
UC San Diego
UC San Diego Previously Published Works

Title
Identification and functional analysis of novel phosphorylation sites in the RNA surveillance 
protein Upf1

Permalink
https://escholarship.org/uc/item/4rc813j7

Journal
Nucleic Acids Research, 42(3)

ISSN
0305-1048

Authors
Lasalde, Clarivel
Rivera, Andrea V
León, Alfredo J
et al.

Publication Date
2014-02-01

DOI
10.1093/nar/gkt1049

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rc813j7
https://escholarship.org/uc/item/4rc813j7#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Identification and functional analysis of novel
phosphorylation sites in the RNA surveillance
protein Upf1
Clarivel Lasalde1, Andrea V. Rivera1, Alfredo J. León1, José A. González-Feliciano1,
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ABSTRACT

One third of inherited genetic diseases are caused by
mRNAs harboring premature termination codons as
a result of nonsense mutations. These
aberrant mRNAs are degraded by the Nonsense-
Mediated mRNA Decay (NMD) pathway. A central
component of the NMD pathway is Upf1, an RNA-
dependent ATPase and helicase. Upf1 is a known
phosphorylated protein, but only portions of this
large protein have been examined for phosphoryl-
ation sites and the functional relevance of its
phosphorylation has not been elucidated in
Saccharomyces cerevisiae. Using tandem mass
spectrometry analyses, we report the identification
of 11 putative phosphorylated sites in S. cerevisiae
Upf1. Five of these phosphorylated residues are
located within the ATPase and helicase domains
and are conserved in higher eukaryotes, suggesting
a biological significance for their phosphorylation.
Indeed, functional analysis demonstrated that a
small carboxy-terminal motif harboring at least
three phosphorylated amino acids is important for
three Upf1 functions: ATPase activity, NMD activity
and the ability to promote translation termination ef-
ficiency. We provide evidence that two tyrosines
within this phospho-motif (Y-738 and Y-742) act
redundantly to promote ATP hydrolysis, NMD
efficiency and translation termination fidelity.

INTRODUCTION

Eukaryotic gene expression is highly regulated to guaran-
tee fidelity in the conversion of genetic information into

biological function. Several mechanisms are responsible
for maintaining fidelity during the flow of genetic infor-
mation. One such mechanism is the nonsense-mediated
mRNA decay (NMD) pathway, which recognizes and
degrades mRNAs that contain premature translation ter-
mination codons (PTCs), thereby preventing the synthesis
of truncated proteins (1–6). This surveillance pathway also
contributes to cellular homeostasis by regulating the
expression of �3–20% of the transcriptome of eukaryotes
across the phylogenetic scale (7–12).

The core factors essential for NMD in all organisms
reported on to date are the UP-frameshift 1 (Upf1),
Upf2 and Upf3 proteins. Upf1 is a predominantly cyto-
plasmic RNA-binding protein that exhibits RNA-
dependent ATPase and RNA helicase activities that are
essential for NMD (13–20). The RNA-dependent ATPase
activity of Upf1 is triggered by the formation of a ‘sur-
veillance complex’ comprised of all three Upf proteins
(6,20–24). Several models have been proposed to explain
how these components of the NMD machinery recognize
a PTC and recruit RNA degradation proteins (25–39).
Most models revolve around the notion that RNA decay
is triggered when a stop codon is followed by a second
signal that defines the stop codon as premature (3,11). In
the ‘faux 30-UTR’ model, translation termination at a
normal stop codon is proposed to be fundamentally dif-
ferent from translation termination at a PTC; mRNA
decay is activated by the aberrant nature of premature
termination (27). According to this model, proper termin-
ation requires an interaction between a terminating
ribosome and a specific messenger ribonucleoprotein
(mRNP) structure localized 30 to the stop codon
(27,40,41). The ‘faux 30-UTR’ model further proposes
that the proximity of the poly(A) binding (Pab1) protein
to the PTC is important for NMD activation (27). In
mammals, a well-established NMD second signal is an
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exon–exon junction downstream of a stop codon, as this
allows a protein complex recruited at exon–exon junc-
tions—the exon junction complex (EJC)—to activate
NMD (31,33,42). When a translating ribosome encounters
a PTC upstream of an EJC, a SURF complex
(SMG1C:Upf1:eRF1:eRF3) is assembled (36,39,43–45),
which, in turn, recruits both mRNA decapping and deg-
radation enzymes (11,46).

Upf1 is a phosphoprotein, which has led investigators
to examine whether Upf1 phosphorylation has roles in
NMD (1,39,47,48). Previous studies have provided
evidence that phosphorylation and dephosphorylation
cycles of Upf1 promote NMD in Caenorhabditis elegans
and mammals (39,47,49–51). While the underlying mech-
anism remains to be fully established, it is known that
Upf1 is phosphorylated by the NMD factor, SMG-1,
when the SURF:ribosome complex interacts with the
EJC (36,44), ultimately leading to the degradation of
PTC-containing mRNAs (11,46). To understand the mo-
lecular role of Upf1 phosphorylation in NMD, it is critical
to identify the phosphorylated amino acids in Upf1. To
date, few phospho-amino acids have been identified in
Upf1. In mammalian UPF1, two phosphorylated serine
residues at the C-terminus (S-1078 and S-1096) and one
at the N-terminus (T-28) have been identified (39,48).
Saccharomyces cerevisiae Upf1 has been shown to be a
phosphoprotein, but the identity of its phosphorylated
residues is not known (1).

