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ABSTRACT OF THE DISSERTATION

Multidimensional Spectroscopy of Molecular Polaritons

By

Prasoon Saurabh

Doctor of Philosophy in Chemistry

University of California, Irvine, 2017

Professor Shaul Mukamel, Chair

Molecular polaritons, dressed light-molecular exciton quasiparticles, have di�erent optical

properties compared to excitons. Over the past few decades there has been extensive the-

oretical understanding and experimental demonstration on how the physical and chemical

behaviour of exciton are modi�ed in con�ned optical cavity. Qualitative and quantitative

understanding of nonlinear polariton interactions are at the heart of open questions in the

�eld. These nonlinearities manifests themselves as polariton-polaritons scattering matrices

in the lowest order.

Nonlinear spectroscopic techniques, like double quantum coherence (DQC), can be used

to study these nonlinearities such as vibrational anharmonicities, on-site interactions etc.

A quasiparticle representation of coherent multidimensional optical signals for molecular

polaritons in con�ned cavity (in both time and frequency domain) is developed allowing for

direct observations of these polariton-polariton scattering terms that are explicitly present

in the nonlinear signals.

In spirit of understanding anharmonicities, sum over state (SOS) method is employed to

study modi�cation of vibrational structure of ground electronic states for Amide-I and II

motifs of N-methylacetamide due to varying cavity coupling strengths is done. Again, DQC

signals are studied for illustrations.

xii



Coherent pumping of molecular polaritons introduces several complications in extrating full

structural informaion due to loss of strong coupling, non-equilibrium thermal excitations,

phase-space �lling factors (causing the polaritons to deviate from usual bosonic nature)

and deviations from Hop�eld coe�cients, to name a few. Compelling remedies to the last

two di�cultes is proposed using theoretical framework to rede�ne the interacting polariton

problem into a interacting deformed polaritons form. Discrepancies due to both phase-

�lling factors and deviations from Hop�eld coe�cients are encoded in a single deformation

parameter q.

A modi�ed DQC is derived and an unique measure for e�ective enhancement of this signal

is presented as a function of number of polaritons. This is used to investigate collective

e�ects due to polariton-polariton scattering. Applications are made for varying number of

chromophores (for Np ∈ {1, 2, · · · , 15}) picked from a monomer of Light Harvesting Complex

II (LHCII). It is shown that polariton-polariton scattering for non-bosonic polaritons could

bring the middle polariton branches (MPBs), which are usually embedded deep within the

so called �dark-state", to light.

xiii



Chapter 1

Introduction

�If I could remember name of the particles, I

would be a botanist."

�Ernico Fermi

Much of the observable universe, from quarks to cosmos, is understood by carefully analyzing

the interactions that govern the constituent particles. One of the most fundamental and

physically intuitive ways to interpret observable realities is to study them via �light-matter"

interactions. This is the core essence of spectroscopy. In other words, it is the study of

matter by its interactions with light in order to know their physical and chemical structure.

Of course, linear interactions within matter operators (e.g., terms like a†a) that enters in a

typical material Hamiltonian
∑

i ωia
†
iai +

∑′
i,j Jija

†
iaj, where ωi is matrial frequencies, and

Jij is a linear coupling constant, can be extracted by linear spectroscopic techniques such

as absorption, emission etc. Any nonlinearity in the material Hamiltonian manifests itself

as anharmonicities dictating a plethora of physical properties, from classically motivated

thermal expansion [2] to thermalization of Bose-Einstein Condensates (BEC) [3]. And,

to chemical physics, eg., by changing molecular electronic and vibrational structures thus

controlling the chemical reactions [4, 5]. This nesseciates the development of nonlinear
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optical spectroscopic techniques as has been excellently done in Ref. [6]. The purpose of

the thesis is to extend one of the representations, namely the quasiparticle representation

in Ref. [6] (c.f. Sec. 1.1.1) for basic de�nitions), and to study multidimensional signals of

molecules and molecular aggregates con�ned in optical cavities (c.f. Sec 1.1.2 for survey on

optical cavities).

Quasiparticles, a conceptual construction, provides physically intuitive understanding of sev-

eral collective many-body interactions, for instance, Landau used it to describe super�uid

He [7]. Bound electron-hole pairs form excitons and are often used to describe molecular

excitations. These exctions with localized wavefunctions (Frenkel type) has been wildly

used to describe molecular Hamiltonian for molecular aggregates [8]. When coupled to a

photon in optical cavities they form dressed states called molecular polariton which sets the

basis for the system hamiltonian under investigation in multidimensional spectroscopy [9].

In the next section (Sec. 1.1), we present the background which includes a short survey

on the exciton oscillator model typically used to study large macromolecules and give the

de�nition of the heterodyne detected signal that will be used through out the thesis. The

experimental setup for which we wish to develop the theory is presented along with di�erent

cavity properties de�ning di�erent interaction regimes, which is also done in the section.

Since most signal calculations done in this thesis use parameters for chromophores (or the

whole aggregates) of light harvesting complex II (LHCII) we include a brief discussion on

structure and nomenclature of di�erent singly and doubly excited energy bands of LHCII

for completeness. We conclude this chapter with an outline of rest of the thesis. (Unless

otherwise stated, h̄ = c = 1.)
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1.1 Background

Spectroscopy is commonly formulated by making the semiclassical approximation by treating

the �elds classically along with a careful quantum mechanical treatement of matter [10, 11,

12]. The radiation-matter coupling may be described by the minimal coupling Hamiltonian

where the electromagnetic �elds are represented by vector potential A(r, t) [13] and the

matter properties enter through the current ĵ(r, t) and charge density σ̂(r, t) matrix elements

of the desired transitions [14]. Alternatively, the multipolar hamiltonian is used where the

electromagnetic �eld is represented by the electric and magnetic �elds and matter is expanded

in electric and magnetic multipoles. In most applications, including the theory of the laser

[11], the lowest order of this multipolar expansion, known as the dipole (long wavelength)

approximation is su�cient to account for experimental observations [15].

In recent years, however, there have been rapid developments [16, 17, 18, 19, 20], both

theoretical and experimental, in the �eld of nanooptics [21]. Notable for spectroscopy are,

nanoantenna [16], nanoplasmonic [17, 18, 22] and associated spatial and temporal resolutions

of optical spectra resulting in attosecond local-�eld enhanced (× 10 − 102) spectroscopy

[23, 24, 25, 26, 27]. This is possible because of the nano-scale �eld con�nement (∼ 10nm)

[16], as in the case of nanoantenne, and the spectral bandwith of plasmonic spectra (850−

2200 THz) [17]; and most recently in optical nanocavities [28]. This allows for an interesting

venue for strong molecular interactions with con�ned photons.

Nano-optical �elds are spatially con�ned �elds within optical cavities that may show appre-

ciable position (r)- dependence on the molecular length scale [29, 30, 21, 31, 32]. When the

�eld con�nement is comparable to quantum con�nement of molecular orbitals, the dipole ap-

proximation may not be adequate and higher multipoles are required [33, 16]. To our rescue,

the A2(r, t) that accompanies the required minimal coupling interaction of photon �eld with

the molecules con�ned in the optical cavity can be eliminated using generalized the Power-
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Zineau-Woolley transformation for arbitrary bounded geometries [34]. Furthermore, under

the long wavlength limit, the usual p(r) ·A(r, t) (and A(r, t) ·p(r)) reduces to µ(r) ·E(r, t).

This will be used to de�ne the cavity coupling strength, g (c.f. Sec. 1.1.2), for rest of the

thesis following the justi�cation that the single mode (λ or λ/2) optical cavity for λ � a,

where a is the single molecular size is e�ectively a dipolar interaction. It is still possible to

achieve strong coupling at larger λ ∝ 1000nm if we increase the number of the molecules N

as g scales ∼
√
N . This allows for an easier mapping of the quasiparticle representation of

nonlinear optical signals to incorporate molecules con�ned in optical cavities.

1.1.1 Survey of spectroscopic signals for exciton-oscillator model

We start with a simple model that can be used to study the majority of physical systems with

electronic transitions in large macromolecules (Light Harvesting Complexes) or vibrational

transitions in peptides (like Amide-I and Amide-II motifs) [35, 36]. The model of interest

can often be reduced to a system of N interacting chromophores, we restrict ourselves to

a three level system, usually labelled as S0, S1 and S2 with energies relative to the ground

electronic state S0(ω0 = 0) denoted as ωm and ω′m. The dipole allowed transition are from

the ground electronic state S0 to the �rst excited state S1 or from the �rst excited state S1

to the doubly excited state S2 with values denoted by µm and µ′m.

By introducing the exciton-oscillator operator, we set a precedent in developing the quasipar-

ticle representation of multidimensional optical signals for molecular polaritons (c.f. Chapter

2). The exciton creation operator B̂n for mode n is given by,

B̂†n := |1〉nn〈0|+ κn|2〉nn〈1|, (1.1)
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where |i〉n ∈ {0, 1, 2} represent the basis for ground, singly and doubly excited states re-

spectively. These exciton operators may deviate from usual bosonic commutation relations

due to direct Pauli scattering and also due to the electron-hole exchange tensor [37, 38].

For a three-level system considered in the majority of this thesis, we employ the following

commutation relations,

[B̂n, B̂
†
m] = δmn

[
1−

(
2− κ2

n

2

)
(B̂†m)2(B̂m)2

]
. (1.2)

κm(∈ R) parameterizes the commutation relation [39] and chosing κm = µ′m
µm

allows for a

simpler relation between the exciton operators and the polarization operator P̂ ,

P̂ =
∑
n

µn(B̂n + B̂†n), (1.3)

giving a much simpler expression for the Green's function required to calculate the nonlinear

responses.

With this, we are now able to write the model hamiltonian for molecular aggregates (used

throughout this thesis, unless otherwise stated, in terms of exciton-oscillator operators [39,

8, 40],

H0 =
∑
mn

ΩmnB̂
†
mB̂n +

∑
m

Um
2

(B̂†m)2(B̂m)2. (1.4)

With nearest neighbor hopping term Jmn included in Ωmn = δmnωm + Jmn and Um =

Umm,mm = 2(ω′mκ
−2−ωm). Um provides anharmonicities for κ 6=

√
2. It should be noted that,

the commutation relation (Eqn. 1.2) and model Hamiltonian (Eqn. 1.4) have higher order
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polynomials of exciton operators but are inconsequential for multidimensional spectroscopy

upto third order. Furthermore, this Hamiltonian allows us to view excitons as oscillator

degrees of freedom instead of states. These collective oscillators are quasiparticles that are

often used to describe many body phenomenon in systems exhibiting joint electron-holes

pair e�ects and (as already used earlier) are called excitons.

The interaction between the aggregate Hamiltonian H0 in Eqn. 1.4 with external electric

�elds is given by,

Hint = −E(t).P̂ , (1.5)

where, the total electric �eld,

E(r, t) =
3∑
j=1

Ej(t) exp[ikj.r − iωjt] + c.c., (1.6)

where, ωj, kj and Ej are the frequency, wavevector and temporal envelope of the incoming

�elds j. The explicit r dependence (in Eqn. 1.5) has been ignored for simplicity. For a typical

four wave mixing techniques, three such electric �elds are applied to the sample. The optical

signals are subjected to proper phase matching condition given by, ks = ∓(k1 + k2 + k3).

Mixing the signal generated after j− pulses with an additional heterodyne pulse gives us

the heterodyne detected time-resolved signals, along without destroying the information

about coherences [40, 41, 42]. The delays between the pulses τi are given by ti = τi+1 − τi

for i ∈ {1, 2, 3, · · ·n}. For two dimensional spectroscopy (2D), one of the three time delays

between the pulses is set to 0, allowing a pair of incoming pulse to conincide. The heterodyne
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detected signal is thus given by,

S(t3, t2, t1) =

∫ ∞
−∞

dτEhet(τ)P̂ 3(r, τ), (1.7)

where, Ehet(τ) is heterodyne �eld, and the third order polarization (D̂3(r, τ)) is given in

terms of third order response functions R(t3, t2, t1) as,

P̂ (r, τ) =

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1R(t3, t2, t1)E(r, τ − t3)E(r, τ − t3 − t2)E(r, τ − t3 − t2 − t1).(1.8)

This thesis focuses on heterodyne detected signals derived from set of de�nitions given in

Eqn. 1.7 and Eqn. 1.8 unless otherwise stated. Another detection technique, homodyne

detection, where the phase information is lost can still be used to study phase-insensitive

measurements [43], and more recently in X-ray di�raction measurements [44]. The homodyne

technique is not part of this thesis, interested readers are directed towards Ref. [45] and

references therein.

The third order response function R(t3, t2, t1) in Eqn. 1.8 can be separated in coherent

(Rc(t3, t2, t1)) and incoherent (Rin(t3, t2, t1)) contributions due to sequential processes. Co-

herent contributions are from processes where the entire optical process is completed before

the system relaxes to an exciton population. The detailed derivation of coherent nonlinear

response functions Rc(t3, t2, t1) in closed form based on the generalized Bethe-Salpeter equa-

tions [46], which was originally used for �nding two particle wavefunctions (to study deutron

ground state), for molecular polaritons con�ned to an optical cavity is done in Chapter 2. In

order to proceed, we next discuss what optical cavities are and how molecular polaritons are

formed with an experimental schematic that will be used in the majority of this thesis (c.f.

Sec. 1.1.2). We conclude the chapter with an outline (c.f. Sec. 1.2) for rest of the thesis.

7



1.1.2 Optical Cavity

Accounting for the photon statistics in a con�ned cavity and barring any nonlinear interac-

tions, the underlying physics of a single mode optical cavity can be understood by coupling

of harmonic oscillators as aptly explained in Ref. [47] (and given in Eqn. (1.12)). A simple

optical cavity can be concieved by having two highly re�ective concave mirrors aligned along

the z axis set apart by length Lc such that only λ/2 standing wave of the photon �eld is

con�ned along this axis. The cavity photon energy then is dependent on the plane wavevec-

tor k||. This wavevector that is parallel to kcz is related to the fundamental cavity resonance

frequency ω0 by,

k|| =
ω0

h̄c
sin(θ), (1.9)

where θ is the incident angle of photon pumping. The photon energy is quantized along

kcz = 2π
Lc

for cavity length Lc. The e�ective cavity energy can be controlled by changing the

angle of incidence and is thus given by [48],

ωc = ω0

(
1− sin(θ)2

n2
eff

)−1/2

. (1.10)

Cavity coupling (under the dipole approximation with cavity photon) for a molecular mode

i is given by,

gi =
√
Nµi · ec

√
(h̄ωc/2ε0V ), (1.11)
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Figure 1.1: The scaled energies of upper (UP, red solid line) and lower (LP, blue solid line)
polaritons as a function of ωn/ωc where ωn is molecular energy and ωc is cavity energy (both
black dashed lines) for a single molecule in single mode optical cavity. The ratio is equivalent
to changing e�ective cavity coupling g. The closest gap between the UP and LP at avoided
crossing gives the measure of rabi splitting ∼ 2g.

where, N , is the number of molecules. µi is the transition dipole moment of the mode i, ec

is the cavity electric �eld vector, ε0 is vacuum permittivity, and V is the cavity mode volume

[49, 50, 51, 52, 53, 54, 55].

Strong coupling to the cavity photon is usually considered when g is much larger compared to

the other dephasing constants, namely the cavity decay rate (κ) and molecular dephasing γ.

This can be achieved in one of two ways: a) By decreasing the cavity mode volume V , which

is achievable even for single molecules [50, 56, 57]. For this method, however, one could run

the risk of the breaking dipole approximation and coupling to cavity the photon could be

complicated. A more straight forward way is b) by increasing the number of molecule N as

g scales as
√
N which relies on the simple fact that e�ective dipole µi scales as

√
N . One

of the most recent developments in achieving the strong coupling regime is done by using a

sub-wavelength grating (SWG) for both mirrors in Fig. 1.2 [58]. This is because it can be
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fabricated to have a fraction of thickness of that of usual distributed Bragg re�ector (DBR)

or Fabry-Perot (FB) type cavities allowing for a small e�ective cavity length.

An illustrative example for formation of a molecular polariton can be done by the following

Hamiltonian,

H = ωca
†a+ ωnb

†b+
g

2
(a†b+ b†a), (1.12)

where ωc is the cavity photon energy and can be controlled by the changing incidence angle

θ in Eqn. (1.10). ωn is the molecular eigenvalue and g is the cavity coupling. Upon diag-

onalizing this hamiltonian, we can get the polariton with energies Ωn for upper (UP) and

lower (LP) polariton branches. The eigenvectors associated to them are called the polariton

basis associated to the Hop�eld-Bogolybov coe�cients. The energy dispersion for the upper

and lower polaritons is shown in Fig. 1.1.

Even when con�ned along kcz the electromagnetic �elds are three dimensional. Usually for

quantum dots (1D), quantum wells (2D) or larger molecules (3D) the e�ective polaritons

formed along the measurement axis that is along one of the ki axis in Fig. 1.2 can be viewed

as 0,1 and 2D polaritons respectively due to the intrinsic cylindrical symmetry of the optical

cavity we are interested in.

Possible experimental measurement technique

One of the possible ways to perform multidimensional spectroscopy on molecular polaritons

that are formed as �dressed" (cavity photon + Frenkel excitons) is presented in Fig.1.2.

Molecules (or molecular aggregates) are placed in a single mode cavity with energy described

by Eqn. (1.10) con�ned along cavity axis kcz with cavity incidence angle θ along it. Once
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Figure 1.2: Schematic to illustrate possible experimental setup to measure nonlinear optical
signals discussed in this thesis. The optical cavity with mirrors λ/2 distance apart can allow
for strong coupling to the molecular vibrational and electronic degrees of freedom. Molecular
aggregate with dephasing γ is placed in single mode optical cavity with photon is con�ned
along kcz. κ is cavity dephasing. ki : i ∈ {1, 2, 3, s} are three incoming external �eld wave
vectors and signal mode respectively. ti : i ∈ {1, 2, 3, s} is as described in text and assumed
in Eqn. (1.7).

the molecular polaritons are prepared at thermal equilibrium (which can be achieved with

slighly o�-resonant cavity photon excitations) we can interact the molecular polariton with

the incoming optical �elds with wavevectors ki : i ∈ {1, 2, 3} and detect the signal along ks

axis using known multidimensional spectroscopic techniques (c.f. (1.7).

1.1.3 Light Harvesting Complex II

Light harvesting complex II (LHCII), an assembly pigment protein, constitutes more than

half of the antenna complexes found in plants. Charge separation processes which is done by

channeling the absorbed photons to the reaction center in photosystem II (RC-PSII) initiates

in LHCII. The 2.7 resolution structure [59] reveals that the trimer complex is composed

of three monomeric units, each consisting of 14 chlorophyll, embedded in a protein and

11



residing in thylacoid membranes, as belonging to 8 chlorophyll a (Chla) in the stromal, and

6 chlorophyll b (Chlb) in the lumenal layers.

The arrangements of Chla and Chlb plays a crucial role in the energy transfer which occurs

in a single exciton manifold. The extensive molecular dynamics simulations and �tting to

experimental spectra of linear absorption (LA), transient absorption (TA), linear dichroism

(OD) and circular dichroism (CD) [60, 61, 62, 63, 64, 65, 66]. provides the proper parameters

that will be used in this thesis. It is not structurally clear how some of the Chla connect

the monomers to form a trimer in extensive LHCII networks. The LHCII monomer has 14

singly excited states (usually labelled as ei in this thesis, unless otherwise stated) where i

indexes the singly excited states. There are N(N + 1)/2 = 14 ∗ 15/2 = 105 doubly excited

states (labelled as fi).

The many body dynamics of two and more excitons and its signatures in con�ned optical

cavities will be studied in the majority of the applications presented in this thesis (Except

Chapter 3). The Frenkel exciton Hamiltonian, explained in Sec. 1.1.1, will be used to model

these light harvesting complexes.

1.2 Outline

In chapter 2, we develop the quasiparticle representation of coherent multidimensional spec-

troscopy for molecular polaritons. This technique allows for a faster calculation of nonlinear

signals in terms of polariton-polariton scattering matrices Γ(ω).

In chapter 3, we use the sum over state (SOS) technique to expand time domain two-

dimensional technique, double quantum coherence (DQC) over two polariton eigen basis.

This is used to illustrate how the single and double vibrational polariton manifolds may

be modi�ed by varying the cavity coupling strength. Applications are made to the amide-I
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(CO) and amide-II (CN) bond vibrations of N-methylacetamide con�ned in a single mode

optical cavity.

In chapter 4, the scaling of nonlinear optical signal, particularly double quantum coherence

developed in chapter 2, is revisited when polaritons deviate from bosonic nature. We present

a slightly di�erent formalism based on q-deformed bosons to explicitly incorporate the N ,

where N is the number of molecules in a single mode optical cavity to illustrate the signal

enhancement as a function of the deformation parameter q and N + 1 polariton numbers.

Finally, in chapter 5 we conclude the thesis by summarizing results from each chapter.

Relevant appendices are provided after the bibliography.
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Chapter 2

Quasiparticle representation of

multidimensional signal

Polaritons, dressed light-matter quasiparticles, have di�erent optical properties compared

to excitons [67, 68]. Over the past few decades there has been extensive theoretical under-

standing and experimental demonstratiion on how the physical [69, 67, 70, 71, 72, 73, 53]

and chemical [74, 75, 76, 77, 78, 55, 79] behaviour of exciton are modi�ed in con�ned optical

cavity. Polaritons are well studied in semiconductors [67, 68], and of lately a new surge of

interest has risen in understanding molecular polaritons due to their implications in design-

ing new material [80, 81], controlling non-adiabatic chemical dynamics via modi�ed chemical

potential energy landscapes [78, 77, 82] and energy transfer processes [83, 74]. The key to

all of these interesting phenomena lies in the strength of cavity couplings interactions to QD

[84, 85], atoms [68], molecules [9, 55] or macromolecules [80, 81] con�ned in optical microcav-

ities or nanocavities. Cavity coupling (g) is linear in vacuum �eld operators of the con�ned

optical cavity and scales as
√
N for N number of molecules. This linear coupling is enough

to describe majority of aforementioned interesting physical and chemical modi�cations.
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Some open questions related to moleculare polaritons are: how this cavity coupling strength

(g) e�ects the nonlinear interactions (like polariton-polariton interactions) [86], how they

manifest as physically observable quantities, and how new emergent physical phenomena

like polariton Bose Einstein Condensates (pBEC) [69, 70], modi�ed molecular anharmonic-

ities [9]. Multidimensional spectroscopy can be used to investigate these questions[6]. Mul-

tidimensional spectroscopy have been carried out on 2D studies for electronically excited

states in semiconductor cavity for nano-particles like In0.04Ga0.96As has been demonstrated

[87, 88], electronic exciton-polariton interactions of quantum wells in microcavity [89]. We

have theoretically shown that anaharmonicities in single molecule like N−methylacetamide

can be modi�ed as coupling to cavity and vibrational-polaritons are varied [9]. Authors in

[90] had applied the nonlinear exciton equations (NEE) proposed for Frenkel excitons by [39]

to calculate linear response for molecular aggregates in microcavity. Ab initio calculations

using methods developed in [91, 92, 93].

