The last expression 1is the product of a pseudo-vector with

a vector. Pseudo-vectors or axial vectors transform by chang-
ing sign when an inversion of their coordinates is done ,

whereas pure or polar vectors (such as Ej ) do not
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change sign under inversion. The common factor to Equation
(17) will therefore have opposite sign for two molecules
that are the mirror images of each other. This feature
makes CIDS more sensitive to structure than total scatter-
-ing.

Equation (17) is only a function of angle B, while
every other directional property of the incident and the
scattered radiation has disappeared in the averaging. The
differential scaftering pattern in space is given by a
"ring" structure of constant intensities, like the powder
patterns observed in crystallography.6 A careful limit

analysis can be performed on Equation (17). The result is:

Lim<I, - I,> = ( ,
q-0 L R av (18)
8~+0

l.e., there is no forward CIDS signél for a tumbling (spa-
tially averaged) sample. The same is true for B = 180°
(reflection band). It should be clear, however, that the
above equation has been derived assuming no interaction of
the induced dipole elements (transition dipoles) in the
scatterer, i.e., by using the first Born approximation7 in
the local field.

The conclusions drawn from expression (18) will not

be true if actual coupling of the radiating elements is
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allowed. In this case, forward and backward CIDS should be
predicted.
From the definition of q _ 41 Rij sing we see that as
A

R grows relative to A, q also increases. When Rij>A,

ij
then g>>1 and jz/q <<1, then we can neglect the jz/q VER

the j1 in Equation (17). In these conditions, the jl spher-
ical Bessel function controls all‘the angular behavior of
the CIDS, since the other factors, sing, sinSB,'etc., vary
monotonically with respect to B. We can apply Equation

(17) to the simplest system showing differential scatter-
ing. This is clearly a dimer. Figure 4 shows six possible

dimer structures. Here we will analyze their CIDS when

allowed to tumble freely in solution.

Case | < IL‘- IR >av
a) 0
b) 0
non chiral structures
c) 0
d) 0

- &
e) < IL IR Zav aja, sin2o (jz/q —jl)(sinB + sinzs)

¢ (19)

where 6 is the angle between t. and tj



Figure 4.
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The figure shows 6 possible geometries of a di-
mer, to which Equation 19 (See text) is applied.
t. and Ej.are the polarization vectors of groups
ith and jth

and Rij is the distance betwéen the
centers of these two groups. a), b), c¢) and d)
are the non;chiral,geometries; and <IL—IR>av_for
these four cases is zero. e) A chiral dimer in
which the angle between Rij}and ts and Ejkis 90°,
The angle between Ei and Ej is 6 in the equations,

f) A chiral structure in which Rij is not ortho-

gonal to either ti or tj'
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Structure

Case

=
=
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©

@

(e)
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f)<I -1 Oc*oa A A
L'IR Zav _ 120

2)51n6 {[cose(Jz/q ~jl)
(20) :
- cos¢1cos¢2 (sz/q =j1)] (sinp + sinss)}

"~

where ois a unit vector defined by:

th t. = sinéo

{

and ¢1 and ¢2 are the ahgles'between t., and R12 and

t, and R.

L, Rip respectively.

Equation (19) can be uséd to calculate the CIDS of
a dimer such as that of Figure 4e, in solution. This is
shown in Figure 5 for Rij ¥'A and 6 = 60°., As predicted
before, zero CIDS is obtained in the backward and forward
directions. The pattern posSesses a C4 axis perpendicular
to the plane of the figure. The mahy zeros observed are
mostly controlled by jl(q), since for RlZ/A = 1, then
0 <q < 12 and jz/q <<jl . over the entire range of q.
Notice that most of the CIDS~of a randomly oriented sample
of dipoles is observed at right angles from the direction .
of incidenée,of light. A more cémplicated behavior is pre-
dicted for a trimer, a tetramer, etc. Numerical computa -
tions must be done to handle a randomly oriented sample of

a polymer.
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Polar plot of <I,-I for the dipole of case d)

L 'R7av |
in figure 4. The angle between the two polariza-

tion vectors'ti and tj is 60°. Rij=k=1. The graph

depicts intensities vs increments of .1 radians

in the angle B.
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It is of interest to obtain an asymptotic expression

for < IL - IR>aV

Under these circumstances,

, valid for the case in which }\>>Rij°

4nR

q = TRij sinB<<l

Expanding the spherical Bessel functions in terms of powers

of their arguments, and keeping only the first few, we

obtain:

Lim j; (a) _ L (q - q3/10)

1
g0 3
and
tin j,(a)/a _ 1 (q - q°/8)
q+0 S

[

Replacing in (17) the above limiting expressions, we arrive

at:

F3 ~ 1 ~ o~ 3
< Ip-Ip>ay  ERogas (texti). Ryadg (t;.Ri5)(t-Ri50q
cZ oY 30

- 4(Ei°Ej)q}(SinB + sinBB)

If the first term is neglected as compared to the second

one, the above equation becomes:
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<Ayl = °2§§ 0305 (£5XT3)Ryy (E5-t5)mRy5
)

C 15

(sin’g + sin*p)

where the definition of q has been used. Notice that for
Rij/A << 1 the asymptotic expression is still an even func-

tion of B.

IIT. The Averaging of the Total Scattering.
The scattering intensity due to a collection of polar-
izable points in space, each characterized by a polariza-

ili 4. = a.t.t., is:
bility tensor 31 alglgl, is

~

3 * Nk A % PN
I (r) =1 e 96080 [E.et.t. t.t.+E. - E.ot.t, kke

—5== i,j 1730 ~ivi Sj~j <0 0 ~ivi
C ’ v :
tits-Egl | | 2D

where o, ajs tis tj,k, q, and 6 have the same meaning as

before. EO is the incident electric unit vector. For

~

light polarized perpendicular to the scattering plane (see

Figure 2):
Ey - | (222)

and for light polarized‘parallel to the scattering plane:
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~

?O = cosB§ + sineg (22b)

The scattered intensity for light perpendicular to the

scattering plane is:

1
_,!_ I *) ~
= 1qcose 8 -] -4 £ @ L]
= ?,je ajag [(a-ty)(a-ty) t;oty - (a-t;)(t; k)

(t;k) (a-t;)] a3

Using Equation (2), the average of the first term in Equa-

tion (23) becomes:

~ 2 ~ ~
® e = ° v ° ¥ o T
< (@ctg)(actyd>,, = <its(a-k’)™ + fyss(ack’)(arny)

+ s.8.(a<i")(a°k') + s.s.(a-1i")(a-1")>
(2y(@0 i@k + syss @i @)

After using Equations (3) and (4) in this expression, only

the following terms survive the spatial averaging:

2 _iqcoso . .
< Ay05(ak) e av = Mty 3p(@)/a
. - i 9 1 .
< sysy(arity(anny) eMIE0Y, e g ms s (5 (@) (24)

- 3, (@) /q
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The averaging of the second term in Equation (23):
< (a.t)(a.t)(t;.k) (EJ”}f) '>av"

is tedious and only a few terms do not vanish whenkthe
average is performed. We will omit the details of the
derivation and will write down only the results. These
will be included in the final averaged value of the scat-

tered intensity perpendicular to the scattering plane:

< l>av z??aiaj {[Kiﬂj Jl/q + 1/2 msisj(JO-Jl/q)]Ei,
Cz J .
® 02,2 2., L, 2
fj} - ??aiaj{2£12j51n B(j;/a ~-4i,/a°) *

2 . 2. ,
(2372 + £4/2) 135/a° - 1/2 sin’8(5/a ~3p/a")]
. . 2 .
+ mﬂiﬂj Sisj[Jl/q + 1/2 sin"g (16 j,/q -

75./q + 301 + ms? s2[1/8(35,/a° 2§ /a +j)
J1 0 i°j 2 1 0
2.2

J

+ 1/8 sin®s (-15j,/q% + 63,/7 - j)1 + 1/8ns}s’

[Gy/a + 25,/ - 3p) - sin’B (43,/a, +

2, /q - jl}

(25)
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wheie the arguments of the Bessel functions have been
omitted for simplicity. In reducing the above expression,
fhe relations (3a) nave been used.

Our next task is to obtain the equivalent average for
the scattered intensity of light incident paréllel to the
scattering plane. From Equations (21) and (22b), the quan-

tity to be averaged is:

Ly iqcos®

3 e oo, [sin®(b.t.) (b.t.) (t:.t.) + cos’8
~7 % ij ij A T A EA TS B
C .
(S.Ei)(g.gj)(gi.gj) + 51n6cosB(§.Ei)
(S.Ej)(gi.gj) + sinB;osB
(c.£;) (b ts) (L 151
iqcos® 9 ~ ~
" ij € ajo; [sin®g (b.t;) (t;.k) (t;.k) (b.t)

2 ~ ~
*ocos™B (c.ty)(t;.K)(ty.K)(c.ty)
+ sinBcosB (gi.g)(gj.g)[(g.gi)

(cot;) + (B-t)(c ;)] (26)

Here again, only the results will be presented. The
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relations (3b) have been used in the reduction of tne

expression for <I >
pr o) o) 1> av

I
I * . . . 2 . '
LZa. o, £. 2, - 2 + -
- PEe% U &24503p - 231/a + sin"8(3j,/q

jg)1 + msysiliy/a + 1/2 sin’s (3 - 3iy/)1)
(t..t.) - zm*a {zezzz[(‘ /q -4j /qz) +
Sitej 15%1% ity L7474, :
(sinZB ; sin4Bj (3j /q2 -j./q)] + 1/2 Z.&.s.s.m

/ J2 J1 R RS R A R

[ 165,/a° - 5jy/a + j, + 2(sin’s - sin'p)

Gya - 33481 + (8« 4 (172 Gy/a -
1 J2/4 it 1

45,/a%) + 1/2 (sin’s-sin®8) (5, - 35,/a0)1 +

1/2 s

fsin® [Gy/a -43,/a") ¢ 1/4 (sins -

. 4 . 2 . : . 2. 2 2.. 2
sin B)v(932/q + 231/q + 330)]+1/2 s;sin {Jz/q +

1/4 (Sinzﬁ ‘Sin45)(9j2/q2 +2j1/q + 3j0)]} (27)
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In order to rewrite these expressions in terms of the
parameters of the scatterer we need the following rela-

tions:

2 . ,2 ~ 2 )
£+ 4y = (23R y) (t;-Ry5)°
2 2 2 _ A 2
sy 53 n" = (t;.(Rys xt;)) (28)

These expressions, together with Equations (16) are used
to write down the spatially averaged total scattered inten-

sity as the sum of Equations (25) and (27):

~ ~

* . .
, = a0y R (8 R G T3/

sin8(35,/a - 3)1(;-t)-2(t; Ry))

- : FE N T
(t;-Ry5)0(031/a -43,/47) -sin™g j,/q" +

~

sin46(jl/q - 3j2/q2)]} to(E Ry 5)

~

(t57Ry5) (1/2 [Gg *3p/a) + sin8(5g-251/a)]

~ ~

| o,
(gi-gj) + 1/2 (gi-gij)(gjogij)[(lﬁJz/q
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3ip/a + o) + sin’8(8j,/a° -3j/a +jg)+
iy/a * 3 jq/a jy/a *3,
asin®g(5/a -33,/a9)1) (1 - 1/2 (R, xt)%+
1 2 2ij~i

(éijxsj)z))[(53z/q2 “jp/a) + sin®8(j-ip /@)

4. 2 - ~ 2
sin"8(jy -33,/a7)] + ((£3xR;5). (£xR;5))

[1/8  (-93,/a° +2j,/a +jg) -1/4 sin’g
., 2 . ) o .4 ., 2
(3,70 - 43y/a - jy) - 1/8 sin"8(9j,/q" +
25./q +35)1 +(t.. (R, .xt;))2[1/8 (5j,/q°+
J174 Jo MRS M 2J,/q
2j./a -jn) +1/4 sin8(3j,/q% + 2j,/q +j.)-
1 0 J2 Ji Jo

(1/8 sin46(3j2/q2 - /e - )l

(29)

in a similar way, the quantity I“- I, can be obtained

i
from Equatidns (25) and (27). Due to lack of space we will
omit it here.

Equation (29) gives, therefore, the total scattering

as a function of the scattering angle (28) for an ensemble
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of scatterers (each described by a set of point polarizable
groups), adopting all possible orientations in space.

Notice that in the expression for total scattering
intensity, only three spherical Bessel functions contribute:
jo, jl’ and jZ‘ This fact is important in determining the
symmetry of the scattering intensities as a function of

the angle 8.

Indeed, the spherical Bessel functions have the pro-

perty:4

iy (k@) = (-1 5 (a)

Since q = 4nu Rij sinB, clearly if'B*«B, then g-»-q.
A ,
Now, there are two things to notice about Equation

(29). First, only the Oth, an, and 4th powers of sinB
appear in the equation and these factors are even on B.
Second, all the Bessel functions appearing in Equation(29)

have the form jn/qn which behaves also as an even function

of the angle, i.e.:
i)/t =g @/q"

Therefore, the whole expression (29) is even on 8. This

means that the scattering patterns must be symmetric at

both sides of the direction of incidence of light. Fur-
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thermore, since the only trigonometric functions appear-
ing implicitly or explicitly in this expression are sines,

and
sinB = sin(180-8)

the pattern is also symmetric at both across ihe 270°-90°
axis (see Figure 5). As in the case of < IL~ IR>av’ the
in-plane scattering pattern has a C4axis of symmetry per-
pendicular to the plane.

Equation (29) is the equivalent to the spatially aver-
aged scattering of a collection of point polarizablé groups,
originally devised by Debye8 for the case of unpolarized

incident radiation.
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Appendix A

1) Friedel's Law.
The scattering power of an atom is described in crystal-

lography by the atomic scattering factor:

f. =

idkeRj o |
5 = Jatom p3(Ry)e™E RS ar, (A-1)

~J

where pj(gj) is the electron charge density at point gj in
the atom. In the limit of short wa#elengths the electric
charge density appearing in the above expression can be
formally derived from the atomic polarizability.

If pj(gj) is spherically symmetric (centrosymmetric),
its Fourier transform (fj) is a real function. Near an
aEsorption,band the electron density i§ not spherically
symmetric and therefore, in resonance fj is in general a

complex quantity:
£ = £9 ¢19; | . v (A-2)

where fg and ¢j are real.

Let us suppose a group of atoms on which external
radiation incides. The scattering amplitude at a position
in space in which a diffraction maximum exists, labelled by
the components of the vector AE (h,k,1) is:

) £ ei(hxj+kyj+12j) (A-3)
N J .
J




233

Away from the absorption band, fj is real and the correspond-

ing centrosymmetric point in space scatters with the amplitude:

Frep = ) E. ¢ 1(hxj*kyj+lzy) (A-4)
]

J

Then from (A-3) and (A-4):
and

This is called Friedel's Law. It states that the intensities
of the diffraction maxima corresponding to centrosymmetrically

related points are equal.

2) Breakdown of Friedel's Law.
If one of the atoms in the group, say atom nth, is in

resonance with the frequency of the incident radiation, then,

Fria =) 5 ot (hxjrkyj*izg)
j#n J

fO ei(hxi+kYi+1Zi) ei¢

n
n

It is clear that:

E3
Frgi # Frxa

and

Frgpl© # 1Py l°
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so that Friedel's Law is violated. On thé other hand, if

all the atoms are anomalous scatterers:

and

but

and

= 7 0 Ji(hxytkyj+lzs) (i¢;
= ¥
Frk1 3 fj e 37N e
— 0 -i(hx-+ky-+12.) i¢.
FhRki § £ e HIGTOITIES) 10
2 : 0.0 i h X3-X3 +k syt 1(z5-2: )
ji
oei(¢j_¢i)
2 _ 0,0 _-i(h(xi-x{)+k(yj-yi)+1(z5-21))
IFagil” - § g f£if5 e (hCxj-x3)+k(y5-yi)+1(25-24

celldj-0i)

Since all of the atoms are in resonance for the same

frequency, then:

and again:

0) i6. _ o(0).i
££0elty = £{0)ele;

2 2
I Foka!l ™ = [ Fagil

i.e., Friedel's Law holds in this case.
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Appendix B

In performing the averages of Chapter 6, the following

integrals are encountered:

. :
. . n (-1)" n(n-1)....(n-k+1)
[xhelaXgy o elax[gigE R o (1K)
1 (ia)
These integrals appear commonly in the spatial averaging

of optical properties. A list of those used in the obtain-

ing of the equations of Chapter 6 follows:

i eld €950 5s0sinpde = i leQ)
O o
- appear in
[ e 0SB ospsinedg = i j,(a)/q ‘<rL'iR>
0 av
T iq cos® 3
[ et cos“6sinede = i(j;(q) - 2j,(a)/q
0 : '
T iq coso |
[ etd sinede = 2j,(q)
3 _

0

[Tetd €©%%os%esinade = 2(8j,(a)/a” - 43)(a)/a * j,(a)
0

fﬂeiq cosb

sin36d6 = 4j1(q)/q
0

(continued)
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T ig cost 5 3 (continued)

[Tetd cos"6sin”0d6 = 4(j;(q)/q - 4j,(q)/q

0 appear in
<IH+IL>aV

é"elq Cos8 ingde = 1632(q)/q2

The spheriéal Besel functions (j's) are:

[}

jo(Q) q

jy(a) v
q q

. ' 3 1 R 3

Jz(q) = ("Z - =)sin q - =5 COs q
q> 1 q

% Integrals appear in <Ip+ Ii>av"
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Appendix C

Here follows a list of the programs VINO, PAN and COCO,
used in the CIDS computations, Only a few remarks are made
before the listing since the comment cards in each program

made themselves explanatory.

I. PROGRAM VINO.

Calculates CIDS = IL—IR/IL+IR and total scattering=
IL+IR for a helix of arbitrary dimensions whose axis is o-
riented along the z (93) direction of an arbitrary coordi-
nate system. Light of both circular polarizations is incident
along the positive y (gz) direction. No restriction is im-
posed to the ratio Qf pitch of the‘helix/wavelength:of
light. The results arekprinted and plotted in the form of
polar plots (inténsities vs; azimutﬁal angle) at a fixed

polar angle (or layer line).

Deck set—u?:’
(1) Control cards
Program SCATTER (version 1)
(2) Program
Subroutine POLAR

{3) Input deck

(4) End-of-job-card
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VINGo12,300:5500060L49332,BUSTARARTE
*NOSTAGE

SFL,31C0000,

FTNG, :
FETCHFSoSARDIASAND.SAMLIB,
FETCHGSo IDDS/ULIBXR,DATE=DINOVT?E15L7E,
FETCHPSoGPACBN7+GPAC, SCEN,
LINKF=LG0oP=ULIBXF=GFACP=SANL+XoPF=(LC=500007.
EXIT. '
DUMELD,
FETCHFSoIDDS,SYNTABSYFTAEN,
GRUPF,P=222ZSYFP=SYMTAE,

FIN.

