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ABSTRACT OF THE DISSERTATION

Accelerating Analytic Queries on Compressed Data

by

Chunbin Lin

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Professor Yannis Papakonstantinou, Chair

Data compression techniques (both lossless and lossy compression methods) are widely

utilized in big data analytic applications in domains including health-care, transportation, and

finance. The main benefit achieved from applying data compression techniques is the saving of

space cost. However, performing analytic queries on compressed data has two major challenges in

terms of the performance and the accuracy: (i) decompressing data may damage the performance,

and (ii) if lossy data compression techniques are utilized then the returned answers are not

accurate. In this dissertation, we study how to accelerate analytic queries over compressed data

(and provide tight error guarantees for approximate answers if lossy data compression methods

are applied).

xiv



First, this dissertation introduces an in-memory database, called GQ-Fast, which supports

high-performance analytic SQL queries over compressed relational data. We study a class of

graph analytic SQL queries, called relationship queries. These queries involving aggregation, join,

semijoin, intersection and selection are a wide superset of fixed-length graph reachability queries

and of tree pattern queries. We present real-world OLAP scenarios, where efficient relationship

queries are needed. However, row stores, column stores and graph databases are unacceptably

slow in such OLAP scenarios. To support efficient relationship queries, we propose a GQ-

Fast database, which is an indexed database that roughly corresponds to efficient encoding of

annotated adjacency lists that combines salient features of column-based organization, indexing

and compression. GQ-Fast uses a bottom-up fully pipelined query execution model, which

enables (i) aggressive compression (e.g., compressed bitmaps and Huffman) and (ii) avoids

intermediate results that consist of row IDs (which are typical in column databases). In addition,

GQ-Fast compiles query plans into executable C++ source code. Besides achieving runtime

efficiency, GQ-Fast also reduces main memory requirements because, unlike column databases,

GQ-Fast selectively allows dense forms of compression including heavy-weight compressions,

which do not support random access. GQ-Fast outperforms the state-of-the-art databases by 1-3

orders of magnitudes and GQ-Fast uses less space.

Second, this dissertation proposes an approximate query processing system, called Plato,

which supports anytime analytic queries over compressed time series with sound and tight

deterministic error guarantees. Plato supports expressions that are compositions of the linear

algebra operators over vectors along with arithmetic operators. Such analytics can express

common statistics (such as correlation and cross-correlation) that may combine multiple time

series. Plato builds a compressed segment tree structure for each time series during the offline

insertion time. Each node in the tree refers to a time series segment. Each segment (i) is

compressed by an estimation function that approximates the actual values and is coming from a

user-chosen estimation function family, and (ii) is associated with one to three (depending on

the case) precomputed error measures. Then Plato is able to provide tight deterministic error
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guarantees satisfying the error budgets provided by users by accessing the minimal number of

nodes in the segment tree. In addition, we also identify two broad estimation function family

groups. The Vector Space (VS) family and the presently defined Linear Scalable Family (LSF)

lead to theoretically and practically high-quality guarantees, even for queries that combine

multiple time series that have been independently compressed. Well-known function families

(e.g., the polynomial function family) belong to LSF. The theoretical aspect of “high quality” is

crisply captured by the Amplitude Independence (AI) property: An AI guarantee does not depend

on the amplitude of the involved time series, even when we combine multiple time series.
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Chapter 1

Introduction

Systems supporting efficient big data analytics are highly required in many domains

ranging including healthcare, transportation, and finance [87, 86, 42, 12]. However, the size of

data keeps increasing fast. Developing such systems is challenging due to the large size of the

data. In addition, the size of data keeps increasing. For example, an IoT-ready oil drilling rig

produces about 8 TB of operational data in one day. 1

To reduce the size of data, data compression techniques (both lossless and lossy com-

pression methods) are widely utilized in big data analytic applications. For example, relational

databases usually adopt the lossless compression methods to compress the relational data, e.g.,

Run-length Encoding (RLE) [91, 62], Bitmap [100, 63] and Dictionary encoding [22, 62],

while time series databases lossy compress time series with functions, e.g, Piecewise Linear

Representation (PLR) [43], Fourier Transforms [10], and Wavelets [81].

Although applying data compression methods can significantly reduce the size of data, it

brings challenges in answering analytic queries over compressed data in terms of the performance

and the accuracy: (i) Decompressing compressed data may be time-consuming, which may

dominate the overall running time. For example, decompressing (ii) If lossy data compression

techniques are utilized then the returned answers are approximate instead of accurate. It is

necessary to provide error guarantees for approximate answers. In this dissertation, we study

how to accelerate analytic queries over compressed data (and provide tight error guarantees for

1https://wasabi.com/storage-solutions/internet-of-things/
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approximate answers if lossy data compression methods are applied).

We first introduce an in-memory indexed database, called GQ-Fast [63], which supports

high-performance analytic SQL queries over compressed relational data in Chapter 2. Then we

present an approximate query processing system called Plato, which supports efficient anytime

analytic queries over compressed time series with sound and tight deterministic error guarantees

in Chapter 3. Notice that GQ-Fast adopts lossless data compression methods to compress

relational data, while Plato uses lossy data compression techniques to compress time series.

GQ-Fast. We study a class of graph analytics SQL queries, which we call relationship

queries. These queries involving aggregation, join, semijoin, intersection and selection are a

wide superset of fixed-length graph reachability queries and of tree pattern queries. We present

real-world OLAP scenarios, where efficient relationship queries are needed. However, row stores,

column stores and graph databases are unacceptably slow in such OLAP scenarios.

To support efficient relationship queries, we propose the GQ-Fast database, which is

an indexed database that roughly corresponds to efficient encoding of annotated adjacency

lists that combines salient features of column-based organization, indexing and compression.

