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Abstract

Rigidity Phenomena in random point sets

by

Subhroshekhar Ghosh

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Yuval Peres, Co-chair

Professor David Aldous, Co-chair

Let Π be a translation invariant point process on the Euclidean space E and let D ⊂ E
be a bounded open set whose boundary has zero Lebesgue measure. We ask what does the
point configuration Πout obtained by taking the points of Π outside D tell us about the point
configuration Πin of Π inside D? We focus mainly on translation invariant point processes
on the plane. We show that for the Ginibre ensemble, Πout determines the number of points
in Πin. We refer to this kind of behaviour as “rigidity”. For the translation-invariant zero
process of a planar Gaussian Analytic Function, we show that Πout determines the number
as well as the centre of mass of the points in Πin. Further, in both models we prove that the
outside says “nothing more” about the inside, in the sense that the conditional distribution
of the inside points, given the outside, is mutually absolutely continuous with respect to
the Lebesgue measure on its supporting submanifold. We further show that the conditional
density (of the inside points given the outside) is, roughly speaking, comparable to a squared
Vandermonde density. In particular, this shows that even under spatial conditioning, the
points exhibit repulsion which is quadratic in their mutual separation. We apply these results
to the study of continuum percolation on these point processes, and establish the existence of
a non-trivial critical radius and the uniqueness of infinite cluster in the supercritical regime.
En route, we obtain new estimates on hole probabilities for zeroes of the planar Gaussian
Analytic Function. Finally, we apply these ideas to prove completeness properties of random
exponential functions originating from “rigid” determinantal point processes. We conclude
by establishing miscellaneous other results on determinantal point processes. These include
answers to two questions of Lyons and Steif on certain models of stationary determinantal
processes on Z, one involving insertion and deletion tolerance, and the other regarding the
recovery of the driving function from the process.
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Chapter 1

The Basic Models

A point process Π on C is a random locally finite point configuration on the two dimensional
Euclidean plane. The probability distribution of the point process Π is a probability measure
P[Π] on the Polish space of locally finite point sets on the plane. Point processes on the plane
have been studied extensively. For a lucid exposition on general point processes one can look
at [DV97]. The group of translations of C acts in a natural way on the space of locally finite
point configurations on C. Namely, the translation by z, denoted by Tz, takes the point
configuration Λ to the configuration Tz(Λ) := {x+ z

∣∣x ∈ Λ}. A point process Π is said to be
translation invariant if Π and Tz(Π) have the same distribution for all z ∈ C. In this work
we will focus primarily on translation invariant point processes on C whose intensities are
absolutely continuous with respect to the Lebesgue measure. We will consider simple point
processes, namely, those in which no two points are at the same location. A simple point
process can also be looked upon as a random discrete measure [Π] =

∑
z∈Π δz.

In this thesis, we will chiefly concern ourselves with translation invariant point processes
in the complex plane. We will focus on the two main natural examples of translation invariant
point processes on the plane (other than the Poisson process) - namely, the Ginibre ensemblle
and the zeroes of the standard planar Gaussian analytic function. In the final chapter, there
will be some references to other classes of point processes, including those on the real line
and on Z

d.
In this introductory section, we will discuss our main models under study, which will

come up repetedly in the subsequent chapters of this thesis. Other models and processes
will be introduced as and when necessary.

1.1 The Ginibre Ensemble

Let us consider an n × n matrix Xn, n ≥ 1 whose entries are i.i.d. standard complex
Gaussians. The vector of its eigenvalues, in uniform random order, has the joint density
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(with respect to the Lebesgue measure on C
n) given by

p(z1, · · · , zn) =
1

πn
∏n

k=1 k!
e−

∑n
k=1 |zk|2

∏

i<j

|zi − zj|2.

Recall that a determinantal point process on the Euclidean space R
d with kernel K and

background measure µ is a point process on R
d whose k-point intensity functions with

respect to the measure µ⊗k are given by

ρk(x1, · · · , xk) = det

[
(K(xi, xj))

k
i,j=1

]
.

Typically, K has to be such that the integral operator defined by K is a non-negative trace
class contraction mapping L2(µ) to itself. For a detailed study of determinantal point pro-
cesses, we refer the reader to [HKPV10] or [Sos00]. A simple calculation involving Vander-
monde determinants shows that the eigenvalues of Xn (considered as a random point configu-

ration) form a determinantal point process on C. Its kernel is given byKn(z, w) =
∑n−1

k=0
(zw̄)k

k!

with respect to the background measure dγ(z) = 1
π
e−|z|2dL(z) where L denotes the Lebesgue

measure on C. This point process is the Ginibre ensemble (of dimension n), which we will
denote by Gn. As n→ ∞, these point processes converge, in distribution, to a determinantal

point process given by the kernel K(z, w) = ezw̄ =
∑∞

k=0
(zw̄)k

k!
with respect to the same

background measure γ. This limiting point process is the infinite Ginibre ensemble G. It
is known that the distribution of G is invariant and ergodic under the natural action of the
translations of the plane.

1.2 The GAF zero process

Let {ξk}∞k=0 be a sequence of i.i.d. standard complex Gaussians. Define

fn(z) =
n∑

k=0

ξk
zk√
k!

( for n ≥ 0) , f(z) =
∞∑

k=0

ξk
zk√
k!
.

These are Gaussian processes on C with covariance kernels given by Kn(z, w) =
∑n

k=0
(zw̄)k

k!

and K(z, w) =
∑∞

k=0
(zw̄)k

k!
= ezw̄ respectively. A.s. fn and f are entire functions and the

functions fn converge to f (in the sense of the uniform convergence of holomorphic functions
on compact sets). It is not hard to see (e.g., via Rouche’s theorem) that this implies that the
corresponding point processes of zeroes, denoted by Fn, converge a.s. to the zero process F
of the GAF (in the sense of locally finite point configurations converging on compact sets).
It is known that the distribution of F is invariant and ergodic under the natural action of
the translations of the plane.
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Chapter 2

Rigidity and Tolerance in point
processes

2.1 Introduction

In this chapter, we study the following question: if we know the configuration Πout, what can
we conclude about Πin? We consider, with regard to this question, the main natural examples
of translation invariant point processes on the plane, and provide a complete answer in each
case.

The (homogeneous) Poisson point process is the most canonical example of a translation-
invariant point process on the plane. Its crucial property is that the point configurations
in two disjoint measurable sets are independent of each other. Therefore, our question is a
triviality for the Poisson process: the points outside D do not provide any information about
the points inside D.

The two natural examples of translation invariant point processes in the plane that have
non-trivial spatial correlations are the Ginibre ensemble and the zeroes of the planar Gaussian
Analytic Function. We refer the reader to [HKPV10] for a detailed study of these ensembles.
The Ginibre ensemble was introduced in the physics literature by Ginibre [Gin65] as a
model based on non-Hermitian random matrices. Like the Poisson process, it is translation-
invariant and ergodic under rigid motions of the plane. In fact, it is a determinantal point

process with the determinantal kernel K(z, w) =
∞∑

j=0

(zw)j

j!
and the background measure

e−|z|2dL(z), where L denotes the Lebesgue measure on C. Krishnapur [Kr06] has shown that
the Ginibre ensemble is essentially the unique translation invariant process among a certain
class of determinantal point processes on C that have a sesqui-holomorphic kernel (i.e., the
determinantal kernel is holomorphic in the first variable and anti-holomorphic in the second),
a radially symmetric background measure and is normalized to have unit intensity.

The standard planar Gaussian Analytic Function (abbreviated henceforth as GAF) is the
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random entire function defined by the series development f(z) =
∞∑

k=0

ξk√
k!
zk where ξk-s are

i.i.d. standard complex Gaussians. We are interested in the point configuration on C given
by the zeroes of this GAF. The GAF zero process is translation invariant and ergodic, and
exhibits local repulsion. It has been studied intensively by several authors including Nazarov,
Sodin, Tsirelson, and others (see, e.g., [FH99], [STs1-04],[STs2-06],[STs3-05],[NSV07],[NS10]).
Sodin and Tsirelson [STs1-04] have shown that in the class of Gaussian power series, the
standard planar GAF is the only one to have a translation invariant zero-set (up to scaling
and multiplication by a deterministic entire function with no zeroes).

For further details on these models, we refer the reader to Chapter 1.
For a pair of random variables (X, Y ) which has a joint distribution on a product of

Polish spaces S1 × S2, we can define the regular conditional distribution γ of Y given X by
the family of probability measures measures γ(s1, ·) parametrized by the elements s1 ∈ S1

such that for any Borel sets A ⊂ S1 and B ⊂ S2 we have

P (X ∈ A, Y ∈ B) =

∫

A

γ(s1, B) dP[X](s1)

where P[X] denotes the marginal distribution of X. For details on regular conditional dis-
tributions, see, e.g., [Pa00] or [Bil95].

Recall that Sin and Sout are Polish spaces. Hence, by abstract nonsense, there exists a
regular conditional distribution ̺ of Πin given Πout. Clearly, ̺ can be seen as the distribution
of a point process on D which depends on Υout.

Let ζ be the vector (of variable length) whose co-ordinates are the points of Πin taken
in uniform random order. We will denote the conditional distribution of ζ given Πout by
ρ. Formally, it is a family of probability measures ρ(Υout, ·) on

⋃∞
m=0 Dm parametrized by

Υout ∈ Sout.
There is a simple relationship between ρ(Πout, ·) and ̺(Πout, ·). Consider the natural map

φ from
⋃∞

m=0 Dm to Sin which makes a point configuration Υin of size m from a vector ζ
in Dm by forgetting the order of the co-ordinates of ζ. It is easy to see that P[Πout]-a.s.
φ∗ρ(Πout, ·) = ̺(Πout, ·).

For a vector α, we denote by ∆(α) the Vandermonde determinant generated by the
co-ordinates of α. Note that |∆(α)| is invariant under permutations of the co-ordinates of
α.

For two measures µ1 and µ2 defined on the same measure space Ω with µ1 ≪ µ2 (meaning
µ1 is absolutely continuous with respect to µ2), we will denote by

dµ1

dµ2
(ω) the Radon Nikodym

derivative of µ1 with respect to µ2 evaluated at ω ∈ Ω. Similarly, by µ1 ≡ µ2 we mean that
the measures µ1 and µ2 are mutually absolutely continuous, which implies that both µ1 ≪ µ2

and µ2 ≪ µ1 are simultaneously true.
In the case of the Ginibre ensemble, we prove that almost surely (henceforth abbreviated

as “a.s.”), the points outside D determine the number of points inside D, and “nothing
more”.
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In Theorems 2.1.1-2.1.4 we denote the Ginibre ensemble by G and the GAF zero ensemble
by F . As before, D is a bounded open set in C whose boundary has zero Lebesgue measure.

Theorem 2.1.1. For the Ginibre ensemble, there is a measurable function N : Sout → N∪{0}
such that a.s.

Number of points in Gin = N(Gout) .

Since a.s. the length of ζ equals N(Gout), we can as well assume that each measure

ρ(Υout, ·) is supported on DN(Υout).

Theorem 2.1.2. For the Ginibre ensemble, P[Gout]-a.s. the measure ρ(Gout, ·) and the
Lebesgue measure L on DN(Gout) are mutually absolutely continuous.

In the case of the GAF zero process, we prove that the points outside D determine the
number as well as the centre of mass (or equivalently, the sum) of the points inside D, and
“nothing more”.

Theorem 2.1.3. For the GAF zero ensemble,
(i)There is a measurable function N : Sout → N ∪ {0} such that a.s.

Number of points in Fin = N(Fout).

(ii)There is a measurable function S : Sout → C such that a.s.

Sum of the points in Fin = S(Fout).

Define the set

ΣS(Fout) := {ζ ∈ DN(Fout) :

N(Fout)∑

j=1

ζj = S(Fout)}

where ζ = (ζ1, · · · , ζN(Fout)).
Since a.s. the length of ζ equals N(Fout), we can as well assume that each measure

ρ(Υout, ·) gives us the distribution of a random vector in DN(Υout), supported on ΣS(Υout).

Theorem 2.1.4. For the GAF zero ensemble, P[Fout]-a.s. the measure ρ(Fout, ·) and the
Lebesgue measure LΣ on ΣS(Fout) are mutually absolutely continuous.

The central question of this chapter is partially motivated by the concepts of insertion
and deletion tolerance of a point process. Consider a point process Π. Fix a bounded open
set D, and add to Π a random point uniformly distributed in D. Let us call this perturbed
point process ΠD. The point process Π is said to be insertion tolerant if P[ΠD] ≪ P[Π]
for all bounded open sets D. Deletion tolerance is similarly defined by deleting a point
inside D (if one exists) uniformly at random. Insertion and deletion tolerance have been
investigated by Burton and Keane ([BK89]) in the context of percolation, by Holroyd and
Peres ([HP05]) for studying invariant allocation on the plane, and by Heicklen and Lyons
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([HLy03]) in the setting of random spanning forests. They have also been studied as topics
of their own importance by Holroyd and Soo ([HS10]).

Notice that the question whether P[ΠD] ≪ P[Π] for a given D can be phrased in terms of
the conditional distribution ̺, and the same holds for the main questions addressed in this
chapter. Therefore, in more general terms, we are interested in the regularity properties of
̺.

For a finite point process of fixed size n, the phenomenon of outside points determining
the number of inside points is a triviality. However, the behaviour of infinite point processes
can be quite different, even when they arise as distributional limits of finite point processes.
For example, let us take the disk of area n centred at the origin and consider the point
process Πn given by n uniform points inside it. Let D be the unit disk centred at the origin.
The process Πn clearly has the property that the point configuration outside D determines
the number of points inside D. However, the distributional limit of Πn-s, as n → ∞, is
the Poisson point process (of intensity 1), which has no such property. Hence, the reason
behind this phenomenon to occur in the case of the Ginibre ensemble or the Gaussian zeroes
is fundamentally different, and is connected with the spatial correlation properties of the
corresponding ensembles.

In addition to answering our central question mentioned in the beginning, Theorems 2.1.1-
2.1.4 also provide information on the relative strength of spatial correlations in the Ginibre
and the GAF zero ensembles. While a simple visual inspection suffices to (heuristically)
distinguish a sample of the Poisson process from that of either the Ginibre or the GAF zero
process (of the same intensity), the latter two are hard to set apart between themselves. It
is therefore an interesting question to devise mathematical statistics that distinguish them.
The qualitative idea is that the spatial correlation is much stronger in the GAF zero process
than in the Ginibre ensemble. There can be several possible approaches to quantify this
heuristic observation. One important feature to look at, for instance, is the rate of decay
of the hole probabilities. However, it turns out that both the Ginibre ensemble and the
Gaussian zero process behave similarly in this respect. For more details, one can refer to
citeHKPV. Our results clearly demonstrate that the GAF zeroes have much greater spatial
dependence, in the sense that the point configuration in the exterior of an open set dictates
much more about the one in its interior.

In [STs1-04], Sodin and Tsirelson compared the GAF zero process (CAZP in their ter-
minology) with various models of perturbed lattices. They noticed that the lattice process

{
√
3π(k + li) + ce2πim/3ηk,l : k, l ∈ Z,m = 0, 1, 2},

(where ηk,l are i.i.d. standard complex Gaussians, c ∈ (0,∞) is a parameter and i denotes
the imaginary unit) achieves “asymptotic similarity” with the GAF zero process (in the sense
that the variances of scaled linear statistics have similar asymptotic behaviour to those for
the GAF zeroes). Sodin and Tsirelson further observed that the above perturbed lattice
model satisfied two conservation laws: one pertaining to the “mass” and another pertaining
to the “centre of mass”. They predicted similar conservation laws for the GAF zero process,
although the sense in which such laws would hold was left open to interpretation. Theorem
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2.1.3 establishes two conservation laws, one of which preserves the “mass” (i.e., the number
of points), and the other one preserves the “centre of mass”. Moreover, Theorem 2.1.4
says that these are the only conservation laws for the GAF zero process. We further note
that among the perturbed lattice models in [STs1-04], the one that achieves “asymptotic
similarity” with the Ginibre ensemble is the process

{√π(k + li) + cηk,l : k, l ∈ Z}

where ηk,l and c are as before. In this model, we have one conserved quantity (namely, the
“mass”). In Theorems 2.1.1 and 2.1.2, we obtain a conservation law for the “mass” (i.e.,
the number of points) in the Ginibre ensemble, and further, show that there are no other
conserved quantities.

En route proving the main theorems mentioned above, we obtain results that are inter-
esting in their own right. For example we prove that the harmonic sum

(∑
z∈Π

1
z

)
, for the

Ginibre ensemble as well as for the GAF zero process, is a.s. finite (in a precise technical
sense specified in Propositions 2.9.3 and 2.13.3 and the remarks thereafter). In fact, we
show that this sum has a finite first moment for both processes. It is not hard to see that
the corresponding sum for the Poisson process does not converge in any reasonable sense.
Even for the Ginibre or the GAF zero ensembles, the corresponding sum does not converge
absolutely. The underlying reason for the conditional convergence is the mutual cancellation
arising from the higher degree of symmetry (compared to the Poisson process) exhibited by
a typical point configuration in the Ginibre or the GAF zero process. This is yet another
manifestation of the fact that the Gaussian zeros or the Ginibre eigenvalues exhibit a much
more regular arrangement (which indicates greater rigidity) than, say, the Poisson process.

In a more precise sense, we can define the finite sums αk(n) =
(∑

z∈Π 1/zk
)
when Π = Gn

or Fn. Here Gn is the approximation to G by eigenvalues of n× n random matrices, and Fn

is the approximation to F by zeroes of random polynomials of degree n (for details refer to
Chapter 1). Our results, as in Proposition 2.9.6 and Proposition 2.13.6, establish that both
for the Ginibre and the GAF zeroes, these sums converge in probability as n → ∞. The
limit αk can be justifiably taken to be an analogue of the sum

(∑
z∈Π 1/zk

)
for the respective

limiting process G or F .
We also prove a reconstruction theorem for the planar GAF from its zeroes, which es-

sentially says that the zeroes of the GAF determine a.s. the GAF itself, up to a factor
of modulus 1. In what follows, αk will denote the random variable introduced above for
GAF zeroes, Pk will be the k-th Newton polynomial (for details, see Section 2.16). De-

fine ak = Pk(α1, · · · , αk) and χ = lim
k→∞

k1/2

(
k−1∑

j=0

|Pj(α1, · · · , αj)|2
)−1/2

(the existence of the

limit will be proved in the course of proving Theorem 2.1.5). We state the reconstruction
theorem as:

Theorem 2.1.5. Consider the random analytic function g(z) =
∞∑

k=0

χakz
k, which is measur-
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able with respect to the GAF zeroes. There is a random variable ζ with uniform distribution
on S

1 and independent of the GAF zeroes, such that a.s. we have f(z) = ζg(z).

It is interesting to compare Theorem 2.1.5 with the Weierstrass Factorization Theorem
(see, e.g., [Rud87] Chapter 15) for reconstructing analytic functions from their zeroes. In the
case of the Weierstrass factorization, the main problem is that there is a (random) analytic
function (with no zeroes) that occurs as a factor in front of the canonical product formed from
the Gaussian zeroes, and a priori no concrete information is available about this function.
E.g., it can, in principle, depend on the GAF zeroes. However, in Theorem 2.1.5 we are able
to give a concrete description of the factor ζ and also the precise dependence of g on GAF
zeroes.

The description in Theorem 2.1.5 is optimal in the sense that the factor ζ cannot be done
away with. This can be seen from the fact that if θ is a random variable that is uniform
in S

1 and independent of the ξi-s, then the random analytic functions θf and f are both
distributed as planar GAF-s but have the same zeroes; hence from the zeroes of f we can
hope to recover the coefficients of f only up to such a factor θ.

Theorem 2.1.5 can be compared with Theorem 6 in [PV05], where a similar result is
established for the zeroes of the Gaussian analytic function on the hyperbolic plane. However,
such a result for the planar case is not known, and our approach here is distinct from [PV05],
relying crucially on the estimates we obtain in Section 2.13.

We view the conservation laws as the “rigidity” properties of the respective point pro-
cesses. The absolute continuity (with respect to the Lebesgue measure on the conserved
submanifold) of the conditional distribution of the vector of inside points can be viewed as
“tolerance”. The heuristic is that due to such mutual absolute continuity, the inside points
can form (almost) any configuration on this conserved submanifold.

2.2 Plan of the chapter

In Section 2.3 we provide an abstract framework in which other models having similar char-
acteristics can be investigated. Further, we show in Section 2.4 that for proving the main
Theorems 2.1.1 - 2.1.4, it suffices to establish them in the case where D is a disk.

In order to study rigidity phenomena, we devise a unified approach in Section 2.5, where
Theorem 2.5.1 gives general criteria for a function (of the inside points) to be rigid with re-
spect to a point process. We complete the proofs of Theorems 2.1.1 and 2.1.3 by establishing
the relevant criteria for the Ginibre and the GAF zero processes.

In Section 2.6, we study tolerance properties in the general setup introduced in Section
2.3. Theorem 2.6.2 lays down conditions under which certain tolerance behaviour of a point
process can be established. Proving Theorems 2.1.2 and 2.1.4, therefore, amounts to showing
that the relevant conditions hold for our models. However, unlike the rigidity phenomena,
this requires substantially more work, and is carried out in two stages for each process. First,
we obtain some estimates for the point processes Gn and Fn, which are finite approximations
to G and F respectively (see Sections 1.1 and 1.2 for definitions). For the Ginibre ensemble,
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this is done in Section 2.7, and for the GAF zeroes this is done in Section 2.11. Finally, we
apply these estimates to deduce that the relevant conditions for tolerance behaviour hold
for our models; this is carried out for the Ginibre ensemble in Section 2.10 and for the GAF
zeroes in Section 2.14.

2.3 The General Setup

Fix a Euclidean space E equipped with a non-negative regular Borel measure µ. Let S
denote the Polish space of countable locally finite point configurations on E . Endow S with
its canonical topology, namely the topology of convergence on compact sets (which gives S a
canonical Borel σ-algebra). Fix a bounded open set D ⊂ E with µ(∂D) = 0. Corresponding
to the decomposition E = D ∪ Dc, we have S = Sin × Sout, where Sin and Sout denote
the spaces of finite point configurations on D and locally finite point configurations on Dc

respectively.
Let Ξ be a measure space equipped with a probability measure P. For a random variable

Z : Ξ → X (where X is a Polish space), we define the push forward Z∗P of the measure P

by Z∗P(A) = P(Z−1(A)) where A is a Borel set in X . Also, for a point process Z ′ : Ξ → S,
we can define point processes Z ′

in : Ξ → Sin and Z ′
out : Ξ → Sout by restricting the random

configuration Z ′ to D and Dc respectively.
Let X,Xn : Ξ → S be random variables such that P-a.s., we have Xn → X (in the

topology of S). We demand that the point processesX,Xn have their first intensity measures
absolutely continuous with respect to µ. We can identify Xin (by taking the points in uniform
random order) with the random vector ζ which lives in

⋃∞
m=0 Dm. The analogous quantity

for Xn will be denoted by ζn.
For our models we can take E to be C, µ to be the Lebesgue measure, and D to be a

bounded open set whose boundary has zero Lebesgue measure.
In the case of the Ginibre ensemble, we can define the processes Gn and G on the same

underlying probability space so that a.s. we have Gn ⊂ Gn+1 ⊂ G for all n ≥ 1. For reference,
see [Go10]. We take (Ξ,P) to be this underlying probability space, Xn = Gn and X = G.

In the case of the Gaussian zero process, we take (Ξ,P) to be a measure space on which
we have countably many standard complex Gaussian random variables denoted by {ξk}∞k=0.

Then Xn is the zero set of the polynomial fn(z) =
∑n

k=0 ξk
zk√
k!
, and X is the zero set of the

entire function f(z) =
∑∞

k=0 ξk
zk√
k!
. The fact that Xn → X P-a.s. follows from Rouche’s

theorem.

2.4 Reduction from a general D to a disk

In this Section we intend to prove that to obtain Theorems 2.1.1-2.1.4, it suffices to consider
the case where D is an open disk centred at the origin. We will demonstrate the proof for
Theorems 2.1.3 and 2.1.4, the arguments for Theorems 2.1.1 and 2.1.2 are on similar lines.
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Let D be a bounded open set in C whose boundary has zero Lebesgue measure. By
translation invariance of the Ginibre ensemble, we take the origin to be in the interior of
D. Let D0 be a disk (centred at the origin) which contains D in its interior (where D is the
closure of D).

Suppose we know the point configuration Fout to be equal to Υout. Further, suppose that
we can show that the point configuration ΥD0

out outside D0 determines the number N0 and
the sum S0 of the points inside D0 a.s. Since we also know the number and the sum of the
points inside D0 \ D, we can determine the number N as well as the sum S of the points
in D. This proves the rigidity theorem for the GAF zero ensemble (Theorem 2.1.3) for a
general D.

Now suppose we have the tolerance Theorem 2.1.4 for a disk. To obtain Theorem 2.1.4
for D , we appeal to the tolerance Theorem 2.1.4 for the disk D0. Define

Σ :=

{
(λ1, · · · , λN) :

N∑

j=1

λj = S, λj ∈ D
}

and

Σ0 :=

{
(λ1, · · · , λN0) :

N0∑

j=1

λj = S0, λj ∈ D0

}
.

The conditional distribution of the vector of points inside D0, given ΥD0
out, lives on Σ0,

in fact it has a density f0 which is positive a.e. with respect to Lebesgue measure on Σ0.
Let there be k points in D0 \ D and let their sum be s, clearly we have N = N0 − k
and S = S0 − s. We parametrize Σ by the last N − 1 co-ordinates. Note that the set
U := {(λ2, · · · , λN) : (S −∑N

j=2 λj, λ2, · · · , λN) ∈ Σ} is an open subset of DN−1. Further,

we define the set V := {(λ1, · · · , λk) : λi ∈ D0 \ D,
∑k

i=1 λi = s}.
Let the points in D0\D, taken in uniform random order, form the vector z = (z1, · · · , zk).

Then we can condition the vector of points in D0 to have its last k co-ordinates equal to z,
to obtain the following formula for the conditional density of the vector of points in D at
(ζ1, · · · , ζN) ∈ Σ (with respect to the Lebesgue measure on Σ):

f(ζ1, ζ2, · · · , ζN) =
f0(ζ1, ζ2, · · · , ζN , z1, · · · , zk)∫

U
f0(s− (

∑N
j=2wj), w2, · · · , wN , z1, · · · , zk)dw2 · · · dwN

. (2.1)

It is clear that for a.e. z ∈ V , we have f is strictly positive a.e. with respect to Lebesgue
measure on Σ, because the same is true of f0 on Σ0.

2.5 Rigidity Phenomena

We begin by giving a precise definition of rigidity. Recall the general setup in Section 2.3.
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Definition 1. A measurable function fin : Sin → C is said to be rigid with respect to the
point process X on S if there is a measurable function fout : Sout → C such that a.s. we have
fin(Xin) = fout(Xout).

In this section, we prove that the number of points in D in the case of the Ginibre
ensemble and the number as well as the sum of the points in D for the GAF zero process are
rigid. In fact, we will state some general conditions that ensure such rigid behaviour, and
then show that the Ginibre and the GAF satisfy the relevant conditions.

We will use linear statistics of point processes as the main tool that will enable us to
obtain the rigidity results.

Definition 2. Let ϕ be a compactly supported continuous function on C. The linear statis-

tic corresponding to ϕ is the random variable
∫
ϕd[π] =

∑
z∈π ϕ(z).

By a Ck
c function on a Euclidean space E we denote the space of compactly supported

Ck functions on E .
We can now state:

Theorem 2.5.1. Let π be a point process on C whose first intensity is absolutely continuous
with respect to the Lebesgue measure, and let D be a bounded open set whose boundary has
zero Lebesgue measure. Let ϕ be a continuous function on C. Suppose for any 1 > ε > 0,
we have a C2

c function Φε such that Φε = ϕ on D, and Var
(∫

C
Φεd[π]

)
< ε. Then

∫
D ϕd[π]

is rigid with respect to π.

Proof. Consider the sequence of C2
c functions Φ2−n

, n ≥ 1. Note that E

[∫
C
Φ2−n

d[π]
]
=

∫
C
Φ2−n

ρ1dL where ρ1(z) is the one point intensity function of π. By Chebyshev’s inequality,
it is clear that

P

(∣∣∣∣
∫

C

Φ2−n

d[π]− E

[∫

C

Φ2−n

d[π]

]∣∣∣∣ > 2−n/4

)
≤ 2−n/2.

The Borel Cantelli lemma implies that with probability 1, as n→ ∞ we have

∣∣∣∣
∫

C

Φ2−n

d[π]− E

[∫

C

Φ2−n

d[π]

]∣∣∣∣→ 0.

But ∫

C

Φ2−n

d[π] =

∫

D
Φ2−n

d[π] +

∫

Dc

Φ2−n

d[π].

Thus we have, as n→ ∞
∣∣∣∣
∫

D
Φ2−n

d[π] +

∫

Dc

Φ2−n

d[π]−
∫

C

Φ2−n

ρ1dL
∣∣∣∣→ 0. (2.2)
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If we know πout, we can compute
∫
Dc Φ

2−n
d[π] exactly, also ρ1 is known explicitly; in case of

a translation invariant point process π it is, in fact, a constant c(π). Hence, from the limit
in (2.2), a.s. we can obtain

∫
D Φ2−n

d[π] =
∫
D ϕd[π] as the limit

lim
n→∞

∫

C

(
Φ2−n

ρ1dL −
∫

Dc

Φ2−n

d[π]

)
.

�

We now use Theorem 2.5.1 to establish Theorems 2.1.1 and 2.1.3.

Proof of Theorems 2.1.1 and 2.1.3. We have already seen in Section 2.4 that it suffices
to take D to be a disk. By translation invariance of F and G, we can assume that D is centred
at the origin. We intend to construct functions Φε as in Theorem 2.5.1.

Let r0 = Radius (D). Fix ε > 0.

We begin with a continuous function Ψ̃ on R+ ∪ {0} such that Ψ̃(r) = 1 for 0 ≤ r ≤ r0,

Ψ̃′(r) = −ε/r and Ψ̃′′(r) = ε/r2 for r0 ≤ r ≤ r0 exp(1/ε), and Ψ̃(r) = 0 for r ≥ r0 exp(1/ε).
This can be obtained, e.g., by solving the relevant boundary value problem between r0 and
r0 exp(1/ε), and extending to R+∪{0} in the obvious manner. We then smooth the function

Ψ̃ at r0 and r0 exp(1/ε) such that the resulting function Ψ1 is C2 on the positive reals, and
satisfies |Ψ′

1(r)| ≤ ε/r and |Ψ′′(r)| ≤ ε/r2 for all r > 0. Finally, we define the radial C2
c

function Ψ on C as Ψ(z) = Ψ1(|z|).
For G, we know (see [RV07] Theorem 11) that there exists a constant C1 > 0 such that

for every radial C2
c function Ψ we have

Var

(∫

C

Ψ d[G]
)

≤ C1

∫

C

‖∇Ψ(z)‖22 dL(z).

But from the definition of Ψ it is clear that
∫
C
‖∇Ψ(z)‖22 dL(z) ≤ C2ε.We apply Theorem

2.5.1 with ϕ ≡ 1, and choose ΦC1C2ε = Ψ as defined above; recall that Ψ ≡ 1 on D.
For F , we know (see [NS11] Theorem 1.1) that there exists a constant C3 > 0 such that

every C2
c function ϑ satisfies

Var

(∫

C

ϑ d[F ]

)
≤ C3

∫

C

‖∆ϑ(z)‖22 dL(z).

For the rigidity of the number of points of F in D we make exactly the same choice as we
did for G, and note that

∫
C
‖∆Ψ(z)‖22 dL(z) ≤ C4ε

2. For the rigidity of the sum of points
of F in D we intend to apply Theorem 2.5.1 with ϕ(z) = z. We consider the function
θ(z) = zΨ(z), Ψ as before. Observe that ∆θ(z) = 4∂Ψ

∂z̄
(z) + z∆Ψ(z). Using this, for ε < 1,

we get
∫
C
|∆(zΨ(z))|2 dL(z) ≤ C5ε. It remains to note that for z ∈ D we have Ψ(z) = 1 and

θ(z) = z. �
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2.6 Tolerance: Limits of Conditional Measures

The tolerance properties are established for both models by obtaining explicit bounds on
conditional probability measures for finite approximations (finite matrices in case of Ginibre
and polynomials for GAF) and then passing to the limit. In this Section, we state and prove
some general conditions (in the context of the abstract setup considered in Section 2.3),
which will enable us to make the transition from the finite ensembles to the infinite one.

We start with the following general proposition:

Proposition 2.6.1. Let Γ be second countable topological space. Let Σ be a countable basis
of open sets in Γ and let A := {∪k

i=1σi : σi ∈ Σ, k ≥ 1}. Let c > 0. To verify that two
non-negative regular Borel measures µ1 and µ2 on Γ satisfy µ1(B) ≤ cµ2(B) for all Borel
sets B in Γ, it suffices to verify the inequality for all sets in A.

Proof. Any open set U ⊂ Γ is a countable union
⋃∞

i=1 σi, σi ∈ Σ because the sets in Σ form
a basis for the topology on Γ. If we have µ1(

⋃n
i=1 σi) ≤ cµ2(

⋃n
i=1 σi), then we can let n→ ∞

to obtain µ1(U) ≤ cµ2(U). Once we have the inequality for all open sets U , we can extend
it to all Borel sets, because for a regular Borel measure µ and for any Borel set B ⊂ Γ, we
have µ(B) = infB⊂Uµ(U) where the infimum is taken over all open sets U containing B. �

In this Section, we will work in the setup of Section 2.3, specifying D to be an open ball,
and requiring that the first intensity of our point process X is absolutely continuous with
respect to the Lebesgue measure on E . We further assume that X exhibits rigidity of the
number of points. In other words, there is a measurable function N : Sout → N ∪ {0} such
that a.s. we have

Number of points in Xin = N(Xout).

In such a situation, we can identify Xin (by taking the points in uniform random order)
with a random vector ζ taking values in DN(Xout). Studying the conditional distribution
̺(Xout, ·) of Xin given Xout is then the same as studying the conditional distribution of this
random vector given Xout. We will denote the latter distribution by ρ(Xout, ·). Note that it
is supported on DN(Xout) (see Section 2.1 for details).

For m > 0, let Wm
in denote the countable basis for the topology on Dm formed by open

balls contained in Dm and having rational centres and rational radii. We define the collection
of sets Am := {⋃k

i=1Ai : Ai ∈ Wm
in, k ≥ 1}.

Fix an integer n ≥ 0, a closed annulus B ⊂ Dc whose centre is at the origin and which
has a rational inradius and a rational outradius, and a collection of n disjoint open balls Bi

with rational radii and centres having rational co-ordinates such that {Bi∩Dc}ni=1 ⊂ B. Let
Φ(n,B,B1, · · · , Bn) be the Borel subset of Sout defined as follows:

Φ(n,B,B1, · · · , Bn) = {Υ ∈ Sout : |Υ ∩ B| = n, |Υ ∩ Bi| = 1}.

Then the countable collection Σout = {Φ(n,B,B1, · · · , Bn) : n,B,Bi as above } is a basis
for the topology of Sout. Define the collection of sets B := {⋃k

i=1 Φi : Φi ∈ Σout, k ≥ 1}.
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We will denote by Ωm the event that |Xin| = m, and by Ωm
n we will denote the event

|Xn
in| = m.

Definition 3. Let p and q be indices (which take values in potentially infinite abstract sets),
and α(p, q) and β(p, q) be non-negative functions of these indices. We write α(p, q) ≍q β(p, q)
if there exist positive numbers k1(q), k2(q) such that

k1(q)α(p, q) ≤ β(p, q) ≤ k2(q)α(p, q) for all p, q.

The main point is that k1, k2 in the above inequalities are uniform in p, that is, all the indices
in question other than q.

We will also use the notation introduced in Section 2.3. We will define an “exhausting”
sequence of events as:

Definition 4. A sequence of events {Ω(j)}j≥1 is said to exhaust another event Ω if Ω(j) ⊂
Ω(j + 1) ⊂ Ω for all j and P(Ω \ Ω(j)) → 0 as j → ∞.

LetM(Dm) denote the space of all probability measures onDm. For two random variables
U and V defined on the same probability space, we say that U is measurable with respect
to V if U is measurable with respect to the sigma algebra generated by V . Finally, recall
the definition of Am and B from the beginning of this section.

Now we are ready to state the following important technical reduction:

Theorem 2.6.2. Let m ≥ 0 be such that P(Ωm) > 0. Suppose that:
(a) There is a map ν : Sout → M(Dm) such that for each Borel set A ⊂ Dm, the ν(·, A)

is a measurable real valued function.
(b) For each fixed j we have a sequence {nk}k≥1 (which might depend on j) and corre-

sponding events Ωnk
(j) such that:

(i) Ωnk
(j) ⊂ Ωm

nk
.

(ii) Ω(j) := limk→∞Ωnk
(j) exhaust Ωm as j ↑ ∞.

(iii) For all A ∈ Am and B ∈ B we have

P[(Xnk
in

∈ A) ∩ (Xnk
out ∈ B) ∩ Ωnk

(j)] ≍j

∫

(X
nk
out)

−1(B)∩Ωnk
(j)

ν(Xout(ξ), A)dP(ξ) + ϑ(k; j, A,B).

(2.3)
where limk→∞ ϑ(k; j, A,B) = 0 for each fixed j, A and B .

Then a.s. on the event Ωm we have

ρ(Xout, ·) ≡ ν(Xout, ·) (2.4)

We defer the proof of Theorem 2.6.2 to Section 2.18.
We conclude this section with the following simple observation:

Remark 2.6.1. If we have Theorem 2.6.2 for all m ≥ 0 then we can conclude that (2.4)
holds a.e. ξ ∈ Ξ.
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2.7 Tolerance of the Ginibre Ensemble for a disk

In this section we obtain several estimates necessary to prove Theorem 2.1.2 in the case
where D is a disk.

Remark 2.7.1. By the translation invariance of the Ginibre ensemble, we can take D to be
centred at the origin.

Notation 1. For a set Λ ⊂ C and R > 0, we denote R · Λ = {Rz : z ∈ Λ}.

2.8 Matrix Approximations

Let δ ∈ (0, 1). We consider the event Ωm,δ
n which entails that Gn has exactly m points inside

D, and there is at least a δ separation between the sets ∂D and (Gn)out. The analogous
event for G will be denoted by Ωm,δ. Notice that Ωm,δ has positive probability (which is
bounded away from 0 uniformly in δ for δ small enough), so by the convergence of Gn-s
to G, we obtain that Ωm,δ

n -s have positive probability that is uniformly bounded away from
0 for large enough n. We denote the points of Gn inside D (in uniform random order) by
ζ = (ζ1, · · · , ζm) and those outside D (in uniform random order) by ω = (ω1, ω2, · · · , ωn−m).
Following the notation introduced in Chapter 1, for a vector (ζ, ω) as above, we denote

Υin = {ζi}mi=1 , Υout = {ωj}n−m
j=1 , and Υ = Υin ∪ Υout. For a vector γ = (γ1, · · · , γN) in C

N ,
we denote by ∆(γ) the Vandermonde determinant

∏
i<j(γi − γj). For two vectors γ

1
, γ

2
we

set ∆(γ
1
, γ

2
) = ∆(γ) where γ = (γ

1
, γ

2
) denotes the concatenated vector.

Then the conditional distribution ρ(Υout, ζ) of ζ given Υout has the density

ρnω(ζ) = C(ω)
∣∣∆(ζ, ω)

∣∣2 exp
(
−

m∑

k=1

|ζk|2
)

(2.5)

with respect to the Lebesgue measure on Dm, where C(ω) is the normalizing constant (which
depends on ω). Let (ζ, ω) and (ζ ′, ω) correspond to two configurations such that the event

Ωm,δ
n occurs in both cases. Then the ratio of the conditional densities at these two points is

given by
ρnω(ζ

′)

ρnω(ζ)
=

|∆(ζ ′, ω)|2
|∆(ζ, ω)|2

exp(−∑m
k=1 |ζ

′

k|2)
exp(−∑m

k=1 |ζk|2)
. (2.6)

Clearly, exp

(
−

m∑

k=1

|ζ ′

k|2
)/

exp

(
−

m∑

k=1

|ζk|2
)

is bounded above and below by constants

which are functions of m and D.
To study the ratio of the Vandermonde determinants, we define

Γ(ζ, ω) =
∏

1≤i≤m,1≤j≤n−m

(ζi − ωj).
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Then we have
|∆(ζ ′, ω)|2
|∆(ζ, ω)|2 =

|∆(ζ ′)|2
|∆(ζ)|2

|Γ(ζ ′, ω)|2
|Γ(ζ, ω)|2 . (2.7)

In order to bound
|Γ(ζ ′, ω)|2
|Γ(ζ, ω)|2 from above and below uniformly in ζ, ζ ′ ∈ Dm, it suffices to

bound
|Γ(ζ, ω)|
|Γ(0, ω)| from above and below uniformly in ζ ∈ Dm. Here 0 is the vector in Dm all

whose co-ordinates are 0-s. We observe that

|Γ(ζ, ω)|
|Γ(0, ω)| =

m∏

i=1

(
n−m∏

j=1

∣∣∣∣
ζi − ωj

ωj

∣∣∣∣

)
.

Sincem is fixed, it suffices to bound
n−m∏

j=1

∣∣∣∣
ζ0 − ωj

ωj

∣∣∣∣ from above and below uniformly in ζ0 ∈ D.