REWINCIFIL®)

COPY(FILP.OUT)

REWIM C(FILM)

COPY(FILM;MORE )
DISFOSEFILM=3P,M=HF,

DISFECSE MORE=3P M=YME o

DISECSE CUT=MFsPaME,

¢EQF »

FRCGRAM SCATTER(INPLT CUTFUTTAPES=INPUT o TAPEG=CUTOUT oF TLM)
(P85 504002850505558000000848504355085908200008055853080550R0003855588460895858
C®Tr1S PROGRAM CCMPUTES TrHE TCTAL ANC THE DIFFEFENTIAL SCATTERING FOR £ &
CPHELICAL SCATTEREF OF AFEITRARY PITCH, RADIUSs ANC LENGTH., AND FOP ARET *°
CeTRARY RATIC CF PITCH/LAPBOA. IF PITCH IS GREATVEF THLN LAMEDA IT CALCLLA *
C®*TES THE SCATTIRING ISTEASITIES AT EACH LAVER LINE. IF PITCH IS SMELLEF @
C®TwAN LOMBODA - IT CALCULATES THE SCATTERING INTEMSITIES AT FIXED ANGLES IN®
C®SFACE. &
C®TrE IPPUT PAFAMET:RS ARE THEFEFCRE WAVELENGTH, PITChy RADIUS, ANGLE b
C20F ALTITUDL CF SCATTEFING ®

C..QEDB..‘50.‘0#5‘655‘0"5“.5.56.50‘5‘&0.0.'5lﬁ.bl'lb‘lﬂ“‘U!b‘El'llllﬂbll

OO0

(2855020208580 0308808328580R52350838850520583280524080280802088088258882558088858

C®HEFe WE DECLARE ALL VBARIABLES AND ARRAYS USED IN THIS PROGRAM AND ALSC &
C®TrE ALLCCATICN FDR MEMORY 1% CONE . @
C‘.OQ‘...Q55’5"55'5'.'5‘.‘5.05‘."5"‘5‘.0..‘555‘5.55‘5‘.5“5.55'"5.'535.
COVMCN FPTToFMEPFHANSTELPEO.A3ED
REAL NBO
DIFENSIOR IN(&LYD o PAQ4W)
REAL LAMEQT LAMBIN LAMELE
REAL LENCTH
COPPLEX E{3:3:3) ¢¥PCN
COPPLEX SUMMA(3.3,3)
CCMPLEX ALPHAT ALFHAN
CCPPLEX ALPHAP
CCPELEX EVZLTA, EYRKIS ,
COPPLEX C1oC2¢C3eL1+02eC3eCSTR1,CSTR2,CSTF3oLSTELDSTF2,05TF3
DIMENSION QA(LD006200 ) i
LEVELZ,BJN
COPPON/GIANT/BINIBL,600)
DIPENSION CD(L0O0.PST(L00PSISTRILDO0Do3J (01
DIFERSION ILMIG(@CO)aILPIR(L000,TL(L00YTR(LE0D-CLOTIL(L0I)Y
1PLCTIR{LQOY
DIPENSION PLOTSC (600)
INTEGER EXPONT.PLLICY




REAL LYK

REAL ILMIR ILPIRSLAMBOALIL, IR

DIPENSION ANGLE (400

DIMENSIOHN PARAMEIDY
C
C
c
C&Qbé&‘ﬂ3‘!93‘5355353856#8.53555U‘*ﬂ@ﬁﬁ‘!‘ﬂ“@lsﬂ“55‘3555558!.‘55555‘55‘555
CoHERe ®E INITIALIZF TRE VALUES NEECED FCR COMPUTATION.
C?SIGN DETERMINEST YHE SEMSE CF THE MELIX. SIGN=1., GIVES A RIGHT MANCED
C*HELIXe SIGN==1 GIVES A LFFY PANDELD ONE.
C2*FPTTo FPFPs FPNN ARE THL STEFRERGTS CF TrE TAAGEANT IAL o PE°PENDICUL&R AND
C*NCRPAL BANDS RESPECTIVELY.
C*L.AM3CT, LAMBCP AND LAVBCN ARE THE CORRESPCNDIAG PCSITIONS OF THESE BAND
C®IN UNITS OF HAVELENGTHS.
CeGAMMAT sGAMMAF AND GAPMAN ARE IMHE FALF BFEIGHY HILTHS OF THE BANGS
CeNAZIPL IS THE MAXIMUM NUMBER CF LAYER LINES T+AT EXIST FOFR A GIVEN
C2RATIO CF P/LAFPBDA. HEFE A DEFAULT VALUE FOR TFHE CCNTINUDS CASE IS GIVEN
C=2A IS TFE RADIUS OF TFE PELIX
C*PERIGCGL IS THE PIVTCH CF Tz PELIX AAD LENGTH THE AUMBER OF TURNS CF TkE
CPHELIX. .
C*NCFLOT WILL [CECIDF TFE FAXIPLA NUMBER CF PLCTS 7O BL GENEFATED BY THE
Ce*PROGRAM, : N
C#INITIA CCNTRCLS THE INITIALIZATICN OF THE PCLAR PLOTS
C*PCLZ=0. GIVES SCATTEFRING CF LIGHT FOLARIZED IN TRE > CIFECTICH
C2PCLx=0e GIVES SCATTEFING OF LIGWHT FOLARIZED 1IN THE 7 CIPECTICAN
C®DEFAULY GIVES CIDS
C®NLY# CETERFMINES “HPE MPMEBLR CF LAYER LINES CCVPUTED )
C®LYR CETERMINES THE ALTEFNATIVE PLOTTING OF LAVER LINES D& ALTITUDE IN
C*PLLAR FLCTS
C2INCEX DETERMINES THE PMAXIMUN CROER OF EESSEL FUNCTICNS USFD 1IN TH‘ sLFS
CeFLAG IS AN CPTION THAT WHEM EQUAL TO 4 CCATFOLS THE PPINTING OF ALL
C*INTERFEDIARY CALCULATIONS. IF EQUAL TO ZERO CMLY THE FINAL RESULTS AFE
C*PEINTED o o
Cﬁ‘DO&GO'.H#‘30&5‘55.3"45&'5"'.‘!.'55."‘5'5C'U!Q'.Q‘#"'ﬂ““.""l"@‘
307 CCAT INUE ’ '

PI=3,1-1£C2€5358¢7

SIGN=1e

FriT=1.

FrPP=1,0 sFHNNoz.C

LAMBOT=1 .0

LEMB(ON=1.0 8 LEAMEGP= 1.0

- GEMMAT=,30

GAMMAP=z .20

GAPMAN=, 20

NAZIML=%

NCFLOT=2

PERICD=1.0 % A=1 ¢ LENGYF=20 § LAMBCA= 1

INITIA=D : .

PCLr=1e08 POLZ=1.0

NLYF=1

LYR=D

INDEXi==21

INCEX2=220

FLAG=(0.

(/)

@8 F & F FE 88 F LRSS E VS FET EE P EES ¥R R

c
C
c
311 CORTINUL

(AR AL X L] OQ'BCGC‘GG"CQGGQ.CCQQQ5655‘3“&85“65‘3"5"BQ&I&DGO@!QCQGGQQD5‘5#‘

C*HEPE THE COMMANDS FCR IMPUT CATA ARE SET - ®

(G228 980 0240088800000 008000000833053535030000085000500P088008840880888850884
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READ 995, ((IN(J) oFALID) od=lok)

PRINTO98, ((IN(J) oFALID ) oU=L0b)
999 FCRMAT(AGFOeb oMo 3{AoX oF TabipX))
998 FCRMAT (/7 o/ b{ADeXoFQokond )

DC 308 I=1.4&

IFAIN(I) EQe9HPERIOL YEERICD= PA(T)
IF(INCIY EQa9+-LAVEDA JLAMEDA= PALT)
IF(IN(I) .EQe9IMRAL IUS VA= PatLId
IFCINCIDZQa9HTARCENT JLAMBOT= PALT)
IFLINII) EQe9HNOFRVAL JLAMBON= PalI)
IFCIN(TI EQoIHPERFENDICILAMBOP= PALT)
IFCINCI) oEQa9FLEMCTH JLENGT = PALT)
IFCIN(TIY EQoOHeLAVER INCPLCT =14 PA(TY
IF(INCI) o£Qe9H=L AYEF INLYE= PALI)
TF(INCI) EQ.9HSICH JSIGN= PALIY
IF(IN(T) EQ.9+POLD> JECLA= PaLI)
IF(IN(I) cEQ.9HPOLYZ YECLZ= PRI
IF(INC(I)EQoININCEXL YINDEX L= PA(I)
IF(INCT) EQOHINLEX2 Yy INDEXZ= PA(T)
IFCINC(II oEQeOHSTCE JSTCP

IFUIN(IY EQ.9RCOFFUTE y GO TC 363
IFCINCID) cEQe9FRESTART } GC 7C 307
304 CORTINUE
GC TO 311
303 CCNT INUE
(%
C HER: IS WHERE THE SICAN CF ThE HELIX SENSE IS CETERMINED
P=FERICD®SIGN

C SwAX CETEFMINES THE ACRMALIZ2ATICN FACTCR FOR THE TOTAL SCATTERING FCR EACH

C LAMBDA. IT PLSY Bt FCULNC IN TRIS CC LOCP
SkLX=0.0
SrAXL=0.0
SPA’R:OS
CeMax=0,

OO

C55956..0‘##'6.59#5‘5‘l.‘lbablsQ‘.‘.'.‘l!ll'.#5‘39l8‘0"'56!‘..“‘.‘.#.‘5‘0
C®HEPE THE LCRENTZIAN-SHAFED FCLARIZA3ILITIES ARE TEFINFD .
C5.'"#‘5.‘0!.Ql‘l‘l'QQO‘.#SQGQQQGQQCGOCHG'GUG5.'3.llﬁ“...'l'.é'."?"“l‘
ALPHAT=FFTT /((1/ (LAMBOT¥®2)) =(1/ (LAMBDA®®2)) ¢ ((o01s)8GANYAT/
1(LAMBDA® ((LAMBET 52 )= (GAMMAT®52)/6))))
ALFHAP=FIFFP/{(1/ (LAPRIP®32) ) =(1/ (LAMBOA®#2)) ¢ (Loolo)®GAMYAD/
L (LEMIDAS ((LAM3QP®52)=( (GAMMAP 521 /4))})
ALFRANSFINN/C(L/ (LAMBON®®2) ) =(1/ (LAMBDA® %210 ¢ (Loodo) BGAMMAN/
1(LAMBOA® ((LAMBON®%2)=( (GAMMAN®®2)/4))))
TB0=LAM30T § P30=LAMB0P § NBO=zLAMBON

IFIFLAG.NEZo0) FRINT 150¢€
1E08 FCRMAT(® ®,EXPALFHAT® 4ER o2 ALPFAN® 16X 2ALFHAPS)
IF(FLAGoNE o 0) PRINT ECS.ALPHAT,ALPHANGALPEAP

SO

CC"G".'!QUQB'l“‘l&;qe&ﬂ&&303‘5“5'5!‘00065650‘.6Ulbll.#'é.'bélbl‘ﬂ!ﬂ‘&&ﬁ

CH*TrRETA IS THE FOLAT AMNCLE OF SCATTERING

C®TRETA IS IN RADIANMS

C#*PST IS THE AZIMUTHAL ANGLE CF SCATTERING. IV IS CCMFUTED MERE EVERY
C®DEGREE BETWEEN 0 AND 360

C®DISCRY=0 IS FCR CONTINLOUS CASE(PERIOD LESS TrHAM LAPBCAY, DISCRT=1 IS
C®FCF DISCRETE CASE (PERICD GREATEF TAWM LAMBOAY

CeDELKZ IS THE 7 PRCJECTICN CF THE VECTOR Kekfo ITS MAXIMUN VALUE I

s e & & 6@
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CH

2%FI/LAMBDA

CE®NLZIWL FOR P GREATER CR ENQUAL TC LAMBDA IS CALCULATLD HERE

Cc*

C20o4838ba80000 3058008308820 00800808800530R0500008530882885200885888858888855883

11

OO0

cy» 3

C

Cbusnsnaqasbeuscsussaaacuq;sbnbhs*bascsta.aevtUavulbshsalvebﬂ'l»blbﬁbllbiib

ce*
C.
ce
ce

C#TZES TC CALCLLATE THE SCATTERING CF CONCEANTRIC HELICES OF VAFIOQUS PITCH

ce

C‘&l56506.5GG‘#65445‘*.!‘5UD‘B!D#.Q@QHQ‘Q.i.GﬁS“GDbi!ﬂa&'#‘asﬁé‘&&!‘;lﬁ!b56

IF CNLY ONE LAYER LINE IS WAMTED SET NAZIWU=2

NANGLE=3 €0

NANGL=NANGLES®Z

DC 131 T=1.NANGL
PSI{I)=(I-1)%PI/180,
ANGLE(IV=PSI(I)®120./°7]

CORT INUE

DISCRT=0,

IF(PERIOC.GEoL AMELAY JISCRT=1.0

CCMFUTE THE MAXIMUM MC, OF LAYEF LINES FOR DISCRETE CASE

COMFLTE ALSO THE PARSMETEP CELTA KZ IN TERMS CF THE PCLAF ANCLE
IF(DISCRTEQe2INAZIMUSINT (PERICO/LAMBDAGZ)
SAFETY=2¢

IFINCPLOTSLE.NAZIMUINAZIFU=RCFLCT
CC 300 ITETA=2 NAZIMUL
IF(SAFETY.LE.NAZIMUISTOP
LYR=ITETA-2
2C 289 LP=1,2
THIT CCNTROLS THE. NUPEER JF NEGATIVE LAYEF LINES YO BE COMPUTEIN
IFCITETACT (NLYFR 21 ANCLPEGL2) GO TO 299
TRIS ASSURES ONLY CNE ZeFD LAYER LINE COMPUTATION
IF(LFEGe2 oANDITETA.EC.2Z2) GC TO 299
IF(DISCRTEQeOYTHETAS(PI/Zo) =152 {ITETA=2)2(FI/ 180}
IF(DISCRTEQe1ITHETA=ACCS({ITETA=2V 2L AMBCA/PERICD)
TFHIS CCMPUTES NEGATIVE ALTITUDE ANGLE FCR THE CORTIAUCUS CASE
IFILPEQ0 o2 ANCoDISCRT oECo UV THETA=(PI/2Y61 82 {ITETA-2)2(PTI/180)
TrIS COMPLT S ALL NECATIVE LAVYEF LINES FOR DISCRETE CASE
IF(LPEGo2cANCoDISCRT ot Col) THETA=PI=ACOS ((ITETA2)®LAYBCA/
1 PLRIOD)
IF(LPeEGeloANToLISCRT2Go2) LYR==LVR
DELKZ={29FTI/{LAMELA)I®CCS (THETAY
AFCLAF=THETA®180,./P]

THE LCCP STAFTING MEFRD £ZND ERCIANG IN 100 COMPUTE YHy SCATTERING INTEASI
TIEs FOR EACR PSI AMCLE ANC FCR A GIVEN VALUE CF THE ALTITUCEOF LAVYER
ILEM IS A PARAMET R THAT ALLCWS FCR THE VARIAYICA.OF THE PELIXK CARAME

ANC PADIUS. IF ILAM CCES FRCP 1 TC 1 THEN ONLY CRE ®ELIX IS C4LCULATEZ

0C 10C I=1.360

DC 699 I1=1,3

0C €98 JJ=143

20 697 Ku=i,7%

SUPMALII oddokKI={0oL0T0C)

697 CORT INUE

6¢
6%

[N e

3 CCRAT INUE
9 CCAT INVE

0C 700 ILAM=1.1

241



CQQCICBU65.'5‘ﬂl55.65655'650655UGDUSQOH.O'GQGQ.l.ﬂGQ5‘5.5“066"‘35‘3!@‘@&.