GQ-Fast uses a bottom-up fully pipelined query execution model, which enables (a) aggressive

compression (e.g., compressed bitmaps and Huffman) and (b) avoids intermediate results that

consist of row IDs (which are typical in column databases). GQ-Fast compiles query plans into

executable C++ source code. Besides achieving runtime efficiency, GQ-Fast also reduces main

memory requirements because, unlike column databases, GQ-Fast selectively allows dense forms

of compression including heavy-weight compressions, which do not support random access.

We used GQ-Fast to accelerate queries for two OLAP dashboards in the biomedical field.

GQ-Fast outperforms PostgreSQL by 2−4 orders of magnitude and MonetDB, Vertica and Neo4j

by 1− 3 orders of magnitude when all of them are running on RAM. Our experiments dissect

GQ-Fasts advantage between (i) the use of the compiled code, (ii) the bottom-up pipelining

execution strategy, and (iii) the use of dense structures. Other analyses and experiments show

the space savings of GQ-Fast due to the appropriate use of compression methods. We also show
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that the runtime penalty incurred by the dense compression methods decreases as the number of

CPU cores increases.

Plato. We provide an approximate query processing system, called Plato, which provides

sound and tight deterministic error guarantees for anytime analytic queries over compressed time

series. Plato supports expressions that are compositions of the (commonly used in time series

analytics) linear algebra operators over vectors, along with arithmetic operators. Such analytics

can express common statistics (such as correlation and cross-correlation) that may combine

multiple time series.

For each time series, Plato builds a compressed segment tree structure. Each node in

the tree corresponds to a time series segment. Each segment (i) is compressed by an estimation

function that approximates the actual values and is coming from a user-chosen estimation

function family, and (ii) is associated with one to three (depending on the case) precomputed

error measures. Then Plato is able to provide tight deterministic error guarantees over the

compressed time series. Plato allows users to input expressions and error budgets, then Plato

accesses the minimal number of nodes in the corresponding segment trees to output approximate

answers with tight deterministic error guarantees, which are no greater than the given error

budgets.

In addition, we identify two broad estimation function family groups. The Vector Space

(VS) family and the presently defined Linear Scalable Family (LSF) lead to theoretically and

practically high-quality guarantees, even for queries that combine multiple time series that

have been independently compressed. Well-known function families (e.g., the polynomial

function family) belong to LSF. The theoretical aspect of “high quality” is crisply captured by

the Amplitude Independence (AI) property: An AI guarantee does not depend on the amplitude

of the involved time series, even when we combine multiple time series. The experiments on four

real-life datasets validated the importance of the Amplitude Independent (AI) error guarantees:

When the novel AI guarantees were applicable, the guarantees could ensure that the approximate

query results were very close (typically 1%) to the true results.
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Dissertation organization. In Chapter 2 we introduce the GQ-Fast system which sup-

ports SQL queries over compressed relational data. We introduce the Plato system supporting

anytime analytic queries over compressed time series in Chapter 3. Finally, Chapter 4 concludes

the dissertation and gives future directions.
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Chapter 2

Fast In-Memory SQL Analytics on Typed
Graphs

2.1 Introduction

The focus of past OLAP systems was on SQL queries on data cubes, whose data is

modeled as star/snowflake SQL schemas [16, 97]. However, in recent years, an avalanche of

graph data emerged, such as disease-drug networks (chem/bio-informatics) [50, 51] and social

networks (Web) [103]. A new generation of benchmarks, such as the Microsoft Academic Graph

(MAG) Benchmark [93] and the Berkeley Big Data Benchmark [80] make clear the distinction

of these data from data cubes (such as the old TPC-H benchmark). The particular data sets and

benchmarks, as well as many others, are essentially typed graphs, i.e., graphs where vertices and

edges are associated with types known in advance. There is an increasing demand to perform

analytic SQL queries over such graphs; e.g., discovering related diseases in a disease-drug

network graph. Traditional, SQL OLAP technologies do not handle such demands well because

they are not sufficiently optimized for finding paths among entities [19, 18].

Schema. Towards SQL-based OLAP on graphs, we first define the representation of

typed graphs (also known as graphs with schema, e.g., [39]) in an SQL database. The nodes and

edges of a typed graph are represented as tuples of relational tables. We classify the tables into

two categories: Entity tables and Relationship tables, following the database E/R model [32]. We

focus on binary relationships. Each entity table has a primary key column, called the ID column,
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while each relationship table has two foreign key columns pointing to ID columns of entity

tables1. Hence, the tuples comprise a typed graph [101, 105]: Each entity table corresponds to a

type of vertices, while each relationship table corresponds to a type of edges. Columns in entity

tables and relationship tables correspond to attributes of vertices and edges, respectively. For

example, consider the premier public biomedical database PubMed2. Figure 2.1(a) shows its

schema, and Figure 2.1(b) presents a corresponding typed graph. Each entity table corresponds

to a type of vertices, while each relationship table corresponds to edges linking corresponding

types of vertices. The tuples of the relationship table DT stand for edges from a document

tuple/entity/node to a term tuple/entity/node.

Relationship Queries. We identify a class of queries, called relationship queries, which

cover many analytics needs on graph data and, in addition, they are amenable to orders-of-

magnitude speed optimization. Informally, a relationship query contains three steps.

• Context Computation: The context is a collection of entities whose properties satisfy the user

given conditions.

• Path Navigation: Navigating from source entities to target entities is via joins over relationship

1In order to capture many-to-one relationships efficiently, we also allow entity tables to have foreign keys [32].
We neglect this possibility, as it does not essentially change any consideration.

2http://www.ncbi.nlm.nih.gov/pubmed
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tables.

• Path Aggregation: The importance of the target entities is computed by applying aggregation

functions over attributes collected along the navigation paths.

Notice that the first and third steps are optional. Relationship queries are common in

graph analytics. For example, all the queries evaluated in [65] are relationship queries. We

illustrate a relationship query on the PubMed schema, which will serve as one of the running

examples.