To this end we prove

Proposition 2.8.1. Let ζ0 ∈ D and ω1, · · · , ωn−m be such that |ωj| > r + δ for all j where
r is the radius of D. Then we have

∣∣∣∣∣log
(

n−m∏

j=1

∣∣∣∣
ζ0 − ωj

ωj

∣∣∣∣

)∣∣∣∣∣ ≤ K1(D)

∣∣∣∣∣

n−m∑

j=1

1

ωj

∣∣∣∣∣+K2(D)

∣∣∣∣∣

n−m∑

j=1

1

ω2
j

∣∣∣∣∣+K3(D, δ)
(

n−m∑

j=1

1

|ωj|3

)
.

Here K1(D), K2(D) and K3(D, δ) are constants depending on D and δ.

Proof. We begin with log
∣∣∣ ζ0−ωj

ωj

∣∣∣ = log
∣∣∣1− ζ0

ωj

∣∣∣ . Due to the δ-separation between ∂D and ω,

the ratio θj :=
ζ0
ωj

satisfies |θj| ≤ r
r+δ

< 1. Let log be the branch of the complex logarithm

given by the power series development log(1− z) = −
(∑∞

k=1
zk

k

)
for |z| < 1. Then we have

log |1− θj| = ℜ log(1− θj) = −ℜ(θj)− 1
2
ℜ(θ2j ) + h(θj) where |h(θj)| ≤ K ′

3(D, δ)|θj|3, where
K ′

3 is a constant depending on D and δ. Hence,

∣∣∣∣∣log
(

n−m∏

j=1

∣∣∣∣
ζ0 − ωj

ωj

∣∣∣∣

)∣∣∣∣∣ =
∣∣∣∣∣

n−m∑

j=1

log

(∣∣∣∣
ζ0 − ωj

ωj

∣∣∣∣
)∣∣∣∣∣ =

∣∣∣∣∣−ℜ
(

n−m∑

j=1

θj

)
− 1

2
ℜ
(

n−m∑

j=1

θ2j

)
+

n−m∑

j=1

h(θj)

∣∣∣∣∣ .

Recall that θj =
ζ0
ωj

and |ζ0| ≤ r and |h(θj)| ≤ K ′
3(D, δ)|θj|3. The triangle inequality applied

to the above gives us the statement of the Proposition with K1(D) = r, K2(D) = 1
2
r2 and

K3(D, δ) = K ′
3(D, δ)r3. �

As a result, we have
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Proposition 2.8.2. On Ωm,δ
n , we have a constant K(D, δ) > 0 such that

exp

(
− 4mK(D, δ)Xn

) |∆(ζ ′)|2
|∆(ζ)|2 ≤

ρnω(ζ
′)

ρnω(ζ)
≤ exp

(
4mK(D, δ)Xn

) |∆(ζ ′)|2
|∆(ζ)|2 ,

where Xn =

∣∣∣∣∣
∑

ω∈Gn∩Dc

1

ω

∣∣∣∣∣+
∣∣∣∣∣
∑

ω∈Gn∩Dc

1

ω2

∣∣∣∣∣+
(

∑

ω∈Gn∩Dc

1

|ω|3

)
and E[Xn] ≤ c1(D,m) <∞.

Proof. Clearly, it suffices to bound |∆(ζ ′, ω)|2
/
|∆(ζ, ω)|2 from above and below.

From Proposition 2.8.1, on Ωm,δ
n we have

∣∣∣log
(∏n−m

j=1

∣∣∣ ζ0−ωj

ωj

∣∣∣
)∣∣∣ ≤ K(D, δ)Xn for any ζ0 ∈ D,

where K(D, δ) = max{K1, K2, K3} . Considering this for each ζi, i = 1, · · · ,m, exponenti-
ating and taking product over i = 1, · · · ,m, we get

exp

(
−mK(D, δ)Xn

)
≤

|Γ(ζ, ω)|
|Γ(0, ω)| ≤ exp

(
mK(D, δ)Xn

)
.

The same estimate holds for ζ ′. Since
|Γ(ζ ′, ω)|
|Γ(ζ, ω)| =

|Γ(ζ ′, ω)|
|Γ(0, ω)|

/ |Γ(ζ, ω)|
|Γ(0, ω)| , we have

exp

(
− 2mK(D, δ)Xn

)
≤

|Γ(ζ ′, ω)|
|Γ(ζ, ω)| ≤ exp

(
2mK(D, δ)Xn

)
.

In view of (2.6) and (2.7), this leads to the desired bound
ρnω(ζ

′)

ρnω(ζ)
. In Section 2.9, we will see

that each of the three random sums defining Xn has finite expectation. Moreover, those
expectations are uniformly bounded by quantities depending only on D and m. This yields
the statement E[Xn] ≤ c1(D,m) <∞. �

Corollary 2.8.3. Given M > 0, we can replace Xn in Proposition 2.8.2 by a uniform bound
M except on an event of probability less than c1(m,D)/M .

2.9 Estimates for Inverse Powers

Our aim in this section is to estimate the sums of inverse powers of the points in G and Gn

outside a disk containing the origin. To this end, we first discuss certain estimates on the
variance of linear statistics, which are uniform in n. Let B(0; r) denote the disk of radius r
centred at the origin.

Proposition 2.9.1. Let ϕ be a compactly supported Lipschitz function, supported inside the
disk B(0; r) with Lipschitz constant κ(ϕ). Let ϕR(z) := ϕ(z/R). Then Var

(∫
ϕR(z) d[Gn](z)

)
≤

C(ϕ), where C(ϕ) is a constant that is independent of n. The same conclusion holds for G
in place of Gn.
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To prove Proposition 2.9.1, we will make use of a general fact about determinantal point
processes:

Lemma 2.9.2. Let Π be a determinantal point process with Hermitian kernel K. Let K
be a reproducing kernel with respect to its background measure γ, which means K(x, y) =∫
K(x, z)K(z, y) dγ(z) for all x, y. Let ϕ, ψ be compactly supported continuous functions.

Cov
[∫
ϕd[Π],

∫
ψ d[Π]

]
= 1

2

∫∫
(ϕ(z)− ϕ(w))(ψ(z)− ψ(w))|K(z, w)|2 dγ(z) dγ(w).

Proof. Expanding the two point correlation in its determinantal formula gives the covariance
as ∫

ϕ(z)ψ(z)K(z, z) dγ(z)−
∫ ∫

ϕ(z)ψ(w)|K(z, w)|2 dγ(z) dγ(w).

Using K(z, z) =
∫
K(z, w)K(w, z) dγ(w) and K(z, w) = K(w, z), elementary calculations

give us the final result. �

Proof of Proposition 2.9.1. We give the proof when r = 1, from here the general case is
obtained by scaling. In what follows we deal with Gn, the result for G follows, for instance,
from taking limits as n→ ∞ for the result for Gn.

Using lemma 2.9.2, we have

Var

(∫
ϕR(z) d[Gn](z)

)
=

1

2

∫ ∫
|ϕR(z)− ϕR(w)|2|Kn(z, w)|2 dγ(z) dγ(w)

where γ is the standard complex Gaussian measure. Now,

|ϕR(z)− ϕR(w)|2 = |ϕ(z/R)− ϕ(w/R)|2 ≤ 1

R2
κ(ϕ)2|z − w|2.

Therefore, it suffices to bound the integral
∫
A(R)

|z − w|2|Kn(z, w)|2 dγ(z) dγ(w) on the set

A(R) := {(z, w) : |z| ∧ |w| ≤ R}
because outside A(R), we have ϕR(z) = ϕR(w) = 0. We begin with

∫

A(R)

|z − w|2|Kn(z, w)|2 dγ(z) dγ(w) ≤
∫

A1(R)

|z − w|2|Kn(z, w)|2 dγ(z) dγ(w)

+

∫

A2(R)

|z − w|2|Kn(z, w)|2 dγ(z) dγ(w)

where

A1(R) = {|z| ≤ 2R, |w| ≤ 2R} and A2(R) = {|z| ≤ R, |w| ≥ 2R} ∪ {|w| ≤ R, |z| ≥ 2R}.
We first address the case of A2(R). By symmetry, it suffices to bound the integral over

the region {|z| ≤ R, |w| ≥ 2R}. In this region, ||z| − |w|| ≥ R, and |Kn(z, w)|2e−|z|2−|w|2 ≤
e−||z|−|w||2 . The integral is bounded from above by

1

π

∫

|z|≤R

(∫

|w|≥2R

(|z|+ |w|)2e−(|z|−|w|)2 dL(w)
)
dL(z).
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It is not hard to see that the inner integral is O(e−
1
2
R2
), where the constant in O is universal.

Integrating over |z| ≤ R gives another factor of R2, so the total contribution is o(1) as
R → ∞.

For the integral over A1(R), we proceed as
∫

|z − w|2|Kn(z, w)|2 dγ(z)

=

∫ (
|z|2 − zw̄ − z̄w + |w|2

)( n∑

k=0

(zw̄)k/k!

)(
n∑

k=0

(z̄w)k/k!

)
e−|z|2−|w|2 dL(z) dL(w).

Now, we integrate the |z − w|2 part term by term. Due to radial symmetry, only some
specific terms from |Kn(z, w)|2 contribute. For example, when we integrate the |z|2 term in

|z − w|2, only the
(zw̄)k

k!

(z̄w)k

k!
,0 ≤ k ≤ n terms in the expanded expression for |Kn(z, w)|2

contribute. When we integrate zw̄, only the
(zw̄)k

k!

(z̄w)k+1

(k + 1)!
,0 ≤ k ≤ n− 1 terms provide

non-zero contributions.
Due to symmetry between z and w, it is enough to bound the contribution from (|z|2−zw)

by O(R2) in order to obtain Proposition 2.9.1.
• |z|2 term:

Let us denote |z|2 by x and |w|2 by y. Then the contribution coming from

(zw̄)j

j!

(z̄w)j

j!

as discussed above can be written as (a constant times)

∫ 4R2

0

∫ 4R2

0

xj+1

j!
e−xy

j

j!
e−ydxdy.

So, the total contribution due to all such terms, ranging from k = 0, · · · , n is

n∑

j=0

(∫ 4R2

0

xj+1

j!
e−xdx

)(∫ 4R2

0

yj

j!
e−ydy

)
.

• zw̄ term:
As above, the contribution coming from the

(zw̄)k

k!

(z̄w)k+1

(k + 1)!

is given by ∫ 4R2

0

∫ 4R2

0

xj+1

j!
e−x yj+1

(j + 1)!
e−ydxdy.



20

Therefore the total contribution from 0 ≤ k ≤ n− 1 is

n−1∑

j=0

(∫ 4R2

0

xj+1

j!
e−xdx

)(∫ 4R2

0

yj+1

(j + 1)!
e−ydy

)
.

We interpret
xj

j!
e−xdx as a gamma density, the corresponding random variable being

denoted by Γj+1.

The contribution due to the |z|2 term is
n∑

j=0

E[Γj+11(Γj+1≤4R2)]P[Γj+1 ≤ 4R2] and that due

to the zw̄ term is
n−1∑

j=0

E[Γj+11(Γj+1≤4R2)]P[Γj+2 ≤ 4R2].

The difference between the above two terms can be written as:

E[Γn+11(Γn+1≤4R2)]P[Γn+1 ≤ 4R2] +
n∑

j=1

E[Γj1(Γj ≤ 4R2)]

(
P[Γj ≤ 4R2]− P[Γj+1 ≤ 4R2]

)
.

(2.8)
All the expectations in the above are ≤ 4R2, and P[Γj ≤ 4R2] ≥ P[Γj+1 ≤ 4R2] because Γj+1

stochastically dominates Γj. Therefore the absolute value of (2.8), by triangle inequality and
telescpoing sums, is ≤ 4R2

P[Γ1 ≤ 4R2] ≤ 4R2.
Combining all of these, we see that Var

(∫
ϕR(z) d[Gn](z)

)
is bounded by some constant

C(ϕ). �

Let r0 = radius (D). Let ϕ be a non-negative radial C∞
c function supported on [r0, 3r0]

such that ϕ = 1 on [3
2
r0, 2r0] and ϕ(r0 + r) = 1 − ϕ(2r0 + 2r), for 0 ≤ r ≤ 1

2
r0. In other

words, ϕ is a test function supported on the annulus between r0 and 3r0 and its “ascent” to
1 is twice as fast as its “descent”. Let ϕ̃ be another radial function with the same support as
ϕ, satisfying ϕ̃(r0 + xr0) = 1 for 0 ≤ x ≤ 1

2
and ϕ̃ = ϕ otherwise. Recall that for a function

ψ and L > 0 we denote by ψL the scaled function ψL(z) = ψ(z/L).

Proposition 2.9.3. Let r0 be the radius of D . Let ϕ and ϕ̃ be defined as above.
(i) The random variables

Sl(n) :=

∫
ϕ̃(z)

zl
d[Gn](z) +

∞∑

j=1

∫
ϕ2j(z)

zl
d[Gn](z) =

∑

ω∈Gn∩Dc

1

ωl
( for l ≥ 1)

and

S̃l(n) :=

∫
ϕ̃(z)

|z|l d[Gn](z) +
∞∑

j=1

∫
ϕ2j(z)

|z|l d[Gn](z) =
∑

ω∈Gn∩Dc

1

|ω|l ( for l ≥ 3)

have finite first moments which, for every fixed l, are bounded above uniformly in n.
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(ii) There exists k0 = k0(ϕ) ≥ 1, uniform in n and l, such that for k ≥ k0 the “tails” of

Sl(n) and S̃l(n) beyond the disk 2k · D, given by

τnl (2
k) :=

∞∑

j=k

∫
ϕ2j(z)

zl
d[Gn](z) ( for l ≥ 1)

and τ̃nl (2
k) :=

∞∑

j=k

∫
ϕ2j(z)

|z|l d[Gn](z) ( for l ≥ 3)

satisfy the estimates

E
[∣∣τnl (2k)

∣∣] ≤ C1(ϕ, l)/2
kl and E

[∣∣τ̃nl (2k)
∣∣] ≤ C2(ϕ, l)/2

k(l−2).

All of the above remain true when Gn is replaced by G, for which we use the notations Sl

and S̃l to denote the quantities corresponding to Sl(n) and S̃l(n).

Remark 2.9.1. For G, by the sum

(
∑

ω∈G∩Dc

1

ωl

)
we denote the quantity

Sl =

∫
ϕ̃(z)

zl
d[G](z) +

∞∑

j=1

∫
ϕ2j(z)

zl
d[G](z)

due to the obvious analogy with Gn, where the corresponding sum Sl(n) is indeed equal to(
∑

ω∈Gn∩Dc

1

ωl

)
with its usual meaning.

Proof. Observe that the functions ϕ̃ and ϕ2j for j ≥ 1 form a partition of unity on Dc, hence
we have the identities appearing in part (i).

Fix n, l ≥ 1. Set ψk =
∫ ϕ

2k
(z)

zl
d[Gn](z) for k ≥ 1, and ψ0 =

∫ ϕ̃(z)
zl
d[Gn](z). When l ≥ 3

we also define γk =
∫ ϕ

2k
(z)

|z|l d[Gn](z) for k ≥ 1, and γ0 =
∫ ϕ̃(z)

|z|l d[Gn](z). Let Ψk and Γk

denote the analogous quantities defined with respect to G instead of Gn.
We begin with the observation that for k ≥ 1 we have E[ψk] = 0. This implies that

E[|ψk|] ≤
(
E[|ψk|2]

)1/2
=
√
Var[ψk]

We then apply Proposition 2.9.1 to the function ϕ(z)/zl and R = 2k for k ≥ 1 to obtain
E[|ψk|] ≤ C(ϕ, l)/(2k)l. We also note that

E[|ψ0|] ≤
∫

2·D\D

Kn(z, z)e
−|z|2

|z|l dL(z) ≤
∫

2·D\D

1

|z|ldL(z) = c(l).
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This implies that for l ≥ 1

E[|Sl(n)|] ≤
∞∑

k=0

E[|ψk|] <∞.

The desired bound for E[S̃l(n)] follows from a direct computation of the expectation using
the first intensity, and noting that the first intensity of Gn (with respect to Lebesgue measure)
is Kn(z, z)e

−|z|2 ≤ 1 for all z.
The estimates for τ and τ̃ follow by using the above argument for the sums

∑∞
j=k ψj and∑∞

j=k γj.
�

Corollary 2.9.4. For R = 2k for k ≥ k0 (as in Proposition 2.9.3), we have P[|τnl (R)| >
R−l/2] ≤ c1(ϕ, l)R

−l/2 and P[|τ̃nl (R)| > R−(l−2)/2] ≤ c2(ϕ, l)R
−(l−2)/2, and these estimates

remain true when Gn is replaced with G.
Proof. We use the estimates on the expectation of |τnl (R)| and |τ̃nl (R)| from Proposition
2.9.3 and apply Markov’s inequality. �

With notations as above, we have

Proposition 2.9.5. For each l ≥ 1 we have Sl(n) → Sl in probability, and for each l ≥ 3

we have S̃l(n) → S̃l in probability, and hence we have such convergence a.s. along some
subsequence, simultaneously for all l.

Proof. Fix δ > 0. Given ε > 0, we choose R = 2k large enough such that c1R
−l/2 < ε/4 (for

l ≥ 1) and c2R
−(l−2)/2 < ε/4 for l ≥ 3 (as in Corollary 2.9.4), as well as R−l/2 < δ/4 for

l = 1, 2 and R−(l−2)/2 < δ/4 for l ≥ 3. By definition, we have Sl(n) =
∑k

j=0 ψ2j ,l + τl(2
k).

On the disk of radius R, we have Gn → G a.s. Now choose n large enough so that we have
|∑k

j=0 ψ
n
2j ,l −

∑k
j=0 ψ2j ,l| < δ/2 except on an event of probability ε/2. By choice of R, we

have |τnl (2k)| < δ/4 and |τl(2k)| < δ/4 except on an event of probability < ε/2. Combining
all these, we have P(|Sl(n)− Sl| > δ) ≤ ε, proving that Sl(n) → Sl in probability.

For each l, given any sequence we can find a subsequence along which this convergence
is a.s. A diagonal argument now gives us a subsequence for which a.s. convergence holds
simultaneously for all l.

The argument for S̃l is similar. �

Define Sk(D, n) =
∑

z∈Gn∩D 1/zk and Sk(D) =
∑

z∈G∩D 1/zk. Set αk(n) = Sk(D, n) +
Sk(n) and αk = Sk(D) + Sk. Observe that αk(n) =

∑
z∈Gn

1/zk. Then we have:

Proposition 2.9.6. For each k, αk(n) → αk in probability as n → ∞. Hence, there is a
subsequence such that αk(n) → αk a.s. when n→ ∞ along this subsequence, simultaenously
for all k.

Proof. Since a.s. the finite point configurations given by Gn|D → G|D and there is no point
at the origin, therefore Sk(D, n) → Sk(D) a.s. This, combined with Proposition 2.9.5, gives
us the desired result. �
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2.10 Limiting Procedure for the Ginibre Ensemble

The aim of this section is to use the estimates derived in Section 2.7 to verify the conditions
laid out in Theorem 2.6.2, so that the limiting procedure outlined in Section 2.6 can be
executed. This will lead us to a proof of Theorem 2.1.2 for a disk D. We have already seen
in Section 2.4 that this implies Theorem 2.1.2 for general D.

Proof of Theorem 2.1.2 for a disk. We will appeal to Theorem 2.6.2 with D an open
disk. We already know from Theorem 2.1.1 that the number of points in D is rigid. In terms
of the notation used in Section 2.6, we set X = G and Xn = Gn.

Fix an integer m ≥ 0. Consider the event that there are m points of G inside D. The
result in Theorem 2.1.2 is trivial form = 0. Hence, we focus on the casem > 0. For ω ∈ Sout,
our candidate for ν(ω, ·) (refer to Theorem 2.6.2) is the probability measure Z−1|∆(ζ)|2dL(ζ)
on Dm, where Z is the normalizing constant and L is the Lebesgue measure. Notice that
ν is a constant function when considered as a function mapping Sout to M(Dm). Since
a.s. ν(Xout, ·) is mutually absolutely continuous with respect to the Lebesgue measure on
Dm, Theorem 2.6.2 would imply that the same holds true for the conditional distribution
ρ(Xout, ·) of the points inside D (treated as a vector in the uniform random order).

Now we construct, for each j, the sequences {nk(j)}k≥1 and the events Ωnk
(j). We proceed

as follows. From Proposition 2.9.5, we get a subsequence nk such that a.s. S1(nk) → S1,

S2(nk) → S2 and S̃3(nk) → S̃3. This is going to be our subsequence nk(j) for all j.
Let Mj ↑ ∞ be a sequence of positive numbers such that none of them is an atom of the

distributions of |S1|, |S2| and |S̃3|, and 1
Mj

< radius(D) for each j.

We will first define the events Ωnk
(j) by the following conditions:

• (i) There are exactly m points of Gnk
inside D.

• (ii) There is at least a 1/Mj separation between ∂D and the points of Gnk
outside D,

that is, there is no point of Gnk
in the annulus between D and the 1/Mj-thickening of

D.

• (iii) |Snk
1 | < Mj, |Snk

2 | < Mj, |S̃nk
3 | < Mj.

Clearly, each Ωnk
(j) is measurable with respect to Gnk

out. On the event Ωm
n (refer to

the statement of Theorem 2.6.2 and the notations introduced just before that), the points
in (Gn)out, considered in uniform random order, yield a vector ω in (Dc)n−m. We have
Ωnk

(j) ⊂ Ωm,δ
nk

with δ = 1
Mj

. Denoting the conditional distribution of ζ given ω to be ρnω(ζ)

we recall from Proposition 2.8.2 that

exp

(
− 4mK(D, δ)Xn

) |∆(ζ ′)|2
|∆(ζ)|2 ≤

ρnω(ζ
′)

ρnω(ζ)
≤ exp

(
4mK(D, δ)Xn

) |∆(ζ ′)|2
|∆(ζ)|2 .
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Therefore, the bounds on S1(nk), S2(nk) and S̃3(nk) as in condition (iii) above imply that on
Ωnk

(j) we have, with δ = 1/Mj,

exp

(
− 12mK(D, δ)Mj

) |∆(ζ ′)|2
|∆(ζ)|2 ≤

ρnω(ζ
′)

ρnω(ζ)
≤ exp

(
12mK(D, δ)Mj

) |∆(ζ ′)|2
|∆(ζ)|2 .

Let us consider the inequality on the right hand side, namely,

ρnω(ζ
′)

ρnω(ζ)
≤ exp

(
12mK(D, δ)Mj

) |∆(ζ ′)|2
|∆(ζ)|2 .

Cross multiplying, we get

ρnω(ζ
′)|∆(ζ)|2 ≤ ρnω(ζ) exp

(
12mK(D, δ)Mj

)
|∆(ζ ′)|2.

We now integrate the above inequalities, first with respect to the Lebesgue measure in the
variable ζ ′ ∈ A, then with respect to the Lebesgue measure in the variable ζ ∈ Dm and
finally with respect to the distribution of ω on the set B ∩ Ωnk

(j) (recall that Ωnk
(j) is

measurable with respect to Gnk
out). We can carry out the same procedure with the inequality

on the left hand side. It can be seen that together they give us condition (2.3) (in fact, the
additive error term in 2.3 is actually 0).

All that remains now is to show that events Ω(j) := limk→∞Ωnk
(j) exhausts Ωm, and

that P (Ω(j)∆Ωnk
(j)) → 0 as k → ∞ for each fixed j.

Recall that Ωm is the event that there are m points of G inside D. On each Ωnk
(j) there

are m points of Gnk
in D. And finally, Gnk

→ G a.s. on D. There three facts together
imply that Ω(j) ⊂ Ωm for each j. Since the Mj-s are increasing, we automatically have
Ω(j) ⊂ Ω(j + 1). It only remains to check that P(Ωm \ Ω(j)) → 0 as j → ∞. This is the
goal of the next proposition, which will complete the proof of Theorem 2.1.1 for a disk. �

Proposition 2.10.1. Let Ω(j) be as defined above. Then P(Ωm \ Ω(j)) → 0 as j → ∞.
Morever, there exists Ωcorr(j), measurable with respect to Gout, such that P(Ω(j)∆Ωcorr(j)) =
0..

Proof. We will first construct the event Ωcorr(j). Similar ideas will then be used to prove
that P(Ωm \ Ω(j)) → 0 as j → ∞.

Let ε > 0. We will demonstrate an event Aε(j) such that Aε(j) is measurable with respect
to Xout and there is a bad set Ωε

bad of probability < ε such that Ω(j) \ Ωε
bad = Aε(j) \ Ωε

bad.
As a result, P(Ω(j)∆Aε(j)) < ε. Then Ωcorr(j) = limn→∞A2−n(j) will give us the desired
event. It is easy to check that P(Ω(j)∆Ωcorr(j)) = 0.

Let δ = δ(ε) < 1 be a small number, depending on ε, to be chosen later.
We define the event Aε(j) by the following conditions:

• (i) N(Gout) = m, where N is as in Theorem 2.1.1.
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• (ii) There is at least a 1
Mj

separation between ∂D and the points ω of G outside D.

• (iii) |S1| < Mj − δ, |S2| < Mj − δ, |S̃3| < Mj − δ.

It is clear from the definition of Aε(j) that it is measurable with respect to Xout.

By Proposition 2.9.5, Si(nk) → Si, i = 1, 2 and S̃3(nk) → S̃3 a.s. along our chosen
subsequence. By Egorov’s Theorem, there is a bad event Ω1 of probability < ε/4 such that
outside Ω1, this convergence is uniform. Therefore, on (Ω1)c there is a large k0 such that

|Si(nk) − Si| < δ, i = 1, 2 and |S̃i(nk) − S̃i| < δ for all k ≥ k0. Recall that we have a.s.
convergence of Gnk

-s to G on the compact set 2 · D (which contains the 1
Mj

-thickening of D
for each j, by our assumption that 1

Mj
< radius(D) for all j). Thus, we have an event Ω2 of

probability < ε/4 outside which conditions (i) and (ii) in the definition of Ωnk
(j) are true

or false simultaneously for all Gnk
, k ≥ k1, for some integer k1. By the coupling of Gnk

-s and
G (which entails that Gn ⊂ Gn+1 subsetG for all n), this would imply that the conditions (i)
and (ii) in the definition of Aε(j) are also true or false respectively.

Since Mj is not an atom of the distribution of S1, S2 or S̃3 , there is an event Ω3 (of

probability < ε/2) outside which each S1, S2 or S̃3 is either > Mj + 2δ or < Mj − 2δ (δ < 1
is to be chosen based on ε so that this condition is satisfied).

Define Ωbad = Ω1 ∪Ω2 ∪Ω3; clearly P(Ωbad) < ε. We note that on Ωc
bad, the conditions (i)

and (ii) in the definition of Ωnk
and the conditions (i) and (ii) in the definition of Aε(j) are

simultaneously true or false (for all k large enough). This is because of the a.s. convergence
Gn → G on the compact set 2 ·D. On Ω(j) \Ωbad, we have |Si(nk)| < Mj for all large enough
k, hence |Si(nk) − Si| < δ implies |Si| < Mj + δ, where i = 1, 2. But we are on (Ω3)c,
so |Si| ∈ (Mj − 2δ,Mj + 2δ)c, hence |Si| < Mj + δ implies |Si| < Mj − 2δ, hence we are
inside Aε(j). Conversely, on Aε(j) \ Ωbad, we have |Si| < Mj − δ. But |Si(nk) − Si| < δ for
all large enough k. This implies |Si(nk)| < Mj for all large enough k which means we are
on Ω(j). Hence Ω(j) \ Ωbad = Aε(j) \ Ωbad. As a result, we have Ω(j)∆Aε(j) ⊂ Ωbad, and
P(Ω(j)∆Aε(j)) < ε.

To show that P(Ωm \ Ω(j)) → 0 as j → ∞, we define events A′(j) ⊂ Aε(j) above by
replacing δ by 1 in the condition (iii) in the definition of Aε(j). Clearly, A′(j) ⊂ Aε(j) for
each 0 < ε < 1, and therefore A′(j) ⊂ limn→∞A2−n(j) = Ωcorr(j). It is also clear that

P(Ωm \A′(j)) → 0 as j → ∞, because S1, S2 and S̃3 are well defined random variables (with
no mass at ∞). These two facts imply that P(Ωm \ Ω(j)) → 0 as j → ∞.

�

This completes the proof of the translation tolerance of the Ginibre ensemble in the case
of D being a disk.



26

2.11 Tolerance of the GAF zeros for a disk

In this section we obtain the estimates necessary to prove Theorem 2.1.2 in the case where
D is a disk. By translation invariance of F , we can take D to be centred at the origin.

2.12 Polynomial Approximations

We focus on the event Ωm,δ
n which entails that fn has exactly m zeroes inside D, and there is

at least a δ separation between ∂D and the outside zeroes. The corresponding event for the
GAF zero process has positive probability, so by the distributional convergence Fn → F , we
have that Ωm,δ

n has positive probability (which is bounded away from 0 as n→ ∞).
Let us denote the zeroes of fn (in uniform random order) inside D by ζ = (ζ1, · · · , ζm)

and those outside D by ω = (ω1, ω2, · · · , ωn−m). Let s =
∑m

j=1 ζj and

ΣS := {(ζ1, . . . , ζm) ∈ Dm :
m∑

j=1

ζj = s}.

For a vector v = (v1, · · · , vN) we define

σk(v) =
∑

1≤i1<···<ik≤N

vi1 · · · vik

and for two vectors u and v, σk(u, v) is defined to be σk(w) where the vector w is obtained
by concatenating the vectors u and v. Then the conditional density ρnω,s(ζ) of ζ given ω, s is
of the form (see, e.g., [FH99])

ρnω,s(ζ) = C(ω, s)
|∆(ζ1, . . . , ζm, ω1, . . . , ωn−m)|2




n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2

n+1 (2.9)

where C(ω, s) is the normalizing factor.
Throughout this Subsection 2.12, the zeroes will be those of fn with n fixed.
Let (ζ, ω) and (ζ ′, ω) be two vectors of points (under Fn). Then the ratio of the condi-

tional densities at these two vectors is given by

ρnω,s(ζ
′)

ρnω,s(ζ)
=

|∆(ζ ′, ω)|2
|∆(ζ, ω)|2




n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2

n+1/


n∑

k=0

∣∣∣∣∣∣
σk(ζ

′, ω)
√(

n
k

)
k!

∣∣∣∣∣∣

2

n+1

. (2.10)

The expression (2.10) has two distinct components: the ratio of two squared Vandermonde
determinants and the ratio of certain expressions involving the elementary symmetric func-
tions of the zeroes. We will consider these two components in two separate sections.
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Ratio of Vandermondes

Here we consider the quantity |∆(ζ ′, ω)|2
/
|∆(ζ, ω)|2. We proceed exactly as in the case of

the Ginibre ensemble. We refer the reader to section 2.8. The estimates here are valid for
all pairs (ζ, ζ ′) ∈ Dm ×Dm.

Proposition 2.12.1. On Ωm,δ
n there are quantities K(D, δ) > 0 and Xn(ω) > 0 such that

for any (ζ, ζ ′) ∈ Dm ×Dm we have

exp

(
− 2mK(D, δ)Xn(ω)

) |∆(ζ ′)|2
|∆(ζ)|2 ≤

|∆(ζ ′, ω)|2
|∆(ζ, ω)|2 ≤ exp

(
2mK(D, δ)Xn(ω)

) |∆(ζ ′)|2
|∆(ζ)|2

where Xn(ω) =

∣∣∣∣∣∣

∑

ωj∈Gn∩Dc

1

ωj

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

ωj∈Gn∩Dc

1

ω2
j

∣∣∣∣∣∣
+




∑

ωj∈Gn∩Dc

1

|ωj|3


 and

E[Xn(ω)] ≤ c1(D,m) <∞.

Remark 2.12.1. The estimates on

∣∣∣∣
∑ 1

ωj

∣∣∣∣,
∣∣∣∣
∑ 1

ω2
j

∣∣∣∣ and
(∑ 1

|ωj|3
)

which are necessary

for Proposition 2.12.1 are proved in section 2.13.

Corollary 2.12.2. Given M > 0, we can replace the Xn(ω) in Proposition 2.12.1 by a
uniform bound M except on an event of probability less than c(m,D)/M .

Ratio of Symmetric Functions

In this section we will restrict ζ and ζ ′ to lie in the same constant-sum hyperplane. For
s ∈ C, define

Σs := {ζ ∈ Dm :
m∑

i=1

ζi = s}.

Let D(ζ, ω) =

(
∑n

k=0

∣∣∣∣
σk(ζ,ω)√
(nk)k!

∣∣∣∣
2
)
.

We want to bound the ratio
(
D(ζ ′, ω)

/
D(ζ, ω)

)n+1
from above and below. Our main

goal is:

Proposition 2.12.3. Given M > 0 large enough, ∃n0 such that for all n ≥ n0 the following
is true: with probability ≥ 1− C/M we have, on Ωm,δ

n ,

e−2K(m,D)M logM ≤
(
D(ζ ′, ω)

/
D(ζ, ω)

)n+1

≤ e2K(m,D)M logM

for all ζ ′ ∈ Σs, where s =
∑m

i=1 ζi and (ζ, ω) is randomly generated from Fn.
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We will first prove several auxiliary propositions.
We begin with the observation

σk(ζ, ω) =
m∑

i=0

σi(ζ)σk−i(ω). (2.11)

Note that σ0(ζ) = 1, σ1(ζ) = s = σ1(ζ
′) and |σi(ζ)| <

(
m
i

)
ri0 for all i ≤ m, where r0 is the

radius of D. Since both ζ and ζ ′ ∈ Σs, we have

σk(ζ
′, ω) = σk(ζ, ω) +

m∑

i=2

[σi(ζ
′)− σi(ζ)]σk−i(ω). (2.12)

Taking modulus squared on both sides, we have |σk(ζ ′, ω)|2 =

|σk(ζ, ω)|2 +
m∑

i=2

|σi(ζ ′)− σi(ζ)|2|σk−i(ω)|2 +
m∑

i=2

2ℜ
(
(σi(ζ

′)− σi(ζ))σk(ζ, ω)σk−i(ω)
)

+
m∑

i,j=2

∑

i 6=j

2ℜ
(
(σi(ζ

′)− σi(ζ))(σj(ζ
′)− σj(ζ))σk−i(ω)σk−j(ω)

)
.

Summing the above over k = 0, · · · , n, we obtain

n∑

k=0

|σk(ζ ′, ω)|2 =
n∑

k=0

|σk(ζ, ω)|2 +
m∑

i=2

|σi(ζ ′)− σi(ζ)|2
(

n∑

k=0

|σk−i(ω)|2
)

+
m∑

i=2

2ℜ
(
(σi(ζ

′)− σi(ζ))

(
n∑

k=0

σk(ζ, ω)σk−i(ω)

))

+
m∑

i,j=2

∑

i 6=j

2ℜ
(
(σi(ζ

′)− σi(ζ))(σj(ζ
′)− σj(ζ))

(
n∑

k=0

σk−i(ω)σk−j(ω)

))
.

Dividing throughout by
(√(

n
k

)
k!
)2

and applying triangle inequality we get

D(ζ ′, ω)− A(ζ, ζ ′, ω) ≤ D(ζ ′, ω) ≤ D(ζ, ω) + A(ζ, ζ ′, ω) (2.13)

where we recall the fact that D(ζ, ω) =

(
∑n

k=0

∣∣∣∣
σk(ζ,ω)√
(nk)k!

∣∣∣∣
2
)

and A(ζ, ζ ′, ω) =

m∑

i=2

|σi(ζ ′)− σi(ζ)|2



n∑

k=0

∣∣∣∣∣∣
σk−i(ω)√(

n
k

)
k!

∣∣∣∣∣∣

2
+

m∑

i=2

2|σi(ζ ′)− σi(ζ)|

∣∣∣∣∣∣

n∑

k=0

σk(ζ, ω)√(
n
k

)
k!

σk−i(ω)√(
n
k

)
k!

∣∣∣∣∣∣

+
m∑

i 6=j=2

2|σi(ζ ′)− σi(ζ)||σj(ζ ′)− σj(ζ)|

∣∣∣∣∣∣

n∑

k=0

σk−i(ω)√(
n
k

)
k!

σk−j(ω)√(
n
k

)
k!

∣∣∣∣∣∣
.
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Divide throughout by D(ζ, ω) in the above inequalities, and observe that
(a) i and j vary between 2 and m (which is fixed and finite),
(b) |σi(ζ ′)− σi(ζ)| is bounded for each i as discussed immediately before (2.12).

In view of these facts, we conclude that in order to bound
(
D(ζ ′, ω)

/
D(ζ, ω)

)n
between

two constants with high probability, it suffices to show that the quantities

∣∣∣∣∣∣

n∑

k=0

σk(ζ, ω)√(
n
k

)
k!

σk−i(ω)√(
n
k

)
k!

∣∣∣∣∣∣

/


n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2
 (2.14)

and ∣∣∣∣∣∣

n∑

k=0

σk−i(ω)√(
n
k

)
k!

σk−j(ω)√(
n
k

)
k!

∣∣∣∣∣∣

/


n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2
 (2.15)

for m ≥ i, j ≥ 2 are bounded above by M/n with high probability (depending on M) where
M > 0 is a constant.

Observe that σk(ζ, ω)
/√(

n
k

)
k! = ξn−k

/
ξn, where the ξj-s are standard complex Gaussians.

On the other hand, we do not have good control over σk(ω). To obtain such control, the idea
is to obtain a convenient expansion of σk(ω) in terms of σi(ζ, ω). To this end, we formulate:

Proposition 2.12.4. On the event Ωm,δ
n we have, for 0 ≤ k ≤ n−m,

σk(ω) = σk(ζ, ω) +
k∑

r=1

grσk−r(ζ, ω)

where a.s. the random variables gr are O(K(D,m)r) as r → ∞, for a deterministic quantity
K(D,m) and the constant in O being deterministic and uniform in n and δ.

Proof. We begin with the observation that

σk(ζ, ω) =
m∑

r=0

σr(ζ)σk−r(ω). (2.16)

From this, we have

σk(ω) = σk(ζ, ω)−
m∑

r=1

σr(ζ)σk−r(ω). (2.17)

Proceeding inductively in (2.17) we can similarly expand each of the lower order σk−r(ω) in
terms of σj(ζ, ω) and obtain an expansion of σk(ω) in terms of σj(ζ, ω), j = 1, · · · , k:

σk(ω) = σk(ζ, ω) +
k∑

r=1

grσk−r(ζ, ω). (2.18)
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Notice that the coefficients gr do not depend on n.
The coefficient of σk(ζ, ω) is 1 and the rest of the coefficients are polynomials in σj(ζ), j =

1, · · · ,m. Due to the inductive structure, it is easy to see that gr-s satisfy a recurrence
relation: 



gi
gi−1

. . .
gi−m+1


 =




−σ1(ζ) −σ2(ζ) . . . −σm(ζ)
1 0 . . . 0
. . . . . . . . . . . .
0 0 1 0







gi−1

gi−2

. . .
gi−m


 (2.19)

with the boundary conditions gi = −σi(ζ) for i = 0, · · · ,m− 1, g0 = 1 and gi = 0 for i < 0.
Denoting the matrix in (2.19) above by A, we observe that its eigenvalues are precisely

−ζ1, · · · ,−ζm, where {ζi}mi=1 are the zeroes inside D. Due to the recursive structure in (2.19),
we note that gk is an element of Ak applied to the vector (−σm−1(ζ), · · · . − σ0(ζ)). This

implies that gk is a linear combination of the entries of Ak (with the coefficients in the linear
combination being independent of k, but depending on D and m).

From Proposition 2.12.5, we see that if the eigenvalues of a matrix A have absolute value
< ρ′, then the entries of the matrix Ak are o(ρ′k). Now, the eigenvalues of A are ζi-s and
for each i we have |ζi| ≤ radius(D) = K(D). Combining the last two paragraphs, we have
gk = O((K(D)+1)k) Crucially, the constant in the O above is uniform in n and δ (although
it can depend on m). �

We complete this discussion with the following result on the growth of matrix entries:

Proposition 2.12.5. Let A be a d×d matrix. Let ρ′ > ρ(A) := max{|λ| : λ an eigenvalue of A}.
Then (Ar)ij = o(ρ′r) as r → ∞, for all i, j.

Proof. This follows from the well known result (Gelfand’s spectral radius theorem): ρ(A) =
limr→∞ ‖Ar‖1/r where ‖ · ‖ denotes the L2 operator norm of the matrix, and the fact that
sup1≤i,j≤d |Bij| ≤ c(d)‖B‖ for any d× d matrix B. �

The aim of the next proposition is to show that in the expansion of σk(ω) in terms of
σr(ζ, ω) with r ≤ k, it is essentially the leading term σk(ζ, ω) that matters. For clarity,
we will switch to a different indexing of the σ-s and involve the Gaussian coefficients of

the polynomial more directly. Recall that
σn−r(ζ, ω)√(

n
n−r

)
(n− r)!

=
ξr
ξn
. Divide both sides of the

expansion proved in Proposition 2.12.4 by
√(

n
k

)
k! and note that

√(
n

k

)
k! =

√(
n

k − r

)
(k − r)!

√
(n− k + 1) · · · (n− k + r) .

Notation: We denote the falling factorial (of order k) of an integer x by

(x)k := x(x− 1) · · · (x− k + 1).
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For k = 0 we set (x)0 = 1.
Changing variables to l = n− k, we can rewrite the expansion in Proposition 2.12.4 as

σn−l(ζ, ω)√(
n

n−l

)
(n− l)!