C#CCrFUTE THE ARGUMENTS OF THE BESSEL FUMCTICAS &
CPALSC TRE DIFEFENT VALUES OF THE ANGLE FSISTR FELATEL 7O THE AZI“UTHAL ®
C®ANGLE PSI oARE CALCULATED HERE ®
C®R I3 THE. PROJECTION CF TH: SCATTEREC WAVE VECTOR ONTO THE PLANE X~-VY e

C2532805822385220082008583B0800838284582080R40888005288580530804583488258585838

Rz{2.°PI/LAMBDAY2SINITHETA)

QALIILAPI=(2. O°FI‘A/LAHECA)‘SC?T(ieOOISIR(TFETA))"Z
1 =2.0%SIMN(PSICINI®SIN(THETA) }

DUMMYL=QE(ToILAMY

IF(DUMMY 1.EQeCe) GO YO &6

ALPHA=z F2A*COS(PSI(INI/CE(TILAM)

IF(ALPHACT-3.0)CC TO 20

C*TaK: MEGATIVE VALUE CF FSISTR ANGLE
C
PSISTR(Z)==ACCS(F2A®COSIFSI(INI/QALT ILAW))
21 COMT INUE ,
IF(FLAG.£Qe0s) GC TG 71
CoheoRy (CME THE PRINTING STATEMENTS FOF cowe
C®  POLAR ANGLEs QAs INDeXJs PSISTE(I),

-

°¢INT35eA°OLACq(CL(J'ILA")eJ=e§c93)e(PSISTQ(J)9J=89a93)

3 FCREAT (/702 2, 2APCLAFMHE® FB8eLo2Xe2082%358(2 XoFBob)o2Xe ®PSISTR=%,5
i (X oFBok))
74 CCNT INUE :
IF(FLAG.EC.D,) GG ¢ 77
2F INT 3
3 FCRMAT(® 2 o - #pSI®, 9(i{Xe 204%},/)

ORINT 10 oANGLE(I)QA(TILAM)
FORMAT(® %5 FBaboBXeFGob)
COMTINUE

O C3 €Y~ b
~N o

e T L Y T Py S ey
Cenil; WZ START GENARATING TWE PCSITIVE AND NECATIVE CRLCER 2ESSLL FUNCTION®
:‘ BJN‘ivI)a-osaoQDQC~QBJN("‘1'I).DCOC!OQQ.OEJN(%’.BI) N

C’ J “c.l..Q.".OOCGQBOJGQOQQO.QQQVGCCOQQC'QJ“G ®
“505‘CC‘Q‘QC‘Gl.“"'."5.&065.G.‘U‘Q"B'.G...G.’..5.“..5‘l.ﬂe“‘.‘l..il‘&

X=CA(IeILam)
Lekl
ALFHA=D,.
CALL B SJ{XeALPPAGL:3Je2)
’ BJ(1) cocecvscensseeBilbll
JO escecscalococoncsodull

<O

Ah=bL]
3C CCAT IhUL
EXFCANT=wli=Nb
L=&2=NN
FIA(NKNe 1) 2{{=1.0022EXPCNTI®IJ(LY
Ah=NN=L
IF{NN.EQ.T) GO TC 31
GC.TO 30
31 CCRTINUE
NG 2 N=i,bi
NNzN¢LQ
BIMINE, 1) =BJ (N}
2 CORT INUE
Comis, (CME THE PRINTIMC STATEFEATSceceeco$
C®Flf AFCLARs ANGLE(IDe CACIDo<INDEX-OF EESSEL FUCTICNS (KLD). &ND BESSEL
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C?2 FUNCTIONAS
IF(FLAG.FEQele) GC YC 72
PRINT 3, APOLAR
3 FCRMAT(® %y 2APOULARF=2,FB8.bs BI{IXN®INIXIB)s/)
PRINT 406, (ANGLE(KLMY KLM=1,8)
106 FCORMAT (/o ®ANGLE=% 8 (LXFi0.7))
PRINT 6+ (QAIKLMe ILAP) o KLP=1,8)
6 FORMAT(/ o *INDEXoCA=®33 (EX oF10.71)
2C 5 K=1,81
Ki=K=b1
PRINT GoKLo (BUNER KLM) ¢KLF=1,8)
FCRMAT € ® ® o T4 ¢ 8 (3%s E 12.5 )
CORT INUE
CCATINUE

OOy
n

(#3050 805808208050038RR8 4884008803830 0R3RR5 B PRRRPRPLLRRERRRIRIRRLELLEBRAEBRES

-C®PROCEEC 7O COMPUTE CONTINLCELS CO FOR LIGHT INCIDLNT ALONG THWF Y DIPEC*
C®*TICN ¢
C*CCMFUTE NOW THE COMPCMNERTS FCR EACK OF THE POLARTIZATICNS CF THE X ELEC &
C®*TRIC VECTOR EU(DIFECTIONPCLARIZATION,EACKH OF THE ThREE CCMEONENTS) .
CeEXxArPLE E€2+1¢ 3) FEAMNS THIRD CCVFONENT OF ELECTRIC VECYOR TRAVELLING =
CBIITIRPINES THE CCeFFICIENTS © FOR SUMMS CCMPLEX FFP2,F™2, FPLly ECT. *
C®NCh  ALL EBESSEL FUNCTICMAS ARE INCEXFD ®
Cnana;pmea»ee;suusq-aeu»unnae»su;aoaaqnana;aaasacsvuo»ee‘n;;"a‘nn;a;eaa;&t

BC 1000 I3=1,7
3C 1081 Jd=1,3
0C 1002 ®K=1,3
ElIloJddekK)I=(00049000)
1632 COMTINUE
1001 CCATINUE
100C COMTINUE
C#SL™ OF ALLL ORCERS CF COtFFICILATS TIMES BESSEL FUNCTICNS TIPES THE CCRPES
C#*PCASING PHASZ FACTORS, FFCM «INCEY TO #INDEX wWILL 9: CENFFATEC, '
NEGIO¥=wdl ¢INDE X1
PLLUIDX=L1¢INDEX2
CC 200 N=NEGIOXFLUIOX
JUM*Y={=(N=L1}/P) (i LKZ/(2%P))
AFZ = DUPMY S (2./F)
IF(LAP2 222),LTe1.0-200 GO TC 401
FF2= SIN(PSPI®LENCTF2APCI/(FI2482)
"GC YO 111
101 FP2= POLINGTH
111 CCNT INUE
AMZs LUMMY={2./P)
IF((AM2 #2%2)eLTs1.08=20) CO TC 102
Fr2=SIN(F®*PI®LENCY H’b“Z)/(°I“AP2)
GC Y0 112
202 F¥2= PRLENGTH
112 CCAT INVE
APO= DUMMY
IF((APD #"2)etTo1.0¢=20) GO TC 103
FFEO= SIN(P®PI=LENCTH®ARQ)/(PI®A0()
GC TO 112
203 FPO=P2?LENCTH
113 CONT INJE
AP1=DUMPYe(1,/P)
IFC(APL #222)elTe1e0E=200 GO TC 10k
FRi= SIN(P2PI®LENCTH®*APL}/{(FI®aP1)
GO 70 114
106 FPi= P®LENGTH



114 CCAT INUE
AMi= QUMPY=(1./P)
IF((AML ®%2)oLTel.0E-20) GO TC 408
Fri=SIN(F2PI®LENCTHO AL/ (PT®AVKL)
GO 70 11¢

108 Fi= PRLINGTH

115 COMT INUE
8=BININ.I)
PSIPRM=PI/2.0 ¢ FSISTRII}
Z= (N=61}#PSIPFM
XPCN=COS(Z) e{lec ol o) *SINIZ)
Ab=SQRT (A%Re(P/(2%P 1Y) 2%22)
IF(FLAG.EQ.0) GC TC «0C

c

c

C

244

c5853“‘Qﬂl‘l&.##le@.lé'.ﬁé55.6‘!'95'56%5.Glﬁ!‘é‘dQCBO&#G.#'QC#Q56#5955“5'

ca
C® TRESE ARL ALL PRINTING FOUTIBMES
c#

8
L3
a

C85-‘Q5¥0055¥65.6550llb.l.'&l“llﬁﬁ.l!'&‘0556.‘UUGGCHQQQCOQEléll&i&i*".‘i&é

PRINT 9% Ny Ne=4i
%99 FCRMAT (/s /7o2CUNBING=%, 12 2Xo®ACTUAL ORCER=2,14)

PRINT 500

500 FCRMAT (/43X
1 o® DUMMY 292 AM2 APy av1 Fo2
1 FM2 FP1 FM1 FPg®)

FRINT S01s DUMMY gLP o AM2 AP L AWL oFEZoFM2Z oFPLoF ML FD]
501 FCRMAT(® ®,8(2XoFBob) o5 {iXeE1064))
PRINTEQ2
£¢2 FCRMAT(/0.9%, * 8 FSIBRY z XPCON
i Av2)
BRINT 5030 By PSIFRFMeZe 2PON o AM
503 FCRMAT(® ®o2(2RoFBot) ol XoFBoboa2Xo®(®eFBbo®o%oFR.0L,%)% 8Y,

1 Féob)
=00 CCAT INUE
C
C

CHPRINTING CF THE CCMPCRIRTS CF THE ELECTRIC FIELD VECTCR

C

C INCIDENCEY PCLARIZATION 7

C CCMFUTE THE TERM E {XoYoCOYFCAENTS 102,4ND3)
IF( FLAG.ZQe0)Y GC TC w0E

PRINT E04&
504 FCRMAT (/% ELE 341 / {2s3,2}) / E(2¢3:3) /
1 E(29141) / Z{29162) / El 2+14:312)

PRINTEDS s £(203010 00 (263020 £ (2030380203610 eE(20162¥0E(2e1+%)
565 FORMAT® 28 iXNoT(®FqoLoe®o®oFBatbo?)®))
405 COBRT INUE
C
c
C
C INCIDENCE Y FOLLRZIZAYION 7
Efl2e¢39d0 =0 (293910 ¢{A2P/ (L o%PIV )% (0codol®32(FPi=-FM1I®XPON
1 2 (ALPHAT/(AMPAW) )
IF(FLLG.NELD)
IPRINTE0C e E€20301)0E(20%02) 0B l203e3)oE(2 0408 )oE(2:86235E(2:2:3)
El2:3¢1)=0{2:%01)
L1eALPHAP® (A®P/(LPF T2AMOAPII?(Dao=1,)2B2(FPl=-FP1)2XEON
IF(FLAGeNEL D)
IPRINTS0% e E{2e3 04008 (202520 0B 20303V oE 203010 oB(201:20eF (25163}

E(2:341)



E(203¢2)=002:3,21¢(A%P/ (4 2PIVI4BR(FPLeFPL)2NPONR(ALPPAT/(AMPAMI)
IF(FLAG.RNEo D)

iPRINTEOS, E(23391)|£‘20392)95(29393).E(Zoloi’95(29192795(2via3)
E(293:2)=61(25 3,2}

245

1=0LPHAP® (A®P/ (Lo "FI*AMSAF) ) #BP (FPLeF ML) XPON : Ef2+3¢2)

IF(FLAGoM o0}

IPRINTS05¢ E (203580 0E€2:302) oE(2e¢3:3)oE {20364V 5E820102¥5E(2,4:3)
{23030 25(2,3,3)¢(F2P/ (L% (PLI#PI)II*B=(FPCI®HPON 2(ALFHAT/(AMPAMY)
IF(FLAGNC .0

1PRINTS05¢ E(2e36100E€20302) oE (20303 oE (202010 0E82:102Y0E(2:163)
E{2:3¢3)=2£(2:3:3)

L¢ALPHAP® (A2A/7(AMPLM ) 2EBFPYRNFCN ' £(2+:3¢3)

IFIFLAGNZ o 0) .
AIPRINTS5056 E{20301302(20202) eE (26303168 (2¢3010e8(26102V0E{2+103)
E(2v301)=E(ZQ301"PCLZ
E(2e3:2) =002y 3,2)%PCLZ
E{203¢3)V2E(2+3:31%PCLZ
C
C IMNCIDENCE Y FOLARIZATION X
C CCMPLTE THE TZRMS E(2+1+CCPMPCNENTS1¢2AND3)
El2e1s1)=F(291p2)V¢(=A%8/L,)2B®(FP2~ Z'FPUOFHZ)‘XFOR

1 2(ALPHAT/Z (AM®82)) E(2:1,1)

IF(FLAG.NEL D)
IPRINTEES s E (24935100 (29398) 9k (2030 3’,5(2'191)'5(20iv2'uf(391v3)

El2s1el}=0(251,1)

1 é(ﬁLPFAbI&.)’3‘(2e‘?PBOF?20FH2l“XpON E{24151)

IF(FLAG.NE L 0)
LPRINTS05 s £€20301)e5(26302) oFE (23031 4E (261080 eF82:262V6E(2451,53)
{5413 =3(2s554)

léﬂLpHAP‘((P/(u.*FI‘AF))"Z)'E'(*FPEOZ‘FDU-F“E)‘)PCN } E{2e1e5)

IF(FLAGeNE o 0
1PRINTE0S, 5(20391,95(29395)vE(2'3v3’oE(2v101)oE(Zv‘vz"E(Zelv3)
E2e162) 28 {20102V ¢lhPA/6e)% 100010 %BP(FP2-FH2)2XPCN

I ®(ALPHLT/Z(AM=R®2}) E{2s892°

IF(FLAGs NI D)
iPRINTEIE, E(ce3gz)vi(293 2YoE (20303 oF (293010 o (251023550241, 3)

E(E‘.l,Z)—’;(Zviva)

1 =(ALPHAN/GL,)®3¥(FP2-FP2)2XPCN®(Dcoedsa) E(2s2+2)

IF(FLAG.REL D)
lGFINT5359 E€2e301)oE020302) sE(29303VoE (201010 0E42080201,E825143)
E(2¢162)=2E(2¢1+2)

JoALPHAPB ((P/(L2FI%AM))1%22)% ((oo=1s)%Be(FF2-FP2)*XPON F(26542)

IF(FLAG.NEL D)
1PRINTEDS, E(2v3y1)v:(2v3e<)vE(<e~93,9E(20191,oﬁ‘20192’05(29103)
E(Cs1¢3)=2E (252930 ¢(A%0/(Lo?PTV1%(0o0la)%BP({FP1=FMIJ®¥PON

1 % (ALPHAT/(AMBANY) El291+3)

IF(FLAG, h;.O)
1PFINTEDS s E(2e304)eb (27021 5B 120303} qE (201010 eE (202020, E(Z.io
£(291:3) L(2q193)

TEALPHEP® (A2P/ (b 9FI®AM¥AP)II® (0oa=le ) ¥F#(EPL=FF1)#XPON ' E{2s2e %)

IF(FLAGaML L)

1PRINTS05, E(2e301)6F (203020 5126363V o8 (20108 eE€208¢2¥E (25143}

E(2:1+s10=zE(2s1413°PCLYX

E(2:442)V=E(293420%PCLX

El2e1e3)20(261,3)2PCLX

IF{FLAG.EGaDs) GC TC »0E€

PRINTE050 E42:301) 0 82:302) oE {20303V 0B 203010k ¢2520219E (20153}
LO& COMT INUE
200 CCAT INUE
C®*T+1S ACCS THE ELECYRIC FIFLCS FOR. A SERIES OF CORCERTRIC MELICES WITH OIFF
C#EFREMT PARAMETERS FCR CNE GIVEM ANGLS OF SC‘TTERIRG@
c



DC 701 I€f=1,3
00 702 JF=1,3
0C 703 KF=1,3
SUFMALIF o JF oKF )= SULMPALIF o JF o KF)eE (IFUF o KF)
703 COMT INUE
702 CCAT INUE
7C1 CCAT INUE
700 COM INUE
0C 708 1I=1+3
0C 706 JJ=i1,3
00 737 KK=1,3
E(IToJJo BKI=SUMMA(IToJJoKK)
74a7 CCNTINUE
706 CCNT INUE
705 COCNTINLE

CQ!l8'llO&lﬁ!«l55‘5‘356HBGG'“'&'BCGGUQ@UQ'OQG.'!C.l&l#'l‘ﬁﬁ“&ﬁ“ SBBRRA888288

C#FINISH ALL SLPS s
[ CBs2susas0 00000000 R Rs00 00003300800 0003 00U TR0 RBLRNRBERE 0BRRRRLREBSER
c
c
C
L R R Ty Ty T Yy T Yy Ty Y Y LYY
CPCCFRECT FOR TRANSVERSALITY IN T+IS SECTION &
C®DEFINe THE TRIGONCMETRIC VALLES CF THE COMPCMENTS OF THE SCATTEFET WAVE ®
C*VECTOR K s

CQ"“"...‘QQ"".G'Q'C'Q‘.‘G.'.O....B‘"“Hs.55.‘5555‘.a“.‘.“."".lbﬁ“
SINPSI=SIN(PSI(IY)
CCSPSI=CCSHIPSI{IN
SINTET=SIM(THITA)
CCSTET=CCS(THETAY
CH#*DELFINE EVEKIS= KOOT E(2+1¢ CCPPUATATSIAND EVZIETA= KLOT E(2,3,C0¥FS)
EVZETA=CCSPSI*SIPTETRI{2o391)¢SINPSI®SINTETRE(2,:3,2)¢C0STET®
1 £{2:3.3%
EYEKIS=CCSPSI®SIPTET®2 (2ol ol D oSINPSI®SINTET®E(2,442)¢COSTET®
1 E(261:03)
C#FINISK CCMPUTING CD(I) FOP ALL FSI(I}
IF(FLAGLNE (DIPRINY €17
517 FCRMAT(® #,8EVEK]IS® 8 ,2EYEZETA®)
IF(FLAG N o C) PRINY 55, EYEKIS.EVYZETA

C
P8 33455 284080 008058540000 00000a09 0cFs 0000008003003 88B0BR0808853838055
C*CCMFUTE IL MINUS IR ¢

(8895530030038 030 5050005058000 0s0 0800000050 CE NP LBLRRAEISIPIBLBERERLEES
Ci=E£(292+1)=CCSFSI®SINTETHEYEKIS
C2=t (€91 621 =SINPSI®SINTET®EVEKIS
C3=£(201,3)=CCSTET®EYEKIS
Di=E(2¢3+1)=CCSPSI#SINTET®EYZETA
Pe=E (29321 =SIAPSI®SINTEVHEVYZETA
D3=£1{2¢3+3)=CCSTET2EYIETA
CSTRi=CONJG(CL)
CSTF2=COMJGIC2)
CSTR3=CONJG(C3)
DSTF4=CCAJG (D1
LCETR2=CONJG (D2}
DSTR3=COMJGED3)
IF(FLAG.EQeDs) GC TC 014
C® FRINTING ROLTINES FCF INTERPEDIATE CACULATICAS CF (D
PRINT 50€
06 FCFMATI/o9Xo®C12® 0K o®CSTR1P,9Xy%CE2%¢9Xy 2CSTE2%,9X%,%C3%,9Y,
1#CSTR3*) ’
PFINT 506, C1.CSTF1,L2,CSTR2,C3,CSTR3
PEINT 507

2406



247

507 FCRMAT (/4% Ci / DSTRL 7 e /
10STR2 / D3 / CSTR3 2)
PRINT 50%, DisDSTF1:02¢L0STRE¢LIoDSTRSE
&G4 CCMY INUE
C
ILPIR(II={CETR1201¢CSTR2%02¢CSTRI*3=-(CL #TSTR1&L27DSTR2
1 ¢C3%DSTRINY 2( 2.%(Cevie)d)
E2=01%DSTR1¢D2%DSTR2¢03%LETR3
ILi{IY=E2Z .
EX=C1®CSTR1¢C2#CSTR2¢C3I#*CSTRY
IR(II=EX
ILPIR(II=(Ca2CSTR1¢C2°CSTR2¢(I¥CSTR3¢D12LSTP 16022 0STRE
1 ¢ D3I=DSTRIN®Z,
CO(II=ILPIR(IV/ZILFIR(]Y
IF{FLAG.£EQs00) GC TC 811
CPRINT 512 ILMIR(IDSILPIRAT), COCIVILITDIR(ID
512 FORMAT (/% 2,2ILPIR=22F1€.9¢2Xo2ILPIR=2,216:%e2hs%C0=2:E1€:9
12X %10 s® EL16.9e2X:2I=%E1669)
PRINTY 54¢C
510 FORMAT (/7 o707 7)
511 CONT INUE
100 CCRTINUE
C® THIS NEXT CCMPUTATICMN ASSUPES THAT THE VALUE AT ANCGLE OF 360 DEGREES
C® IS THE SAME AS THAY CF { DECREES
ANGLE(361)=360, ‘ .
CC(IE1I=C0l1) § ILPIFL3ed)=ILPIR(LY SILMIF(3E1)=ILMIP{1)
18 IL{361)=10L(s) ¢ IR(3E3)=IR(1)

(e N Ne]