Query SD (Similar Documents). Assume a user wants to find documents dj that are

similar to a given document d0 with ID dID0 in the PubMed graph. Similarity between documents

d0 and dj is measured by the number of terms associated to both of them, i.e., the number of

paths with type Doc −→ Term −→ Doc that start at d0 and end at dj . The corresponding SQL

query is shown below.

SELECT dt2.Doc, COUNT(?) AS similarity

FROM DT dt1 JOIN DT dt2 ON dt1.Term = dt2.Term

WHERE dt1.Doc = dID0

GROUP BY dt2.Doc

The Query SD is a simple relationship query: It navigates via typed paths Doc −→ Term

−→ Doc and then aggregates the number of paths reaching each target. More complex (and

performance-challenging) relationship queries are presented in Chapter 2.2.

It is challenging to answer even this simple query efficiently due to the large size of the

graph: thirty million vertices and one billion edges with several attributes. Given the analytical

nature of relationship queries, column-oriented database systems are much more efficient than

row-stores and graph database systems, as our experiments verified (see Chapter 2.6) [94, 3, 2, 40].

Nevertheless, the obtained performance is often insufficient for online queries and interactive

applications. Query SD takes 61.6 and 19.17 seconds on the column databases MonetDB [40]
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and Vertica [58], 741.2 seconds on the row database PostgreSQL, and 49.3 seconds on the

graph database Neo4j, even though we fully cached the data in main memory in all the cases.

Performance gets far worse when the join paths are longer, the aggregations involve many

attributes of the paths or the source entities themselves are specified by their properties and

connections, rather than their IDs.

To improve the performance, we propose an index-only fully pipelined database called

GQ-Fast. GQ-Fast answers Query SD in 1.068 seconds. As the queries become more complex,

its performance ratio to the other systems widens. Moreover, GQ-Fast generally requires less

memory.

GQ-Fast achieves such superior performance by employing a code generator to produce

efficient fully pipelined source code running upon a new compressed fragment-based index, as

outlined in the following paragraphs.

Database Structure. A GQ-Fast database physically stores only indices – it does not

store the logical tables. Generally, the administrator may load a relation R(C1, C2, ..., Cn) and

specify that for each ID or foreign key attribute C a respective index should be built, using C

as the indexed column. In response, GQ-Fast will make an index IR.C for each such attribute.

Figure 2.2 shows two indices IDT.Doc and IDT.Term that correspond to the two foreign keys of the

table DT. During runtime, the GQ-Fast query processor will use the index to find (projections of)

tuples of R that have a given C = c value. For example, the index IDT.Doc can be used to find

the terms associated to document 116 (i.e., πTermσDoc=116DT) or to find the term/frequency pairs

associated to document 116 (i.e., πTerm, FreσDoc=116DT).

Internally, a GQ-Fast index has two components: a lookup table and a set of fragments.

Let us say, w.l.o.g., that C1 is the indexed column. Then for each column Cj ∈ {C2, . . . , Cn}

and for each value t ∈ C1 there is a fragment πCjσC1=t(R), which retains the original order of

the values. In Figure 2.2, the fragment πTermσDoc=116DT (with contents 28, 66, etc.) and the

fragment πFreσDoc=116DT (with contents 6, 3, etc.) provide the terms and frequencies associated

to document 116, respectively.
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To reduce space costs, GQ-Fast compresses individual fragments. The key observation

behind compressing fragments is that when a relationship query accesses a fragment, all of

its data will be used. There is no need for random access within the fragment. Based on this,

GQ-Fast allows very compressed encodings of each individual fragment, such as Huffman

encoding. Note that the typical fragment is relatively small (compared to the column) and can

typically fit in the L1 cache or, at least, in the L2 cache. Hence, its decoding is not penalized

with multiple random access to the RAM.

Given a value for the indexed column, the lookup table must be able to provide a pointer

to the respective fragment, along with the size of each fragment. A lookup table can be built in

many known ways; e.g., as a hash table. GQ-Fast saves space and response time by building

lookup tables as offset arrays that utilize the dense ID assumption, according to which the IDs of

an entity table are consecutive integers, starting from 0. Under this assumption, all fragments of

the same type are listed consecutively in an array: A GQ-Fast lookup table for an index on R.C1

is a two-dimensional array IR.C1 of size v × (n− 1), where v is the number of unique values in

R.C1 and n is the number of columns in R. The starting address of the fragment πCjσC1=t(R)

is stored in IR.C1 [t][j − 1] and its size can be calculated using the starting address of the next

fragment.

Query Processing. GQ-Fast query plans run exclusively on indices. They employ a

bottom-up pipelined execution model, illustrated next, to avoid large intermediate results. In

addition, GQ-Fast employs a C++ code generator for query plans.

As an example, consider the generated code for Query SD, which uses table DT with

columns Document (0th column) and Term (1st column). In Lines 2–4, GQ-Fast uses index

IDT.Doc to find the Terms’ fragment πTermσDoc=116 (DT 7→ dt1) starting at position IDT.Doc

[116][1] with size ldt1.Term. GQ-Fast decodes the fragment into the (preallocated) arrayAdt1.Term

and returns the number of elements ndt1.Term. Afterwards (Lines 5–9), for each term ID

vdt1.Term ∈ Adt1.Term, it uses index IDT.Term to find fragments πdt2.Docσdt2.Term=vdt1.Term (DT 7→

dt2) starting at position offset IDT.Term[vdt1.Term][0] (see Figure 2.2). GQ-Fast decodes the
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Figure 2.2. Example of fragments and query processing for query SD. Fragments
πTermσDoc=116DT and πFreσDoc=116DT are encoded with bit-aligned compressed array and

Huffman encoding.