=
ξl
ξn

+
n−l∑

r=1

gr
ξl+r

ξn

1√
(l + r)r

for l ≥ m. Define for any integer l ≥ 1

η
(n)
l =

n−l∑

r=1

grξl+r
1√

(l + r)r
. (2.20)

As a result, for l ≥ m we have

σn−l(ω)√(
n

n−l

)
(n− l)!

=
1

ξn

[
ξl + η

(n)
l

]
. (2.21)

Proposition 2.12.6. Let η
(n)
l be as in (2.20) and γ = 1

8
. Then ∃ positive random variables

ηl (not depending on n) such that a.s.
∣∣∣η(n)l

∣∣∣ ≤ ηl, and for fixed l0 ∈ N and large enough

M > 0 we have

(i)P

[
ηl >

M

lγ
for some l ≥ 1

]
≤ e−c1M2

(ii)P

[
ηl >

M

lγ
for some l ≥ l0

]
≤ e−c2M2l

1
4
0

where c1, c2 are constants that depend only on the domain D and on m.

Proof. We begin by recalling from Proposition 2.12.4 that a.s. |gr| ≤ Kr for some K =

K(D,m). Moreover,
√
l + p ≥

√
2l

1
4p

1
4 Hence,

|η(n)l | ≤
n−l∑

r=1

Kr

2r/2lr/4(r!)1/4
|ξl+r| .

Let B be such that sup
r≥1

Kr

2r/2(r!)1/8
≤ B. Then |η(n)l | ≤

n−l∑

r=1

B |ξl+r|
lr/4(r!)1/8

.

Define ηl =
∞∑

r=1

B |ξl+r|
lr/4(r!)1/8

. Clearly, |η(n)l | ≤ ηl. Now, |ξl+r|2 is an exponential random

variable with mean 1, we have

P

(
|ξl+r| ≥

Mlr/8(r!)1/16

B

)
≤ exp

(
−M

2lr/4(r!)1/8

B2

)
. (2.22)
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Moreover,
∞∑

l=1

∞∑

r=1

exp

(
−M

2lr/4(r!)1/8

B2

)
≤ C1exp

(
−M2/B2

)
.

So we can have |ξl+r| ≤ Mlr/8(r!)1/16

B
for all l ≥ 1, r ≥ 1, except on an event of probability

≤ C1exp (−M2/B2). The last expression can be made arbitrarily small by fixing M to be
large enough. Note that for large enough M , we have Cexp (−M2/B2) ≤ exp (−cM2). On
the complement of this small event, we have for all l ≥ 1

ηl ≤
∞∑

r=1

M

lr/8(r!)1/16
≤

∞∑

r=1

M

lr/8(r!)1/16
≤ C

M

l1/8
.

We then absorb this constant C into M by changing the constant c1 appearing in the expo-
nent of the tail estimate (i) we want to prove.

For proving (ii) we proceed exactly as in the case of (i) above and sum (2.22) over r ≥ 1
and l ≥ l0. �

We are now ready to prove bounds on the quantities in (2.14) and (2.15). To this end,

we first express them in terms of ξ-s and η-s, using σn−l(ζ, ω)
/√(

n
n−l

)
(n− l)! = ξl

/
ξn and

(2.21). For 2 ≤ i, j ≤ m these expressions, (after clearing out |ξn|2 from numerator and
denominator) reduce to :

∣∣∣∣∣∣

n−i∑

l=0

ξl

(
ξl+i + η

(n)
l+i

)

√
(l + i)i

∣∣∣∣∣∣

/( n∑

l=0

|ξl|2
)

(2.23)

and ∣∣∣∣∣∣∣

n−i∧n−j∑

l=0

(
ξl+i + η

(n)
l+i

)(
ξl+j + η

(n)
l+j

)

√
(l + i)i

√
(l + j)j

∣∣∣∣∣∣∣

/( n∑

l=0

|ξl|2
)
. (2.24)

Define

En =
n∑

l=0

|ξl|2, L
(n)
ij =

n−i∧n−j∑

l=0

ξl+iξl+j√
(l + i)i(l + j)j

,

M
(n)
ij =

n−i∧n−j∑

l=0

|ξl+i|ηl+j√
(l + i)i(l + j)j

, N
(n)
ij =

n−i∧n−j∑

l=0

ηl+iηl+j√
(l + i)i(l + j)j

.

For i = 0 the product (l + i)i in the denominator is replaced by 1. Expanding out the
products and applying the triangle inequality in (2.23) and(2.24), we observe that to upper
bound the expressions in (2.23) and (2.24) it suffices to upper bound the following quantities
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for 2 ≤ i, j ≤ m (remember that |η(n)l | ≤ ηl for all l):




∣∣∣L(n)
0j

∣∣∣
En

+
M

(n)
0j

En


 ,




∣∣∣L(n)
ij

∣∣∣
En

+
M

(n)
ij

En

+
M

(n)
ji

En

+
N

(n)
ij

En


 . (2.25)

Let

Yn =
m∑

i=2

∣∣∣L(n)
0i

∣∣∣+
m∑

i=2

M
(n)
0i +

m∑

i,j≥2

∣∣∣L(n)
ij

∣∣∣+
m∑

i,j≥2

M
(n)
ij +

m∑

i,j≥2

M
(n)
ji +

m∑

i,j≥2

N
(n)
ij .

Recall (2.13) and recall that for fixedm and D, we have that σi(ζ) are uniformly bounded.
Putting all these together, we deduce that: for some constant K(m,D) we have

1−K(m,D)
Yn

En

≤
D(ζ ′, ω)

D(ζ, ω)
≤ 1 +K(m,D)

Yn

En

. (2.26)

Regarding Yn and En, we have the following estimates:

Proposition 2.12.7. Given M > 0 we have:
(i) P[Yn ≥M logM ] ≤ c(m,D)/M ,
(ii) Given M > 0 there exists n0 (depending only on M) such that for n ≥ n0 we have

P[
n

2
≤ |En| ≤ 2n] ≥ 1− 1

M
.

Proof. Part (i):

We will show that whenever X = L
(n)
ij ,X = M

(n)
ij or X = N

(n)
ij , we have that X satisfies

P[|X| > M logM ] < c′(m,D)/M . This would imply P[Yn > M logM ] < c1(m,D)/M albeit
for a different constant c(m,D). The very last statement is easily seen as follows. The
number of summands in the definition of Yn is a polynomial in m, let us call it p(m). Now,
for each summand X of Yn, we have

P

[
|X| > M logM

p(m)

]
≤ P

[
|X| > M

p(m)
log

M

p(m)

]
≤ c′(m,D)p(m)/M.

If Yn > M logM and there are p(m) summands, at least one of the summands must be
> M logM/p(m). By a union bound over the summands, this implies

P[Yn > M logM ] ≤ c′(m,D)p(m)2/M.

Setting c(m,D) = c′(m,D)p(m)2 as the new constant, this would give us part (i) of the
proposition.

It remains to show that each of the summands in Yn satisfies P[|X| > M logM ] <
c(m,D)/M with the quantity c(m,D) being uniform in n. The understanding is that c will
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depend on the particular summand, and we will take a maximum over the p(m) summands
in order to obtain c′(m,D) as in the previous paragraph. We will take up the cases of L,M
and N separately.

In what follows, i ∨ j denotes max(i, j) and i ∧ j denotes min(i, j).

Estimating L
(n)
ij , i ∨ j ≥ 2:

We have

E

[
|L(n)

ij |2
]
=

n−i∧n−j∑

l=0

1

(l + i)i(l + j)j
≤

∞∑

l=0

1

(l + i)i(l + j)j
= c(i, j) ≤ c <∞

(since either i or j ≥ 2). An application of Chebyshev’s inequality proves the desired tail

bound on L
(n)
ij .

Estimating M
(n)
ij , j ≥ 2:

By Proposition 2.12.6 we can assume (except on an event A of probability ≤ e−c(logM)2)

that maxl≥1ηl ≤ logM/l1/8, and
∣∣∣η(n)l

∣∣∣ ≤ ηl for each l. Applying triangle inequality to the

definition of M
(n)
ij and using the upper bound on ηl+j we have

E

[
|M (n)

ij |1Ac

]
≤ logME

[
n−i∧n−j∑

l=0

|ξl+i|
(l + j)1/8

√
(l + i)i(l + j)j

]
≤ m(i, j) logM ≤ c logM <∞

where m(i, j) =
∞∑

l=0

E[|ξ|]
(l + j)1/8

√
(l + i)i(l + j)j

≤ c <∞, ξ is a standard complex Gaussian

and c is uniform in i and j. In the last step, we have used the fact that j ≥ 2 in order to
upper bound m(i, j) uniformly in i and j . Applying Markov inequality gives us the desired

tail estimate P(|M (n)
ij |1Ac > M logM) ≤ c/M. This, along with P(A) < e−c(logM)2 completes

the proof.
Estimating N

(n)
ij , i ∧ j ≥ 2:

We consider the event A as in the case of M
(n)
ij . On Ac, we use ηl+iηl+j ≤ (logM)2 <

M logM (for large M), and the rest is bounded above by

n−i∧n−j∑

l=0

1

(l + i)1/8(l + j)1/8
√
(l + i)i(l + j)j

≤
∞∑

l=0

1

l1/4
√

(l + i)i(l + j)j
= c(i, j) ≤ c <∞.

This, along with P[A] < e−c(logM)2 establishes the desired tail bound on N
(n)
ij .

All these arguments complete the proof of part (i) of Proposition 2.12.7.
Part(ii):

We simply observe that |ξ|2-s are i.i.d. exponentials and by the strong law of large numbers,
En/n→ 1 a.s. From this, the statement of part (ii) follows.

�
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Define

Lij =
∞∑

l=0

ξl+iξl+j√
(l + i)i(l + j)j

, τ(L
(n)
ij ) = Lij −L

(n)
ij , (i ∨ j ≥ 2)

Mij =
∞∑

l=0

|ξl+i|ηl+j√
(l + i)i(l + j)j

, τ(M
(n)
ij ) = Mij −M

(n)
ij , (j ≥ 2)

Nij =
∞∑

l=0

ηl+iηl+j√
(l + i)i(l + j)j

, τ(N
(n)
ij ) = Nij −N

(n)
ij , (i ∧ j ≥ 2).

For i = 0 the product (l+i)i in the denominator is, as usual, replaced by 1. The above random
variables have finite first moments, as can be seen by arguing on similar lines to the estimates
in Proposition 2.12.7. Similar arguments with first moments of τ(L

(n)
ij ), τ(M

(n)
ij ), τ(N

(n)
ij ) also

show that:

Proposition 2.12.8. As n → ∞, we have each of the random variables τ(L
(n)
ij ), τ(M

(n)
ij ),

τ(N
(n)
ij ), as defined above, converge to 0 in L1, and hence, in probability.

We omit the proof to avoid repetitiveness.
Now we are ready to prove Proposition 2.12.3.

Proof. Proof of Proposition 2.12.3
We refer back to equation (2.26). By virtue of Proposition 2.12.7 we have, dropping an event
of probability ≤ c/M , we have |Yn/En| ≤ 2M logM/n (for n ≥ n0, where n0 is large enough
such that Proposition 2.12.7 part(ii) holds). Raising this to the (n + 1)th power we obtain
the desired result. All constants are absorbed in K(m,D). �

For the following corollary we recall the definition of Σs from the beginning of Section
2.12.

Corollary 2.12.9. Given M > 0 large enough, ∃n0 such that for all n ≥ n0, we have, on
Ωm,δ

n ( except on an event of probability ≤ C/M ) the following inequalities:

e−4K(m,D)MlogM ≤
(
D(ζ ′′, ω)

/
D(ζ ′, ω)

)n+1

≤ e4K(m,D)MlogM

for all (ζ ′′, ζ ′) ∈ Σs × Σs where (ζ, ω) is picked randomly from the distribution P [Fn] and
s =

∑m
i=1 ζi.

Proof. Let (ζ, ω) be picked randomly from the distribution P [Fn] and s =
∑m

i=1 ζi. We take
the ratio

D(ζ ′′, ω)

D(ζ ′, ω)
=
D(ζ ′′, ω)

D(ζ, ω)

/
D(ζ ′, ω)

D(ζ, ω)

for (ζ ′, ζ ′′) ∈ Σs × Σs where s =
∑m

i=1 ζi, and apply the bounds in Proposition 2.12.3.
�
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Estimate for Ratio of Conditional Densities

Proposition 2.12.10. There exist constants K(m,D, δ) such that given M > 0 large
enough, we have for n ≥ n0(m,M,D) the following inequalities hold on Ωm,δ

n , except for
an event of probability ≤ c(m,D)/M :

exp

(
−K(m,D, δ)MlogM

) |∆(ζ ′′)|2
|∆(ζ ′)|2 ≤

ρnω,s(ζ
′′)

ρnω,s(ζ
′)

≤ exp

(
K(m,D, δ)MlogM

) |∆(ζ ′′)|2
|∆(ζ ′)|2

uniformly for all (ζ ′, ζ ′′) ∈ Σs × Σs, where (s, ω) corresponds to a point configuration picked
randomly from P [Fn].

Proof. We simply put together the estimates for the ratios of the Vandermondes as well as
the symmetric functions and subsume all relevant constants in c(m,D) and K(m,D, δ). �

2.13 Estimates for Inverse Powers of Zeroes

In this section we prove estimates on the (smoothed) sum of inverse powers of GAF zeroes.

Proposition 2.13.1. Let Φ be a C∞
c radial function supported on the annulus between r0

and 3r0. Let ΦR = Φ(z/R). We have

(i)E

[∣∣∣∣
∫

ΦR(z)

zl
d[Fn](z)

∣∣∣∣
]
≤ C(r0,Φ, l)/R

l

(ii)E

[∫
ΦR(z)

|z|l d[Fn](z)

]
≤ C1(r0,Φ, l)/R

l−2 .

The same is true with for F in place of Fn. The constants C(r0,Φ, l) and C1(r0,Φ, l) are
uniform in n.

Proof. • Part (i): We begin with

∫
1

zl
ΦR(z) d[Fn](z) =

∫
1

zl
ΦR(z)∆log(|fn(z)|) dL(z).

Now, log(
√
E[|fn(z)|2]) is a radial function, and Laplacian of a radial function is also radial.

Hence, ∫
1

zl
ΦR(z)∆log(

√
E[|fn(z)|2]) dL(z) = 0

because for l ≥ 1, 1/zl when integrated against a radial function is always 0. Let f̂n(z) =
fn(z)

/√
E[|fn(z)|2]. Then the above argument implies

∫
1

zl
ΦR(z) d[Fn](z) = C

∫
1

zl
ΦR(z)∆log(|f̂n(z)|) dL(z). (2.27)
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Integrating by parts on the right hand side of (2.27) we have

E

[∣∣∣∣
∫

1

zl
ΦR(z) d[Fn](z)

∣∣∣∣
]
≤ C

∫ ∣∣∣∣∆
(
1

zl
ΦR(z)

)∣∣∣∣E
[∣∣∣log(|f̂n(z)|)

∣∣∣
]
dL(z). (2.28)

Now, the integrand is non-zero only for Rr0 ≤ |z| ≤ 3Rr0. Hence it is easy to see that∣∣∆
(

1
zl
ΦR(z)

)∣∣ ≤ C(r0,Φ, l)/R
l+2. Further, E

[∣∣∣log(|f̂n(z)|)
∣∣∣
]
is a constant because f̂n is

NC(0, 1).
Finally,

∫
3Rr0.D\Rr0.D

dL(z) = 8πr20R
2, where D is the unit disk.

Putting all these together, we have

∫ ∣∣∣∣∆
(
1

zl
ΦR(z)

)∣∣∣∣E
[∣∣∣log(|f̂n(z)|)

∣∣∣
]
dL(z) ≤ C(r0,Φ, l)/R

l

as desired (all constants are subsumed in C(r0,Φ, l)).

• Part (ii): Since Φ is a radial function on C, therefore there exists a function Φ̃ on

non-negative reals such that Φ(z) = Φ̃(|z|).
We have, with r = |z|,

E

[∫
1

|z|lΦR(z) d[Fn](z)

]
= c

∫
1

rl
Φ̃R(r)∆log(

√
Kn(z, z))rdr

where the integral on the right hand side is over the non-negative reals. Integrating by parts
and using triangle inequality,

∣∣∣∣
∫

1

rl
Φ̃R(r)∆log(

√
Kn(z, z))rdr

∣∣∣∣ ≤
∫ ∣∣∣∣∆

(
1

rl
Φ̃R(r)

)∣∣∣∣ log(
√
Kn(z, z))rdr.

But log(
√
Kn(z, z)) ≤ log(

√
K(z, z)) = 1

2
r2 ≤ 9

2
r20R

2 and
∣∣∣∆
(

1
zl
Φ̃R(z)

)∣∣∣ ≤ C(r0,Φ, l)/R
l+2,

hence ∫ ∣∣∣∣∆
(
1

rl
Φ̃R(r)

)∣∣∣∣ log(
√
Kn(z, z))rdr ≤ C1(r0,Φ, l)/R

l−2

for another constant C1 (which is clearly uniform in n). �

Remark 2.13.1. Tracing the constants in the above computation, it can be seen that the

constant C(r0,Φ, l) above is of the form p(l)
(

1
r0

)l
C(Φ) where p is a fixed polynomial (of

degree 2), and C(Φ) is a constant that depends only on Φ. Both p and C(Φ) are uniform

in n. Similarly, C1(r0,Φ, l) is of the form p1(l)
(

1
r0

)l−2

C1(Φ); where p1 is another degree 2

polynomial and C1(Φ) is uniform in n.

Let r0 = radius (D). Let ϕ be a non-negative radial C∞
c function supported on [r0, 3r0]

such that ϕ = 1 on [r0 +
r0
2
, 2r0] and ϕ(r0 + r) = 1− ϕ(2r0 + 2r), for 0 ≤ r ≤ 1

2
r0. In other
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words, ϕ is a test function supported on the annulus between r0 and 3r0 and its “ascent” to
1 is twice as fast as its “descent”.

Let ϕ̃ be another radial test function with the same support as ϕ, and ϕ̃(r0 + xr0) = 1
for 0 ≤ x ≤ 1

2
and ϕ̃ = ϕ otherwise.

Proposition 2.13.2.

E

[∣∣∣∣
∫
ϕ̃(z)

zl
d[Fn](z)

∣∣∣∣
]
≤ E

[∣∣∣∣
∫
ϕ̃(z)

|z|l d[Fn](z)

∣∣∣∣
]
≤ c(r0, ϕ̃, l)

where c(r0, ϕ̃, l) is uniform in n, and the same result remains true when Fn is replaced by
F .

Proof. For fixed l, let a(n) =

∫
ϕ̃(z)

zl
d[Fn](z) and b(n) =

∫
ϕ̃(z)

|z|l d[Fn](z).

We have, E [|a(n)|] ≤ E [b(n)] = C
∫ ϕ̃(z)

|z|l ∆ log (Kn(z, z)) dL(z) for some constant C. Us-

ing the uniform convergence of the continuous functions ∆ log (Kn(z, z)) → ∆ log (K(z, z)) <
∞ on the (compact) support of ϕ̃, we deduce that E [b(n)]-s are uniformly bounded by con-
stants that depend on r,ϕ̃ and l. It is obvious from the above argument that the same holds
true for F instead of Fn. �

Proposition 2.13.3. Let r0 be the radius of D . Let ϕ and ϕ̃ be defined as above.
(i) The random variables

Sl(n) :=

∫
ϕ̃(z)

zl
d[Fn](z) +

∞∑

j=1

∫
ϕ2j(z)

zl
d[Fn](z) =

∑

ω∈Fn∩Dc

1

ωl
( for l ≥ 1)

and

S̃l(n) :=

∫
ϕ̃(z)

|z|l d[Fn](z) +
∞∑

j=1

∫
ϕ2j(z)

|z|l d[Fn](z) =
∑

ω∈Fn∩Dc

1

|ω|l ( for l ≥ 3)

have finite first moments which, for every fixed l, are bounded above uniformly in n.
(ii) There exists k0 = k0(ϕ) ≥ 1, uniform in n and l, such that for k ≥ k0 the “tails” of

Sl(n) and S̃l(n) beyond the disk 2k · D, given by

τnl (2
k) :=

∞∑

j=k

∫
ϕ2j(z)

zl
d[Fn](z) ( for l ≥ 1)

and τ̃nl (2
k) :=

∞∑

j=k

∫
ϕ2j(z)

|z|l d[Fn](z) ( for l ≥ 3)

satisfy the estimates

E
[∣∣τnl (2k)

∣∣] ≤ C1(ϕ, l)/2
kl/2 and E

[∣∣τ̃nl (2k)
∣∣] ≤ C2(ϕ, l)/2

k(l−2)/2.

All of the above remain true when Fn is replaced by F , for which we use the notations
Sl and S̃l to denote the analogous quantities corresponding to Sl(n) and S̃l(n).
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Remark 2.13.2. For F , by the sum

(
∑

ω∈F∩Dc

1

ωl

)
we denote the quantity

Sl =

∫
ϕ̃(z)

zl
d[F ](z) +

∞∑

j=1

∫
ϕ2j(z)

zl
d[F ](z)

due to the obvious analogy with Fn, where the corresponding sum Sl(n) is indeed equal to(
∑

ω∈Fn∩Dc

1

ωl

)
with its usual meaning.

Proof. The functions ϕ̃ and ϕ2j , j ≥ 1 form a partition of unity on Dc, hence the identities
appearing in part (i). That the sum of integrals in the statement of part (i) has finite
expectation can be seen from Propositions 2.13.1 and 2.13.2; it is uniformly bounded in n
because so are C(r0, ϕ, l) and c(r0, ϕ̃, l) in Propositions 2.13.1 and 2.13.2.

Fix n, l ≥ 1. Set ψk =
∫ ϕ

2k
(z)

zl
d[Fn](z) for k ≥ 1, and ψ0 =

∫ ϕ̃(z)
zl
d[Fn](z). When l ≥ 3

we also define γk =
∫ ϕ

2k
(z)

|z|l d[Fn](z) for k ≥ 1, and γ0 =
∫ ϕ̃(z)

|z|l d[Fn](z). Let Ψk and Γk

denote the analogous quantities defined with respect to F instead of Fn.
We begin with the observation that for k ≥ 1 we have E[ψk] = 0. This implies that

E[|ψk|] ≤
(
E[|ψk|2]

)1/2
=
√
Var[ψk]

We then apply Proposition 2.13.1 part (i) to the function Φ = ϕ and R = 2k to obtain

E[|ψk|] ≤ C(r0, ϕ, l)/(2
k)l. (2.29)

We also observe that E[|ψ0|] ≤ E[|γ0|] which, for fixed l, is uniformly bounded above in n,
using Proposition 2.13.2.

The above arguments imply that for l ≥ 1

E[|Sl(n)|] ≤
∞∑

k=0

E[|ψk|] <∞.

Moreover, the infinite sum on the right hand side of the above display are uniformly bounded
aboce in n, using (2.29) and the observation on γ0 that follows (2.29). The results for S̃l(n)
are similar, utilizing part (ii) of Proposition 2.13.1.

To obtain k0 as in part (ii), we recall Remark 2.13.1 and find k0 such that

p(l)

(
1

r0

)l

2−kl/2C(ϕ) ≤ 1/2

for all k ≥ k0 and all l ≥ 1.
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Such a k0 can be obtained as follows: first fix k and let l → ∞ in p(l)
(

1
r0

)l
2−kl/2C(ϕ);

if k is large enough, this will → 0. Fix such a k, then for large enough l ≥ l0 and this k, we

have p(l)
(

1
r0

)l
2−kl/2C(ϕ) ≤ 1/2. Note that if we increase k further, the inequality will still

remain true for all l ≥ l0. To take care of the first l0 terms, we simply need to pick a k much

larger, so that p(l)
(

1
r0

)l
2−kl/2C(ϕ) ≤ 1/2 holds for all l ≥ 1. This new k is our k0.

This k0 will clearly be independent of n, because so is C(ϕ), and by choice it is indepen-
dent of l. To estimate E

[∣∣τnl (2k)
∣∣], we now simply sum (2.29) for k ≥ k0 and use Remark

2.13.1.
The result for τ̃nl (2

k) follows from a similar argument.
The same arguments yield the corresponding results when Fn is replaced by F . �

Corollary 2.13.4. For R = 2k, k ≥ k0 as in Proposition 2.13.3. We have P[|τnl (R)| >
R−l/4] ≤ R−l/4 and P[|τ̃nl (R)| > R−(l−2)/4] ≤ R−(l−2)/4, and these estimates remain true
when fn is replaced with f .

Proof. We use the estimates on the expectation on |τ fnl (R)| and |τ̃ fnl (R)| from Proposition
2.13.3 and apply Markov’s inequality. �

With notations as above, we have

Proposition 2.13.5. For each l ≥ 1 we have Sl(n) → Sl in probability, and for each

l ≥ 3 we have S̃n
l → S̃l in probability, and hence we have such convergence a.s. along some

subsequence, simultaneously for all l.

Proof. We argue on similar lines to the proof of Proposition 2.9.5. �

Define Sk(D, n) =
∑

z∈Fn∩D 1/zk and Sk(D) =
∑

z∈F∩D 1/zk. Set αk(n) = Sk(D, n) +
Sk(n) and αk = Sk(D) + Sk. Observe that αk(n) =

∑
z∈Fn

1/zk. Then we have:

Proposition 2.13.6. For each k, αk(n) → αk in probability as n → ∞. Hence, there is a
subsequence such that αk(n) → αk a.s. when n→ ∞ along this subsequence, simultaenously
for all k.

Proof. Since the finite point configurations given by Fn|D → F|D a.s. and a.s. there is no
point (of Fn or of F ) at the origin or on ∂D, therefore Sk(D, n) → Sk(D) a.s. This, combined
with Proposition 2.13.5, gives us the desired result. �

2.14 Limiting procedure for GAF zeroes

In this section, we use the estimates for Fn to prove Theorem 2.1.4 for a disk D centred
at the origin. We know from Section 2.4 that this is sufficient in order to obtain Theorems
2.1.3 and 2.1.4 in the general case. We will work in the framework of Section 2.6. More
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specifically, we will show that the conditions for Theorem 2.6.2 are satisfied, which will give
us the desired conclusion. We will introduce the definitions and check all the conditions
here except the fact Ω(j) exhausts Ωm. This last criterion will be verified in the subsequent
Proposition 2.14.1.

In terms of the notation used in Section 2.6, we have Xn = Fn and X = F .

Proof of Theorem 2.1.4 for a disk. We will invoke Theorem 2.6.2. We will define the
relevant quantities (as in the statement of Theorem 2.6.2) and verify that they satisfy the
required conditions for that theorem to apply.

Following the notation in Theorem 2.6.2, we begin with Ωm, m ≥ 0. The cases m = 0
and m = 1 are trivial, so we focus on the case m ≥ 2.

Our candidate for ν(Xout(ξ), ·) (refer to Theorem 2.6.2) is the probability measure
Z−1|∆(ζ)|2dLΣ(ζ) on ΣS(Xout(ξ)), where ∆(ζ) is the Vandermonde determinant formed by
the coordinates of ζ , LΣ is the Lebesgue measure on ΣS(Xout(ξ)) and Z is the normalizing
factor. Here we recall the definition of S(Xout(ξ)) from Theorem 2.1.3 and the definition
of ΣS(Xout(ξ)) from Section 2.12. Note that as soon as we define ν(Xout, ·) which maps ξ to
M(Dm), this automatically induces a map from Sout to M(Dm) which satisfies the required
measurability properties.

To find the sequence nk (which will be the same for every j in our case), we proceed
as follows. Let Ng(K) denote the number of zeroes of the function g in a set K, Γ denote
the closed annulus of thickness 1 around D, and in the next statement let Z be any of the
variables L,M or N as in Proposition 2.12.7 (and the immediately preceding discussion)
with p = 0 or 2 ≤ p ≤ m and 2 ≤ q ≤ m. We have the probabilities of each of the following
events converging to 0 as n → ∞: {|Sj(n) − Sj| > 1}j=1,2, {|S̃3(n) − S̃3| > 1}, {|Nf (D) 6=
Nfn(D)|}, {|Nf (Γ) 6= Nfn(Γ)|}, {|τ(Z(n)

pq )| > 1}, { 1
n

(∑n
j=0 |ξj|2

)
≤ 1/2}. Call the union of

these events Bn. For a given k ≥ 1, let n′
k be such that P(Bn) < 2−k for all n ≥ n′

k. From

Proposition 2.13.5 we have a sequence such that Sj(n) → Sj (j = 1, 2) and S̃3(n) → S̃3 a.s.
as n → ∞ along that sequence. For a given k ≥ 1, we define nk to be the least integer in
that sequence which is ≥ n′

k.
Fix a sequence of positive real numbers Mj ↑ ∞.
On the event Ωm

nk
(which entails that fnk

has m zeroes inside D), let ζ(nk) and Ωn(δ)

respectively denote the vector of inside and outside zeroes of fnk
(taken in uniform random

order). Let s(nk) denote the sum of the inside zeroes: s(nk) :=
∑m

j=1 ζ(nk)j, where ζ(nk)j
are the co-ordinates of the vector ζ(nk). By Σs(nk) we will denote the (random) set {ζ ′ ∈
Dm :

∑m
j=1 ζ

′
j
= s(nk)}. Also recall the notation ρnk

ω,s(ζ) to be the conditional density (with

respect to the Lebesgue measure on Σs) of the inside zeroes (at ζ ∈ Dm) given the vector of
outside zeroes to be ω and the sum of the inside zeroes to be s.

We define our event Ωnk
(j) by the following conditions on the zero set (ζ(nk),Ωn(δ))

of fnk
:

1. There are exactly m zeroes of fnk
in D
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2. There are no zeroes of fnk
in the closed annulus of thickness 1/Mj around D.

3. |S1(nk)| ≤Mj , |S2(nk)| ≤Mj, |S̃(nk)| ≤Mj.

4. There exists ζ ′ ∈ Σs(nk) such that (ζ ′,Ωn(δ)) satisfies (ω here is an abbreviation for
Ωn(δ)):

a)

∣∣∣∣∣∣

nk∑

r=0

σr(ζ
′, ω)

√(
n
r

)
r!

σr−i(ω)√(
n
r

)
r!

∣∣∣∣∣∣

/


nk∑

r=0

∣∣∣∣∣∣
σr(ζ

′, ω)
√(

n
r

)
r!

∣∣∣∣∣∣

2
 ≤Mj/nk for each 2 ≤ i ≤ m.

b)

∣∣∣∣∣∣

nk∑

r=0

σr−i(ω)√(
n
r

)
r!

σr−j(ω)√(
n
r

)
r!

∣∣∣∣∣∣

/


nk∑

r=0

∣∣∣∣∣∣
σr(ζ

′, ω)
√(

n
r

)
r!

∣∣∣∣∣∣

2
 ≤Mj/nk for all 2 ≤ i, j ≤ m.

Clearly, Ωnk
(j) depends only on the quantities s(nk) and Ωn(δ). In particular, for a vector

ω of outside zeroes of fnk
, if there exists ζ ∈ Σs such that (ζ, ω) satisfies the conditions

demanded in the definition of Ωnk
(j), then all (ζ ′, ω) (with ζ ′ ∈ Σs) satisfies those conditions.

From Proposition 2.12.1, (2.14), (2.15) and the discussion therein, it is clear that on the event
Ωnk

(j) we have
Z−1m(j)|∆(ζ)|2 ≤ ρnk

ω,s(ζ) ≤ Z−1M(j)|∆(ζ)|2 (2.30)

for positive quantities M(j) and m(j) (that depend on Mj) and Z being a normalizing
constant that makes |∆(ζ)|2 a probability density with respect to the Lebesgue measure on
Σs.

To obtain (2.3), we introduce some further notations. On the event Ωm
nk
, let γnk

(ω; s)
denote the conditional probability measure on the sum s of inside zeroes given the vector of
outside zeroes of fnk

to be ω. Further, let Ls denote the Lebesgue measure on the set Σs.
For any A ∈ Am and B ∈ B , we can write

P[(Xin ∈ A) ∩ (Xnk
out ∈ B) ∩ Ωnk

(j)] =

∫

B∩Ωnk
(j)

(∫

A∩Σs

ρnk
ω,s(ζ)dLs(ζ)

)
dγnk

(ω; s)dPX
nk
out
(ω)

(2.31)

Setting h(s, A) :=
(∫

A∩Σs
|∆(ζ)|2dLs(ζ)

)/(∫
Σs

|∆(ζ)|2dLs(ζ)
)
, we get from (2.30) that the

right hand side of (2.31) is

∫

B∩Ωnk
(j)

(∫

A∩Σs

ρnk
ω,s(ζ)dLs(ζ)

)
dγnk

(ω; s)dPX
nk
out
(ω) ≍j

∫

B∩Ωnk
(j)

h(s, A)dγnk
(ω; s)dPX

nk
out
(ω).

(2.32)

The last expression can be written as E

[
h(s(nk), A)1[X

nk
out ∈ B]1[Ωnk

(j)]

]
, where 1[E] is the

indicator function of the event E. Note that for fixed A, the function h(s, A) is continuous
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in s, because A ∈ Am, and 0 ≤ h(s, A) ≤ 1. Since, as k → ∞, we have s(nk) → S(Xout)
a.s., therefore using the Dominated Convergence Theorem we get

E [h(s(nk), A)1[X
nk
out ∈ B]1[Ωnk

(j)]] = E [h(S(Xout), A)1[X
nk
out ∈ B]1[Ωnk

(j)]] + ok(1), (2.33)

where ok(1) is a quantity which → 0 as k → ∞, for fixed A and B (actually, in this particular
case, it can be easily seen that the convergence is uniform in B ∈ B) . Also, as k → ∞, we
have 1[Xnk

out ∈ B] → 1[Xout ∈ B] since B is a compact set. Since 0 ≤ h(s, A) ≤ 1 a.s., this
implies that

E [h(S(Xout), A)1[X
nk
out ∈ B]1[Ωnk

(j)]] = E [h(S(Xout), A)1[Xout ∈ B]1[Ωnk
(j)]] + ok(1).

(2.34)
Observe that for ξ ∈ Ξ, we have h(S(Xout(ξ)), A) = ν(Xout(ξ), A). Therefore, putting

(2.31)-(2.34) together, we obtain (2.3). The only condition in Theorem 2.6.2 that remains to
be verified is the fact that Ω(j)-s exhaust Ωm, which will be taken up in Proposition 2.14.1.

By Theorem 2.6.2, this proves that a.s. we have ρ(Xout, ·) ≡ ν(Xout, ·). Since a.s.
ν(Xout, ·) ≡ LΣ, we have ρ(Xout, ·) ≡ LΣ, as desired. �

We end this section with a proof that Ω(j)-s exhaust Ωm:

Proposition 2.14.1. With definitions as above, Ω(j) := limk→∞Ωnk
(j) exhausts Ωm as

j → ∞.

Proof. We begin by showing that Ω(j) ⊂ Ωm for each j. Due to the convergence of Xnk → X
on compact sets, we have limk→∞Ωm

nk
= Ωm. Since Ωnk

(j) ⊂ Ωm
nk

for each k, therefore
Ω(j) ⊂ Ωm for each j. Since Mj < Mj+1, it is also clear that Ωnk

(j) ⊂ Ωnk
(j + 1) for each

k. Hence Ω(j) ⊂ Ω(j + 1).
To show that P(Ωm \ Ω(j)) → 0 as j → ∞, for each j we first define the event Ω1

nk
(j)

by demanding that the zeroes (ζ, ω) of fnk
satisfy the following conditions :

1. There are exactly m zeroes of fnk
in D

2. There are no zeroes of fnk
in the closed annulus of thickness 1/Mj around D.

3. |S1(nk)| ≤Mj , |S2(nk)| ≤Mj, |S̃3(nk)| ≤Mj.

4.

∣∣∣∣∣∣

n∑

k=0

σk(ζ, ω)√(
n
k

)
k!

σk−i(ω)√(
n
k

)
k!

∣∣∣∣∣∣

/


n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2
 ≤Mj/nk for each 2 ≤ i ≤ m.

5.

∣∣∣∣∣∣

n∑

k=0

σk−i(ω)√(
n
k

)
k!

σk−j(ω)√(
n
k

)
k!

∣∣∣∣∣∣

/


n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2
 ≤Mj/nk for all 2 ≤ i, j ≤ m.
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Clearly, Ω1
nk
(j) ⊂ Ωnk

(j) and hence limk→∞Ω1
nk
(j) = Ω1(j) ⊂ Ω(j).

Next, we define the event Ω2
nk
(j) by the following conditions (refer to Proposition

2.12.7 and the discussion immediately preceding it to recall the notations):

1. There are exactly m zeroes of fnk
in D

2. There are no zeroes of fnk
in the closed annulus of thickness 1/Mj around D.

3. |S1(nk)| ≤Mj , |S2(nk)| ≤Mj, |S̃3(nk)| ≤Mj.

4. Each of |L(nk)
0q |, |M (nk)

0q |, |L(nk)
pq |, |M (nk)

pq |, |N (nk)
pq | is ≤Mj/8 for all 2 ≤ p, q ≤ m.

5. Enk
/nk ≥ 1/2.

It is clear from (2.25) that Ω2
nk
(j) ⊂ Ω1

nk
(j).

Finally, we define an event Ω3(j) by the conditions:

1. There are exactly m zeroes of f in D

2. There are no zeroes of f in the closed annulus of thickness 1/Mj around D.

3. |S1| ≤Mj, |S2| ≤Mj − 1, |S̃3| ≤Mj − 1.

4. Each of |L0q|, |M0q|, |Lpq|, |Mpq|, |Npq| is ≤ Mj

8
− 1 for all 2 ≤ p, q ≤ m.

Notice (refer to Proposition 2.12.8) that for each of the random variables Z
(nk)
pq in condition

4 defining Ω2
nk
(j) and Zpq in condition 4 defining Ω3(j) (where Z = L,M,N) we have

|Z(nk)
pq | ≤ |Zpq|+ |τ(Z(nk)

pq )|. (2.35)

Consider the event Fnk
where any one of the following conditions hold:

1. There are m zeroes of f in D but this is not true for fnk
.

2. There are no zeroes of f in the closed annulus of thickness 1/Mj around D, but this is
not true for fnk

.

3. |S1 − S1(nk)| > 1 or |S2 − S2(nk)| > 1 or |S̃3 − S̃3(nk)| > 1.

4. |τ(Z(nk)
pq )| > 1 for any of the random variables appearing in condition 4 of Ω2

nk
(j).

5. Enk
/nk < 1/2.

It is easy to see (using (2.35)) that Ω3(j) \ Fnk
⊂ Ω2

nk
(j) ⊂ Ωnk

(j). However, by our choice
of the sequence nk, we have P(Fnk

) < 2−k, hence by Borel Cantelli lemma,

lim
k→∞

(
Ω3(j) \ Fnk

)
= Ω3(j).
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Hence, Ω3(j) ⊂ Ω(j) = limk→∞Ωnk
(j).

However, each random variable used in defining Ω3(j) does not put any mass at ∞, and
the thickness of the annulus around D in condition 2 in its definition goes to 0 as j → ∞.
Hence, the probability that each of the conditions 2-4 deinining Ω3(j) holds goes to 1 as
j → ∞. Finally, condition 1 is just the definition of Ωm. Hence, as j → ∞, we have
P (Ωm \ Ω3(j)) → 0. But Ω3(j) ⊂ Ω(j), hence P (Ωm \ Ω(j)) → 0 as j → ∞, as desired.

�

2.15 Reconstruction of GAF from Zeroes and Vieta’s

formula

In this section we prove the reconstruction Theorem 2.1.5 for the planar GAF. En route, we
establish an analogue of Vieta’s formula for the planar GAF.

2.16 Vieta’s formula for thr planar GAF

It is an elementary fact that for a polynomial

p(z) =
N∑

j=0

ajz
j

whose roots are {zj}Nj=1, we have, for any 1 ≤ k ≤ N ,

aN−k/aN =
∑

i1<i2<···<ik

zi1 · · · zik . (2.36)

When a0 6= 0, we equivalently have

ak/a0 =
∑

i1<i2<···<ik

1

zi1 · · · zik
. (2.37)

This kind of result is broadly referred to as Vieta’s formula. For an entire function instead
of a polynomial, such results do not hold in general; for example it may not be possible to
provide any reasonable interpretation to the function of the zeroes appearing on the right
hand side of (2.37).

The quantity on the right hand side of (2.36) is the elementary symmetric function of
order k in the variables z1, · · · , zN , denoted by ek(z1, · · · , zN ). If we introduce the power
sum βk =

∑N
j=1 z

k
j , then it is known that for each k we have

ek(z1, · · · , zN) = Pk(β1, · · · , βk)
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where Pk is a homogeneous symmetric polynomial of degree k in the variables (β1, · · · , βk).
The polynomial Pk is called the Newton polynomial of degree k, and it is known that the
coefficients of Pk depend only on k and do not depend on n (refer [Sta99], chapter 7).

At this point, we recall the definition of αi and αi(n) from the discussion immediately
preceeding Proposition 2.13.6.

Proposition 2.16.1. For the planar GAF zero process, we have, a.s. ξk
ξ0

= Pk(α1, α2, · · · , αk)
for each k ≥ 1.

Proof. We begin by observing that under the natural coupling of the planar GAF f and its
approximating polynomials fn (obtained by using the same coefficients ξi), we have by the
Vieta’s formula for each fn:

ξk
ξ0

= Pk(α1(n), · · · , αk(n)) (2.38)

where Pk is, as before, the Newton polynomial of degree k. Clearly, Pk is continuous in the
input variables. We also know, from Proposition 2.13.6 that, as n → ∞ (possibly along an
appropriately chosen subsequence), αk(n) → αk a.s., simultaneously for all k ≥ 1. Taking
this limit in (2.38) and using the continuity of Pk, we get a.s.