(45550850500 R4 LALUBIRBIRILINSPBRIVIDELIRRBR0REBCULLRILBRBNUPLLLERNEBNESES

C® FERE COPEL MCRZ PFINTING RCLTINES o
(#E o208 s ABBEAB SPGB R SR BITNII RPN R IR ICBB ISR BIINIBIBLEVBEBRRYSEEENBRERIEES
FRINT 907 JAPOLARGPFRIOLC+ALEAGTRLAMBDA
ag7 FCRMAT(/o/o® 2¢® (D ALND TCTAL SCATTER FCR APCLARH ANGLE=2F
1 Fo2¢CRePPEFIC =Y oFEo202XsPRALIUSE® gFB8,2 02X o *LEFGTHS®,F10.242X,
BLEAMEDA=%,F5,.2)
PRINTT
¥ FCRMAT (/o # FSI®, BXo®CL(IV®412)y PIL-TF%,12n%ILeIR"
118X o oPOL 2% o1EX o ¥FOLY =Y
0C 57 K=1¢ NANGL
ANGL=PSI(K}®120./F]
PRINT B8 o ANGLe COUKDY ¢ ILMIF(KIs ILPIR(K)oILIKIIP(XNY

58 FCRMAT(® "2y FBobk,y @Xo E1265s 4luXef15.8))

57 CCAT INUL : :

C

c

c

L O L Y Ry Y T Yy Y Y Y Y
c» DETEFMINE THE MAXIMUM VALLE FCF PLOTING SUEROLTINE ) ®

C5‘45&55lﬁb&s@Bl5&55545‘6&&&6!‘#68553555&‘?#33!659Usb.ﬁ'B‘éQ.ﬁ5545'5‘&06‘55

DC 139 TI=1,NANGLE
COMAX=AMAXL (ABSLCC(INY o CLPMAXY
SMAX =AMAXLI(ILPIRY IoSMAX)
SMAXL=AMAXLI(IL{I)SPAXL)
SMAXR=AMAXL (IF (1) ,SPAXR]

109 CCATINUE
IF(CDHAX.GE.D.Z) CDPAY:ie
0C 1116 J=1, NANGL
CO4JI=CDUIY/CONMAY
PLCTSC(UI=ILPIRL JI/SHAX
PLOTIL I I=TIL U/ SPAXL



248

PLCTIR(J)I=TREJD/SPAYF

1218 COATINUE

c

C

c

L Ly Ty R R N Ty Y Yy T R LY YTy ¥
C*PLOT SCATTERING VS FS1 FOR DIFFERING APOLAR AMNGLES 8
C®*In PLCTING SCATER=0, WILLPLCY CO,s SCATER=1,0 WILL PLOT ILeIR/MAY(IL¢IR) *
C®SCATEFR= 2.0 o PLO” IL/MAX{IL) . SCATZRsZ o PLCLT IF/ZPAX(IR) s

C222824508883583580885080808808888883858858083530338038834580888080B088088808808208

IF(NOPLCT.£Q.0) GC TO €400
IF(DISCRT.EQe0) LYR=100
Q?‘AX'—"...U
IF(POLXeEQeDoOFeFCL2.2C60) GC TC €05
INITIA=INITIAL
AFCLAR=9C, = APOLAR
PRINT 151,CDMEX, B8FOLER
151 FCRMAT(/+%GRAPH CF CD/7CLFAX WITH COMAX=®oF1€.8.°ALTITUDE=®,F5,2)
APCLAF=sIMT (APQLAR)
SCATEF=0
IF(CDMAXoLT o100) SCATER==]
CALL PCLAR(ANGLE oCDoRMAYAPCLARPoAoSCATFRLAMBLAGLENGTHILYE,
1 INITIA)
€05 CCATINCE

FPMAr=1,0
INITIA=INITIAY
PREINT 152, SMLXEFCLAR
182 FCFMAT(/7,®*PLOT GRAFK FCR TCTAL SCATTER CIVICED B8y SwaX=z3,
1 2160392Xe%APCLEAFH =29 F5.2)
AFCLAR=IMNT(APCLAFR)
SCATER=1.0
CALL PCLAR(ANGLE oPFLCTSCoRFAXAPCLAR ¢P oA SCATER LAPIDALERNGT =,
2 LYR,INITIA)
PEINT 153.,SMAYL,22IMLT
FCRMAT(/.2PLOT GRAPH FCOF LEFT SCATTER OIVICEL BY SMAX¥L=®,516.8,
L 22X PLPOLAR=#,FE.2}
SCATER=2Z2.0
CALL PCLAR(ANGLE oFLCTIL oRPAXNGAPCLAR ¢P9Ao SCATERJLAMBDACLENCTH,
S LYRGINITIA)
PRINT 154oSHAMFRAFPOLAR
FCRMAT(/.%PLOT GFRAPH FCF RIGWTSCATTER DIVIDEL 3Y SMAXE=2%,716,8,
1 ZXsBAPOLAR=%,F€,2)
SCATER=3.0
CELL PCLARCANGLE oFLCY TR oRPANAFGLAR P oA SCATEF o LAPBDALENCT
L LYRGINITIA)
660 CCAT INUE

[y
A
Wi

I
(311
&

o

299 CCRTINUE

3G0 COATINLE
GC TO 311
STC®

20 CCrTINUE
FSISTR(IN=060
GC 70 21
END

e N Ne]

SLBFOUTINE POLAR(THoReFRMADoAPCLARGFRATIC . RADIUSoSCATEF oW oL oL YR,
1 INITIAY

(9203398300050 08800008808830083000R28RR280543088008808003058835808080008008080808808



C®TrIS SUBROLTINE MAKES PCLAR GRAPHS ®
CBTPE ARCUPENT. CF THE FULNCTICAS ARE MEASURED IN DEGREES. ®
C*THE IAFUT OF THE ANGLLAR VAFIABLE BAS YO BE ERTERED In RACIANS he
CAANGLES ARE FCSITIVE In THE CCUNTERCLOKWISE CIRECTIOM. ®
C#AN AMNCLE OF 2¢RC. IS PCRIZONTAL ANC TO THE RIGHT. ®
cééQBG@"@BEQ'saﬁéﬁbssléeﬁlﬁHQG‘QQDU‘“GQlﬂﬂé“3!8#865545356#‘GB&‘!&“&'EG!B!

COMMON FIPTToFMPPFMANTBO0PBO N30

REAL NBG

CCVPON/IGSZ222721200)

‘DIFENSION P{LOO). o THEGDO)e Y(&0D)

REAL L, LYR '

INTEGER STBoSPR,SMB

DIMENSION YNEG(&GO)

EXTERNAL FONTZ

DATA IR&L/2HR=/

DATA IPITCH/2HP=/

OATA IWAVE/ZHW=/

DATA ISENTE/LhRALT=/

DATA ILYF/ZLHLYR=/

NATA ILENGH/ZPL=/

INTEGER BLANK

DATA BLANKZLH /

DATA IPE/3HPB=/

DATA INE/Z3nMNB=/

DATA ITB/2HT8=/

DATA LOGL3L/3KLG=/

CAYA ICCRMAZLF,/
a5 FCRMAT(A3,13)
90p FORMATU(AZsFu,2}
a¢g FCRMAT (AkoF562)

LCGLEN=L0

ENCODE( 2,993 LAEEL)IISERTEAPCLAF

I (LYReNESLODYENC(DE(G9SS9e LABELYILYF LYF

ERNCCDE( F.986.LAEEL2) TFITCH,FRATIC

ENCCDE(6 996, LABEL3VIRALRACIUS

ERCOCE(E vC96, LASELEIIHAVE oM

I1F (L GTa%3.)LOGLEN=LLCGAL (L)

IF(LoLEoCSIVENCODE (6996, LABELEITILENGH,L

IF (L oGToSAVENCCDE(B 995, LABELEILOGLIL LEGLEN
313 FCRMAT(FLG2)

FRCODE(4 G133, STR)FMTY

INCODElLS13,3PB)FMPP

ENCODELL . C1 2, SABYFHAN
o011 FCRMAT(L 2 FbolohAl)

ENCODE(Be311¢LABELTIITBT30ICOMMA

ENCODE(B5911LABELP)TPBFBOICCHMA

ENCOGE(E G111, LABELN)YINERED ICCHMA
912 FCRMAT(AZ,Abko AL}

TF(FMTTWEG.0)FTHCCCE (B 94 LABFLTIITESBLARK, ICOMKA

IF(FMPP Qo 0IENCECLE (P o912 o LABELP)IIFBBLANK, ICOHMFA

TE{FPNNoLQoCIENCCCE(B.91ZLABELN) TAB,BLANKoICCHMA

(‘)(rb

HEFe 1S WLRL THE FOSITIVE VALLES AR: SEPARATEL FRCM NEGATIVE VALUES
00 20 I=1. 361 )
YNEG(I)=0.0
Y{I)=ABS (R(TID) : '
IF(R({I)olTo0o0) YREG(IIZAESUR(INY
0 CCAT INUE

249



250

C##6GGl#-!5BQQQ64‘4&‘&#'34-‘!5465Q“5.55"!8'555“6&5Q¥¥05'55¢UC355545“955‘5‘

C*IMBCRTANT IMECRTANT IMPCRTANT e
C*HERE 1S WHERE THE FLCTTING FLTINE GETS INITIALIZED CNLY ONCE s
(Be22848 000003855030 080800508300880830380030RCBRRILRRIVPRRLBLLILILESBLLIERBLRS
c
c
c
C INITIALIZES CGRAPHIC SYSTE™
C INITIA TELLS PLOTFR TC INITIALIZE ALL RCUTINES . INITIA=1 INITIALTIZES
TF(INITIAGNE1} GC TC 23
CALL MCDESG(Z.6,4+CINS)
3 CCAT INUE

I N

CALL VECIG(Z,FUNTZ2,0}
CELL SETSMG(Z+5116)
C SZT UF VIiw FORY “C LEAVE 20 PERCENT BCRDER
CALL CBJCTG(Z+206e920098000B061)
C SET THETA LXIS OFFSET
21(1351)=9(,
C DEFINZ THL SL3JECT SFACE FOR 20TH RADIAL AND ANGULLAR VARIA3ILES
CALL FSLEJG(Z+CeolooRMAY,360,)
DRAWS £ GFIC CF 30 CECGREES CF ANGULAR SFACING AND 2 CF RADIAL UNITS
CALL SETSPG(Z.173.0.03
CALL PGFIDG(ZoRMAX/E093Lesloolal
C SETS FOFMAT FCR LEABELLING
CALL SETSEMG(Z:30¢ce}
CALL SETSPFGUZeb54:203)
FrT=5,2
LABIL RADIAL AXIS
CALL PCLEG(Zoo€E5417CcciobhleEL)
CALL PCLEGLZ91e0% 0175004 skHi00)
SET LARGE CHARACT:k S1Zt
CALL SETSPG(Z+054¢300)
INCICATE THE FORMAY FCR THE LABELLING
FrT=6.2
LABEL THETA &XIS
CALL PLLELG(Z 013 asleFPFT)
CALL SETSMG(Zi4Ee3.0)
KB=RMLAX®{,461
CALL PCLEG(Zo28 - 421iie9 9eLAEZLY
X7 =PMLX®2L .7
IFUSCALTE Rk Qo =1)
1 CALL PCLEGHZeXT7:33€ce77THCD/¥AX )
IF(SCATEF.£EQe Do D}
1 CALL PCLEG ZoXT7913€.o77HCIDS V)
IF(SCATEREQelel)
1 CALL PCLEG(ZoXT7+13€0o77HSCATT V)
IF(SCATEFot Qels0)
1 Chul PCLEG(Z X7 o13€6e7o7RI PCLZ )
IF(SCETEFEGe2e0)
1 CoLll PCLEGUZoXT 643€coTo7hI PCLYX )
PRINTGIE o LABELoLEFEL2e LAEEL3LA3ELS.LABZLE
993 FCRMAT(® ®,%H-KE ARE TFE LABELS ®#, 6(L¥.ACH)
X3=FkMLX® L. 79
CALL PCLEGUZox3 430e96,LABEL3)Y
XazhMAX®2Z (2
CALL PCLEG(ZoXxbolBey BoLAEELEZ)
AE=RHMAX#2 .05
CALL PCLEG(ZeXS eb€eo ESLABELS)
XE=FMAX®1.61

[}

(@]

[} (9]

o
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CALL POLEG{Zo¥Eo233.0H69LAEELGY
IF(FHNN.EQeB.AND o FMFPPEQ.0) GO TO 510
XTB=RMAY %1, 735
CALL PCLEG(ZoYTB 33%ccBLABELT)
XFE=RMAX?1.58 .
CALL PCOLEG(Z,YPBo33%.:8,LABELF)
XNB=2RMAX*1,36 :
CALL PCLLGUZs¥NBo332c98BsLABELRN)
ASTB=2,07#*RMAX )
CALL PCLEG(Zo¥STE 2320 00bL+STH)
XSFB=1.92%RMAY
CALL POLEG(Zo¥SPE o317 .54oSFB)
HSN3=1,7CERMAY
CALL PCLEGUZo>»SNE 9312604 oSNB)
50 CON INUE .
¢ JCINS WITH & LINE THE PCINTS THAT RAVE BEEN PLCYTED
CAll SETSPG{Z«30+201 '
CALL PLINLG(Z:361,v,7+)
IF{SCATEFR«GEs2e0) GC TC w0~
CALL SETSMG(Z2+,30ete)
Call PLINEGUZ 361 YREGTH)
<0 CCAT INUE
CoLL SETSPG(Z.30ec0)
C MCV: TC Niw FRAME
CALL PAGEG(ZeGoled)
C 7C ex1IY
CALL EXITG(ZY
PRINT 22 ¢RMLXPRATIC«HFALTIUSHL ’
21 FCRMAT (® #,8GCA0F HLS BEEMN FLCTTED WITH RPAX=®, F Babs
TLX o ®PERICL=2,F100€920e® RAVELEANGTH=®oFB ok ¢2X o®RADIUSE2.FB 4
L 92X ¢ PLENGTHz®,FR.u)

RETURN

ENC ;
R LR R R Ty vy L PR Py Ry T
e K ) »
C2TRIS FARTICULAR PFOGRLM WAS BUN WITH THE FOLLWING IAPLY DATA g
ce= &

Ca&a;aa;~-aua#naan‘asu#nsa»smuv:usasq#seu-sx&uuiﬁbqa»o&u:sa»anae568»:;&:6&;

¢LAYE® L =L LYEF be

TANCENT €, PESFENDIC: €62 ACRFAL el
PIRICE i2. RACTIUS (o€ LAMEDA £ CCMPUTE
STOF

1RSSR EAS NI ARt e ddds AR abaid i tadsd RN aatiiadi et itsnadinidodddss
TPPVRPTT 0 VPRI TRV PRIV TIP 7 7PV PPV P T PPV 7V VTV VTRV VTTV P FRPTTP IV VEFTPTVIT7T

TVP I TRFT T TP T VTR T RTPTITV 0TV RVT PP o POV P VPOV T VTPV O7 PRIV TIT VTPV VPV RP7777,
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IT. PROGRAM PAN.

This program calculates the CIDS and the total scat-
tering of a helix of arbitrary dimension, for light inci-
dent along the helix axis. The calculation is made as a
function of the polar angle of scattering and at a fixed
value of the azimuthal angle. The results are printed
and plotted in polar form (intensities vs. polar angle)
and obtained in microfiche and 35 mm. film. No restric-

tions are imposed to the ratio of pitch/wavelength.
Deck set-up:

(1) Control cards
| Program SCATTER (version 2)
(Z2) Program
Subroutine POLAR

(3) End-of-job-card



PAN12+300,44B8402.MAESTRE-BUSTAPRANTE
SUSERPR

*NOSTAGE

MNFGoT o

FETCHFS SANDIACSAND.SAMLIB,
FETCHPS,IDDS,ULIB.ULIBY,
FETCHPSsGPACBANT7 «GPAC,CCBN,
LINKoF=LGOPsULIBF=GPAC F=SARNC oK o
EXIT»

DUMES D,
FETCHPSJODSSYMTAB.SYPTAEX,
GRUFP.P=QUTPUT .P=SYMT AR,

FiNe

DISFPOSE<FILMSPL,PE=FE,

CS‘F¢¥¥$55655$5555#58555559550355@6&3560.QQGH@Q@O&H 55lQé&Gl“ﬁi‘laQﬁSﬁ#‘@#é&@

C®TrIS PROGPAM CALCULATES CIDS AND VCTAL SCATTERING FCR AN CRIENTFD WELIX #
C®*OF AREITRARY PARAMETEFS WITH RESFECT TC THE DIMEASICNS OF THE WAVELEAGTH®
C®0F VTHE INCICEAT LIGHT, THE LIGHT INCIDES ALONG THE &XIS 0F THZ HELIX ¢
C2T+E INPUT PARAMETERS ARE HANELEANGTHo PITCH, RADIUS, AMGLECF ALTIVUDE CF *®
C#SCATTERING . : s

C$505§5$ PP BEL/LBBBRLBPTIIPRERIIRBLSLLBERISPBLBLBLPBL8B088888882888880R8888

c

R L R L S R Ry Y Y AT P YRR
C*HEFL WE DECLAFE ALL VARTIABLES AND AREAYS USED IN THE FROGRAM AND ALSC ®
C®HE MAKE THE ALLOCATICN FCR PEMORY ’ ®
L L L R Ly Ry e R L)

COMPLEX EZEVE, EZEXIS

REAL LENCYH

COMPLEX E£1343¢3),2PCN

COMPLEX C14C25C3o01002eC03¢CSTR1,CSTR2sCSTRELLSYR1,DSTRZ,03TR3

DIMENSICR QAC(LD0Y

LEVELZ B IN

COMMONZGIANTZ73UN{81,600)

DIMENSIOM CDULOQYs THETA{»00). B3J0LYLY

DIPENSION ILMIRCLOOIILPIR(LO00)Y

OIPENSION TCO{LOOY

DIPENSIOM PLOTYSC(LGOY

INTEGER EXYPONT,PLLIDX

REAL ILMIRGILPIR.LAMADA

REAL MAXILM

DIMENSIOMN ANGLE (LCOY

L]

c
LR R Y Ry Ly Y R YR R
CPHERE wE INITIALIZE TPE VALUES NEECED FOR COMPUTATION. @

C*AS THE PROGRAM IS WRITVEN IT CALCULATES THE SCATTERING FCR A HELIN WITH®
C#A UNTAXIAL TANGENTIAL PCLARIZABILITV. IN THIS CASE THE FORM OF THE PCLAR®
CH#TZABILITY CANMCELS WHEMN THE RATIO FOR CIDS IS TAKEN. THEREFORE THE BAAND #
C®PARAMETERS DC NOT APFEAF

C*A IS TrE RADIUS OF THE BILIX

CP®PEPIOD IS THE PIVCH CF THe FELIX ARD  LENGTH THE NUKMBEP OF TURNS OF THE
CPHELIX, '

CENCPLOT WILL CECID® Tei MAXIPLN NUMBER OF PLCTS TO Bt GERERATEN 3V THE

® o of & 8
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C*PROGRAM, .
C*INDEX CETERMINES THE PAXIMUN CRDER OF BESSEL FUNCTICNS USED IN THE SUMS *
C®FLAG IS AN OPTION THAT WHEMN EQUAL TO 1 COMTPOLS THE PRINTING OF ALL  *
C*INTERMEDIARY CALCULATIONS. IF EQUAL TO ZERO ONLY THE FINAL RESULTS ARE *
C*PRINTED .
C*VALUE DETERMINES THE CLTOFF CF SPECIFIC LO3S IN CICS .
C*SINCE THE SCATTERING AS A FUNCTICN OF THE AZIMUTHAL ANGLE IS SPHEFICALLY®
C®SYMMETRIC, THE GENERATION ANC PLOTTING OF DATA IS DCNE AT AN SPECIFIED *
C*AZIMUTHAL (PSI) ANGLE WHILE THE POLAR ANGLE THETA IS VARIED FRCM C TC &
C*3€0 DEGREES, .
C*PCLAR ANGLE THETA IS IN RADIANS .
C®AZIMUTHAL ANGLE PST IS ALSO In RADIANS .
C*ANGLE IS THE FOLAP ANCLE THETA EXPRESSED IN DEGPEELS .
cGU‘HG‘GEDG#&"!‘G!Gl‘..Q!&"OQQ@Q"Q‘QQ‘QQCQGDGQ'“‘D‘a..ééﬂ5.455..5‘846¢l

SHAX=060

INDE X224 C.