Generated Code: Generated code for Query SD
1 R ← ∅
2 Fdt1.Term ← IDT.Doc[116][1]
3 ldt1.Term ← IDT.Doc[116 + 1][1]−Fdt1.Term
4 Adt1.Term, ndt1.Term ← decodeBB(Fdt1.Term, ldt1.Term)
5 for i← 0 to ndt1.Term − 1 do
6 vdt1.Term ← Adt1.Term[i]
7 Fdt2.Doc ← IDT.Term[vdt1.Term][0]
8 ldt2.Doc← IDT.Term[vdt1.Term + 1][0]−Fdt2.Doc
9 Adt2.Doc, ndt2.Doc ← decodeBB(Fdt2.Doc, ldt2.Doc)

10 for j ← 0 to ndt2.Doc − 1 do
11 vdt2.Doc ← Adt2.Doc[j]
12 R[vdt2.Doc]← R[vdt2.Doc] + 1

13 returnR

identified fragments into Adt2.Doc. Finally, GQ-Fast scans all Documents fragments to update

the arrayR (Lines 11–12), which holds the counts per document.

Notice that (1) GQ-Fast can afford to haveR be an array (as opposed to a hash table)

because of the dense ID assumption; (2) The execution is pipelined in a sense that it iterates over

the fragments and their elements. The memory footprint is small as it is dictated by the max. size

of fragments and not of the overall column size.
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Contributions. This paper makes the following contributions.

• Formally identifies relationship queries, a subset of SQL that is both important and amenable

to orders-of-magnitude optimization. We illustrate the subset’s importance with (a) examples

from two real-world use cases (Chapter 2.2) and (b) by providing their syntax, showing that it

captures a very large part of SQL.

• Describes a new index-only and fragment-based data organization (Chapter 2.4) and coordi-

nated query plans (Chapter 2.5). The bottom-up query plan enables (a) aggressive compression

(e.g., compressed bitmaps and Huffman) and (b) avoids intermediate results that consist of row

IDs (which are typical in column databases). Further space savings and speed improvements

stem from using a dense (consecutive) entity IDs assumption.

• Describes a code generator that produces C++ code for each query plan. The produced code

benefits from CPU-level optimizations (Chapter 2.5).

• Performs experiments on three real-life datasets (i.e., PubMed-M, PubMed-MS [50] and

SemMedDB [51]), showing GQ-Fast is 10 – 104 times more efficient than MonetDB, Neo4j,

Vertica and PostgreSQL when all are running on main memory (Chapter 2.6). Since the

performance advantage is due to many factors, a comprehensive series of experiments isolates

the marginal effect of each individual factor.

GQ-Fast has been deployed in two real world use cases around PubMed and SemMedDB

data, has been released online [64].

2.2 Data Schema and Queries

2.2.1 Data Schema

We classify relational tables in GQ-Fast in two categories according to the entities and

the relationships of the E/R model [32]: entity tables (e.g., Author in Figure 2.1(a)) and
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relationship tables (e.g., DT, DA). Each entity table E has an ID (primary key) attribute and

several attributes M1, ...,Mn. Each tuple t ∈ E corresponds to a real-life entity. A relationship

table R has two foreign key attributes F1 and F2 referencing the IDs of respective entity tables3,

i.e., F1  E1.ID and F2  E2.ID, where is reference. The combination (f1, f2) ∈ F1×F2

is unique. A relationship table may also have measure attributes M1, ...,Mm (e.g., DT.Fre).

E/R schema→ Graph model. Mapping E/R schemas to graph models is a well-studied

topic [101, 11]. We use the following two steps to map our schema to a typed graph [39]: (i)

Each entity table E(M1, ...,Mn) refers to a type of verticesV, and each entity t ∈ E refers to one

vertex v ∈ V. The attributes M1, ...,Mn in the entity table are mapped to properties of vertices;

and (ii) each relationship table R(F1, F2,M1, ...,Mm) refers to edges E crossing two types of

vertices V1 × V2, where V1 and V2 are translated from entities E1 and E2 and F1  E1.ID

and F2  E2.ID.

Graph model→ E/R schema. Mapping a graph to a relational schema has been studied

for several years [21, 104]. We first show how to convert a typed graph to our E/R schema, then

describe general graphs. Mapping a typed graph to our schema has the following two steps: First,

store vertices of the same type into one entity table. Each attribute of the vertices becomes one

column in the table. Second, store edges that have the same type into the same relationship table.

Edges of the same type have source (resp. target) nodes that have the same type.

For general graphs, the basic way is to store all the vertices in one big Node(ID, Type)

table, while all the edges are in one Edge(Source, Destination, Type) table. If more detailed

knowledge about the types of vertices can be inferred from the graph, then the mapping approach

of typed graphs can be more fine-grained.

2.2.2 Relationship Query

Informally, a relationship query proceeds in three steps: (i) Context Selection: Entities

satisfying query conditions (i.e., certain user-provided properties) are marked as a context; (ii)

3In this paper, we focus on relationship tables with two foreign keys.
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Path Navigation: To reach target entities from the context, queries “navigate” between entities

via join operations; and (iii) Relevance Computation: The relevance between each target entity

and the context is computed by applying aggregation functions over measure attributes collected

in the second step.

In its algebraic form, a relationship query involves σ (selection), π (projection), 1 (join),

n (semi-join) operators and an optional γ (aggregation) at the end, and must satisfy the follow

restrictions: (i) join and semijoin conditions are equalities between (primary or foreign) key

attributes and (ii) aggregations group-by on a primary key or foreign key. The set of relationship

queries includes graph reachability (path finding) queries, where the edges are defined by

foreign keys. More generally, it includes tree pattern queries, followed by aggregation. The

first restriction does not narrow down the scope of relationship query applications as it only

requires that navigation on a graph should be performed via connected edges, which is a natural

requirement for graph navigation. The second restriction allows GQ-Fast to use an array to

maintain the aggregation results instead of using a map, which contributes to 30% performance

improvement (see Table 2.9 in Chapter 2.6.2.3).

Example Queries. We now illustrate a number of relationship queries using the datasets

of some GQ-Fast applications: PubMed and SemMedDB. These queries were used in our

experiments and are implemented in our interactive demo system4.