ξk
ξ0

= Pk(α1, · · · , αk). (2.39)

�

2.17 Proof of Theorem 2.1.5

Since ξ0 is a complex Gaussian, therefore a.s. |ξ0| 6= 0. For |ξ0| 6= 0, we can write

f(z) =
ξ0
|ξ0|

.|ξ0|
(
1 +

ξ1
ξ0
z +

ξ2
ξ0
z2 + · · ·+ ξk

ξ0
zk + · · ·∞

)
(2.40)

From Proposition 2.16.1 we have that for each k the random variable ξk
ξ0

is measurable
with respect to F . From the strong law of large numbers, a.s. we have

|ξ0|2 + . . .+ |ξk−1|2
k

→ 1.

Therefore

|ξ0| = lim
k→∞

k1/2

(
k−1∑

j=0

|ξj|2
|ξ0|2

)−1/2

= χ.

Since k1/2
(∑k−1

j=0
|ξj |2
|ξ0|2

)−1/2

is measurable with respect to F for each k, therefore χ = |ξ0| is
also measurable with respect to F .
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Let us define the random variable ζ = ξ0/|ξ0| (it is set to be equal to 0 when |ξ0| = 0)
and the random function g as in the statement can clearly be written as

g(z) = |ξ0|
(
1 +

ξ1
ξ0
z +

ξ2
ξ0
z2 + · · ·+ ξk

ξ0
zk + · · ·∞

)
.

Then (2.40) can be re-written as
f(z) = ζg(z) (2.41)

almost surely, and g is measurable with respect to F and ζ is distributed uniformly on S
1.

Therefore, all that remains to complete the proof is to show that ζ and F are independent.
For this, note that for any fixed θ ∈ S

1 the random function

∑

j≥1

θξj√
j!
zj

has the same distribution (which does not depend on θ). This is because since the ξi-s are
complex Gaussians with mean 0 and variance 1, the vectors (θξj)j≥1 and (ξj)j≥1 have the

same distribution for each fixed θ ∈ S
1. Also, observe that |ξ0|, {ξj}j≥1 and ζ are jointly

independent random variables.
Now,

g(z) = |ξ0|+
∑

j≥1

ζξj√
j!
zj.

Therefore, the distribution of g(z) given ζ does not depend on the value of ζ. Hence, the
random function g and ζ are independent. But, g and f have the same zero set a.s. Hence,
ζ and F are independent random variables. This completes the proof.

2.18 Proof of Theorem 2.6.2

The main proof. We claim that it suffices to show that for every j0 , we have positive real
numbers M(j0) and m(j0) such that for any A ∈ Am and any Borel set B in Sout

P ((Xin ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0)) ≤M(j0)

∫

X−1
out(B)

ν(ξ, A)dP(ξ) (2.42)

and

m(j0)

∫

X−1
out(B)∩Ω(j0)

ν(ξ, A)dP(ξ) ≤ P (Xin ∈ A ∩ (Xout ∈ B)) . (2.43)

Once we have (2.42), we can invoke Proposition 2.18.1. Setting
µ1(ξ, ·) = ρ(Xout(ξ), ·), µ2(ξ, ·) = ν(Xout(ξ), ·), a(j0) = 1 and b(j0) = M(j0) in (2.45) we get
ρ(Xout, ·) ≪ ν(Xout, ·) a.s.
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If we have (2.43), we can again appeal to Proposition 2.18.1. Setting
µ1(ξ, ·) = ν(Xout(ξ), ·), µ2(ξ, ·) = ρ(Xout(ξ), ·), a(j0) = m(j0) and b(j0) = 1 in (2.45) we get
ν(Xout, ·) ≪ ρ(Xout, ·) a.s.

The last two paragraphs together imply that ρ(Xout, ·) ≡ ν(Xout, ·) a.s., as desired.
To establish (2.42) and (2.43), we begin with a fixed j0, a set A ∈ Am and a Borel set B

in Sout. We will invoke Proposition 2.18.2 in the following manner. Let the multiplicative
constants appearing in the ≍j relation in (2.3) with j = j0 be m(j0) and M(j0) respectively,
with m(j0) ≤ M(j0). In Proposition 2.18.2 we set h1(ξ) = 1, h2(ξ) = ν(ξ, A), U1 = A,U2 =
Dm, V = B, a(j0) = 1, b(j0) = M(j0) to obtain (2.42). On the other hand, setting h1(ξ) =
ν(ξ, A), h2(ξ) = 1, U1 = Dm, U2 = A, V = B, a(j0) = m(j0), b(j0) = 1 in Proposition 2.18.2
we obtain (2.43).

This completes the proof of theorem 2.6.2. �

We end this section with Propositions 2.18.1 and 2.18.2 used in the above proof.

Proposition 2.18.1. Let µ1 and µ2 be two functions mapping Ξ → M(Dm) such that for
each Borel set A ⊂ Dm, the function ξ → µj(ξ, A) is measurable, j = 1, 2. Suppose µ1 and
µ2 satisfy, for each positive integer j0, A ∈ Am and Borel set B ⊂ Dm

a(j0)

∫

X−1
out(B)∩Ω(j0)

µ1(ξ, A)dP(ξ) ≤ b(j0)

∫

X−1
out(B)

µ2(ξ, A)dP(ξ) (2.44)

for some positive numbers a(j0) and b(j0). Then a.s. we have

E [µ1(ξ, ·)|Xout(ξ)] ≪ E [µ2(ξ, ·)|Xout(ξ)] . (2.45)

Proof. (2.44) implies that for each A ∈ Am a.s. in Xout we have

a(j0)E [µ1(ξ, A)|Xout(ξ),Ω(j0) occurs ]P (Ω(j0) occurs |Xout(ξ)) ≤ b(j0)E[µ2(ξ, A)|Xout(ξ)].
(2.46)

For almost every configuration ω ∈ Sout (with respect to the measure PXout) we have (2.46)
for all A ∈ Am, and therefore by the regularity of the Borel measures on the two sides, (2.46)
extends to all Borel sets A ⊂ Dm (see Proposition 2.6.1). Now, for ω ∈ Sout, suppose that
A ⊂ Dm is a Borel set such that E [µ2(ξ, A)|Xout(ξ) = ω] = 0. Then (2.46) implies that

E [µ1(ξ, A)|Xout(ξ) = ω,Ω(j0) occurs ]P (Ω(j0) occurs |Xout(ξ) = ω) = 0, (2.47)

for each j0. But Ω(j0) exhausts Ω
m, hence

E [µ1(ξ, A)|Xout(ξ) = ω,Ω(j0) occurs ]P (Ω(j0) occurs |Xout(ξ)) → E [µ1(ξ, A)|Xout(ξ) = ω]

as j0 ↑ ∞. By letting j0 ↑ ∞ in (2.47), we obtain the fact that a.s. on Ωm we have
E [µ2(ξ, A)|Xout(ξ)] = 0 implies E [µ1(ξ, A)|Xout(ξ)] = 0. In other words, a.s. on Ωm, we
have (2.45). �
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Proposition 2.18.2. Suppose we have measurable functions h1 and h2 mapping Ξ → [0, 1],
and measurable sets U1, U2 ∈ Am. Define Phi

to be the finite non-negative measure on Ξ
given by dPhi

(ξ) = hi(ξ)dP(ξ), i = 1, 2. Suppose there are positive numbers a(j0) and b(j0)

such that the following inequality holds for all Ṽ ∈ B:

a(j0)Ph1

[
(Xnk

in ∈ U1) ∩ (Xnk
out ∈ Ṽ ) ∩ Ωnk

(j0)

]
≤ b(j0)Ph2

[
(Xnk

in ∈ U2) ∩ (Xnk
out ∈ Ṽ ) ∩ Ωnk

(j0)

]

+ϑ(k)

(2.48)

where ϑ(k) = ϑ(k; j0, U1, U2, Ṽ ) → 0 as k → ∞ for fixed j0, U1, U2, Ṽ . Then for all Borel
sets V in Sout, we have

a(j0)Ph1

[
(Xin ∈ U1) ∩ (Xout ∈ V ) ∩ Ω(j0)

]
≤ b(j0)Ph2

[
(Xin ∈ U2) ∩ (Xout ∈ V )

]
. (2.49)

Proof. In what follows, we will denote by Ph the non-negative finite measure on Ξ obtained
by setting dPh(ξ) = h(ξ)dP(ξ) where h : Ξ → [0, 1] is a measurable function. We note that
for any event E, we have 0 ≤ Ph(E) ≤ P(E). Fix a U ∈ Am.

For any Borel set V in Sout, given ε > 0 we can find a B̃ ∈ B such that

P

(
X−1

out(V )∆X−1
out(B̃)

)
< ε.

This can be seen by considering the push forward probability measure (Xout)∗P on Sout. The
aim of this reduction is to exploit the fact that as k → ∞, we have 1B̃ (Xnk

out) → 1B̃ (Xout)
a.s.

We start with Ph[(X
nk
in ∈ U) ∩ (Xnk

out ∈ B̃) ∩ Ωnk
(j0)]. This is equal to

Ph

[
(Xin ∈ U) ∩ (Xout ∈ B̃) ∩ Ωnk

(j0)

]
+ ok(1; B̃)

where ok(1; B̃) stands for a quantity that tends to 0 as k → ∞ for fixed B̃. This step uses the

fact that 1
[
Xnk

out ∈ B̃
]
→ 1

[
Xout ∈ B̃

]
and 1 [Xnk

in ∈ U ] → 1 [Xin ∈ U ] a.s. The expression

in the last display above equals

Ph

[
(Xin ∈ U) ∩ (Xout ∈ V ) ∩ Ωnk

(j0)

]
+ oε(1) + ok(1; B̃)

where oε(1) denotes a quantity that tends to 0 uniformly in k as ε→ 0.

We upper bound the probability in the last display simply by Ph

[
(Xin ∈ U)∩(Xout ∈ B)

]
.

Putting all these together, we have

Ph[(X
nk
in ∈ U)∩(Xnk

out ∈ B̃)∩Ωnk
(j0)] ≤ Ph

[
(Xin ∈ U)∩(Xout ∈ V )

]
+oε(1)+ok(1; B̃). (2.50)
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To obtain a comparable lower bound, we need to work more. We begin with

Ph

[
(Xin ∈ U) ∩ (Xout ∈ V ) ∩ Ωnk

(j0)

]
≥ Ph

[
(Xin ∈ U) ∩ (Xout ∈ V ) ∩ Ωnk

(j0) ∩ Ω(j0)

]
.

Observe that Ω(j0) = limk→∞Ωnk
(j0) and P

(
liml→∞Ωnl

(j0)∆
(⋂

l≥k Ωnl
(j0)
))

= ok(1)
where ok(1) denotes a quantity → 0 as k → ∞, (for a fixed j0) uniformly in all the other
quantities.

Hence we have

Ph

[
(Xin ∈ U) ∩ (Xout ∈ V ) ∩ Ωnk

(j0) ∩ Ω(j0)

]

= Ph

[
(Xin ∈ U) ∩ (Xout ∈ V ) ∩ Ωnk

(j0) ∩
(
⋂

l≥k

Ωnl
(j0)

)]
+ ok(1) .

But Ωnk
(j0) ∩

(⋂
l≥k Ωnl

(j0)
)
=
(⋂

l≥k Ωnl
(j0)
)
and hence the probability in the last display

equals

Ph

[
(Xin ∈ U) ∩ (Xout ∈ V ) ∩ Ω(j0)

]
+ ok(1).

The arguments above result in

Ph

[
(Xnk

in ∈ U) ∩ (Xnk
out ∈ B̃) ∩ Ωnk

(j0)

]

≥ Ph

[
(Xin ∈ U) ∩ (Xout ∈ V ) ∩ Ω(j0)

]
+ ok(1; B̃) + oε(1) + ok(1).

(2.51)

Now, we wish to prove (2.49). We appeal to (2.50) with h = h2, U = U2 and to (2.51)

with h = h1, U = U1 to obtain, using (2.48) (applied with Ṽ = B̃),

a(j0)Ph1

[
(Xin ∈ U1) ∩ (Xout ∈ V ) ∩ Ω(j0)

]

≤ b(j0)Ph2

[
(Xin ∈ U2) ∩ (Xout ∈ V )

]
+ oε(1) + ok(1; B̃) + ok(1) + ϑ(k).

(2.52)

We first keep all the other quantities fixed and let k → ∞, after that we let ε→ 0 to obtain
(2.49), as desired. �
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Chapter 3

Rigidity and Tolerance in point
processes: quantitative estimates

3.1 Introduction

In Chapter 2 we studied spatial conditioning in the two main natural examples of repelling
point processes on the Euclidean plane, namely the Ginibre ensemble and the Gaussian zero
process. They established certain “rigidity” phenomena, in the sense that for a bounded
open set D (satisfying some minimal regularity conditions) the points outside D determine
a.s. the number N of points inside D in the first case and both their number N and their sum
S in the second case. Thus, the support of the conditional distribution of the inside points
is contained in DN in the first case, and in a (complex) co-dimension 1 subset of DN in the
second. It was further established in Chapter 2 that, on this restricted set, the conditional
distribution is mutually absolutely continuous with respect to the Lebesgue measure. In this
chapter, our aim is to refine the result in Chapter 2 and establish quantitative bounds on
the conditional density of the inside points (considered as a vector in DN by taking them
in uniform random order).

In this chapter, we prove the following quantitative estimates on the density of the
conditional distributions with respect to the Lebesgue measure on their support:

Theorem 3.1.1. There exist positive quantities m(Gout) and M(Gout), measurable with re-
spect to Gout, such that a.s. we have

m(Gout)|∆(ζ)|2 ≤ dρ(Gout, ·)
dL (ζ) ≤M(Gout)|∆(ζ)|2

where ∆(ζ) is the Vandermonde determinant formed by the co-ordinates of ζ and L is the

Lebesgue measure on DN(Gout) .
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Theorem 3.1.2. There exist positive quantities m(Fout) and M(Fout), measurable with re-
spect to Fout, such that a.s. we have

m(Fout)|∆(ζ)|2 ≤ dρ(Fout, ·)
dLΣ

(ζ) ≤M(Fout)|∆(ζ)|2

where ∆(ζ) is the Vandermonde determinant formed by the co-ordinates of ζ and LΣ is the
Lebesgue measure on ΣS(Fout).

Our results show, in particular, that even under spatial conditioning, the points of the
Ginibre ensemble or the GAF zero process repel each other at close range, and the quanti-
tative nature of the repulsion (quadratic in the mutual separation of the points) is similar
to that of the unconditioned ensembles.

3.2 Limits of conditional measures: abstract setting

In this Section, we state and prove some general conditions (in the context of the abstract
setup considered in Section 2.3 in Chapter 2), which will enable us to make the transition
from the finite ensembles to the infinite one. The definitions and notations used in this
section are from Section 2.3 in Chapter 2.

Now we are ready to state the following important technical reduction:

Theorem 3.2.1. Let m ≥ 0 be such that P(Ωm) > 0. Suppose that:
(a) There is a map ν : Ωm → M(Dm) such that for each Borel set A ⊂ Dm, the random

variable ν(·, A) is measurable with respect to Xout. Let ν̃ : Sout → M(Dm) denote the map
induced by ν.

(b) For each fixed j we have an event Ω(j), a sequence {nk}k≥1 (which might depend on
j) and corresponding events Ωnk

(j) such that:
(i) Each Ω(j) is measurable with respect to Xout, and the sequence of events Ω(j) exhausts

Ωm.
(ii) Ωnk

(j) is measurable with respect to Xnk
out and Ωnk

(j) ⊂ Ωm
nk
.

(iii) Ω(j) ⊂ limk→∞Ωnk
(j).

(iv) For all A ∈ A and B ∈ B we have

P[(ζnk ∈ A) ∩ (Xnk
out ∈ B) ∩ Ωnk

(j)] ≍j

∫

(X
nk
out)

−1(B)∩Ωnk
(j)

ν(ξ, A)dP(ξ) + ϑ(k; j). (3.1)

where limk→∞ ϑ(k; j) → 0 for each fixed j.
Then, there are functions m,M : Sout → R+ such that a.s. on the event Ωm we have

m(ω)ν̃(ω,A) ≤ ρ(ω,A) ≤ M(ω)ν̃(ω,A) (3.2)

for all Borel sets A in Dm, where ω denotes Xout(ξ), ξ ∈ Ξ.
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Remark 3.2.1. The condition that Ω(j) is measurable with respect to Xout can be relaxed

to the condition that Ω̃(j) is measurable with respect to Xout, for some event Ω̃(j) which

satisfies P
(
Ω(j)∆Ω̃(j)

)
= 0.

We defer the proof of Theorem 3.2.1 to Section 3.13.
We conclude this section with the following simple observation:

Remark 3.2.2. If we have Theorem 3.2.1 for all m ≥ 0 then we can conclude that (3.2)
holds a.e. ξ ∈ Ξ.

3.3 Reduction from a general D to a disk

We will provide a proof that Theorem 3.1.2 in the case where D is a disk is enough to deduce
the case of a general D. The corresponding reduction for Theorem 3.1.1 is on similar lines.
The first part of this proof is very similar to the corresponding reduction in Chapter 2. Some
additional arguments are introduced subsequently in order to take care of the comparison to
the squared Vandermonde.

Let D be a bounded open set in C whose boundary has zero Lebesgue measure. By
translation invariance of the Ginibre ensemble, we take the origin to be in the interior of
D. Let D0 be a disk (centred at the origin) which contains D in its interior (where D is the
closure of D).

Suppose we have the tolerance Theorem 3.1.2 for a disk. To obtain Theorem 3.1.2 for D
, we appeal to the tolerance Theorem 3.1.2 for the disk D0. Let the number and the sum of
the points in D be N and S respectively, let N0 and S0 denote the corresponding quantities
for the points in D0. Define

Σ :=

{
(λ1, · · · , λN) :

N∑

j=1

λj = S, λj ∈ D
}

and

Σ0 :=

{
(λ1, · · · , λN0) :

N0∑

j=1

λj = S0, λj ∈ D0

}
.

The conditional distribution of the vector of points inside D0, given ΥD0
out, lives on Σ0,

in fact it has a density f0 which is positive a.e. with respect to Lebesgue measure on Σ0.
Let there be k points in D0 \ D and let their sum be s, clearly we have N = N0 − k
and S = S0 − s. We parametrize Σ by the last N − 1 co-ordinates. Note that the set
U := {(λ2, · · · , λN) : (S −∑N

j=2 λj, λ2, · · · , λN) ∈ Σ} is an open subset of DN−1. Further,

we define the set V := {(λ1, · · · , λk) : λi ∈ D0 \ D,
∑k

i=1 λi = s}.
Let the points in D0\D, taken in uniform random order, form the vector z = (z1, · · · , zk).

Then we can condition the vector of points in D0 to have its last k co-ordinates equal to z,
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to obtain the following formula for the conditional density of the vector of points in D at
(ζ1, · · · , ζN) ∈ Σ (with respect to the Lebesgue measure on Σ):

f(ζ1, ζ2, · · · , ζN) =
f0(ζ1, ζ2, · · · , ζN , z1, · · · , zk)∫

U
f0(s− (

∑N
j=2wj), w2, · · · , wN , z1, · · · , zk)dw2 · · · dwN

. (3.3)

It is clear that for a.e. z ∈ V , we have f is positive a.e. with respect to Lebesgue measure
on Σ, because the same is true of f0 on Σ0.

Let ζ0 = (ζ, z). For estimating f from above and below, recall that a.s. we have

m(ΥD0
out)|∆(ζ0)|2 ≤ f0(ζ

0) ≤M(ΥD0
out)|∆(ζ0)|2. (3.4)

The denominator of the right hand side of (3.3) does not depend on ζ, it only depends
on the set D and Υout. Therefore, to obtain the desired upper and lower bounds on f(ζ), it

suffices to estimate |∆(ζ0)|2.
For two vectors α = (α1, · · · , αm) and β = (β1, · · · , βn) we define

Γ(α, β) =
∏

1≤i≤m,1≤j≤n

|αi − βj|.

Then we can write |∆(ζ0)|2 = |Γ(ζ, z)|2|∆(z)|2|∆(ζ)|2. Further, since ∂D is of zero Lebesgue
measure, therefore a.s. Υout∩∂D = φ = Υin∩∂D. Hence, there exists δ(Υout) > 0 such that
Dist (D,Υout) = δ(Υout), in the sense of the distance between a closed set and a compact
set. Hence, if ζ ∈ Σ, we have δ(Υout) ≤ |zi − ζj| ≤ 2 Radius (D0) for all i and j.

Combining all these observations with equations (3.3) and (3.4) we obtain the desired
estimates for f(ζ).

3.4 Limiting procedure for the Ginibre ensemble

As we already saw in Section 3.3, it suffices to prove Theorem 3.1.1 for D a disk. To this
end, we need to appropriately define the quantities as in the statement of Theorem 3.2.1,
and verify that they satisfy the conditions in that theorem. For the Ginibre ensemble, we
define the quantities in exactly the same way as in Section 8 of Chapter 2. There we define
Ω(j) := limk→∞Ωnk

(j). In Proposition 8.1 in Chapter 2 it is shown that Ω(j) so defined is
measurable with respect to Gout (up to a null set, also see Remark 3.2.1) and Ω(j)-s exhaust
Ωm, as desired.

3.5 Estimates for finite approximations of the GAF

In this section, we recall several estimates from Chapter 2 which would be necessary to
establish Theorem 3.1.2. We focus on the event Ωm,δ

n which entails that fn has exactly m
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zeroes inside D, and there is at least a δ separation between ∂D and the outside zeroes. The
corresponding event for the GAF zero process has positive probability, so by the distribu-
tional convergence Fn → F , we have that Ωm,δ

n has positive probability (which is bounded
away from 0 as n→ ∞).

Let us denote the zeroes of fn (in uniform random order) inside D by ζ = (ζ1, · · · , ζm)
and those outside D by ω = (ω1, ω2, · · · , ωn−m). Let s denote the sum of the inside zeroes.
Then the conditional density ρnω(ζ) of ζ given ω and s is of the following form, supported on
the set Σs = {ζ ∈ Dm,

∑m
j=1 ζj = s} (see, e.g., [FH99]):

ρnω,s(ζ) = C(ω, s)
|∆(ζ1, . . . , ζm, ω1, . . . , ωn−m)|2


n∑

k=0

∣∣∣∣∣σk(ζ, ω)
√(

n

k

)
k!

∣∣∣∣∣

2


n+1 (3.5)

where C(ω) is the normalizing factor, and for a vector v = (v1, · · · , vN) we define

σk(v) =
∑

1≤i1<···<ik≤N

vi1 · · · vik

and for two vectors u and v, σk(u, v) is defined to be σk(w) where the vector w is obtained
by concatenating the vectors u and v.

Let (ζ, ω) and (ζ ′, ω) be two vectors of points (under Fn), such that the sum of the co-
ordinates of ζ and the same quantity for ζ ′ are equal to s. Then the ratio of the conditional
densities at these two vectors is given by

ρnω,s(ζ
′)

ρnω,s(ζ)
=

|∆(ζ ′, ω)|2
|∆(ζ, ω)|2




n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2

n+1/


n∑

k=0

∣∣∣∣∣∣
σk(ζ

′, ω)
√(

n
k

)
k!

∣∣∣∣∣∣

2

n+1

. (3.6)

Proposition 3.5.1. On Ωm,δ
n there are quantities K(D, δ) > 0 and Xn(ω) > 0 such that for

any (ζ, ζ ′) ∈ Dm ×Dm we have

exp

(
− 2mK(D, δ)Xn(ω)

) |∆(ζ ′)|2
|∆(ζ)|2 ≤

|∆(ζ ′, ω)|2
|∆(ζ, ω)|2 ≤ exp

(
2mK(D, δ)Xn(ω)

) |∆(ζ ′)|2
|∆(ζ)|2

where Xn(ω) =

∣∣∣∣∣∣

∑

ωj∈Gn∩Dc

1

ωj

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

ωj∈Gn∩Dc

1

ω2
j

∣∣∣∣∣∣
+




∑

ωj∈Gn∩Dc

1

|ωj|3


 and

E[Xn(ω)] ≤ c1(D,m) <∞.

For the remainder of this section we will restrict ζ and ζ ′ to lie in the same constant-sum
hyperplane. Recall the notation that s =

∑m
i=1 ζi and

Σs := {ζ ∈ Dm :
m∑

i=1

ζi = s}.
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Let D(ζ, ω) =

(
∑n

k=0

∣∣∣∣
σk(ζ,ω)√
(nk)k!

∣∣∣∣
2
)
.

When we want to bound the ratio
(
D(ζ ′, ω)

/
D(ζ, ω)

)n+1
from above and below, it suffices

to show that the quantities
∣∣∣∣∣∣

n∑

k=0

σk(ζ, ω)√(
n
k

)
k!

σk−i(ω)√(
n
k

)
k!

∣∣∣∣∣∣

/


n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2
 (3.7)

and ∣∣∣∣∣∣

n∑

k=0

σk−i(ω)√(
n
k

)
k!

σk−j(ω)√(
n
k

)
k!

∣∣∣∣∣∣

/


n∑

k=0

∣∣∣∣∣∣
σk(ζ, ω)√(

n
k

)
k!

∣∣∣∣∣∣

2
 (3.8)

for m ≥ i, j ≥ 2 are bounded above by random variables whose typical size is O(1/n) .
The following decomposition of σk(ζ, ω) is simple but useful:

σk(ζ, ω) =
m∑

r=0

σr(ζ)σk−r(ω). (3.9)

The following expansion of σk(ω) in terms of σi(ζ, ω) is more involved:

Proposition 3.5.2. On the event Ωm,δ
n we have, for 0 ≤ k ≤ n−m,

σk(ω) = σk(ζ, ω) +
k∑

r=1

grσk−r(ζ, ω)

where a.s. the random variables gr are O(K(D,m)r) as r → ∞, for a deterministic quantity
K(D,m) and the constant in O being deterministic and uniform in n and δ.

From Chapter 2 equation (22) in Section 9.1.2 we have, for l ≥ m,

σn−l(ω)√(
n

n−l

)
(n− l)!

=
1

ξn

[
ξl + η

(n)
l

]
. (3.10)

Proposition 3.5.3. Let η
(n)
l be as in (3.10) and γ = 1

8
. Then ∃ positive random variables

ηl (independent of n) such that a.s.
∣∣∣η(n)l

∣∣∣ ≤ ηl, and for fixed l0 ∈ N and large enough M > 0

we have

(i)P

[
ηl >

M

lγ
for some l ≥ 1

]
≤ e−c1M2

(ii)P

[
ηl >

M

lγ
for some l ≥ l0

]
≤ e−c2M2l

1
4
0

where c1, c2 are constants that depend on the domain D and on m.
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Define

En =
n∑

l=0

|ξl|2, L
(n)
ij =

n−i∧n−j∑

l=0

ξl+iξl+j√
(l + i)i(l + j)j

,

M
(n)
ij =

n−i∧n−j∑

l=0

|ξl+i|ηl+j√
(l + i)i(l + j)j

, N
(n)
ij =

n−i∧n−j∑

l=0

ηl+iηl+j√
(l + i)i(l + j)j

.

Let

Yn =
m∑

i=2

∣∣∣L(n)
0i

∣∣∣+
m∑

i=2

M
(n)
0i +

m∑

i,j≥2

∣∣∣L(n)
ij

∣∣∣+
m∑

i,j≥2

M
(n)
ij +

m∑

i,j≥2

M
(n)
ji +

m∑

i,j≥2

N
(n)
ij .

In Chapter 2 it has been shown (Section 9.1.2 equation (27)) that

1−K(m,D)
Yn

En

≤
D(ζ ′, ω)

D(ζ, ω)
≤ 1 +K(m,D)

Yn

En

. (3.11)

Regarding Yn and En, we have the following estimates:

Proposition 3.5.4. Given M > 0 we have:
(i) P[Yn ≥M logM ] ≤ c(m,D)/M ,
(ii) Given M > 0 there exists n0 such that for n ≥ n0 we have P[n

2
≤ |En| ≤ 2n] ≥ 1− 1

M
.

These lead to:

Proposition 3.5.5. Given M > 0 large enough, ∃n0 such that for all n ≥ n0 the following
is true: with probability ≥ 1− C/M we have, on Ωm,δ

n ,

e−2K(m,D)M logM ≤
(
D(ζ ′, ω)

/
D(ζ, ω)

)n+1

≤ e2K(m,D)M logM

for all ζ ′ ∈ Σs, where s =
∑m

i=1 ζi and (ζ, ω) is randomly generated from Fn.

Finally, we arrive at

Proposition 3.5.6. There exist constants K(m,D, δ) such that given M > 0 large enough,
we have for n ≥ n0(m,M,D) the following inequalities hold on Ωm,δ

n , except for an event of
probability ≤ c(m,D)/M :

exp

(
−K(m,D, δ)MlogM

) |∆(ζ ′′)|2
|∆(ζ ′)|2 ≤

ρnω,s(ζ
′′)

ρnω,s(ζ
′)

≤ exp

(
K(m,D, δ)MlogM

) |∆(ζ ′′)|2
|∆(ζ ′)|2

uniformly for all (ζ ′, ζ ′′) ∈ Σs × Σs, where (s, ω) corresponds to a point configuration picked
randomly from P [Fn].
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The following important estimates deal with inverse power sums of the Gaussian zeroes.
Let r0 = radius (D). Let ϕ be a non-negative radial C∞

c function supported on [r0, 3r0]
such that ϕ = 1 on [3

2
r0, 2r0] and ϕ(r0 + r) = 1 − ϕ(2r0 + 2r), for 0 ≤ r ≤ 1

2
r0. In other

words, ϕ is a test function supported on the annulus between r0 and 3r0 and its “ascent” to
1 is twice as fast as its “descent”.

Proposition 3.5.7. (i) The random variables

Sl(n) :=

∫
ϕ̃(z)

zl
d[Fn](z) +

∞∑

j=1

∫
ϕ2j(z)

zl
d[Fn](z) =

∑

ω∈Fn∩Dc

1

ωl
( for l ≥ 1)

and

S̃l(n) :=

∫
ϕ̃(z)

|z|l d[Fn](z) +
∞∑

j=1

∫
ϕ2j(z)

|z|l d[Fn](z) =
∑

ω∈Fn∩Dc

1

|ω|l ( for l ≥ 3)

have finite first moments which, for every fixed l, are bounded above uniformly in n.
(ii) There exists k0 = k0(ϕ) ≥ 1, uniform in n and l, such that for k ≥ k0 the “tails” of

Sl(n) and S̃l(n) beyond the disk 2k · D, given by

τnl (2
k) :=

∞∑

j=k

∫
ϕ2j(z)

zl
d[Fn](z) ( for l ≥ 1)

and τ̃nl (2
k) :=

∞∑

j=k

∫
ϕ2j(z)

|z|l d[Fn](z) ( for l ≥ 3)

satisfy the estimates

E
[∣∣τnl (2k)

∣∣] ≤ C1(ϕ, l)/2
kl/2 and E

[∣∣τ̃nl (2k)
∣∣] ≤ C2(ϕ, l)/2

k(l−2)/2.

All of the above remain true when Fn is replaced by F , for which we use the notations
Sl , S̃l, τl(2

k) and τ̃l(2
k) to denote the analogous quantities corresponding to Sl(n) , S̃l(n),

τnl (2
k) and τnl (2

k).

Corollary 3.5.8. For R = 2k, k ≥ k0 as in Proposition 3.5.7. We have P[|τnl (R)| > R−l/4] ≤
R−l/4 and P[|τ̃nl | > R−(l−2)/4] ≤ R−(l−2)/4, and these estimates remain true when fn is
replaced with f .

Proposition 3.5.9. For each l ≥ 1 we have Sl(n) → Sl in probability, and for each l ≥ 3

we have S̃n
l → S̃l in probability, and hence we have such convergence a.s. along some

subsequence, simultaneously for all l.
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3.6 Limiting procedure for GAF zeroes

In this section, we use the estimates for Fn to prove Theorem 3.1.2 for a disk D centred at
the origin. We know from Section 3.3 that this is sufficient in order to obtain Theorem 3.1.2
in the general case. We will work in the framework of Section 3.2. More specifically, we
will show that the conditions for Theorem 3.2.1 are satisfied, which will give us the desired
conclusion.

Notation. Throughout this section, we will use the notation Γ is O(δ) to imply that
the non-negative quantity Γ satisfies Γ ≤ cδ where the positive parameter δ → 0 and c
is a universal constant, which is (crucially) independent of all the other parameters we
introduce (like n and M).

In terms of the notation used in Section 3.2, we have Xn = Fn and X = F .

3.7 Overview of the limiting procedure

The limiting procedure for the GAF zero process formally involves an appeal to Theorem
3.2.1 - defining the variable ν and the events Ω(j) and Ωnk

(j). Further, we need to verify
that they indeed satisfy the conditions demanded in Theorem 3.2.1. The definition of ν is
fairly straightforward, at least in retrospect after the statement of Theorem 3.1.2. The main
challenge in carrying out the above programme is to simultaneously satisfy two conditions
demanded in Theorem 3.2.1: measurability of the events with respect to the outside zeroes,
and establishing (3.1).

Morally, (3.1) corresponds to a statement that for the poynomial ensembles the ratio
of the density of the measure ν with the conditional density of the inside zeroes (given the
outside zeroes) is bounded from above and below in a certain uniform sense. In Section 3.5 we
mentioned that in order to obtain such bounds (refer to Proposition 3.5.6), we need to bound
from above expressions such as Yn (refer e.g. to (3.11)). However, such expressions involve
the coefficients of the Gaussian polynomial, and therefore depend on both the inside and
the outside zeroes. Moreover, we would like the criteria defining the events to be somehow
consistent, in the sense that having them would imply good bounds (as in (3.1) or Proposition
3.5.6) for all the Gaussian polynomials with large enough degree. This necessitates uniform
bounds for the relevant quantities in such a definition (e.g. the tails of their distributions
should be small in some uniform sense), but we have uniform bounds only for the inverse
powers of the outside zeroes (refer to Proposition 3.5.7).

The above factors make the limiting procedure for the Gaussian zero process to be rather
involved. We follow the following route: we first define the relevant events (see Definitions
5 and 6 in Section 3.9). As is necessary, these definitions make the events measurable with
respect to the outside zeroes of f (or fn, as the case may be). But we have to pay the price
in that it is not at all clear that these Definitions imply the bounds necessary for obtaining
(3.1). Indeed, the bounds are not true on the events Ωnk

(j) as is, but we will establish that
they hold on Ωnk

(j) \ E where P(E) = O(δk), where δk is a decreasing sequence such that
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∑
k δk < ∞. This gives (3.1) with the ϑ(k; j) summand. This deduction can be found in

Section 3.10. We further need to show that the Ω(j)-s as defined (see Definition 5) exhaust
Ωm. This is also not clear at all from the definition, and has to be deduced in a similar fashion
by perturbing the original events, and then taking care of the differences accrued. This is
addressed in Section 3.11. The deductions in Sections 3.10 and 3.11 will involve several of
technical propositions. Their proofs, though straightforward (given the estimates in Section
3.5), are somewhat peripheral to the broad picture of the limiting procedure. Therefore, for
the sake of clarity, these proofs will be deferred to Section 3.12.

Our analysis will be driven by two basic parameters: δ > 0 (to be thought of as small)
varying over a decreasing sequence δk with

∑
k δk < ∞, and M > 0 (to be thought of as

large) varying over an increasing sequence Mj ↑ ∞. We will first fix the parameter M and
let δ ↓ 0 along δk, and then let M ↑ ∞ along Mj . Many of our technical propositions will be
true in a regime where δ is small enough depending on M , but because of the above order
in the taking of limits, this does not create any difficulty.

3.8 Notations and Choice of Parameters

In this section, we will introduce some notations and define certain parameters, which will
be useful for the subsequent analysis. There will be two basic parameters: δ and M (see
below), and all the other parameters will be defined in terms of these two. The motivation
for these definitions will only be clear when they are invoked at various places in the sections
that follow. The reader might omit the detailed definitions on first reading and refer back
when they are used later in the text. The reason we present the definitions together is so
that the logical dependence between the various parameters become clear, and there is an
organized reference for their future use.

Let us consider parameters δ > 0 (to be thought of as small), and M > 0 (to be thought
of as large). Let r0 be the radius of the fixed disk D. This δ bears no relation with the
separation parameter δ considered in Section 3.5.

Define, for j ≥ 1,

ψfn
2j ,l

=

∫
ϕ2j(z)

zl
d[Fn](z), γfn

2j ,l
=

∫
ϕ2j(z)

|z|l d[Fn](z),

ψf
2j ,l

=

∫
ϕ2j(z)

zl
d[F ](z), γf

2j ,l
=

∫
ϕ2j(z)

|z|l d[F ](z).

For j = 0 replace ϕ by ϕ̃ in the above definition.
Define

ψf
l (k) =

k∑

j=0

ψf
2j ,l

γfl (k) =
k∑

j=0

γf
2j ,l

ψf
l =

∞∑

j=0

ψf
2j ,l

Ψf
l =

∞∑

j=0

|ψf
2j ,l

| γfl =
∞∑

j=0

γf
2j ,l

.
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We define ψfn
l (k), γfnl (k), ψfn

l ,Ψ
fn
l and γfnl as the obvious analogues for fn (in place of f).

Observe that ψfn
l =

∑

ω∈Dc∩Fn

1

ωl
and γfnl =

∑

ω∈Dc∩Fn

1

|ω|l .

Let Pl be the l-th Newton polynomial expressing the elementary symmetric function of
order l in terms of power sums of order 1, 2, · · · , l. That is, for complex numbers x1, · · · , xn,
let sk =

∑n
j=1 x

k
j and ek =

∑

i1<···<ik

xi1xi2 · · · xik . Then el = Pl(s1, · · · , sl). Note that as a

polynomial of l variables, Pl does not depend on n (see [Sta99], Chapter 7).

Let h : R+ → R
+ be a function such that

∑L+h(L)
L k−1/8 → 0 as L → ∞. For the sake

of definiteness, we set h(L) = L1/16. Let B be such that supr
Kr

(r!)1/4
≤ B, as in Proposition

3.5.3.
Let Cδ, Lδ be (large) positive integers depending on δ, to be chosen later.
For a non-negative integerm we will consider functions of Cδ complex variables (z1, · · · , zCδ

)
given by

f δ,m
i,j (z1, · · · , zCδ

) =

∣∣∣∣∣

Cδ∑

l=1

zl+i−mzl+j−ml!

∣∣∣∣∣ , 2 ≤ i ≤ m, 0 ≤ j ≤ m ,

f δ,m
0 (z1, · · · , zCδ

) =


 1

h(Lδ)

Lδ+h(Lδ)∑

l=Lδ

|zl−m|2l!


 .

Recall the notation that Ωm,1/M is the event that there are exactly m zeroes of f in D and
there is a separation of distance at least 1

M
between the zeroes of f in Dc and ∂D. Moreover,

Ω
m,1/M
n denotes the analogous event with f replaced by fn.
With these notations, we make certain choices as follows:
I. We choose an integer Lδ such that

(i)
∑Lδ+h(Lδ)

k=Lδ
k−1/8 < δ2/C0 (with C0 a universal constant as in the proof of Proposition

3.10.3).

(ii)

∣∣∣∣∣

∑Lδ+h(Lδ)
l=Lδ

|ξl|2
h(Lδ)

− 1

∣∣∣∣∣ < 1/2 with probability > 1− δ2.

(iii)
∑∞

r=1
1

lr/16(r!)1/8
≤ C

l1/16
< 1/2 for all l ≥ Lδ, (where C is a universal constant as in the

proof of Proposition 3.10.3).

(iv) L
1/8
δ > K where K = K(D,m) as in Proposition 3.5.2.

II. We choose an integer Cδ such that:
(i) Cδ > Lδ + h(Lδ) ,
(ii)

∑∞
l=Cδ

1
(l+1)(l+2)

< δ6 ,

(iii)
∑∞

l=Cδ

1

l1/8
√

(l+1)(l+2)
< δ4 ,

(iv) e−c2C
1/4
δ < δ2, where c2 is as in Proposition 3.5.3.

III. Let g(δ) be such that g(δ) → ∞ as δ → 0 and

P(Ψf
l > g(δ)− 1) < δ2/Cδ , l = 1, 2, · · · , Cδ ,
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P(γf3 > g(δ)− 1) < δ2 .

IV. Recall that Pl is the l-th Newton polynomial expressing the elementary symmetric
function of order l in terms of power sums of order 1, 2, · · · , l. Let f δ,m

i,j be the functions
defined above. These functions are continuous, and hence uniformly continuous on a compact
set. Let ε(δ) be such that

|f δ,m
i,j (P1(w1)), · · · , PCδ

(w1))− f δ,m
i,j (P1(w2)), · · · , PCδ

(w2))| < δ2∀||w1 − w2||∞ < ε(δ)

and ||w1||∞, ||w2||∞ ≤ g(δ) + 100, for each 2 ≤ i ≤ m, 0 ≤ j ≤ m (here w1, w2 are vectors in
C

Cδ and ‖ · ‖ is the L∞ norm on C
Cδ). ε(δ) is so chosen that the same inequality should also

hold when f δ,m
i,j is replaced by f δ,m

0 .

V. Let Rδ > 1 be a large radius (of the form 2kr0 where r0 is radius of D) such that∑
l≥1R

−l/4
δ < (ε(δ) ∧ δ2). Let k(δ) be the positive integer such that Rδ = 2k(δ)r0.

VI. Let n(δ) be such that

(i) Except for an event of probability < δ2, we have |ψf
2k,l

−ψ
fn(δ)

2k,l
| < min(δ2, ε(δ))/(k(δ)+1)

for each 0 ≤ k ≤ k(δ) and each l ≤ Cδ, and |γf
2k,3

−γ
fn(δ)

2k,3
| < min(δ2, ε(δ))/(k(δ)+1) for each

0 ≤ k ≤ k(δ).