In this study, we have used mass spectrometry analysis
to identify 11 novel phosphorylation sites in S. cerevisiae
Upf1. Five of the phosphorylated residues are conserved
in Arabidopsis, Drosophila melanogaster, C. elegans
and human UPF1. Our structure–function analysis
revealed the existence of a ‘phospho-motif’ harboring
phosphorylated residues in the C-terminus that is essential
for the ability of Upf1 to function in NMD, as well as its
ATP hydrolysis function and its ability to promote trans-
lation termination efficiency. Mutation of two of the tyro-
sines in this phospho-motif decreased Upf1’s NMD and
ATPase hydrolysis activities, as well as Upf1’s ability to
promote translation termination accuracy. Our studies
provide a foundation for future studies to determine the
precise molecular roles of phospho-amino acids in the
Upf1 NMD protein.

MATERIALS AND METHODS

Yeast strains and plasmids

Saccharomyces cerevisiae strain W303 upf1D (MATa ade2-
1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 upf1::HIS3
NMD2 UPF3) was used as the wild-type (WT) strain for
all the experiments described in this study. The yeast 2m
plasmid pG-1 containing the FLAG-UPF1 allele was used
as the vector (52). The upf1 deletions used in these experi-
ments were constructed by single-step cloning using the
FLAG-UPF1 allele as the template (53). The upf1
point-mutants were constructed by site-directed mutagen-
esis using the FLAG-UPF1 allele as the template. Yeast
transformations were performed by the lithium acetate
method (54).

Whole cell protein extracts and Western blotting

Cells were grown in 30-ml culture to mid-log phase
(OD600=0.7–0.8) and lysed using glass beads in lysis
buffer (50mM Tris-HCl pH 7.5, 100mM NaCl, 5mM
EDTA, 0.01% Triton-100X, 10% Glycerol) containing
1mM phenylmethylsulfonyl fluoride and 1X protease in-
hibitor cocktail (Sigma). Total protein extracts were
quantified using the BioRad protein assay with bovine
serum albumin (BSA) as a protein standard. Protein
(20mg) was loaded into each lane and resolved by 10%
SDS-polyacrylamide gel electrophoresis and transferred to
a nitrocellulose membrane. Flag-Upf1 was detected by
Western blot using anti-Flag as primary antibody
(Sigma) and anti-Mouse peroxidase conjugated (Sigma)
as secondary antibody. Pab1 was used as a loading
control. Western blot signals were exposed using
SuperSignal West Dura chemiluminescent substrate
(Thermo Scientific).

Upf1 protein purification

WT and mutant forms of Upf1 were purified as FLAG
fusion proteins from yeast using anti-FLAG M2 affinity
gel (Sigma), as previously described (1). Briefly, cells were
grown in 500-ml culture to an optical density (OD600) of
0.8–0.9 and lysed with glass beads in buffer XA
(50mM Tris-HCl pH 7.5, 150mM NaCl, 5mM EDTA,
0.01% Triton-100X, 10% Glycerol) containing 1mM
phenylmethylsulfonyl fluoride and 1X protease inhibitor
cocktail (Sigma). For tandem mass spectometry analysis,
the following phosphatase inhibitors were added to buffer
XA: 30mM Sodium Fluoride, 30mM b-glycerol phos-
phate, 5mM Sodium Pyrophosphate and 100 nM
Okadaic acid. After the anti-FLAG affinity gel was
equilibrated with TBS buffer, the extract was added to
the affinity gel and both were incubated overnight at
4�C with constant rocking. The beads were washed with
50ml of buffer XB (buffer XA containing 250mM NaCl)
and then washed with 50ml of buffer XA. Bound protein
was eluted using buffer XC (buffer XA containing 5 mg/ml
of Flag Peptide; Sigma). Eluted proteins were resolved by
10% SDS-PAGE, stained with Coomassie blue, and
analysed by Western blot. Protein concentration was
determined from Coomassie blue-stained gels using BSA
as a protein standard.

Tryptic digestion and tandem mass spectrometry
(MS/MS)

Tryptic digestion of purified Flag-Upf1 protein was per-
formed as described by Vega et al. (55). Briefly, the 10%
SDS-PAGE was equilibrated in deionized water and Flag-
Upf1 gel fragment was excised and unstained using
100mM ammonium bicarbonate (Ambic); 50% acetoni-
trile (ACN). The solvent was removed and the gel slice
was incubated with 100% ACN at room temperature,
followed by vacuum drying. Then, the gel slide was resus-
pended in digestion buffer (DB) (50mM Ambic; 10%
ACN) mixed with 1 mg of trypsin (Promega), and
incubated overnight at 37�C. To elute the sample, the
gel slice was incubated in 50% ACN; 5% formic acid
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for 1 h. The obtained peptides were dried by speed vacuum
and resuspended in Loading Solvent (0.1% formic acid,
1% ACN in HPLC-graded water).
For mass spectrometry analysis, the Proteome X LTQ

(Thermo Electron) mass spectrometer was used. The
peptides were loaded to and eluted from a ZipTip-C18
column (Thermo Fisher Scientific) on line with the mass
spectrometer. Parameters used for mass spectra analysis
are described in Vega et al. (55). Acquired MS/MS (MS2)
spectra were analysed using the Thermo Electron
Bioworks Browser and the SEQUEST algorithm. Data
were analysed using non-redundant protein database con-
sidering the mass increase of (+79.99) based on addition of
a phosphate group.

RNA isolation and Northern blot analysis

Total RNA was isolated using the hot phenol method (56)
and mRNA abundance was determined by Northern
blotting (1,26). Random-primed DNA probes were
prepared from a 0.6-kb EcoRI-HindIII fragment
spanning a region of the CYH2 mRNA. Northern blots
were quantitated using a BioRad Molecular Imager FX.
The activity of NMD was calculated by comparing the
ratio of pre-CYH2 to CYH2 in upf1� strains transformed
with either a vector (0%) or WT Upf1 (100%). The values
shown represent the average value±standard deviation
from three independent experiments.