Even though the definition of relationship queries includes a larger set of queries, we

focus on these queries, because they illustrate accurately the use cases for which GQ-Fast was

designed and achieves the best speedup compared to other database systems: queries with long

join paths involving many-to-many relationships. In the following examples, we use E1 → E2

to visualize a join from table E1 to table E2 and �E to visualize an intersection on table E.

4http://chunbinlin.com/demoGQFast/
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2.2.2.1 Queries in PubMed

FSD (Frequency-Time-aware Document Similarity). Query FSD computes time-

aware and frequency-aware cosine similarity. The cosine similarity is computed as follows: Each

document d is associated with a vector td = [td1, . . . , t
d
n], where n is the number of terms across

all documents. The cosine similarity between two documents x and y is defined as
∑

i=1,...,n t
x
i t
y
i

5

In contrast to Query SD in the Introduction, Query FSD raises the similarity degree of documents

that are chronologically close. The navigation path of Query FSD can be visualized as d1→

dt1→ dt2→ d2. The corresponding SQL query is shown below.

SELECT dt2.Doc, SUM(dt1.Fre * dt2.Fre)
abs(d1.Year-d2.Year)+1

FROM (((Doc d1 JOIN DT dt1 ON d1.ID = dt1.Doc)

JOIN DT dt2 ON dt1.Term = dt2.Term)

JOIN Doc d2 ON d2.ID = dt2.Doc)

WHERE d1.ID = dID0

GROUP BY dt2.Doc

AD (Authors’ Discovery). Query AD finds the authors who published papers that

pertain to the terms identified by tID1 , . . . , tIDn (e.g., authors that published papers related to the

terms “neoplasms” and “statins”) and counts the number of papers per author. The navigation

path of Query AD can be visualized as �dt→da.

SELECT da.Author, COUNT(*)

FROM DA da

WHERE da.Doc IN

(SELECT dt.Doc FROM DT dt WHERE dt.Term = tID1 )

INTERSECT

...

5In practice, the queries also normalize for the sizes of tx and ty and, in later examples, the sizes of measures.
The examples exclude the normalization since they do not present any important additional aspect to the exhibited
query pattern.
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INTERSECT

(SELECT dt.Doc FROM DT dt WHERE dt.Term = tIDn )

GROUP BY da.Author

Note that relationship queries do not require that all subqueries have identical structure.

Furthermore, the aggregation is not necessary. For example, the following query finds authors

who have recently (after 2012) published a paper on “statins” (term id 583352) and at least one

of the paper’s authors had also published on “lung neoplasms” (term id 384053).

SELECT da.Author

FROM DA da

WHERE da.Doc IN

(SELECT dt.Doc FROM DT dt WHERE dt.Term = 583352)

INTERSECT

(SELECT d.ID FROM Document d WHERE d.Year > 2012)

INTERSECT

(SELECT da.Doc FROM DA da JOIN DT dt ON da.Doc = dt.Doc

WHERE dt.Term = 384053)

FAD (Co-Occurring Terms Discovery). Query FAD is similar to Query AD. It finds

other terms that co-occur in documents about terms identified by tID1 , . . . , tIDn along with the

number of occurrences (e.g., terms that co-occur in documents about “neoplasms” and “statins”

and how often). The navigation path of Query FAD can be visualized as �dt→dt1.

SELECT dt1.Term, Sum(dt0.Fre)

FROM DT dt1

WHERE dt.Doc IN

(SELECT dt.Doc FROM DT dt1 WHERE dt1.Term = tID1 )

INTERSECT
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...

INTERSECT

(SELECT dt.Doc FROM DT dtn WHERE dtn.Term = tIDn )

GROUP BY dt1.Term

AS (Author Similarity). Query AS specifies an author with ID aID and finds other

authors that have similar publications, weighing higher those with publications in recent years.

The similarity is measured by the frequency-aware cosine of common terms between the publica-

tions. It also favors documents that are chronologically close. The navigation path of AS can be

visualized as da1→ dt1→ dt2→ d→ da2. The SQL expression of AS is shown below.

SELECT da2.Author, SUM(dt1.Fre×dt2.Fre)/(2017-d.Year)

FROM (((DA da1 JOIN DT dt1 ON da1.Doc=dt1.Doc)

JOIN DT dt2 ON dt1.Term = dt2.Term)

JOIN Document d ON dt2.Doc=d.ID)

JOIN DA da2 ON dt2.Doc=da2.Doc

WHERE da1.Author = aID

GROUP BY da2.ID

2.2.2.2 Queries in SemMedDB

The Scripps Research Institute implemented Knowledge.Bio , a system for exploring,

learning, and hypothesizing relationships among concepts of the SemMedDB database6, which

is a repository of semantic predications (subject-predicate-object triples). Figure 2.3 shows the

schema of SemMedDB.

CS (Concept Similarity). As a use case of Knowledge.Bio, Query CS finds the concepts

that are most relevant to a given concept, e.g., “Atropine”, where cID is the concept ID of

“Atropine”. The navigation path of Query CS can be visualized as c1→ p1→ s1→ s2→ p2

6http://skr3.nlm.nih.gov/SemMedDB/dbinfo.html
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SID
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Entity Tables:

Relationship Tables:
………

SP

SID

PID

CS(CID, CSID) : Concept_Semtype(concept_id, concept_semtype_id)

PA(PID, CSID) : Predication_Argument(predication_id, concept_semtype_id)

SP(SID, PID) : Sentence_Predication(sentence_id, predication_id)

Semtype

CSID

Name…

Figure 2.3. SemMedDB database schema. CS, PA and SP are relationship tables, whereas the
others are entity tables.

→ c2. The SQL expression of CS is shown below.