(ii) Except for an event of probability < δ2, we have

∣∣∣∣∣

∑n(δ)
l=1 |ξl|2
n(δ)

− 1

∣∣∣∣∣ < 1/2.

(iii) Except for an event of probability < δ2, we have

∣∣∣∣∣
P

fn(δ)

in

|ξ0|2
− P f

in

|ξ0|2

∣∣∣∣∣ < δ2 where P f
in is the

product of zeroes of f inside D and P
fn(δ)

in is the analogous quantity for fn(δ).
(iv) Except on an event of probability O(δ2), we have

∣∣∣∣∣∣

∑

k≤n(δ)−Cδ

σk−t(ω)σk−i(ω)(
n(δ)
k

)
k!

∣∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

≤ 2δ2

n(δ)
, t = 0, 1, 2, · · · ,m, 2 ≤ i ≤ m .

(v) P
(
Ωm,1/M∆Ω

m,1/M
n(δ)

)
< δ2.

Remark 3.8.1. That it is at all possible to find such a n(δ) as in VI above is not immediate.
Conditions VI.(i), VI.(iii) and VI.(v) are ensured by the convergence of the Fn-s to F on
the compact set 2k(δ).D. VI.(ii) is covered by the law of large numbers. VI.(iv) is addressed
in Proposition 3.10.6. Moreover, if we have a sequence δk ↓ 0, it is clear that we can choose
n(δk) such that n(δk) ↑ ∞.
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3.9 Proof of Theorem 3.1.2

In this section we provide a proof of Theorem 3.1.2, based on Theorem 3.2.1. We will show
how to define the relevant events here; the verification of some of the properties demanded
in Theorem 3.2.1 requires substantial amount of work, and will be taken up in subsequent
sections.

The notations are from Section 3.8 unless stated otherwise.

Proof of Theorem 3.1.2. Following the notation in Theorem 3.2.1, we begin with Ωm, m ≥ 0.
The cases m = 0 and m = 1 are trivial, so we focus on the case m ≥ 2.

Our candidate for ν(ξ, ·) (refer to Theorem 3.2.1) is the probability measure Z−1|∆(ζ)|2dL(ζ)
on Σs, where ∆(ζ) is the Vandermonde determinant formed by the coordinates of ζ and
s = S(Xout(ξ)), L is the Lebesgue measure on Σs and Z is the normalizing factor. Here we
recall the definition of S(Xout(ξ)) from Theorem 2.1.3 and the definition of Σs from Section
3.5.

We now intend to define the events Ω(j) and Ωnk
(j) as in Theorem 3.2.1.

Fix two sequences of positive numbers Mj ↑ ∞ and δk ↓ 0 such that
∑
δk <∞.

Define zl = Pl(ψ
f
1 (k(δ)), · · · , ψf

l (k(δ))).

Definition 5. For any M, δ > 0 we define the event Ω(M ; δ) by the following conditions
(for clarification of the notations used refer to Section 3.8):

1. Ωm,1/M occurs.

2. a) |ψf
s (k(δ))| ≤M, for s = 1, 2.

b) |γf3 (k(δ))| ≤M.

3. f δ,m
i,j (z1, · · · , zCδ

) ≤M, for 2 ≤ i ≤ m and 0 ≤ j ≤ m.

4.
1

M
≤ f δ,m

0 (z1, · · · , zCδ
) ≤M.

5. |ψf
l (k(δ))| ≤ g(δ), l = 1, · · · , Cδ.

Define Ω(j) := limk→∞Ω(Mj; δk).

For any given δ, it is clear that Ω(Mj; δ) ⊂ Ω(Mj+1; δ), which implies that Ω(j) ⊂ Ω(j+1).
The fact that Ω(j)-s exhaust Ω is by no means clear, and will be proved in Section 3.11.

Our next goal is to define the sequence of events Ωnk
(j) as in Theorem 3.2.1.

Corresponding to the sequence δk ↓ 0, we have the sequence of positive integers nk =

n(δk) ↑ ∞. Given M, δ > 0, let z′l := Pl(ψ
fn(δ)

1 (k(δ)), · · · , ψfn(δ)

l (k(δ))).
Notice that Ω(M ; δ) was defined in terms of the zeroes of f . In the following definition,

we introduce an event Ω0
n(δ)(M) which, heuristically, is an analogue of Ω(M ; δ), but is defined

using the zeroes of fn(δ).

Definition 6. We define the event Ω0
n(δ)(M) as:
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1. Ω
m,1/M
n(δ) occurs .

2. a) |ψfn(δ)
s (k(δ))| ≤M, for s = 1, 2.

b) |γfn(δ)

3 (k(δ))| ≤M.

3. f δ,m
i,j (z′1, · · · , z′Cδ

) ≤M, for 2 ≤ i ≤ m, 0 ≤ j ≤ m.

4.
1

M
≤ f δ,m

0 (z′1, · · · , z′Cδ
) ≤M.

5. |ψfn(δ)

l (k(δ))| ≤ g(δ) + δ2, for l = 1, · · · , Cδ.

We define the event Ωnk
(j) to be Ω0

n(δk)
(Mj + 1).

Clearly, Ωnk
(j) is measurable with respect to Xnk

out. But it is not immediate that Ω(j) ⊂
limk→∞ Ωnk

(j), or that (3.1) holds. Both of these will be established in Section 3.10.
Along with Sections 3.10 and 3.11, this shows that Theorem 3.2.1 establishes Theorem

3.1.2. �

3.10 Ωnk(j) is a good sequence of Events

Our aim in this section is to prove that the events Ωnk
(j) defined in Section 3.9 satisfy the

conditions in Theorem 3.2.1. We state this formally as:

Theorem 3.10.1. With definitions as in Section 3.9, we have Ω(j) ⊂ limk→∞Ωnk
(j), and

the Ωnk
(j)-s satisfy (3.1).

We will establish this through a sequence of propositions. Some of the propositions are
technical in nature, and we defer their proofs to Section 3.12, so that the main features of
the limiting argument are not lost in the details.

We begin with the event Ω(M ; δ) and show that, except on an event of small probability,
this implies the event Ω0

n(δ)(M +1). Heuristically, this means replacing quantities defined in
terms of f by the corresponding quantities defined in terms of fn(δ) :

Proposition 3.10.2. For δ small enough (depending on M), there exists an event E1
δ , with

P(E1
δ ) = O(δ2), such that {Ω(M ; δ) \ E1

δ} ⊂ Ω0
n(δ)(M + 1).

We defer the proof of Proposition 3.10.2 to Section 3.12.
For the rest of this section, the zeroes we discuss are going to be those of fn(δ), unless

otherwise mentioned. ζ and ω will respectively denote the vectors of the zeroes of fn(δ) inside
and outside D, taken in uniform random order. In the next proposition, we prove that in
σk(ω) is roughly comparable to σk(ζ, ω) for a range of k that is close to n(δ) but not too
close. We set l = n(δ)− k.
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Proposition 3.10.3. Except on an event of probability O(δ2), we have 1
2
|σk(ζ, ω)| ≤ |σk(ω)| ≤

3
2
|σk(ζ, ω)| for all Lδ ≤ l ≤ Lδ +h(Lδ), where l = n(δ)− k and h(Lδ) = L

1/8
δ is as in Section

3.8.

We defer the proof of Proposition 3.10.3 to Section 3.12.
We next define the event Ω1

n(δ)(M). Heuristically, this removes the role of 2k(δ) · D in the

definition of Ω0
n(δ)(M), and replaces k(δ) by ∞, that is, the role played by 2k(δ) · D \ D is

now played by Dc.

Definition 7. We define an event Ω1
n(δ)(M) by the following conditions,

with z′′l = Pl

(
ψ

fn(δ)

1 , · · · , ψfn(δ)

l

)
:

1. Ω
m,1/M
n(δ) occurs .

2. a) |ψfn(δ)
s | ≤M, for s = 1, 2.

b) |γfn(δ)

3 | ≤M.

3. f δ,m
i,j (z′′1 , · · · , z′′Cδ

) ≤M, for 2 ≤ i ≤ m and 0 ≤ j ≤ m.

4.
1

M
≤ f δ,m

0 (z′′1 , · · · , z′′Cδ
) ≤M.

5. |ψfn(δ)

l | ≤ g(δ) + 2δ2, for l = 1, · · · , Cδ.

We then have

Proposition 3.10.4. {Ω0
n(δ)(M + 1) \ E2

δ} ⊂ Ω1
n(δ)(M + 2), for an event E2

δ with P(E2
δ ) =

O(δ2) and small enough δ (depending on M).

We defer the proof of Proposition 3.10.4 to Section 3.12.
The conditions defining the event Ω1

n(δ)(M) enables us to obtain certain estimates dis-
cussed in the following proposition, the benefits of these will be clear subsequently. We

mention that σk here is the same as σ
fn(δ)

k , and Pin is the same as P
fn(δ)

in .

Proposition 3.10.5. Set z′′l = Pl

(
ψ

fn(δ)

1 , · · · , ψfn(δ)

l

)
.

For all small enough δ (depending on M), we have that the following are true on Ω1
n(δ)(M)

(except on an event of probability O(δ2)):

• (i)

8

27
f δ,m
0 (z′′1 , · · · , z′′l ) ≤

|P fn(δ)

in |2
|ξ0|2

≤ 8f δ,m
0 (z′′1 , · · · , z′′l ). (3.12)
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• (ii) 


n(δ)∑

k=0

∣∣∣∣
σk(ζ, ω)

σn(δ)(ω)

∣∣∣∣
2

(n(δ)− k)!


 ≥ 1

10M
n(δ) (3.13)

We defer the proof of Proposition 3.10.5 to Section 3.12.
Let the bad event in Proposition 3.10.5 (where the conclusions of the proposition do not

hold on Ω1
n(δ)(M)) be denoted by E3

δ .

Definition 8. Define Ω2
n(δ)(M) = Ω1

n(δ)(M) \ E3
δ .

Proposition 3.10.6. For all small enough δ, we have, for some constant c,

P




∣∣∣∣∣∣

∑

k<n(δ)−Cδ

σk−t(ω)σk−i(ω)(
n(δ)
k

)
k!

∣∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

≤ 2δ2

n(δ)




≥ 1− cδ2, t = 0, 1, 2, · · · ,m; 2 ≤ i ≤ m .

We defer the proof of Proposition 3.10.6 to Section 3.13.
Let the exceptional event (where the bounds do not hold) in Proposition 3.10.6 be denoted

by E4
δ which clearly has probability O(δ2).

Definition 9. Define Ω3
n(δ)(M) = Ω2

n(δ)(M) \ E4
δ .

In the next proposition, we demonstrate that on Ω3
n(δ)(M), we indeed have good bounds

on ratio of conditional densities along a constant sum submanifold Σs.

Proposition 3.10.7. (a) There is an event Eδ with P(Eδ) = O(δ2) such that {Ω(M ; δ) \
Eδ} ⊂ Ω3

n(δ)(M + 2) .

(b) For a vector of inside and outside zeroes (ζ, ω) of fn(δ) such that Ωm
n(δ) occurs, let s de-

note the sum of the co-ordinates of ζ and let Σs = {ζ ′ ∈ Dm :
∑m

j=1 ζ
′
j = s}. On the event

Ω3
n(δ)(M), the ratio of conditional densities ρ

n(δ)
ω (ζ ′′)/ρ

n(δ)
ω (ζ ′) at any two vectors ζ ′′, ζ ′ in Σs

is bounded from above and below by functions of M (uniformly in n(δ)).

We defer the proof of Proposition 3.10.7 to Section 3.12.

Remark 3.10.1. Let Ω̃(M ; δ) denote the event obtained by demanding conditions 1-4 in the
definition of Ω(M ; δ) (Definition 5). By reversing the arguments in the proofs of Propositions
3.10.2, 3.10.4 and 3.10.7(a), it can be seen that there is an event E ′

δ with P(E ′
δ) = O(δ2)

such that (
Ω3

n(δ)(M + 2) \ E ′
δ

)
⊂ Ω̃(M + 4; δ).
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In view of Proposition 3.10.4 and the Defnitions 8 and 9, the above implies that there is an
event E ′′

δ of probability O(δ2) such that

(
Ω0

n(δ)(M + 1) \ E ′′
δ

)
⊂ Ω̃(M + 4; δ).

This will be referred to later in Section 3.11.

Now we are ready to complete the proof of Theorem 3.10.1

Proof of Theorem 3.10.1. Recall that Ω(j) = limk→∞Ω(Mj; δk), and Ω(Mj ; δk) \ E1
δ ⊂

Ω0
n(δk)

(Mj + 1) = Ωnk
(j) by Proposition 3.10.2. From the fact that

∑
k P(E

1
δk
) ≤ c

∑
k δ

2
k <

∞ (the last inequality is by choice of δk-s) and the Borel Cantelli lemma, it follows that
Ω(j) ⊂ limk→∞ Ωnk

(j).
To obtain (3.1), we introduce some further notations. On the event Ωm

n(δ), let γn(δ)(s;ω
n(δ))

denote the conditional probability measure on the sum s of inside zeroes given the vector
of outside zeroes of fn(δ) to be ωn(δ), and µn(δ)(ζ; s, ω

n(δ)) be the conditional measure on the

inside zeroes ζ of fn(δ), given the vector of outside zeroes to be ωn(δ) and the sum of the
co-ordinates of ζ to be s. Let S denote the set of all possible sums of the inside zeroes;
clearly S is a bounded open set in C.

From Propositions 3.10.2, 3.10.4 and Definitions 8 and 9, we have Ω0
n(δ)(M + 1) \ E ⊂

Ω3
n(δ)(M + 2) where P (E) = O(δ2). From Theorem 3.11.1 (which will be proved in Section

3.11) we have that for large enough M and small enough δ (depending on M and m), we
have

P
(
Ω0

n(δ)(M + 1)
)
≥ 1

2
P (Ωm) ≥ 100δ.

Recall that both Ω0
n(δ)(M + 1) and Ω3

n(δ)(M + 1) subsets of Ωm.

Hence, heuristically speaking, a ‘large part’ of Ω0
n(δ)(M +1) must be inside Ω3

n(δ)(M +2).

Put in terms of conditional measures ( conditioning successively on ωn(δ) and then on s),
this leads to the following (for all small enough δ) :

∃ a set Ωgood (measurable with respect to outside zeroes of fn(δ)), Ωgood ⊂ Ω0
n(δ)(M + 1)

with
Pn(δ)(Ω

0
n(δ)(M + 1) \ Ωgood) < δ such that:

for each ωn(δ) ∈ Ωgood, ∃ a measurable set Sgood(ω
n(δ)) ⊂ S with

γ(S \ Sgood(ω
n(δ));ωn(δ)) < δ such that :

for each s ∈ Sgood(ω
n(δ)) we have µ(ζ; s, ωn(δ))(Σs \ H(s)) < δ, where H(s) is the set of

ζ ∈ Σs such that (ζ, ωn(δ)) ∈ Ω3
n(δ)(M + 2).

We begin by considering

∫

B∩Ωgood

[∫

S∩Sgood

(∫

A∩Σs

dµn(δ)(ζ; s, ω
n(δ))

)
dγn(δ)(s;ω

n(δ))

]
dPn(δ)(ω

n(δ)) . (3.14)

Recall that dµn(δ) above has a density with respect to Lebesgue measure on Σs. Moreover,
by definition of Ωgood and Sgood, we have that for ωn(δ) ∈ Ωgood and s ∈ Sgood(ω

n(δ)), there
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exists a ζ ∈ Σs satisfying (ζ, s, ωn(δ)) ∈ Ω3
n(δ)(M+2). As a result, on the submanifold Σs, the

conditional probability measure dµn(δ) above is proportional to the measure |∆(ζ)|2 dL(ζ),
the constants of proportionality depending onM and being uniform in δ (refer to Proposition
3.10.7) .

Hence we have,

(3.14) ≍M

∫

B∩Ωgood

[∫

S∩Sgood

(∫
A∩Σs

|∆(ζ)|2 dL(ζ)∫
Σs

|∆(ζ)|2 dL(ζ)

)
dγn(δ)(s;ω

n(δ))

]
dPn(δ)(ω

n(δ)) .

Setting h(A; s) :=
∫
A∩Σs

|∆(ζ)|2 dL(ζ)∫
Σs

|∆(ζ)|2 dL(ζ) we have that the last expression is equal to

∫

B∩Ωgood

∫

S∩Sgood

h(A; s)dγn(δ)(s;ω
n(δ))dPn(δ)(ω

n(δ)) .

Note that the h(A; s) is bounded between 0 and 1, so at the expense of an additive error
of size O(δ) we have

(3.14) ≍M

∫

B∩Ωgood

∫

S

h(A; s)dγn(δ)(s;ω
n(δ))dPn(δ)(ω

n(δ)) +O(δ)

because γ((S \ Sgood);ω
n(δ)) < δ as long as ωn(δ) ∈ Ωgood.

The integral above can also be written as
∫
h(A; sn(δ)(ξ))1{Xn(δ)

out (ξ) ∈ B ∩ Ωgood}(ξ)dP(ξ)

where sn(δ)(ξ) =
∑

ζi∈Xn(δ)
in (ξ)

ζi and 1{E}(·) is the indicator function of an event E .

Recalling that P(Ω0
n(δ)(M+1)\Ωgood) < δ, and doing an argument similar to the previous

step, we have, at the expense of another additive error of O(δ)

(3.14) ≍M

∫
h(A; sn(δ)(ξ))1{Xn(δ)

out (ξ) ∈ B ∩ Ω0
n(δ)(M + 1)}(ξ)dP(ξ) +O(δ) .

We could also complete the Sgood to S and Ωgood to Ω0
n(δ)(M + 1) in (3.14) straightaway

(without going through h(A; s)) at the expense of two additive errors of O(δ) (recall that
µn(δ) is a probability measure) to deduce that the integral (3.14)

=

∫

B∩Ω0
n(δ)

(M+1)

∫

S

(∫

A∩Σs

dµn(δ)(ζ; s, ω
n(δ))

)
dγn(δ)(s;ω

n(δ))dPn(δ)(ω
n(δ)) +O(δ) .

We summarize the above computation as:

P(A∩B∩Ω0
n(δ)(M+1))) ≍M

∫
h(A; sn(δ)(ξ))1{Xn(δ)

out (ξ) ∈ B∩Ω0
n(δ)(M+1)}(ξ)dP(ξ)+O(δ) .

(3.15)
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We now set M =Mj and δ = δk and note that Ω0
n(δk)

(Mj + 1) = Ωnk
(j).

We note that since we send k → ∞ (and hence δk → 0 for fixed j), therefore the criteria
in the previous Propositions in this section involving δ being small enough depending on M
(e.g. as in Propositions 3.10.2 or 3.10.6 or 3.10.7) is eventually satisfied.

The integral on the right hand side (henceforth abbreviated as r.h.s.) of (3.15) is
∫
h(A; snk

(ξ))1{Xnk
out(ξ) ∈ B ∩ Ωnk

(j)}(ξ)dP(ξ) .

Recall that we can consider the event A ∈ A as a subset of Dm, and such sets have piecewise
smooth boundary. For the definition of A refer to Section 3.2. For such sets A, we have
h(A; s) is continuous in s. But if ω denotes Xout(ξ), then snk

(ξ) → S(ω) a.s. Hence, ∃εk ↓ 0
such that P(|snk

(ξ)−S(ω)| > εk) → 0 as k → ∞. Coupled with the fact that 0 ≤ h(A; s) ≤ 1
this implies that ∫

h(A; snk
(ξ))1{Xnk

out(ξ) ∈ B ∩ Ωnk
(j)}(ξ)dP(ξ)

=

∫
h(A;S(ω))1{Xnk

out(ξ) ∈ B ∩ Ωnk
(j)}(ξ)dP(ξ) + ok(1)

where ok(1) is a quantity which → 0 uniformly in j, as k → ∞. To see the last step, we can
write

h(A; snk
(ξ)) = h(A;S(ω)) + (h(A; snk

(ξ))− h(A;S(ω))) 1[|snk
(ξ)− S(ω)| < εk]

+ (h(A; snk
(ξ))− h(A;S(ω))) 1[|snk

(ξ)− S(ω)| > εk].

The second term in the right hand side above → 0 a.s. because of continuity of h(A; s) as
a function of s, and the expectation of the third term → 0 by choice of εk; also remember
that 0 ≤ h(A; s) ≤ 1.

It remains to observe that∫
h(A;S(ω))1{Xnk

out(ξ) ∈ B ∩ Ωnk
(j)}(ξ)dP(ξ) =

∫

B∩Ωnk
(j)

ν(ξ, A)dP(ξ)

where we recall the definition of ν(ξ, ·) from the proof of Theorem 3.1.2 in Section 3.9.
These facts together verify (3.1), and this completes the proof of Theorem 3.10.1. �

3.11 Ω(j)-s exhaust Ωm

In this section we prove that for all small enough δ (depending on M) the event Ω(M ; δ)
(almost) contains an event ΩM of high probability inside Ωm (the probability will depend on
M) . In this way, we would ensure that Ω(j) = limk→∞Ω(Mj; δk) tends to be of full measure
inside Ωm asM → ∞. Recall here that Ωm denotes the event that there are exactly m zeroes
of f inside D.

In this section the vectors of the inside and the outside zeroes, denoted respectively by ζ
and ω, refer to those of fn(δ) (unless mentioned otherwise).
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Theorem 3.11.1. There exists an event ΩM (with P(ΩM) → 1 as M → ∞) such that for
each M sufficiently large, we have {ΩM ∩Ωm,1/M \Fδ} ⊂ Ω(M +3; δ) for all δ small enough
(depending on M); here Fδ is an event of probability O(δ2). In particular, this implies that
Ω(j) = lim

δk→0

Ω(Mj; δk) satisfies P (Ωm \ Ω(j)) → 0 as j → ∞.

Before we prove Theorem 3.11.1, we will make some technical observations.

Proposition 3.11.2. The following criteria imply (for all small enough δ, depending on
M) that we will be guaranteed condition 3 defining Ω0

n(δ)(M + 1), except on an event of

probability O(δ2) :

• (i)
|P fn(δ)

in |2
|ξ0|2

<
√
M/3 .

• (ii)

∣∣∣∣∣∣

n(δ)∑

k=n(δ)−Cδ

σk−i(ω)σk−j(ω)(
n(δ)
k

)
k!

∣∣∣∣∣∣
≤

√
M

|ξn(δ)|2
; 0 ≤ i ≤ m; 2 ≤ j ≤ m .

We defer the proof of Proposition 3.11.2 to Section 3.12.

Definition 10. We define an event Γ(δ,M) by the following conditions:

• (a) |ψf
l (k(δ))| ≤M − 1

2
; l = 1, 2 and γf3 (k(δ)) ≤M − 1

2
.

• (b)
8

M
+ κδ2 ≤ |P f

in|2
|ξ0|2

≤ 1

3

√
M − κδ2 where κ > 0 is a constant to be declared later (see

the proof of Proposition 3.11.3).

• (c)

∣∣∣∣∣

Cδ∑

l=0

ξl+iξl+j√
(l + i)i(l + j)j

∣∣∣∣∣ ≤
√
M

4
; 0 ≤ i ≤ m; 2 ≤ j ≤ m .

• (d)

Cδ∑

l=0

|ξl+i|
(l + j)1/8

√
(l + i)i(l + j)j

≤ M1/4

4
; 0 ≤ i ≤ m; 2 ≤ j ≤ m .

• (e) |η(n(δ))l | ≤ M1/4

l1/8
for all l ≥ 1 .

With this definition and using Proposition 3.11.2, we have

Proposition 3.11.3. Γ(δ,M) ∩ Ωm,1/M ⊂ Ω0
n(δ)(M) except on an event F 1

δ of probability

O(δ2).

We defer the complete proof of Proposition 3.11.3 to Section 3.12.
Finally, we define our desired event ΩM .
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Definition 11. We define the event ΩM to be :

• (a0) |ψf
l | ≤M − 1, l = 1, 2; |γf3 | ≤M − 1 .

• (b0)
8

M − 1
≤ |P f

in|2
|ξ0|2

≤
√
M

3
− 1 .

• (c0)

∣∣∣∣∣

∞∑

l=0

ξl+iξl+j√
(l + i)i(l + j)j

∣∣∣∣∣ ≤
√
M

4
− 1; 0 ≤ i ≤ m; 2 ≤ j ≤ m .

• (d0)
∞∑

l=0

|ξl+i|
(l + j)1/8

√
(l + i)i(l + j)j

≤ M1/4

4
− 1; 0 ≤ i ≤ m; 2 ≤ j ≤ m .

• (e0) |ηl| < M1/4/l1/8∀l ≥ 1 .

where ηl is as in Proposition 3.5.3.

We are now ready to prove Theorem 3.11.1.

Proof of Theorem 3.11.1. We claim that for fixedM and small enough δ (depending on
M), except on an event of probability O(δ2), we have ΩM ⊂ Γ(δ,M). This is going to be
true because of the choices of the parameters Cδ and k(δ).

We begin with the event ΩM . First, we look at (c0) and (d0). Condition II(ii) in Section

3.8 implies, via a second moment estimate, that the tail

∣∣∣∣
∑∞

l=Cδ

ξl+iξl+j√
(l+i)i(l+j)j

∣∣∣∣ < δ2 except with

probability O(δ2); recall here that we always have i∨ j ≥ 2. A first moment estimate allows

us to draw a similar conclusion about
∑∞

l=Cδ

|ξl+i|
l1/8

√
(l+i)i(l+j)j

. Hence, for all small enough δ,

we have conditions (c) and (d) defining Γ(δ,M) except on an event of probability O(δ2).
Regarding (a0), the transition from ψf

l (k(δ)) to ψf
l takes place via assumption V in

Section 3.8 on Rδ. Recall from Corollary 3.5.8) that we have

P(|τl(Rδ)| > R
−l/4
δ ) ≤ R

−l/4
δ .

Combined with the fact that R
−1/4
δ < δ2 (refer to V, Section 3.8), this enables us to replace

ψf
l by ψf

l (k(δ)) and γ
f
3 by γf3 (k(δ)) in (a0), implying (for all small enough δ) condition (a)

defining Γ(δ,M) except on an event of probability O(δ2). For a fixed M , we notice that
(b0) implies (b) as soon as δ is small enough (depending on M). Finally, we look at (e0).

Recall from Proposition 3.5.3 that |η(n)l | ≤ ηl a.s. for all l ≥ 1 in order to deduce (e) in the
definition of Γ(δ,M) from (e0) in the definition of ΩM .

This completes the proof that ΩM ⊂ Γ(δ,M), except for a bad event F 2
δ of probability

O(δ2).
Let F 3

δ = F 1
δ ∪ F 2

δ , where we recall the definition of F 1
δ from Proposition 3.11.3. Clearly

P(F 3
δ ) = O(δ2) and we have ΩM ∩ Ωm,1/M \ F 3

δ ⊂ Ω0
n(δ)(M + 1).
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However, recall from Remark 3.10.1 that Ω0
n(δ)(M +1) implies the conditions 1-4 defining

Ω(M+3; δ), except on an event of probability O(δ2). Moreover, the complement of condition
5 defining Ω(M + 3; δ) itself has probability < δ2, by choice of g(δ) (refer to III. in Section
3.8). We combine the last two bad events into F 4

δ .
Let Fδ = F 3

δ ∪ F 4
δ . Then we have P(Fδ) = O(δ2) and ΩM ∩ Ωm,1/M \ Fδ ⊂ Ω(M + 3; δ),

as desired.
Finally, to show that P(ΩM) → 1 as M → ∞, we simply observe that |ψf

l |, γf3 and the
random variables appearing in conditions (c0) and (d0) are random variables with no mass

at ∞, and
|P f

in|2
|ξ0|2 does not have an atom at 0; the ηl-s (appearing in condition (e0)) are taken

care of by Proposition 3.5.3 part (i).
We can now take liminf over δk → 0 in {ΩM ∩Ωm,1/M \Fδk} ⊂ Ω(M +3; δk). Recall that

Fδ is of probability O(δ2) and
∑
δk < ∞. Using the Borel Cantelli lemma we thus obtain,

for M bigger than some universal constant,

ΩM ∩ Ωm,1/M ⊂ lim
k→∞

Ω(M + 3; δk) .

Setting M = Mj − 3, this implies ΩMj−3 ∩ Ωm,1/Mj−3 ⊂ Ω(j). Since this holds for all large

enough j, P (ΩM) → 1 and P
(
Ωm∆Ωm,1/M

)
→ 0 as M → ∞, we obtain the fact that

P(Ωm \ Ω(j)) → 0 as j → ∞. �

3.12 Proofs of some propositions from Sections 3.10

and 3.11

In this section, we include the proofs of the technical propositions which were deferred in
Sections 3.10 and 3.11.

Proof of Proposition 3.10.2

This is essentially a consequence of the choices and observations made in Section 3.8. We
also recall Definitions 5 and 6.

First notice that Condition 1 in Definition 6 is the same event as condition 1 in Defini-
tion 5 same except on an event of probability < δ2, because of the convergence of Fn to F
on compact sets, see VI.(v) in Section 3.8.

By VI.(i), (outside an event of probability < δ2) for Ω(M ; δ), we have |ψfn(δ)

l (k(δ)) −
ψf
l (k(δ))| < δ2 for each l ≤ Cδ, and also |γfn(δ)

3 (k(δ)) − γf3 (k(δ))| < δ2; recall here the

definitions of ψ
fn(δ)

l (k(δ)) and γ
fn(δ)

3 (k(δ)) from Section 3.8. Hence we immediately have
condition 2 in Definition 6; moreover condition 5 in that definition is also clear from
condition 5 defining Ω(M ; δ).

On Ω(M ; δ), we have |ψf
l (k(δ))| < g(δ) for l ≤ Cδ. But considering VI.(i), summing over

k ≤ k(δ) and applying triangle inequality we have |ψfn(δ)

l (k(δ)) − ψf
l (k(δ))| < ε(δ), except
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for an event of probability < δ2. Choosing w1 = {ψf
l (k(δ))}Cδ

l=1 and w2 = {ψfn(δ)

l (k(δ))}Cδ
l=1 in

IV, we have condition 3 and condition 4 in Definition 6 (for all small enough δ, depending
on M).

Combining all the bad events in the above discussion, we obtain E1
δ , whose probability

is O(δ2).
A moment’s thought would convince the reader that the arguments pertaining to con-

ditions 1-4 presented above can be reversed (i.e., the roles of f and fn(δ) interchanged),
dropping an event of probability O(δ2) in the process.

Proof of Proposition 3.10.3

We begin by recalling that (refer to Proposition 3.5.2), with l = n(δ)− k, we have

σk(ω)√(
n(δ)
k

)
k!

=
σk(ζ, ω)√(

n(δ)
k

)
k!

+
k∑

r=1

gr
σk−r(ζ, ω)(
n(δ)
k−r

)
(k − r)!

1√
(l + 1) · · · (l + r)

and
σk(ζ, ω)√(

n(δ)
k

)
k!

=
ξl
ξn(δ)

. The last equality follows by applying Vieta’s formula to the polyno-

mial fn(δ). As a result, we have

σk(ω)

σk(ζ, ω)
= 1 +

n(δ)−l∑

r=1

gr
ξl+r

ξl

1√
(l + 1) · · · (l + r)

. (3.16)

The aim is to show that the sum over r ≥ 1 is small with high probability. By the A.M.-G.M.
inequality we have

1√
(l + 1) · · · (l + r)

≤ 1

lr/4(r!)1/4
,

and we have already seen in Proposition 3.5.2 that |gr| ≤ Kr where K is a constant that
depends on the domain D. As a result, we have

n(δ)−l∑

r=1

gr
ξl+r

ξl

1√
(l + 1) · · · (l + r)

≤
n(δ)−l∑

r=1

Kr

lr/4(r!)1/4

∣∣∣∣
ξl+r

ξl

∣∣∣∣ .

Since l ≥ Lδ is big enough such that K ≤ l1/8 (recall condition I.(iv) from Section 3.8), we

need to estimate
∑n(δ)−l

r=1
1

lr/8(r!)1/4

∣∣∣ ξl+r

ξl

∣∣∣. Since
∣∣∣ ξl+r

ξl

∣∣∣ satisfies P
(∣∣∣ ξl+r

ξl

∣∣∣ > x
)
≤ 1/x2, we have

P

(∣∣∣∣
ξl+r

ξl

∣∣∣∣ > lr/16(r!)1/8
)

≤ 1

lr/8(r!)1/4
. (3.17)

If
∣∣∣ ξl+r

ξl

∣∣∣ ≤ lr/16(r!)1/8 then for each k, the abolute value of the sum over r ≥ 1 in (3.16)

is ≤ ∑∞
r=1

1
lr/16(r!)1/8

≤ C
l1/16

which is < 1
2
for large enough l (in particular for l ≥ Lδ), as
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we desire (recall the definition of Lδ from Section 3.8). We bound the probability of the
complement of this event by a simple union bound over r and see that it is ≤ C0

l1/8
(refer

to (3.17)). This gives us a bound for a fixed l. Now, we want this to be true with high
probability for Lδ ≤ l ≤ Lδ + h(Lδ). By a union bound of the error probabilities over l in

that range, we need to ensure that
∑Lδ+h(Lδ)

l=Lδ

1
l1/8

< δ2/C0, which we know is true by the
choice of h made in Section 3.8, item I.

Proof of Proposition 3.10.4

Recall Definitions 6 and 7. Observe that Ω1
n(δ)(M) differs from Ω0

n(δ)(M) in that ψ
fn(δ)

l (k(δ))

is replaced everywhere by ψ
fn(δ)

l (consequently z′l = Pl

(
ψ

fn(δ)

1 (k(δ)), · · · , ψfn(δ)

l (k(δ))
)
is re-

placed by z′′l = Pl

(
ψ

fn(δ)

1 , · · · , ψfn(δ)

l

)
), γ

fn(δ)

3 (k(δ)) replaced by γ
fn(δ)

3 and in condition 5 we

have g(δ) + δ2 replaced by g(δ) + 2δ2.

On Ω0
n(δ)(M+1), we have |ψfn(δ)

l (k(δ))| ≤M+1 for l = 1, 2 and |γk(δ),fn(δ)

3 | ≤M+1. Recall
the tail estimates in Corollary 3.5.8. Applying these to R = Rδ and doing a union bound
over l, we get that |τl(Rδ)| < ε(δ) ∧ δ2 for all l and small enough δ, and also |τ̃3(Rδ)| < δ2,
except on an event of probability O(δ2) (to see this refer to the definition of Rδ in Section
3.8 V ). We denote by (E2

δ )
′ the union of the exceptional events so far in this paragraph, and

by (E2
δ )

′′ the exceptional event in Proposition 3.10.3. Define E2
δ = (E2

δ )
′ ∪ (E2

δ )
′′. Clearly,

P [E2
δ ] = O(δ2), and {Ω0

n(δ)(M + 1) \ E2
δ} ⊂ Ω1

n(δ)(M + 2).
Observe that the arguments given above, except for those pertaining to condition 5 in

the definitions of our events, can be reversed (that is, the roles of k(δ) and ∞ interchanged),
dropping an event of probability O(δ2).

Proof of Proposition 3.10.5

The zeroes considered in this proof are those of fn(δ).

(i) We have
σk(ζ, ω)√(

n(δ)
k

)
k!

=
ξn(δ)−k

ξn(δ)
. Hence,

|σk(ζ, ω)|2(
n(δ)
k

)
k!|σn(δ)(ζ, ω)|2

= 1
n(δ)!

|ξn(δ)−k|2
|ξ0|2 .

Multiplying both sides by P
fn(δ)

in , and observing that
P

fn(δ)

in

σn(δ)(ζ, ω)
=

1

σn(δ)−m(ω)
we have

|σk(ζ, ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)! = |ξn(δ)−k|2
|P fn(δ)

in |2
|ξ0|2

(3.18)

On Ω1
n(δ)(M), we have 1

2
|σk(ζ, ω)| ≤ |σk(ω)| ≤ 3

2
|σk(ζ, ω)|, which means 2

3
|σk(ω)| ≤ |σk(ζ, ω)| ≤
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2|σk(ω)|, for k = n(δ)− l such that Lδ ≤ l ≤ Lδ + h(Lδ); refer to Proposition 3.10.3. Hence

4

9

1

h(Lδ)




Lδ+h(Lδ)∑

l=Lδ

|σk(ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)!


 ≤ 1

h(Lδ)




Lδ+h(Lδ)∑

l=Lδ

|σk(ζ, ω)|2
|σn(δ)−m(ω)|2

(n− k)!




≤ 4
1

h(Lδ)




Lδ+h(Lδ)∑

l=Lδ

|σk(ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)!




But by (3.18), the expression in the centre is
|P fn(δ)

in |2
|ξ0|2

1

h(Lδ)




Lδ+h(Lδ)∑

Lδ

|ξl|2

. By our choice

of Lδ, except on an event of probability O(δ2), we have 1/2 <
1

h(Lδ)




Lδ+h(Lδ)∑

Lδ

|ξl|2

 < 3/2.

Hence

8

27

1

h(Lδ)




Lδ+h(Lδ)∑

Lδ

|σk(ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)!


 ≤ |P fn(δ)

in |2
|ξ0|2

and

|P fn(δ)

in |2
|ξ0|2

≤ 8
1

h(Lδ)




Lδ+h(Lδ)∑

Lδ

|σk(ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)!




which, taken together, is the same as

8

27

1

h(Lδ)




Lδ+h(Lδ)∑

Lδ

|z′′l−m|2l!


 ≤ |P fn(δ)

in |2
|ξ0|2

≤ 8
1

h(Lδ)




Lδ+h(Lδ)∑

Lδ

|z′′l−m|2l!


 (3.19)

which gives us (i).
Observe that (3.19) can be re-written as

1

8

|P fn(δ)

in |2
|ξ0|2

≤ f δ,m
0

(
z′′1 , · · · , z′′Cδ

)
≤ 27

8

|P fn(δ)

in |2
|ξ0|2

(3.20)

(ii)On Ω1
n(δ)(M), we have 1

M
≤ f δ,m

0

(
z′′1 , · · · , z′′Cδ

)
≤M . So, (3.19) implies 8

27M
≤ |P

fn(δ)
in |2
|ξ0|2 .

Summing (3.18) from 0 to n(δ), noting that by choice of n(δ) we have
∑n(δ)

l=0 |ξl|2 > 1
2
n(δ)

(except on an event of probability < δ2) and using the above lower bound on P
fn(δ)

in

/
|ξ0|2,

we get the desired lower bound in part (ii).
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Proof of Proposition 3.10.6

For Fn(δ), we recall from (3.10) that
σn(δ)−l(ω)√(
n(δ)

n(δ)−l

)
(n(δ)− l)!

=
1

ξn(δ)

[
ξl + η

(n(δ))
l

]
, and also recall

that

n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

=

∑n(δ)
l=0 |ξl|2
|ξn(δ)|2

. Substituting these, we get

∣∣∣∣∣∣

∑

k<n(δ)−Cδ

σk−i(ω)σk−i(ω)(
n(δ)
k

)
k!

∣∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

=

∣∣∣∣∣∣

n(δ)∑

l=Cδ+1

1√
(l + i)i(l + j)j

(
ξl+i + η

(n(δ))
l+i

)(
ξl+j + η

(n(δ))
l+j

)
∣∣∣∣∣∣

n(δ)∑

l=0

|ξl|2
.

Set En(δ) =
∑n(δ)

l=0 |ξl|2. Expanding the product in each term of the numerator, we observe
that it suffices to upper bound the following quantities:

∣∣∣∣∣∣

n(δ)∑

l=Cδ+1

1√
(l + i)i(l + j)j

ξl+iξl+j

∣∣∣∣∣∣

/
En(δ)

and




n(δ)∑

l=Cδ+1

1√
(l + i)i(l + j)j

|ξl+i| |ηn(δ)l+j |



/

En(δ)

and




n(δ)∑

l=Cδ+1

1√
(l + i)i(l + j)j

∣∣∣ηn(δ)l+i

∣∣∣
∣∣∣ηn(δ)l+j

∣∣∣



/

En(δ) .

Recall that i ∨ j ≥ 2 and by convention (l + i)i = 1 for i = 0. For the second and the third
quantities, we proceed as follows. In Proposition 3.5.3 part (ii) we can setM = 1 and l0 = Cδ

to find that dropping an event of probability O(δ2), we have |η(n(δ))l | < 1
l1/8

for l ≥ Cδ. On the
complement of this small event, we can compute the expectation of the numerator in each
case. By our choice of Cδ (refer to II. in Section 3.8), this will be O(δ4), and by Markov’s
inequality the numerator is < δ2 with probability ≥ 1 − cδ2. For the first quantity to be
estimated in the display above, we can derive a similar result by using second moments and
the Chebyshev’s inequality and exploiting our choice of Cδ in Section 3.8. Moreover, by our
choice of n(δ) (refer to VI.(ii) in Section 3.8), we have

∑n(δ)
l=0 |ξl|2 > 1

2
n(δ) with probability

≥ 1− δ2. Combining all these, we obtain the desired estimate.

Proof of Proposition 3.10.7

All zeroes dealt with in this proof are those of fn(δ).
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Part (a) is clear from the arguments prior to Definition 9; we simply take Eδ = ∪4
i=1E

i
δ

. These arguments, along with the remarks made at the end of the proofs of Propositions
3.10.2 and 3.10.3 also imply that the inclusion of events in part (a) of this proposition can
be reversed except on an event of probability O(δ2).