ATPase activity assay

ATP hydrolysis was monitored using a charcoal assay as
previously described (19,57). Reactions were carried out in
a total volume of 20 ml which contained 50mM Tris-HCl
(pH 8.0), 50mM KCl, 3mM MgCl2, 1mM DTT, 100 mM
poly(T), 100 mM ATP, 1 uCi of [(32P] ATP (3000Ci/mmol)
and 5 ng of Upf1 protein. After incubation for 20min at
room temperature, reactions were stopped and unreacted
ATP was absorbed by addition of 200 ml of 5% charcoal in
20mM phosphoric acid. The charcoal was pelleted by cen-
trifugation for 10min at 13 200 g, and the amount of
32PO4 released was determined by counting the radioactiv-
ity in a 100-ml aliquot of the supernatant in a scintillation
counter. To determine background, five controls were per-
formed without Upf1 protein for each experiment. Values
shown represent averages from three independent experi-
ments. Statistical analysis was performed using GraphPad
Prism 5 software.

Dual luciferase assays

Dual luciferase assays were performed with the dual
luciferase reporter assay system (Promega) as described
previously with minor modifications (58,59). Cells were
grown to mid-log phase (OD600=0.8) in SC-Ura
medium. Ten microliters of cells were removed from the
culture and transferred to 100 ml of 1� passive buffer.
Cells were lysed for 15 s and 10 ml were used for lumines-
cence measurements using a TD-20/20 luminometer
(Tuner Designs). The following steps were used for lumi-
nescence measurements: 10 ml of the firefly luciferase
reagent (LARII) were added to the sample with a 2 s
equilibration time, and measurement of luminescence

with a 10 s integration time, followed by addition of
10 ml of the Renilla luciferase reagent and firefly quenching
(Stop & Glow), 2 s equilibration time and measurement of
luminescence with a 10 s integration time. The values
shown represent the ratio of the firefly luciferase activity
to the Renilla activity of the stop codon-containing con-
structs divided by the ratio of the firefly luciferase activity
to the Renilla activity of the sense codon-containing con-
struct multiplied by 100. For each strain, at least three
independent transformants were assayed and each individ-
ual extract was scored for luminescence activity in tripli-
cates. Statistical analysis was performed using GraphPad
Prism 5 software.

RESULTS

Identification of 11 novel phosphorylation sites in
yeast Upf1

Our previous studies demonstrated that S. cerevisiae Upf1
is a phosphoprotein (1). To identify the phosphorylated
residues, we purified S. cerevisiae Upf1 protein from an
upf1D strain harboring a plasmid encoding a Flag-tagged
UPF1 allele. Purification of Flag-tagged Upf1 protein was
carried out in the presence of phosphatase inhibitors to
maintain the phosphorylation of its amino acid residues.
The purified sample was resolved by 10% SDS-PAGE and
stained with Coomassie blue (Figure 1A, lane 9). Flag-
Upf1 migrated in the 80–124 kDa region, consistent with
previous reports (13,18,60).

We excised the Coomassie-stained band that corres-
ponded to Upf1 protein (�109 kDa) and subjected it to
trypsin digestion. The resulting tryptic peptides were
eluted and analysed by mass spectrometry (see Materials
and Methods section). The identity of the peptides and the
sites of phosphorylation were determined by correlating
MS2 spectra with sequences from the NCBI non-redun-
dant protein database using the SEQUEST algorithms,
and searching parameters that included differential mass
modification due to phosphorylation (61,62). From this
analysis, four phosphopeptides were identified in
yeast Upf1: phosphopeptide 1 (53RSPSASDNSCAYCGI
DSAKC72), phosphopeptide 2 (191RLITPSQISKL201),
phosphopeptide 3 (485KSREDVESSVSNLALHNLVG
RG506) and phosphopeptide 4 (736RAYILQYMQMN
GSLDKDLYIKV757) (Figure 1B). The corresponding
full MS and MS2 spectra for these phosphopeptides
were also manually verified by detecting the neutral loss
of HPO4 (80Da) or H3PO4 (98Da) after ionization.
Phosphopeptide 1 corresponds to amino acids 53–72 and
contains three phosphorylated residues: S-54, S-56 and
S-58 (Figure 1B). Phosphopeptide 2 corresponds to
amino acids 191–201, of which T-194, S-196 and S-199
were found to be phosphorylated (Figure 1B).
Phosphopeptide 3 corresponds to amino acids 485–506
and harbors two phosphorylated residues: S-492 and
S-493 (Figure 1B). Finally, phosphopeptide 4 corresponds
to amino acid residues 736–757, of which Y-738, S-748
and Y-754 were found to be phosphorylated
(Figure 1B). In sum, 11 phosphorylated residues were
identified in S. cerevisiae Upf1 (Figure 2A). Figure 1C
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Figure 1. Identification of novel phosphorylation sites in Upf1. (A) Coomassie blue-stained 10% SDS-PAGE of immunopurified Flag-Upf1 protein.
FT=flowthrough, W1–W5=washes 1–5. (B) Immunopurified Flag-Upf1 protein was in-gel digested with trypsin. The peptides produced were
resolved by LTQ linear ion trap mass spectrometry (Proteome X LTQ Workstation,Thermo) and analysed as described in Materials and Methods
section. Asterisk (*) shows the Upf1 phosphorylated residues. (C) The arrow on the MS spectrum points toward the charged precursor ion corres-
ponding to phosphopeptide 4. (D) This precursor ion was selected and subjected to fragmentation (MS2), generating b and y product ions that
represent specific fragments used for identification of the peptide sequence and phosphorylation sites. The asterisks (*) illustrate phosphorylated
amino acids.
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and D show an example of the MS and MS2 spectra cor-
responding to phosphopeptide 4. The MS2 spectrum
shows the identification of b and y ions produced from
the fragmentation of its precursor ion (m/z=856.29).
The non-phosphorylated forms of phosphopeptides 1–4
were also observed in this analysis. A total of 291
peptides distributed throughout Upf1 protein were
identified by our MS/MS analysis (Figure 2A). These
peptides included 652 of the 971 amino acids in yeast
Upf1 (67% sequence coverage) (Figure 2B).
Sequence alignment of lower and higher eukaryotes