In this work, we develop the quasiparticle representation of multidimensional optical re-

sponse for molecular polaritons in single mode optical cavities based on equations of motion

for polaritons. Nonlinearity in optical signal is often attributed to nonvanishing polariton-

polariton scattering, Γ(τ). We derive the coherent third order response function in terms of

Γ(τ). Neglecting the population transport, and approximating the the expectation values

of products of polariton operators (p̂i), as 〈p̂j1†p̂2
† · · · p̂1p̂2 · · · 〉 = 〈p̂1

†p̂2
† · · · 〉〈p̂1p̂2 · · · 〉 [94],

naturally allows us to rewrite the multidimensional response functions in terms of polariton-

polariton scattering matrices [65, 95, 39]. under coherent polariton dynamics limit. Nonlin-

ear polariton equations (NPE) are then derived using Heisenberg equation of motion for the

polariton dynamical varibales under truncation schemes used for nonlinear exciton equations

(NEE) [95, 39, 65] allowing us to write self-consistent set of equation in quasiparticle (po-

lariton) basis. Using NEE, the response functions can be derived in terms of exciton-exciton

scattering matrices[39, 65] and has been used for multidimensional spectroscopy of large
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macromolecules [96]. NPE is an extension of NEE to incorporate the single mode cavity

photon variables in joint (�exciton+photon") space.

Controlling the cavity coupling strength contributes to varying nonlinear optical signals due

to modi�cation in chemical and physical properties. In chapter 4, we will investigate third

order signal (in particular, double quantum coherence signal with pulse con�guration ks =

k1 +k2−k3) using quasiparticle representation utilizing nonlinear polartion equations which

will be derived in this chapter. This method avoids explicit calculation of doubly excited

states, reducing the dimensionality because the single polariton dynamical variables scales

as N where as double polariton variables roughly scales as N2 which is less computationally

extensive compared to expanding the optical response funcitons in global eigenspace (c.f.

Sec.2.1). The multidimensional signal thus can be represeted in terms of polariton-polariton

scattering matrices. For nonvanishing positive scattering time δτ > 0 changes the resonant

frequencies for doubly excited polariton manifold without having to explicitly calculate the

two-polariton manifold. Consequently, the computations time is hugely reduced.

2.1 Model Hamiltonian

The electronic excitations for large macromolecules can be modelled using Frenkel exciton

Hamiltonian. It thus su�ces to start with N Frenkel exciton coupled to a single mode optical

cavity (with energy ωc) to derive the non-linear polariton equations, [97, 39, 65, 84].

H0 = H1 +H2. (2.1)
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Where, H1 contains all the linear order interacting terms, and is given by,

H1 = ωca
†a+

∑
k

ωkB
†
kBk +

∑
k 6=l

Jk,lB
†
kBl + g

∑
k

(
a†Bk +B†ka

)
, (2.2)

and, the quadratic terms are contained in H2 given by,

H2 =
∑
kl,mn

Ukl,mnB
†
kB
†
lBmBn. (2.3)

Here, a†(a) are cavity photon creation (annihilation) operators and obeys bosonic commuta-

tion relations, B†k(Bl) are exciton creation (annihilation) operators for mode k(l) and usually

follows commutation relation in Eqn. (1.2), but for simplicity will be assumed to be bosonic

in nature. ωc is the cavity energy. And, ωk is the exciton energy of mode k, Jkl is the

dipole coupling between excitons at sites k and l, Ukl,mn is the exciton-exciton interaction

and �nally, g =
∑

k µk ·ec
√
N
(

πh̄c
n2
effλε0V

)1/2

is the cavity-exciton coupling strength for mode

k with where, µk is the exciton dipole moment, ec is the cavity electric �eld vector, N is

the number of exciton, λ is the cavity resonance wavelength, ε0 is vacuum permittivity and

�nally V = (λ/neff )
3 is the cavity mode volume.

Let us assume |G〉 to be the global ground state containing no optical photon and all molec-

ular aggregates in their respective ground state, i.e., a|G〉 = Bl|G〉 = 0. Furthermore, H1 in

Eqn. (2.2) conserves number of polaritons, i.e., [H1, N̂ ] = 0. We de�ne the total numberop-

erator for polaritons as,

N̂ = a†a+
N∑
j

B†jBj, (2.4)
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and it counts number of excitations with respect to |G〉. This implies that we can canonically

construct eigenstate of H1 using products of linear combination of photons and exciton

operators. We assume Ukl,mn << ωk allowing us to treat H2 as perturbation, thus condition

[H1, N̂ ] = 0 is su�cient to de�ne polariton creation operator (p̂i) for mode i,

p̂†i = Cia
† +

N∑
j

XjiB
†
j . (2.5)

Polariton annihilation operator p̂i for mode i is de�ned as conjugate transpose of p̂†i . Fur-

thermore, coe�cients Ci and Xji are found by Hop�eld-Bogolyuov transformation [98] of

Eqn. (2.2) which is only tractable by numerical diagonalization for N > 5. We next de�ne

the nth excited polariton as,

|ψn〉 = P̂ n
1 |G〉 (2.6)

where, we have used following shorthand,

P̂ n
n′ =

n∏
i=n′

p̂†i . (2.7)

For our purpose, the singly excited polariton states are given by,

|ψ1〉 = P̂ 1
1 |G〉 = p̂†1|G〉 (2.8)
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and doubly excited polariton states are given by,

|ψ2〉 = P̂ 2
1 |G〉 =

(
2∑
i,j

p̂†i p̂
†
j

)
|G〉. (2.9)

Diagonalizing Eqn. (2.2) for �rst excited states, i.e., n = 1, thus give,

H1|ψ1〉 = Ωm|ψ1〉, (2.10)

where, Ωn are the �rst excited polariton energies of mode n. In order to rewrite Eqn. (2.1)

in terms of polariton operators, we must de�ne the commutation relations for polariton

operator. After explicitly writing the polariton creation (annihilation) operators in terms of

exciton and photon operators using Eqn. (2.5) we get at,

[p̂i, p̂
†
j] = δij

(
|Ci|2 +

N∑
j=1

|Xji|2[Bi, B
†
i ]

)
. (2.11)

As explained earlier (and for rest of this chapter), we set [Bi, B
†
i ] = 1 for simplicity. This gives

following easily achievable normalization condition for the Hop�eld-Bogolyubov coe�cients,

|Ci|2 +
N∑
j=1

|Xji|2 = 1 (2.12)
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in order for polariton opeartors to be treated as bosonic in nature with,

[p̂i, p̂
†
j] = δij (2.13)

Complete treatement of Eqn. (2.11) is done in Chapter 4 using q − deformed analytics.

Using Eqn. (2.5) and commutation relations, Eqn. (2.13) we can rewrite Eqn. (2.1) as,

Hpol =
N+1∑
i

Ωip̂
†
i p̂i +

1

2

∑
ij,kl

Ṽij,klp̂
†
i p̂
†
j p̂kp̂l. (2.14)

Where, Ωi are polariton energies, and Ṽij,kl is polariton-polariton interaction term which is

de�ned as,

Ṽij,kl = Ukl,mnX
∗
iX
∗
jXkXl, (2.15)

where, Xi =
∑N

j Xji. The interaction to an ultrashort external �eld E∗(t) = Eδ(t− τ)e−iωτ

given by,

Hint = −
∑
n

µnE∗(t)p̂n +H.c. (2.16)

where, µn is polariton transition dipole moments of mode n and can be found using Hop�eld-

Bogolyubov transformation. Using Eqns. (2.14) and (2.16), the total Hamiltonian of our
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concern then is,

Htot = Hpol +Hint. (2.17)

This completes our de�nition of total Hamiltonian providing the basis for derivation of

nonlinear polariton equations.

2.2 Coherent Nonlinear Polariton Equations

Of course, �nding the global eigenvalues Ω
(g)
n obtained by solving H1|ψn〉 = Ω(g)n|ψn〉 (using

Eqn. (2.10) for global polariton wavefunction c.f. Eqn. (2.6)) requires largers computation

power and sum over state (SOS) techniques expands the optical response in these basis

|ψn〉. An e�cient way to achieve this is by using self-consistent set of nonlinear equations

that relates dynamical polariton variables derived using Heisenberg's equation of motion.

The coherent polariton dynamics can be evaluated by truncating the hierarchial Heisenberg

equations of motions, i.e., idp̂m/dt = [p̂m, Htot]. The expectation values The expectation

values 〈...〉 = 〈ψ0|...|ψ0〉 with respect to polariton ground state |ψ0〉.

To this end, we de�ne general polariton dynamical variables,

P
σij
(n) =

〈
N∏
n

p̂σijn

〉
(2.18)

where i ∈ {0, 1, · · ·m} counts number of dagger (†) terms and j ∈ {0, 1, · · ·m} counts

nondagger terms. (n) is de�ned as indices running over N -tuples. σis m×m matrix where

m is determined by the dimension of the truncation scheme. For our purpose we will set
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m = 3 levels. σ can be thought as the metric for counting orders of polariton operators in

normal ordered form and is given by,

σ =



0 1 2

0 00 01 02

1 10 11 12

2 20 21 22

 (2.19)

where each element is and ordered pair of ij and 0, 1, 2 are the ground, �rst and second

excited manifolds respectively. Eqn. (2.18) takes following explicit forms when restricted to

two polariton variables, which is su�cient to derive equations upto third order spectroscopy

for molecular polaritons,

P σ01
n = 〈p̂σ01n 〉 = 〈p̂n〉 (2.20)

for single variable and,

P σ02
nm = 〈p̂σ01n p̂σ01m 〉 = 〈p̂np̂m〉 (2.21)

for double polariton variables. It is important to include the pure dephasing due to coupling

to the bath in molecular aggregates. For simplicity we neglect these e�ects until Chapter

5 when we calculate double photon coincidence for Light Harvesting Complex II (LHII) in

single mode optical cavity. This simpler treatment is useful to get relevant structural in-

formation and are physically viable at lower temperatures since the e�ects due to nuclear
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vibrations and phonon baths due to protein environments are small. Performing explicit

Heisenberg equations of motion on the dynamical variables we have following polariton dy-

namics equations,

ih̄
dP σ01

m

dt
−
∑
n

Ω̃mnP
σ01
n = P σ10

m

∑
nkl

(
Ṽmn,klP

σ02
kl + Pmn,kl(P σ01

k El(t) + Ek(t)P
σ01
k )

)
+ Em(t)

(2.22)

and, the for two-polariton dynamical equation

ih̄
dP σ02

nm

dt
−
∑
kl

(Wmn,kl + Ṽmn,kl)P
σ02
kl = −

∑
kl

(δmkδnl − Pmn,kl)P σ01
k El(t) + Ek(t)P

σ01
k

(2.23)

where,

Ω̃mn = h̄δmnΩn (2.24)

Wmn,kl = Ω̃mkδnl + δmkΩ̃nl (2.25)

Pmn,kl = δmnδmkδnl(1− q). (2.26)

For what follows in this chapter, we will set q = 0 which is equivalent to setting excitons to

behave fully bosonic in nature i.e., Pmn,kl = 0. Furthermore, we have used,

En(t) = µnE∗(t). (2.27)
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Since the contribution third order response function derived in this way is independent from

S1 → S2 allowing us to conviniently ignore µ(2) = 0 described in chapter 1. The observable

under dipole approximation is thus the expectation value of following dipole operator,

〈D̂〉 =

〈∑
n

µn(p̂n + p̂†n)

〉
. (2.28)

Polariton-polariton scattering matrix contains all the non-linearity when the deviation from

bosonic nature is not considered (q = 0). We next derive this expression using local structure

of commutation relations of polariton operators (c.f. Eqn (2.13)). To this end, we need to

solve the NPE given in Eqn. (2.22) and (2.23). This is easly done by setting En(t) = δ(t)

which renders the NPE equations to be entirely homogenous giving following set of de�nition

for N− polariton Green's functions, in compact form,

P
σij
(n) (t) =

∑
(n′)

G
(N)
(n′),(n)P

σij
(n′)(0) (2.29)

where, N = i + j gives the order of Green's function which are 2N− adic tensors. (n) are

N indices separated by 2−tuples. The ones relevant for our calculations are,

P σ01
n (t) =

∑
n

G(N)
mnP

σ01
n′ (0) (2.30)

P σ02
mn (t) =

∑
m′n′

G
(N)
mn,m′n′P

σ02
m′n′(0) (2.31)

(2.32)
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Since we are assuming polaritons to be bosonic in nature, P σ01
n′ (0) can be assumed to have

bosonic distribution at thermal equilibrium. We are now in position to derive expressions

for two-polariton correlation functions in terms of polariton-polariton scattering matrices.

2.3 Response functions in terms of polariton Green's func-

tion

In this section we derive expressions for coherent time domain third order response functions

R(c)(t3, t2, t1) for the time delays ti for i ∈ {1, 2, 3. In order to do so, we must evaluate

P
σij
(n) (t) to third order in driving �eld E(t). For this, we start with following �rst order term

for P σij(1)

(n) (t),

P σ01(1)
n (t) = i

∫ ∞
0

∑
m

G(1)
mnEm(τ − t)dτ. (2.33)

Pluggin Eqn. (2.33) into Eqn. (2.23) and Eqn. (2.22), we get,

P σ02
mn (t) = i2

∫ ∞
0

dt2

∫ ∞
0

dt1
∑

m′n′,kk′

G
(2)
mn,m′n′G

(1)
kk′Ēm′n′,k′(τ − t2)Ek(τ − t2 − t1). (2.34)

Here we have de�ned Ēm′n′,k′(τ) = δmkEn(τ) + δnkEm(τ). Now plugging Eqns. (2.33)-(2.34)

into Eqn. (2.22) and (2.23) gives,

¯P σ01
n(t) =

∫ t3

0

P σ01(3)
n (t, t3 − t, t2, t) (2.35)
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where, the expansion of P σ01
n (t) to third order is given by,

P σ01(3)
m (t, t3 − t, t2, t) = i4

∑
Ṽsj,kl

{
G(1)
ms(t)G

(2)
kl,n′m′(t3 + t2− t)G†(1)

jj′ (t3 − t)G(1)
k′k′′(t1)

× µj′µ̄n′m′,k′µk′′ +G(1)
ms(t)G

(2)
kl,n′m′(t3 − t)G†(1)

jj′ (t3 + t2 − t)G(1)
ii′ (t2 + t1)

× µ̄n′m′,iµj′µi′ +G(1)
ms(t)G

(2)
kl,n′m′(t3 − t)G†(1)

jj′ (t3 + t2 + t1 − t)G(1)
ii′ (t2)

× µ̄n′m′,iµi′µj +G(1)
ms(t)G

(2)
kl,n′m′(t3 − t)G†(1)

jj′ (t3 − t)G(2)
i′j′,i′′j′′(t2)

× [G
(1)
i′′ (t1)δj′l′ + δil′G

†(1)
k′j′′(t1)]µ̄n′m′,l′µl′µk′

}
. (2.36)

where we have used, µ̄mn,k = µnδmk+µmδnk. We now de�ne the third order response function

as,

R(t3, t2, t1) =
∑
n

µn ¯P σ01
n(t) (2.37)

. The polariton-polariton scattering Γkl,mn(t) matrix enters R(t3, t2, t1) through two polariton

Green's function in ¯P σ01
n(t). We next derive expressions for that.

2.4 Polariton-Polariton scattering matrix

Polariton-polariton scattering matrix Γkl,mn(t) is derived by using Bethe-Selpeter equations

to relate two polariton Green's function G(2)(t) to free propagating two polariton function

F(t). We will see later that due to local nature of polariton commutation relations we can get

diadic scattering matrix which simpli�es our expression as we need to invert a N×N matrix

instead N2×N2 where N is total number of polaritons. However, here we will go ahead with

the general form of scattering matrix indexed ({m}, {n}) where {n} are incoming polariton
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indices while {m} are outgoing polariton indices. The proper Bethe-Selpeter equation thus

reads,

∑
k′l′

G
(2)
mn,k′l′(δkk′δl′l) = Fmn,kl(t) +

∑
m′n′k′l′

∫ t

0

dτ ′′
∫ t

0

dτ ′Fmn,m′n′(t− τ ′′)Γm′n′,k′l′(τ
′′ − τ ′)Fk′l′,kl(τ ′).

(2.38)

The expression can be physically understood as follows:

a Starting with two incoming polaritons labelled k and l that evolves freely for time τ′

into outgoing polaritons labelled k′ and l′. This information is encoded in expression

Fk′l′,kl(τ
′) given by,

Fk′l′,kl(τ
′) = G

(1)
k′l′(τ

′)G
(1)
kl (τ ′), (2.39)

where, G(1)
kl (τ ′) is one polariton Green's function de�ned as,

G
(1)
kl (τ ′) = θ(τ ′) exp[−IΩt− γt]kl. (2.40)

b The particle with incoming modes k′ and l′ scatters for τ ′′− τ ′ to modes m′ and n′ and

the relevant expression is stored in Γm′n′,k′l′(τ
′′ − τ ′) which we will derive shortly.

c It then freely ivovles from modem′ and n′ tom and n for time (t−τ ′′). The integration

over intermediate time variable yields an expression for two polariton scattering even

to which we �nally must add free polaritonic evolution Fmn,kl(t) completing Dyson like

equation to get overall two polariton Green's function G(2)
mn,k′l′ .
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The fact that, in time domain, the exponential form of Green's function guarantees that it

is unitless while, Γ(t) has dimensions of frequency squared. In frequency domain, Green's

function has units of time, implies that polariton-polariton scattering matrix appears with

units of angular frequency. In the representation depicted by Eqn. (2.38), a doubly excited

state can be described as two polaritons residing on the same site which makes it possible

for each polariton branch i to be doubly excited where the scattering appears as onsite

anharmonicity Ṽmm,mm = ∆m. For two level polaritons, Ṽmm,mm → ∞ which implies the

polariton scattering is simply the (multicplicative) inverse of free two-polariton propagator

with (additive) inverse frequency [39].

We will express relevant two-polariton functions in frequency domain which is related to

time domain expression Fourier transform. For instance,

Γ(t) =

∫ ∞
0

dω

2π
exp[−Iωt]Γ(ω). (2.41)

Using similar transforms, we get,

G(2)(ω) = F(ω) + F(ω)Γ(ω)F(ω) (2.42)

where, G(2)(ω), F(ω) and Γ(ω) are used as full tretradic tensors. Proper inversion then gives

us the expression for polariton-polariton scattering matrix in frequency domain,

Γ(ω) = −F(ω)−1 + F(ω)−1G(2)(ω)F(ω)−1, (2.43)
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where,

F(ω) = (ω − Ω̂
⊗

Id + Id
⊗

Ω̂− Iη)−1 (2.44)

G(2)(ω) = [ω − (Ω̂
⊗

Id + Id
⊗

Ω̂)− Ṽ − Iη]−1 (2.45)

where, Ω̂ is the matrix with elements Ωmn and Id is identity matrix of dimension equivalent to

number of polaritons. η →∞ guarantees causality. Substituting Eqn. (2.44) in Eqn. (2.43)

then yeilds a simple expression for polariton-polariton scattering matrix,

Γ(ω) = [Id − ṼF(ω)]−1Ṽ . (2.46)

Now we exploit the locality of the polariton commutation relations to have a two indexed

polariton-polariton scattering matrix,

Γmn(ω) = (1− ṼmnFnm(ω))−1Ṽmn, (2.47)

where the local Fnm(ω) is de�ned as,

Fnm(ω) = (ω − Ωmn − Ωnm)−1 (2.48)
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(a) (b) (c)

Figure 2.1: Coherent polariton dynamics represented by Feynmann diagrams (a) for kIII
c.f.Eqn. (2.53), (b) for kII c.f. Eqn. (2.52) and (c) for kI c.f. Eqn. (2.51)
. The single solid line as represents G(t) propagation, the unshaded �sh shaped represents
free two-polariton propagator, and �nally the blue shaded region in represents the two
polariton scattering event for time interval (τ ′′ − τ ′) > 0. This scattering changes the

resonant energies correctly adjusting the doubly excited polariton energies.

and, Ṽmn in local form is de�ned as,

Ṽmn = 2
∑
kl

Umn,klX
∗
mlX

∗
nkXlmXkn (2.49)

with Xµν being Hop�eld-Bogolyubov coe�cients.