SELECT c2.CID, COUNT(*)

FROM CS c2, PA p2, SP s2

WHERE s2.PID = p2.PID

AND p2.CSID = c2.CSID AND s2.SID IN

(SELECT s1.SID

FROM CS c1, PA p1, Sp s1

WHERE s1.PID = p1.PID AND p1.CSID = c1.CSID

AND c1.CID = cID)

GROUP BY CID

The running time of this query on an Amazon Relational Database Service (Amazon

RDS) with MySQL was 25 minutes. GQ-Fast reduced the running time for that query to less

than 1 second.
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Figure 2.4. Architecture of GQ-Fast. The GQ-Fast Loader produces GQ-Fast databases and
metadata and the GQ-Fast Query Processor generates code answering given relationship queries.

2.2.2.3 Further Examples

Relationship queries can be found in a variety of applications. Some examples are

outlined in the following list.

Potential Virus Discovery in Network Security [30, 53]: Consider a database documenting

virus infections in a computer network with tables for “virus” entities, “host IP” entities, and

virus instance - host IP relationships. To discover potential virus infections for a host who has

reported a virus s, a relationship query first selects the set of hosts associated with s, and then

retrieves and aggregates all the virus infections know for these hosts. The viruses with the high

scores might also hide in the host computer.

Friend Suggestion in Social Networks [90]: Consider a database with “user” entities,

“tweet” entities, and a relationship associating tweets with users. For example, the relationship

captures the information that a user read or shared a tweet. To provide friend suggestions for a

given user u, a relationship query first discovers his/her tweets, then returns a sorted list of users

based on their association with the discovered tweets.

2.3 Architecture

Applications use GQ-Fast as an OLAP-oriented database that accompanies their original

transaction-oriented databases. Figure 2.4 gives an overview of GQ-Fast’s architecture. It has

two parts: GQ-Fast Database Generation and GQ-Fast Query Processing.
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GQ-Fast Database Generation. The GQ-Fast Loader receives loading commands,

retrieves data from one or multiple relational databases, and creates GQ-Fast indices along with

relevant metadata, containing information about fragments and their encodings. This phase

is done offline. The schema of the GQ-Fast database has to follow certain conventions (see

Chapter 2.2). GQ-Fast data is stored in main memory data structures (see Chapter 2.4).

When loading data into GQ-Fast, users should specify (i) the columns to be indexed, upon

which GQ-Fast builds lookup tables. Then, GQ-Fast organizes the values in other columns as

fragments; and (ii) an encoding method for each column excluding indexed columns. Chapter 2.4

provides detailed guidelines for choosing proper encoding methods for different columns.

GQ-Fast Query Processing. The GQ-Fast Query Processor receives an SQL query and

outputs its result. It consists of several subcomponents. The Algebra Translator translates an

SQL query into a relational algebra expression, which is then transformed into a Relationship

Query Normalized Algebra (RQNA) expression (see Chapter 2.5.1) by the RQNA Normalizer

using rewriting rules. Given an SQL query q in its algebraic format, the RQNA Normalizer

applies the following rewriting rules to transform it into RQNA: (1) push every possible selection

and projection down to the corresponding tables; projections are upon selections, (2) rewrite into

a left-deep.

The RQNA Normalizer also verifies whether an SQL query is a relationship query

by checking the restrictions according to metadata. Afterwards, the Physical-plan Producer

transforms the RQNA expression into a physical-level plan. The Code Generator consumes

the physical plan and metadata and produces C++ code, which is then compiled and ran on the

GQ-Fast index to get final results. GQ-Fast can also prepare a query statement, and then execute

it multiple times (as JDBC does), changing the parameters each time.

We will illustrate GQ-Fast data structure and GQ-Fast query processing in Chapter 2.4

and Chapter 2.5 respectively.
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Figure 2.5. Index IR.C . The lookup table Pc stores offsets of fragments. Fragments of different
columns have different encodings.

2.4 GQ-Fast Index Structure

This chapter first presents the GQ-Fast index structure and analyzes different encoding

methods, then describes how to build indices for both entity and relationship tables. Finally, a

discussion of how to support incremental updates is provided.

2.4.1 Index Structure

Given a relationR(C,C1, C2, ..., Cn), assuming the indexed column is C, GQ-Fast builds

one index IR.C (shown in Figure 2.5) for R. A GQ-Fast index has one lookup table for the

indexed column C, and organizes values in columns C1, ..., Cn in fragments. We assume that

|R| = h, consequently the column C contains IDs in the interval [0, h− 1]. The lookup table

PC is a 2D array of size (h + 1) × n and stores offsets into the respective fragments array

designating the beginning of a fragment. All fragments are stored consecutively and byte-aligned

in one fragment byte array per column. Specifically, P [t][m] stores the offset where fragment

πCmσC=t(R) starts in Cm’s fragment byte array, where Cm is the (m+ 1)-th column of R. If a

value t ∈ C has no associated values in columns C1, ..., Cn, then all fragments π∗σC=t(R) are

empty. The size of a fragment is defined implicitly as the difference between two consecutive

offsets, which is why the size of the first dimension of P is h + 1. For further space savings,
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offsets are encoded with the minimum number of bytes. For example, assume the C1 fragment

byte array (Figure 2.5) is 3GB and is located at a certain 64-bit memory address s. Offset values

pointing to it will be 4-byte integers, since dlog256 3× 1024× 1024× 1024e = 4. Also, assume

the offset to the t-th fragment πC1σC=t(R) is o1 and the offset to the t + 1-st fragment is o2.

Then, given a request for the fragment πC1σC=t(R), the lookup table returns the start pointer

F = s+ o1 and the size l = o2 − o1.

Retrieve a fragment πAσFi=c(R). GQ-Fast first obtains an offset-arrays P = IR.Fi [c]

by a random access, and its neighbor Pnext = IR.Fi [c+ 1]. Then GQ-Fast gets the start address

of the fragment FR.A = P [A] and its length l=Pnext[A] − FR.A. If this fragment is encoded

by an encoding method E, GQ-Fast decodes it by using a macro decodeE(FR.A, l : AR.A, n) to

produce a decoded array AR.A and the number of elements n within it.

In the following, we present various encodings for fragments utilized in this paper.