Recall that on Ω3
n(δ)(M) we have:

1. (a) Ω
m,1/M
n(δ) occurs. (b) γ

fn(δ)

3 ≤M. (c) |ψfn(δ)

l | ≤M, for l = 1, 2.

2. f δ,m
i,j (z′′1 , · · · , z′′Cδ

) ≤M where z′′l = Pl(ψ
fn(δ)

1 , · · · , ψfn(δ)

Cδ
).

3.




n(δ)∑

k=0

|
σk(ζ, ω)

σn(δ)−2(ω)
|2(n(δ)− k)!


 ≥ 1

10M
n(δ).

With respect to the last two conditions, we refer the reader to Proposition 3.10.5.
Now, recall from Proposition 3.5.1 and equations (3.7) and (3.5.2) that in order to bound

the ratio of conditional densities along the submanifold Σs, we need to bound from above:

• (a) The ratio of the squared Vandermonde determinants
|∆(ζ′,ω)|2
|∆(ζ,ω)|2 .

• (b)

∣∣∣∣∣∣

n(δ)∑

k=0

σk−i(ω)σk−j(ω)(
n(δ)
k

)
k!

∣∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

; 0 ≤ i ≤ m; 2 ≤ j ≤ m .

As bounds we have:
(a) By definition of Ω2

n(δ)(M), we have |ψfn(δ)

1 |, |ψfn(δ)

2 | and γfn(δ)

3 are bounded by M . By
Proposition 3.5.1, this suffices to upper and lower bound the ratio of Vandermondes in terms
of M .

(b) We divide the terms as
∣∣∣∣∣∣

n(δ)∑

k=0

σk−i(ω)σk−j(ω)(
n(δ)
k

)
k!

∣∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

≤

∣∣∣∣∣
∑

k<n−Cδ

σk−i(ω)σk−j(ω)(
n(δ)
k

)
k!

∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

+

∣∣∣∣∣
∑

k≥n−Cδ

σk−i(ω)σk−j(ω)(
n(δ)
k

)
k!

∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2(
n(δ)
k

)
k!

For the sum over the k < n(δ) − Cδ terms, we appeal to Proposition 3.10.6 and conclude
that the expression corresponding to these terms contributes ≤ 2δ2/n(δ) because Ω3

n(δ)(M) ⊂
(E4

δ )
c
.
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For the expression corresponding to the k ≥ n(δ)−Cδ terms, we clear n(δ)! from numer-

ator and denominator, and divide both by
∣∣σn(δ)−m(ω)

∣∣2 (note that n(δ)−m is the largest k

for which σ
n(δ)
k (ω) can be non-zero when Ω

n(δ)
m,M occurs). We thus reduce ourselves to upper

bounding ∣∣∣∣∣∣

∑

k≥n(δ)−Cδ

σk−i(ω)σk−j(ω)

|σn(δ)−m(ω)|2
(n(δ)− k)!

∣∣∣∣∣∣
n(δ)∑

k=0

|σk(ζ, ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)!

From the definitions in Section 3.8, it follows that

σk−i(ω)
/
σn(δ)−m(ω) = z′′q := Pq(ψ

fn(δ)

1 , · · · , ψfn(δ)
q ) with q = n(δ)− k + i−m.

To be more explicit, recall that ψ
fn(δ)

j equals the sum of the j-th inverse powers of the
zeroes of fn(δ) that are outside D (which form the co-ordinates of the vector ω here). By
definition of the j-th Newton polynomial Pj, z

′′
j equals the elementary symmetric function

of order j formed by the inverses of the co-ordinates of ω. Using the fact σj(ω) is the
elementary symmetric function of order j formed by the co-ordinates of the vector ω (which
is of dimension n(δ) −m here), simple algebra gives us the equality σk−i(ω)

/
σn(δ)−m(ω) =

z′′q := Pq(ψ
fn(δ)

1 , · · · , ψfn(δ)
q ) with q = n(δ)− k + i−m.

The numerator above is then simply f δ,m
i,j (z′′1 , · · · , z′′Cδ

). We can then combine the bounds
in conditions 2 and 3 (laid down at the beginning of this proof) to deduce that
∣∣∣∣∣∣

∑

k≥n(δ)−Cδ

σk−i(ω)σk−j(ω)

|σn(δ)−m(ω)|2
(n(δ)− k)!

∣∣∣∣∣∣

/


n(δ)∑

k=0

|σk(ζ, ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)!


 ≤ 10M2/n(δ)

In view of (b) above and (3.7),(3.5.2) and (3.11) (also refer to equation (14) in Chapter
2 for greater clarification), we have

1− 11K(m,D)M2/n(δ) ≤ D(ζ ′, ω)

D(ζ, ω)
≤ 1 + 11K(m,D)M2/n(δ)

on Ω3
n(δ)(M).

Recalling (3.6), we deduce from the above bounds that there exist positive functions
U1(M) and L1(M) (which do not depend on n(δ)) such that if (ζ, ω) ∈ Ω3

n(δ)(M) then

exp (−L1(M)) ≤
ρ
n(δ)
ω (ζ ′)

ρ
n(δ)
ω (ζ)

≤ exp (U1(M))

where ζ ′ is any other vector in Σs, the constant sum submanifold corresponding to ζ. From
here, we estimate the ratio at any two vectors ζ ′, ζ ′′ belonging to Σs a.s.:

exp (−L(M)) ≤
ρ
n(δ)
ω (ζ ′′)

ρ
n(δ)
ω (ζ ′)

≤ exp (U(M)) (3.21)
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where L(M) = U(M) = L1(M) + U1(M).

Proof of Proposition 3.11.2

First recall that by definition of n(δ), we have
1

2
≤
∑n(δ)

l=0 |ξl|2
n(δ)

≤ 3

2
except on a set of prob-

ability < δ2. Also recall the notation

z′′l = Pl(ψ
fn(δ)

1 , · · · , ψfn(δ)

l ) =
∑

ωij
6=ωik

∈Dc∩Fn(δ)

1

ωi1 · · ·ωil

.

Moreover, we have
|σk(ζ, ω)|2(

n(δ)
k

)
k!

=

∣∣∣∣
ξn(δ)−k

ξn(δ)

∣∣∣∣
2

. As a result, condition (ii) implies

∣∣∣∣
∑n(δ)

k=n(δ)−Cδ

σk−i(ω)σk−j(ω)

(n(δ)
k )k!

∣∣∣∣
∑n(δ)

k=0

|σk(ζ,ω)|2

(n(δ)
k )k!

≤ 2
√
M/n(δ) .

On the left hand side, we can replace n(δ)! by
∣∣σn(δ)−m(ω)

∣∣2 both in the numerator and the
denominator, and combined with the observation that σk(ω)/σn(δ)−m(ω) = z′′n(δ)−k−m this

would lead to (switching from k to the new variable l = n(δ)− k)

∣∣∣
∑Cδ

l=0 z
′′
l+i−mz

′′
l+j−ml!

∣∣∣
∑n(δ)

k=0

|σk(ζ,ω)|2
|σn(δ)−m(ω)|2 (n(δ)− k)!

≤ 2
√
M/n(δ).

Observe that the numerator is simply f δ,m
i,j (z′′1 , · · · , z′′Cδ

) However, summing (3.18) from 0 to

n(δ) and noting that by choice of n(δ) we have
∑n(δ)

l=0 |ξl|2 < 3
2
n(δ) (except on an event of

probability < δ2), we have

n(δ)∑

k=0

|σk(ζ, ω)|2
|σn(δ)−m(ω)|2

(n(δ)− k)! ≤ 3

2
n(δ)

|Pin|2
|ξ0|2

.

Using this and condition (i) in the statement of Proposition 3.11.2, we have f δ,m
i,j (z′′1 , · · · , z′′Cδ

) ≤
M . However, we need a similar inequality with f δ,m

i,j (z′1, · · · , z′Cδ
). The choice of k(δ) and

the tail estimates in Proposition 3.5.7 and Corollary 3.5.8 enable us to replace ψ
fn(δ)

l by

ψ
fn(δ)

l (k(δ)), and z′′l by z′l = Pl(ψ
fn(δ)

1 (k(δ)), · · · , ψfn(δ)

Cδ
(k(δ))), with an additive error of size

O(δ2), except on an event of probability O(δ2). This is on similar lines to the switch from z′l to
z′′l we did in defining Ω1

n(δ)(M). Tallying all these, we obtain condition 3 on Ω0
n(δ)(M +1),

for all small enough δ depending on M .
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Proof of Proposition 3.11.3

First recall Definitions 10 and 6. We start with Γ(δ,M) ∩ Ωm,1/M . The choice of n(δ)
(condition VI.(v)) in Section 3.8 ensures that except on an event of probability < δ2 , we

have that Ω
m,1/M
n(δ) occurs, thereby verifying condition 1 in Definition 6. By choice of k(δ)

and n(δ), criterion (a) defining Γ(δ,M) ensures condition 2 in Definition 6, except on
an event of probability O(δ2) for δ small enough (depending on M). The complement of
condition 5 in Definition 6 is itself an event of probability O(δ2), by choice of g(δ), k(δ)
and n(δ).

The choice of n(δ) ensures that
∣∣∣|P f

in|2
/
|ξ0|2 − |P fn(δ)

in |2
/
|ξ0|2

∣∣∣ < δ2 except on an event of

probability O(δ2). Recall condition (b) defining Γ(δ,M) and equation (3.20). Let us recall

the notations z′′l = Pl(ψ
fn(δ)

1 , · · · , ψfn(δ)

l ) and z′l = Pl(ψ
k(δ),fn(δ)

1 , · · · , ψk(δ),fn(δ)

l ) The choice of

k(δ) (condition V) in Section 3.8 enables us to replace f δ,m
0 (z′′1 , · · · , z′′Cδ

) by f δ,m
0 (z′1, · · · , z′Cδ

)
(except on an event of probability O(δ2)), on similar lines to the switch from z′l to z

′′
l in the

definition of Ω1
n(δ)(M). The upshot of all this is that except on an event of probability O(δ2)

we have that on Γ(δ,M) the following is true:

f δ,m
0 (z′1, · · · , z′Cδ

) ≥ f δ,m
0 (z′′1 , · · · , z′′Cδ

)−
∣∣∣f δ,m

0 (z′1, · · · , z′Cδ
)− f δ,m

0 (z′′1 , · · · , z′′Cδ
)
∣∣∣

≥ 1

8

|P fn(δ)

in |2
|ξ0|2

−
∣∣∣f δ,m

0 (z′1, · · · , z′Cδ
)− f δ,m

0 (z′′1 , · · · , z′′Cδ
)
∣∣∣

≥ 1

8

|P f
in|2

|ξ0|2
− 1

8

∣∣∣∣∣
|P fn(δ)

in |2
|ξ0|2

− |P f
in|2

|ξ0|2

∣∣∣∣∣−
∣∣∣f δ,m

0 (z′1, · · · , z′Cδ
)− f δ,m

0 (z′′1 , · · · , z′′Cδ
)
∣∣∣

≥ 1

8

|P f
in|2

|ξ0|2
− κ1δ

2 (3.22)

Similarly except on an event of probability O(δ2), we have that on Γ(δ,M) the following is
true:

f δ,m
0 (z′1, · · · , z′Cδ

) ≤ 27

8

|P f
in|2

|ξ0|2
+ κ2δ

2 (3.23)

Here κ1 and κ2 are two positive constants. In condition (b) defining Γ(δ,M), we choose κ to
be max (κ1, κ2, 1). The last pair of inequalities (3.22) and (3.23), along with condition (b)
defining Γ(δ,M) gives us condition 4 in Definition 6, for all M sufficiently large (in fact,
as soon as

√
M ≥ 9/8).

Thus, the only condition in Definition 6 that remains to be dealt with is condition 3.
We have already seen how criteria (i) and (ii) in Proposition 3.11.2 suffice to imply

condition 3 in Definition 6, except on an event of probability O(δ2). Criterion (i) is implied
by the upper bound in condition (b) defining Γ(δ,M), applied along with the inequality
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∣∣∣∣
|P

fn(δ)
in |2
|ξ0|2 − |P f

in|2
|ξ0|2

∣∣∣∣ < δ2 (which holds everywhere except on an event of probability < δ2 by

definition of n(δ); recall that κ ≥ 1 by its definition).
Thus, it remains to show that conditions labeled by (c),(d) and (e) defining Γ(δ,M)

together imply criterion (ii) in Proposition 3.11.2. To this end, we refer to Section 3.5
where we obtain expressions of σk(ω) as expansions in ξl

/
ξn(δ) (as in (3.10)). From such

expansions, we find that in order to establish criterion (ii), it suffices to show (here we
switch to the variable l = n(δ)− k)

1

|ξn(δ)|2

∣∣∣∣∣

Cδ∑

l=0

(
ξl+i + η

(n(δ))
l+i√

(l + i)i

)(
ξl+j + η

(n(δ))
l+j√

(l + j)j

)∣∣∣∣∣ ≤
√
M

|ξn(δ)|2
.

Recall from Proposition 3.5.3 that except with probability O(δ2), we have for all l ≥
1, |η(n(δ))l | ≤ |ηl| ≤ l−1/8. It is then a straightforward calculation using the triangle in-
equality that indeed (c), (d) and (e) defining Γ(δ,M) imply the above inequality, for 0 ≤
i ≤ m; 2 ≤ j ≤ m.

3.13 Proof of Theorem 3.2.1

We claim that it suffices to show that for every j0 , we have for any A ∈ A and any Borel
set B in Sout

P
(
(ζ(Xin) ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0)

)
≍j0

∫

X−1
out(B)∩Ω(j0)

ν(ξ, A)dP(ξ) . (3.24)

First, note that (3.24) implies the conclusion (3.2) of Theorem 3.2.1 a.s. on the event Ω(j0)
with the quantities m and M depending only on j0. To see this, let X be the sigma-algebra
generated by Xout , and let X (j0) be the collection of sets formed by intersecting the sets
of X with Ω(j0). So, every set in X (j0) is of the form X−1

out(B) ∩ Ω(j0) for some Borel set
B ⊂ Sout. We can then consider the finite measure space (Ω(j0),X (j0),P). For fixed A ∈ A
and any Borel set B in Sout we have

P
(
(ζ(Xin) ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0)

)
=

∫

X−1
out(B)∩Ω(j0)

ρ(Xout(ξ), A)dP(ξ) . (3.25)

We can now compare the (3.24) and (3.25) for fixed A ∈ A and all Borel sets B in Sout.
Considering this on the finite measure space (Ω(j0),X (j0),P), we obtain obtain (3.2) for a.s.
ξ ∈ Ω(j0) and a fixed A ∈ A. The constants m and M obtained are the same as those
appearing in (3.24) for this j0. Here we use the fact that all the sides in (3.2) are measurable
with respect to Xout. We conclude that for a.s. ξ ∈ Ω(j0), (3.2) is simultaneously true for all
sets A ∈ A, because A is a countable collection of sets. From here, we use Proposition 2.6.1
to obtain (3.2) for all Borel sets A in Dm and a.s. ξ ∈ Ω(j0). But the Ω(j)-s exhaust Ω

m, so
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we have the conclusion of Theorem 3.2.1 holding a.e. ξ ∈ Ωm. The constants however now
depend on ω = Xout(ξ), because for any given ξ, we simply take the constants coming out
of (3.24) for the minimal j0 for which ξ ∈ Ω(j0); recall here that Ω(j0) is measurable with
respect to Xout .

Now we focus on proving (3.24). For any Borel set B in Sout, given ε > 0 we can find

a B̃ ∈ B such that P
((
X−1

out(B) ∩ Ω(j0)
)
∆X−1

out(B̃)
)
< ε. This can be seen by considering

the push forward probability measure (Xout)∗P on Sout; recall that Ω(j0) is also measurable
with respect to Xout. The aim of this reduction is to exploit the fact that as k → ∞, we
have 1B̃ (Xnk

out) → 1B̃ (Xout) a.s.

We start from (3.1) applied to A, B̃, j0 (where A ∈ A ) and intend to derive (3.24) for
A,B, j0. We want to show that both sides of (3.1) converge to the appropriate quantities in
(3.24) as k → ∞ and ε→ 0.

In what follows, we will denote by Ph the non-negative finite measure on Ξ obtained by
setting dPh(ξ) = h(ξ)dP(ξ) where h : Ξ → [0, 1] is a measurable function. We note that for
any event E, we have 0 ≤ Ph(E) ≤ P(E) ≤ 1. For the rest of this proof, the value of j0 is
held fixed.

We start with Ph[(X
nk
in ∈ A) ∩ (Xnk

out ∈ B̃) ∩ Ωnk
(j0)]. This is equal to

Ph

[
(Xin ∈ A) ∩ (Xout ∈ B̃) ∩ Ωnk

(j0)

]
+ ok(1; B̃)

where ok(1; B̃) stands for a quantity that tends to 0 as k → ∞ for fixed B̃. This step uses
the fact that 1B̃ (Xnk

out(ξ)) → 1B̃ (Xout(ξ)) a.s. The last expression above equals

Ph

[
(Xin ∈ A) ∩ ((Xout ∈ B) ∩ Ω(j0)) ∩ Ωnk

(j0)

]
+ oε(1) + ok(1; B̃)

where oε(1) denotes a quantity that tends to 0 uniformly in k as ε → 0. Observe that
(Xout)

−1(B) ∩ Ω(j0) ⊂ Ω(j0) ⊂ limk→∞Ωnk
(j0) and P

(
limk→∞ Ωnk

(j0)∆
(⋂

l≥k Ωnl
(j0)
))

=
ok(1) where ok(1) denotes a quantity such that ok(1) → 0 as k → ∞, uniformly in B and ε.
Hence we have

Ph

[
(Xin ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0) ∩ Ωnk

(j0)

]

= Ph

[
(Xin ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0) ∩

(
⋂

l≥k

Ωnl
(j0)

)
∩ Ωnk

(j0)

]
+ ok(1) .

But
(⋂

l≥k Ωnl
(j0)
)
∩ Ωnk

(j0) =
(⋂

l≥k Ωnl
(j0)
)
and

Ph

[
(Xin ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0) ∩

(
⋂

l≥k

Ωnl
(j0)

)]

= Ph

[
(Xin ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0) ∩ lim

k

Ωnk
(j0)

]
+ ok(1).
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But again, (Xout ∈ B) ∩ Ω(j0) ⊂ limk Ωnk
(j0), so the upshot of all this is that

Ph

[
(Xnk

in ∈ A) ∩ (Xnk
out ∈ B̃) ∩ Ωnk

(j0)

]
= Ph

[
(Xin ∈ A) ∩ (Xout ∈ B) ∩ Ω(j0)

]
+ ok(1; B̃)

+ok(1) + oε(1).

We apply the above reduction to the left hand side of (3.1) with h ≡ 1 and to the right hand
side of (3.1) with h(ξ) = ν(ξ, A), and obtain

P

[
(Xin ∈ A)∩(Xout ∈ B)∩Ω(j0)

]
≍j0

(∫

(Xout)−1(B)∩Ω(j0)

ν(ξ, A)dP(ξ)

)
+oε(1)+ok(1; B̃)+ok(1)

+ϑ(k; j0) .

Recall from the statement of Theorem 3.2.1 that ϑ(k; j0) → 0 as k → ∞. First letting

k → ∞ in the above (with B̃ held fixed) and then ε → 0 (i.e., letting B̃ → B in the sense

that P(B̃∆B) → 0) in the above, we obtain (3.24).
This completes the proof of Theorem 3.2.1.
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Chapter 4

Continuum Percolation for Gaussian
zeroes and Ginibre eigenvalues

4.1 Introduction

Let Π be a simple point process in Euclidean plane. We place open disks of the same radius
r around each point of Π, and say that two points are neighbours if the corresponding disks
overlap. Two points in Π are connected if there is a sequence of neighbouring points of Π
that include these two points. We can then study the statistical properties of the maximal
connected components (referred to as “clusters”) of the points of Π. Of particular interest
are the infinite cluster(s). This is the basic setting of the continuum percolation model, also
referred to as the Boolean model.

It is clear from an easy coupling argument that the probability that an infinite cluster
exists is an increasing function of the radius of the disks. We say that there is a non-
trivial critical radius if there exists an 0 < rc < ∞ such that the probability of having an
infinite cluster is zero when 0 < r < rc and the same probability is is strictly positive when
rc < r < ∞. For rc < r < ∞, one can ask whether the infinite cluster is unique. For point
processes which are ergodic under the action of translations, the event that there is an infinite
cluster is translation-invariant, and therefore its probability is either 0 or 1. Similarly, the
number of infinite clusters is a translation-invariant random variable, and therefore a.s. a
constant.

In this chapter we focus on the two main natural examples of repelling point processes on
the plane: the Ginibre ensemble, arising as weak limits of certain random matrix eigenvalues,
and the Gaussian zero process arising as weak limits of zeroes of certain random polynomials.
The latter process will be abbreviated as the GAF zero process. For details on these models,
see Chapter 1.

In [BY11] (see Corollary 3.7 and the discussion thereafter) it has been shown that there
exists a non-zero and finite critical radius for the Ginibre ensemble.

In this chapter we prove the following theorems:
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Theorem 4.1.1. In the Boolean percolation model on the Ginibre ensemble, a.s. there is
exactly one infinite cluster in the supercritical regime.

Theorem 4.1.2. In the Boolean percolation model on the GAF zero process, there exists a
non-zero and finite critical radius. Moreover, in the supercritical regime, a.s. there is exactly
one infinite cluster.

Continuum percolation is well-studied in theoretical and applied probability, as a model
of communication networks, disease-spreading through a forest, and many other phenomena.
This model, also referred to as the Gilbert disk model or the Boolean model, is almost as
old as the more popular discrete bond percolation theory. It was introduced by Gilbert in
1961 [Gil61]. In the subsequent years, it has been studied extensively by different authors,
such as [Ha88], [Mo94],[MR96] and [Pe03], among others. Closely related models such as
random geometric graphs, random connection models, face percolation in random Voronoi
tessellations have also been studied. For a detailed discussion of continuum percolation and
related models, we refer the reader to [MR96] and [BoRi09]. For further details on point
processes, we refer to [DV97].

Much of the literature so far has focused on studying continuum percolation where the
underlying point process Π is either a Poisson process or a variant thereof. Most of these
models exhibit some kind of spatial independence. This property is extremely useful in the
study of continuum percolation on these models. E.g., the spatial independence enables us
to carry over Peierls type argument from discrete percolation theory for establishing phase
transitions in the existence of infinite clusters, or Burton and Keane type arguments in order
to prove uniqueness of infinite clusters.

While the Poisson process is the most extensively studied point process, the spatial inde-
pendence built into it makes it less effective as a model for many natural phenomena. This
makes it of interest to study point processes with non-trivial spatial correlation, particularly
those where the points exhibit repulsive behaviour. On the complex plane, the main nat-
ural examples of translation-invariant point processes exhibiting repulsion are the Ginibre
ensemble and the Gaussian zero process. The latter process is also known as the Gaussian
analytic function (GAF) zero process. The former arises as weak limits of eigenvalues of
(non-Hermitian) random matrices, while the latter arises as weak limits of zeros of Gaussian
polynomials. For precise definitions of these processes we refer the reader to Chapter 1.

The Ginibre ensemble was introduced by the physicist Ginibre [Gin65] as a physical model
based on non-Hermitian random matrices. In the mathematics literature it has been studied
by [RV07] and [Kr06] among others. The Gaussian zero process also has been studied in
either field, see, e.g. [BoBL92], [STs1-04],[STs2-06],[STs3-05],[NSV07], [FH99]. We refer the
reader to [NS10] for a survey. These models are distinguished elements in broader classes
of repulsive point processes. For example, the Ginibre ensemble is essentially the unique
determinantal process on the plane whose kernel K(z, w) is holomorphic in the first variable,
and conjugate holomorphic in the second ([Kr06]). The Gaussian zero process is essentially
unique (up to scaling) among the zero sets of Gaussian power series in that its distribution
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is invariant under translations ([STs1-04]). For an exposition on both the processes, we refer
the reader to [HKPV10].

The strong spatial correlation present in the above models severely limits the effectiveness
of standard independence-based arguments from the Poisson setting while studying contin-
uum percolation. Our aim in this chapter is to study continuum percolation on the two
natural models of repulsive point processes mentioned above, and establish the basic results.
Namely, there is indeed a non-trivial critical radius, and the infinite cluster is unique when
we are in the supercritical regime.

While the spatial independence of the Poisson process is not available in these models, we
observe that this obstacle can be largely overcome if we can obtain detailed understanding
of spatial conditioning in these point processes. Such understanding has been obtained in
Chapter 2, where it has been shown that for a given domain D, the point configuration
outside D determines a.s. the number of points in D (in the Ginibre ensemble) and their
number and the centre of mass (in the Gaussian zeroes ensemble), and “nothing further”.
For a precise statement of the results, we refer the reader to the Theorems 4.10.1, 4.10.2,
4.11.1 and 4.11.2 quoted in this chapter. In the present work, we demonstrate that along with
certain estimates on the strength of spatial dependence, this understanding is sufficient to
overcome the problem of lack of independence, and answer the basic questions in continuum
percolation on these two processes.

For determinantal point processes in Euclidean space, it is known that a non-trivial
critical radius exists, see, e.g. [BY11]. This covers the Ginibre ensemble. The uniqueness of
the infinite cluster (in the supercritical regime), however, was not known, and this is proved
in Section 4.10. For the Gaussian zero process, both the existence of a non-trivial critical
radius and the uniqueness of the infinite cluster (when one exists) are new results, and are
established in Sections 4.5 and 4.11 respectively.

In the case of the GAF zero process, while proving our main results we derive new esti-
mates for hole probabilities. Let B(0;R) be the disk with centre at the origin and radius R.
The hole probability for B(0;R) is the probability p(R) = P (B(0;R) has no GAF zeroes ).
It has been studied in detail in [STs3-05], and culminated in the work of Nishry [Nis10]
where he obtained the precise asymptotics as R → ∞. It turns out that as R → ∞ we
have − log p(R)/R4 → c where c > 0 is a constant. In this chapter, however, we need to
understand hole probabilities for much more general sets than disks.

Let us divide the plane into θ×θ squares given by the grid θZ2. Let Γ(L) be a connected
set comprising of L such squares. We prove that for θ ≥ θ0 (an absolute constant), there is
a quantity c(θ) > 0 such that P (Γ(L) has no GAF zeroes ) ≤ exp (−c(θ)L). The techniques
generally used in the literature to study hole probabilities, e.g. Offord-type estimates, do not
readily apply to this situation. Instead, we exploit a certain ‘almost independence’ property
of GAF, and combine it with a Cantor set type construction to obtain the desired result.
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4.2 The Boolean model

Let Π be a point process in R
2 whose one-point and two-point intensity measures are abso-

lutely continuous with respect to the Lebesgue measure on R
2 and R

2×R
2 respectively. We

say two points x, y of Π are neighbours of each other if ‖x− y‖2 < 2r. Equivalently, we can
place open disks of radius r around each point; then two points are connected if and only
the corresponding disks intersect. Two points x, y of Π are neighbours if ∃ a finite sequence
of points x0, x1, · · · , xn ∈ Π such that x0 = x, xn = y and xj+1 is the neighbour of xj for
0 ≤ j ≤ n− 1.

This is the Boolean percolation model on the point process Π with radius r, denoted by
X(Π, r).

Connectivity as defined above is an equivalence relation, and the maximal connected
components are called clusters. The size of a cluster is the number of points of Π in that
cluster. We say that the model percolates if there is at least one infinite cluster. We say
that x0 ∈ R

2 is connected to the infinity if there is a point x ∈ Π such that ‖x − x0‖2 < r
and x belongs to an infinite cluster. The probability of having an infinite cluster and that of
the origin being connected to infinity both depend on the parameter r. The trivial coupling
obtained from the inclusion of a disk of radius r′ inside a disk of radius r with the same
centre (for r′ < r) shows that both of these probabilities are non-decreasing in r.

Notation 2. Let Λ(r) denote the number of infinite clusters when the disks are of radius r.

Definition 12. The point process Π is said to have a critical radius 0 < rc <∞ if Λ(r) = 0
a.s. when 0 < r < rc and P (Λ(r) > 0) > 0 when rc < r <∞.

For any point process Π in R
2, the group of translations of R2 acts in a natural way on

Π: a translation T takes the point x ∈ Π to T (x), the resulting point process being denoted
T∗Π. The process Π is said to be translation invariant if T∗Π has the same distribution as Π
for all translations T . The process is said to be ergodic under translations if this action is
ergodic.

For any translation invariant point process, the probability of the origin being connected
to infinity is the same as that for any x ∈ R

2, so by a simple union bound over x ∈ R
2 with

rational co-ordinates, the probability of having an infinite cluster is positive if and only if
the probability of the origin being connected to infinity is positive.

Clearly, Λ(r) is a translation-invariant random variable. If the distribution of Π is ergodic
under translations, Λ(r) is a.s. a non-negative integer constant. In particular, the probability
of having at least one infinite cluster is either 0 or 1.

4.3 The underlying graph

Consider the Boolean model with radius r on a point process Π in R
2. By the underlying

graph g of this model we mean the graph whose vertices are the points of Π and two vertices
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x, y are neighbours iff ‖x − y‖2 < 2r. By Φ(g) we denote the subset of R2 formed by the
union of the points of Π and straight line segments drawn between two such points whenever
their mutual distance is less than 2r. Since the two point intensity measure of Π is absolutely
continuous with respect to the Lebesgue measure on R

2 ×R
2, therefore the probability that

there are two points of Π at a mutual distance 2r is 0. Hence, if a take a large open disk D,
then there exists an ε > 0 such that for each point x of Π in D we have B̃(x; ε) ⊂ D and x

can be moved to any new position in the open disk B̃(x; ε) without changing the connectivity
properties of g. In other words, let Φ map each point of the configuration inside D to any
point in its ε neighbourhood, and let it map every other point of the confugration to itself.
Then Φ(x) and Φ(y) are neighbours if and only if x and y are neighbours.

4.4 Discrete approximation and the critical radius

The first step in our study of continuum percolation will be to relate our events of interest to
events defined with respect to a grid, so that the problem becomes amenable to techniques
similar to the ones that are effective in studying percolation in discrete settings.

Definition 13. Let θ > 0 be a parameter, to be called base length, and consider the grid
formed by θZ2 (which includes the horizontal and vertical edges connecting the points of θZ2).
Each θ× θ closed square (including the interior) whose vertices are the points of θZ2 will be
referred to as a standard square. Two (distinct) standard squares are said to be neighbours
if their boundaries intersect. So, each standard square has 8 neighbours.

Notation 3. For x ∈ R
2 and R > 0, we will denote by B̃(x;R) the open disk with centre x

and radius R.
We define WR, the box of size R, to be the set WR := {x ∈ R

2 : ‖x‖∞ = R}.
For a subset K ⊂ R

2, we will denote by K the topological closure of K.

Definition 14. Fix a radius r > 0 and a base length θ > 0.
A continuum path γ of length n is defined to be a piecewise linear curve whose vertices

are given by the sequence of points xj ∈ Π, 1 ≤ j ≤ n such that xi+1 is a neighbour of xi for
1 ≤ i ≤ n− 1.

For a continuum path γ with vertices {x1, · · · , xn}, we denote by S(γ) the set
⋃n

i=1 B̃(xi; r).
A lattice path Γ of length n is defined to be a sequence of standard squares {Xj}nj=1 such

that Xi+1 is a neighbour of Xi for 1 ≤ i ≤ n − 1. A lattice path {Xi}ni=1 is said to be
non-repeating if Xi 6= Xj for i 6= j.

For a lattice path Γ = {X1, · · · , Xn}, we denote by V (Γ) the set
⋃n

i=1Xi.
We say that a continuum path γ connects the origin toWR if 0 ∈ S(γ) and S(γ)∩WR 6= ϕ.

For R ∈ Z+, we say that a lattice path Γ connects the origin to WRθ if 0 ∈ V (Γ) and
V (Γ) ∩WRθ 6= ϕ.

With these notions in hand, we are ready to state:
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Proposition 4.4.1. Consider the Boolean percolation model X(Π, r). Let the base length θ =
r/
√
8. Suppose, for some L ∈ Z+, there exists a non-repeating lattice path Γ = {X1, · · · , Xn}

that connects 0 to WLθ with each Xi containing at least one point in Π. Then there exists a
continuum path γ that connects 0 to WLθ.

Proof. The result follows from the fact that with θ = r/
√
8, disks of radius r centred at any

two points in adjacent standard squares intersect with each other. This is true because the
maximum possible distance between two points in adjacant standard squares is θ

√
8. �

Proposition 4.4.2. Fix a base length θ and an integer k ≥ 0. For any 0 < r < θ/18k the
following happens: Suppose in X(Π, r) there exists a continuum path γ connecting 0 to WLθ

(where L ∈ Z+). Then there exists a non-repeating lattice path Γ connecting 0 to WLθ such
that each standard square in Γ contains ≥ k points ∈ Π.

Proof. Let r be a radius such that k < θ/18r, and let γ be a continuum path with vertices
{xi}ni=1 connecting 0 to WLθ. A finite lattice path Γ1 is said to be contained in another finite
lattice path Γ2, denoted by Γ1 ⊂ Γ2, if V (Γ1) ⊂ V (Γ2).

Now, consider the set Ξ of all finite lattice paths Γ (non-repeating or otherwise), 0 ∈ V (Γ),
such that each standard square in Γ contains ≥ k points. Clearly, ⊂ is a partial order on
Ξ. Moreover, Ξ is non-empty, because γ must reach L∞ distance θ from the origin, and in
doing so must have at least θ/2r points ∈ Π. The 4 standard squares whose closures contain
the origin contain these θ/2r points, so at least one of them must have at least θ/8r ≥ k
points in Π.

Let Γ be a maximal element in Ξ under ⊂. If Γ connects 0 to WLθ then we are done.
Otherwise, we define the surround Σ(Γ) of Γ as the union of all standard squares which are
neighbours of the standard squares in Γ and are contained in the unbounded component of
the complement of Γ. Since γ connects 0 to WLθ, therefore γ intersects ∂Σ(Γ) \ V (Γ). Let j
be the least index ∈ [n] such that the line segment (xj−1, xj ] intersects ∂Σ(Γ) \ V (Γ). Since
r < θ, we must have xj−1 ∈ Int (Σ(Γ)), where Int (H) denotes the interior of a set H. Let
σ be a standard square in Σ(Γ) such that σ contains xj−1. Consider the continuum path
γ′ with vertices {xj , xj−1, · · · , xi} where i is the largest index ≤ j − 1 such that xi ∈ Γ. In
other words, we trace the vertices of γ backwards from xj until we are in Γ. Now the part
of γ′ contained in σ and its neighbouring standard squares (that are in Σ(Γ)) is of length at
least θ, therefore it has at least θ/2r points ∈ Π contained in these squares. But

Total number of such squares (including σ)

≤ 1 + number of standard squares neighbouring σ = 9.

Therefore we have θ/2r points ∈ Π contained in ≤ 9 squares in Σ(Γ). Therefore at least
one square σ′ in Σ(Γ) has at least θ/18r ≥ k points of γ. Let Γ = {Xi}Ni=1 and let σ′ be a
neighbour of Xj ∈ Γ. We define a new lattice path Γ′ ∈ Ξ by

Γ′ = {X1, X2 · · · , XN , XN−1, XN−2 · · · , Xj , σ},
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that is, by backtracking along Γ until we reach Xj and then appending σ at the end. Clearly,
S(Γ′) ⊃ S(Γ) as a proper subset, contradicting the maximality of Γ.

Since the procedure described above must terminate after finitely many steps because
WLθ is a compact set, a maximal element Γ of Ξ must connect 0 to WLθ. Such a lattice path
may not be non-repeating. However, we can erase the loops in Γ in the chronological order
to obtain a non-repeating lattice path of the desired kind that connects 0 to WLθ. �

In the next theorem, we provide some general conditions under which there exists a
non-trivial critical radius for the Boolean percolation model

Theorem 4.4.3. Let Π be a translation invariant and ergodic point process with the property
that for any connected set Γ of L standard squares (with base length θ) the following are true:

• (i)For large enough θ, we have

P [Γ contains no points ∈ Π] ≤ exp (−c1(θ)L)

with c1(θ) → ∞ as θ → ∞

• (ii)For large enough θ, we have

P [ Each standard square in Γ has at least k points ∈ Π] ≤ exp (−c2(θ, k)L)

with limθ→∞ limk→∞ c2(θ, k) = ∞.

In the Boolean percolation model X(Π, r) on such a Π, let r denote the radius of each disk
and let Λ(r) denote the number of infinite clusters. Then there exists 0 < rc < ∞ such that
for 0 < r < rc, we have Λ(r) = 0 a.s. and for rc < r <∞ we have Λ(r) > 0 a.s.

Proof. The proof follows a Peierl’s type argument from the classical bond percolation the-
ory, after appropriate discretization using Propositions 4.4.1 and 4.4.2. We first note that
by translation invariance, it suffices to show that P [0 is connected to ∞ with radius r] >
0 or = 0 respectively in order to show that Λ(r) > 0 or = 0 a.s.

We want to show that for small enough r, there is no continuum path connecting 0 to
∞. Consider possible base lengths θ so large that our hypothesis (ii) is valid. Fix base
length θ and k a positive integer large enough such that 2 log 3 − c2(θ, k) < 0 where c2 is
as in (ii). We call a non-repeating lattice path Γ to be k−full if each standard square in
Γ contains ≥ k points ∈ Π. By condition (ii), if there are L distinct standard squares in
Γ, then the probability of Γ being k-full ≤ exp (−c2(θ, k)L). Since each standard square
has ≤ 9 neighbours, therefore the number of non-repeating lattice paths Γ containing 0 and
having L standard squares ≤ 9L. So,

P

[
There is a k-full lattice path of length L containing the origin

]
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≤ exp

(
(2 log 3− c2(θ, k))L

)

The right hand side is summable in positive integers L, hence by Borell-Cantelli lemma,

P

[
There exists a k-full lattice path connecting the origin to WLθ for all L ∈ Z+

]
= 0

If there was a continuum path γ connecting 0 to ∞, then for any integer t > 0 there will
be a continuum path connecting 0 to Wtθ. We now appeal to Proposition 4.4.2 for this k
and find an r small enough such that for any continuum path γ connecting 0 to the box Wtθ

we can find a k-full lattice path Γ connecting 0 to Wtθ. But we have already seen that a.s.
there are only finitely many k-full lattice paths, which gives us a contradiction, and proves
that there is no continuum path connecting 0 to ∞, with probability 1.

By translation invariance, this proves that for small enough r, we have Λ(r) = 0 a.s.
Next, we want to show that for large enough r, with positive probability there exists a

continuum path connecting 0 to ∞. Fix a radius r in the Boolean model. The event that
there exists no continuum path from 0 to ∞, implies by Proposition 4.4.1 that (choosing
the base length to be θ as in Proposition 4.4.1 with θ = r/

√
8) there exists L ∈ Z+ such

that there is no lattice path connecting the origin to WLθ. The last statement implies that
there exists a circuit of standard squares surrounding the origin such that the interiors of
the standard squares in this circuit do not contain any point from Π. Therefore, it suffices
to prove that the probability of this event can be made < 1 by choosing r sufficiently large.

To this end, we recall that the number of circuits of standard squares containing the
origin and consisting of L distinct standard squares is exp (cL) for some constant c > 0. For
details on this, we refer the reader to [BoRi09], Chapter 1, proof of Lemma 2.

The probability that a specific circuit of standard squares surrounding the origin and
containing L standard squares is empty ≤ exp (−c1(θ)L) when base length is θ, which follows
from condition (i) in the present theorem. Therefore,

P

[
There exists an empty circuit surrounding the origin

]
≤

∞∑

L=1

ec(d)Le−c1(θ)L (4.1)

Now, by choosing r large enough, we can make θ large enough (by Proposition 4.4.1), so that
condition (i) would imply that the right hand side of (4.1) is less than 1. This completes the
proof that when r is large enough, 0 is connected to ∞ with positive probability. �

Remark 4.4.1. Theorem 4.4.3 carries over verbatim to d dimensions instead of 2, with
standard squares replaced by d dimensional standard cubes, whose definition is analogous.
The proof works on similar lines.

4.5 Critical radius for Gaussian zeros

In this section we aim to study the Boolean model on the planar GAF zero process. First
of all, we will prove an estimate on hole probabilities and overcrowding probabilities in the
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Gaussian zero ensemble, which is taken up in Section 4.6. It will subsequently be used to
prove the existence of critical radius for the Boolean percolation model on Gaussian zeroes
in Section 4.7.

4.6 Exponential decay of hole and overcrowding

probabilities

The main goal of this section is to prove the following estimate on the hole and overcrowding
probabilities of connected sets composed of standard squares:

Theorem 4.6.1. Let Γ be a connected set composed of L standard squares of side length θ.
Let E and Fk denote the events that that each standard square in Γ has no zeroes and has
≥ k zeroes respectively. Then, for θ bigger than some universal constant, we have :

(i)P [E] ≤ exp (−c1(θ)L) (ii)P [Fk] ≤ exp (−c2(θ, k)L)
where c1(θ) → ∞ as θ → ∞ and limθ→∞ limk→∞ c2(θ, k) = ∞

We will perform a certain Cantor type construction which will be used in proving Theorem
4.6.1. For the rest of this section, the symbol “log” denotes logarithm to the base 2. We will
first perform the construction for a straight line, and then take a product of the construction
along the two axes which will result in a similar construction for a square.

We consider the normalized GAF f ∗(z) = e−
1
2
|z|2f(z). We will make use of the following

almost independence theorem from [NS]:

Theorem 4.6.2. Let F be a GAF. There exists numerical constant A > 1 with the fol-
lowing property. Given a family of compact sets Kj in C with diameters d(Kj), let ρj ≥√
log(3 + d(Kj)). Suppose that Aρj-neighbourhoods of the sets Kj are pairwise disjoint.