INDEX1==40,

FLAG=0.

C#SELeCY POLAR ANGLT FCF FRINTINGS WEEN FLAG=1,
YINANG=3€R § MAXANG=339
PI=3,161592€5358¢%7
VALUE=.0001

C®*SELECT AZIMUTH ANGLE

PSI=PI/2

NOPLOT=0

NOPLCT=1

PERIOD=1 § LAMBDA=1 8 A=1.08% LENGTH=2000

LENGTH=2CC0

PsPZRIOD

PRATIO=P/LAMBDA

NANGLE=3€Q

DO 11 I=1,NANGLE

THETA(I)=(I=1)2P1/130,

ANGLE(I)=THETA(I)®18. /P

COAT INUE

fes

3 03 ) s

Cbé'll"l‘ﬂﬁlll&‘“.“!'@#QB;'JQ"5'85'!65.5'.5‘555.'555“5“‘5«9&‘560565‘056

C®HERe CCME SCME PRINTING ROUTINES ®
(808568568085 3000800 0000003000088 055003050883 800 0088208438880 8308888
DC 43 J=1,NANGLE
Rz{2.®PI/LAMBCAISSINMNTHETALY))
R=ABS(R)
QA(J I =R®L4
13 COANT ZAUE
IF(FLAG.EQe0e) CGC T2 144
PRINTY 3
3 FORMAT(/,® #,%APCLARH®, B{10X:*QA%),/)
DO 18 I=1, NANGLE
PRINT 10ANGLE (I3 .,Qa(2)
10 FCRMAT(® %, FR L oSEXoFlen)
18 CCRT INUE
77 CONTINUC

CQ‘Q‘#‘6@6540‘!lOﬁ#a"56‘&&55!6&‘!“5‘66.5‘.56'@95555.3.55530‘55‘05‘85'655‘

C#HERE WE START GENARATING THE FOSITIVE AND NEGATIVE CRCER 3L SSIL FUNC*'O'*J'l
C* Thi ARGUMENT OF THE BLSSEL FUNCTIONS IS NOW F=4

C#ou-anostns;au;aou;a:as;a;esaaa.nnacuanue.aseas;soa;@aas»;ens-‘:satsucsouu
BO 1 I=1.NANGLE
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CIOIOY IO

31

€LY 3 o PO

JRRRBRBLELRLELLVIRRLLLAYLRLIBELIRINLIRIERLLIBRBPLLPBRLBLULBBLLBLR2BRBR8 88888

X=04a({I}

L=4]

ALPHA=0,

CALL BESJUHALPHAGL.3J:h2)

BJSU1) coccevvencesoaBIlbl)
JO BeeesaeCeeé@OeeﬂOJ“O

BUNTleIVuoncocooolooBINI41sT0eeCoCoecoeeBIN(BLT)

Jobloosoosoocecaccoelecocococoosoneeloodil

Nzl

CONT INUE

EXPCONT=z61 NN

L=t2 NN :
BUNINN D)= {{=1,0)**FHPONT J2BI(L)
NN=NN=3

IFINN.EQ.DO) GC TC 31

GC Y0 30

COAT INUE

N0 2 Nzlgbkd

NN=h¢&D

FIN{NN Th=3J({N}

COMY INUE

COANY INUE

C#*TRESE ARE ALL PRINTING STATEPENTS

CQ$5$$B¥853¥C$$5¢§5355635656558563633555UUE‘UC5‘.55!5'5.‘33"‘.‘“#és"bﬁ‘d

iC6

~N

€30y N U §

:sts&@iB%“GG$$5$¥&594356&&5356$$65656558556.3Bﬁélbﬂibﬂdl“‘53565!5&&6‘555‘5

CPPRGCEEC TC CCHPUTE THE CIDS FOR LIGHY INCIDENT ALONG THE
BUN(L11)2J(SU3GY OF ARGII

C®CCMFUTE NCW THE CCMPCMERTS FCR EACE OF THE
CBVECTOR E(DIFECTIONSPCLARIZATICON, EACH OF THE
CREXAPPLE E391¢2) MEARS TH.

~ a8
-

IF{FLAG.EQe 0.3 GC TO ™2
PRINT 3, LENGTH

FCRMATE® 2, BLENGTH=®,FA4o8 (OX,2INIXI®)e /)

PRINT 10€(ANGLE (LY oT=1,8)
FCRMATU/ *ANGLE=¥B(LXF10a7})
BRINT by (QA(I)o1=i,8%
FORMAT{/92INDEXoCA=®o3 (BN F10.7))
00 % K=1,81

K sKeb]

PRINT LoKlby (2IN(RKeIVol=doe8)

FOPHAT ( #® 2 o Jw o B {3Xe € 12,5 1})

CONT INUE
CONTINUE

C*CCMPUTE CIDSIIY FOR ALL THETAIL)

1002

DO 180 I=1.360

D0 1000 II=1,3

JC 1001 JJ=1,3
001002 KK=1,3
E(IIGJJ‘KK)=(°6OUGBD,
CONT INJE

POLARIZATICNS CF THE ELECTVRIC
COMPONE NTS)
SECOND CCMPONENT CF ELECTRIC VECTOR
CEIED ALONG THE X  DIRECYION AND TFAVELLING ALCNG THL FOSITIVE
C®TICN

CP*DETERMINE THE COEFFICIENTS

CRPeA4RBLSBLBB 0383489000383 300RBIDESRVVVPELLBRPBRBARORIBRGLIVEBLERPBLRNGBEES

L FOR SUMS, COMPLEX FP2yFP1e

255
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1801 COATINUE

1000 COMTINUE

C®DELKZ IS THE PROJECTICN OF THE OUTGOING WAVE VECTOR (K) ON THE Z AXIS

C2ITS MAXIMUN VALUE IS =4b*PI/LAMBDA
DELKZ=(2.%PI/7(LAVPEDAYI® (COS(THETA(I)V=1,0)

C®*SUM OF ALL ORCERS OF COcFFICIENTS TIMES BESSEL FUNCTICNS TIPES THE CORRE®

C#*SFONDING FACTCRS, FRCM =INDEX TO ¢ INDEX WILL Bt GENERATED
NEGIDX=614INDEX1
PLUIDX=L1 ¢INDEX2
DC 200 N=NEGICX.FLUID
DUMMY=(= (N=LL1 ) /P} ¢ {DELKZ/ (2%P1})
AP2 = DUPHMYS (2./F)

IF(AP2,ECQeD0) GC TC 101
FPZ2= SIN(P®PI=LENCTR®APZ)/(PI®AP2)
GO 70 141

101 FP2=s PBLENGTH

111 CONT INUE
AMZ2= DUMMY=(2,/P)

IF{ AM2.EQe000) €C TO 102
FrZ=SIN(PePIPLENCTH®AM2) /(PT®AP2)
60 70 112

102 FM2=z PBLENGTH

112 CON INUE
APQ= DUMMY
IF (AP0.EQeDs0) GC TO 103
FPO= SIN(P®PI>LENCTH®4P)/(PI®ADL)
GO 70 112

103 FPO=PRLENGTH

113 CORTINUE
AP1=JUMMY+ {1,/P)

IF{APL.EGs0e0) GO TG 104
FPiz SIN(P®PISLENCGTH®ARL)/(PI=471)
GO 70 114

106 FPi= P2LENGTH

116 COMT INUE
AMi= DUMMY=({l,/P)

IF (AM1.EQe0.0) CGC TC 108
FMl=SIN(F*PICLENGCTH®LY L}/ (PI2AV])
GC TC 115

105 Fbi=z PSLENGTH

118 CONT INUE
I=EIN{N, I}

SINTET=SIN(THETA(I})
COSTET=COS(THETA(TII)
CCSPS 1=CCS(PST)
SINPSI=SIM(PSI}

CR®OZFINE ANGLE PSPRIW
PSIPRM=PETI¢(PI/2.0)
Z={N=61)2RPSIPFM
XPCON=COS(Z) ¢ (Lou i) #SINLTY
TF(ANGLE (1) oGf o MINANGoANDANGLEC IV oLEoMAXANG) GC TC &30

¢
c
c
R883553850REss0bRs80ss00000 Y0000 sRsNsRs000L080R05000R058558B88R88888
ce s
C®*THESE ARE ALL PRINTIMNG ROUTINES »
cs 8

R L T T N Yy Ty T Y e Ry
IF(FLAG.EQ.D0) GC TC =00

&30 CONT INUE
PRINTB88., ANGLE(I)
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eas FORMAT (/o7 ¢/e/o® 2, 2AP0LARHER,F5.2)

PRINT 499 Ny N-=413
599 FORMAT(/Z, /,%RUNAING=%, 32, 2X¢%ACTUAL CROUER=%,1&}

PRINT 508

500 FORMAT (/98K
1 o® DUHMY aP2 AM2 AP AML 4
1 FMl FP4 F91 FPpe)

PRINY S50%1y DUMMY AP 2o AMZoAP L AML FFP2FM2 FPL,FML,FP]

501 FORMAT(® #,5(2XoF80b) o5 UiNsE100e4))
PRINTEQR

502 FORMAT(/+8Xs ®= B FSIPEM z X20N ®)
PRINT 503, B, PSIFRM,Z, XPON

503 FORMAT(® 'vZ(ZX'F@-‘e’eiuvaBekﬁava(évFao‘ﬂe 2oFBobg®i®)

PRINT 50+
506 FCRMAT (/% El3:201) / £1(3,2:2} 14 E(3,2,3) /
1 E(3e101) / EC3gie2) / E{ 351,30°)
PRINT 50%, E€3:2¢1) oF (302623 9E€35203) o5 (30lodlol3ole2o (%6l
1 3

505 FORMAT(® 2. 8(1Xo%(* oFBo6e®e®gFBoks®)?))
30 CORTINUE

CCMFUTE THE TEFM [ {X.YoCOMFCAENTS 1,2,AND3)

INCIDENCE 7 POLARIZATION ¥ .
E(3¢2e4)3F (352021 (A%A/{L.V1%Jo0ls YeR® (F22-FMZ)#XPON
E(3,2e215E(3,2:202(A%A/0L,)V2B2(2.5FPReFP2eFP2)*XPON
El3¢2:3)=8(302e3010(A®D /(L *PIII*B2(FPLeFPL)IeNPON

C*INCIDENCE ¥ POLARIZATIOM X

C#28COMPUTE ThE TERMS E(3.,1. COPPONENTS 1.2 8NOD 3)

E(304s101=2E(30del)e(=82A/L )PB2(FP2-2%FPRoFM2)*XFON

E(3e1:202E (Fele2V¢(APL/7000%(0o0lal ®B2(FPR2=-FM2)®3P(N
E(3'1.3)=E(3,1,3‘0(&‘9/(&_‘5PI,’e(ﬂg'vl,,"8'(:91‘FH1).KPDN

TF (ANGLE(T) oGTaMINANG o ANCoANGLE(T) LEAYANG)Y GC TO 431
IFIFLAG.EQeCs) GC TC «0B

21 CCAT INJE :

PRINT 50€e E(2e241) 8 (392-2)vE(392|3>cE(391'1)9(3v192'9:(‘oi
PRI

L06 CONT INUE

200 CONT INUE

CHFINISH ALL SUMS

C*¥HERe THE FIELCS AFE CORFECTYEC FCR TRANSVESSALITY

EZEKIS=sCCSPSI*SIMTET®E (Jelold ¢ SINPSI®CTINTIVSE(Iels2)
1 ¢ COSTET®*E(3+4,3)
EZEYEs CCSPSI®SIRTET®Z (2,2,1) ¢ SINPSI®SINTEVRE(3,242)
1 ¢ COSTET2E(3,2.3)
Ci=f{3¢11)=CCSPSI®SINTET®EZEXIS .
C2=FE (3,1+2)=SINPSI®SINTET®EZEKIS
C3zE(3¢1¢3)=COSTET#EZEKIS -
D16 (3e2+1)=COSPEI®SINTET2EZE VE
02=£ (3,2,2)=SINPSI®SINTETVREZEVE
N3=E(3,2+3)=COSTET#EZIVE
CSTF1=COMJIGLCL)
CSTR2=CONJIGEC2)
CETF3=CONJGILCT}
DSTR1=CONJG(DL)
0STF2=COMJGI(D2)
DSTF3=CONJGID3}
TF(ANGLE (T) oGF aMIM NG AR ANGLECTI) (LE-MAXANG) GC 70 632
IF(FLAGeEQeDeY GC VO 401
32 CONT INUE
PRINT S50¢

c
c
c
c
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506 FORMAT(/o9Ko®C12 9 #CSTR12 9% o%C2% o9 ¢ ®CSTR2%,9X,%C3%,9X,

1®CSTR3*)}
PRINT 50%s C1l,CSTR1,C2+CSTR2,C3,CSTR3
PRINT 507
507 FORMAT(/+® [+5 / DSTRL / Dz /
10s7TR2 / D3 / DSTR3 &)

PRINT 505, DLi+.DSTR1,02.DSTR2+sC3+DSTR3
601 CORT INUE

¢

LR L T Ry T Yy Yy L Yy Y Yy LYY
C®CCHMFUTE IL MINUS IR s
C®THIS GIVES THE CIRRECT IL-IR FOR INCIDENCE ALCNG 2 &

(82235500050 0 0R00sa0Us YN s L BLIURLETREBbLRLAsLLELRELLLEE006805588858200
¢
ILMIR(I}s(CSTF12C14CSTRE®D24CSTRI®L3=-(CL2LSTR1e(22DSTR2
1 ¢C3%DSTRI}) 2{=2.%(Dasisel)
ILPIR(IN=(CI?CSTR1¢C2*CSTR24¢C3I?CSTRIEN1I#0STR14D2®0STR2
1 ¢ D3®DSTR3II®2,

(#e888288HERZ COPRECT FCR SHARF DISCCATINUIVIES DUE T¢ 2ERO/ZERD  RATICS
TEST1=08S{ILHMIR(II} ‘
TEST2=ABS(ILPIR(IN
Hzi.E=15
IF(TESTL o LEcHoANCTEST2eLEoHeANI o ToNEoL) GO TO 15CC
IF(TESTLeLE oH-ANCoTEST2obLEcHoAND s TeNEo2) GO TO 15CC

c

COtIN=TILPIRIINZILPIRIDY

GC 70 18504
1600 COMTINUE
¢
ECCQ#!H#Q#U‘i.ll&!&&!lb'#a&dUGQQ!GO'QC!QCQ!&'I8“38400&&‘:5655066&501556656
C#MCRZ FRINTING ROUTINES e
C#®22PRINT UNCCRRECTEL DISCOMATINUITIES @

:4‘6545‘ BRBRPRVLBBRLLB4PLDI330058085880880008088883288R80883088580888888888

PRINT 1580
PRINT 1580 ANGLE (1) ILMIR( IV ILPIR(IY

1850 FCRMAT(/0® 292 ANCLES#oFCoco®IL=IR=%E1608:2Xo%IL¢IR=%E1E.9)
CD(IY=20C,

1501 CONINUE
IF(ANGLE(I) oGE o MINANGANCoANGLE( T oLEMAXANG) GC TC &33
IF(FLAG.ERQ.0o) GC TO 514

433 COM INUE
PRINT 512¢ ILMIF(INILPIRIIN, CIULID

12 FORMAT (/0% o2 ILPIR=",L16:3s2Xs*ILPIR=%,F 160 Ge2xy ¥C0=%,E16,9)
PRINT 513

540 FORMAT (/o /o /0 /)

€11 COAT INUE

100 CCAT INVE

#GET THE MAXIMUN AESOLUTE VALUE OF ILe¢IR
MAXILM=0
DC 1560 P=1.360
AILPIR= ABS({ILPIR(MI}
MAXILM=AMAXLI(ATILFIR,MAXIL™)

1560 COMINUE

CBCCRRECT CIDS FOR FALSE VALUES

DC 1585 M=1,360

ATLPIR=ABS(ILPIR(™))
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TCOIMI=CD (M)

FORM=AILPIR/MAX TLM

IF(FORM.LT.VALUEY TCDIRI=0.
1565 COANY INUE

o

#PRINT ROUYINES
PRINT 907, LENGTH
907 FCRMAT(/4/7¢% ®3% CD AND TOTAL SCATTER FCPF HELIXK LENGTH =@ ,.F
1 5o2¢/)
PRINTT
7 FCRMAT (/¢ ®APCLARE %, 8 o®CO(IV%y BNy PIL=-IRBOX®ILEIR® 8"
1 CORRECTED CD*)
30 57 K=1, NANGLE
ANGL= THETA(K)I®18C0./PT .
IFICDIK) FQol00o) CLULI= 052 (CTIK=1)eCO (K21}
PRINT 58 o ANGLe COU(KD) o ILMIRIK), ILPIR(K)TCO(K)

QIO

58 FORPAT(a ‘9 Faake “,9 EiZ;Ev 3(#x.E1596’) :
57 COM INUE ’
c

C#®s®DE TERMINE THE MAXIMUM VALUE FCF PLOTING SUERCUTINE
00 109 IsLi.NANGLE ' ) :
SMAX=AMAXL(ILPIRC 1) SHaX)