2.5 Third order response functions for polaritons

2.5.1 Time domain

We are now in position to express R(t3, t2, t1) in terms of one polariton Green's function,

polariton-polariton scattering matrix, and (ignoring incoherent polariton population trans-
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fer) polariton population Green's functions. This is done by substituting Eqn. (2.38) into

Eqn. (2.37) to get,

Rcoh(t3, t2, t1) = RkI
coh(t3, t2, t1) +RkII

coh (t3, t2, t1) +RkIII
coh (t3, t2, t1) (2.50)

where, the photon-echo (rephasing signal) in time domain is given by,

RkI
coh(t3, t2, t1) =

(
i

h̄

)3

µ∗
kµlµnµ

∗
m

∫ t3

0

dτ ′
∫ τ ′

0

dτG
(1)
kk′(t3 − τ

′)Γk′m′,l′n′(τ ′ − τ)

× G
(1)
kk′(τ)G

(1)
nn′(t2 + τ)G

∗(1)
m′m(t1 + t2 + τ ′) (2.51)

Similarly, the non-rephasing photon echo signal in time domain is given by,

RkII
coh (t3, t2, t1) =

(
i

h̄

)3

µ∗
kµlµ

∗
nµm

∫ t3

0

dτ ′
∫ τ ′

0

dτG
(1)
kk′(t3 − τ

′)Γk′m′,l′n′(τ ′ − τ)

× G
(1)
kk′(τ

′)G
∗(1)
n′n (t2 + τ ′)G

(1)
mm′(t1 + t2 + τ). (2.52)

And, �nally double quantum coherence signal in time domain is,

RkII
coh (t3, t2, t1) =

(
i

h̄

)3

µ∗
kµlµ

∗
nµm

∫ t3+t2

0

dτ ′
∫ τ ′

0

dτG
(1)
kk′(t3 − τ

′)Γk′m′,l′n′(τ ′ − τ)

× G
(1)
kk′(τ

′)G
(1)
nn′(t2 + τ)G

∗(1)
m′m(t1 + t2 + τ). (2.53)
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2.5.2 Frequency domain

Fourier transforming Eqn. (2.51)- (2.53) with respect to the delays, t1, t2 and t3 and denot-

ing the respective fourier conjugates as Ω̄1, Ω̄2, and Ω̄3, we get following set of coherent re-

sponse functions using expressions for free-two polariton propagator Fmn(ω)(c.f.Eqn. (2.48)),

polariton-polariton scattering Γkl,mn(ω)(c.f.Eqn. (2.47)) and single polariton Green's funci-

ton Gk(ω) = [ω − Ωk + iγk]
−1 and γk as phenomenological dephasing for polariton in mode

k. We begin with response function contributing to rephasing photon-echo signal,

RkI
coh(Ω̄3, Ω̄2, Ω̄1) =

(
i

h̄

)3∑
ijkl

∑
m,n′

µ∗
kµlµjµ

∗
iG

(1)
k (Ω̄3)Γkm′,ln′(Ω̄3 + Ωm′ + iγm′)

× Fln′(Ω̄3 + Ωm′ + iγm′)δkiδjlG
(1)
j (Ω̄2)G

∗(1)
i (−Ω̄2)G

∗(1)
i (−Ω̄1). (2.54)

Similarly, the response function assoicated to non-rephasing photon echo signal is given by,

RkII
coh (Ω̄3, Ω̄2, Ω̄1) =

(
i

h̄

)3∑
ijkl

∑
m,n′

µ∗
kµlµ

∗
jµiG

(1)
k (Ω̄3)Γkm′,ln′(Ω̄3 + Ωm′ + iγm′)

× Flm′(Ω̄3 + Ωm′ + iγm′)δkiδjlG
(1)
j (Ω̄2)G

∗(1)
i (Ω̄2)G

(1)
i (Ω̄1). (2.55)

Finally, the double quantum coherence (DQC) response functionsignal is given by,

RkIII
coh (Ω̄3, Ω̄2, Ω̄1) =

(
i

h̄

)3∑
ijkl

∑
m,n′

µ∗
kµ
∗
lµjµi

[
Γkl,ji(Ω̄2)Fji(Ω̄2)− Γkl,ji(Ω̄3 + Ωk + iγk)

× Fji(Ω̄3 + Ωk + iγk)

]
G

(1)
l (Ω̄3)G

∗(1)
j (Ω̄1)G

∗(1)
k (Ω̄2 − Ω̄3). (2.56)
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We have now developed full set of equations required to calculate third order optical signals

in both time and frequency domains for coherent polariton dynamics, i.e., we have factorized

the expected values of product of dagger terms with products of non-dagger which does not

account for any incoherent population trasfer due to factoring of expectation values of terms

like P σ11
mn (t) to P σ10

m (t)P σ01
n (t) (where P σij

(m)(t) is de�ned in Eqn. (2.18) with (m) representing

list of 2(i+ j) 2-tuples).

2.5.3 Heterodyne detected signals

Projection of induced polarizabilities (c.f. Eqn. 1.8) that is related to the response function

we calculated in this chapter (Eqn. (2.50)-(2.53)) for time domain can be related to optical

signal for heterodyne detected technique given by Eqn. 1.7. Performing triple fourier trans-

form (restricted to upper half plane, i.e., with boundary {0,∞}) with respect to time delays

ti in i ∈ 1, 2, 3 then gives us frequency domain signals, i.e.,

S(Ω̄3, Ω̄2, Ω̄1) =

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1 exp[i(Ω3t3 + Ω̄2t2 + Ω̄1t1)]S(t3, t2, t1). (2.57)

Using Eqn. (2.57) and plugging appropriate response functions from Eqns. (2.54)-(2.56) we

arrive at following heterdyne detected signals.

S
(coh)
kI

(Ω̄3, Ω̄2, Ω̄1) = −
(
i

h̄

)3∑
ijkl

∑
m,n′

E∗k(Ωl − ωs)El(Ωk − ω3)Ej(Ωj − ω2)E∗k(Ωi − ω1)G
(1)
k (Ω̄3)

× Γkm′,ln′(Ω̄3 + Ωm′ + iγm′)Fln′(Ω̄3 + Ωm′ + iγm′)

× δkiδjlG
(1)
j (Ω̄2)G

∗(1)
i (−Ω̄2)G

∗(1)
i (−Ω̄1). (2.58)
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where, we have used µkEk(ω) = Ek(ω) (and the cojugates are de�ned accordingly) for

simplicity of expressions. And, ωi with i ∈ {s, 1, 2, 3} are the pulse width of the ith incoming

�elds. Using similar de�nition, we also get non-rephasing photon echo signal,

S
(coh)
kII

(Ω̄3, Ω̄2, Ω̄1) = −
(
i

h̄

)3∑
ijkl

∑
m,n′

E∗k(Ωl − ωs)El(Ωk − ω3)Ej(Ωj − ω2)E∗k(Ωi − ω1)G
(1)
k (Ω̄3)

× Γkm′,ln′(Ω̄3 + Ωm′ + iγm′)Flm′(Ω̄3 + Ωm′ + iγm′)

× δkiδjlG
(1)
j (Ω̄2)G

∗(1)
i (Ω̄2)G

(1)
i (Ω̄1). (2.59)

The coherent heterodyne detected signal for double quantum coherence in frequency domain

is then given by,

S
(coh)
kIII

(Ω̄3, Ω̄2, Ω̄1) = −
(
i

h̄

)3∑
ijkl

E∗k(Ωl − ωs)El(Ωk − ω3)Ej(Ωj − ω2)E∗k(Ωi − ω1)

×
[
Γkl,ji(Ω̄2)Fji(Ω̄2)− Γkl,ji(Ω̄3 + Ωk + iγk)

× Fji(Ω̄3 + Ωk + iγk)

]
G

(1)
l (Ω̄3)G

∗(1)
j (Ω̄1)G

∗(1)
k (Ω̄2 − Ω̄3). (2.60)

2.6 Discussion and Conclusion

In this chapter, we have developed third order heterodyne detected signals for molecular

polaritons assuming polaritons behave as bosons in both time (Eqns. (2.51), (2.52) and

(2.53) (as third order response functions) and in frequency domain (Eqns. (2.58)�(2.60))

using nonlinear polariton equations (NPE) (Sec. 2.2 and equations there in). These set

of self-consistent equation allows us to write third order response functions in terms of

polariton-polariton scattering matrix, Γ(t) in time domain c.f. Eqn. (2.47)), equivalently in

34



frequency domain (c.f. Eqn. (2.43) for time domain expression); two polariton propagator

F(ω) given in Eqn. (2.44) (see Eqn. (2.39)) and single polariton Green's funcitons. The key

advantage of deriving the nonlinear optical signals using NPE is to avoid explict calculations

of doubly excited states which increases N2 with N being number of molecular polaritons.

For larger macromolecules this can become computationally cumbersome to achieve specially

when more modes of optical cavities are included as the molecular polaritons thus formed

may not be exhibit Frenkel type properties.

Usually Wannier type polaritons can be achieved with more optical mode [99]. Computation

of doubly excited states then scale as N4. The method presented here, though focuses on

Frenkel type molecular excitons con�ned in optical cavities, can be extended to include

should one were to work with multimode optical cavities, and for large number of cavity

mode treatement similar to phone bath [39] with resonance replaced by photon bath with

appropriate energies. The power of NPE is clear in systems when the doubly excited states

aren't explicitly calculated but are achieved by incorporating proper polariton-polariton

scattering terms for positive scattering times.

Optical nonlinearities that are introduced due to polariton-polariton scattering can be easily

studied using techniques developed speci�cally double quantum coherence (DQC) signals

(Eqn. (2.60)). For most cases, the exciton-exciton interaction term (Ukl,mn) in Eqn. (2.3)

changes to polariton-polariton interaction term Ṽkl,mn via Eqn. (2.15) with Hop�eld coe�-

cients contributions is due to excitonic part Xmn, and upon summing over the m index to

compose single index for both incoming and outgoing polaritons modes allowing the possi-

bilities of local form of Ṽkl,mn ≡ Ṽmn which makes quadratic terms local. This along with the

intrinsic local nature of the polariton operators reduces the e�ective dimensionality of the

tetradic scattering matrix to diadic, which implies computing optical signals (Eqns. (2.58)�

(2.60)) requires inversion of N × N . Again, due to the possibility of writing the induced

polarizabilities in local forms allowing one for direct structural measurements of molecular

35



polaritons for larger macroaggregates coupled to one (or few) mode optical cavity, similar to

those done for excitons in Ref. [96].

In conclusion, I would like to emphasize on double quantum coherence signal in Eqn. (2.60)

and how it's simple structure allows us to measure any anharmonicities present in the system

either due to polariton-polariton scatterings (assumed in this chapter, and used in chapter 4,

and ??) or because of both polariton-polariton scattering and polariton statistics (as applied

in chapter ??). The terms in square brackets in Eqn. (2.60) vanish when Ω̄2 is resonant with

sum of Ω̄3+Ωk. This is true when there is no anharmonicities. Allowing the DQC signals to be

unique measure for studying molecular anharmonicities due to di�erent polariton scattering

processes. In other words, anharmonicities (∆k can be de�ned as Ω̄2 − Ω̄3 + Ωk and this

vanishes for harmonic cases.
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Chapter 3

Molecular vibrational polaritons

This chapter is solely based on: �Prasoon Saurabh and Shaul Mukamel. Two-dimensional

infrared spectroscopy of vibrational polaritons of molecules in optical cavity. The Journal of

chemical physics, 144(12):124115, 2016" [9]. Here, I present, how strong coupling of molec-

ular vibrations to an infrared cavity mode a�ects their nature by creating dressed polariton

states. This is done by showing how the single and double vibrational polariton manifolds

may be controlled by varying the cavity coupling strength and probed by a time domain two-

dimensional infrared (2DIR) technique, double quantum coherence. Particular applications

are made to the amide-I (CO) and amide-II (CN) bond vibrations of N-methylacetamide.

3.1 Introduction

Elementary physical and chemical properties of molecules can be modi�ed by coupling them

to the optical modes of a cavity thus forming strongly coupled matter+ field states known

as polaritons [50, 56]. These have been widely studied in atoms. Electronic polaritons in

molecules have been extensively studied both experimentally and theoretically [81, 74, 90].
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Vibrational polaritons in the infrared has been recently demonstrated in molecular aggregates

[52, 53, 54, 55] and in semiconductor nano-structures [100, 101, 87]. The radiation matter

coupling is related to cavity frequency ωc by, gi =
√
Nµi · ec

√
(h̄ωc/2ε0V ), where, N is

the number of molecules. µi is the transition dipole moment of the mode i, ec is the

cavity electric �eld vector, ε0 is vacuum permittivity, and V is the cavity mode volume

[49, 50, 51, 52, 53, 54, 55]. While strong coupling to cavity modes has been realized even

for a single atom, N = 1,[50, 56, 57] polaritons in organic molecules were reported for large

N(∼ 1017) [52]. With the advent of anomalous refractive index materials [102, 103], sub-

wavelength Fabry-Perot microcavities [104], and nanocavities [105] it may become possible

to achieve strong cavity coupling of single molecules.

Coherent multidimensional infrared spectroscopy is a powerful time domain tool that can

probe anharmonicities and vibrational energy relaxation pathways [106, 107, 108, 109, 110].

Vibrational polaritons were experimentally reported [52, 54, 55] and calculated [53, 111]

recently. Multidimensional spectroscopic studies for electronically excited states in semicon-

ductor cavity for nano-particles like In0.04Ga0.96As has been demonstrated [87, 88]. Simi-

larly, electronic exciton-polariton interactions of quantum wells in microcavity [89] has also

been reported. Bipolaritons generated using four wave mixing techniques have been used as

e�cient entangled photon source [112, 113].

In this article, we calculate 2DIR signals for vibrational polaritons, focusing specially on the

double quantum coherence (DQC) technique. Studying DQC of molecular vibrational polari-

tons in optical cavity can be used to study the e�ects of strong couplings on the vibrational

anharmonicities and consequently allow us to control these anharmonicities. We introduce

DQC signal in next section (Sec.3.2), we then study single vibrational mode (Amide-I of

NMA) coupled to a single mode cavity and calculate DQC in section (Sec.3.3), followed by

two vibrational modes (Amide-I+II of NMA) coupled to a single mode cavity (Sec.3.4); and

�nally conclude in Sec. 3.5.
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3.2 Vibrational polaritons and their DQC signal

Vibrational modes (Fig. 3.1) coupled to an infrared cavity under the Rotating Wave Ap-

proximation (RWA) are described by the hamiltonian [39, 65, 114, 52, 53, 54, 55],

H0 = ωc(θ)a
†a+

m∑
i

ωib
†
ibi +

m∑
i 6=j

Jijb
†
ibj

−
m∑
ij

∆ij

2
b†ib
†
jbibj +

m∑
i,j=1

gi

(
a†bi + b†ia

)
, (3.1)

where, a(a†) and b(b†) are annihilation(creation) operators for the cavity photon, and vibra-

tional excitation respectively, which satisfy boson commutation relations, [a, a†] = 1; [bi, b
†
j] =

δij and h̄ = 1. ωc(θ) = ω0

(
1− sin2(θ)

n2
eff

)−1/2

, is the angle-dependent cavity energy with ω0

being cavity cut-o� (or maximum) energy and, θ the angle of incidence to the cavity mirrors.

We set θ = 0◦ for simplicity. ωi is vibrational frequency of mode i. Jij is the scalar coupling

between two vibrational modes i and j, while ∆ij is the anharmonicity between respective

modes. Finally, the coupling strength of vibrational modes i to an optical mode is, gi as

described in introduction.

The cavity volume (V = (λ/neff )
3) depends on cavity resonance wavelength (λ) and e�ective

intra-cavity refractive index (neff ) [49, 50, 51]. Decreasing neff can also be used for strong

coupling to single molecular vibrational excitation, for instance, when the refractive indices

of one of the two layers' of a Distributed Bragg Re�ector (DBR) Fabry-Perot is equal to the

empty cavity refractive index nc, say nc = (n2n1), then neff =
√
n1n2. In this case, choosing

either one of the layers to be material with anomalous refractive index may decrease neff < 1

[104]. The vacuum Rabi splitting ΩR of mode i is 2h̄gi.
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NMA (a)

Local Basis (b) Polariton Basis (c)

Amide I

Amide-I+II

(1 mode)

(2 mode)

Schematic of FWM experiment
                         (d)

Feynman Diagrams contributing to DQC
                         (e)

 

Amide-I
Amide-II

Figure 3.1: Amide-I (C = O symmetric stretch) and Amide-II (CN symmetric stretch +
NH bend) vibrations are represented using double sided arrow for N −Methylacetamide
in (a). Eigen-energies of Amide-I and coupled Amide-I and Amide-II motifs in local basis
and polariton basis (see Sec.SI of supplementary information A.1 for detail) are given in
(b) and (c) respectively. (d) schemes the FWM experiment, the yellow sample is the DBR
Fabry-Perot cavity coupled to molecular vibrations (see text for detail) and, (e) shows the
relevant ladder diagrams contributing to double quantum coherence (DQC) technique.

DQC is a four wave mixing signal generated by three chronologically ordered pulses with

wavevectors k1, k2 and k3 and detected by with a fourth pulse in the direction, kIII =

k1 + k2 − k3 (Fig.3.1 (e)) [107, 6]. The signal is recorded versus three time delays t1, t2 and

t3. We assume a three polariton manifold as shown in Fig. 3.1. Using the ladder diagrams

for DQC (Fig. 3.1e) in polariton basis, which diagonalizes the �rst three and last terms of

Eq. A.1 (Fig. 3.1, Sec.SI of supplementary information A.1), we see that system oscillates

with frequency Ωeg = Ωe−Ωg during time delay t1 = τ2−τ1 and with frequency Ωfe = Ωf−Ωe

during delay t2 = τ3 − τ2 in both contributing diagrams (Fig. 3.1e). After the third pulse

the system oscillates either with frequency Ωe′g or Ωe′f during the delay t3 = τ4 − τ3. For

harmonic case, Ωe′g = Ωe′f where the DQC signal vanishes. A 3D signal S(t3, t2, t1), which
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can be written as double Fouier transform with respect to t2 and t3 as [107],

S(Ω3,Ω2, t1) =

∫ ∫ ∞
0

dt3dt2e
i(Ω3t3+Ω2t2)S(t3, t2, t1). (3.2)

Upon expanding in polariton eigenstates, the signal with time delay t1 = 0 becomes,

S(Ω3,Ω2, t1 = 0) =
∑
ee′,f

1

(Ω2 − Ωfg + iγfg)[
µe′fµge′µfgµge

1

Ω3 − Ωe′g + iγe′g

− µge′µe′fµfgµeg
1

Ω3 − Ωfe + iγfe

]
. (3.3)

Where, µij is the polariton transition dipole from states in manifold j → i while γij is the

respective dephasing. Note that the polariton eigenstates depend on the e�ective cavity

coupling strengths, g̃i
(

=
√
Ng2

i − 1
4
(κ− γi)2

)
, where κ is cavity decay rate, and γi is de-

phasing rate of respective mode [49]. Tuning the cavity coupling allows to control spectral

structures of the singly and doubly excited vibrational polariton manifolds (Fig.3.2 and can

be captured using DQC as illustrated in the following section (Sec. 3.3).

3.3 A Single vibrational mode coupled to single cavity

mode

The Amide motifs (O = C−N−H) link the amino-acid in peptides containing fundamental

structural information, for instance, backbone geometry, interactions with hydrogen bonds

and dipole-dipole interactions [115]. 2D spectroscopy of the amide-I and II symmetric vibra-
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Table 3.1: Parameters used in this work. ω0 is cavity cut-o� frequency. ω1,2 are vibrational
exciton (1,2) (Amide− I, Amide− II) energies, γ1,2 are their respective dephasing rates, Jij
is harmonic scalar coupling, and ∆ij are exciton-exciton interaction energies.

(in cm−1 ) Cavity Amide-I Amide-I+II
Energy ω0=1625 ω1=1625 ω1=1625, ω2=1545
Dephasing κ=0 γ1=20 γ1 = γ2=20

Anharmonicities
(Local basis)

∆00 = 0 ∆11=15
∆11=15,∆22=11
∆21 =
∆12=10

Scalar coupling - - J12=15
E�. refractive ind. neff =0.5 - -
Anharmonicities
(Polariton
basis)

Ṽij =
∆ij

2
|Xi|2|Xj|2

tions ( Fig. 3.1e ) have been studied [116, 106]. We focus on the Amide-I vibrations in NMA

(Table. 3.1). We consider a single Amide-I stretch mode in resonance with the cavity mode

and large anharmonicity (∆ij > γij) with varying coupling strengths g̃1 ranging from 0 to

80 cm−1 (Table. 3.1). For a single vibrational mode (Fig.3.1), the three polariton manifolds

have a ground state (g), two single excited states (e) and three doubly excited states (f).

Furthermore, for detuning (δ = ω1 − ωc), the polariton basis modi�es the anharmonicity

∆11(→ Ṽ11 = 16∆11|g̃4
1/(δ

2 − 16g̃2
1)2|).

Using Eq. A.8 and ladder diagrams (Fig. 3.1e) the signals |Si(Ω3,Ω2, 0)|, |Sii(Ω3,Ω2, 0)| and

|S(Ω3,Ω2, 0) = |Si(Ω3,Ω2, 0) + Sii(Ω3,Ω2, 0)| are shown in Fig. 3.3 and 3.4 in left, center

and right columns respectively (sec. 3.3). Absolute values are shown to illustrate peak as-

signments and a�ects of varying coupling strengths (g̃i). For completness, the respective

absorptive (Im) and dispersive (Re) parts of the DQC signals are shown in Sec.AIIIA in

Appendix A. The peak splittings depends on coupling strengths (g̃i) and polariton anhar-

monicities (Ṽij) and are given Sec.A6 of Appendix A.

Free molecule (Fig. 3.3): The Amide-I vibrations in NMA (without cavity) is a simple

three level system as shown in Fig. 3.1. Under this condition, e1 = e2 and f1 = f2 = f3,

thus we only observe single peak resonant at Ωfg = 3168cm−1 on Ω2 axis. The peaks
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due to |Si(Ω3,Ω2, 0)| (Fig. 3.3(a)) shows Ωeg = 1625cm−1 resonance, while |Sii(Ω3,Ω2, 0)|

(Fig. 3.3(b)) shows resonance at Ωfe = 1617cm−1 along Ω3 axis. The total signal (Fig. 3.3(c))

thus shows two peaks due to resonances at Ωeg and Ωfe.

Weak coupling regime (Fig. 3.4-top row) with g̃=20cm−1: Upon varying the coupling strength,

there are two singly excited and three doubly excited polariton states (Fig. 3.1 b-c, Sec SII-

S1 of [? ] ). We thus observe that all |Si(Ω3,Ω2, 0)|, |Sii(Ω3,Ω2, 0)| and |S(Ω3,Ω2, 0)| show

three distinct peaks along Ω2 axis with energies resonant to Ωf1g = 2Ωe1g− Ṽ11, Ωf2g = 2Ωe1g

and Ωf3g = 2Ωe2g − Ṽ33 respectively. Along Ω3 axis, |Si(Ω3,Ω2, 0)| (Fig. 3.4(top,left)) shows

peak resonance at Ωe1g and Ωe2g with splitting ∼ g̃. The |Sii(Ω3,Ω2, 0)| (Fig. 3.4(top, mid-

dle)) has six distinct peaks at energies resonant to Ωf2,e2 , Ωf2,e1 , Ωf1,e2 , Ωf3,e2 , Ωf1,e1 , Ωf3,e1 in

increasing order respectively. The |S(Ω3,Ω2, 0)| (Fig. 3.4(top, right)) has diminished peaks

at Ωf2e1 and Ωf3e2 due to destructive interference of Ωf2e1 with Ωe1g and Ωf3e2 with Ωe2g

resonances.

Strong coupling regime (Fig. 3.4-bottom row) with g̃ = 50cm−1: The signals correspond-

ing to |Si(Ω3,Ω2, 0)| (Fig. 3.4(bottom, left)), |Sii(Ω3,Ω2, 0)| (Fig. 3.4(bottom, middle)) and

|S(Ω3,Ω2, 0)| (Fig. 3.4(bottom, right)) show peaks corresponding to Ωf1g, Ωf2g and Ωf3g along

Ω2 axis. Projections on Ω3 axis for |Sii(Ω3,Ω2, 0)| six peaks assigned as in weak coupling

case, however the peak splitting between resonance pairs with energies (Ωf2e1 ,Ωf1e2) and

(Ωf3e2 ,Ωf1e1) remains relatively constant and proportional to respective contributing anhar-

monicities. The total signal shows six peaks due to Ωf2e1 and Ωf3e2 diminished because of

destructive interferences from resonances of singly excited polaritons.