shows complete conservation of the phosphorylated
Upf1 residue Y-754, suggesting an important biological
role for this amino acid (Figure 3). The amino acids cor-
responding to S. cerevisiae Upf1 T-194, S-492, Y-738 and
S-748 were similar in the Homo sapiens, Mus musculus,
D. melanogaster; Arabidopsis thaliana and C. elegans
orthologs of Upf1. Of note, most of these phosphorylated
residues are located within the ATPase and helicase
domain (Figures 2A and 3), which has been shown to be
critical for NMD activity (13,14,18–20).

An Upf1 motif harboring three novel phosphorylated
residues is required for NMD and translation termination

Since the phosphorylated amino acids that we identified in
Upf1 are clustered in four small regions (Figure 4A), we
elected to first test their importance by independently
deleting these four regions. The four ‘phospho-motifs’
are: motif-1 (T50-N60), motif-2 (L192-L201), motif-3
(V490-S495) and motif-4 (R736-K756). Constructs
harboring deletions of these Upf1 phospho-motifs were
generated and transformed into an upf1D strain
(Figure 4A). WT upf1 and the Flag-vector alone served
as controls. The upf1 mutant proteins were expressed at

levels comparable to that of WT Upf1 as shown by
Western blotting (Figure 4B). NMD activity was
determined by using Northern blot analysis to detect
two NMD substrate mRNAs: CYH2 pre-mRNA and
can1-100 mRNA. The former is a NMD substrate by
virtue of having in-frame premature terminations codons
in the intron (64) and thus we used CYH2 pre-mRNA-to-
mature CYH2 mRNA ratio as a measure of NMD activ-
ity. We measured can1-100 mRNA level by normalizing
against the U3 mRNA loading control. Analysis of total
cellular RNA from WT and mutant strains revealed that
three of the deletion strains complemented the NMD
defect in the upf1D strain as well as WT UPF1
(Figure 4C and D, compare lane 1 with lanes 3–5).
This indicated that these deletions did not measurably
affect NMD activity. In contrast, the deletion-
mutant lacking phospho-motif-4 (Dmotif-4) was not able
to complement the NMD defect (Figure 4C and D, lane
6). This Upf1 phospho-motif contains the highly
conserved phosphorylated residue, Y-754, as well as two
other phosphorylated amino acids: Y-738 and S-748
(Figure 3).

Another role of Upf1 is its ability to promote
translation termination fidelity, an activity that is separ-
able from its role in NMD (65). To test the role of
phospho-motif-4 in translation termination efficiency we
used a well-established dual luciferase assay (66). This
assay consists of a bicistronic reporter mRNA that
contains the Renilla and firefly luciferase open reading
frames in tandem, separated by a linker sequence that
harbors a stop codon (Figure 4E). In yeast strains defect-
ive in translation termination, higher levels of firefly
luciferase are synthesized due to a higher frequency of
ribosome read-through of the stop codon. Therefore, an

S54 S56 S58 T194 S196 S199 S492 S493 Y738 S748 Y754A

NH2 COOHCH-rich 
domain

ATPase and Helicase domain

1           62           152  179158132

S54 S56 S58 T194 S196 S199 S492 S493 Y738 S748 Y754

B 1   MVGSGSHTPYDISNSPSDVNVQPATQLNSTLVEDDDVDNQLFEEAQVTETGFRSPSASDN
61  SCAYCGIDSAKCVIKCNSCKKWFCNTKNGTSSSHIVNHLVLSHHNVVSLHPDSDLGDTVL
121 ECYNCGRKNVFLLGFVSAKSEAVVVLLCRIPCAQTKNANWDTDQWQPLIEDRQLLSWVAE
181 QPTEEEKLKARLITPSQISKLEAKWRSNKDATINDIDAPEEQEAIPPLLLRYQDAYEYQR181 QPTEEEKLKARLITPSQISKLEAKWRSNKDATINDIDAPEEQEAIPPLLLRYQDAYEYQR
241 SYGPLIKLEADYDKQLKESQALEHISVSWSLALNNRHLASFTLSTFESNELKVAIGDEMI
301 LWYSGMQHPDWEGRGYIVRLPNSFQDTFTLELKPSKTPPPTHLTTGFTAEFIWKGTSYDR
361 MQDALKKFAIDKKSISGYLYYKILGHQVVDISFDVPLPKEFSIPNFAQLNSSQSNAVSHV
421 LQRPLSLIQGPPGTGKTVTSATIVYHLSKIHKDRILVCAPSNVAVDHLAAKLRDLGLKVV
481 RLTAKSREDVESSVSNLALHNLVGRGAKGELKNLLKLKDEVGELSASDTKRFVKLVRKTE
541 AEILNKADVVCCTCVGAGDKRLDTKFRTVLIDESTQASEPECLIPIVKGAKQVILVGDHQ
601 QLGPVILERKAADAGLKQSLFERLISLGHVPIRLEVQYRMNPYLSEFPSNMFYEGSLQNG601 QLGPVILERKAADAGLKQSLFERLISLGHVPIRLEVQYRMNPYLSEFPSNMFYEGSLQNG
661 VTIEQRTVPNSKFPWPIRGIPMMFWANYGREEISANGTSFLNRIEAMNCERIITKLFRDG
721 VKPEQIGVITPYEGQRAYILQYMQMNGSLDKDLYIKVEVASVDAFQGREKDYIILSCVRA
781 NEQQAIGFLRDPRRLNVGLTRAKYGLVILGNPRSLARNTLWNHLLIHFREKGCLVEGTLD
841 NLQLCTVQLVRPQPRKTERPMNAQFNVESEMGDFPKFQDFDAQSMVSFSGQIGDFGNAFV
901 DNTELSSYINNEYWNFENFKSAFSQKQNRNEIDDRNLYQEEASHLNSNFARELQREEQKH
961 ELSKDFSNLGI 