108 CORT INMUE
RMAX=1,0
DC 1415 J=1¢ NANCGLE
PLOTSCUUI=ILPIRY JI/7SMaX

1118 CCATINUE

C*PLCT SCATTERING VERSLS TrI - FCLAR ANGLE

€2 €3¢

PEINY 151, RMAXy LENGTHR
181 FCRMAT(/2PL0T GRAPE WITh RPAN=2,F9 kel o PLENGTH =2,FF,2}
PRINT 152,SMAX, LENGTR
162 FCRMAT{/,2PLD° GRA4PH FCR TOTAL SCATVER CLIVICED BY Sv¥AX=9,
1 EléanZY,‘LENGTb 2‘9 F5¢2)
C .
C PLCT GFRLPES
IF(NOPLOTEQs0) CC TO 800

#IN PLCTING SCATER=Co WILLPLCY CCo SCATER=1.0 WILL PLOT ILeIR/ MAX(ILeIR)

PReNeReRe]

SCAYER=0,

CALL PCLAR(ANGLE oCDsFHAX LENGTH.PRATIOAL.SCATER)
CALL PCLASCANGLE o TCDoRMAN o LENGTH  PRATIO L,SCATER)
SCATEF=1.0

CALL PCLARCANGLE ¢ FLCTSCoRMAXLENGTHePRATICASCATER)
CORNT INJE

€3
[}
P

STCP
END

> L2

SUBFOUTINE POLAR(THoPRMADIAZIMUT FRATIC FADIUS,SCATER)

[R2823 0050800008000 3030003003 UNRRRRLERRERI8RRYLRBLLILRLRERRO s RLBRERBEYRES S

C*THIS SUBRCUTINE MAKES PCLAR CHRAPHS ) ®



C2THE ARGUMENT OF THE FUNCTIONS ARE MEASURED IN DEGREES. ®
C2THE INFUT OF THE ANGULLAR VARIABLE KPAS TO BE ENTERED TN RADIANS &
C®ANGLES ARE PCSITIVE 1IN THSE CCUNTERCLOKHWISE DIRECTIOAN. &
C®AN ANCLE OF 26RO IS HORIZONTAL AND TO THE RIGHT. 2
C.@Qbﬁ#i PEPEFZB LB RLB5BIBPDIYB PR BRLBHLEHBBRLB888383388358808R838388038338885%
COMMON/ IGSZZ2/2(200)
DIVENSION R(LDO) o TH{400%, V(&OOD
DIMENSIOM YNEGL&CO)
EYTERNAL FONTZ
DATA IRAC/2HR=/
DATA IPITCH/LHP/h=/
DATA ISEATE/3ZHLN=/
D0 20 I=1. 360
YNEG(I)=0.0
Y{TI)=4BS (R(I)}
IF(R{TIIeLTo06s0) YNEG(I}=ABSIR(I})
20 COAT INUE
C IMITIALIZES GRAPHIC SYST:Ew
CALL MCDESG(Z.6,4FCIDS)
23 COMT INUE
CALL VECIG(ZoFONT2,0)
CALL SETSHMG(Z+51e10)
C SEYT UP A VIEW PORYT TC LEVE TEN PERCENT BORDEER
CALL OBJCTG(Z¢10e00100¢9Ces906)
C SET THETA AX1IS OFFSET
24(1851=92,
C SET ANGLE OF R AXIS LABELS, MEASURED FFOM THE HORIZONTAL
Z{186)=wS,
C DEFINE THE SUBJECT SFACE FCF BOTH RADIAL AND ANGULASF VARIABLES
CALL PSUBJG(Ze0colooPMAXe360,)
C DRAWS & GRID OF 30 DEGREEZS OF ANGULAR SPACING AND .z CF RADIAL UNITS
CALL PGRINDG(Z.RMAN/1060:%060050)
CALL SETSHMG(Z.45¢100)
C SETS FORMAT FCR LABELLING
FPT=5,2
C LABEL RADIAL AXIS
CALL PLABLG(Z 0FMAX/S. o0oFMT)
C SEY LARGE CHARACTIR SIZE
CALL SETSMG(Z+6543,0)
INDICATE THE FORHMLT FCR THE LABELLING
FrT=26,2 \
C LABEL THETA AXIS
CALL PLAELG(Z+:4+3(eoloFPT)
CALL SETSPG{Z.45,1.0)
ENCODE(L10+999 . LABEL) ISENTELAZINMUY
993 FORMAT(A3.F7.2)
CALL PCLEGUZo1.04%3,17009 9oLABEL)
IF(SCATEF.EQelaD}
ICALL POLEGU(Ze16122691710922422FL TGPT INCIDENT ALONG 29
IF(SCATER EQoeloel}
1CALL POLEG(Ze10122601710622+22HTOTAL SCATTER ALCNG 7}
ENCODE (10,997 LAEEL2Y IFITCH,FRATIO
597 FORMAT(AuoFBol)
ENCODE(6:996, LABEL3IYIRADL,RADIUS
996 FCRMAT(AZ2,FL,2)
998 FORMAT(® #, 8 LABEL=%, A10¢ 2X, SLABEL2=%*,410)
PRINT 993 , LABEL.LARELZ
CALL SETSPG(Zeb5+2.0)
CALL POLEG(Z:1e92+600¢BoLABELTZY
CALL POLEG(Ze1:70+65:.510,LABELZ)
CALL SETSMG{Z¢b5els)
C JOINS WITH A LIND THE PCINTS THAY HAVE BEZN PLOTTED

(@]
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201

CALL SETSHMG(Zo30:¢3e)
CALL PLIMEG(Z+3606YVoTH)
IF(SCATER.EQe1.0) GO TO &0
CALL PLINEG(Z360YNEGHTHY
CALL PLIMG(Z36L,YNEGsTH)
CALL PLIMEGIZ 360, YNEGo TR
0 COAT INUE
S TO EXIT
CALL EXITG(Z)
PRINT 21, PHMAX oPRAT IC
21 FORMAT{® %,2GFAPF WAS BEEN PLCTTED WITH RPAX=%, F B.b,
1 WX, ®PRATIO=®; F1i0.8&) B
RETURN
END
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III. PROGRAM COCO.

Calculates CIDS and total scattering for groups of
point dipoles, forming a helical array, with uni-axial polar-
izabilities along the tangent to the helix. The incident
electric field is corrected for dipole-dipole interaction
among the point dipoles. The input parameters are: pitch,
radius, angular separation between the groups, length of

the helix and the band properties of the polarizability.

Deck set-up:

(1) Control cards

Program INTERAC
(2) Program

Subroutine POLAR
(3) Input deck

(4) End-of-job-card



COCCs 2+3000¢550006%49742,BUSTARANTE
*NOSTAGE

SCPA=2900,

SFL+100000-

MNF Yo

FETCHPS,SARNCIAGSANDSANMLIB.
FETCHGS, IDOS/UL IBXoDATE=0INOVTC,15478
FETCHFSoGPACBNT «GPAC, SCBNS
FBSIZESAND=0,LLIBK=0,
LINKoF=LGOsP=ULIBXFaGFACP=SANL X oPP=ILL=50000T,
EXIT.

DUME 0,

SCPyA=20.
FETCHFSoIDOS:SYFPTABSYFTAEY .

GRUWE,

FING

SCPOA=U-

SFLesle

REWIAND (F IL M)

COPYI{FILMsCLT)

REWINC(F LM

COPY{FILVMsMORE)
DISFOSE o FILM=3IMoM=MF 4
DISFOSE o PCRE=I M M=ME 4

DISEQSE,CUT=MF ¢M=ME,

C§$ﬁ53.5856#555555?00‘#‘3U¢¥§‘§'.QB§65QGEH§‘55'$'.53#'65&‘.566““!6&5!‘5..

C2TRIS FROGRAM COMPUTES THE TCTAL ARD THE DIFFFRENTIAL SCATTERING FOR A
CPDISCRETE ARFAY CF PCINTYS FCFPING A4 PELIX ANC FAVING & POLARIZABILI
CeTY TANGENTIAL TO TrHg pELIY. TrRE HELIY PARAMETERS ARE AP3ITRARY o

CE*TFE IMEUT PARLMETERS ARE THERFFCRe WAVELENGTH: PITChe PADIUS, ANGLE
C®0F ALTITUDE CF SCATTEFING AMNC THE ELECTRONIC FAPAMETERS OF THE PCLLPIZ
CRAZILITY

C®TrIS FROGRAM CORRICTS Trt IPCICEAT FIELD CF THE LIGFY BY 8Y AJDING TC IT*
C®THE RADIATICN FIELO CF ALL CTHER CIFOLES INCUCED TIh THE ARRA Y &
C2IF THE PITCH CF THE ¢#£LIx 1S GREATER CR EQUAL TO THE WAVELENCGTH IT CELCU®
CPLATES THE SCATTERING INTEASIVIES AT EACH LAYEFR LINE . IF PITCH IS SMALLER®
C*TrHAN LAMBDA IT CALCULATES THE SCATTERING -INTERSITIES AY FIXED ANGLES IN®

o8 ® ¥ & &
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CPSFACE. »
C63aGsaasééaebe#;@éb#éﬂﬂQB‘é666!&Cé#@&ﬁ##é&dﬁal#@@#46‘40&‘55#5"5‘556'60555‘
C

SRCGRAM INTERACCINPLTQQUTPUT TAPES=INPUT TAPE6=CUTPUT oF IL¥)
¢
C

BB LARLPERRBY IS ROR LB HNPIBPEHILEBRL LGP AL IPPERIBBIBERBHEBBLBBEBBBREE080888
¢

C*HERE wE DECLARE ALL VARIAZLES AND ARRAYS USED IN THIS PROGRAM AND ALSC @
C®*THE ALLOCATICN FOF MEMORY I% DONE ®
LR Ry T Oy LTy R T PR P Y L ey

COMPON FRTT FMPP FMANGTEGPED«NBO

REAL NBOD

DIMENSION INUGI o FA(S)

FEAL LAMEOV LAMBCOM oLAMEDF

REAL LENCTH

CCPPLEX E(3e753) +XPCN

COMPLEX XPONTLoSRsCReTNoXFONY2



COPPLEX CE(39343)

COPPLEX SUMMA(3,3,.3)

COMPLEX ALPHAT.ALFHAN

CCMPLEX ALPHAP

CCPPLER £ XPONT

COFPLEX EYZETA, EVYEKIS

CCPPLEX C19C2+C30C1eD2eL3eCSTRIoCSTR2oCSTFRIoLSTRL,ODSTF2,0S8TR3
DIVENSIOM QA(LOO.20)

LEVEL2,BUN

COMMON/GIANT/3JNL81,500)

DIPENSION CDESOO) PSIL{LEC)PSISTR (L0018 (L1

DIVENSION ILMIRULGO) o ILPIR{LO0)TIL(600)oIRTGD0Y PLOTIL(L0Y)
1PLETIF(LCO)

DIPENSIOM PLOTSC (LOL)

REAL LYF

REAL ILMIR.ILPIR-LAPBOALIL,IK

DIFENSIOM ANGLE (&CO)

CIPENSICH PARAM(IG)

el o Rel

3907 CCAT INUE
L Ry Y R AR R PR PRy Py Ry ey L YT R IR Y
C®HERE ®WE INITIALIZE Tkt VALUES NEECEC FCR COMFELTATION.
C#SIGN DETEFMINES THE SERST (F THE #ELIXe SIGA=1. GIVES A FICGHT HANCED
C®HELIX. SIGh=<-1 GIVES & LEFT FANCED ONME.
C®F#TT IS THE STRENGTH CF THE TANGENTIAL BAND
CRLAMICT IS THE POSITICN CF THIS BANC
C2GAmrMAT IS Thi HALF REIGET WICTH CF THE BAND
C2THE CORRESFOMDING ELECTRONIC FARAMETEFRS FOR ThE CTHLR AXES OF THE PCLAR
C#12A3ILITY ARE SET SUT NCT USEL IN THE COMPUTATICAS.
CehAZIPL IS THE MAXTMUR NLPM3ER CF LAYER LINES TEAT EXIST FOFf A GIVEN
C#R2TIC CF P/LAVBCA. HEEBE A CEFAULY VALUE FCR THE CCNTINUOS CASE IS GIVEN
C®A IS THE RADIUS OF TkT KELIX
C#PLFICC IS THE BITCH CF THE BELIX AMD  LENGTH THE AUPBER OF TURNS CF TkE
CedELIX.
CANCPLCT WILL CECIDE The PAXIPLN NLFBIF CF PLCTS TC BL CENERATEC BY THE
CBPRCCRAP,
C2IMITIA COANTFCLS THE INITIALIZATICN CF . THE PCLAR PLOTS
C#PCLZ=0s CGIVES SCATTEFING CF LIGHYT POLARIZED I& THE > CIRECTICN
C2PClilr=Ce GIVES SCATTERING OF LIGHT POLARIZED IN THE 2 CIRECTYION
C®DEFAULT GIvES CIODS
CENLYF CETERMINES THE NUMRER CF LAYER LIMES CCPPUTED
C*LYR DETERMINES THE ALTEFRMATIVE FLCTTING OF LAYER LINES OF ALTITUDE IA
C#PLLAR FLCTS
CH#INDEY DETERMINES THE PAXIMUN CROER OF BESSEL FUNCTICNS USED IN THE SL#S
C2*FLAG IS AN CPTION TEAT WHERM EQUAL TC 4 CORTFOLS THE PRINTING OF ALL
C*INT_RMEDIARY CALCULATIONS. IF BQLAL TC ZERC OMLY THE FINAL RESULTS ARE
C#PFRIATED
C2TETC IS THE ANGULAR SEPARATICM EETWEEN THE DIFOLES IS GIVEN IN RADIANS
C'-ﬁOQslﬁ85056'.‘!"“'3555945."‘!‘55’5"5"'53‘.G‘QC#SQQ““'G‘s.B'Q.E""G

FLAG=Co0
C INITTIALIZE VALUES

TETO=0.3

TETOSQ=TLTO®*T¢ 7O

SIGN=1,

FrTT=1,

FrFPPs(,. § FMNN=D o

LEMBOT=3.0

LAMBON=1.0 5 LAMEOP= 1.0

GAMMAP=,15

¢ & 2 ¢ & & FR G S 8 EE e L& EHFE LE S S S R
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(@ el

c
311

GAVPMAN=. 1%
NOZIWU=8
NOPLOT=2

PERICD=1.0 § A=1 § LENGTF=20 § LAWM3CA=

INITIA=G
PCLX=1,0¢
NLVR=1,
LYR=0
INDEX3i=2«20
INDEX2=20
PI=3,1L1E59265358¢7

POLZ=1.0

CORT INUE

C56l5.-54\8550@551Q@Sﬁ55555!‘54095&6055‘6555#5*.GBGGQQ'Q@'655655655‘5“56535&

CPHERE THE COMPMPANDS FQF I#PUT CATA AR: SEY
C535QQQ‘QQ&“@@QQ“@“b5@“@l!eégg“"‘s“s"#@’a“‘9.“‘559556.93‘5‘5565555.5
READ 999G, {{IN{JI oFA(IID od=d0 &)
PRINT998. ({IN(JY) oFA(JII D gudz=lob)
FORMAT(AG FQoboXod{A0 X oFGoboX)}
FORMAT(/o/sb(ASeXFFoieXb)

€99
994

C SMAX DETERMINES THE WNCRMALIZATION FACVCR FOR THE YOTAL SCATYTERING FOF EACH

DC 3081 I=1i:¢b
IF(IN(I) oEQe9HPERIOC
IFCINCIY cEQe9mLAVEDA
IF(IN(INEQa9HRATIUS
IF(IN(I}EQeQHLZEFON
IF {IN(I) «SQe9HL ZEROP
IFEIN{IY e Qe QUL ZEFOT
IF(INCIY EQe9PNCEMAL
IFCINCI) cEQ9HTANCIENT
IFCIN{IVEQ.ORFPTT
IFQINCLI) oEQoQHFHMEF
IFCINCID oZQaOHFMAN

JFERICC=
JLAMBOA=
YB=
JLAMBON=
YLAMBEP
JLANEBOT=
JLAHMBON=
JLAMBOT:
yFRTT=
JFePP=
JFPANN=

IFCIN(IY cEQa9MPEFFEADICILAMEDP=

IFCINCI) oEQeIRLERLTH
IFCIN(IY o2Qe 9P oL AYEF
IF‘IN(I)QEQOQH"LAYER
IFCINGIY EQe9FSICH
IFLINGIYZQe9HPOL2
IFCIN{IY £EQ9HPOL2Z
TFCINIIY oEQeQHINCEND
IFUIN(I) 2Q9HINLCEX2
IFCINITI)EQa9HSTCF
IF(INII) EQe9HCCHFUTE
TFUINCID Z0e IHRESTARTY
COMNT TAUE

GC TO 311

CCANTINUE

JLENGTH=
INCPLCT=
JRLYR=
ISIGN=
JECLX=
VECLI=
JINDEXL=
YINDEXZ=
yevoe
y. 6C ¥C
} GO IC

IS WHERE THE SICGh COF THE HELIX

P=PERIOD®SIGN
FSQR= (P/{2%P1V %8¢
Fp2PI=P/(2%P1}

AP=SCRT (B%Ae(P/(2%P1))e%2)

PALT)

PALI)

PA(T)
FALT)

o= PALIY
FALTY

PAlT)

PALTI)

BA(T)

PRLT)

2A(1)

PALYI)

PACI)

1e PACTS
PALT)

ALY

PALTY

PALT)

PA(T)

PALI}

303
307

SEASE IS CETEERMINED

C LAMEDA., IT MUST 8f FCULND IN TRIS-CC LOOP

SMAX=0.0
SFAYL=0.0
SPAXK=0.
COMAX=yoe

B
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C

C '

AL R R T Y T T Ry T R Ty P R Y T YRy R P Y Yy Ly Y L LYY
C#HERE THE LORENTZIAN-SHAFED FCLARIZABILITY IS OEFINED ®

(2232880528835 5483082208880850880R03230088833203888583838003335858288888858885

ALFHAT=FRTT /({17 LLAVBET®92) ) =01/ (LAMBDAR22)) ¢ (Lool.)2GAMMATY
1 (LAMBDA® ((LAMBOT®%2)=-({CAMMAT®220/74L)}0)
ALFHAP=FRPP/{(1/7LLAMBOP®22) )=14/(LAMBDA®®2)0¢ ((Lcoedl.)?GAMMADY
L(LAMEDA® ({LAMBOF*22)=-{(GAMMAP®32)/4))))
ALPHAN=FINN/Z((L/7 (LAPBON®®2) ) =017 (LAMBOA®®22)) ¢ (Loolod ®GAMMANY
L{LAMBDA® ({LAMBONT#2)=({CAMMAN®®2)/76)1)))