This partial cancellation of peaks puts an upper bound on strong coupling strengths for fully

resolved DQC signals. Furthermore by changing t1, we can observe the dynamics in singly

and doubly excited polariton manifolds to obtain bountiful information regarding lifetimes

of molecular vibrational bipolaritons. In case of zero detuning (δ = ω1−ωc = 0), the doublet

peak splitting due to Ṽ11 is independent of coupling strength i.e., Ṽ11 = ∆/32. Thus DQC
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can be used as direct measurements of anharmoncities due to vibrational polariton-polariton

interactions for vanishing detuning cases. One has to be careful however, for δ 6= 0 cases; as

such conditions allow the anharmonicities to vary non-trivially (∼ 16∆11|g̃4
1/(δ

2 − 16g̃2
1)2|).

This may cause destructive interference of di�erent peaks along Ω3 axis.

3.4 Polaritons for two vibrational modes and their DQC

signal

We now couple the Amide-I and Amide-II vibrations (Fig. 3.1, [116]) of a single NMA

molecule (N = 1) to an infrared cavity. We next calculate the double quantum coherence

(DQC) signals for vibrational molecular polaritons (Fig. 3.1 (e), Eq. A.8) utilizing Eqs.S2-S5

(of supplementary material A.1).

The overlapping of peaks due to anharmonicities is better illustrated in case of Amide-I+II

vibrations coupled to single mode cavity. We next present three coupling regimes for such a

condition. We assume g̃1/g̃2 = constant for simplicity. The remainder of relevant parameters

are shown in Table 3.1.

No cavity (Fig. 3.6)(a): The coupled Amide-I+II vibrations of NMA is e�ectively a three

level system with two singly excited states and three doubly excited states in absence of

cavity coupling. The two singly excited states are resonant with Ωe1g and Ωe2g. The three

doubly excited states are resonant with frequencies Ωf1g = 2Ωe1g −∆11, Ωf2g = Ωe1g + Ωe2g

and Ωf3g = 2Ωe2g − ∆22 (Sec. SII of supplementary material A.1, Table 3.1). These

peaks are observed along Ω2 axis. Whereas, we only observe four peaks along Ω3 axis in

(Fig. 3.6(a, right column)) because the tuples (Ωf2e1 ,Ωf1e2),Ωe1g) and (Ωf3e2 ,Ωf1e1),Ωe2g)

cannot be resolved due to anharmonicities (∆ii, Table 3.1).
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Weak coupling regime with g̃ = 10cm−1 (Fig. 3.6)(b): Under these conditions, we observe �ve

peaks along Ω2 axis corresponding to Ωf1g,Ωf2g,Ωf3g,Ωf4g,Ωf5g = Ωf6g. Projections along Ω3

axis shows two peaks for |Si(Ω3,Ω2, 0)| (Fig. 3.6(b,bleft column)) resonant with frequencies

Ωe1g, Ωe2g ≈ Ωe3g. For |Sii(Ω3,Ω2, 0)| (Fig. 3.6(b,bmiddle column)) we would ideally expect

eighteen peaks corresponding to Ωf1e3 , Ωf1e2 , Ωf3e4 , Ωf4e2 , Ωf2e3 , Ωf2e2 , Ωf1e1 , Ωf3e3 , Ωf3e2 =

Ωf4e1 = Ωf6e3 , Ωf6e2 , Ωf5e3 , Ωf2e1 , Ωf5e2 , Ωf3e1 , Ωf6e1 , Ωf5e1 in energetically increasing order.

However, only twelve peaks are observed due to overlapping caused by anharmonicities and

coupling strength. Similar to Amide-I vibrations of NMA in cavity, we observe fewer peaks

in |S(Ω3,Ω2, 0)| (Fig. 3.6(b, right column)) than that of |Sii(Ω3,Ω2, 0)| due to destructive

interferences between |Sii(Ω3,Ω2, 0)| and |Si(Ω3,Ω2, 0)|.

Strong coupling regime g̃ = 50cm−1 (Fig. 3.6(c)): Increasing coupling resolves the six bipo-

lariton resonances along Ω2 for all contributions to the DQC signal (Fig. 3.6(c)). Along Ω3

axis, however, only |Si(Ω3,Ω2, 0)| is more resolved with three peaks corresponding to Ωe1g,

Ωe2g and Ωe3g with splitting ∼ g̃i. Despite better peak resolution due to coupling strength

dependent peak separations, resonances due to overlapping peaks cannot be fully resolved.

The total signal (Fig. 3.6(right column)) only has 10 distinct peaks as a result of destructive

interference of energies of Ωe2g and Ωe3g with some of the resonances from |Sii(Ω3,Ω2, 0)|.

Increasing coupling strengths provides us well resolved molecular vibrational bipolariton

manifold structure (along Ω2 axis), however, it may not provide well resolved DQC signals

along Ω3 axis requiring a careful tuning of g̃i.

3.5 Conclusions

The Multidimensional DQC signals shown in Figs. 3.2 - 3.6 demonstrate how the ground

state vibrational excitation manifolds are modi�ed upon coupling to the cavity modes. The
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anharmonicities in the case of Amide-I of NMA coupled to cavity (for non-zero detuning

δ 6= 0) are modi�ed with cavity coupling strength, ∆ij → Ṽij = 16∆11|g̃4
1/(δ

2 − 16g̃2
1)2|

and this can be observed in the peak splitting. For zero detuning, the anharmonicitiy

is independent of coupling strength, i.e., limδ→0 Ṽij = ∆11/32. However, in the case of

Amide-I+II of NMA coupled to the infrared cavity anharmonicities in polariton basis varying

nontrivially by, Ṽij = 1/2∆ij|Xi|2|Xj|2 where, Xi/j depend on higher order of coupling

strengths. This causes several peaks to overlap beyond certain cavity coupling and this is

why not all expected peaks for Ωfe can be spectrally resolved in Fig. 3.6. However, we

can use cavity coupling dependent anharmonicities for modi�cations of ground vibrational

structures to mimic weakly interacting molecular vibrational multi-modes.

Controlling and manipulating lifetime of single molecular vibrations by tuning the coupling

strengths and time delays between ultrafast pulses (say, t1) can reveal new energy transfer

mechanisms. Varying cavity polarization (µk · ec) and incident angle (θ) in Eq. A.1 using

collinear experiments [88] could provide information regarding spatial con�nements of sev-

eral vibrational excitations and possibilities of molecular vibrational condensates like usual

electronic polariton condensates in organic [117] and inorganic [117, 118, 119] microcavities,

if e�ective dense vibrational polaritons are obtained, which may be possible in larger macro-

molecules like J-aggregates. Time-varying cavity coupling strengths can be used to study

dynamics of e�cient cooling of molecular vibrational states for n−polariton manifolds using

higher dimensional spectroscopic techniques.

This work can be extended to control collective molecular vibrational excitations, which may

be a useful tool in molecular cooling [120] allowing to perform ultracold experiments even

at room-temperature. Furthermore, by varying the time delays one could be able to modify

molecular vibrations via cavity and catch them in action in real time. We show that, by

varying the cavity coupling strength (g̃), it is possible to retrieve spectrally well-resolved

molecular vibrational polariton(bipolariton) resonances which are otherwise di�cult to re-
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solve (see Fig. 3.2 - 3.6 for example). Similar results with respect of the anharmonicities

and peak redistributions due to cavity coupling can be achieved using other 2DIR tech-

niques, e.g. ks = −k1 + k2 + k3 or ks = k1 − k2 + k3, however, the full power of DQC

measurements presented here for single molecule in optical cavity can be seen more easily

for macromolecules. For such larger systems, a di�erent and much faster numerical algo-

rithms utilizing techniques similar to Nonlinear Exciton Equations (NEE) [65] will be useful.

Studying the dynamics of modi�ed electronic ground states by applying methods developed

in Ref. [6] can also be done. In addition, incorporating electronic states can similarly be

achieved to modify vibrational excitations of electronically excited states.
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Figure 3.2: (a) Absolute value of DQC signal (Eq. A.8) for Amide-I vibrations of NMA, as
we vary coupling strength (g) from no (green plane), weak (blue planes) and strong (red
planes) coupling regimes. (b) Schematic representation of DQC signal (zoomed in the grey
square at g = 0cm−1) with all possible peaks identi�ed as intersections of di�erent lines. (c)
Same result but for strong coupling and the last panel. The lines are: i) Ωfe labelled as
fiej (dashed blue lines), ii) Ωeg labelled as ej (black solid lines), iii) Ωfg labelled as fi and
appropriate anharmonicities (∆ij in local basis or Ṽii in polariton basis) respectively. We
wish to spectrally resolve (b) to (c).
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Figure 3.3: DQC signals for Amide-I vibrations in NMA using Eq. A.8 and ladder diagrams
(Fig. 3.1e): (a) |Si(Ω3,Ω2, 0)| with resonance at Ωeg = 1625cm−1, (b)|Sii(Ω3,Ω2, 0)| with
resonance at Ωfe = 1617cm−1 and (c)|S(Ω3,Ω2, 0)| with resonances at Ωeg = 1625cm−1 and
Ωfe = 1617cm−1. The linear projections along each axis is shown in green. For simplicity,
cavity �eld vector ec is assumed to be mostly parallel to molecular vibrational transition
dipole µm. Amide-I vibrations (ω1) is resonant to cavity cuto� frequency ω0 = 1625cm−1.
The anharmonicity are assumed ∆11 = 15cm−1 (Table 3.1).
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Figure 3.4: DQC signals using Eq. A.8 and ladder diagrams (Fig. 3.2b): Columns
(left−)|Si(Ω3,Ω2, 0)| with resonance at Ωe1g and Ωe2g; (middle−)|Sii(Ω3,Ω2, 0)| with reso-
nance at Ωf2,e2 , Ωf2,e1 , Ωf1,e2 , Ωf3,e2 , Ωf1,e1 , Ωf3,e1 ; and (right−)|S(Ω3,Ω2, 0)| with respec-
tive resonances for Amide-I vibrations in NMA with cavity coupling rows : (a)20cm−1 and
(a)50cm−1. The linear projections along each axis is shown in green. For simplicity, cavity
�eld vector ec is assumed to be mostly parallel to molecular vibrational transition dipole
µm. Amide-I vibrations (ω1) is resonant to cavity cuto� frequency ω0 = 1625cm−1. The
anharmonicity are assumed ∆11 = 15cm−1 (Table 3.1)
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Figure 3.5: Modulus of DQC signal for Amide-I+II vibrations in NMA with varying cavity
coupling (0cm−1 → 60cm−1). Cavity �eld vector ec is assumed to be mostly parallel to
molecular vibrational transition dipole µm. Amide-I vibrations (ω1) is resonant to cavity
cuto� frequency ω0 = 1625cm−1 and ω2 = 1540cm−1. The anharmonicies ∆11 = 15cm−1

and ∆22 = 11cm−1 (Table 3.1).
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(a)

(b)

(c)

Figure 3.6: DQC signals for Amide-I+II vibrations in NMA using Eq. A.8 and ladder di-
agrams (Fig. 3.1e): Columns : (left-)|Si(Ω3,Ω2, 0)| with resonance at Ωe1g, Ωe2g and Ωe3g

; (middle-)|Sii(Ω3,Ω2, 0)| with resonance at Ωf1e3 ≈ Ωf1e2 , Ωf3e4 ≈ Ωf4e2 , Ωf2e3 ≈ Ωf2e2 ,
Ωf1e1 , Ωf3e3 ≈ Ωf3e2 = Ωf4e1 = Ωf6e3 , Ωf6e2 , Ωf5e3 , Ωf2e1 , Ωf5e2 , Ωf3e1 , Ωf6e1 , Ωf5e1 and
(right-)|S(Ω3,Ω2, 0)| with respective resonances and cavity couplings (rows) (a)0cm−1,
(b)10cm−1, and (c) 60cm−1 along Ω3, while peaks at Ωf1g,Ωf2g,Ωf3g,Ωf4g,Ωf5g and Ωf6g along
Ω2. The linear projections along each axis is shown in green. For simplicity, cavity �eld vec-
tor ec is assumed to be mostly parallel to molecular vibrational transition dipole µm. Amide-I
vibrations (ω1) is resonant to cavity cuto� frequency ω0 = 1625cm−1 and ω2 = 1540cm−1.
The anharmonicities are assumed ∆11 = 15cm−1 and ∆22 = 11cm−1 (Table 3.1)
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Chapter 4

Interacting Deformed Molecular

Polaritons

In this chapter, modi�ed Double Quantum Coherence (DQC) is derived and an unique

measure for e�ective enhancement of this signal is presented as a function of number of

polaritons. This is used to investigate collective e�ects due to polariton-polariton scatterings.

Applications are made for varying number of chromophores (for Np ∈ {1, 2, · · · , 15}) picked

from monomer of Light Harvesting Complex II (LHCII). It is shown that polariton-polariton

scattering for non-bosonic polaritons could bring the middle polariton branches (MPBs) that

are usually embedded deep within so the called �dark-state" to light.

4.1 Introduction

Molecular polaritons, dressed light-molecular exciton quasiparticles, have di�erent optical

properties compared to excitons. Over the past few decades there has been extensive the-

oretical understanding and experimental demonstrations on how the physical [121, 67, 69,
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70, 71, 72, 73] and chemical behaviors [53, 81, 74, 122, 78, 77, 55] of exciton are modi�ed in

con�ned optical cavities. Qualitative and quantitative understanding of nonlinear polariton

interactions are at the heart of open questions in the �eld [123, 124, 125]. To lowest order

in external electric �elds, these nonlinearities manifests themselves as polariton-polaritons

scattering [6, 65].

Nonlinear spectroscopic techniques, like double quantum coherence (DQC), can be used to

study these nonlinearities such as vibrational anharmonicities, on-site interactions etc [?

]. Quasiparticle representation of coherent multidimensional optical signals for molecular

polaritons in con�ned cavity (in both time and frequency domain) has been developed al-

lowing for direct observations of these polariton-polariton scattering terms that are explicitly

present in the nonlinear signals [126].

Using a quantum spectroscopic technique called Mollow spectroscopy, Ref. [127] were able

to cleanly measure weak nonlinearity even under strongly dissipative conditions. However,

this requires a delicate experimental setup and use of quantum light to excite the molecular

polaritons [128]. For widely used techniques in multidimensional spectroscopy, coherent

pumpings of molecular polaritons introduces several complications in extrating full structural

informaion due to several constraints. Loss of strong coupling [129, 130], non-equilibrium

thermal excitations [124], phase-space �lling factors [131, 132, 133? ] (causing the polaritons

to deviate from usual bosonic nature) and deviations from Hop�eld coe�cients [134], to name

a few.

We propose compelling remedies to the last two di�culties using theoretical framework to

rede�ne the interacting polariton problem into a interacting deformed polaritons form. Dis-

crepencies due to both phase-�lling factors and deviations from Hop�eld coe�cients are

encoded in a single deformation parameter q (described in detail in the main text). This

allows us to develop a modi�ed double quantum coherence (DQC), a time-dependent multi-

dimensional spectroscopic technique. Using the intensity of this signal as we vary the number
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of molecular polaritons, we are able to device an unique measure for e�ective enhancement

of this signal. This is then used to investigate collective e�ects due to polariton-polariton

scatterings.

To this end, the usual interacting molecular polariton is given by following Hamiltonian

[126],

H =
∑
i

Ωip
†
ipi +

∑
i,j

Vijp
†
ip
†
jpipj, (4.1)

where, Ωi is polariton energy of branch i and Vij is polariton-polariton interaction between

sites i and j. p†i (pi) are polariton creation (annihilation operators) and follow bosonic

commutation relations [pi, p
†
j] = δij. Hamiltonian for interacting deformed polaritons is

introduced in next section. Followed by discussion on e�ects due to these deformations for

varying number of optically con�ned chromophores and possibilities of observation of the

middle polariton branches (MPBs) that are usually embedded deep within so the called

�dark-state" to light due to polariton-polariton scattering of deformed molecular. We end

with concluding remarks.

4.2 Interacting deformed molecular polaritons

We start with the following transformed interacting molecular polariton Hamiltonian with

polariton energies Ω̃i for mode i,

H =
∑
i

Ω̃iπ̂
†
i π̂i +

∑
i,j

Wijπ̂
†
i π̂
†
j π̂iπ̂j, (4.2)
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and, two-site polariton-polariton interaction quanti�ed by Wij. π̂
†
i (π̂i) are deformed polari-

ton creation (annihilation operators) with commuatator Ai de�ned as [135, 136],

[π̂i, π̂
†
j ] = δij

(
qN̂ii (1 + q) + q−1

i π̂†i π̂i − qiπ̂iπ̂
†
i

)
:= Aiδij (4.3)

N̂i(= π̂†i π̂i) is the number operator for mode i, such that,
∑

i N̂i = N̂ gives the total polariton

number operator. The dependence of Eqn. (4.3) on N̂i allows for interesting many body

polariton-polariton interaction but it does come with meticulous algebraic transformation.

We will present a simple case to illustrate its feasibility restricting N̂i to doubly excited

manifold. The deformed polaritons operators, π̂†i (π̂i), are related to usual polariton operators

p†i (pi) by following unitary preserving transformations [136],

π̂†i = p†i

√
[N̂i]

Ni + 1

π̂i =

√
[N̂i]

N̂i + 1
pi. (4.4)

[N̂i] is the q-analytic form of N̂i given by,

[N̂i] =
qN̂ii − q

−N̂i
i

qi − q−1
i

= cosh(λi) sinh(N̂iλi), (4.5)

and is also valid for q-analog for numbers. We have used qi = exp(λi) for algebraic simpli�-

cations needed for expanding over orders of number operator N̂i. The polariton Fock space
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(Fp =
⊗Np |n〉i) is spanned by direct product of polariton basis |ni〉,

|n〉i =
(π̂†i )

n√
[n]i!
|0〉i, (4.6)

on ground state |0〉i of mode i. Next we provide mapping procedure to rewrite deformation

parameters qi in terms of already known Hop�eld coe�cients that are found upon diagonal-

izing exciton plus photon cavity Hamiltonian. This information alone can provide a smooth

transition to formulate nonlinear polariton equations (NPE) as done in [126] for deformed

polaritons. To this end, we de�ne following dynamical (in sense of cavity coupling strength)

structure factor (fi) for mode i. We truncate the metric to incorparate upto doubly excited

exciton-polariton manifold to get,

fi =


−1 −1 −1

z −1 + α11(κ̄i − 2X̃i) −1 + α21(κ̄i − 2X̃i)

z −1 + α12(κ̄i − 2X̃i) −1 + α22(κ̄i − 2X̃i)


(4.7)

where, αij = nexi /nj is the ratio between excitons (nexi ) and polaritons (nj) numbers for a

single mode optical cavity. Furthermore, z resides in positive integer plane, and, we have

de�ned,

κ̄i =
κi
2
X̃i,

X̃i =
∑
j

|Xij|2, (4.8)
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for brevity. κi which usually incorporates deviation in exciton operators due to Coulomb

and Pauli interactions [39, 65], is de�ned as the ratio µ(2)
ex /µ

(1)
ex for exciton transition dipoles

of doubly and singly excited states. Of course, all of nonlinear polariton equations can

be formulated using techniques done in [126]. The explicit inclusion of number dependent

deformation parameters allows for studying cooperative phenomena in molecular polaritons

mor simply.

In order to derive expression for fi we have used the normalization of Hop�eld Coe�cients,

i.e.,
∑

i |Ci|2 +
∑

ij |Xij|2 = 1, which is easily achieved upon polariton transformation dis-

cussed in [9] to get Eqn. (4.2) here. Furthermore, utilizing exponential theorem for Fock

spaces spanning exciton (Fe), cavity photon (Fc) and joined polariton (Fp) guarantees that

such a transformation is unitary and dimensions of Fp equals that of sum of Fc and Fe.

Dimensionless parameter λi is then de�ned by,

λi = −fi + Lw(e◦fi), (4.9)

where, e◦fi is Hadamard exponent of fi and Lw is the Lambert W function. Beside providing

computational convenience in calculation of deformation factors λi = Log(qi), the metric fi

contains following topological information for fi,jk (with indices j and k running from 0 to 2,

and identi�ed fi,jk 7→ fjk to avoid redundancy): a) f00 polariton ground state, b)f01 polariton

(photon) reservoir, c)f02, biphoton reservoir d)f10 exciton reservoir, e)f11 exciton-polariton,

f)f12 bipolariton, g) f20 biexciton reservoir, h)f21 biexciton-polariton, and i)f22 bipolariton.

For rest of this paper we will focus on exciton − polariton (or f11) term only and will use

short hand λi ≡ λi,11 for simplicity. It is easy to show that for κi =
√

2, λi = 0 and qi → 1.

This consequently makes commutator Ai (c.f. Eqn. (4.3)) a unity and all the equations in

[126] are recovered exactly.
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Simple algebra can show that the two site polariton interaction terms (Wij) in Eqn. (4.1)

connect to Vij in Eqn. (4.2) via,

Wij = Ṽij{(qi + 1) + Log[qi] + qiLog(qi) + q−1
i − qi}. (4.10)

Where we have expanded qN̂ii to �rst order in N̂i, and qi > 0. The condition qi > 0 assures

that polaritons are deformed bosons and not fermions. Furthermore, it avoids singularity

in Wij at qi = 0 preventing from in�nite particle interaction coupling bounding Wij < ∞.

Thiw is always valid in the energy regimes we work with.