Figure 2. Eleven phosphorylation sites were identified in Upf1. (A) Schematic representation of the Upf1 protein depicting the locations of the
cysteine- and histidine-rich (CH-rich) domain, ATPase domain and helicase domain. The localization of the 11 phosphorylation sites identified by
MS/MS in Upf1 protein is represented. (B) Amino acid sequence of Upf1 protein in S. cerevisiae. Sixty-seven percent (67%) sequence coverage was
achieved by tandem MS/MS. Sequence coverage is depicted in gray, and phosphorylated residues are underlined.
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increase in the activity of the firefly luciferase relative to
the Renilla activity is directly proportional to defects in
translation termination. Using this dual luciferase assay
we quantitated read-through of the UGA stop codon,
which has been reported to show higher levels of read-
through in the upf1D strain compared to UAG and
UAA stop codons (67). As previously reported, the
upf1D strain expressed higher levels of firefly luciferase
compared to the WT strain (Figure 4E) (67,68). The
deletion-mutant lacking phospho-motif-4 was not able to
rescue this defect, indicating that this motif has a role in
translation termination efficiency. Together, these results
suggest that the phospho-motif-4 of Upf1 plays a role in
both NMD activity and translation termination accuracy.

Upf1 Y-738 and Y-742 function in NMD and translation
termination accuracy

To dissect the sequences within phospho-motif-4 required
for NMD activity, we used PCR-mediated mutagenesis to
generate three additional deletion mutants, each of which
harbor a conserved phosphorylated residue identified by
our MS analysis (Figure 5A). Expression of these upf1
mutants was confirmed by Western blotting (Figure 5B).
Northern blot analysis was conducted on total cellular
RNA isolated from the WT and mutant strains, and
NMD activity was determined as described above. This
revealed that deletion of residues 736–745 reduced NMD
activity as measured by both pre-CYH2 mRNA (24%)

and can1-100 (6%) mRNA levels (Figure 5C and D,
lane 3). In contrast, deletion of amino acids 746–750 or
751–756 did not impair NMD activity (Figure 5C, lanes 4
and 5). Using the dual luciferase assay described above, we
also assessed whether these three deletion mutants had a
defect in promoting translation termination fidelity. We
found that only the �736–745 strain expressed signifi-
cantly higher levels of firefly luciferase as compared to
the WT strain, indicating higher percentages of read-
through (Figure 5E). Together, these results indicated
that the phosphorylated region encompassing amino
acids 736–745 is specifically required for both Upf1’s
NMD activity and its ability to promote translation ter-
mination accuracy.
Inspection of the amino acids 736–745 region revealed

that, in addition to the tyrosine that we found was
phosphorylated, Y-738 (Figure 2A), another tyrosine is
also present: Y-742 (Figure 5A). While Y-742 was not
identified as a phosphorylated amino acid in our MS/
MS analysis, it may be phosphorylated under some cir-
cumstances or at levels below the detection limits of our
analysis (Figure 1B). To test the functional role of Y-738
and Y-742, we used site-directed mutagenesis to mutate
them (Figure 6A). These tyrosine residues were mutated to
phenylalanine to mimic a non-phosphorylated form of
tyrosine and they were mutated to glutamic acid to
mimic a constitutively phosphorylated form of tyrosine.
All mutant proteins were expressed at virtually identical

S54     S56   S58 

S. cerevisiae    20  -------------------NVQPATQLNSTLVED---D------DVDNQLFEEAQVTET-G-------FRSPSASDNSCA 63 
A. thaliana      62  EASSPSSLSAGAGN---GAKVGRGGVGGSGGVSS-SSQVDALAAGVGNLNFEETGDDDGFD-------YGKNDFTEHACK 130 
H. sapiens       58  GAGGPGGAGAGAAAGQLDAQVGPEGILQNGAVDD---SVAKTSQLLAELNFEEDE--ED-T-------YYTKDLPIHACS 124 
M. musculus      61  -AGGPGGAGAGGAAGQLDAQVGPEGILQNGAVDD---SVAKTSQLLAELNFEEDE--ED-T-------YYTKDLPVHACS 126 
D. melanogaster  50  --------------------NDQLEIAQRCSAGDSHPRLASITNDLADLQFEEEDDEPG-S-------SYVKELPPHACK 101 
C. elegans       58  --------------------------------------TDGTTNDLPFHDVEDDE--SD-SEKSLTEEQHEQKLPEHACR 96 
                                                                        *                          *  

S. cerevisiae    142 AVVVLLCRIPCAQT---KNANWDTDQWQPLIEDRQLLSWVAEQPTEEEKLKARLITPSQISKLEAKWRSNKDATINDIDA 218 
A. thaliana      211 SVVVLLCRDPCLNVNALKDMNWDLSQWCPLIDDRCFLPWLVKVPSEQEQLRARQISAQQINKIEELWKTNPDATLEDLEK 290 
H sapiens 203 SVVVLLCRQPCASQSSLKDINWDSSQWQPLIQDRCFLSWLVKIPSEQEQLRARQITAQQINKLEELWKENPSATLEDLEK 282