Then
F ∗ = F ∗

j +G∗
j on Kj

where Fj are independent GAFs and for a positive numerical constant C we have

P

{
max
Kj

|G∗
j | ≥ e−ρ2j

}
≤ C exp[−eρ2j ]

Define the function h(x) = 2A log(x/2), where A is as in Theorem 4.6.2.
Our construction will be parametrized by two parameters: θ > 0 and 0 < λ < 1.

We will think of θ to be large enough and λ to be small enough; the exact conditions
demanded of θ and λ will be described as we proceed along the construction. It turns out
that the resulting choice of θ and λ can be made to be uniform in all the other variables in
the construction (like the length L), and it suffices to take λ smaller than some universal
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constant and θ large enough, depending on λ. To begin with, we demand that θ be so large
that C exp[−e(log θ)2 ] < 1, for C as in Theorem 4.6.2, and

√
log(3 + xθ

√
2) < θ log x for all x ≥ 1. (4.2)

A Cantor type construction: straight line

Let Γ0 be the straight line segment [0, Lθ] (or a horizontal translate thereof). An obvious
analogue for this construction can be carried out for a similar line segment aligned along the
vertical axis.

We start with Γ0. Let ∆0 be the line segment ⊂ Γ0 of length θh(L) such that (∆0)
c ∩ Γ0

consists of two line segments L and R of equal length (Lθ − θh(L)) /2, situated respectively
to the left and right of ∆0. Set Γ

1
1 = L, Γ2

1 = R and Γ1 = Γ1
1 ∪ Γ2

1 . We proceed inductively
as follows. For N = ⌈log λL⌉ > j ≥ 1 where 0 < λ < 1 is to be fixed later, consider Γi

j, 1 ≤
i ≤ 2j. Let ∆i

j be the segment ⊂ Γi
j of length θh(L/2

j) such that Li,Ri ⊂ Γi
j are segments

of equal length, located to the left and right respectively of ∆i
j. It will be clear from the

arguments towards the end of this section that with N as above and λ chosen appropriately,
we must have length(∆i

j)= θh(L/2j) < length(Γi
j) for each i and j; therefore the last step in

the construction makes sense. Each of Li,Ri has length
(
Length (Γi

j)− θh(L/2j)
)
/2.

Doing this for each 1 ≤ i ≤ 2j we have a collection of 2j pairs of line segments Li

and Ri, with a natural ordering among them along the horizontal axis from the left to the
right. Following this order, we denote these segments Γi

j+1, 1 ≤ i ≤ 2j+1. Finally, we define

Γj+1 = ∪2j+1

i=1 Γ
i
j+1. We call ∆j = ∪i∆

i
j as the “removed” portion in the j-th round and Γj+1

to be the “surviving” portion after the j-th round.
This completes our construction for a straight line segment Γ0 of length Lθ. Before

moving on, let us make some observations about the above construction. Recall that N =
⌈log λL⌉, so in the end there are 2N disjoint segments, and λL ≤ 2N ≤ 2λL. The length
of each Γi

j is clearly bounded above by Lθ/2j , and the length of ∆j is bounded above by

2jθh(L/2j) We upper bound the total length of the removed portion ∪N−1
j=0 ∆j by

N−1∑

j=0

Length(∆j) =
N∑

j=1

2j−1 · 2Aθ log(L/2j) = 2A(2N − 1)θ logL− 2Aθ(N − 1)2N − 2Aθ

= 2N+1Aθ (logL−N)− 2Aθ logL+ 2N+1Aθ − 2Aθ ≤ 4A

(
λ log

1

λ

)
Lθ + 4AλLθ

where in the last step we have used

λL ≤ 2N ≤ 2λL. (4.3)

By choosing λ small enough (less than some universal constant), we can ensure that the total
length of the removed portion is ≤ 1

2
Lθ. In particular, this means that for each i and j, we
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have length(∆i
j) < length(Γi

j), justifying that the construction leaves us with a non-trivial
surviving portion at each step.

In ΓN , each final surviving segment Γi
N is of equal length, and since the length of ΓN ≥

1
2
Lθ, therefore each Γi

N is of length ≥ 1
2N+1Lθ ≥ θ

4λ
.

Notice that Aρj-neighbourhoods of Γ
i
j are disjoint where ρj = θ log(L/2j).

A Cantor type construction: square

We now describe an extension of the Cantor type construction in Section 4.6 which applies
to a square B0 of dimension Lθ × Lθ. For each round, we will describe the connected
components surviving at the end of that round.

We begin by noting that B0 = Γ0,1 × Γ0,2 where Γ0,i are straight lines of length Lθ along
horizontal and vertical directions respectively. We perform the construction for a straight
line segment on each of Γ0,1,Γ0,2 and let the surviving set at the end of round j be denoted
by Γj,1 and Γj,2 respectively. Then the surviving set at the end of round j for B0 is given
by Bj := Γj,1 × Γj,2. Now Bj clearly contains 22j connected components (which are in fact
squares of side length ≤ θL/2j); call these Bi

j, 1 ≤ i ≤ 22j, and number them in any order.
By the arguments in Section 4.6, it is clear that the final set BN has area at least 1

4
θ2L2,

has 4N connected components which are squares of side ≥ θ/4λ. For λ smaller than some
absolute constant, each of these connected components contains at least one standard square
of side θ. Moreover

Euclidean Dist(Bi
j, B

i′

j ) ≥ L∞-Dist(Bi
j, B

i′

j ) ≥ 2Aθ log(L/2j) for all i 6= i′, for each j.

Then with ρj = θ log(L/2j), we have that the Aρj-neighbourhoods of the B
i
j-s are disjoint,

and by choice of θ in equation (4.2) we have ρj ≥
√
log(3 + Diam (Bi

j)). In obtaining the

last assertion, we use the fact that Diam (Bi
j) ≤ θL

√
2/2j , recall (4.2) and (4.3) and choose

λ such that 1
2λ

≥ 1. The last condition is to ensure that for each j ≤ N we have x ≥ 1 as in
(4.2).

Functional decomposition in the Cantor construction

We can consider the sets Bi
j to be the vertices of a tree T of depth N where each vertex has

4 children (except at depth N). The children of the vertex Bi
j are the vertices Bi′

j+1 where

Bi′

j+1 are obtained by applying the j + 1-th level of the construction in Section 4.6 to Bi
j.

Corresponding to the tree T , we can perform a decomposition of the normalized GAF f ∗

using Theorem 4.6.2. We start with f ∗, which we also call f ∗
0 . We apply Theorem 4.6.2 to the

compact sets Bi
1, 1 ≤ i ≤ 4 to obtain i.i.d. normalized GAF s f ∗

1,i and corresponding errors
g∗1,i. These are the functions corresponding to the first level of the tree. At the next level,
we perform a similar decomposition on each f ∗

1,i to obtain f ∗
2,j and g∗2,j, 1 ≤ j ≤ 42. So, on

Bi
2 we have f

∗ = f ∗
2,i+ g

∗
2,i+ g

∗
1,i′ where B

i
2 ⊂ Bi′

1 We continue this decomposition recursively
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until we reach level N in T . At level N we have f ∗ = f ∗
N,i+G

∗
i on Bi

N , 1 ≤ i ≤ 2N where the

f ∗
N,i i.i.d. normalized GAFs. The G∗

i are the cumulative errors given by G∗
i =

∑N
k=1 g

∗
k,n(k,i)

where n(k, i) are such that Bi
N ⊂ B

n(k,i)
k . The g∗j,i-s are not independent. However, for

any two distinct vertices Bi
j, B

i′

j at the same level j in T , the errors corresponding to the

descendants of Bi
j and those of Bi′

j are independent. Thus at level j, the 4j functions gj,i
can be grouped into 4j−1 groups Jj,i′′ , 1 ≤ i′′ ≤ 4j−1 (each group consisting of 4 functions
whose vertices have the same parent at level j − 1 in T ). Thus, the index i′′ in Jj,i′′ can
be thought to be varying over the vertices in T at level j − 1. Clearly, Jj,i and Jj,i′ are
independent sets of functions for i 6= i′. We call Jj,i to be “good” if each gj,k ∈ Jj,i satisfies

{maxBk
j
|g∗j,k| ≤ e−ρ2j}, otherwise we call it “bad”. Recall from Theorem 4.6.2 (and a simple

union bound) that P{Jj,i is bad} ≤ C exp[−eρ2j ].
Set pj = C exp[−eρ2j ] as above. Denote by bj the number of Jj,i at level j which are not

good. By a simple large deviation bound, we have, for any 0 < xj < 1,

P(bj > xj · 4j−1) ≤ exp
(
−4j−1Ij

)
(4.4)

where Ij = xj ln
xj

pj
+ (1− xj) ln

1−xj

1−pj
(for reference, see [DZ98] Theorem 2.1.10).

We set xj = 1/4N−j+1 whereas pj = C exp
(
−eρ2j

)
, and

ρj = θ log(L/2j) = ρN + (N − j)θ

Further, θ log 1
2λ

≤ ρN ≤ θ log 1
λ
(recall that N = ⌈log λL⌉). Combining all these facts, we

have

−xj ln pj =
[
exp

(
θ2
(
1

θ
ρN + (N − j)

)2
)

− lnC

]/
4N−j+1

By choosing θ larger than and λ smaller than certain absolute constants, we can make the
numerator of the above expression ≥ 2θ42(N−j+1) for all N ≥ 1 and 1 ≤ j ≤ N . Since |xj| ≤
1/4 for each 1 ≤ j ≤ N , we have |xj ln xj| ≤ 1

4
ln 4. Also, for θ bigger than and λ smaller

than some absolute constants, we have c1 ≤
∣∣∣(1− xj) ln

1−xj

1−pj

∣∣∣ ≤ c2∀j ≤ N where c1 and c2

are two positive constants. The upshot of all this is that by choosing θ larger than a constant
we can make Ij ≥ θ4N−j+1 for all j, where we recall that Ij = xj ln

xj

pj
+ (1− xj) ln

1−xj

1−pj
.

Hence we have

P(bj > xj · 4j−1) ≤ exp
(
−θ4j−14N−j+1

)
= exp

(
−θ4N

)
≤ exp

(
−θλ2L2

)

We denote by Ω the event {bj ≥ xj · 4j for some j ≤ N}. By a union bound over
1 ≤ j ≤ N , we have P(Ω) ≤ N exp (−θλ2L2) ≤ exp (−c2(θ)L2) when θ is large enough,
depending on λ. Here we recall again that N = ⌈log λL⌉.

We call Gi
N to be “good” if each summand g∗k,n(k,i) in G

∗
i =

∑N
k=1 g

∗
k,n(k,i) belongs to good

J-s. Now, each bad J at level j gives rise to 4N−j+1 bad Gi
N -s at level N . Outside the event
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Ω, there are at most xj4
j−1 bad J-s at level j, leading to xj4

N bad G∗
i -s. But

∑N
j=1 xj < 1/2,

hence except with probability ≤ exp (−c2(θ)L2), we have ≥ 1
2
4N ≥ 1

2
λ2L2 good G∗

i -s. For
any good G∗

i , we have, for θ larger than and λ smaller than absolute constants,

supBi
N
|G∗

i | ≤
N∑

k=1

sup
B

n(k,i)
k

|g∗k,n(k,i)| ≤
N∑

k=1

e−ρ2k ≤ 2e−ρ2N ≤ e−5θ2 .

Let the final set of surviving connected square segments be denoted as Υ(B).

A variant of the Cantor type construction for a square

Here we will discuss a variant of the construction for the Lθ×Lθ square, which is as follows.
We begin with a square B′(L), each side of length 2Lθ + 2⌈A logL⌉θ. In the first step, we
remove the horizontal and vertical strips corresponding to the central segments of length
2⌈A logL⌉θ on each side of the square, with A as in Theorem 4.6.2. This leaves us with
four squares of side length Lθ each. We can parametrize the four Lθ × Lθ squares as
B00, B10, B01, B11, where an increase the first subscript denotes an increase in the horizontal
co-ordinate of the centre of the square and an increase in the second subscript denotes the
same for the vertical co-ordinate of the centre. We now repeat the construction for an
Lθ × Lθ square for each of Bij, 0 ≤ i, j ≤ 1. Let Υ(Bij) denote the final surviving set for
the construction on Bij . The final surviving set for B′(L) is denoted by Υ = ∪1

i,j=0Υ(Bij).
The normalized GAF f ∗ on B′(L) has an analogous decomposition on similar lines as the
Lθ × Lθ square case. Further, with probability ≤ C exp(−e(θ logL)2), all the errors g∗ due to
the first step of the construction (from B′(L) to Bij) are ≤ e−(θ logL)2 .

Hence, on similar lines to Section 4.6, we can conclude that for λ smaller than an absolute
constant and θ large enough (depending on λ), in each configuration Υ(Bij) at least

1
2
4N ≥

1
2
λ2L2 surviving components are good, except on an event Ω with P (Ω) ≤ exp (−c(θ)L2). On

each good component in the final surviving set, the accumulated error G∗ satisfies max|G∗| ≤
e−5θ2 .

Proof of Theorem 4.6.1

Suppose we have a connected set Γ of standard squares of base length θ and consisting of
L standard squares. Then there is a square B of side length Lθ, consisting of L2 standard
squares of base length θ, such that Γ ⊂ B. As in Section 4.6, we form a square B′(L) of
side length 2Lθ + 2⌈A logL⌉θ, consisting of standard squares, such that B sits inside B′(L)
as the square B00. Let the final Cantor set on B′(L). after applying the construction of
Section 4.6, be Υ = ∪1

i,j=0Υ(Bij). Recall that the connected components of Υ are squares
of side length ≥ θ/4λ, and each such component contains at least one standard square of
side θ. Moreover, any two of the Υ(Bij)s are isometrically isomorphic with each other under
an appropriate horizontal and/or vertical translation by (L + 2⌈A logL⌉)θ. We select one
standard square from each connected component in Υ(B00), and in the other Υ(Bij)s we
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select those standard squares which correspond under the above isomorphisms to the ones
chosen in Υ(B00). The resulting union of standard squares for each Bij will be denoted by
Υ′(Bij) and we define Υ′ = ∪Υ′(Bij). So, given any standard square σ in Υ′(B00), there
are four isomorphic copies corresponding to σ in Υ′ under the translations mentioned above,
with one copy in each Υ′(Bij).

Denote by Υ′ + (m,n) the translate in R
2 of the set Υ′ by the vector (mθ, nθ). Let I

be the set of such translates of Υ′ by (m,n) in the range 0 ≤ m,n < L+ 2⌈A logL⌉. Given
any standard square σ in Υ′(B00), under horizontal or vertical translations by L+2⌈A logL⌉
there are four isomorphic copies corresponding to σ in Υ′ (one in each Υ′(Bij)) and it is
easy to check under the action of I, any given square in B′(L) (and hence any given square
in Γ) is covered by exactly one of these. The total number of such σ (identifying copies
isomorphic in the above sense) is 4N ≥ λ2L2, while |I| = (L+2⌈A logL⌉)2. Hence, choosing
a translate from I uniformly at random, the probability that a particular standard square
in Γ is covered ≥ λ2L2/(L+ 2⌈A logL⌉)2 ≥ κ = κ(λ) > 0. Hence the expected fraction of Γ
covered by a random translate of Υ′ is also ≥ κ. This implies that there exists a translate
T (Υ′) of Υ′ (chosen from I) such that it covers at least a fraction κ of the standard squares
in Γ. The same translation gives rise to a translate T (Υ) of Υ.

We call a constituent standard square of T (Υ′) to be “good” if the corresponding G∗
k

in T (Υ(Bij)) (from the Cantor type construction applied to the square T (B′(L))) is good
as defined in Section 4.6. But in each T (Υ(Bij)), we have that except on an event Ω such
that P(Ω) < e−c(θ)L2

, we have at least 1
2
of the G∗

k-s to be good. Let Γ(i), 1 ≤ i ≤ L denote
the standard squares in Γ. Call a standard square to be “empty” or “full” according as it
contains respectively 0 or ≥ k points in F . Call Γ “empty” or “full” if all standard squares
in Γ are empty or full. In what follows, we treat the state “empty”, but in all steps it can
be replaced by the state “full”.

We observe that

{Γ is empty } ⊂ Ω ∪ { Some subset of ⌊κL⌋ standard squares in Γ,

namely those in T (Υ′) ∩ Γ, are good and empty }
We have, via a union bound,

P(Γ is empty) ≤ P(Ω) +
∑

S
P




⋂

{Γik
}∈S

{Γik is empty and good }




where the last summation is over S which is the collection of all possible subsets {Γik} of
⌊κL⌋ standard squares in Γ such that Γik ∈ T (Υ′) for all k. Since there are at most 2L

subsets of standard squares in Γ, it suffices to show that for any fixed {Γik} ∈ S, we have
for large enough θ

P




⋂

{Γik
}∈S

{Γik is empty and good }


 ≤ exp (−c1(θ)L) (4.5)
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P




⋂

{Γik
}∈S

{Γik is full and good }


 ≤ exp (−c2(θ, k)L) (4.6)

where c1(θ) → ∞ as θ → ∞ and limθ→∞ limk→∞ c2(θ, k) = ∞.
Let Aik denote the event that {Γik is empty and good }. Recall that Γik being empty

implies that f ∗|Γik
does not have any zeros, and Γik being good implies that maxΓik

|G∗
ik
| ≤

e−5θ2 , where G∗
ik

are the cumulative errors in the cantor set construction, as estimated in
Section 4.6.

Define A′
ik

to be the event that f ∗
ik
|Γik

does not have any zeros. Here f ∗
ik

are the final
independent normalized GAFs obtained in the Cantor set construction. Clearly, the events
A′

ik
are independent.
We will show that Aik ⊂ A′

ik
∪Ωik , where the Ωik-s are independent events with P(Ωik) <

e−cθ. To this end, we note that on Γik , we have f
∗ = f ∗

ik
+G∗

ik
, and also maxΓik

|G∗
ik
| ≤ e−5θ2 .

Applying Corollary 4.6.4 to the square Γik , we deduce that except for a bad event Ωik of
probability ≤ e−cθ, we have |f ∗

ik
| > e−5θ2 on ∂Γik . Hence the equation f ∗ = f ∗

ik
+G∗

ik
on Γik

along with Rouche’s theorem implies that f ∗ and f ∗
ik
have the same number of zeros in Γik .

So, on Aik ∩ Ωc
ik

we have that A′
ik

holds, in other words Aik ⊂ A′
ik
∪ Ωik , as desired. The

Ωik-s are independent since Ωik is defined in terms of f ∗
ik
which are independent normalized

GAFs.
Therefore we can write, for a fixed {Γik} ∈ S

P

(
⋂

k

Aik

)
≤ P

(
⋂

k

(
A′

ik
∪ Ωik

)
)

=
∏

k

P
(
A′

ik
∪ Ωik

)

But it is not hard to see that for the state “empty” we have P
(
A′

ik
∪ Ωik

)
≤ P

(
A′

ik

)
+

P (Ωik) ≤ e−c(θ) where c(θ) → ∞ as θ → ∞. It is also easy to see that if we consider
the state “full” instead of “empty” P(A′

ik
) ≤ e−c(θ,k) where c(θ, k) → ∞ as k → ∞ for

fixed θ, and P(Ωik) ≤ e−cθ. Therefore we have P
(
A′

ik
∪ Ωik

)
≤ exp (−c2(θ, k)) where

limθ→∞ limk→∞ c2(θ, k) = ∞. This proves equations (4.5) and (4.6) and hence completes
the proof of the theorem.

Lower bound on the size of f ∗

Our goal in this section is to establish that with large probability, the size of a normalized
GAF on the perimeter of a circle (or a square) cannot be too small. Of course, there is a
trade-off between the “largeness” of the probability and “smallness” of the GAF, depending
on the radius of the circle or the side length of the square. Such estimates, along with
Rouche’s theorem, would be useful in replacing f ∗|Γik

with the independent f ∗
ik

on “good”
Γik-s in Section 4.6.
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Proposition 4.6.3. Let us consider a disk D of radius R > 1, and let ν > 2. Then

P

(
|f ∗(z)| ≤ e−νR2

for some z ∈ ∂D
)
≤ e−C(ν)R (4.7)

for a C(ν) > 0. Here f ∗(z) = e−
1
2
|z|2f(z) where f is the standard planar GAF.

Proof. First, we show that we can take D to be centred at the origin. Let w be the centre of
D and let D′ be the disk of the same radius as D centred at the origin. Then the random field
|f ∗(z)| for z ∈ D can be re-parametrized as the random field exp

(
−1

2
|z + w|2

)
|f(z + w)|

for z ∈ D′. The latter can be written as e−
1
2
|z|2 exp

(
−ℜ(zw)− 1

2
|w|2

)
|f(z + w)|. But it

is clear from a simple covariance computation that for any fixed w the random fields f(z)
and fw(z) = exp

(
−zw − 1

2
|w|2

)
f(z + w) have the same distribution, and so do |f(z)| and

|fw(z)| = exp
(
−ℜ(zw)− 1

2
|w|2

)
|f(z + w)|. In other words, the random field {|f ∗(z)|}z∈C

has a translation-invariant distribution. Hereafter we assume that D is centred at the origin.
We want to show that |f ∗(z)| ≥ e−νR2

, or equivalently, |f(z)| ≥ e−(ν−1/2)R2
on ∂D except

on an event with probability exponentially small in R. We choose η = ⌈2πR3e(ν+2)R2⌉
equi-spaced points {zj}ηj=1 on ∂D. Then

P

(
|f ∗(zj)| ≤ 2e−νR2

)
≤ ce−2νR2

for all j

since f ∗(z) is a standard complex Gaussian for each fixed z. Consider the event Ω1 =
|f ∗(zj)| > 2e−νR2

for all j ≤ N . By a union bound over the {zj}-s we have for R > 1

P(Ωc
1) ≤ cR3e−(ν−2)R2 ≤ e−c(ν)R2

for some c(ν) > 0.
f ′(z) is a centred analytic Gaussian process on C with covariance Cov(f ′(z), f ′(w)) =

zwezw. Set σ2
R = max2·DVar (f

′(z)) = 4R2e4R
2
. We use Lemma 2.4.4 from [HKPV10] and

apply it to the Gaussian analytic function f ′(2Rz). Using this, we obtain

P (MaxD|f ′(z)| > t) ≤ 2 exp

(
− t2

8σ2
R

)

Setting t = R3/2e2R
2
in the above we get

P

(
MaxD|f ′(z)| > R3/2e2R

2
)
≤ 2e−

1
32

R

Let Ω2 denote the event {MaxD|f ′(z)| ≤ R3/2e2R
2}. The distance between any two consec-

utive zj-s is ≤ 2πR/η ≤ R−2e−(ν+2)R2
. Hence, on Ω2 we have, via the mean value theorem,

|f(z)− f(zj)| < R−1/2e−νR2
for any point z ∈ ∂D where zj is the nearest point to z among

{zj}ηj=1. As a result, for R > 1 we have on Ω1 ∩ Ω2

|f(z)| ≥ |f(zj)| − |f(z)− f(zj)| ≥ 2e−(ν−1/2)R2 −R−1/2e−νR2 ≥ e−(ν−1/2)R2

For R > 1 we have P(Ω1 ∩ Ω2) ≥ 1− e−C(ν)R for some constant C(ν) > 0, as desired. �
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Corollary 4.6.4. Let us consider a square T of side length S > 1, and let ν > 1. Then

P

(
|f ∗(z)| ≤ e−νS2

for some z ∈ ∂T
)
≤ e−C(ν)S (4.8)

for some constant C(ν) > 0. Here f ∗(z) = e−
1
2
|z|2f(z) where f is the standard planar GAF.

Proof. We can follow the proof of Proposition 4.6.3. The maximum of |f ′| on T is bounded
above by the maximum of |f ′| on the circumscribing circle of T , whose radius is S/

√
2 and

for which we can apply Lemma 2.4.4 from [HKPV10]. �

4.7 Proof of Theorem 4.1.2: existence of critical

radius

We simply observe that Theorem 4.6.1 proves that the criteria outlined in Proposition 4.4.3
are valid for F , thereby establishing that a critical radius exists for F .

4.8 Uniqueness of infinite cluster

In this section we will prove that in the supercritical regime for the Boolean percolation
models (G, r) and (F , r), a.s. there is exactly one infinite cluster.

4.9 An approach to uniqueness

We will first describe a proposition which has important implications regarding such unique-
ness for a translation invariant point process Π.

Proposition 4.9.1. Let r > rc for the Boolean percolation model X(Π, r), where Π is a
translation invariant point process on R

2, and 0 < rc < ∞ is the critical radius. For R > 0
let BR denote the set {x ∈ R

2 : ‖x‖∞ ≤ R}. Then the following event has probability 0:

E(R) =

{
There is an infinite cluster C ′ with the property that C ′ ∩ (BR)

c contains

at least three infinite clusters and such that there is at least one point from Π in C ′ ∩BR

}

The proof of the above proposition can be found in [MR96], proof of Theorem 3.6. The
event E(R) from Proposition 4.9.1 corresponds to the event E0(N) there.

A general approach to a proof that a.s. there cannot be inifnitely many infinite clusters
is to show that such an event would imply E(R) would occur for some R.
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4.10 Uniqueness of infinite clusters: Ginibre ensemble

In this section we prove that in X(G, r) with r > rc, we have Λ(r) = 1 a.s.
To this end, we would need to have an understanding of the conditional distribution of

the points of G inside a domain given the points outside. This has been obtained in Chapter
2 Theorems 1.1 and 1.2. We state these results below.

Let D be a bounded open set in C whose boundary has zero Lebesgue measure, and
let Sin and Sout denote the Polish spaces of locally finite point configurations on D and Dc

respectively. Gin and Gout respectively denote the point processes obtained by restricting G
to D and Dc.

Theorem 4.10.1. For the Ginibre ensemble, there is a measurable function N : Sout →
N ∪ {0} such that a.s.

Number of points in Gin = N(Gout) .

Let the points of Gin, taken in uniform random order, be denoted by the vector ζ. Let
ρ(Υout, ·) denote the conditional measure of ζ given Gout = Υout. Since a.s. the length of ζ

equals N(Gout), we can as well assume that each measure ρ(Υout, ·) is supported on DN(Υout).

Theorem 4.10.2. For the Ginibre ensemble, P[Gout]-a.s. ρ(Gout, ·) and the Lebesgue measure
L on DN(Gout) are mutually absolutely continuous.

We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Let r be such that Λ(r) > 0 a.s. In what follows, we will
repeatedly use the fact that if there are two points x, y ∈ R

2 at Euclidean distance d, then
there can be connected to each other by (1 + ⌈d/2r⌉) overlapping open disks of radius r,
such that the centres of no two disks are exactly at a distance 2r.

We will first deal with the case where a.s. Λ(r) > 1 but finite. A similar argument will
show that if 3 ≤ Λ(r) ≤ ∞ then the event E(R) as in Proposition 4.9.1 occurs, with a
suitable choice of R. This would rule out the possibility Λ(r) = ∞, and complete the proof.

We argue by contradiction, and let if possible 1 < Λ(r) < ∞ a.s. Let D1 ⊂ D2 be two
concentric open disks centred at the origin and respectively having radii R1 < R2. Recall
the definition of the underlying graph g from Section 4.3. Let E be the event that:

• (i) There are two infinite clusters C1 and C2 in the underlying graph g such that C1∩D1 6=
∅ 6= C2 ∩ D1 (in the sense that there is at least one vertex from each Ci in D1) .

• (ii) There exists a finite cluster C3 of vertices of g which has ≥ 1 + ⌈2R1/r⌉ vertices
such that C3 ⊂ Int (D2 \ D1), where Int(A) is the interior of the set A.

It is not hard to see that the event E depends on the parameters R1 and R2, and when
R1 and R2 are large enough, we have P(E) > 0. Fix such disks D1 and D2. We denote
the configuration of points outside D2 by ω and those inside D2 by ζ. Let the number of
points in D2 be denoted by N(ω). Any two points of Π inside D1 are at most at a Euclidean
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distance of 2R1, and hence can be connected by at most (1 + ⌈R1/r⌉) open disks of radius
r such that the centres of no two disks are exactly at a distance 2r. We define an event E′

as follows: corresponding to every configuration (ζ, ω) in E, we define a new configuration
(ζ ′, ω) where ζ ′ is obtained by moving (1 + ⌈R1/r⌉) points of C3 to the interior of D1 and
placing them such that in the new underlying graph g′ (for definition see Section 4.3) the
clusters C1 and C2 become connected with each other.

Similar to the observations made in Section 4.3, we can move each point in ζ ′ in a
sufficiently small disk around itself, resulting in new configurations (ζ ′′, ω) such that the
connectivity properties of g′ as well as the number of points in D2 remain unaltered. The
event E′ consists of all such configurations (ζ ′′, ω) as (ζ, ω) varies over all configurations in
E. Observe that for each ω, the set of configurations {ζ ′′ : (ζ ′′, ω) ∈ E

′} constitutes an
open subset of DN(ω), when considered as a vector in the usual way. Since P(E) > 0, by
Theorem 4.10.2 applied to the domain D2, we also have P(E′) > 0. But on E

′, there is
one less infinite cluster than on E. This gives us the desired contradiction, and proves that
P(1 < Λ(r) <∞) = 0.

Had it been the case Λ(r) ≥ 3 a.s., observe that an argument analogous to the previous
paragraph can be carried through with three instead of two infinite clusters (C1 and C2
above). The end result would be that with positive probability we can connect all the three
clusters with each other. If Λ(r) = ∞ a.s. then we carry out the above argument with three
of the infinite clusters, and observe that the event E(R) as in Proposition 4.9.1 occurs with
a set BR where R > R2, on the modified event analogous to E

′ above. This proves that
P(Λ(r) = ∞) = 0. �

4.11 Uniqueness of infinite clusters: Gaussian zeroes

In this section we prove that in X(F , r) with r > rc, we have Λ(r) = 1 a.s.
To this end, we would need to have an understanding of the conditional distribution of

the points of F inside a domain given the points outside. This has been obtained in Chapter
2 Theorems 1.3 and 1.4. Fin and Fout respectively denote the point processes obtained by
restricting F to D and Dc respectively. We state these results below. Some of the notation
is from Section 4.10.

Theorem 4.11.1. For the GAF zero ensemble,
(i)There is a measurable function N : Sout → N ∪ {0} such that a.s.

Number of points in Fin = N(Fout).

(ii)There is a measurable function S : Sout → C such that a.s.

Sum of the points in Fin = S(Fout).

Define the set

ΣS(Fout) := {ζ ∈ DN(Fout) :

N(Fout)∑

j=1

ζj = S(Fout)}
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where ζ = (ζ1, · · · , ζN(Fout)).
Since a.s. the length of ζ equals N(Fout), we can as well assume that each measure

ρ(Υout, ·) gives us the distribution of a random vector in DN(Υout) supported on ΣS(Υout).

Theorem 4.11.2. For the GAF zero ensemble, P[Fout]-a.s. ρ(Fout, ·) and the Lebesgue
measure LΣ on ΣS(Fout) are mutually absolutely continuous.

We are now ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2 : uniqueness of infinite cluster . The proof follows the con-
tour of Section 4.10, with extended arguments to take care of the fact that for F there are
two conserved quantities for local perturbations of the zeros inside a disk : their number and
their sum, unlike G where only the number of points is conserved.

We first show that it cannot be true that a.s. 1 < Λ(r) <∞. We argue by contradiction,
and let if possible 1 < Λ(r) < ∞ a.s. We will define events E and E

′ in analogy to
Proposition 4.10 such that on E

′ there one less infinite cluster than on E and P(E) > 0 and
P(E′) > 0.

Let D1,D2 and D3 be two concentric open disks centred at the origin and respectively
having radii R1 < R2 < R3.

Let E be the event that :
(i)C1∩D1 6= ∅ 6= C2∩D1 for two infinite clusters C1 and C2 (in the sense that there is at least
one vertex from each Ci inside D1)
(ii)∃ a cluster C3 of vertices of the underlying graph g which has ≥ n = 1 + ⌈R1/r⌉ vertices
such that C3 ⊂ Int (D2 \ D1)
(iii)∃ a cluster C4 ⊂ Int (D3 \ D2) with ≥ n′ = ⌈2R2n⌉ vertices (where n is as in (ii) above)
such that

Euclidean dist(vertices in C4, vertices in g \ C4) > 10

(recall that g denotes the underlying graph, for definition see Section 4.3).
It is not hard to see that P(E) > 0 when Ri, i = 1, 2, 3 are large enough. Fix such disks

Di, i = 1, 2, 3. We denote the configuration of points of F outside D3 by ω and those inside
D3 by ζ. Let the number of points in D3 be denoted by N(ω) and let their sum be S(ω).

We start with a configuration (ζ, ω) in E. With the vertices inside D2, we first perform
the same operations as in the proof of Theorem 4.1.1 . However, in F , unlike in G, we need
to further ensure that the sum of the points inside D3 remain unchanged at S(ω) in order
to stay absolutely continuous. We note that due to the operations already performed on the
points inside D2, the sum of the points inside D3 has changed by at most 2R2n, since ≤ n
points have been moved and each of them can move by at most 2R2 which is the diameter
of D2. We observe that we can compensate for this by translating each point in C4 by an
distance ≤ 1 in an appropriate direction. Due to the separation condition in (iii) in the
definition of E, this does not change the connectivity properties of any vertex in g \ C4.

By the observations made in Section 4.3, we can move each point in ζ ′ in a sufficiently
small disk around itself, resulting in new configurations (ζ ′′, ω) such that the connectivity
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properties of g′ as well as the number of the points in D3 remain unaltered. The event E′

consists of all such configurations (ζ ′′, ω) as (ζ, ω) varies over all configurations in E. Observe
that for each ω, the set of configurations {ζ ′′ : (ζ ′′, ω) ∈ E

′} constitutes an open subset of

DN(ω)
3 , when considered as a vector in the usual way. Hence its intersection with ΣS(ω) is an

open subset of ΣS(ω). Since P(E) > 0, by Theorem 4.11.2 applied to the domain D3, we also
have P(E′) > 0. But in E

′, there is one less infinite cluster than in E. This gives us the
desired contradiction, and proves that P(1 < Λ(r) <∞) = 0.

We take care of the case Λ(r) = ∞ as we did in the proof of Theorem 4.1.1. Had it been
the case Λ(r) ≥ 3 a.s., an argument analogous to the previous paragraph can be carried
through with three instead of two infinite clusters (C1 and C2 above), with the end result
that with positive probability we can connect all the three infinite clusters with each other. If
Λ(r) = ∞ a.s. then we carry out the above argument with three of the infinite clusters, and
observe that the event E(R) in Proposition 4.9.1 occurs on the modified event (analogous
to E

′ above) with a set BR where R > R3. This proves that P(Λ(r) = ∞) = 0. �
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Chapter 5

Determinantal processes and
completeness of random exponentials

5.1 Introduction

Any locally finite point set Λ ⊂ R gives us a set of functions

EΛ := {eλ : λ ∈ Λ} ⊂ L2[−π, π],

where eλ(x) = eiλx, i being the imaginary unit. The following question is classical:

Question 1. Does EΛ span L2[−π, π] ?

An equivalent terminology found in the literature to describe the fact that EΛ spans
L2[−π, π] is that EΛ is complete in L2[−π, π]. When Λ is deterministic, this a well studied
problem in the literature. In the case where Λ is random, that is, Λ is a point process, much
less is known. For any ergodic point process Λ, it can be easily checked that the event in
question has a 0-1 law.

In this chapter we provide a complete answer to Question 1 in the case where Λ is the
continuum sine kernel process (see Section 5.2 for a precise definition):

Theorem 5.1.1. When Λ is a realisation of the continuum sine kernel process on R, almost
surely EΛ spans L2[−π, π].

Similar questions can be asked in higher dimensions as well. On C, we consider the
analogous question with Λ coming from the Ginibre ensemble (see Section 5.2 for a precise

definition). An exponential function here is defined as Eλ(z) = eλz and the natural space to
study completeness is the Fock-Bargmann space. The latter space is the closure of the set of
polynomials (in one complex variable) in L2 (γ) where γ is the standard complex Gaussian
measure on C, having the density 1

π
e−|z|2 with respect to the Lebesgue measure. In this case

we prove:
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Theorem 5.1.2. When Λ is a realisation of the Ginibre ensemble on C, a.s. EΛ spans the
Fock-Bargmann space. Equivalently, a.s. in Λ the following happens: if there is a function
f in the Fock-Bargmann space which vanishes at all the points of Λ, then f ≡ 0.

All these questions are specific realisations of the following completeness question that
was asked of any determinantal process by Peres and Lyons in 2009.

Consider a determinantal point process π in a space Ξ equipped with a background
measure µ. Let π correspond to a projection onto the subspace H of L2(µ) in the usual
way, for details, see Section 5.2 and also [HKPV10], [Sos00] and [Ly03]. Let K(·, ·) be the
kernel of the determinantal process, which is also the integral kernel corresponding to the
projection onto H. Consequently, H is a reproducing kernel Hilbert space, with the kernel
K(·, ·). Let {xi}∞i=1 be a sample from π. Clearly, {K(xi, ·)}∞i=1 ⊂ H. In 2009, Lyons and
Peres asked the following question:

Question 2. Is the random set of functions {K(xi, ·)}ni=1 complete in H a.s.?

The answer to Question 2 is trivial in the case where H is finite dimensional (say the
dimension is N), there it follows simply from the fact that the matrix (K(xi, xj))

N
i,j=1 is a.s.

non-singular on one hand, and it is the Gram matrix of the vectors {K(xi, ·)} ⊂ H on the
other. In the case where Ξ is a countable space, this was first proved for spanning forests
by Morris [Mor03]. Subsequently, this has been answered in the affirmative for any discrete
determinantal process by Lyons, see [Ly03]. However, in the continuum (e.g. when Ξ = R

d

and H is infinite dimensional), the answer to Question 2 is unknown.
In this chapter, we answer Question 2 in the affirmative for rigid determinantal processes.

Let π be a translation invariant determinantal point process with determinantal kernelK(·, ·)
on R

d with a background measure µ that is mutually absolutely continuous with respect to
the Lebesgue measure on R

d, such that K(·, ·) is also the projection kernel for the subspace
H that is canonically associated with π. Let the map x → K(x, ·) be continuous as a map
from R

d → H.

Theorem 5.1.3. Let Π be rigid, in the sense that for any ball B, the point configuration
outside B a.s. determines the number of points NB of π inside B. Then {K(x, ·) : x ∈ Π}
is a.s. complete in H.

To see the correspondence between Question 2 and Theorems 5.1.1 - 5.1.2, we can make
appropriate substitutions for the kernels and spaces in Theorem 5.1.3, for details see Section
5.2. The statement of Theorem 5.1.1 is equivalent to Question 2 (with an affirmative an-
swer) under Fourier conjugation. The statement in Theorem 5.1.2 involving the vanishing of
functions on Λ is a result of the fact that the Fock-Bargmann space is a reproducing kernel
Hilbert space, with the reproducing kernel and background measure being the same as the
determinantal kernel and the background measure of the Ginibre ensemble.

Completeness (in the appropriate Hilbert space) of collections of exponential functions
indexed by a point configuration is a well-studied theme, for a classic reference see the sur-
vey by Redheffer [Re77]. However, most of the classical results deal with deterministic point
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configurations, and are often stated in terms of some sort of density of the underlying point
set. E.g., one crucial parameter is the Beurling Malliavin density of the point configuration,
for details, see [Ly03] Definition 7.13 and the ensuing discussion there. Typically, the results
are of the following form : if the relevant density parameter is supercritical, then the expo-
nential system is complete, and if it is subcritical, it is incomplete. E.g., see Beurling and
Malliavin’s theorem, stated as Theorem 71 in [Re77].

However, it is not hard to check that the point configurations of our interest almost
surely exhibit the critical density in terms of the classical results. The critical density,
in most cases, turns out to be equal to the one-point intensity for negatively associated
ergodic point processes (including the homogeneous Poisson process). In this chapter we
have chosen the normalizations for our models such that the one-point intensity (and hence
the critical density) is equal to 1. The critical cases in the deterministic setting are much
harder to handle. E.g., in L2[−π, π], {eλ : λ ∈ Z} is a complete set of exponentials, but
{eλ : λ ∈ Z \ {0}} is incomplete. The study of completeness problems for random point
configurations is much more limited, let alone in the critical case. Nevertheless, when the
densities are super or subcritical, we can either invoke the results in the deterministic setting
(e.g., Theorem 71 in [Re77]), or there is existing literature (see citeCLP Theorems 1.1 and
1.2 or [SU97]). However, at critical densities, which is the case we are interested in, much
less is known. To the best of our knowledge, the only known case is that of a perturbed
lattice, where completeness was established under some regularity conditions on the (random)
perturbations, see [CL97] Theorem 5. Our result in Theorem 5.1.3 answers this question for
natural point processes, like the Ginibre or the sine kernel, which are not i.i.d. perturbations
of Z.

There are other natural examples of determinantal point processes for which similar
questions are not amenable to our approach. E.g., one can consider Question 2 for the
zero process of the hyperbolic Gaussian analytic function, where the answer, either way, is
unknown, because this determinantal point process is not rigid (see [HS10]).

En route proving Theorem 5.1.3, we provide a quantitative expression for the negative
association property for determinantal point processes in the continuum, which is relevant for
our purposes. In the discrete setting, a complete theorem to this effect was has been proved
in [Ly03]. However, we could not locate such a result in the literature on determinantal
point processes in the continuum. In Theorem 5.1.4, we establish negative association for
the number of points for determinantal point processes under minimal regularity hypotheses.