Usually, κ =
√

2 is assumed which is equivalent to treating interacting polaritons are weakly

interacting bosonic gases. The expression in Eqn. (4.10) correctly reduces to Wij = 2Vij

equivalent to what is done in deriving nonlinear polariton equations in [65, 126].

upon expanding to third order in �eld that enters through the following interaction term,

Hint =
∑

i(µ
pol
i · E(ω, t) + h.c.), we notice that double quantum coherence (DQC) signal is

altered. This modi�cation can be attributed to the change in polariton-polariton scattering

via Wij. DQC signal in frequency domain for deformed polaritons is thus given by,

SDQCq (Ω̄3, Ω̄2, Ω̄1) = −
(
i

h̄

)3∑
ijkl

E∗k(Ωl − ωs)El(Ωk − ω3)Ej(Ωj − ω2)E∗k(Ωi − ω1)

×
[
Γqkl,ji(Ω̄2)Fji(Ω̄2)− Γqkl,ji(Ω̄3 + Ωk + iγk)

× Fji(Ω̄3 + Ωk + iγk)

]
G

(1)
l (Ω̄3)G

∗(1)
j (Ω̄1)G

∗(1)
k (Ω̄2 − Ω̄3). (4.11)

Where we have used Ek(ω) = µpolk E(ω) for simplicity, ωs is frequency of the local oscillator,

and introduced a phenomenological dephasing γk. The one-polariton Green's functions for
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mode i is given by,

G
(1)
i (ω) = (ω − Ω̃i + iγi)

−1. (4.12)

Both free one and two polariton propagators G(1)
k (ω) and Fnm(ω) have inconsequential mod-

i�cation in zero point energy (from factor 1
2
→ Lw(1/e)). The polariton-polariton scattering

Γq(ω) is given by,

Γq(ω) = (1−WmnFnm(ω))−1Wmn. (4.13)

One straight forward advantage of rewriting Eqn. (4.2) in terms of Eqn. (4.1) with deformed

commutation relations (Ai 6= 1, c.f. Eqn. (4.3)) is explicit tractability of the parameter

regimes (for cavity coupling g and κi) for studying di�erent nonlinear e�ects as we increase

number of chromophores in the optical cavity. We next elaborate on some of those e�ects us-

ing parameters given in Table. 4.1. In all of the numerical calculations that follows, we have

used parameters for Nex chromophores of the Light Harvesting Complex II (LHCII) coupled

to single mode optical cavity with parameters in Table.4.1. Before proceeding we brie�y men-

tion what we mean when we useNp. It indicates that there areNp−1 molecular chromophores

in single mode optical cavity with energies corresponding to εi for i ∈ {1, · · · , Np − 1} from

the list of excitons mentioned earlier. A typtical DQC signal is shown in 4.1
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Figure 4.1: Typical double quantum coherence (DQC) using Eqn. (4.11) using parameters
in Table 4.1 for light harvesting complex II (LHC-II) for coupling strength of 10cm−1.
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Table 4.1: Parameters used in this paper. ε(0)
n energies of n isolated chromophore from Light

Harvesting Complex (LHCII), µa and µb are transition dipole moments for Chlorophyll a
(Chla) and b (Chlb) respectively. ε(0)

ord provides the ordering of energies [1].

ε
(0)
ord chla,chla,chla,chla,chla,chla,chlb,chlb

chlb,chla,chla,chla,chlb,chlb,chlb
ε

(0)
n (in cm−1) 14850, 14860,14780,14930,14960,15175,15635

15415,14870,14920,1555,15395,13505
µa (in D) 4.0
µb (in D) 3.4

4.3 E�ects due to deformations of molecular polaritons

We start this section by exploring an obvious advantage of using Eqn. (4.2) to study interact-

ing molecular polaritons formed in organic optical cavities. In Fig. 4.2 we present variation

of average deformation de�ned by, q̄Np = 1
Np

∑Np
i qi with qi = Log(λi) for λi de�ned in

Eqn. (4.9). We observe that for typical value of κi = κ =
√

2 (marked as dashed black

line in Fig. 4.2) that justi�es the Frenkel exciton model used to study molecular aggregate

becomes bosonic, we observe that Npq̄ ∼ 1. This implies that N− dependent factor on

polariton interactions vanishes (i.e., Wij = 2Vij. Consequence of this is that many body

e�ects that manifest due to interacting polaritons cannot show cooperative e�ects as we

increase the number of chromophores in the cavity and any enhancements in the singals is

purely due to power play between radiative and non-radiative decays of molecular polaritons

[79, 137, 138, 139].

For Np = 2, that is when one single molecule is placed in a single mode optical cavity, overall

deformation may only occur at very low cavity coupling strengths, where a complete mixing of

cavity and excitons mode is possible similar to molecule interacting with single optical phonon

[95]. Similar e�ects are seen at high κ. As we increase the number of chromophores, we see

that certain values ( κ = 0.36, 1.2) are more likely to give interesting variations in deformation

parameters and hence rich structural information for a wide range of cavity coupling strengths
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(200cm−1 < g < 600cm−1). For Np = 15 we clearly see that assuming κ =
√

2 gives

Npq̄i ∼ 1 for each polariton branch suggesting that such a model fails to properly detect

many body e�ects and any variations in nonvanishing nonlinearities of molecular polaritons

that are not purely due to cavity mediated photon mixing to molecular excitons. We can

see that understanding q̄ (and qi indirectly) allows for a robust theoretical prediction of

parameter regimes (for instance red dashed lines in Fig. 4.2) for maximal structural control

and information extraction using nonlinear spectroscopic measures. Inverting this, could

allow us a way for control and predictions of κ or molecular polaritonic dipole transitions

for given cavity coupling strength and aggregate size. As mentioned earlier, κi contains

Figure 4.2: Average deformation q̄ =
∑
qi

Np
as function of κ and cavity coupling strength g for

various polariton numbers Np: a) Np = 2 ;b) Np = 8; and c)Np = 15. The expression for qi is
calculated using Eqn. (4.9) and λi = qi. The dashed black lines are at κ =

√
2 where Npq̄ ∼ 1.

and Eqn.(4.1) to Eqn.(4.2) apart from factor of 2. Dashed red lines show possible values
of κ where more interesting structural information can be extracted for varying coupling
strengths.

information about Pauli and Coulomb interactions, thus being able to indirectly measure

qi does not provide direct measure for those interactions. Nevertheless, the fact that we

are able to establish connection between total polariton number and deformations qi could

further interesting insights into cooperative phenomena in molecular polaritons. To that

end, we study enhancements in DQC signals (Eqn. (4.11)) next.
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4.3.1 Signal Enhancement

Molecules con�ned in optical cavity under speci�c conditions allows for cooperative enhance-

ments of signals, for instance, enhancements in spontaneous signals due to superradiance

[140]. Collective interactions of atoms, molecules, or macromolecules to the vacuum mode

of the optical cavity may enhance signals as well [141]. Typically, enhancements due to

collective nature of molecular polaritons compete with the dephasing processes (either due

to cavity decay or radiative molecular decay) in molecular cavity. How these radiative and

non-radiative decays change with increasing (Huang-Rhys) parameters and bath modes have

recently been studied [137]. It has been predicted that for molecular polaritons, strong cou-

pling to cavity mode could decouple their lowest lying polariton branches with vibrational

bath available to them. For our purposes, we will assume that the radiative decay (∼ cavity

decay rate ∼ 10fs) scales as Np(Np − 1) for a single mode optical cavity. The non-radiative

processes in molecular polaritons decays due to individual molecules and their baths typi-

cally is of higher order (∼ ps) [137]. In nonlinear signals, there may also be enhancements

due to nonlinear interactions within molecular polaritons, in particular polariton-polariton

interactions and must be incorporated in quantifying third order signal enhancements. To

this end, we de�ne following enhancement coe�cient (Q) that is proportional to the inten-

sity of DQC (c.f. Eqn. (4.11)). After a bit of algebra, and assuming radiative processes (γr)

scales as Np(Np − 1) and non-radiative process (γnr) scales with temperature T as ηTγr for

parameter 0 < η < 1, we arrive at the signal enhancement for individual modes i,

Qi =
γ3
r

γ2
nr

∑
j

Wij

γnr − iWij

=
(1 + qi){(Ni − 1)(Ni − 1)(Ni + qi −Niqi +NiqiLog(qi))}√
((Ni − 1)Niqi)2 + (1 +Ni)(Ni + qi −Niqi +NiqiLog(qi))

.(4.14)

where, we have implicitly expanded theWij in polariton basis. Thus, Ni now is the polariton

number of speci�c mode i. Summing over all indices gives total enhancement (i.e.,Q =

64



∑
iQi that depends on total polariton number (Np =

∑
iNi). In Fig.4.3, we present Q for

lower (LPB), middle(MPB) and upper(UPB) polariton branches. The MPB is selected by

Floor[n/2] (for instance is 0, when Np = 2, implying no middle polariton branch) which

becomes 0 for single molecule in optical cavity. For both LPB and UPB, we see more signal

enhancements along even number of polaritons. This can be explained as follows: Out of Np

polariton branches 2 of them are so called �bright" states polaritons due to higher mixing

of cavity photon components or high transition dipoles. They are also the LPB and UPB.

The remaining Np−2 states are �dark" in a sense that they have either small photon mixing

or small transition dipole moments and thus are spectroscopically less visible. For even

Np, there are even number of bright and dark states, thus allowing maximal distribution of

photon components between LPB and UPB (thus having higher signal enhancements) due

to almost complete distructive interference among the remaining Np − 2 states. For odd Np

some of the photonic components are bound to reside on MPB causing diminished signal.

Furthermore, we predict that signal would be enhanced when Np = 15 (equivalent to LHCII

complex in single mode optical cavity) around g = 150cm−1. Unlike LPB, for Np = 15 (≡

LHCII) we predict that the signal would be almost always be enhanced for g < 300cm−1

and sporadic after allowing us to pick proper cavity coupling regime to control aggregate

properties due to polariton nonlinearities.

The enhancement signals in the MPB provides for a more pecular case. The MPBs lie deep

in the �dark-states" submanifold, thus such signal enhancements would mean they could in

principle be visible under certain suitable conditions (κ = 0.9). This prediction does not

provide su�cient conditions to claim spectral resolution of all MPBs but speculates that

some MPB can be observed in third order signals due to many body interactions. To study

such possibilities and know that polariton transition dipoles play an important interfering

role in signal visibility we next propose an e�ective enhancement measure (cQ).
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Figure 4.3: Signal enhancements, Q (using Eqn. (4.14)) for DQC for κ = 0.9 for varying
cavity coupling strength g vs increasing chromophore number in optical cavity is showed for
a) Left: Lower Polariton Branch (LPB), b) Middle Polariton Branch (MPB) and c) Upper
Polariton Branch (HPB) is done. (see text for details)

4.3.2 E�ective Enhancement

We de�ne e�ective enhancement (cQ) incorporating transition dipole (µpol) interference as,

cQ = Log

(∣∣∣∣1−Qµpol

∣∣∣∣2
)
. (4.15)

We calculate cQ for same parameters as for Q and using parameters in Table. 4.1. As

expected, we see e�ective enhancement still there for even number of modes for LPB in

Fig. 4.4, however the isolated enhancment at lower cavity coupling strength for full LHCII

disappears and better signal enhancements agreeing with typical values for molecular ag-

gregates in optical cavities [74]. Barring few isolated cases, the e�ective enhancement show

similar trend for UPB. There are some e�ective enhancements for MPB as well for either

smaller number of chromophores in at low cavity coupling strength because of more homoge-

nous mixing of photonic components in the such polaritons. Among MPBs, depending upon

our choice, the e�ective enhancement of the signal varies for larger number of chromophores.

From Fig. 4.4 (c) and (d) we would possibilities of spectroscopic detection of these states

66



bringing them on same level as the �bright" states. Not only that, the logarithmic plot of

the di�erences between enhancements of the two MPBs (MPB and MPB1) show that even

these states can be detected from the dense MPB submanifold for appropriate parameter

regimes κ = 0.9 allowing for deformed polariton interactions. This could pave an interesting

way to detect �dark" polaritons which relies purely on many-body e�ects in molecular po-

laritons unlike studied before for vibronic polaritons [138]. To further illustrate the e�ects

of deformation on spectroscopic signals, we next dissect the polariton-polariton interactions

Vij = Wij|q=1 and Wij, followed by an analysis of the polariton-polariton scattering matrices

Γ(ω) for varied aggregate size and cavity coupling g.

Figure 4.4: E�ective signal enhancement cQ (using Eqn. (4.15)) for DQC for κ = 0.9 for
varying cavity coupling strength g vs increasing chromophore number in optical cavity is
showed for Top Row: Lower Polariton Branch (LPB, Left), b) Upper Polariton Branch (UPB,
Middle) and c) Middle Polariton Branch (MPB, Right); Bottom Row: Middle Polariton
Branch (MPB1, Left), and Log(|cQMP1 − cQMP1|) are done. (see text for details)
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4.3.3 Polariton-Polariton Scatterings

Polariton-polariton scattering matrices can be throught as complex two-polariton proper self

energy terms. The real part contributes to the energy shift and the imaginary to the pure

dephasing associated to them. The poles of these matrices contain information regarding res-

onances of doubly excited polaritons. Thus exploring structural variations of these matrices

at changing cavity coupling strengths and deformation parameter qi for a chosen κ(= 0.9)

may provide intiutive and interesting physical insights into nonlinear polariton processes

that often dictates nonlinear signals. Utilizing the local nature of polariton operators and

their commutators (as Ai is de�ned with single index) helps us reduce the dimensionality

of polariton-polariton interactions and scattering. Physically, they are de�ned with four

indices, two incoming and two outgoing polariton branches, i.e., they are de�ned with in-

dices mn, kl but we identify the indices such that mn, kl 7→ mn,mn and two indices mn are

su�cient to study essential physics. In the Figures (4.5�4.8) presented in this section, we

have only shown mm,nn or cases where two polaritons from site m interacts and satter to

two polaritons at site n. This can be equivalently seen as the trace of the tetradic polariton-

polariton interaction and scattering tensors. We �rst discuss two-site polariton interactions

Wij which under the limit q → 1 goes to 2Vij.

In Fig. 4.5, we present polariton couplings (unnormalized due to colorscaling fucntions which

is used for structural illustration) for varied number of chromophores in a single optical cavity.

A general trend of positive coupling interactions(Vij > 0, red) is observed along the diagonal

implying that that on-site interactions are repulsive, while nearest neighbor interaction along

the diagonal can become attractive (Vij < 0,blue). Also, sites farther barely couple with

each other. Compared to bosonic case (top row, q = 1), we can see (in bottow row) that

deformation di�uses some of the strongly repulsive interactions by paying some energy due

to many body interactions and could possibly be a reason for observed Fesbach resonance in

molecular polaritons [87, 142]. The trend becomes clearer as we increase Np to 15. At low
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Figure 4.5: Polariton-Polariton interactions varying number of chromophore using
Eqn.(4.10). Top Row (for κ =

√
2, q = 1) a) Np=5,b) Np=9,a) Np=15; Bottom Row (for

κ = 0.9, q 6= 1) a) Np=5,b) Np=9,a) Np=15 at g = 0cm−1. See text for details.

cavity coupling (g ∼ 0cm−1) for full LHCII (Np = 15), when the cavity photon is chosen

to be quasi-resonant with frequency of exciton ε(0)
5 from Table. 4.1, seen as mode 6 in Fig.

4.5, we see no e�ective interactions between these modes. This is because the cavity photon

creates polariton degenerate with mode 6. And due to the excitonic Hop�eld coe�cient being

∼ 0 for this state allows for vanishing interactions at no coupling to cavity. This restriction

is relieved when cavity coupling is increased and we see appearances of repulsive interactions

at mode 6 in both κ =
√

2 and κ = 0.9.

For coupling g = 150cm−1 (Fig. 4.6), general trend remains same except for the case men-

tioned earlier. For Np = 9 we can see more o� diagonal interactions suggesting that system

becomes more delocalized. The presence of deformation smears out some of the on-site re-

pulsive interactions and make them more attractive. This could mean that, by changing the
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Figure 4.6: Polariton-Polariton interactions varying number of chromophore using
Eqn.(4.10). Top Row (for κ =

√
2, q = 1) a) Np=5,b) Np=9,a) Np=15; Bottom Row (for

κ = 0.9, q 6= 1) a) Np=5,b) Np=9,a) Np=15 at g = 150cm−1. See text for details.

ratio between µ(2)
ex /µ

(1)
ex we can control electronic anharmonicities to our advantage. Next we

discuss scattering events with ultrafast scattering time τ2 − τ1 = 1.5fs which is equivalent

to ∼ 30000cm−1 (Fig. 4.7). This is a typical value for doubly excited polariton manifold and

has been used for illustrative purposes.

At no cavity coupling g = 0cm−1, the e�ects due to polariton deformations are insigni�cant

for Np = 5 and 15 except for nodal localizing the scattering events. For instance, for Np = 5;

most of the scattering happens between modes 5 and 1, with it being more localized when

qi 6= 1 for NP = 5. Case of Np = 9 shows more interesting scattering processes suggesting

most of modes could scatter to each other again suggesting delocalization as we saw in

Fig. 4.6. For LHCII monomer (Np = 15) con�ned in single mode optical cavity, only mode 4

scatter with frequency close to 30000 suggesting (4Wij = 30000cm−1−2(14930cm−1) = 140).
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Figure 4.7: Polariton-Polariton scattering Γ(ω) at typical chromophore bipolariton eigenen-
ergy (Chlb) ω = 30000cm−1 for varying number of chromophore using Eqn.(4.13). Top Row
(for κ =

√
2, q = 1) a) Np=5,b) Np=9,a) Np=15; Bottom Row (for κ = 0.9, q 6= 1) a)

Np=5,b) Np=9,a) Np=15 at g = 0cm−1. See text for details.

As we tune the cavity coupling to about 150cm−1 we see more of polariton modes scattering

with that scattering time τ2 − τ1 of 1.5fs both for Np = 5 and 9. Deformation, again,

scattering matrix switches signs again causing redshift in energy of bipolariton to blueshift,

for some modes. One could say that deformation mediates, otherwise impossible interactions,

due to many-body e�ects. These e�ects seems to break down for large Np = 15. This would

mean that scattering events are very localised for LHCII. Furthermore, changing coupling

strengths even slightly 0cm−1 → 150cm−1 can allow for particles to scatter from 41 7→ 14 at

ultrafast scattering timescale (∼ 1.25fs) while changing parity. Since we have plotted only

the real part of the scattering matrix (< : Γ(ω)) parity change implies red to blue shift in

doubly excited polariton manifold. A signature of thus formed molecular polaritons being

purely Frenkel type [73].
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Figure 4.8: Polariton-Polariton scattering Γ(ω) at typical chromophore bipolariton eigenen-
ergy (Chlb) for ω = 30000cm−1 for varying number of chromophore using Eqn.(4.13). Top
Row (for κ =

√
2, q = 1) a) Np=5,b) Np=9,a) Np=15; Bottom Row (for κ = 0.9, q 6= 1) a)

Np=5,b) Np=9,a) Np=15 at g = 0cm−1. See text for details.

4.4 Concluding Remarks

Expressing interacting molecular polaritons as Eqn. (4.1) with commutator Ai (Eqn. (4.3))

allows for a careful monitoring of polariton-polariton coupling terms (Eqn. (4.10)) as a

function of polariton number. It is a simple yet robust theoretical framework to study

molecular polaritons ranging from weakly to strongly interacting cases. Here we restrict

ourselves to weakly interacting regimes, thus allowing use Bethe-Salpeter equations in �nding

the two-polariton scattering matrices. Third order response functions derived for deformed

polaritons, namely DQC (Eqn. (4.11)), contains polariton-polariton scattering matrices.

Using the DQC signal, we have derived a closed form expression for polariton particle number

dependent e�ective enhancment, cQ (Eqn. (4.15)). We use this to predict that under certain
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conditions (κ = 0.9) one can detect dense MPB submanifold that lie deep in so called �dark"

states for wide range of cavity couplings (Fig.. 4.4). The e�ects due to phase-space �lling

factor (φ) and deviation from the Hop�eld coe�cients are already baked in Eqn. (4.15)

through Eqn. (4.14) that depends on deformations (qi). qi for each polariton branches is

found by taking natural logarithm of λi (Eqn. (4.9)) and contains the term κ̄i (Eqn. (4.8)).

It is κ̄i that actually encodes information regarding phase-space �lling factor and deviation

from Hop�eld coe�cients. It (Eqn. (4.8)) has following interpretation: κi term in κ̄i is related

to the phase-space �lling factor (φ) directly, i.e., for each polariton mode i, φi = 2− κ2
i [39].

This is equivalent to φ = φi = 1.19 for our case (κi = κ = 0.9).

Similarly, the term X̃i =
∑

j Xij in Eqn. (4.8) contains the deformed Hop�eld coe�cients

(Xij), their absolute squares are related to usual Hop�eld coe�cients (xij) and cavity photon

number (na) by,

|Xij|2 =

∣∣∣∣1− 2φi(3− 2na)

1 + 2g(1− φina)
xij

∣∣∣∣2
=

∣∣∣∣ 1− 2φi
1 + 2g(1− φi)

xij

∣∣∣∣2 when na = 1 (4.16)

Thus calculating cQ for varying number of chromophores con�ned in a tunable single mode

optical cavity providesa simple measure to study e�ects of both phase-space �lling factor (φ)

and deviations from Hofpeidl coe�cients which is unavoidable during coherent pumping of

molecular polaritons [134].

We further predict that, for ultrafast polariton-polariton scattering (1.15fs) the scattering

processes localizes as we increase the number of chromophores in the cavity (Figs. 4.7-4.8)

for both vanishing and weak cavity coupling regimes. Localization of interactions between

isolated modes for deformed molecular polaritons could also be used to study direct energy

transfer pathways in large macromolecues in optical cavities. Furthermore, change in parity
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of the nonlinear coupling as we go from no (Fig. 4.6) to weak coupling (Fig. 4.5) could

be used to explain optical Feshbach resonance observed in molecular polaritons [87, 142].

Further more localization of polariton-polaritons interactions only to some polariton modes

(Fig. 4.5) should allow for easier measure of these resonance.

We have only presented the results for scattering matrices and used DQC signal to predict

e�ective enhancements. Explicit calculations of DQC signals can be done and their tempo-

ral evolution (under coherent limit) be studied in details but, however, essential physics is

contained in the polariton-polariton scattering matrices discussed in this work. An exten-

sion to this theory to incorporate incoherent processes with explicit polariton number as a

parameter could provide for a more complete de�nition of e�ective enhancements (cQ).

All operators are expanded in polaritonic Fock space (Fp) and only static cavity couplings are

considered. N̂i that enter in Eqn. (4.3) implicitly contains information about cavity coulings

via the polariton operators (π̂i and π̂
†
i ). If we have timde-dependent cavity coupling (g(t),

instead of g) then N̂i is equipped with time-dependence. Use of coherent basis for deformed

polaritons then could provide a more intuitive understanding of the e�ects on third order

signals and e�ective enhancements for time dependent coupling cases without changing the

formalism drastically [143].

Finally, if the size of the macromolecules becomes comparable to the wavelength to the cavity

length that con�nes them, then the usual dipolar form of cavity �eld's ( ~Ec) to macromolecular

coupling, i.e., g ∼ ~µ. ~Ec would break down. A more fundament (minimal coupling) approach

would be required to then de�ne cavity coupling (g̃mc) in terms of canonical current density

J(r) and cavity vector potential Ac(r), g̃mn = J(r) ·Ac(r) to encapsulate r- dependence

carefully [144]. A more rigorous approach would then be required to map Eqn. (4.1) to a

case of r- dependent deformed polaritons.
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Chapter 5

Concluding Remarks

This thesis sets �rst steps towards explaing the vastly growing �eld of molecular polaritons

and into systematic study of nonlinearities through multidimensional spectroscopy. Quasi-

particle method developed here allows for computationally feasible structural analysis of

larger macromolecules con�ned in optical cavities under coherent limits.