T194    S196    S199

H. sapiens 203 SVVVLLCRQPCASQSSLKDINWDSSQWQPLIQDRCFLSWLVKIPSEQEQLRARQITAQQINKLEELWKENPSATLEDLEK 282
M. musculus      181 ------------------------------------LSWLVKIPSEQEQLRARQITAQQINKLEELWKENPSATLEDLEK 224 
D. melanogaster  180 SVVVLLCRQPCAAQNSLKDMNWDQEQWKPLIADRCFLAWLVKQPSEQGQLRARQISAAQINKLEELWKENIEATFQDLEK 259 
C. elegans       175 QVVVIICRTPCASIAFQNDDNWSPEDWKSVIAEKQLLSWIVNVPSEEQVARARKITATQAVRMEELWRDHPEATVDDLNK 254 
                                                         * *    * *     ** *   *    *  *     ** *   

S. cerevisiae    442 TIVYHLSKIHKDRILVCAPSNVAVDHLAAKLRDLGLKVVRLTAKSREDVESSVSNLALHNLVGR-GA--KGELKNLLKLK 518 
A. thaliana      511 AIVYHMAKQGQGQVLVCAPSNVAVDQLAEKISATGLKVVRLCAKSREAVSSPVEYLTLHYQVRHLDTSEKSELHKLQQLK 590 
H. sapiens       504 TIVYHLARQGNGPVLVCAPSNIAVDQLTEKIHQTGLKVVRLCAKSREAIDSPVSFLALHNQIRNMDS--MPELQKLQQLK 581 
M. musculus      457 TIVYHLARQGNGPVLVCAPSNIAVDQLTEKIHQTGLKVVRLCAKSREAIDSPVSFLALHNQIRNMDS--MPELQKLQQLK 534 
D. melanogaster  485 TIVYQLVKLHGGTVLVCAPSNTAVDQLTEKIHRTNLKVVRVCAKSREAIDSPVSFLALHNQIRNMET--NSELKKLQQLK 562

S492    S493          

C. elegans       479 TIVYHLVQKTEGNVLVCSPSNIAVDHLAEKIHKTGLKVVRLCARSREHSETTVPYLTLQHQLKVMG---GAELQKLIQLK 555 
                      ***          *** *** *** *  *     *****  * ***     *  * *             **  *  ** 

S. cerevisiae    678 RGIPMMFWANYGREEISANGTSFLNRIEAMNCERIITKLFRDGVKPEQIGVITPYEGQRAYILQYMQMNGSLDKDLYIKV 757 
A. thaliana      751 PNRPMFFYVQLGQEEISASGTSYLNRTEAANVEKLVTAFLKSGVVPSQIGVITPYEGQRAYIVNYMARNGSLRQQLYKEI 830 
H. sapiens       742 PDKPMFFYVTQGQEEIASSGTSYLNRTEAANVEKITTKLLKAGAKPDQIGIITPYEGQRSYLVQYMQFSGSLHTKLYQEV 821 
M. musculus      695 PDKPMFFYVTQGQEEIASSGTSYLNRTEAANVEKITTKLLKAGAKPDQIGIITPYEGQRSYLVQYMQFSGSLHTKLYQEV 774 
D. melanogaster  722 PERPMFFLVTQGQEEIAGSGTSFLNRTEAANVEKITTRFLKAGIKPEQIGIITPYEGQRAYLVQYMQYQGSLHSRLYQEI 801 
C. elegans       716 PNKPAFFWHCSGSEELSASGTSFLNRTEAANVEKLVSKLIKAGVQPHQIGVITSYEGQRSFIVNYMHTQGTLNSKLYENV 795 
                        *  *    * **    *** *** ** * *         *  * *** ** *****     **   * *   **  

               Y738                S748         Y754

Figure 3. Phosphorylated residue within the ATPase and helicase domain of Upf1 is completely conserved. Sequence alignment of S. cerevisiae
(NCBI NP_013797), H. sapiens (NCBI AAC26788), M. musculus (NCBI EDL28813), A. thaliana (NCBI AAL92018), D. melanogaster (NCBI
AAF48115.2) and C. elegans (NCBI AAC26789) shows complete conservation of one phosphorylated residue, Y754F. This alignment was con-
structed with CLUSTALW using T-Coffee program (version 9.02) (63). Completely conserved sequences are shown in gray.
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levels, suggesting they exhibit similar stability (Figure 6B).
Northern blot analysis was conducted on total cellular
RNA isolated from WT and mutant strains, and NMD
activity was determined essentially as described above. We
found that the single-point mutants, Y738F and Y742F,
fully rescued NMD activity of a chromosomal UPF1
deletion-mutant strain, indicating that they are not

compromised in their ability to function in NMD
(Figure 6C and D, lanes 3 and 4). In contrast, the
Y738F/Y742F and Y738E/Y742E double-point mutants
had a modest but reproducible inability to fully rescue
NMD activity, as measured by both pre-CYH2 to
mature mRNA ratio and can-100 mRNA levels (Figure
6C and D, lanes 5 and 6). Likewise, the Y738F/Y742F
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Northern blot in (C). (E) Dual luciferase assay was conducted to determine the efficiency of UGA stop codon recognition. Two-tailed t-tests
were used for statistical analysis. The asterisk indicates a statistical significant (P< 0.05) result when compared to the WT strain.
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Nucleic Acids Research, 2014, Vol. 42, No. 3 1923



A CH-rich 

736 745

Δ736-745

Upf1

ATPase and Helicase domaindomain

R A Y I L Q Y M Q M

Δ736 745

B

Flag-Upf1

Pab1

1          2            3          4           5           6 

C

upf1∆ Flag:

1 2 3 4 5 6

100

1 2 3 4 5 6

100 0 96 8 98 0 86 2 87 6

pre-CYH2

CYH2

1 2 3 4 5 6

1 F F F E
0

20

40

60

80

**

100 0 96.8 98.0 86.2 87.6NMD ac�vity (%)
Upf

Flag
Y738

Y742

Y738F/Y
742

Y738E/Y
742

D

can1-100

1           2          3           4          5           6 

60

80

100

U3

100         0          97.7     98.4      87.0     84.3NMD ac�vity (%)
Upf1

Flag

Y73
8F

Y74
2F

Y73
8F

/Y
74

2F

Y73
8E

/Y
74

2E
0

20

40

** *
*** *

p
re

-C
Y

H
2 

m
R

N
A

 le
ve

l (
%

)
ca

n
1-

10
0 

m
R

N
A

 le
ve

l (
%

)

E Renilla FireflyPpgk1 UGA

1 0 **

ro
u

g
h

 U
G

A
 (

%
)

0.4

0.6

0.8

1.0

*

**

**

R
ea

d
th

r

W
T

upf1

73
6-

74
5

Y73
8F

Y74
2F

38
F/Y

74
2F

0.0

0.2

Y73
8

D

D

Figure 6. The Upf1 phosphorylated Y-738 residue and the adjacent Y-742 are important for NMD activity. (A) Schematic representation of Upf1
indicating the deleted amino acids in the 736–745 region. The Y738 phosphorylated residue is underlined in gray, and the potential phosphorylated
residue, Y742, is underlined in black. (B) Western blot analysis of cytoplasmic extracts demonstrating Upf1 protein expression. Poly(A) binding
protein (Pab1) was used as a loading control. (C) (Left Panel) NMD activity of Upf1 phosphorylated residues within 736–745 region measured by
pre-CYH2 to mature mRNA ratio and determined by Northern blot analysis of total cellular RNA. (Right Panel) Mean value±standard deviation
of pre-CYH2 mRNA accumulation from Northern blot. (D) (Left Panel) NMD activity of Upf1 phosphorylated residues within 736–745 region
measured by can1-100 mRNA levels and determined by Northern blot analysis. (Right Panel) Mean value±standard deviation of can1-100 mRNA
accumulation from Northern blot. (E) Dual luciferase assay was conducted to determine the efficiency of UGA stop codon recognition. Two-tailed
t-tests were used for statistical analysis. The asterisk indicates a statistical significant (P< 0.05) result when compared to the WT strain.

1924 Nucleic Acids Research, 2014, Vol. 42, No. 3



double-point mutant exhibited increased translational
read-through activity (Figure 6E). Taken together, these
data pinpoint a small phosphorylated region of Upf1, con-
sisting of amino acids 736–745, as being critical for its
function in both NMD and promotion of translation ter-
mination accuracy. These two activities were perturbed
when both tyrosine residues within this region were
converted into phenylalanine, suggesting that the phos-
phorylation of both tyrosines serves in a redundant
manner.

Y-738 and Y-742 are critical for Upf1’s ATPase activity

Previous studies have demonstrated that Upf1’s ATPase
and helicase activities are essential for its NMD function
(18,36,69). Recently, it was demonstrated that the ATPase
activity of Upf1 stimulates the removal and recycling of
NMD factors from PTC-containing mRNPs (21,69). An
outstanding issue has been whether Upf1’s ATPase
activity is dictated by its phosphorylation status. This is
important given that considerable evidence suggests that a
cycle of phosphorylation and dephosphorylation is
required for Upf1 to function in NMD (11,70).
Therefore, we examined whether phosphorylation affects
Upf1’s ATPase activity. For these experiments, we
immunopurified WT and upf1 mutant proteins expressed
from Flag-tagged plasmids. The recombinant proteins
were resolved by 10% SDS-PAGE and analysed by
Western blot using anti-Flag antibody (Figure 7A). The
ATPase activity of the purified upf1 mutant proteins was
monitored using an ATPase charcoal assay and compared
to the ATPase activity of the WT Upf1 protein (13,18).
This analysis revealed that deletion of phospho-motif-4
almost completely abolished Upf1’s ATPase activity (to
6% of the control; Figure 7B). In contrast, the previously
described ATPase domain mutant—DE572AA (18)—had
only modestly reduced ATPase activity compared to WT
Upf1 (Figure 7B). The Upf1 mutants lacking phospho-
motifs-1, -2 or -3 had normal ATPase activity. To specif-
ically examine the role of the two tyrosines within
phospho-motif-4, we tested the Y738F/Y742F double-
point mutant (Figure 6A) and found that it exhibited sig-
nificantly reduced Upf1 ATPase activity (Figure 7B). The
Y738F/Y742F mutant had 41% of the activity of WT
Upf1, which was a less severe defect than that exhibited
by the phospho-motif-4-deletion mutant, but comparable
with the well-established DE572AA ATPase mutant.
Taken together, our results indicate that phospho-motif-
4 has an essential role in Upf1’s ATPase activity that is
mediated, in part, by two tyrosine residues within this
motif.

DISCUSSION

Despite the considerable progress in understanding the
role of Upf1 phosphorylation in NMD (39,43,46–48,51),
fundamental aspects of this topic remain unclear. A par-
ticularly underexplored area of investigation is the identity
of the phospho-amino acids in Upf1 critical for its ability
to function in NMD. While studies on mammalian UPF1
have identified phosphorylated amino acids at the