TEC=LAWMBLY ¢ PBO=LAFBOP ¢ NBO=LAMBCN

IF(FLAGoNE.O) PRINT 150F%
LE0S5 FORMATH// (BXoPALFHATREX o *ALPHAN® qEXo®AL FHAP®)
IF(FLAG.NEc0) PRINT 50%.ALPHAT,ALPHANALPEAP

(BB oRN2R 85500400 R s s sl Il RLRsS8050008R330800050808800584880585585585%
C*TPETA IS THE FCOLAF AM(LE OF SCATTERING ¢
C*TRETA IS IN FADIANS @
C#PSI IS THe AZIMUTHAL &NCLZ CF SCATTERING. IT 1S CCHMPUTED HERE EVESY ®
C#DEGREE BETHWEEMN G AND 368 &
C=#DISCRT=0 IS FCR COATINQUS CASE(PERIOC LESS THAN LAMBLAY, DISCRY=1 IS &
C®*FCR DISCRETE CASE (PERICD GREATER TAHAM LAMBDA) ®
C®DELKZ IS THE Z PROJECTICN CF THE VECTOR KeK0. ITS MAXIMUN VALUE IS #
C22%F1/LAMBCA ‘ &
CENAZIML FOR P GREATER CR EQUAL TO LAMBDA IS CALCULATED HERE ®
C®IF CNLY CNE LAYER LIM IS WAMNTED SETY NAZINWU=2 ®
(2893054300885 4500Rs80 080000300000 500800000800 5000003080083 308888805535588
NANCLE=3€D

NEAGL=NANCLE#S

DC 11 I=1,NANGL

PSI(IN=(I=-1)%PI/160,

ANGLE(II1=8ST(2)%380./71

11 COMT INUE
DISCRT=0.
IF(PERIOC.GE.LAMELA) CISCRT=2,0
C
C
C
C
C CCMPUTLC THE PAXIMUM #C, OF LBYER LINES FOR DISCRETE CASE
C CCMPUTE ALSO THE PAREZFETER CELTA KZ IN TERMS OF THE AZIMUTAL ANCLE
IF(DISCRTCEQe 1INAZIVU=SINT IPEFICO/LANMBRA2)
SAFETY=2E

IF(RCPLCTLE.NAZIMUINAZIPU=NCPLCT
DC 300 ITETA=2,NAZIMU
IF(SAFETYoLE.NAZIPUISTCF
LYR=ITETA-2
0C 299 LF=1.2
C T+IS CCATROLS THE NUPEER OF MEGATIVE LAYER LINES YO 3 COMPUTED
IFCITETA (T (NLYF 2).ANLoLP.EQ22) GC YO 2¢9
C TEIS ASSURES ONLY CNE ZeFO LAYER LINE COMPUTATION
IF(LP.EQ.2 oANDoITETA.EQ.2) GC TO 299
IF(DISCRTeEQeCITFETAZ(PTI/2:0=15.2(ITETA202(PI1/180,}
IF(DISCRTEQed ) THETA=ACCE({ITETA-2)®LANEBRA/PEFICD)
C THIS CCMPUTES NEGATIVE ALTITLDE ANGLE FOR THE CORTIAUCUS CASE
IF(LPEQoZ o ANDeDISCRT.EC D) THETA=(FPI/20 0152 (ITETA-202(P1/180)
C THIS CCMPUTES ALL NEECATIVE LAVYER LINES FOR DISCPEYE CASE
IF(LPEQ.2:AND-DISCRT£0e3) THETA=PI=ACOS ((ITETA=2)%LA¥BCA/
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1 PERIOD)
IFILP.EQ2.AND.DISCRTEQ.1) LYR==LVR
DELKZ=(2%PI/7CLAMECAII®COS (THETA)
APCLAR=2 THETA®180./F1
C®R IS THE PROJECTION CF TH. CLTGCIMRG K VECTOR ONTC THE X=Y PLANE
R=(2,#*PI/LAMBDAD®SINITHETA)
c
c
c

e O Ty ey  y  E  E Yy P Y LYY Y™
CHHERE WE INITIALIZE ANRLC CALCLLATE TeE PARYT OF THE £LeCTRIC FIELD CCWNTRI @
C*BLYeC EY THE CIPOLES. ThIS IS THEREFORE THE INTERACTICN VERW, ®
C®J RIPRESENTS THE MAXIMUM NULPEER OF NEAREST NE JGHBCHR INTERACTIONS TAKEN ®
C#IATC ACCOUNT AT EACH SIDE OF A DIPCLE
Cenunasssn@auae;u&@&@bns&ssasnaaa;saaunavvsslbsaa.sb6&*5&5.555#563433655555

Sh={0e000.0)8CN=(0eLol0c0) STR=(0s0450,0%

D0 202 J=1,40

TETJ=J2TETO

SIKTEJ=SSIMITETY)

CCSTEJ=CCS(TETY)

D=2*A%A% (1-COSTEL JI+FSQRETETJ®TETY

AJ“‘(i/(C"isE)7‘(A“A“CCQTEJ9P509°35(A‘A'SIN?EJ#P(QR‘TETJ’°°2/D3

ANGR=(2°PI®A/LAMECAI®SINTEY

SheShe(Loolo01®(B7SINTEJI®SINCANGZI®AIN® 2,0

Ch=CNe {(F7(2%PT YVY2CCSELMCR2D%AUNR2.0

IFCFLAGEC 1)

o

c

c
Cé%#&ﬁ#&a&so'#a‘&ﬁsbs!lléibéﬂil¢¥¥QEGQ“l%!éédQﬂBBB@lDC#GS"ﬂEBG3165&5'5!65
C*HEFE CCME SGFZ PRINTING FCUYIMES ®

"B#G“‘ﬂl&#‘li?Ulﬁ#O#5‘06#063‘.55‘6555.050..‘5&85548'5055!5‘533DG“.‘OGB‘Q“

1PRINY 52C+4
520 FCRMAT (» »,% N Be® CN % TN %2, 10
2)
IF(FLAG.EQ.1)
1PRINT 50E.SNeCNyTA
202 CCAT INUE
C
C
C

Cd&l646!#8364#865&‘$dlHs&!&.‘#b‘éb#.éﬁb#ﬂlé#b#8'85l555§5¥5¢8l8555&$¢655‘5“
CoTHE LCCP STARTING HEFRE AND ENCING IN 100 COMPULTE THe SCATTERING INTEASYI #
C*TIES FOR EaACP PST ANCLE ANL FOR A GIVEN VALUE OF ThE ALTITUDEOR LAYEF
CALIRe o ‘ ®
C*ILAP IS A PALRAMETFIR TFAT LLLCWS FOR THE VARIATIOM OF THE +ELIY DARAME .
CeTEFS TO CALCULATE THE SCATTERING CF CONRCENTRIC HELICES OF VARTOUS RPITCH =
C®ANC RADIUS. IF ILAM GCES FRCPF & TC 1 THEN ONLY ORE PELIX IS CALCULATEC =
Cbﬂeaeb$Q&dasbblnaaabaqaﬁlﬁ‘@@b1‘5585466EEBSQQ6503QB&GG"HGE&CIGHG#BQBBC&E5

0C 100 I=21.360

IF{FLAG.FCal)

1 FRINT 521, I. PSICI}
521 FCRMAT(® #,81=8,74,% FSI(IV=%, FBob)

DC 699 II=163

0C 698 JJ=1.3

CC 697 KK=143

SUFMALIToJJoKK)={Lobodol)
Xld COMN INUE
698 CCRTINUE
699 CCRTINUE

CO 700 ILAM=1,1
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C PLT PARAMETERS FOF RLAS BETHEEN THIS CARD AMNC NEXY CARD
c
C
€
(5893283385853 3500004500580 0500095330500 8080050050858583843558855858858
C*HERZ THE OIFFERENT VALUES OF THE ANGLE PSISTR RELATELD TO THE A7TIMUTHAL *
C*ANGLE FSTs ARE CALCULATED »
(992330080003 0808858 5B 00N 0 ROy ISR OBENIERROSRIBDLRARIRNOEBEEERERES
QALI ILAMI=(2.0%FI2A/LLMECAI®SCPT{1,0¢(SINITHETAY)®®2
1 =2.0%SIN(PSI(INI®SIMITFETA) 3
DUMMY1=QA¢I.IL AN}
IF(DUMMY1.EQe0.) GO TO 20
ALFHA= RB®A®COS(FSI(INI/CA(IILAY)
IFLALPHAL(T-1.00CC TO 20
c
C TAKe ANEGATIVE AVLLE FCR PSISTR ANCLE
C
PSISTR(IV==ACOS(FR®APCCS(FSI(IVIZQACT oILAKD)
21 CCATIANUE
IFIFLAG.EQeDe) €C TC 74
C HERZ CCHME THE PRINTIAG STATEPENTS FCR ceee
C PCLAR ANGLE, QAs INCEXJo PSISTR{I),
PRINT3S5¢ APCLAFR, (CALJsILAPI o J=08G83) o (PSISTRIJI,U=88,93)
38 FCRMAT (/0% 292 LPCLARH=# 3F8eLo2Xe®0A=%¢5(2 XoFBoalk)o2X, #PSISTR=2,8
i 2R sF8olk))
71 COM INUE
IF(FLAGs20Qs0e) GC TC 77

BRINT 9

9 FORMAT (& ® , 2PST%, (10X, *Q8%),./)
PRINT 20.ANGLE(I) QAITILAM)

14 FCRMAT(® 2, FBokeBXoF3obs}

77 CORT INUE

c

C

c

CQ&JOQ‘."Q.U'G.l!&leb#l‘bba006‘85‘55554555"‘.Qﬂl'OCQB‘OQG'BI#‘BGG&C&U.H“

C#PROCEELC TO COMPUTE CCKYINLCLS CC FOR LIGHT INCIDENT ALCNC THE Y DIFfFc®
CeT1Cn &
C2CCMPUTE NOW THE CCMPCAERTS FCR EALCF OF TrE PCLARIZATICNS CF THE CORFEC #
C#*TICh FART CF THE FLECTRIC VECTOR. THESE WILL BE SIMEOLIZEC BY CE b
CATREY ARE CE(DIFECTION PCLAFIZATIONGEACH OF THE TEPEE CCYPONENTS) .
C®EXAPPLE CE(2+1¢3) MEANS THIRL CCMFCNENT CF CCRRECTICN FIELD TRAVELLING
C*IN THE PCSITIVE Y DIRELCTION FCLAFIZED IN THE X CIRECTION ®
CQQO'9‘65¥65§5Ql556555ﬁ‘#ﬂ'a‘l.“'ll!#&'.lﬂ!a#llb‘BECOSOQGGIJJl“éb‘l'.b&.a
DC 1000 IZ=1+3
0C 10014 JJ=1,3
DC 1002 kK=1,3
E(II.JJ!FK)S(OCUQOGO)
CECIZodJokKI={{alolalY
1002 CONT INUE
100: CORTINJL
1600 CCRTINUL
DC 200 Nh=1,3¢1
Nz=AN=131
SIMNTR=SIMNINRTETO)
CCSTN=CCSIN®TETO)
ANC3=0A{IoILAMI®CCSIN®TETC=FSISTRIIII® PATETCONS(CELKZI/Z(2%P1))
XPCNT2=CCSUANG3 ) ¢(0:02C02SINIANGS)
CE(2o1o1)=CE(2:1 10 ={1/70AF®R2) ) XPCNT22(ALPHATR®22)2(=A%STATN®
i TETO®TETC)®SN
Ct(2e102)2CEl2:1o2) =13 /7({AMSR2))2PCNT22 (ALPHATR®22)%( A2CCSTN®
1 TETORTLTCI®SN



CEfRe1o31=CEIZ2:1:3)=(1/7(AKP22))*XPCNTZ2(ALPHAT 228 (P /(24P ) )"
1 TETO®VETC *SN

CE(203010=CEC20301)=(1/7(ANPE2) )2 PONT2® (ALPHATS22)8(=A%STATN®
1 TETORTETCI®CN

CE(2¢3920=CEl2+3,2)=(L/(AM®22) )2 XPONT2% (ALPHAT#22}%({A%COSTN)®
1 TETO®TETC®CN

CE(2o3e31=2CE(2v3¢3)=(1/(AN22) > XPCNT22(ALPHAT®R2)2(RP/(2%P]) )%
1 TETOPTETO®CN

IF(FLAGGEQ. 1)

LPFINT 940 )

944 FCRMAT (®» #,% CE {203 43) (CEl2,3420
1CE(2o3¢3) CE(2 01,4} CEf29162)
1CE(2:1s3) =)

IFIFLLAG.EQa 1) )
1 PRINT S05.CE(202010eCE(Z 0362 9sCECZ0303) oCE(Zod0d)oCE(202+2) o
1CE(2+103) . ' ' ‘ . '
c
c
C

C555865555#3‘&G&@ﬂ@‘#ﬁ?i@as‘ﬂiéﬂﬁ&3'Qé¥633¥555565858934"5.‘655‘3&5‘565‘555

C#NCW CCME THE CORPESPCNDING SCATTERED ELECTRIC FIELL WITHOUY THE COFRFEC®

C®TICNe INMIDIATELY AFTERTHESE FIELLS SC O3TAIRED ARE CORPECTEC B
C#FACTOR IS A CUMMY INCEX THAT CAN EE USED TO ELIMINATE THE CCRSECTION -
C®THAT 1S FACTCR=0 CR TC LeAVE IT THEPF THAT IS FACTOR=1 ®

LR R Yy L Yy YL T E Y e Y PR YTy
SIMMNTC=SIMNIN®TET Q)
CCSNTC=CCSIN®TETO)
ANG=QA(TILAMI®CCSIPTETC-PSISTRIIVII¢PRTETORNS(LELKZZE27PI))
EXPONT=CCSUANG) ¢ {Levle OJ2SINCANG)

IO

INCICENCE Y FOLARIZATION 2
E(20301)2E (2,291 )4(=ABP/(2%PI®AMBAM ) )®EXFONT#S INRTO
1LLFHAT#TETO®AM
C020302) 2502, 3,21 ¢(B%2/7(2%PIHLYSAM) ) BEXPORTECCSATC
18 ALPHAT#TETO®AM
E(203¢3)25(2,3¢30¢((P/{29PT®AMY )82} BEXPCAT
LRALPHATSTETCRAM

IMCINDENCE Y POLARIZAYION ¥
COMEBUTE THE ToRMS E(E.1+COMFCLAENTEL.2AMD3)

ElZe1ed)=2E (21100 {(A/AP)ER2YRELPONTRISTIARTO#%2)

1RLLPHAT®*TZTO®LM

1291021222022V ¢ (=(A7AF)R22 )3 XPCNTRSINATORCOSNTC

12 ALPHAT*TETQ® LM

El20133)38 0201033 ¢(=R%P /(24P (AM®Y2)}))2EXPONTHL IRNTD

1PALPHATSTETO®LM

IFIFLAG.EQele) GC TC (€
IFIFLAG.EQ.4) PRINT 504

PRINTE05: Ef2e362)ef{ 23023 0B (263931 0B (20202 )sF(26192¥6E(2:1:3)
LGB CCRT INUE .
2C0 CCMT INVE
FACTOR=L .
E(2'191)-::7(2.1a199CE(2e1.1)“FACTOR
ElR2¢192V 28 (261520 4CEI2:1,2V%FACTOR
ElZ+1¢3) 2202010301 ¢CE{201+312FACTCR
El2e3411=E(2¢30L5¢CE(2s331)8FACTOR
E(Z0342)=F(2p3:20¢CE(2,2,2)%FACTOR
E42+3931 26023931 4CEI2303 JBFACTOR
E(2y3¢d) =0 (231 0%PCLZ
E‘2v392)=5(29392,°PCLZ

OO
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:(Zo3v3)=ﬁ‘2p3v3)"PCLZ

E(Z,i.i):E(Zel.i)‘PCLX

E(Ze1021=5(2:102V5PCLX

E{201e31=E(201302PCLX
C PRINTING CF THE COMPCMEATS CF THE ELECTRIC FIELD VECTCR
C CCFRECTED BY THE CIPCLE-DIPCLE INTERACTION
C CIMFUTE THE TZRM E(ReYoCCHMFCAENTS 1:2.:ANDS3)

IF( FLAG.£Q.0) GC TC «0F

PEINT S0«
T0% FCRPAT (/% E(2+301) / E(2+302% / E{2:3+3) 7
Y E{2e1s2) / E{Ze1s2) / EC 241,30%)

PRINTSGS s C (203080 oE (20302) B (23031 eE (261015 E€26802VE(2451,3)
SCE FCRMAT(® P8 (iXo9(BsFAoko®e®¢FBowo®)®))
« {5 CCATINE
C2TR=IS ACCS THI ELECTRIC FIELCS FOR A SERIES OF COAMEMNFIC FELICES WITHE DIFF
IHERLNT PARAMETIRS FOR Chg GIVEM ANCLE OF SCATTERING.
2C 731 IfF=4,3
SC TO2 JF=1,3
0C 703 KF=1,3
SUMMALIF o JFoKF Y=SUMMALIF o JF o KFIeF (IF s JF o KF)
703 CCMT INVE
ro2 CCATINUE
Y04 CCAT IAUE
760 CCAT INUE
TC 735 1i=1,3
2C 706 JJd=1.3
nC 707 KK=1,3
C(IToJdda X} =2SUMMELITsJJoKK)
7% CCATINUE
70e CCATINUE
7¢5 SOMNT INUE

8P UIBIBEEEL255050 23808343348 0800808 0000R RRE02500303553053B85750883858855
CPFINISH ALL SLPS ®

:b‘éDbﬁ‘é‘#llll‘ll&i'iblé.¥§3la‘.#bB"#.E‘l!'l6565Q'3".5&‘.5““6!68.0".‘

OO

C.54GQCB54565&.40555UUQGQ'GO4'.6‘#‘5!6%!.‘0550 BBLPBRBRERBHBBRIPRBBBLBB88880
C®CCRRECT FCF TRANSVERSALITY IN THIS SECTION .
C®OEFINE THE TEIGONOMETRIC VALLES CF THE CCMPONERTS OF THE SCATTEREC WAVE *
C®VECTOR K .
CI55‘Q“H#‘él‘&ll‘ﬁélQUQﬁ‘ﬂ‘Q"Q5555"“..5‘.lﬂ'0‘.QC‘Q‘.CGG.‘U.“'Gﬂ‘s'l.“
SINPSI=SIN(PSI(IN)
CCSPSI=CCSIPSI(IN)
SINTET=S IN(THETA)
CCSTET=CCS(THETA)
C DEFINE eYEKISz KOCT E(2.4s CCPPCNENTSIAND EYZETA= K DCTE{23,C0MPS)
EYZETA=CCSPSI#SIMTET®E (2,3,1) ¢SINPSI#SINTET®E(2,3,2) +COSTET®
1 E(263+3)
EYEKIS=CCSPSI*SIMTET®E (20441 ¢SINPSI®SIATET®E(251+2) ¢COSTET®
1 E(20143)
C FINISH COMPUTING CC(I) FOR ALL PSI(I)
TF (FLAG.MNELO)PRINT 617
517  FCRMAT(® * ®EYEKIS®,8X,*EYEZETA®)
IF (FLAGSNE.0) PRINT 535, EYEKIS(EYZETA