The basic physics of molecular excitons, optical cavity is explained in Chapter 1. We then

quickly delve into deriving self consistent set of nonlinear equations for polariton dynamical

variable and solve them using Bethe-Selpeter equations. We then use the solutions to derive

a closed form expression of polariton-polariton scattering which is �nally used to derive

coherent multidimensional signals. Such a representation of signal requires us to calculate

poles of tetradic polariton scattering matrices, the poles of which are resonant with the

doubly excited polaritons (bipolaritons) requiring only the information regarding the singly

excited polariton manifold. This method is particularly useful for computing higher order

signals for larger macromolecules where sum over states (SOS) method would require to

diagonalize (N + 1)(N + 2) size matrices for N chromophores in single mode optical cavity

increasing the computation time. In the formulation done in Chapter 2 though the poles of
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tetradic matrix is needed to calculate which is as large (N + 1)2 × (N + 1)2, these matrices

are usually sparse and numerical diagonalizations are more tractable. Furthermore, they

give more intuitive physical understanding of polariton interactions.

In chapter 3, the changes of vibrational anharmonicities are discusses for molecular vibra-

tional polaritons using sum over states for single and two molecules in single mode optical

cavity. Chapter 4 delves deeper into the polariton-polariton interactions and provides a mea-

sure for signal enhancements for DQC in terms of deformation parameter. These parameters

q are intrinscly related to the number operators hence epanding over proper number basis

gives the explicit N dependence on third order signal which is not necessarily N2 but a more

complicated function of deformations parameter q and total number of molecular polaritons

N . It further delves into the possibilities of observing �dark" states due polariton-polariton

interactions which explictly depends on number of polaritons only for deformed molecular

polaritons. Possibilities of expanding the theory of coherent quasiparticle representations of

molecular polaritons to incoherent cases is mentioned very brie�y and could be an interesting

future project.

76



Bibliography

[1] Vladimir I Novoderezhkin, Miguel A Palacios, Herbert Van Amerongen, and Rienk
Van Grondelle. Energy-transfer dynamics in the lhcii complex of higher plants: mod-
i�ed red�eld approach. The Journal of Physical Chemistry B, 108(29):10363�10375,
2004.

[2] Edward A Stern. Theory of the anharmonic properties of solids. Physical Review,
111(3):786, 1958.

[3] Yoshihisa Yamamoto and Kouichi Semba. Principles and Methods of Quantum Infor-
mation Technologies. Springer, 2016.

[4] Co E Treanor, JW Rich, and RG Rehm. Vibrational relaxation of anharmonic oscilla-
tors with exchange-dominated collisions. The Journal of Chemical Physics, 48(4):1798�
1807, 1968.

[5] Guglielmo Lanzani, Giulio Cerullo, and Sandro De Silvestri. Coherent Vibrational
Dynamics. CRC Press, 2007.

[6] Shaul Mukamel. Principles of nonlinear optical spectroscopy. Number 6. Oxford Uni-
versity Press on Demand, 1999.

[7] LD Landau. The theory of a fermi liquid. Soviet Physics Jetp-Ussr, 3(6):920�925,
1957.

[8] Shaul Mukamel and Darius Abramavicius. Many-body approaches for simulating co-
herent nonlinear spectroscopies of electronic and vibrational excitons. Chemical re-
views, 104(4):2073�2098, 2004.

[9] Prasoon Saurabh and Shaul Mukamel. Two-dimensional infrared spectroscopy of vi-
brational polaritons of molecules in an optical cavity. The Journal of chemical physics,
144(12):124115, 2016.

[10] S. Mukamel. Principles of nonlinear optical spectroscopy, volume 29. Oxford University
Press, New York, 1995.

[11] M. O. Scully. Quantum optics. university press, Cambridge, 1997.

[12] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms�
Introduction to Quantum Electrodynamics (Wiley Professional). 1997.

77



[13] Y. Aharonov and D. Bohm. Signi�cance of electromagnetic potentials in the quantum
theory. Physical Review, 115, 1959.

[14] J. Rammer. Quantum transport theory. Westview Press, 2004.

[15] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics,
Desktop Edition Volume I. vol., 1, 2013.

[16] P. Bharadwaj, B. Deutsch, and L. Novotny. Optical antennas. Advances in Optics and
Photonics, 1:438�483, 2009.

[17] M. I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Optics
express, 19:22029�22106, 2011.

[18] M. I. Stockman. Quantum Nanoplasmonics,. p, pages 85�132.

[19] J. E. Donehue, E. Wertz, C. N. Talicska, and J. S. Biteen. Plasmon-enhanced brightness
and photostability from single �uorescent proteins coupled to gold nanorods. The
Journal of Physical Chemistry C, 118:15027�15035, 2014.

[20] D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky. Quantum spec-
troscopy of plasmonic nanostructures. Physical Review X, 4, 2014.

[21] L. Novotny and B. Hecht. Principles of nano-optics. university press, Cambridge,
2012.

[22] Feizhi Ding, Emilie B. Guidez, Christine M. Aikens, and Xiaosong Li. Quantum
coherent plasmon in silver nanowires: A real-time TDDFT study. The Journal of
chemical physics, 140, 2014.

[23] R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi. Nanoscale chemical analysis by
tip-enhanced Raman spectroscopy. Chemical Physics Letters, 318:131�136, 2000.

[24] E. Bailo and V. Deckert. Tip-enhanced Raman scattering. Chemical Society Reviews,
37:921�930, 2008.

[25] M. L. Brongersma and P. G. Kik. Surface plasmon nanophotonics. Springer, 2007.

[26] S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar. Enhancement of single-
molecule �uorescence using a gold nanoparticle as an optical nanoantenna. Physical
review letters, 97, 2006.

[27] L. V. Brown, X. Yang, K. Zhao, B. Zheng, P. Nordlander, and N. J. Halas. Fan-
Shaped Gold Nanoantennas above Re�ective Substrates for Surface-Enhanced Infrared
Absorption (SEIRA). Nano letters, 2015.

[28] Claude Fabre, Vahid Sandoghdar, Nicolas Treps, and Leticia F Cugliandolo. Quantum
Optics and Nanophotonics, volume 101. Oxford University Press, 2017.

78



[29] A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar.
Generation and near-�eld imaging of Airy surface plasmons. Physical review letters,
107, 2011.

[30] M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfei�er,
M. Rohmer, C. Spindler, and F. Steeb. Adaptive subwavelength control of nano-optical
�elds. Nature, 446:301�304, 2007.

[31] N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy. Distance and
Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated
Gold Nanorods. ACS nano, 8:8392�8406, 2014.

[32] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao,
J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou. Chemical mapping of a single molecule
by plasmon-enhanced Raman scattering. Nature, 498:82�86, 2013.

[33] V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston,
C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo. Modelling the
optical response of gold nanoparticles. Chemical Society Reviews, 37:1792�1805, 2008.

[34] András Vukics, Tobias Grieÿer, and Peter Domokos. Elimination of the a-square prob-
lem from cavity qed. Physical review letters, 112(7):073601, 2014.

[35] Ziad Ganim, Hoi Sung Chung, Adam W Smith, Lauren P DeFlores, Kevin C Jones,
and Andrei Tokmako�. Amide i two-dimensional infrared spectroscopy of proteins.
Accounts of chemical research, 41(3):432�441, 2008.

[36] Peter Hamm and Martin Zanni. Concepts and methods of 2D infrared spectroscopy.
Cambridge University Press, 2011.

[37] Oleksiy Roslyak, Benjamin P Fingerhut, Kochise Bennett, and Shaul Mukamel. Quasi-
particle representation of coherent nonlinear optical signals of multi-excitons. New
Journal of Physics, 15(8):083049, 2013.

[38] Shaul Mukamel, Rafal Oszwaldowski, and Darius Abramavicius. Sum-over-states ver-
sus quasiparticle pictures of coherent correlation spectroscopy of excitons in semi-
conductors: Femtosecond analogs of multidimensional nmr. Physical Review B,
75(24):245305, 2007.

[39] Vladimir Chernyak, Wei Min Zhang, and Shaul Mukamel. Multidimensional fem-
tosecond spectroscopies of molecular aggregates and semiconductor nanostructures:
The nonlinear exciton equations. The Journal of chemical physics, 109(21):9587�9601,
1998.

[40] Wei Min Zhang, Vladimir Chernyak, and Shaul Mukamel. Multidimensional femtosec-
ond correlation spectroscopies of electronic and vibrational excitons. The Journal of
chemical physics, 110(11):5011�5028, 1999.

[41] XI Ultrafast Phenomena. T. elsaesser, jg fujimoto, da wirsma, and w. zinth, 1998.

79



[42] Wim P de Boeij, Maxim S Pshenichnikov, and Douwe A Wiersma. On the relation
between the echo-peak shift and brownian-oscillator correlation function. Chemical
physics letters, 253(1-2):53�60, 1996.

[43] GM Dâ��ariano, U Leonhardt, and H Paul. Homodyne detection of the density matrix
of the radiation �eld. Physical Review A, 52(3):R1801, 1995.

[44] Wesley R Burghardt, Marcin Sikorski, Alec R Sandy, and Suresh Narayanan. X-ray
photon correlation spectroscopy during homogenous shear �ow. Physical Review E,
85(2):021402, 2012.

[45] Shaul Mukamel and Saar Rahav. Ultrafast nonlinear optical signals viewed from the
moleculeâ��s perspective: Kramers�heisenberg transition-amplitudes versus suscepti-
bilities. Advances in atomic, molecular, and optical physics, 59:223�263, 2010.

[46] Edwin E Salpeter and Hans Albrecht Bethe. A relativistic equation for bound-state
problems. Physical Review, 84(6):1232, 1951.

[47] S Haroche. Fundamental systems in quantum optics. Les Houches Summar School
Session, 53, 1992.

[48] MS Skolnick, TA Fisher, and DM Whittaker. Strong coupling phenomena in quantum
microcavity structures. Semiconductor Science and Technology, 13(7):645, 1998.

[49] Vincenzo Savona, LC Andreani, P Schwendimann, and A Quattropani. Quantum well
excitons in semiconductor microcavities: uni�ed treatment of weak and strong coupling
regimes. Solid State Communications, 93(9):733�739, 1995.

[50] Paul R Berman. Cavity quantum electrodynamics. Academic Press, Inc., Boston, MA
(United States), 1994.

[51] Johannes Feist and Francisco J Garcia-Vidal. Extraordinary exciton conductance in-
duced by strong coupling. Physical Review Letters, 114(19):196402, 2015.

[52] Atef Shalabney, Jino George, J Hutchison, Guido Pupillo, Cyriaque Genet, and
Thomas W Ebbesen. Coherent coupling of molecular resonators with a microcavity
mode. Nature communications, 6, 2015.

[53] Javier del Pino, Johannes Feist, and Francisco J Garcia-Vidal. Quantum theory of col-
lective strong coupling of molecular vibrations with a microcavity mode. New Journal
of Physics, 17(5):053040, 2015.

[54] Atef Shalabney, Jino George, Hidefumi Hiura, James A Hutchison, Cyriaque Genet,
Petra Hellwig, and Thomas W Ebbesen. Enhanced Raman Scattering from Vibro-
Polariton Hybrid States. Angewandte Chemie International Edition, 54(27):7971�7975,
2015.

80



[55] BS Simpkins, Kenan P Fears, Walter J Dressick, Bryan T Spann, Adam D Dunkel-
berger, and Je�rey C Owrutsky. Spanning strong to weak normal mode coupling
between vibrational and fabry�pérot cavity modes through tuning of vibrational ab-
sorption strength. ACS Photonics, 2(10):1460�1467, 2015.

[56] Serge Haroche and Jean Michel Raimond. Exploring the quantum. Oxford Univ. Press,
2006.

[57] Sanli Faez, Pierre Türschmann, Harald R Haakh, Stephan Götzinger, and Vahid San-
doghdar. Coherent interaction of light and single molecules in a dielectric nanoguide.
Physical review letters, 113(21):213601, 2014.

[58] Zhaorong Wang, Rahul Gogna, and Hui Deng. What is the best planar cavity for
maximizing coherent exciton-photon coupling. Applied Physics Letters, 111(6):061102,
2017.

[59] Zhenfeng Liu, Hanchi Yan, Kebin Wang, Tingyun Kuang, et al. Crystal struc-
ture of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature,
428(6980):287, 2004.

[60] Vladimir I Novoderezhkin, Miguel A Palacios, Herbert Van Amerongen, and Rienk
Van Grondelle. Excitation dynamics in the lhcii complex of higher plants: model-
ing based on the 2.72 å crystal structure. The Journal of Physical Chemistry B,
109(20):10493�10504, 2005.

[61] Vladimir Novoderezhkin, Alessandro Marin, and Rienk van Grondelle. Intra-and inter-
monomeric transfers in the light harvesting lhcii complex: the red�eld�förster picture.
Physical Chemistry Chemical Physics, 13(38):17093�17103, 2011.

[62] Pavel Mal�y, J Michael Gruber, Rienk Van Grondelle, and Tomá² Man£al. Single
molecule spectroscopy of monomeric lhcii: experiment and theory. Scienti�c reports,
6:26230, 2016.

[63] William P Bricker, Prathamesh M Shenai, Avishek Ghosh, Zhengtang Liu, Miriam
Grace M Enriquez, Petar H Lambrev, Howe-Siang Tan, Cynthia S Lo, Sergei Tretiak,
Sebastian Fernandez-Alberti, et al. Non-radiative relaxation of photoexcited chloro-
phylls: theoretical and experimental study. Scienti�c reports, 5, 2015.

[64] Gabriela S Schlau-Cohen, Akihito Ishizaki, Tessa R Calhoun, Naomi S Ginsberg, Mat-
teo Ballottari, Roberto Bassi, and Graham R Fleming. Elucidation of the timescales
and origins of quantum electronic coherence in lhcii. Nature chemistry, 4(5):389�395,
2012.

[65] Darius Abramavicius, Benoit Palmieri, Dmitri V Voronine, Frantisek Sanda, and Shaul
Mukamel. Coherent multidimensional optical spectroscopy of excitons in molecu-
lar aggregates; quasiparticle versus supermolecule perspectives. Chemical reviews,
109(6):2350�2408, 2009.

81



[66] Jörg Megow, Beate Röder, Alexander Kulesza, Vlasta Bona£i¢-Kouteck�y, and Volkhard
May. A mixed quantum�classical description of excitation energy transfer in
supramolecular complexes: Förster theory and beyond. ChemPhysChem, 12(3):645�
656, 2011.

[67] VM Agranovich, M Litinskaia, and David G Lidzey. Cavity polaritons in microcavities
containing disordered organic semiconductors. Physical Review B, 67(8):085311, 2003.

[68] Galina Khitrova, HM Gibbs, F Jahnke, M Kira, and Stephan W Koch. Nonlinear optics
of normal-mode-coupling semiconductor microcavities. Reviews of Modern Physics,
71(5):1591, 1999.

[69] Daniele Sanvitto and Vladislav Timofeev. Exciton Polaritons in Microcavities: New
Frontiers, volume 172. Springer Science & Business Media, 2012.

[70] Eric R Bittner and Carlos Silva. Estimating the conditions for polariton condensation
in organic thin-�lm microcavities. The Journal of chemical physics, 136(3):034510,
2012.

[71] Steven T Cundi�, Travis Autry, Gaël Nardin, Daniele Bajoni, Aristide Lemaître, So-
phie Bouchoule, and Jacqueline Bloch. Observation of the excitation ladder in a mi-
crocavity diode using multi-quantum coherent optical photocurrent spectroscopy. In
Nonlinear Optics, pages NW3A�1. Optical Society of America, 2015.

[72] Justyna A �wik, Peter Kirton, Simone De Liberato, and Jonathan Keeling. Exci-
tonic spectral features in strongly coupled organic polaritons. Physical Review A,
93(3):033840, 2016.

[73] KS Daskalakis, SA Maier, Ray Murray, Stéphane Kéna-Cohen, et al. Nonlinear inter-
actions in an organic polariton condensate. Nat. Mater, 13(3):271�278, 2014.

[74] David M Coles, Niccolo Somaschi, Paolo Michetti, Caspar Clark, Pavlos G Lagoudakis,
Pavlos G Savvidis, and David G Lidzey. Polariton-mediated energy transfer between
organic dyes in a strongly coupled optical microcavity. Nature materials, 13(7):712�
719, 2014.

[75] Justyna A �wik, Sahinur Reja, Peter B Littlewood, and Jonathan Keeling. Polariton
condensation with saturable molecules dressed by vibrational modes. EPL (Euro-
physics Letters), 105(4):47009, 2014.

[76] Javier del Pino, Johannes Feist, and Francisco J Garcia-Vidal. Signatures of vibra-
tional strong coupling in raman scattering. The Journal of Physical Chemistry C,
119(52):29132�29137, 2015.

[77] Markus Kowalewski, Kochise Bennett, and Shaul Mukamel. Non-adiabatic dynamics
of molecules in optical cavities. The Journal of chemical physics, 144(5):054309, 2016.

82



[78] Markus Kowalewski, Kochise Bennett, and Shaul Mukamel. Cavity femtochemistry;
manipulating nonadiabatic dynamics at avoided crossings. The journal of physical
chemistry letters, 2016.

[79] FC Spano. Optical microcavities enhance the exciton coherence length and eliminate
vibronic coupling in j-aggregates. The Journal of chemical physics, 142(18):184707,
2015.

[80] Semion K Saikin, Alexander Eisfeld, Stéphanie Valleau, and Alán Aspuru-Guzik. Pho-
tonics meets excitonics: natural and arti�cial molecular aggregates. Nanophotonics,
2(1):21�38, 2013.

[81] David M Coles, Yanshen Yang, Yaya Wang, Richard T Grant, Robert A Taylor,
Semion K Saikin, Alán Aspuru-Guzik, David G Lidzey, Joseph Kuo-Hsiang Tang,
and Jason M Smith. Strong coupling between chlorosomes of photosynthetic bacteria
and a con�ned optical cavity mode. Nature communications, 5, 2014.

[82] James A Hutchison, Tal Schwartz, Cyriaque Genet, Eloïse Devaux, and Thomas W
Ebbesen. Modifying chemical landscapes by coupling to vacuum �elds. Angewandte
Chemie International Edition, 51(7):1592�1596, 2012.

[83] Xiaolan Zhong, Thibault Chervy, Shaojun Wang, Jino George, Anoop Thomas, James
Hutchison, Eloise Devaux, Cyriaque Genet, and Thomas Ebbesen. Non-radiative en-
ergy transfer via hybrid light-matter states. In CLEO: Science and Innovations, pages
STh4Q�5. Optical Society of America, 2016.

[84] Oleksiy Roslyak, Godfrey Gumbs, and Shaul Mukamel. Signatures of carrier multi-
plication in the frequency resolved �uorescence spectra from polaritons. Journal of
Modern Optics, 57(19):2009�2019, 2010.

[85] Kevin Hennessy, Antonio Badolato, M Winger, D Gerace, Mete Atatüre, S Gulde,
S Fält, Evelyn L Hu, and A Imamo§lu. Quantum nature of a strongly coupled single
quantum dot�cavity system. Nature, 445(7130):896�899, 2007.

[86] AI Tartakovskii, DN Krizhanovskii, and VD Kulakovskii. Polariton-polariton scatter-
ing in semiconductor microcavities: Distinctive features and similarities to the three-
dimensional case. Physical Review B, 62(20):R13298, 2000.

[87] Brian L Wilmer, Felix Passmann, Michael Gehl, Galina Khitrova, and Alan D Bris-
tow. Multidimensional coherent spectroscopy of a semiconductor microcavity. Physical
Review B, 91(20):201304, 2015.

[88] Gaël Nardin. Multidimensional coherent optical spectroscopy of semiconductor nanos-
tructures: a review. Semiconductor Science and Technology, 31(2):023001, 2015.

[89] N Takemura, Stephane Trebaol, MD Anderson, V Kohnle, Yoan Léger, DY Oberli,
Marcia T Portella-Oberli, and B Deveaud. Two-dimensional Fourier transform spec-
troscopy of exciton-polaritons and their interactions. Physical Review B, 92(12):125415,
2015.

83



[90] Felipe Herrera, Borja Peropadre, Leonardo A Pachon, Semion K Saikin, and Alán
Aspuru-Guzik. Quantum nonlinear optics with polar J-aggregates in microcavities.
The Journal of Physical Chemistry Letters, 5(21):3708�3715, 2014.

[91] Camilla Pellegrini, Johannes Flick, Ilya V Tokatly, Heiko Appel, and Angel Rubio.
Optimized e�ective potential for quantum electrodynamical time-dependent density
functional theory. Physical review letters, 115(9):093001, 2015.

[92] Michael Ruggenthaler, Johannes Flick, Camilla Pellegrini, Heiko Appel, Ilya V Tokatly,
and Angel Rubio. Quantum-electrodynamical density-functional theory: Bridging
quantum optics and electronic-structure theory. Physical Review A, 90(1):012508, 2014.

[93] Johannes Flick, Michael Ruggenthaler, Heiko Appel, and Angel Rubio. Atoms and
molecules in cavities: From weak to strong coupling in qed chemistry. arXiv preprint
arXiv:1609.03901, 2016.

[94] Jan A Leegwater and Shaul Mukamel. Exciton-scattering mechanism for enhanced
nonlinear response of molecular nanostructures. Physical Review A, 46(1):452, 1992.

[95] Francis C Spano and Shaul Mukamel. Cooperative nonlinear optical response of molec-
ular aggregates: Crossover to bulk behavior. Physical review letters, 66(9):1197, 1991.

[96] O Kühn, V Chernyak, and S Mukamel. Two-exciton spectroscopy of photosynthetic
antenna complexes: Collective oscillator analysis. The Journal of chemical physics,
105(19):8586�8601, 1996.

[97] Darius Abramavicius and Shaul Mukamel. Energy-transfer and charge-separation path-
ways in the reaction center of photosystem ii revealed by coherent two-dimensional
optical spectroscopy. The Journal of chemical physics, 133(18):184501, 2010.

[98] JJ Hop�eld. Theory of the contribution of excitons to the complex dielectric constant
of crystals. Physical Review, 112(5):1555, 1958.

[99] Monique Combescot and Shiue-Yuan Shiau. Excitons and Cooper pairs: two composite
bosons in many-body physics. Oxford University Press, 2015.

[100] Travis Autry, Gael Nardin, Daniele Bajoni, Aristide Lemaître, Sophie Bouchoule,
Jacqueline Bloch, and Steven Cundi�. Measurement of Nonlinear Polariton Dispersion
Curves Reveals the Tavis-Cummings Quantum Ladder. In CLEO: QELS_Fundamental
Science, pages FW4B�7. Optical Society of America, 2015.