C-terminus (S-1078 and S-1096) (39), these residues are
not present in S. cerevisiae Upf1, indicating they cannot
have a universal role in NMD. In this report, we identified
11 phosphorylation sites in S. cerevisiae Upf1 (Figure 2A
and B), including several that correspond to amino acids
that are potentially phosphorylated in other species
(Figure 3). Of particular note, the S. cerevisiae Upf1
phosphorylated residue, T-194, is also present in
H. sapiens UPF1 and thus it will be of interest to deter-
mine whether this residue is also phosphorylated in human
UPF1. Recently, Okada-Katsuhata and et al. (48)
reported that human UPF1 T-28 is phosphorylated, a
residue corresponding to S-6 in S. cerevisiae Upf1, a
region not covered in our tandem MS/MS analysis
(Figure 2B). It will be of interest to determine whether
S-6 and any other amino acids besides the 11 we identified
in S. cerevisiae Upf1 are phosphorylated under specific
circumstances. Indeed, our finding that mutation of
Y-742 to phenylalanine perturbed several Upf1 activities
(Figures 6 and 7) raises the possibility that Y-742 is
phosphorylated.
We demonstrated that a region comprised of 10 amino

acids (amino acids 736–745) within the ATPase and
helicase domain of Upf1 is essential for NMD activity
(Figure 5C). While we did not identify all the critical
amino acids required for the activity of this C-terminal
motif, our mutation analysis revealed that the two tyrosine
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residues present in this motif—Y-738 and Y-742—have a
role in Upf1’s NMD activity (Figure 6C). Mutation of
these tyrosine residues to the phospho-mimetic, glutamic
acid, caused the same degree of reduced NMD activity
as mutation to phenylalanine, suggesting that
phosphorylating these residues is not sufficient to allow
them to function. This is consistent with the possibility
that Upf1 must undergo a cycle of phosphorylation and
dephosphorylation in S. cerevisiae, just as it does in higher
eukaryotes (39,44,47,48,51,71). We suggest that Upf1
phosphorylation may trigger conformational changes
that influence Upf1:Upf2 or Upf1:RNA interactions that
are essential for NMD activity. We note, however, that we
cannot rule out that the Tyr-to-Phe and Tyr-to-Glu alter-
ations in the double-point mutants that we generated
(Y738F/Y742F and Y738E/Y742E) decreased NMD
activity by a mechanism independent of Upf1 phosphor-
ylation. Our finding that neither mutation of Y-738 nor
Y-742, alone, had measurable effects on Upf1 activities
(Figure 6C, D and E) suggests that the phosphorylation
at these two sites acts redundantly. Upf1 may be broadly
buffered by such redundancy mechanisms to protect it
from environmental and genetic insults.
Further investigation is required to identify the

kinase(s) responsible for phosphorylating S. cerevisiae
Upf1. In higher eukaryotes, Upf1 is phosphorylated at
several serine/threonine-glutamine (S/TQ) motifs in the
N- and C-terminal regions by SMG-1, a member of
phosphatidylinositol 3-kinase-related protein kinases
(39,48). Two recently identified NMD proteins, SMG-8
and SMG-9, promote this kinase activity (44,45,72) and
two other NMD proteins, SMG-5 and SMG-7, promote
the dephosphorylation of Upf1 (37,48,49,73–75). In S.
cerevisiae, Ebs1, a protein similar in structure to human
SMG-7 has been reported to be involved in NMD (76);
however, no direct orthologs of SMG proteins in S.
cerevisiae have been identified.
Upf1 has functions in addition to NMD, including

promoting translational termination in both mammals
and yeast (18–20,40,46,65,77,78). Upf1 serves to stimulate
the accuracy of translation termination by suppressing
translational read-through. In this article, we provide
evidence that Upf1’s ability to promote translational
termination fidelity depends on the same C-terminal
phospho-motif important for its NMD activity
(Figures 4 and 5). We also showed that the same
tyrosine residues that promoted NMD activity—Y-738
and Y-742—are important for promoting translation ter-
mination efficiency (Figure 6E). Given the evidence that
Upf1 promotes translation termination by virtue of its
ability to interact with the translation release factors
eRF1 (Sup45) and eRF3 (Sup35) (77,79), we propose
that Upf1 phosphorylation might be necessary to dissoci-
ate release factors at the site of translation termination, as
previously reported in mammals (36). By analogy,
previous studies conducted in mammalian cells have
shown that phosphorylated Upf1 interacts with the trans-
lation initiation factor eIF3 to suppress continued trans-
lation initiation (46).
The RNA-binding activity of Upf1 is known to be

modulated by ATP (13,14,18,20). In the absence of

ATP, Upf1 binds strongly to RNA, whereas ATP hy-
drolysis facilitates the dissociation of Upf1 from RNA
(13,20). Recent studies have shown that the ATPase and
helicase activities of Upf1 are stimulated upon binding of
its CH-rich domain to Upf2, which, in turn, leads to
decreased binding of Upf1 to the mRNA (21). Our
finding that the Y738F, Y742F and Y738F/Y742F Upf1
mutants are deficient in ATPase activity (Figure 7B) raises
the possibility that phosphorylation of Y-738 and Y-742 is
important for such Upf1-driven ATP hydrolysis. Indeed,
protein phosphorylation events are known to influence
protein structural conformation, sub-cellular localization,
molecular associations and enzymatic activities, including
ATP hydrolysis (80–83). These results, coupled with the
established literature, lead us to propose the following
model for the role of Upf1 phosphorylation in NMD:
PTC recognition by the translational machinery triggers
Upf1 to bind to Upf2, leading to Upf1 phosphorylation,
which, in turn, triggers its ATPase activity and subsequent
Upf1:RNA disassembly and degradation of the released
mRNA. While we regard this model as consistent with the
available evidence, we stress that there is, as of yet, no
direct evidence that Upf1 phosphorylation regulates
Upf1 ATPase and helicase activities.

NMD has been considered as a potential therapeutic
target for treating human genetic disorders caused by
genes harboring nonsense or frameshift mutations
generating PTCs (84–86). We suggest that a better under-
standing of the integral role of Upf1 phosphorylation in
this mRNA surveillance pathway will aid in the develop-
ment of novel approaches to treat such genetic disorders.
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