2.4.2 Fragments Encoding Methods

In a GQ-Fast index IR.C of relation R(C,C1, C2, ..., Cn), all the values associated with

t ∈ C in column Ci are organized as a fragment πCiσC=tR. GQ-Fast compresses fragments with

different compression methods. GQ-Fast does not have any restrictions on compression methods,

as long as fragments can be decompressed without accessing other fragments. It allows a wide

range of encoding methods, including those that do not support random access within a fragment.

GQ-Fast currently uses the following four methods for encoding single fragments. The extended

version provides more details on describing the encoding methods.

• Uncompressed Array (UA): An uncompressed array stores the original numerical values in

their declared type.

• Bit-aligned Compressed Array (BCA): Assume a foreign key attribute points to the IDs

of an entity, which range from 0 to h − 1. Then each foreign key value needs dlog2 he

bits. Consequently, a fragment πAσF=cR with size n requires dn·dlog2 he
8
e bytes (including
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Table 2.1. Space analysis of encoding methods

Uncompressed Array (UA) 32 ·N · dlog232 De
Bit-aligned Compressed Array (BCA) 8 ·

⌈N ·dlog2De
8

⌉
Byte-aligned Compressed Bitmap (BB) N · (8 · dlog128

D−N
N
e)

Huffman 8 · dN ·ED+D
8
e

alignment-induced padding).

• Byte-aligned Compressed Bitmap (BB): Given an array of values [v1, . . . , vn], the equivalent

uncompressed bit vector is a sequence of bits, such that the bits at the positions v1, . . . , vn are

1 and all other bits are 0. GQ-Fast uses the byte-aligned method to compress bit vectors [8].

The first bit of a byte is a flag that declares whether (i) the next seven bits are part of a number

that also uses consequent bytes or (ii) the remaining seven bits actually represent the length

number by themselves.

• Huffman-encoded Array (Huffman): GQ-Fast employs Huffman encoding with an array-based

encoding of the Huffman tree [25, 62] to avoid tree traversals (i.e., random access on the heap).

This can speed up decoding due to CPU L1/L2 caching effects.

We compared the performance and storage tradeoff of all encoding methods analytically

and experimentally. Table 2.1 summarizes the space needed by each fragment. Assume that

each fragment contains N elements, the domain size of the column containing this fragment is

D, ED = −
∑D

i=1 pi log pi is the entropy of the column, and pi is the probability of occurrence

of element i7. In our experiments, GQ-Fast chooses an optimal encoding for each column with

minimal space cost by using the formulas in Table 2.1, where N is set to be the average fragment

size on each column.

Figure 2.6 shows the most compact way to encode a fragment in key/foreign key columns,

as a function of (a) the number N of elements in the fragment (vertical axis), and (b) the size

7We report the lower bound of the space needed by Huffman. The space needed by Huffman is bounded
by [8dN ·ED+D

8 e, 8dN ·ED+N+D
8 e) [71].
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Figure 2.6. Space cost comparison of different encoding methods. Each area is colored by the
compression method with minimal space cost.

of the underlying domain D (horizontal axis)8. Ideally, each fragment should be encoded by

the method with minimal space cost, as indicated by Figure 2.6. However, this leads to space

overheads due to recording the encoding method for each fragment. In our experiments, we

choose the optimal encoding method for each column based on this figure by setting N as the

average fragment size on each column.

Figure 2.6 implies that different fragments of the same column may be most compactly

encoded with different methods. For example, a fragment of more documents id’s of a term

should be encoded with BB, otherwise, it is less suitable to apply BCA. Though applying

different encodings for different fragments can achieve minimal space cost, the penalty is that

we need to remember the encoding method for each fragment, which increases the space cost.

To balance this trade-off, in this paper, we apply the same encoding (the one with minimal space

cost for the fragment with average size) for fragments in the same column. Note that, fragments

in different columns still benefit from applying different encodings. And only one encoding type

is required to store for each column, which can be stored in the metadata.

8BCA can only be applied to fragments containing unique values.
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2.4.3 Building GQ-Fast Indices

For an entity table E(ID ,M1, . . . ,Mm), GQ-Fast chooses the ID column as the indexed

column and creates one index IE.ID . Note that in an entity table, a fragment contains only a

single value.

For a relationship table R(F1, F2, M1, . . . ,Mm) with two foreign keys F1 and F2, GQ-

Fast chooses both F1 and F2 as indexed columns, which means GQ-Fast builds two indices

IR.F1 and IR.F2 according to different indexed columns. The reason is that a relationship table

refers to a collection of (potentially undirected) edges in graphs, and it is necessary to provide an

efficient way to obtain fragments for both source vertices (in column F1) and destination vertices

(in column F2). For scenarios where relationship tables have more than two foreign keys, say

a > 2, to fully index all the foreign key columns (if needed) GQ-Fast builds a indices, which

may require a large amount of space.

2.4.4 Incremental Updates

GQ-Fast’s compact storage strategy (storing all the fragments of the same attribute in one

big fragment array and using offsets to refer to them) can significantly reduce space costs at the

expense of incremental updates. To support incremental updates, GQ-Fast could (i) store each

fragment independently and (ii) maintain explicit pointers for them. Theoretically, GQ-Fast will

then require additional N(64− dlog2Ne) bits, where N is the total number of distinct values in

the indexed column.