[101] Yongbao Sun, Yoseob Yoon, Mark Steger, Gangqiang Liu, Loren N Pfei�er, Ken West,
David W Snoke, and Keith A Nelson. Polaritons are Not Weakly Interacting: Di-
rect Measurement of the Polariton-Polariton Interaction Strength. arXiv preprint
arXiv:1508.06698, 2015.

[102] Andrea Alù, Mário G Silveirinha, Alessandro Salandrino, and Nader Engheta. Epsilon-
near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase
pattern. Physical Review B, 75(15):155410, 2007.

84



[103] Romain Fleury and Andrea Alù. Enhanced superradiance in epsilon-near-zero plas-
monic channels. Physical Review B, 87(20):201101, 2013.

[104] Hrishikesh Kelkar, Daqing Wang, Björn Ho�mann, Silke Christiansen, Stephan
Götzinger, and Vahid Sandoghdar. A sub-λ 3 mode volume cantilever-based Fabry-
Pérot microcavity. In European Quantum Electronics Conference, page EG_6_1. Op-
tical Society of America, 2015.

[105] Alexander Benz, Salvatore Campione, John F Klem, Michael B Sinclair, and Igal
Brener. Control of Strong Light�Matter Coupling Using the Capacitance of Metama-
terial Nanocavities. Nano letters, 15(3):1959�1966, 2015.

[106] Zaizhi Lai, Nicholas K Preketes, Shaul Mukamel, and Jin Wang. Monitoring the folding
of Trp-cage peptide by two-dimensional infrared (2DIR) spectroscopy. The Journal of
Physical Chemistry B, 117(16):4661�4669, 2013.

[107] Darius Abramavicius, Dmitri V Voronine, and Shaul Mukamel. Double-quantum res-
onances and exciton-scattering in coherent 2D spectroscopy of photosynthetic com-
plexes. Proceedings of the National Academy of Sciences, 105(25):8525�8530, 2008.

[108] Ravindra Venkatramani and Shaul Mukamel. Correlated line broadening in multidi-
mensional vibrational spectroscopy. The Journal of chemical physics, 117(24):11089�
11101, 2002.

[109] Andrei Piryatinski, Vladimir Chernyak, and Shaul . Two-dimensional correlation
spectroscopies of localized vibrations. Chemical Physics, 266(2):311�322, 2001.

[110] Christian Greve, Nicholas K Preketes, Henk Fidder, Rene Costard, Benjamin Koeppe,
Ismael A Heisler, Shaul Mukamel, Friedrich Temps, Erik TJ Nibbering, and Thomas
Elsaesser. N�H stretching excitations in adenosine-thymidine base pairs in solution:
pair geometries, infrared line shapes, and ultrafast vibrational dynamics. The Journal
of Physical Chemistry A, 117(3):594�606, 2013.

[111] Justyna A Cwik, Peter Kirton, Simone De Liberato, and Jonathan Keeling.
Self-consistent molecular adaptation induced by strong coupling. arXiv preprint
arXiv:1506.08974, 2015.

[112] Hisaki Oka and Hajime Ishihara. Real-time analysis of the optical response of cav-
ity bipolaritons: Four-wave mixing and dynamics of formation. Physical Review B,
78(19):195314, 2008.

[113] Hisaki Oka and Hajime Ishihara. Highly e�cient generation of entangled photons by
controlling cavity bipolariton states. Physical review letters, 100(17):170505, 2008.

[114] Oleksiy Roslyak, Godfrey Gumbs, and Shaul Mukamel. Two-Photon-Coincidence Flu-
orescence Spectra of Cavity Multipolaritons: Novel Signatures of Multiexciton Gener-
ation. Nano letters, 10(10):4253�4259, 2010.

85



[115] Tomoyuki Hayashi and Shaul Mukamel. Two-dimensional vibrational lineshapes of
amide III, II, I and A bands in a helical peptide. Journal of molecular liquids,
141(3):149�154, 2008.

[116] Igor V Rubtsov, Jianping Wang, and Robin M Hochstrasser. Vibrational coupling
between amide-I and amide-A modes revealed by femtosecond two color infrared spec-
troscopy. The Journal of Physical Chemistry A, 107(18):3384�3396, 2003.

[117] Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto. Exciton-polariton bose-einstein
condensation. Reviews of modern physics, 82(2):1489, 2010.

[118] Jacek Kasprzak, M Richard, S Kundermann, A Baas, P Jeambrun, JMJ Keeling,
FMMarchetti, MH Szyma«ska, R Andre, JL Staehli, et al. Bose�Einstein condensation
of exciton polaritons. Nature, 443(7110):409�414, 2006.

[119] Johannes D Plumhof, Thilo Stöferle, Lijian Mai, Ullrich Scherf, and Rainer F Mahrt.
Room-temperature Bose�Einstein condensation of cavity exciton�polaritons in a poly-
mer. Nature materials, 13(3):247�252, 2014.

[120] Markus Kowalewski, Giovanna Morigi, Pepijn WH Pinkse, and Regina de Vivie-Riedle.
Cavity sideband cooling of trapped molecules. Physical Review A, 84(3):033408, 2011.

[121] Johannes Feist, Javier Galego, and Francisco J Garcia-Vidal. Polaritonic chemistry
with organic molecules. ACS Photonics, 2017.

[122] Javier Galego, Francisco J Garcia-Vidal, and Johannes Feist. Cavity-induced mod-
i�cations of molecular structure in the strong coupling regime. arXiv preprint
arXiv:1506.03331, 2015.

[123] Georg Rossbach, Jacques Levrat, Eric Feltin, Jean-François Carlin, Raphaël Butté, and
Nicolas Grandjean. Impact of saturation on the polariton renormalization in iii-nitride
based planar microcavities. Physical Review B, 88(16):165312, 2013.

[124] Yongbao Sun, Yoseob Yoon, Mark Steger, Gangqiang Liu, Loren N Pfei�er, Ken West,
David W Snoke, and Keith A Nelson. Direct measurement of polariton-polariton
interaction strength. Nature Physics, 2017.

[125] P Cilibrizzi, H Ohadi, T Ostatnicky, A Askitopoulos, W Langbein, and P Lagoudakis.
Linear wave dynamics explains observations attributed to dark solitons in a polariton
quantum �uid. Physical review letters, 113(10):103901, 2014.

[126] P Saurabh and S Mukamel. Quasiparticle representation of coherent nonlinear optical
signals. Quasiparticle representation of coherent nonlinear optical signals, Submitted.

[127] JC López Carreño, C Sánchez Muñoz, D Sanvitto, E del Valle, and FP Laussy. Exciting
polaritons with quantum light. Physical review letters, 115(19):196402, 2015.

[128] Zbigniew Ficek and Ryszard Tana±. Quantum-Limit Spectroscopy. Springer, 2017.

86



[129] R Houdré, JL Gibernon, P Pellandini, RP Stanley, U Oesterle, C Weisbuch, J Oâ��-
Gorman, B Roycroft, and M Ilegems. Saturation of the strong-coupling regime in a
semiconductor microcavity: Free-carrier bleaching of cavity polaritons. Physical Re-
view B, 52(11):7810, 1995.

[130] S Schmitt-Rink, DS Chemla, and DAB Miller. Theory of transient excitonic op-
tical nonlinearities in semiconductor quantum-well structures. Physical Review B,
32(10):6601, 1985.

[131] DS Chemla, J-Y Bigot, M-A Mycek, S Weiss, and W Schäfer. Ultrafast phase dy-
namics of coherent emission from excitons in gaas quantum wells. Physical Review B,
50(12):8439, 1994.

[132] Guang-Ri Jin and Wu-Ming Liu. Collapses and revivals of exciton emission in a semi-
conductor microcavity: Detuning and phase-space �lling e�ects. Physical Review A,
70(1):013803, 2004.

[133] A Imamo§lu. Phase-space �lling and stimulated scattering of composite bosons. Phys-
ical Review B, 57(8):R4195, 1998.

[134] Yaroslav V Kartashov, Vladimir V Konotop, and Lluis Torner. Compactons and bista-
bility in exciton-polariton condensates. Physical Review B, 86(20):205313, 2012.

[135] Jacob Katriel and Maurice Kibler. Normal ordering for deformed boson operators and
operator-valued deformed stirling numbers. Journal of Physics A: Mathematical and
General, 25(9):2683, 1992.

[136] LC Biedenharn. The quantum group suq (2) and a q-analogue of the boson operators.
Journal of Physics A: Mathematical and General, 22(18):L873, 1989.

[137] Felipe Herrera and Frank C Spano. Theory of nanoscale organic cavities: The essential
role of vibration-photon dressed states. arXiv preprint arXiv:1707.02992, 2017.

[138] Felipe Herrera and Frank C Spano. Dark vibronic polaritons and the spectroscopy of
organic microcavities. Physical Review Letters, 118(22):223601, 2017.

[139] Ahsan Zeb, Peter Kirton, and Jonathan Keeling. Exact states and spectra of vibra-
tionally dressed polaritons. ACS Photonics, 2017.

[140] Michel Gross and Serge Haroche. Superradiance: An essay on the theory of collective
spontaneous emission. Physics reports, 93(5):301�396, 1982.

[141] Robert H Dicke. Coherence in spontaneous radiation processes. Physical Review,
93(1):99, 1954.

[142] Naotomo Takemura. On the physics of polariton interactions. 2016.

[143] C Leroux, LCG Govia, and AA Clerk. Enhancing cavity qed via anti-squeezing: syn-
thetic ultra-strong coupling. arXiv preprint arXiv:1709.09091, 2017.

87



[144] Vladimir Y Chernyak, Prasoon Saurabh, and Shaul Mukamel. Non-linear non-local
molecular electrodynamics with nano-optical �elds. The Journal of chemical physics,
143(16):164107, 2015.

[145] Pierre Nataf and Cristiano Ciuti. No-go theorem for superradiant quantum phase tran-
sitions in cavity QED and counter-example in circuit QED. Nature communications,
1:72, 2010.

[146] Rubin J.L. Meyer J Tuszynksi, J.A. and Kibler. M. Statistical mechanics of a q-
deformed boson gas. Physics Letters A, 175(175):173�177, 1993.

[147] Zhedong Zhang, Kochise Bennett, Vladimir Chernyak, and Shaul Mukamel. Utiliz-
ing microcavities to suppress third-order cascades in �fth-order raman spectra. The
Journal of Physical Chemistry Letters, 8(14):3387�3391, 2017.

88



Appendix A

Supplementary for Chapter 3

A.1 Multimode Molecular Vibration Hamiltonian

We start with the Frenkel exciton Hamiltonian coupled to an infrared cavity [39, 65, 114,

52, 53, 54, 55],

H0 = ωc(θ)a
†a+

m∑
i

ωib
†
ibi +

m∑
i 6=j

Jijb
†
ibj

−
m∑
ij

∆ij

2
b†ib
†
jbibj +

m∑
i,j=1

g̃i

(
a†bi + b†ia

)
. (A.1)

ωc(θ) = ω0

(
1− sin2(θ)

n2
eff

)−1/2

, is the angle-dependent cavity energy with ω0 = being cavity

cut-o� energy (or maximum) and, θ the angle of incidence to the cavity mirrors. The

number of oscillators is denoted by m. We set m = 1 for Amide-I vibrations, and m = 2 for

Amide-I+II vibrations of a NMA molecule respectively (Fig. 3.1). neff is the e�ective intra-

cavity refractive index. When the refractive indices of one of the two layers' of a Distributed
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Bragg Re�ector (DBR) Fabry-Perot is equal to the empty cavity refractive index nc, say

nc = (n2n1), then neff =
√
n1n2 [49]. ωi is the exciton energy of ith oscillator, Jij is the

scalar harmonic coupling between oscillators and ∆ij is the anharmonicity due to vibrational

exciton-exciton interaction [39, 65, 114].

Assuming a single mode cavity, we introduce the polariton creation (p̂†) and annihilation (p̂)

operators,

p̂i = Ca+Xibi p̂†i = C∗a† +X∗i b
†
i . (A.2)

The Hop�eld coe�cients, C and Xi, are normalized as |C|2 +
∑n

i=1 |Xi|2 = 1 [98] and the po-

lariton operators follow bosonic commutation relations. The coe�cients vectors (C,X1, . . . , Xn)T

are easily found as the eigenvectors of the e�ective Hop�eld-Bogoliubov matrix [145],



ωc(θ) 2g̃1 . . . . . . 2g̃m

2g̃1 ω1 0 . . . 0

...
...

... · · · ...

2g̃m 0 0 . . . ωm


. (A.3)

This allows us to rewrite Eq. (A.1) as weakly interacting polaritons,

Hpol =
N∑
kk

Ωkkp̂
†
kp̂k −

N∑
kl

Ṽklp̂
†
kp̂
†
l p̂kp̂l. (A.4)
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Here, Ωkk are the eigenvalues of the N × N matrix in Eqn. A.3, where N = m + 1. Ṽkl

is the e�ective polariton anharmonicity. For non-zero order of coe�cient C, Ṽkl vanishes,

and simply reduces to Ṽkl = ∆kl

2
|Xk|2|Xl|2. The interaction with the probe �eld E(r, t) =∑3

i=1 E(t− ti)eikiri−iωi(t−ti) + c.c is given by,

Hint = −
∑
m

µmE
∗(r, t)p̂m +H.c. (A.5)

where, µm �rst order polariton dipole moment. The total Hamiltonian is then simply, Htot =

Hpol +Hint.

A.1.1 The molecular vibrational single-polariton (MVP) and double-

polariton (MVBP) manifolds:

The third order 2D cavity-mediated signal, depends only on the 1-polariton(MVP) and 2-

polariton(MVBP) states. We next denote the state when polaritonm is in the excited excited

state by, |m〉 = p̂†m|0〉 where, |0〉 is the ground state in polaritonic basis. MVP eigenstates

|e〉 are related to |m〉 by following unitary transformation, |e〉 =
∑

m φme|m〉 with, energies

εe (=
∑

mn φenΩnmφme) implicitly depending on incidence angle (θ) and the cavity coupling

strength (g̃i).

The MVBPmanifold |f〉 (with dimension d)can be similarly expanded as, |f〉 =
∑

mn,m≥n Φmn,f |mn〉

The restriction m ≥ n reduces d = N (N + 1)/2. The MVBP eigenenergies are given by,

Ωf =
∑

mn,m′n′

Φnm,f

(
δmm′Ωnn′ + Ωnn′δmm′

+ δmn′Ωnm′ + Ωn′mδmn′

)
Φn′m′,f (A.6)
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The nomenclature for Amide-I (m = 1) and Amide-I+II (m = 2) vibrations of NMA coupled

to single cavity mode in local and polariton basis along with single (SE) and double excited

(DE) polariton states are given in Table. ??. Tuning the cavity coupling allows us to control

spectral structures of the MV P and MVBP manifolds and is illustrated using DQC in the

following section.

A.1.2 The DQC signal for molecular vibrational polaritons

Assuming four temporally-well separated pulses given by, E(r, t) =
∑4

i=1 E(t−ti)eikiri−iωi(t−ti)+

c.c., the DQC signal is generated in the phase-matching direction kIII = k1 + k2 − k3 [107].

In terms of time delay ti, is given by,

S(Ω3,Ω2, t1) =

∞∫
0

∞∫
0

dt2dt3e
iΩ3t3eΩ2t2SkIII (t1, t2, t3), (A.7)

which can be expanded in vibrational molecular polariton eigenstates (Sec. A.1.1). Setting

t1 = 0 yields the expression for 2D signal,

S(Ω3,Ω2, 0) =
∑
ee′,f

1

(Ω2 − Ωfg + iγfg)[
µe′fµge′µfgµge

1

Ω3 − Ωe′g + iγe′g

− µge′µe′fµfgµeg
1

Ω3 − Ωfe + iγfe

]
. (A.8)

Note that the relevant eigenstates depend on the cavity coupling strengths (g̃) but have been

neglected for clarity. µij is the polariton transition dipole from states in manifold j → i while

γij is the respective dephasing.
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A.2 Nomenclature

Table A.1: Nomenclature for eigenstates for Amide-I and Amide-I+Amide-II for NMA:
ground state (G), singly excited states(SE) and doubly excited states (DE) in local and
polariton basis. The cavity states for G, SE and DE are |0〉, |1〉 and |2〉 respectively.

Amide Local basis Polariton basis
G SE DE Level scheme G SE DE Level Scheme

I (m = 1) |ga〉 |ea〉 |fa〉 aIlb.pdf |g〉

e1 :=
|ea, 0〉
e2 :=
|ga, 1〉

f1 :=
|ea, 1〉
f2 :=
|ga, 2〉
f3 :=
|fa, 0〉

I+II (m = 2) |ga〉=|gb〉 |ea〉;|eb〉 |fa〉;|fb〉 aI+IIlb.pdf |g〉

e1 :=
|ga, eb, 0〉
e2 :=
|ea, gb, 0〉
e3 :=
|ga, gb, 1〉

f1 :=
|ga, eb, 1〉
f2 :=
|ga, fb, 0〉
f3 :=
|ea, eb, 0〉
f4 :=
|ea, gb, 1〉
f5 :=
|fa, gb, 0〉
f6 :=
|ga, gb, 2〉

A.3 Absorptive and dispersive parts of DQC

The absorptive (Im) and the dispersive (Re) parts of the DQC signals presented in main

text are shown here. The doublets shown in the absorptive parts are due to anharmonicities.
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A.3.1 Amide-I vibrations of NMA in IR cavity

Case I: No cavity Fig. A.1-A.2
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Figure A.1: Imaginary part of DQC signals for Amide-I vibrations in NMA using Eq. A.8
and ladder diagrams (Fig. 3.2b): (a) |Si(Ω3,Ω2, 0)| with resonance at Ωeg = 1625cm−1,
(b)|Sii(Ω3,Ω2, 0)| with resonance at Ωfe = 1617cm−1 and (c)|S(Ω3,Ω2, 0)| with resonances
at Ωeg = 1625cm−1 and Ωfe = 1617cm−1. The linear projections along each axis is shown
in green. For simplicity, cavity �eld vector ec is assumed to be mostly parallel to molec-
ular vibrational transition dipole µm. Amide-I vibrations (ω1) is resonant to cavity cuto�
frequency ω0 = 1625cm−1. The anharmonicity are assumed ∆11 = 15cm−1 (Table 3.1).
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Case II: weak coupling regime with g̃ = 20cm−1 (Fig. A.3-A.4)

Figure A.4: Real part DQC signals using Eqn. A.8 and ladder diagrams (Fig. 3.2b): Columns
(left−)|Si(Ω3,Ω2, 0)| with resonance at Ωe1g and Ωe2g; (middle−)|Sii(Ω3,Ω2, 0)| with reso-
nance at Ωf2,e2 , Ωf2,e1 , Ωf1,e2 , Ωf3,e2 , Ωf1,e1 , Ωf3,e1 ; and (right−)|S(Ω3,Ω2, 0)| with respective
resonances for Amide-I vibrations in NMA with cavity coupling rows : (a)20cm−1. The
linear projections along each axis is shown in green. For simplicity, cavity �eld vector ec
is assumed to be mostly parallel to molecular vibrational transition dipole µk. Amide-I vi-
brations (ω1) is resonant to cavity cuto� frequency ω0 = 1625cm−1. The anharmonicity are
assumed ∆11 = 16cm−1 (Table 3.1))
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Figure A.2: Real part of DQC signals for Amide-I vibrations in NMA using Eq. A.8
and ladder diagrams (Fig. 3.2b): (a) |Si(Ω3,Ω2, 0)| with resonance at Ωeg = 1625cm−1,
(b)|Sii(Ω3,Ω2, 0)| with resonance at Ωfe = 1617cm−1 and (c)|S(Ω3,Ω2, 0)| with resonances
at Ωeg = 1625cm−1 and Ωfe = 1617cm−1. The linear projections along each axis is shown
in green. For simplicity, cavity �eld vector ec is assumed to be mostly parallel to molec-
ular vibrational transition dipole µm. Amide-I vibrations (ω1) is resonant to cavity cuto�
frequency ω0 = 1625cm−1. The anharmonicity are assumed ∆11 = 15cm−1 (Table 3.1).