C
(978885 080ss0 050 0RIsESCA0NbABSRS90R050000 0BRSS LLIRILERRERISIRRRE
C*CCMFUTE IL MINUS IR @

(#8550 80 0838000 Ab0RaRNsIsLI R ILIRasE I L0A0LIL0RIsLbERLRERRLRSSLBABL3255858
C1ZE{2,1+1)=CCSPSI®SINTETPEVEKIS
C2zE(2¢12)=SINPSI®SINTETREYEKIS
C3=E(2:1+3)=COSTETREVYEK]S



D1=£1(2:3+1)=COSPSI®SINTET®EVYZETA
D2=E(2,3+2)>SINPSI*SINTETPEYZETA
D3=E {2+3+3)=COSTET#EVZETA
CSTR1=COMNJGICLY

CSTRZ=CONJG (L2

CSTRI=CONJGL(CE)

DSTRL=CONIG (D)

DSTRZ=CONJSGEDZ D

DETR3=CONJGIDZS

IF{FLAG.EQeDs) GC TC »01

C
c
C PRINTING ROUTINES FCF INTERPEDIATE CACULATICNS OF CL
PRINT 50¢€
506 FCRMAT (/09X o®C1% ¢SX o ®CSTRI® 4Ry # 027 49Xy PCSTR2%IXPL I 4y
1%CSTR3*)
PRINT 805y CL+CSTR1+C2.CSTR29(3-CSTRS
PRINT 507
507 FCRMAT( /0" r1 7 0STRY / De /
1C8TRZ / D3 / USTR3 hd

PRINT 505 D1 0STF1,D2+sLSTR29C3.05TR3
01 CCAT INUE

ILVMIRCIY=(CSTF12[16CSTFR2902¢CSTF3I2L3-(CL1*CSTR14C270SVF2
1 +C3%DSTR3NY #( 26%(0esdlol)
E2=D41%DSTR1I¢D2#*DSTRZ4II®CETRS

ILIy=£2z

EX=C12CST~14C2%CSTRZ*CI®CSTF3

IR(I)=t X
ILPIRII)=(CL2CSTR16C22CSTR26C3®¥CSTR3¢D1®0STR14DER0STR2
1 ¢ DIROSTF3I®Z,

ColId=ILMIRIIV/TILFIFLID

IF(FLAG.EQ.D00Y GC TO 511 :

PRINT 522y ILMIF(IVoILPIRIINe COMIVoIL(IY IR
g1 FORMAT (/9% 2o®ILPIR=%L 1€ 9¢2X o2 ILPIR=¥oF 160 Co2X 9 ¥C0=2%E 1609

128 y2IL=% £ 16.90cay *IR="4E16.9)
PEINT 510

210 FCRMAT (/o747 /)
511 CCANT IhUE
100 CCRTINUE

€ IS YHE SAME aS THAY (F ( CEGREES
ANGLE(3€2) =360,
COt3621=CD(1) & ILPIFC3E1I=ILPIR(L) SILMIF(3ELI=ILMIR(L)
1% IL(3e1¥=IL{1) ¢ IR(3€4D=IR(L}

~
[

C$655¢5$~§Q#5&5%566&85l‘@Q355655‘46¥€¥55Qﬁsé6355355580¥"B&B‘!53$55‘55.0‘5*
C®HERE CCME MCFE PRINT ING SUBFCUTINES .
Csﬁ3‘5‘5QEJGCU5&&86455a"BSG@OU‘B@QG‘CsG#ﬁQ“i‘Bﬁ@ﬁ‘ﬂﬂ.“éG‘Bbél5‘55056555#¥5
PRINT 907 oAPCLARIPEFICLoAsLERGTHoLAMEDA
907  FCRMAT(/+/,% ®¢® CC ANC YCTAL SCATYER FCF APCLARH ANGLE=%,F
i £.2e2Xy*PERICE="oFEo2 e X o ®RALIUSE® F5a202Xs *LENGTHES oF 10625 2X s
1 PLAMEDA=®,F5.2) ~
PRINT? ;
7 FCRMAT (7, ® FSI%,  8¥,®CC(I)%e12Ks IL=IR%*o12X,*IL ¢IR®
1915X#POLZ® 915X, #FOLX®)
0C 57 K=1, NANGL
ANGL=PSI(K)®180,/F1
ERINT 58 o ANGL, CD(KD o ILMIRIK)s ILPIR(KI,IL (KD 4IR(X)
FCRMAT(® %, FBokoy bXy E12059 L{sXe€15:8) )
CONT INUE

ATy

~ o
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(2282323308833 82828030 0000850080083 03038809305233R08053333888P38388R085280088588s

C* DETERMINE THE MAXIMUP VALLE FOR PLOTING SUBROUTINE *
C!‘5#6516&#&'45%385&“"QQ.Q*Q'!"'GCQCGG.GE&"le#i“‘#‘ll"!346'5“!803!'
DO 109 I=1,NANGLE
COMAX=AMAXL (ABS{CCUIN)oCCMAX)
SMAX=AMAXL (ILPIR( 1) 5SKAX)
SPAXL=AMANL (IL (I SPAXL)
SKAXR=AMAXL (IR(I) +SPAXR)
169 COMNINUE
IF(COMAX +GEo0o2) COMAK=1,
DC 1115 J=1, NANGL
CC(JV=CD (J)/COMAX
PLCTSC(J)I=ILPIRY JY/SHAX
PLCTIL(J)=IL(JI/SPAXL
PLCTIR(II=IR(I) /SMAXR
1115  CONT INUE
C PLOT SCATTERING VS PS1 FOR CIFFERING AZIMUTHS,
c
C PLOT GRAPHS
IF (NOPLOT,EQe0) GC TO 600
IF(DISCRT.EQG) LYR=130
c
C IN PLCTING SCATER=0e WILLPLCT COy SCATER=1o0 WILL PLOT IL¢IR/ MAX(IL®IF)
C SCATER=Z.0 s PLOT IL/FAX(IL), SCATER=31/, PLCT IR/MALX(IR}
c
RVMAXz1.0

QOO0

(28222082883 2282588228302852808382888304B0358353482388820800885080808838820888088

C®PLOY SCATTEFRING VS PS1 FOR CIFFERING APOLAR ARGLES @
C®In PLCTING SCATER=0e WILLPLCT CCo SCATER=1.0 WILL PLOT ILeIR/MAX{ILeIR) =
C®SCATER= 200 o PLOT IL/MAY¥(IL) . SCATER=3 , PLCY IR/ZPAX(IP) e
C'555“55'.“580“‘5“.5‘.‘5"“".C"“.l"“‘"'5""‘55"“.'8."‘.3.".‘

IF(PCLXotCe0CFePCLZ.20,0) GC TO 605

INITIASINITIAGY

AFCLAF=90, = APOLILR

PRINT 451.CDMEX,£FECLAR
181 FCRMAT (/. *GRAPH CF (D/CCMAX WITH COMAX=®.F1l€.3,2ALYITUDE=®,FE.2)

APCLAR=INT (APCLAF)

SCATER=(

IF(COMAXLTo4.0) SChTEeF=z=1

CALL PCLARUANCGLE o COGFMARAPCLAR P oo SCATFR.LAMBLACLENCTH LY,

1 INITIA)
€05 CCMT INVE
C
R¥AX=z=1.0
INITIA=INITIAL
FRINT 152, SMAX.EFOLER
i82 FCEMAT(/,2PLOT GFEPH FCR TOTAL SCATTER CIVICED B8Y SwAX=z=®,

1 E1€.8.2X %APCLAEH =%, FB,2)

AFPCLAR=INT (APCOLAR)

SCATER=2.0

CALL PCLAR(ANGLE ¢ FLCTSCoRPMAXAFOLAR P oAy SCATER s LAPBCLLERNGT
1 LYRGINITIAY

PRINT 153.SMAYLAFQLAR

1€3 FCRMAT (/+2PLO” GRAPF FOR LEFT SCATTER DIVIODEC BY SMAXL=%.F 1,8,

1 2 PLPULAR=®FEL2)

SCATER=2,0

CALL PCLAR(ANGLE oELCTIL RMAXAPOLAR ¢ PoAo SCATERLAMBCALLERNCTH,
1 LYRLINITIAD

PRINT 15L.SMAYR,8POLAR
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156 FCRMAT(/+2PLOT GRAPK FOF RIGHYSCATTER DIVIDEC BY SHAXR=®,716.8,
1 Z2Xo®APOLAR=®eF5,2)
SCATER=3.0
CALL PCLAR{ANGLE o FLCTIRGRMAY (APOLARPoAs SCATEFLAPBDACLENGTH,
1 LYRyINITIAD
5G40 COMTIMIE
c
299 CONT INUE
300 CORPT INUE
GO TC 3114
sSToP
20 CORT INUE
FSISTR{IN=060
GC TO 24
ENC
SLBRCUTINE POLAR(TH.F FPANAPCLARGFRATICRADIUSSCATEN oK ol oL YR,
C3@35‘2&5:%15ﬁi6555&0.5!‘@6"5QQ555QQGH¥$555‘850555QGCQ‘GH'Q&UlGlé-UlQS&Uﬁl355
C#THIS SULBRCUTINE HAKES PCLAR GRAPHS =
C*THE - ARGUMENT CF THE FUNCTICAS ARE PEASURED IN DECGHERSH L4
CeTHE IMNEUT OF THE ANGLLAR YARIABLE PAS TO EBE ENTERED IM RATIANS ®
CPANGLES ARE PCSIVIVE IMN THY CCUNTERCLOKWISE DIRECTIOR. 8
C#AN ANCLE OF ZERD IS FCRIZONTAL ANC TO THE RIGHT. ®
C@éﬂ500&9555.@543@56565555553'5"545Q#‘QCS55!63#1.'5G&SG@"D‘Q335‘.4ﬁ8§535&63
COPFON FRTTGFMPP FMANSTED ¢PBO s NB O
REAL N3O
CCPMON/IGSZZZ /200
DIPENSIOM RCLO0)Y o TRELODDY Y(&0O0)
REAL Le¢ LYF
INTEGER ST3.SPBeSHE
DIFPENSION YNEG(LCO)
SYTERNAL FONT2
NATA IRAC/2HR=/
DETA IPITCH/IZ2KRP=/
DATA IWAVE/2HW=/
D4TA ISc ATELLbALT=/
DATA ILYF/LHLYR=/
CATA ILENGH/Z2ML=/
INTEGER BLANK
DETA ELANK/&H /
CAETEL IP3/3HPl/
NATA INB/3MNB=/
DLTA ITB/3HTB=/
DATA LCGL3L/3HLG=/
NETA ICOPMA/ZLIH,/
DATA LGFET/Z3HLT=/
995 FCRMAT(A3,13)
936 FCRMAT(AZ.Fuel)
@93 FCAMAT (A4 oFEe2)
LCGLEN=L O
ENCODEL ©9999.LAEELIISeATE APCLAR
IF(LYRoeNL o L00YENCCDE(D4CC8 o LABEL)ITLYRLYE
ENCODe( €+:9964LABEL2Y IFITCHLFRATIO
ENCODE (60996, LABELI) IRACZRADIVS
ENCOOE (6996, LABELSIIHAVE oW
IF (L oG6To93 ILCOGLEM=ALOGLC (L)
IF(LoLEoCIIENCODF (6,996, LARELEIILENGH L
IF(LeGT oS ENCODE (6,995, LABELEILOGLBLLEGLEN
913 FCRHUAT (Fho2)
ENCODE (Lo S13,CTBIFNTY
ENCODE(L ¢S4 3, SPBIFMPP
ENCODE (6 +S1 3, SNIIFMAN
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911 FCRMAT(A3eFk,25A1)
ENCODE(B+911,LABELTIITE,TB0,ICCHMA
ERCCDE(B8+911,LABELP)TIPBFBO,ICCHMA
ENCODE (85911, LABELN)INEB,ABO, ICOMMA
IF(FMTT.LT:0,04)LCOFMT=ALCGI0(TIO)
IF(FMTTelToDBo01)ERCCDE (89944, LASELT)LGFPToTBC,ICOMPMA

912 FORMAT(A3 AL, A1)
IF(FFTTeEQoO)ENCCTE(B 912 LABELTIITB.BLANK,ICCHIA
IF(FMPPEQOIFNCCLE(B:912-LABELP ) IFB,BLANK, ICCHMFA
IFUFMNNoEQ.DYENCCDE (89912 LARELN) INB,BLANK, TCCHMRA

HERe IS WERE THE PCSITIVE VELUES ARE SEPARATEL FRCM NEGATIVE VALUES
DO 20 I=1, 361
YNEG(I)=0.0
Y{IV=ABS (R(I))
IF(R{I)elTe060) YMEGIZI=AESHIRIINY
20 CCAT INVE

c
c
c
C80'lQ'.5&5*0"64“"55‘6'050!"&"#@‘5“!‘5."QQHQ¥l§‘l¥§6&"“b‘5¥l#8l‘l$
C®IMPCRTLNT IMFCRTANT I#PCRTARNY ®
SEMERE IS WHERE THE PLCTTING FUTINE GITS INITIALIZED CNLY ONCE »

CQGl!‘#i0###4@44045656Q.@QQQ'QCC#QOGCGQGUQQ‘BC5'l!CS@QBD'#Q#S‘5&‘536583"5‘

IFUINITIAGNES1) CC TC 23
CALL MCDESG(Z.8+&FCIDS)

23 CCRTINE
c
C
CALL VECIG(ZsFONTZoe )
CALL SETSPGUZe51414)
C SET LFP VIEW PORT TC LEAVS 20 PERCENT BORDER

CALL CBJCTGUZ:200920098L0080,)
C SET TRETA AXIS CFFSETY
Z(185)=90,
C DEFIMNE THe SUBJECT SFLCE FCR EBOTH+ RADIAL AND ANGULAR VARIABLZIS
CALL PSUEJG(Z:0eolo«PMAXR,360,)
C DFR&wS A GRID OF 30 CECREELS CF ANGLLAP SFACIANC ANC & CF PADIALL UNITS
CALL SETSPG(Zo173:3.0)
CALL PGRIDG(ZFMEY/E600i0ce00s00)
C SITS FCRMAT FCR LABELLING
CALL SETSVGI(Z+30924)
CALL SETSPG(Z2:L5:200)
FET=5,2
LABL RADIAL AXIS
ChLL PCLEG(Zoo€5¢17C0obokk0.60)
CALL PCLEGI(Z92008 41750 0bobH1,00)
SET LARGE CHARACT:R S12%
CALL SETSPG(Zo4503,0)
C IMDICATE THE FORMAT FCF THe LABELLING
FrT=6.2
C LABEL THETA AXIS
CALL PLAELG(Zo1+30s90oFFT)
CALL SETSPG(Z:4543.00
XE=FMAX® 1,461
CALL PCLEG(Z,¥8 e28le9 9oLARBEL)
AT =RMAX®2L .7
IF(SCATEFR EQobo0)
1 CALL PCLEGHZ X7 +13€0 o7 o7HCD/MAX )
IF(SCATER.EQeDe LY
i CALL PCLEGUZoXT7013€407«7HCITS V)

(@]

e



IF{SCATER.EQola0)

1 CALL POLEGUZo¥7 413667 7THSCATY V)
IF(SCATEREQe2e 0}

1 CALL POLEGIZ X7 ¢136,¢7¢7THI PCLZ )
IF(SCATEREQe3:0}

1 CALL PCLEG{Z X7+13€ss797¢1 PCLY )
PRINTO96 . LABEL,LABEL2,LABEL I LABELSLABELE
PRINTOGIB LABELT (LABELPLAEBELN

598 FCRMAT(® 2,2HERE ARF TPE LABELS *®, b6U&X.A%))
XI=RMAX®1.79
ChLL PCLEG{Z2¢>3 +30e0€oLABELS)
XL=RMAX®?2 .2
CALL PCLEG{ZoeXbotSss €oLAEELZ)
X5=RPMAX®2 05
CALL PCLEGIZoXS shCeo EJLABELEY
XE=RMAX®1:61 ’
CALL PCLEG(Ze»E,233046,LAEELSE)
XTB=RMAX®1,73F
CALL PCLEG{ZedTBoe33%aeBeLABELT)
JE(FMNNEQeDo ARD. FMFP.EQaDY GC 7O 50
XPE=RMAX®1.584L
CALL FCLEGI{Z+XPBs33%,48.LABELF)
XhNE=RMAX®1,36
CALL PCLEG(Zo¥NB¢33Co98eLABELN)
XSTB22.L7#RMAR
CALL PCLEG(ZeXSTE 320094578}
XSP3=31032%RMAX
CALL PCLEG(Zo¥SFE 92347 c¢4sSFB)
XSAB=1,7TC*RMAY
CALL PCLEG(ZoYSNE 9312.940SAR)
50 CCAT INUE
C JCINS WITH A LINE THE PCINTS YHAT FAVE EBEEN FLOTTIED
CALL SETSPG(Zv:gOvZa, .
CALL PLIMEG(Z.3€E1.YaTH)
IF(SCATEREQe4) CC TO 41
IF (SCATEF.GEs1+01 GC TO &0
61 CCAT INVE v
CALL SETSPG(Z.3044e)
CALL PLINEGI(Zs361YNEGLTRY
[ CCATINUE
CALL SETSPG(Z.30s20)
C HMCV. TC NEW FRAME
Call PAGEG(Ze0sde D)
C ¥C 2X3I7
CALL EXITG(Z}
PRINT 21 RMAXPRETIC.H RECTIUSHL )
21 FCEMAT(® 2,%GPAPE HAS BEEN FPLCTTED WITH RPAX=s®y F Bobks
TUXGPPERICC=%2F 106027 e® WAVELERGTHS® gF 8,4 42X o PRADIUSRZ4F a0t
I e2xe PLLANGTH=®F804) :
RE TURN
Ine
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