Definition 15. We call two non-negative real valued random variables X and Y negatively
associated if for any real numbers r and s we have

P
(
(X > r) ∩ (Y > s)

)
≤ P

(
X > r

)
P
(
Y > s

)
.

This is equivalent to the complementary condition

P
(
(X ≤ r) ∩ (Y ≤ s)

)
≤ P

(
X ≤ r

)
P
(
Y ≤ s

)
.
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In the theory of determinantal point processes on R
d, by a standard kernel we mean a

Hermitian kernel K(x, y) which is continuous as a function from R
d ×R

d → C and is a non-
negative trace class contraction when viewed as an integral operator from L2(µ) → L2(µ),
where µ is the background measure. For further details, we refer the interested reader to
[HKPV10].

Theorem 5.1.4. For any determinantal point process with a standard kernel on R
d and

the background measure µ absolutely continuous with respect to the Lebesgue measure, the
numbers of points in two disjoint Borel sets are negatively associated random variables, in
the sense of Definition 15.

In addition to the completeness questions for random exponentials defined with respect
to natural determinantal processes, we also answer two questions asked by Lyons and Steif
in [LySt03]. First, we give a little background on a certain class of stationary determinantal
processes on Z

d studied in [LySt03].
Let f be a function T

d → [0, 1]. Then multiplication by f is a non-negative contraction
operator from L2(Td) to itself. Under Fourier conjugation, this gives rise to a non-negative
contraction operator Q : ℓ2(Zd) → ℓ2(Zd). This, in turn, gives rise to a determinantal point
process Pf on Z

d in a canonical way, for details see [Ly03]. For a point configuration ω drawn
from the distribution of Pf , we denote by ω(k) the indicator function of having a point at
k ∈ Z

d in the configuration ω. We denote by ωout the configuration of points on Z
d \ 0

obtained by restricting ω to Z
d \ 0, where 0 denotes the origin in Z

d. For a point process π
on a space Ξ, we denote by [π] the (random) counting measure obtained from a realisation
of π. The k-point intensity functions of a point process, when it exists, will be denoted
by ρk, k ≥ 1. For the processes P

f , all intensity functions exist. Moreover, the translation
invariance of Pf implies that ρk(x1+x, · · · , xk+x) = ρk(x1, · · · , xk) for all x, x1, · · · , xk ∈ Z

d,
in particular, ρ1 is a constant ∈ [0, 1].

In the paper [LySt03] it was conjectured that all determinantal processes obtained in
this way are insertion and deletion tolerant, meaning that both P[ω(0) = 1|ωout] > 0 and
P[ω(0) = 0|ωout] > 0. We answer this question in the negative, showing that for f which is
the indicator function of an interval, this is not true.

Theorem 5.1.5. Let f be the indicator function of an interval I ⊂ T. Then there exists a
measurable function

N : Point configurations on Z \ 0 → N ∪ {0}

such that a.s. we have ω(0) = N(ωout). Consequently, the events {P[ω(0) = 1|ωout] = 0}
and {P[ω(0) = 1|ωout] = 0} both have positive probability (in ωout).

We end by answering another question from [LySt03], where we demonstrate that “almost
all” functions f can be reconstructed from the distribution P

f .
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Theorem 5.1.6. Define E to be the set of functions

E := {f ∈ L∞(T) : 0 ≤ f(x) ≤ 1 for almost every x ∈ T}.

Then P
f determines f up to translation and flip, except possibly for a meagre set of functions

in the L∞ topology on E .

For any (as opposed to “almost all”) function f , we prove that Pf determines the value
distribution of f .

Proposition 5.1.7. For any f ∈ E , Pf determines the value distribution of f . This is true
for P

f defined on Z
d for any d ≥ 1.

5.2 Definitions

In this section, we give precise descriptions of the models under study.
A determinantal point process on a space Ξ with background measure µ and kernel

K : Ξ × Ξ → C, is a point process whose n-point intensity functions (with respect to the
measure µ⊗n) is given by

ρn(x1, · · · , xn) = det
(
K(xi, xj)

n
i,j=1

)
.

The kernel K induces an integral operator on L2(µ), which must be locally trace class and,
additionally, a positive contraction. An interesting class of examples is obtained when the
integral operator given by K is a projection onto a subspace H of L2(µ).

Our first example is the Ginibre ensemble, which is obtained as above with K(z, w) =
ezw, dµ(z) = e−|z|2dL(z) and H is the Fock-Bargmann space ⊂ L2(µ) (here L is the Lebesgue
measure on C). For every n, we can consider an n × n matrix of i.i.d. complex Gaussian
entries. The Ginibre ensemble arises as the weak limit (as n → ∞) of the point process
given by the eigenvalues of this matrix. The continuum sine kernel process is given by
K(x, y) = sinπ(x−y)

π(x−y)
, µ = the Lebesgue measure on R, H = the Fourier conjugates of the set

of L2 functions supported on [−π, π]. The continuum sine kernel process arises as the bulk
limit of the eigenvalues of the Gaussian Unitary Ensemble (GUE).

For greater details on these processes, see [HKPV10].

5.3 Completeness of random function spaces

In this Section, we prove Theorem 5.1.3. Due to the connections discussed in the introduc-
tion, this will automatically establish Theorems 5.1.1 and 5.1.2. On the way, we provide a
proof of Theorem 5.1.4.

Before the main theorem, we establish a preparatory result.
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Proposition 5.3.1. Suppose Π is a rigid point process, in the sense that for any ball B,
the point configuration outside B a.s. determines the number of points NB of Π inside B.
Assume that for any ball B, E [NB] <∞. Let A(r) denote the closed annulus of thickness r
around B, and let Π|A(r) denote the point process in A(r) obtained by restricting Π to A(r).
Then we have

E
[
NB

∣∣Π|A(r)

]
→ NB (5.1)

a.s. as r → ∞.

Proof. This follows from Levy’s 0-1 law and the convergence of the Doob’s martingales
Mr := E

[
NB|Π|A(r)

]
, r ≥ 0 of NB, as r → ∞. Note that M∞ = NB because Π is rigid. �

Proof of Theorem 5.1.4. We will use an appropriate discretization argument to invoke the
result for the discrete case (see Theorem 8.1, [Ly03]), and pass to the continuum limit.

Let A,B be disjoint Borel sets in R
d and r, s be two non-negative integers. We intend to

prove
P ((N(A) ≤ r) ∩ (N(B) ≤ s)) ≤ P (N(A) ≤ r)P (N(B) ≤ s) (5.2)

First of all, we can assume the sets A,B to be contained in a compact d-dimensional
cube D, the general case can easily be deduced from this by considering A ∩D and B ∩D

and letting D ↑ R
d; the probabilities in (5.2) are converge to the appropriate limits under

this procedure.
On L2(µ|D) we have K is again a standard kernel and µ|D is clearly absolutely continuous

with respect to Lebesgue measure restricted to D. Therefore, by Mercer’s theorem we have
an eigenvector expansion for the kernel

K(x, y) =
∑

λi↓0
λiφi(x)φi(y) (5.3)

where φi are the eigenvectors and λi the corresponding eigenvalues for K acting from L2(µ|D)
to itself. For brevity, from here on we will drop the subscript D and pretend that µ is a
measure supported on D.

Both sides of (5.2) are continuous in the kernel K, in the sense that if Kn is a sequence of
standard kernels converging to K as continuous functions (i.e., in the sup norm) on D×D,
then the corresponding probabilities in (5.2) converge to that of K. This follows from the fact
that the convergence of Kn-s to K in the sup norm implies the convergence in distribution
of the corresponding determinantal point processes. This enables us to replace K by finite
truncations of the expansion (5.3). Since K is a standard kernel, we have 0 < λi ≤ 1.
However, for technical reasons we will assume that λi < 1 for all i. The general case can be
easily recovered by taking limits λi ↑ 1 for the eigenvalue 1, this can again be justified by
the regularity of (5.2) under K.

We have thus reduced to the case when K(x, y) =
∑N

i=1 λiφi(x)φi(y) where N is a positive
integer and 0 < λi < 1, without loss of generality say λ1 ≥ λ2 ≥ · · · ≥ λN . Moreover, the
background measure lives on D.
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For a positive integer m, we divide each side of D into m equal parts, and index the
resulting sub-cubes by Di; i = 1, 2, · · · , n = md. We define a measure µn on [n] by setting
µn(i) = µ(Di). If the centre of Di is xi, then we define a function Kn : [n] × [n] → C by
Kn(i, j) = K(xi, xj)

√
µn(i)µn(j).

We claim that for n large enough, Kn as defined above is a non-negative contraction on
ℓ2n (where ℓ2n is the space of n-tuples of complex numbers equipped with the standard L2

metric ‖ · ‖2). To see this, consider the quadratic form Q(a1, · · · , an) =
∑n

i,j=1 aiajKn(i, j).
Clearly, the matrix Kn is Hermitian, and we intend to show that |Q(a1, · · · , an)| ≤ 1 when
‖(a1, · · · , an)‖2 ≤ 1. Observe that the ai for which µn(i) = 0 do not affect Q, so we can
scale ai by

√
µn(i) and consider the form Q′(a′1, · · · , a′n) =

∑n
i,j=1 a

′
ia

′
jKn(i, j)

√
µn(i)µn(j).

We want to maximise |Q′(a′1, · · · , a′n)| over
∑n

i=1 |a′i|2µn(i) ≤ 1. We compare Q′(a′1, · · · , a′n)
with the integral I(a′) =

∫ ∫
D×D

a′(x)K(x, y)a′(y)dµ(x)dµ(y), where a′(x) =
∑n

i=1 a
′
iχDi

(x).
Here χDi

is, as usual, the indicator function of Di. For any δ > 0, by taking n large enough,
we can ensure that sup(x,y)∈Di×Dj

|K(x, y)−K(xi, xj)| < δ, hence

|I(a′)−Q′(a′1, · · · , a′n)| ≤ δ

(
n∑

i=1

|a′i|µn(i)|
)2

≤ δ

(
n∑

i=1

|a′i|2µn(i)

)(
n∑

i=1

µn(i)

)
≤ δµ(D)

The last step in the above computation uses the Cauchy Schwarz inequality. Further, note
that since the operator norm of K as an integral operator on L2(µ× µ) is λ1 < 1, therefore,
|I(a′)| ≤ λ1 < 1, because the norm of the function x → a′(x) in L2(µ) is ≤ 1. Hence, for
large enough n, we can have δ small enough such that

|Q′(a′1, · · · , a′n)| ≤ I(a′) + δµ(D) ≤ λ1 + δµ(D) ≤ 1.

Hence for n large enough, Kn is a contraction.
On the other hand, (K(xi, xj))

n
i,j=1 is a non-negative definite matrix, a fact clear from the

representation (5.3) of K with λi ≥ 0. Since Kn(i, j) = K(xi, xj)
√
µn(i)µn(j), therefore the

matrix (Kn(i, j))
n
i,j=1 is also non-negative definite, being the Hadamard product of the two

non-negative definite matrices (K(xi, xj))
n
i,j=1 and

(√
µn(i)µn(j)

)n
i,j=1

. This proves that the

matrix Kn is indeed a non-negative contraction.
Also, notice that it follows from the definition of Kn that, for n ≥ N , the rank of Kn is

(at most) N , because the rank of K is N . In particular, the rank of Kn remains fixed as n
grows; this fact will be referred to later.

Thus, we can consider a discrete determinantal process Pn on [n] given by the contraction
Kn (acting on ℓ2([n])). From Theorem 8.1 [Ly03] we know that such a process satisfies

Pn ((N(S1) ≤ r) ∩ (N(S2) ≤ s)) ≤ Pn (N(S1) ≤ r)Pn (N(S2) ≤ s) (5.4)

where S1 and S2 are any two disjoint subsets [n] and N(S1) is the number of indices ∈ S1

obtained in a random sample from Pn.
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To obtain the final result, we fix two disjoint subsets A and B of D which are finite unions
of dyadic subcubes of D. It suffices to prove (5.2) for such sets because of the regularity of
both sides of (5.2) under approximations Ak ↑ A. Now, for large enough dyadic partition
of size n (such that A and B can be expressed as the union of dyadic sub cubes from this
partition), we consider the corresponding determinantal process Pn.

Let us denote by An and Bn the set of indices corresponding to the sub cubes (in the
dyadic partition of size n) of the sets A and B respectively. As before, let N(An) denote
the number of indices in An obtained in a random sample from Pn. Applying the inequality
(5.4), we can write

Pn ((N(An) ≤ r) ∩ (N(Bn) ≤ s)) ≤ Pn (N(An) ≤ r)Pn (N(Bn) ≤ s) .

All that remains to show is that the random variable (N(An), N(Bn)) (under Pn) converges
in distribution to the random variable (N(A), N(B)) (under P).

To this end, we use Laplace functionals. For any non-negative reals t1 and t2, we consider
the quantity Ψn(t1, t2) = E[exp(−t1N(An) − t2N(Bn))]. We will invoke Theorem 1.2 and
Remark 2.2 in [ShTa03]. As per the notations used in [ShTa03], we consider the case α = −1,
(which corresponds to determinantal point processes), R = [n], λ to be the counting measure
on [n], K to be Kn, f(j) = t11An(j) + t21Bn(j) and φ(j) = (1− e−f(j)).

We then appeal to Theorem 1.2 and Remark 2.2 in [ShTa03], and notice that
E[exp(−t1N(An) − t2N(Bn))] can be expressed as a series (as in Remark 2.2 of [ShTa03]).
We also notice that this series in our case is in fact a finite series, because all terms of degree
> N are 0 since the rank of Kn as a matrix is ≤ N .

Also observe that the k-th term of the series is infact a Riemann sum which converges to

(−1)k

k!

∫

Rk

k∏

i=1

ψ(xk)Det [(K(xi, xj))] dµ(x1) · · · dµ(xn),

where R = R
d and ψ(x) = (1− e−f(x)), with f(x) = t11A(x) + t21B(x).

Thus, we have E[exp(−t1N(An) − t2N(Bn))] → E[exp(−t1N(A) − t2N(B))] as n → ∞.
Since all the random variables in the last expression are non-negative integer valued, therefore
we have (N(An), N(Bn)) → (N(A), N(B)) in distribution, as desired.

Since we have (5.4) for each finite n, therefore in the limit as n→ ∞ we have (5.2).
This completes the proof of the theorem.

�

We are now ready to establish the main Theorem 5.1.3.

Proof of Theorem 5.1.3. Let H0 be the random closed subspace of H generated by the func-
tions {K(x, ·) : x ∈ Π} inside L2(µ). We wish to show that a.s. we have H0 = H. It
suffices to prove that K(0, ·) ∈ H0 a.s., where 0 denotes the origin in R

d. Because, by
translation invariance, this would imply that a.s. K(q, ·) ∈ H0 simultaneously for all q ∈ R

d
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with all co-ordinates rational. Then the continuity of the map x→ K(x, ·) would imply that
K(x, ·) ∈ H0 simultaneously for all x ∈ R

d. This implies that H0 = H a.s.

For the points {xi}ni=1 ∈ R
d, let D(x1, · · · , xn) denote Det

[
(K(xi, xj))

n
i,j=1

]
. Then, if

we consider the function K(z, ·) as a vector in the Hilbert space H, the squared norm of the
projection of K(x, ·) on to the orthogonal complement of Span {K(xi, ·), 1 ≤ i ≤ n} is given

by the ratio D(x,x1,··· ,xn)
D(x1,··· ,xn)

. But this is also equal to the conditional intensity p(x|x1, · · · , xn) of
Π at x given that {x1, · · · , xn} ⊂ Π.

Fix an ǫ > 0. For r > 0, denote by Br the ball of radius r centred at 0. Let ωR be the
set of points of Π in BR \Bǫ. For any feasible realisation ΥR of ωR we have

E[ Number of points in Bǫ|ΥR ⊂ Π] =

∫

Bǫ

p(x|ΥR)dµ(x) (5.5)

We now proceed with the left hand side in (5.5) as

E[ Number of points in Bǫ|ΥR ⊂ Π]

=
∞∑

k=1

P[ There are ≥ k points in Bǫ|ΥR ⊂ Π]

≤
∞∑

k=1

P[ There are ≥ k points in Bǫ|ωR = ΥR] (from negative association, see Theorem 5.1.4)

= E[ Number of points in Bǫ|ωR = ΥR]

The inequality above involving negative association follows by applying Theorem 5.1.4
to the point process obtained by conditioning Π to contain ΥR, which is a determinantal
process on R

d having a standard kernel, see [ShTa03] Corollary 6.6. To elaborate this
point, we consider the determinantal point process Π′ (with a standard kernel) obtained
by conditioning Π to contain ΥR. Applying Theorem 5.1.4 to Π′, we get that

P ( There are ≥ k points of Π′ in Bǫ ∩ There is no point of Π′ in BR \Bǫ)

≥ P ( There are ≥ k points of Π′ in Bǫ)P ( There is no point of Π′ in BR \Bǫ) .

Since ΥR is obtained as a realization of the full point configuration of Π in BR \Bǫ, therefore
a.s. in ΥR, we have P ( There is no point of Π′ in BR \Bǫ) > 0. Hence the last inequality
can be rephrased as

P ( There are ≥ k points of Π′ in Bǫ| There is no point of Π′ in BR \Bǫ)

≥ P ( There are ≥ k points of Π′ in Bǫ) .

Under the conditioning ΥR ⊂ Π, the event that there is no point of Π′ in BR\Bǫ corresponds
to ωR = ΥR. This gives us the desired inequality.
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By Proposition 5.3.1, we have that given any δ > 0, we can find Rδ such that except on
an event Ωδ

1 of probability < δ, we have

|E[Number of points in Bǫ|ωRδ
]−NBǫ | < δ.

But, except on an event Ω2, measurable with respect to ωout and of probability O(ǫd), we
have NBǫ = 0.

Hence, except on the event Ωδ
1 ∪ Ω2, we have

∫

Bǫ

p(x|ΥRδ
)dµ(x) ≤ δ

Letting δ ↓ 0 along a summable sequence, we deduce that a.s. on (Ω2)
c we have

lim
δ→0

∫

Bǫ

p(x|ΥRδ
)dµ(x) = 0.

This is true because, by the Borel Cantelli lemma, the event that Ωδ
1 occurs infinitely often

(along this summable sequence of δ-s) has probability zero.
By Fatou’s lemma, this implies that on (Ω2)

c we have

∫

Bǫ

lim
δ→0

p(x|ΥRδ
)dµ(x) = 0.

This implies that limδ→0 p(x|ΥRδ
) = 0 for almost every x ∈ Bǫ on the event (Ω2)

c. By
our previous discussion, at the beginning of the proof, regarding the connection between the
squared norms of projections and conditional intensities, this means that on Ωc

2, K(x, ·) ∈ H0

for a dense set of x ∈ Bǫ. By the continuity of the map x→ K(x, ·), we have K(0, ·) ∈ H0 on
the event Ωc

2. Letting ǫ → 0 (which implies Ω2 ↓ φ), we have K(0, ·) ∈ H0 with probability
one. �

5.4 Rigidity and Tolerance for certain determinantal

point processes

Let f be a function T
d → [0, 1]. Then multiplication by f is a non-negative contraction

operator from L2(Td) to itself. Under Fourier conjugation, this gives rise to a non-negative
contraction opertaor Q : ℓ2(Zd) → ℓ2(Zd). This, in turn, gives rise to a determinantal point
process P

f on Z
d in a cannonical way, for details see [Ly03]. For a point configuration ω

drawn from the distribution of Pf , we denote by ω(k) the indicator function of having a point
at k ∈ Z

d in the configuration ω. We denote by ωout the configuration of points on Z
d \ 0

obtained by restricting ω to Zd\0, where 0 denotes the origin. For a point process π on a space
Ξ, we denote by [π] the (random) counting measure obtained from a realisation of π. The
k-point intensity functions of a point process, when it exists, will be denoted by ρk, k ≥ 1.
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For the processes P
f , all intensity functions exist. Moreover, translation invariance of Pf

implies that ρk(x1 + x, · · · , xk + x) = ρk(x1, · · · , xk) for all x, x1, · · · , xk ∈ Z
d, in particular,

ρ1 is a constant in [0, 1].
In this Section we discuss the insertion and deletion tolerance question from [LySt03],

principally the proof of Theorem 5.1.5.
We will use the following general observation for determinantal point processes given by

a projection kernel:

Proposition 5.4.1. Consider a determinantal point process Π in a locally compact space Ξ
with determinantal kernel K(·, ·) and background measure µ, such that K is idempotent as
an integral operator on L2(µ). Let ψ be a compactly supported function on Ξ. Then

Var

[∫
ψ d[Π]

]
=

1

2

∫∫
|ψ(x)− ψ(y)|2|K(x, y)|2 dµ(x)dµ(y) (5.6)

Proof. This follows from the determinantal formula for the two point intensity function of
Π and the idempotence of K. �

Proof of Theorem 5.1.5. We will approach this question by estimating the variance of linear
statistics of Pf . A similar approach has been used in [GP12] to obtain rigidity behaviour for
the Ginibre ensemble and the zero process of the standard planar Gaussian analytic function.

Let ϕ be a C∞
c function on R which is ≡ 1 in a neighbourhood of the origin. Viewed

as a function on Z, ϕ is compactly supported and = 1 at the origin. Let ϕL be defined
by ϕL(x) = ϕ(x/L). Since f is the indicator function of an interval I ⊂ T, therefore the
determinantal kernel K of Pf is an idempotent on ℓ2(Z). Applying Proposition 5.4.1 with
Π = P

f , Ξ = Z, µ = the counting measure on Z and ψ = ϕL we get

Var

[∫
ϕL d[P

f ]

]
=

1

2

∑

i,j∈Z
|ϕ( i

L
)− ϕ(

j

L
)|2|f̂(i− j)|2. (5.7)

Observe that translating the interval I ⊂ T leaves the measure Pf invariant, so, without loss
of generality, we take I to be corresponding to the interval [−a, a] where T is parametrized
as (−π, π] and 0 < a < π. Then f̂(k) = c(a)sinak/k where c(a) is a constant. This implies
that, for some constant c > 0, we have

Var

[∫
ϕL d[P

f ]

]
= c

∑

i,j∈Z
|ϕ( i

L
)− ϕ(

j

L
)|2
(
sin2a(i− j)

)
|i− j|−2. (5.8)

This, in turn, implies (using |sinθ| ≤ 1) that

Var

[∫
ϕL d[P

f ]

]
≤ c

∑

i,j∈Z
|ϕ( i

L
)− ϕ(

j

L
)|2|(i− j)/L|−2L−2. (5.9)
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Hence we have

lim
L→∞

Var

[∫
ϕL d[P

f ]

]
≤ c

∫ ∫ (
ϕ(x)− ϕ(y)

x− y

)2

dL(x)dL(y) (5.10)

where L denotes the Lebesgue measure on R.
For any C

1
c functions ψ1, ψ2 on R, we define the form

Λ(ψ1, ψ2) =

∫ ∫
(ψ1(x)− ψ1(y)) (ψ2(x)− ψ2(y))

(x− y)2
dL(x)dL(y). (5.11)

It is known that Λ(ψ, ψ) is related to the H1/2 norm of ψ.
A simple calculation shows that for any λ > 0, we have Λ((ψ1)λ, (ψ2)λ) = Λ(ψ1, ψ2). In

particular, this implies that Λ(ψ1, (ψ2)λ) = Λ((ψ1)1/λ, ψ2). Further, we will see in Proposition
5.4.3 that Λ(ψ, ψλ−1) → 0 as λ→ 0.

For an integer n > 0, let 0 < λ = λ(n) < 1 be such that for ϕ as above, |Λ(ϕ, ϕλ−i)| ≤ 1/2i

for 1 ≤ i ≤ n. Such a choice can be made because of the observations in the previous
paragraph. Define Φn = (

∑n
i=1 ϕλ−i) /n. Note that Φn ≡ 1 in a neighbourhood of 0 in R,

and the same is true for all scalings Φn
L of Φn whenever L ≥ 1.

Let L = L(n) > 1 be such that

Var

[∫
Φn

L d[P
f ]

]
≤ cΛ(Φn,Φn) +

1

n
.

But Λ(Φn,Φn) = 1
n2

(∑n
i,j=1 Λ(ϕλ−i , ϕλ−j)

)
. Observe that

Λ(ϕλ−i , ϕλ−j) = Λ(ϕ, ϕλ−|i−j|) ≤ 2−|i−j|.

This implies that
n∑

i,j=1

Λ(ϕλ−i , ϕλ−j) ≤ C(ϕ)n.

Hence Var
[∫

Φn
L d[P

f ]
]
≤ C(ϕ)/n.

By the Borel-Cantelli lemma, we have, as n→ ∞,
∣∣∣∣
∫

Φ2n

L d[Pf ]− E[

∫
Φ2n

L d[Pf ]]

∣∣∣∣→ 0. (5.12)

But
∫
Φ2n

L d[Pf ] = ω(0)+
∫
Z\0 Φ

2n

L d[Pf ], and the second term can be evaluated if we know

ωout. E[
∫
Φ2n

L d[Pf ]] can also be computed explicitly in terms of the first intensity measure
of Pf . This implies that from (5.12), we can deduce the value of ω(0) by letting n→ ∞.

Thus, ωout a.s. determines the value of ω(0). Since both the events ω(0) = 0 and
ω(0) = 1 occur with positive probability, therefore the events {P[ω(0) = 1|ωout] = 0} and
{P[ω(0) = 0|ωout] = 0} both have positive probability (in ωout). �
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Remark 5.4.1. For f which is the indicator function of a finite, disjoint union of intervals
⊂ T, we have |f̂(k)| ≤ c/|k|, hence the same argument and the same conclusion as Theorem
5.1.5 holds for such f .

Remark 5.4.2. A similar argument shows that, in fact, for any finite set S ⊂ Z, the point
configuration of Pf restricted to Sc a.s. determines the number of points of Pf in S, when f
is the indicator function of an interval.

A similar class of determinantal point processes in the continuum can be obtained by
considering L2 functions f : Rd → [0.1]. The multiplication operator Mf defined by such a
function f is clearly a contraction on L2(Rd). By considering the Fourier conjugate of such
an operator, we get another contraction on L2(Rd), which gives us a translation invariant
determinantal point process Pf in R

d. One of the most important examples of such a point
process is the sine kernel process on R, which is defined by the determinantal kernel sinπ(x−y)

π(x−y)

with the Lebesgue measure on R as the background measure. Here the relevant function f
is the indicator function of the interval [−π, π]. For details, see [AGZ09]. More generally
we can consider the indicator function of any measurable subset of R, which will give us a
projection operator on L2(R), and hence a determinantal point process corresponding to a
projection kernel. In this setting, we have a continuum analogue of Theorem 5.1.5, which
says that whenever f is the indicator of a finite union of compact intervals in R, we have
that Pf is a rigid process.

Theorem 5.4.2. Let f : R → [0, 1] be an indicator function of a finite union of compact
intervals. Then the determinantal point process P

f in R is “rigid” in the following sense.
Let U ⊂ R be a bounded interval, and let ω be the point configuration sampled from the
distribution P

f . Define the restricted point configurations ωin = ω|U and ωout = ω|Uc. Let
|ωin| be the number of points of ω in U . Then there exists a measurable function

N : Point configurations in U c → N ∪ {0}

such that a.s. we have |ωin| = N(ωout). This holds true for all bounded intervals U .
In particular, the continuum sine kernel process is “rigid” in the above sense.

Proof. By translation invariance, it suffices to take U to be centred at the origin. Let ϕ be
a C∞

c function which is ≡ 1 in a neighbourhood of U . Then we have

Var

[∫
ϕd[Pf ]

]
=

1

2

∫ ∫
|ϕ(x)− ϕ(y)|2|f̂(x− y)|2dL(x)dL(y). (5.13)

But for any compact interval [a, b] we have |1̂[a,b](ξ)| ≤ c|ξ|−1, hence we have

Var

[∫
ϕd[Pf ]

]
≤ C

∫ ∫ (
ϕ(x)− ϕ(y)

x− y

)2

dL(x)dL(y). (5.14)
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Recall the form Λ(·, ·) as in (5.11). Proposition 5.4.3 implies that Λ(ϕ, ϕλ−1) → 0 as λ→ 0.
For an integer n > 0, let 0 < λ < 1 be such that for ϕ as above, |Λ(ϕ, ϕλ−i)| ≤ 1/2i for
1 ≤ i ≤ n. Define Φn = (

∑n
i=1 ϕλ−i) /n. We have Φn ≡ 1 in a neighbourhood of U in R. Due

to our choice of λ, we have Var
(∫

Φnd[Pf ]
)
= Λ(Φn,Φn) = O(1/n). From here, we proceed

on similar lines to the proof of Theorem 5.1.5 and deduce the existence of N as prescribed
in the statement of Theorem 5.4.2. �

We now prove Proposition 5.4.3, which will complete the proof of Theorem 5.1.5.

Proposition 5.4.3. For a C1
c function ϕ, we have Λ(ϕ, ϕλ−1) → 0 as λ→ 0.

Proof. We begin with the expression

Λ(ϕ, ϕλ−1) =

∫ ∫
(ϕ(x)− ϕ(y)) (ϕ(λx)− ϕ(λy))

(x− y)2
dL(x)dL(y). (5.15)

Fix a > 0. Let K be the support of ϕ. We define the function

γ(x, y) =





‖ϕ′‖2∞ if x or y ∈ K and |x− y| ≤ a
4‖ϕ‖2∞
(x−y)2

if x or y ∈ K and |x− y| > a

0 otherwise

(5.16)

For 0 < λ < 1, the integrand in (5.15) is bounded in absolute value from above pointwise
by γ(x, y). To see this, note that the integrand in (5.15) is non-zero only on the set S =
{(x, y) : x or y ∈ K}. On S, we bound the integrand from above as follows: for (x, y) ∈ S
such that |x − y| ≤ a we use |ϕ(x) − ϕ(y)| ≤ ‖ϕ′‖∞|x − y|, for other (x, y) ∈ S we use
|ϕ(x)− ϕ(y)| ≤ 2‖ϕ‖∞.

Since K is a compact set, we have
∫ ∫

γ(x, y) dL(x)dL(y) <∞, (5.17)

where we use the fact that
∫
|t|>a

1
t2
dt = 1

a
.

(5.17) enables us to use the dominated convergence theorem and let λ → 0 in the inte-
grand of (5.15), whence Λ(ϕ, ϕλ−1) → 0. �

Next we show that in any dimension d, whenever f is not the indicator of a subset of Td,
Var

[∫
ϕLd[P

f ]
]
blows up at least like Ld as L→ ∞.

Proposition 5.4.4. Let f : Td → [0, 1] not equal the indicator function of some subset of
T

d (up to Lebesgue-null sets). Then Var
[∫
ϕLd[P

f ]
]
= Ω(Ld) as L→ ∞.

Proof. Let ρ2(·, ·) be the two point intensity function of Pf , given by the formula

ρ2(i, j) = det

(
f̂(0) f̂(i− j)

f̂(j − i) f̂(0)

)
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Let λd denote the normalized Lebesgue measure on T
d. Using the above formula, we can

write the variance in question as:

Var

[∫
ϕLd[P

f ]

]
= E

(∫
ϕLd[P

f ]

)2

−
(
E

[∫
ϕL d[P

f ]

])2

=
∑

i

ϕL(i)
2f̂(0) +

∑

i,j

ϕL(i)ϕL(j)
(
f̂(0)2 − |f̂(i− j)|2

)
−
∑

i,j

ϕL(i)ϕL(j)f̂(0)
2

=
∑

i

ϕL(i)
2

(
f̂(0)−

∑

j

|f̂(i− j)|2
)

+
∑

i,j

(
ϕL(i)

2 − ϕL(i)ϕL(j)
)
|f̂(i− j)|2

=

(
f̂(0)−

∑

k

|f̂(k)|2
)(

∑

k

ϕL(k)
2

)
+

1

2

(
∑

i,j

|ϕL(i)− ϕL(j)|2 |f̂(i− j)|2
)

≥
(
f̂(0)−

∑

k

|f̂(k)|2
)(

∑

k

ϕL(k)
2

)

=

(∫

Td

f(x)dλd(x)−
∫

Td

f(x)2dλd(x)

)(∑

k

ϕL(k)
2

)
.

In the last step we have used Parseval’s identity:
∑

k |f̂(k)|2 =
∫
f(x)2dλd(x). Note that

since 0 ≤ f ≤ 1, we have

(∫
Td f(x)dλd(x) −

∫
Td f(x)

2dλd(x)

)
≥ 0 with strict inequality

holding if and only if f is not the indicator of some subset of Td (upto Lebesgue null sets).
Finally, observe that as L→ ∞ we have

1

Ld

(
∑

k

ϕL(k)
2

)
=
∑

k

1

Ld
ϕ

(
k

L

)2

→ ‖ϕ‖22.

This completes the proof of the proposition. �

5.5 P
f determines f

In this Section we provide the proofs of Theorem 5.1.6 and Proposition 5.1.7

Proof of Theorem 5.1.6. Define F to be the subset of functions of E satisfying the following
conditions:

• (i) Either f̂(k) 6= 0∀k ∈ Z, or f is a trigonometric polynomial of degree N , and
f̂(k) 6= 0 for all |k| ≤ N .

• (ii) For every n ≥ 3 (and n ≤ the degree N in the case of f being a trigonometric
polynomial), we have Arg(f̂(n)) − Arg(f̂(n − 1)) does not differ from Arg(f̂(2)) −
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Arg(f̂(1)) by an integer multiple of π. Further, Arg(f̂(2)) − 2Arg(f̂(1)) is not an
integer multiple of π. Here we consider Arg to be a number in (−π, π].

We claim that the complement of F in E , denoted by G := E \ F, is a meagre subset of E ,
and for f ∈ F, we have P

f determines f up to the rotation and flip. A meagre subset of a
topological space is a set which can be expressed as a countable union of nowhere dense sets.

To show that G is meagre, we will show that it is a subset of a countable union of nowhere
dense sets. Indeed, we can write G as:

G ⊂ ∪iAi ∪n≥3 Bn ∪ C

where
Ai := {f ∈ E : f̂(i) = 0},

Bn := {f ∈ E : Either f̂(k) = 0 for k = 1, 2, n, n− 1 or

Arg(f̂(n))− Arg(f̂(n− 1)) = Arg(f̂(2))− Arg(f̂(1)) + tπ, t an integer with |t| ≤ 4},
C := {f̂(1) = 0 or f̂(2) = 0 or Arg(f̂(2))− 2Arg(f̂(1)) = tπ, t an integer with |t| ≤ 3}.

It is not hard to see that each Ai and Bn are closed sets in L∞(T), being defined by closed
conditions on finitely many co-ordinates of the Fourier expansion (observe that |f̂(n)| ≤
‖f‖∞ for each n, hence f → f̂(n) is a continuous linear functional on L∞(T)). The same
holds true for C. It is also clear that none of the Ai-s or Bn-s or C contain any L∞(T) ball
(since even small perturbations in the relevant Fourier cofficients can lead us outside these
sets), showing that they are nowhere dense. All these combine to prove that G is a meagre
subset of L∞(T).

Let f be a function in F. We begin with the Fourier expansion f :

f(x) =
∞∑

−∞
aje

ijx (5.18)

where i is the imaginary unit.
We make the following observations about the expansion (5.18). First, f is real valued

implies
a−j = aj for all j. (5.19)

Secondly, letting fξ = f(x + ξ) =
∑∞

j=−∞ aj(ξ)e
ijx where ξ ∈ (−π, π] and the addition is in

T, we have
aj(ξ) = aje

ijξ. (5.20)

Finally, setting f̃(x) = f(−x) =∑∞
j=−∞ ãje

ijx, we have

ãj = aj. (5.21)

We want to recover the coefficients aj (up to the symmetries (5.19), (5.20) and (5.21)) from
the measure Pf . We observe that the class of functions F is preserved under these symmetries.
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In particular, a trigonometric polynomial remains a trigonometric polynomial of the same
degree and the same regularity property as demanded in the definition of the class F.

To recover f , we begin by observing that a0 = ρ1, and is therefore determined by P
f .

Further,

ρ2(0, n) =

∣∣∣∣
a0 an
a−n a0

∣∣∣∣ = a20 − |an|2. (5.22)

This implies that Pf determines |an| for all n.
Recall that a1 6= 0 for f ∈ F (unless f is a constant function). Using the symmetry (5.20),

we choose a1 to be a positive real number, equal to its absolute value which is determined by
P
f . If f ∈ F is a trigonometric polynomial of degree 1, then we are done. Else, we proceed

as follows.
For any integer n, we have

ρ3(0, 1, n) =

∣∣∣∣∣∣

a0 a1 an
a−1 a0 an−1

a−n a−(n−1) a0

∣∣∣∣∣∣
(5.23)

Expanding the right hand side along the first row, we have

ρ3(0, 1, n) = a0

∣∣∣∣
a0 an−1

a−(n−1) a0

∣∣∣∣− a1

∣∣∣∣
a−1 an−1

a−n a0

∣∣∣∣+ an

∣∣∣∣
a−1 a0
a−n a−(n−1)

∣∣∣∣ .

Expanding the 2× 2 determinants, we can simplify the above equation to

ρ3(0, 1, n) = 2a1ℜ(anan−1) + g(a0, a1, |an−1|, |an|), (5.24)

where g(w, x, y, z) is a polynomial in four complex variables. Since all quantities in (5.24)
except ℜ(anan−1) are known and a1 > 0, we deduce that P

f determines ℜ(anan−1) for all
integers n.

For n = 2, we have an−1 = a1, and this implies that Pf in fact determines ℜ(a2). Since
|a2| is also known, this implies that P

f determines |ℑ(a2)|, which is non-zero because of
the assumption Arg(f̂(2)) − 2Arg(f̂(1)) is not an integer multiple of π, Arg(f̂(1)) being 0
because f̂(1) is real. Using the symmetry (5.21), we choose a2 such that ℑ(a2) > 0.

We have now spent all the symmetries present in the problem, and our goal is to show
that all the other an-s (n ≥ 0) are determined exactly by P

f . an for n < 0 can then be found
using the symmetry (5.19).

To this end, we apply induction. Suppose n ≥ 3 and we know the values of ak, 0 ≤ k ≤
n − 1. Since f ∈ F, therefore all such ak are non-zero. Computing ρ3(0, 2, n) along similar
lines to ρ3(0, 1, n) we obtain

ρ3(0, 2, n) = 2ℜ(ana2an−2) + g(a0, a2, |an−2|, |an|), (5.25)

where g is as in (5.24).
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If |an| = 0, then we deduce that f is a trigonometric polynomial of degree n− 1, because
f ∈ F (recall condition (i) defining F). In that case, we have already determined f . Else,
an 6= 0, and we proceed as follows.

Since we already know |an|, we need only to determine Arg(an). For any complex number
z 6= 0, |z| and ℜ(z) determines Arg(z) (considered as a number in (−π, π]) up to sign. Hence,
if we know ℜ(zz1) and ℜ(zz2) for two non-zero complex numbers z1 and z2 such that Arg(z1)
does not differ from Arg(z2) by an integer multiple of π, then this data would be sufficient
to determine Arg(z). But this is precisely the situation we have in our hands, with z = an,
z1 = an−1 and z2 = a2an−2. None of them is 0 by condition (i) defining F, and the condition
on the difference of arguments of z1 and z2 follows from condition (ii) defining F. This
enables us to determine Arg(an), and hence an.

This completes the proof. �

Remark 5.5.1. The argument used in proof of Theorem 5.1.6 can also be used to recover
the function f if all its Fourier coefficients are real. E.g., if f is the indicator function of
an interval A in (−π, π], then we can “rotate” f (symmetry 5.20) so that 0 is in the centre
of the interval A. Then all the Fourier coefficients of f are real, and we can identify the
interval A. This argument will also work for any set A which has a point of reflectional
symmetry when looked upon as a subset of T.

Proof of Proposition 5.1.7. Recall that the harmonic mean of a function f : T
d → R is

defined as

HM(f) =

(∫

Td

dλd(x)

f(x)

)−1

,

where λd is the Lebesgue measure on T
d. The fact that we know the distribution P

f implies
that we know the distribution P

tf for any 0 < t < 1, e.g. by performing an independent site
percolation with survival probability t on P

f . By taking complements, that is by considering
the point process of the excluded points (see [LySt03] for more details), this implies that we
know the distribution P

1−tf . But this enables us to recover the harmonic mean HM(1− tf)
of the function 1− tf by the formula

HM(1− tf) = Sup{p ∈ [0, 1] : µp 4f P
1−tf}.

Here µp is the standard site percolation on Z with survival probability p, and µp 4f P
1−tf

means that P1−tf is uniformly insertion tolerant at level p, that is, P1−tf [ω(0) = 1|ωout] ≥ p
a.s. in ωout. For details, we refer to Definition 5.15 and Theorem 5.16 in [LySt03]. But

HM(1− tf)−1 =

∫

Td

dλd(x)

1− tf(x)
.

By expanding the integral on the right as a power series in t, we can recover
∫
Td f

k(x) dλd(x)
for each k ≥ 1. But we have

∫

Td

fk(x) dλd(x) =

∫ 1

0

ξk−1νf (ξ)dL(ξ),
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where L is the Lebesgue measure on R, and νf is the value distribution of f , given by

νf (ξ) = λd({x ∈ T
d : f(x) ≥ ξ}).

Thus we have all the moments of the measure νf (ξ)dL(ξ). Since νf (ξ)dL(ξ) is a compactly
supported measure on the interval [0, 1], its Fourier transform is finite everywhere, and the
moments enable us to compute the Fourier transform. The Fourier transform determines the
measure, and hence νf , uniquely. This enables us to recover the value distribution of f . �
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