Case III: strong coupling regime with g̃ = 50cm−1 (Fig. A.5-A.6)
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Figure A.3: Imagniary part DQC signals using Eqn. A.8 and ladder diagrams (Fig. 3.2b):
Columns (left−)|Si(Ω3,Ω2, 0)| with resonance at Ωe1g and Ωe2g; (middle−)|Sii(Ω3,Ω2, 0)|
with resonance at Ωf2,e2 , Ωf2,e1 , Ωf1,e2 , Ωf3,e2 , Ωf1,e1 , Ωf3,e1 ; and (right−)|S(Ω3,Ω2, 0)| with
respective resonances for Amide-I vibrations in NMA with cavity coupling rows : (a)20cm−1.
The linear projections along each axis is shown in green. For simplicity, cavity �eld vector
ec is assumed to be mostly parallel to molecular vibrational transition dipole µk. Amide-I
vibrations (ω1) is resonant to cavity cuto� frequency ω0 = 1625cm−1. The anharmonicity
are assumed ∆11 = 16cm−1 (Table 3.1)
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Figure A.5: Imagniary partDQC signals using Eqn. A.8 and ladder diagrams (Fig. 3.2b):
Columns (left−)|Si(Ω3,Ω2, 0)| with resonance at Ωe1g and Ωe2g; (middle−)|Sii(Ω3,Ω2, 0)|
with resonance at Ωf2,e2 , Ωf2,e1 , Ωf1,e2 , Ωf3,e2 , Ωf1,e1 , Ωf3,e1 ; and (right−)|S(Ω3,Ω2, 0)| with
respective resonances for Amide-I vibrations in NMA with cavity coupling (a)50cm−1. The
linear projections along each axis is shown in green. For simplicity, cavity �eld vector ec
is assumed to be mostly parallel to molecular vibrational transition dipole µk. Amide-I
vibrations (ω1) is resonant to cavity cuto� frequency ω0 = 1625cm−1. The anharmonicity
are assumed ∆11 = 16cm−1 (Table 3.1)
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Figure A.6: Real part DQC signals using Eqn. A.8 and ladder diagrams (Fig. 3.1e): Columns
(left−)|Si(Ω3,Ω2, 0)| with resonance at Ωe1g and Ωe2g; (middle−)|Sii(Ω3,Ω2, 0)| with reso-
nance at Ωf2,e2 , Ωf2,e1 , Ωf1,e2 , Ωf3,e2 , Ωf1,e1 , Ωf3,e1 ; and (right−)|S(Ω3,Ω2, 0)| with respec-
tive resonances for Amide-I vibrations in NMA with cavity coupling rows : (a)20cm−1 and
(a)50cm−1. The linear projections along each axis is shown in green. For simplicity, cavity
�eld vector ec is assumed to be mostly parallel to molecular vibrational transition dipole
µk. Amide-I vibrations (ω1) is resonant to cavity cuto� frequency ω0 = 1625cm−1. The
anharmonicity are assumed ∆11 = 16cm−1 (Table 3.1)
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A.4 Amide-I+II of NMA in IR cavity

case II: weak coupling regime with g̃ = 10cm−1 (Fig. A.7-A.8)
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Figure A.7: Imaginary part of DQC signals for Amide-I+II vibrations in NMA using Eq. A.8
and ladder diagrams (Fig. 1e in main text): Columns : (left-)|Si(Ω3,Ω2, 0)| with resonance at
Ωe1g, Ωe2g and Ωe3g ; (middle-)|Sii(Ω3,Ω2, 0)| with resonance at Ωf1e3 ≈ Ωf1e2 , Ωf3e4 ≈ Ωf4e2 ,
Ωf2e3 ≈ Ωf2e2 , Ωf1e1 , Ωf3e3 ≈ Ωf3e2 = Ωf4e1 = Ωf6e3 , Ωf6e2 , Ωf5e3 , Ωf2e1 , Ωf5e2 , Ωf3e1 , Ωf6e1 ,
Ωf5e1 and (right-)|S(Ω3,Ω2, 0)| with respective resonances with cavity couplings (rows) at
10cm−1 along Ω3, while peaks at Ωf1g,Ωf2g,Ωf3g,Ωf4g,Ωf5g and Ωf6g along Ω2. The linear
projections along each axis is shown in green. For simplicity, cavity �eld vector ec is assumed
to be mostly parallel to molecular vibrational transition dipole µm. Amide-I vibrations (ω1) is
resonant to cavity cuto� frequency ω0 = 1625cm−1 and ω2 = 1540cm−1. The anharmonicity
are assumed ∆11 = 15cm−1 and ∆22 = 11cm−1 (Table 3.1)

case III: strong coupling regime with g̃ = 60cm−1 (Fig. A.9-A.10)
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Figure A.8: Real part of DQC signals for Amide-I+II vibrations in NMA using Eq. A.8
and ladder diagrams (Fig. 3.1e): Columns : (left-)|Si(Ω3,Ω2, 0)| with resonance at Ωe1g,
Ωe2g and Ωe3g ; (middle-)|Sii(Ω3,Ω2, 0)| with resonance at Ωf1e3 ≈ Ωf1e2 , Ωf3e4 ≈ Ωf4e2 ,
Ωf2e3 ≈ Ωf2e2 , Ωf1e1 , Ωf3e3 ≈ Ωf3e2 = Ωf4e1 = Ωf6e3 , Ωf6e2 , Ωf5e3 , Ωf2e1 , Ωf5e2 , Ωf3e1 , Ωf6e1 ,
Ωf5e1 and (right-)|S(Ω3,Ω2, 0)| with respective resonances with cavity couplings at 60cm−1

along Ω3, while peaks at Ωf1g,Ωf2g,Ωf3g,Ωf4g,Ωf5g and Ωf6g along Ω2. The linear projections
along each axis is shown in green. For simplicity, cavity �eld vector ec is assumed to be
mostly parallel to molecular vibrational transition dipole µm. Amide-I vibrations (ω1) is
resonant to cavity cuto� frequency ω0 = 1625cm−1 and ω2 = 1540cm−1. The anharmonicity
are assumed ∆11 = 15cm−1 and ∆22 = 11cm−1 (Table 3.1) .

Figure A.9: Imaginary part of DQC signals using Eqn. A.8 and ladder diagrams (Fig. 1e
in maintext):(a) Si(Ω3,Ω2, 0) with resonance at Ωe1g, Ωe2g and Ωe3g (b)Sii(Ω3,Ω2, 0) with
resonance at Ωf1e3 ≈ Ωf1e2 , Ωf3e4 ≈ Ωf4e2 , Ωf2e3 ≈ Ωf2e2 , Ωf1e1 , Ωf3e3 ≈ Ωf3e2 = Ωf4e1 = Ωf6e3 ,
Ωf6e2 , Ωf5e3 , Ωf2e1 , Ωf5e2 , Ωf3e1 , Ωf6e1 , Ωf5e1 and (c) Si(Ω3,Ω2, 0) with respective resonances
for Amide-I+II vibrations in NMA with cavity coupling 20cm−1 along Ω3, while peaks at
Ωf1g,Ωf2g,Ωf3g,Ωf4g,Ωf5g = Ωf6g along Ω2 in (a)-(c). The linear projections along each axis
is shown in green. For simplicity, cavity �eld vector ec is assumed to be mostly parallel
to molecular vibrational transition dipole µk. Amide-I vibrations (ω1) is resonant to cavity
cuto� frequency ω0 = 1625cm−1 and ω2 = 1510cm−1. The anharmonicity are assumed
∆11 = 16cm−1 and ∆22 = 24cm−1 (Table 3.1).
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Figure A.10: Real part of DQC signals using Eqn. A.8 and ladder diagrams (Fig. 3.2b):(a)
Si(Ω3,Ω2, 0) with resonance at Ωe1g, Ωe2g and Ωe3g (b)Sii(Ω3,Ω2, 0) with resonance at
Ωf1e3 ≈ Ωf1e2 , Ωf3e4 ≈ Ωf4e2 , Ωf2e3 ≈ Ωf2e2 , Ωf1e1 , Ωf3e3 ≈ Ωf3e2 = Ωf4e1 = Ωf6e3 , Ωf6e2 ,
Ωf5e3 , Ωf2e1 , Ωf5e2 , Ωf3e1 , Ωf6e1 , Ωf5e1 and (c) Si(Ω3,Ω2, 0) with respective resonances for
Amide-I+II vibrations in NMA with cavity coupling 20cm−1 along Ω3, while peaks at
Ωf1g,Ωf2g,Ωf3g,Ωf4g,Ωf5g = Ωf6g along Ω2 in (a)-(c). The linear projections along each axis
is shown in green. For simplicity, cavity �eld vector ec is assumed to be mostly parallel
to molecular vibrational transition dipole µk. Amide-I vibrations (ω1) is resonant to cav-
ity cuto� frequency ω0 = 1625cm−1 and ω2 = 1510cm−1. The anharmonicity are assumed
∆11 = 16cm−1 and ∆22 = 24cm−1 (Table 3.1).
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A.5 Peak splitting for Amide-I vibrations of NMA in op-

tical cavity

Using the nomenclature δ1 = ωf2e2 − ωf1e1 , δ2 = ωf2e2 − ωf1e1 , δ1 = ωf2e2 − ωf1e1 , δ1 =

ωf2e2 − ωf1e1 and δ1 = ωf2e2 − ωf1e1 the peak splitting for Amide-I vibrations of NMA in

optical cavity is shown in Fig.1a of main text.
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Figure A.11: Rabi splitting for nearest peaks in Fig. A.1-A.5. The nomenclature used is
as follows, δ1 = ωf2e2 − ωf1e1 , δ2 = ωf2e2 − ωf1e1 , δ1 = ωf2e2 − ωf1e1 , δ1 = ωf2e2 − ωf1e1 and
δ1 = ωf2e2 − ωf1e1
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A.6 Peak splitting for Amide-I+II vibrations of NMA in

optical cavity
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Figure A.12: Rabi splitting for nearest peaks for Amide-I+II of NMA in single mode cavity
corresponding to Fig. A.7-A.9.
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Appendix B

Supplementary to Chapter 4

B.1 Introduction

Usually bosonic commutation relations are imposed for molecular polaritons imposes bosonic

commutation relations for polariton creation(annihilation) operators, i.e., [p̂†i , p̂j] = δij where,

p̂†i (p̂j) are polariton creation (annihiliation) operators for modes i and j respectively. This

constraint allows for usual predictions anharmonicities of vibrational molecular polaritons

[9], as well as electronic spectroscopic measurements for single molecules con�ned in sub-

wavelength optical cavities and in controlling other physical and chemical properties of

molecules.

This constraint on the commutation relation fails when the one incorporates the non-bosonic

nature of exciton-exciton interactions for molecules in the optical cavity. The molecular

polariton hamiltonian including the polariton-polarion interaction term is given by (c.f.2),

Hp(g) =
N∑
i

Ωi(g)p̂†i p̂i +
N∑
ij,kl

Ṽij,kl(g)p̂†i p̂
†
j p̂kp̂l, (B.1)
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where, Ωi(g) is the coupling dependent eigenenergies of sites i in the polariton manifold,

and Ṽij,kl(g) is polariton-polariton interaction term. It su�ces to split the second term in

Eqn. (B.1) in terms of onsite interaction terms (i = j = k = l) and two site interaction

(i = k, j = l) to capture essential physics. Thus, our model hamiltonian for interacting

molecular polaritons is simpli�ed to,

Hp(g) =
N∑
i

Ωi(g)p̂†i p̂i +
N∑
i

∆̃i(g)p̂†i p̂
†
i p̂ip̂i

+
N∑
ij

K̃ij(g)p̂†i p̂
†
j p̂ip̂j (B.2)

1 In this letter, we �rst modify Eqn (B.1) to include the e�ect of of derive the structure of

polariton-polariton interaction term in the molecular polariton hamiltonian when we release

the constraint of operators being bosonic, but instead treat them as q−deformed. We then

use the collective polariton oscillator method developed in Chapter 2 to directly measure the

e�ects of the polariton-polariton scattering as we vary cavity coupling g and the deformation

parameter α. In this letter, we will study how the energy terms are modi�ed due to manybody

interactions of the q- deformed polaritons. For simplicity, we will restrict ourselves to the

correction due to interacting polaritons when Ni = 1. The solution to this issue unfolds in

three steps: a) �nding the exact change in the nonlinear term in the molecular polariton

hamiltonian, b)�nding the exact g dependence on the q, and, c) direct measurement of

this e�ect using quasiparticle representation of multidimensional spectroscopy for molecular

polaritons.

As shown in the schematic within (Fig 1.2, the cavity photon is con�ned along kz direction

allowing the resulting polariton to be two dimensional at most. This allows us to recast,

1For N > 5 there is no closed analytical form for either Ωi(g) or Ṽij,kl(g) and we must resort to numerical

methods.
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Ṽij,kl(g) which di�ers from exciton-exciton interaction Uij,kl by the transformation, Ṽij,kl(g) =

Uij,klX
∗
kX
∗
l XmXn, with Hop�eld coe�cients Xm (for mode m ∈ {i, j, k, l}).

B.1.1 Modi�cation on energy terms dues to q

We start with interacting polariton Hamiltonian where we use π̂†i (π̂i) as deformed polariton

creation (anihilation) operators,

H =
∑
i

Ωiπ̂
†
i π̂i +

1

2

∑
<i,j>

Ṽij,ijπ̂
†
i π̂
†
j π̂iπ̂j +

1

2

∑
i

Ũii,iiπ̂
†
i π̂
†
i π̂iπ̂i, (B.3)

where, Ωi is the energy of the ith polariton branch, Ṽij,ij is the two-site polariton interactions

at sites i and j and Ũii,ii is on-site polariton-polariton interaction for site i. For simplicity,

we only consider on site interaction term, and derive exact expressions for the changes on

Ũi ≡ Ũii,ii as cavity coupling g is varied which in term changes the deformation parameter

q. We explore the e�ects of the changing number of polaritons in each branch and measure

Double Quantum Coherence using quasiparticle description of the signal described in Chapter

2 to reveal the exact breaking point of the cooperativity that often scales as
√
N . To express

the third term in Eqn. (B.3), we need to rewrite it using Eqn. (B.25). By substituting k = 2

we can establish the relation between the normal ordered polartion operators and functions

of polariton number N̂i.

∑
i

Ũiπ̂
†
i π̂
†
i π̂iπ̂i =

2∑
m=1

ŨiŜ(2,m, N̂i)[N̂i]
m, (B.4)

105



where, N̂i = π̂†i π̂i, and

Ŝ(2,m, N̂i) = q−1q−(2−m)N̂iξ(2,m). (B.5)

ξ(2,m) has properties of Stirling number of �rst kind. We thus have,

∑
i

Ũiπ̂
†
i π̂
†
i π̂iπ̂i =

2∑
m=1

Ũiq
−1q−(2−m)N̂iξ(2,m)[N̂i]

m. (B.6)

Replacing [N̂i]
m with proper q-analytical form gives us,

∑
i

Ũiπ̂
†
i π̂
†
i π̂iπ̂i =

∑
i

ξ(2, 1)Ũiπ̂
†
i π̂
†
i π̂iπ̂iq

(N̂i)+1[N̂i] +
∑
i

ξ(2, 2)Ũi[N̂i]
2. (B.7)

We next substitute operator form of Eqn. (B.11) in Eqn. (B.7) for [N̂i] in the �rst term of

Eqn. B.7 to get,

∑
i

ξ(2, 1)Ũiπ̂
†
i π̂
†
i π̂iπ̂iq

(N̂i)+1[N̂i] =
∑
i

Ũi
log[q]

q2
N̂i(coth[α]− 1){N̂i log[q] + 1} (B.8)

where, we used ξ(2, 1) = −1 and substituted q → e−α and then expanded Eqn. (B.7) upto

second order in N̂i to incorporate doubly excited state information. Similar treatment to the

second term in Eqn. (B.7) gives,

∑
i

ξ(2, 2)Ũi[N̂i]
2 = −

∑
i

ŨiN̂
2
i [α] log[q] (B.9)
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because ξ(1, 1) = 1. Now collecting the terms with linear and quadratic dependence in N̂i

gives us following simpli�ed form for the on-site polariton-polariton interaction terms so that

we can use ratio of Ûi/g as dimensionless structure parameter to quantify q.

∑
i

Ũiπ̂
†
i π̂
†
i π̂iπ̂i =

∑
i

Ũi
log[q]

q2
(coth[α]− 1)N̂i −

∑
i

Ũi log[q]N̂2
i [(coth[α]− 1)

log[q]

q2
+ [α]].(B.10)

B.2 Useful relations for q-deformed algebras

Majority of physics literature and quantum groups on q− analysis uses following bracketed

number (operator),

[x]i =
qxi − q−xi
q − q−1

. (B.11)

A straightforward realization of such deformed algebra can be achieved using representa-

tions spanned by Fock space on which the deformed polariton creation (anihiliation) (π̂†, π̂)

operators are de�ned with following general form,

π̂i|n〉i =
√

[n]i|n− 1〉i ˆ̂π†i
√

[n+ 1]i|n+ 1〉i (B.12)

π̂†i π̂i|n〉i = N̂i|n〉i = n|n〉i. (B.13)
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Furthermore, a simple algebra shows that,

π̂†i π̂j = δij[N̂i] π̂jπ̂
†
i = δij[N̂i + 1]. (B.14)

Out of convinience we can choose to have following reording relation for the deformed po-

laritons,

π̂iπ̂
†
j − q−1π̂†j π̂i = δijq

N̂i (B.15)

For general deformation, an for arbitrary power (k) of polariton number operators N̂i, we

hvae following generalized commutation relation,

[π̂k, π̂†] = δijφ(k, N̂i)π̂
k−1, (B.16)

where φ(k, N̂i) is bounded for k > 1 and is given by,

φ(k, N̂i) =
1

q − q−1
= [k]q−N̂i . (B.17)

For arbitrary power of polariton number, N̂i, we have,

[N̂i]
m =

m∑
k=1

(π̂†)kŜ(m, k, N̂i), π̂
k
i . (B.18)
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due to [Kibler] [135]. Here, Ŝ(m, k, N̂i) is operator values Stirling number with following

recurssion relation,

Ŝ(m+ 1, k, N̂i) = qk−1Ŝ(m, k − 1, N̂i + 1) + Ŝ(m, k, N̂i)[k]. (B.19)

Clearly, Ŝ(m, k, N̂i) depends on N̂i which implies that Eqn. B.19 is not normally ordered.

In order to explain the polariton-polariton scattering terms we wish to have the quadratic

interaction terms normally ordered. In order to do so, a simple decomposition of the operator

valued Stirling number into prodcut of Stirling number of second kind Ŝ(2)(m, k) and a

funciton of number operator can be achieved. It takes the following form,

Ŝ(m, k, N̂i) = qk(k−1)/2q−(m−k)N̂iŜ(2)(m, k) (B.20)

We further have following recurssion relation,

Ŝ(2)(m+ 1, k) = q−(m−k+1)Ŝ(2)(m, k − 1) + kŜ(2)(m, k), (B.21)

bounded by unity at Ŝ(2)(1, 1). Finally in order to express (π̂†)k(π̂)k in normal order in terms

of [N̂i] so that we can see exact dependence of [N̂i] on polariton-polariton terms. To do so,

we need following relations of q-analog numbers,

[a+ b] = qb([a] + q−a[b]) (B.22)
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[b] = (−1)−b[b] (B.23)

[a− b] = q(−b)([a]− q−1(a−b)[b]). (B.24)

Using Eqns (B.16)�B.22, we get,

(π̂†i )
k(π̂i)

k =
k∑

m=1

Ŝ(k,m, N̂i)[N̂i]
m (B.25)

We further note that,

(π̂†i )
k+1(π̂i)

k+1 = π̂ki [N̂i]π̂
k
i = (π̂†i )

k(π̂i)
k[N̂i − k] (B.26)

And,

Ŝ(k + 1,m, N̂i) = q−kŜ(k,m− 1, N̂i)− q−(N̂i+k)Ŝ(k,m, N̂i). (B.27)

We next introduce N̂i independent Stirling number to get,

Ŝ(k,m, N̂i) = q−k(k−1)/2q−1(k−m)N̂iξ(k,m), (B.28)
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where,

ξ(k + 1,m) = ξ(k,m− 1)− qk[k]ξ(k,m) (B.29)

Unfortunately, the exponential dependence on N̂i for the operator values Stirling number, we

cannot express the normal ordered polariton operators as polynomials of N̂i but have been

able to write them as function of N̂i. Furthermore, the orthonormality of the transformations

used is satis�ed by following condition,

k∑
m=1

ξ(k,m)(q−k
′(k′−m)Ŝ(2)(m, k′)) = δ(k, k′) (B.30)

B.3 Thermal distribution of q-deformed polaritons

In Chapter ??, we detailed the methods of observing e�ects of q-deformed polariton-polariton

scattering and it's e�ects in singly and doubly excited states. We then used, quasiparticle

method developed in Chapter 2 to compute the double quantum coherence signal. In order

to connect this thesis to already well established nonlinear spectroscopy developed in [10], we

need to �rst be able to compute initial density matrix at thermal equilibrium ρ0(t0). Once

we have this, we can use Eqn.5.2 in [10].
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We start with de�ning polaritons as q-deformed bosons (π̂†, π̂) with following commutation

relations,

[Ni, π̂
†
i ] = π̂†i [Ni, π̂i] = −π̂i (B.31)

π̂†i π̂j = δij π̂jπ̂
†
i = δij[Ni + 1], (B.32)

where the bracket numbers [x] (or operators) are de�ned using q-analogs given by,

[x] =
qx − q−x

q − q−1
. (B.33)

An geometrically more rigorous way to realize deformed algebras would be to replace the

Lie algebra acting on usual bosonic operators with Hopf algebra which could provide a more

intricate structural understanding of the deformed polaritons. We choose a simpler route by

assuming the polaritons as quasiparticles as done in seminal work by [146].

We wish to establish a thermal distribution for non-interacting (weakly-interacting) polari-

tons and calculate the expected number of polaritons for two dimensions which is most

relevant for molecular polaritons con�ned in optical cavities where strong coupling regimes

are easily achievable [50, 147].

To this end, we start with a simple non-interacting deformed polariton hamiltonian,

H =
∑
i

Ωiπ̂
†
i π̂i, (B.34)
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where ithpolaritons are indexed by i. We have incorporated the chemical potentials µi (that

depend on deformation parameter q) in energies Ωi itself for simplicity. We next de�ne the

mean occupation number as exponents on the deformation parameter q,

qσfi =
1

Z
〈e−βHqσNi〉. (B.35)

Here, 〈...〉 denotes the thermal expectation value, Z = e−βH , and β = 1
KbT

with Kb as

boltzman constant and T as temperature for σ ∈ {−1,+1}

Upon using the de�nation of bracket numbers Eqn B.33 and properties in Eqn B.31 we get,

[fi] =
1

Z
〈e−βH [Ni]〉. (B.36)

. In case where the mapping between the usual Hop�eld coe�cients and q-deformation

parameters exists, it is easy to see that only the cases when q ∈ R+ is physically relevant. In

case that q ∈ S1, topological deformation may be possible allowing for more complex physics

for molecular polaritons.

Restricting ourselves to domain of positive real numbers R+, using cyclic property of trace

and repeated use of Eqn B.31 allows us to write a reccursive relation for [fi] as,

[fi + 1] = [fi] cosh[log[q]] + cosh[fi log[q]] (B.37)
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and,

[fi] = cosh[fi log[q]]
exp[βH]−cosh[log[q]]

(B.38)

In the limit, q → 1 Eqn. B.37 tends to usual bosonic distribution, 1
eβH−1

. For our purposes,

fi =
1

log[q]
tanh−1[

sinh[log[q]]

eβH − cosh[log[q]]
] (B.39)

It can be seen that fi exhibits multiplicative inversion symmetry, i.e., fi(q) = fi(q
−1). Thus,

it su�ces to chose either q > 1 or 0 < q < 1 without losing physics. Though upon calculations

in terms of Hop�eld coe�cients, q < 1, choice of q > 1 guarantes series convergence.

fi =
∞∑
j=1

1− exp[−2j log[q]]

2j log[q]
exp[−jβ(Ωi − µ0)], (B.40)

where, µ0 is the chemical potential of undeformed polariton. Since, Ωi − µ0 > is always

satis�ed, the series converges when q > 1.

In order to compute the thermal density we need to promote the sum (in Eqn. B.40 to an

integral weighted by continuum energy ω,

Ji =

∫ ∞
0

ωif(ω)dω. (B.41)
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For, i > −1, we have,

Ji = Γ(i+ 1)β−(i+1)s(n+ 1),

s(n+ 1) =
1

2 log[q]

∞∑
j=1

1

ji+2

1− exp[−2j log[q]]

2j log[q]
exp[−jβ(Ωi − µ0)]. (B.42)

Where, Γ is Euler gamma function. For undeformed chemical potential µ0 ≤ 0 and q > 1

the series expansion s(i+ 1) always converges.

We are now in position to de�ne the thermal density ρ0 for two dimensional molecular

polariton based on deformed commutation relations [146],

ρ0 = 2d
√
πΓ(2)−1β−1mps(1), (B.43)

where, d is the degeneracy and mp is the e�ective polariton mass. This appendix pro-

vides connection between the current thesis and multidimensional spectroscopic techniques

formulated by [10] using the density matrix formulation. Eqn B.43 provides as an initial

distribution of polariton density matrix at thermal equilibrium.
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