As fragments may be encoded using Huffman encoding, it is challenging to maintain

the optimality of Huffman-encoded fragments after massive updates. Dynamic Huffman encod-

ing [54] should be applied, which remains optimal as the weights change.
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RQNA ⇒ γk;f1(.)7→N1,...,fn(.)7→Nnγ Join (1)

attributes named k are primary or foreign keys

| Join (2)

Join ⇒ Join 1j.k1=v.k2 (πĀ(T 7→ v)) (3)

j is a variable defined by Join

| πĀ(σc(T 7→ v)) (4)

| πĀ((T 7→ v) nv.k1=x.k2 Context) (5)

x is a variable defined by Context

Context ⇒ πv.kJoin (6)

| πv.kσc1(T1 7→ v) ∩ . . . ∩ πv.kσcn(Tn 7→ v) (7)

Figure 2.7. Grammar describing RQNA expressions

2.5 GQ-Fast Query Processing

The GQ-Fast Query Processor (Figure 2.4) transforms a given query into an RQNA

expression, which is then transformed into a plan of physical operators (e.g., the plan in Figure 2.9

corresponds to the RQNA expression in Figure 2.8(e)), which is then used together with metadata

for C++ code generation. This chapter formally describes RQNA expressions, presents physical

operators and key intuitions in the translation of RQNA expressions into plans, and describes

how the GQ-Fast code generator translates plans into code, essentially by mapping each physical

operator to an efficient code snippet and stitching these snippets together.

2.5.1 RQNA Expression

To efficiently answer relationship queries, GQ-Fast first translates them into RQNA

(Relationship Query Normalized Algebra) expressions (Figure 2.7). In the simplest case, an

RQNA expression is a left-deep series of joins with a selection and aggregation: In Line 4 the

RQNA expression starts with a selection σc(T 7→ v) of qualifying entities – we call them the

context entities9. Subsequently, the RQNA expression performs a series of left-deep joins (Line 3)

that navigate to entities related to the qualifying entities. Optionally, an RQNA expression may

9The condition may be set to true, setting the context to all entities.
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Figure 2.8. Relational algebra expressions for queries on PubMed/SemMedDB

group-by the key attribute k (Line 1), followed by multiple aggregations.

In more complex cases, an SQL query (as shown in later examples) may contain nested

queries using IN syntax, where IN translates to semijoins (Line 5). Nested queries are themselves

relationship queries (Lines 6) without aggregation or the result of an intersection (Lines 7).

Figure 2.8 shows the RQNA expressions for all the queries evaluated in this paper.
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2.5.2 Physical Operators

This chapter explains the physical operators’ syntax and semantics, neglecting for now

the bottom-up pipelined execution aspects.

Fragment-based Join. The operator
→
1
r.A1,...,r.An

B;R 7→r IR.B′L receives as input the result of

an expression L that produces a column B, generally among others. For each value b ∈ B, the

operator uses the index IR.B′ to retrieve (and decompress) the fragments πAiσr.B′=b (R 7→ r) for

i = 1, . . . , n. Intuitively, L would be the left operand of a conventional join and R 7→ r would

be the right side. Conceptually, one may think that the fragments are combined into a result table

whose schema has the attributesA1, . . . , An (and also the attributes of L). However, in reality, the

decompressed fragments are not combined into rows. In adherence to the late binding technique

[1, 2] of column-oriented processing, the ordering of the items in the fragments dictates how

they can be combined into tuples. The
→
1 operator is useful for executing both selections and

joins of the RQNA expressions:

• A projection/join combination πattrs(L),r.A1,...,r.An(L 1B=r.B′ R 7→ r) where B is an attribute

of L and B′ is a foreign key of a relationship table R or B′ is the ID of an entity table R,

translates to L
→
1
r.A1,...,r.An

B;R 7→r IR.B′ .

• A projection/selection combination πr.A1,...,r.Anσr.B′=c(R 7→ r), where c is a constant and

B′ is a foreign key of a relationship table R or B′ is the ID of an entity table R, translates

to {[B : c]} →1
r.A1,...,r.An

B;R 7→r IR.B′ . Essentially, GQ-Fast reduces the selection into a join, by

considering the left-hand-side argument to be a table with a single tuple and a single attribute

B, whose value is c.

Fragment-based Semijoin. The operator
→
o
r.A1,...,r.An

B;R 7→r IR.B′L operates similarly to the

fragment-based join but returns only attributes from (R 7→ r) if there is a matching tuple in L.

It is introduced in the plan when the RQNA expression has an expression πr.A1,...,r.An((R 7→

r)nB=r.B′ L). The operator maintains a lookup structure for values from the B column of L; for

27



{[DA.Author : ]} →1da1.Doc

Author;DA 7→da1 I

→
1
dt1.Term,dt1.Fre

da1.Doc;DT 7→dt1
IDT.Doc

→
1
dt2.Doc,dt2.Fre

dt1.Term;DT 7→dt2
IDT.Term

→
1
dy.Year

dt2.Doc;Doc 7→dy
I .ID

→
1
da2.Author

DA 7→da2

IDA.Author

γ1
da2.Author;SUM(dt1.Fre×dt2.Fre)/(2017−dy.Y ear)

DA.Author

dt2.Doc;

7

Doc

Figure 2.9. Physical algebraic plan for query AS

each value b ∈ B, the operator checks the lookup structure to find out whether that particular

value b was already received earlier. If L is relatively large, it is best to use a boolean array,

despite the fact that the query needs to initialize all array elements to false. Otherwise, a hash set

or a tree is preferable.

While joins and semijoins are sufficient, the extended version also describes the oc-

casional replacement of semijoins with a merge intersection operator that merges sorted one-

attribute relations. As an example, Query AD uses that operator.

Merge Intersection. The operator
→
∩
θ

L1,...,Lm
computes the result of L1 ∩ . . . ∩ Ln, when

each argument Li consists of a single sorted attribute. In the case of RQNA queries, an Li meets

the necessary conditions if it is an expression of the form πli.Biσli.K=c(Li 7→ li), where K is a

(foreign or primary) key attribute.

The superscript θ = 0 indicates that the merging should happen directly on the encoded

fragments. In a common example, if all the fragments are encoded with compressed bitmap then

the merge intersection can be directly applied on the compressed bitmaps. Otherwise, θ = 1

means fragments L1 . . . Ln are encoded with different encodings. Then each fragment needs to
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be decoded before intersecting by merging. More precisely, a (preallocated, since we know the

worst case scenario in advance) array with size min{|L1|, . . . , |Lm|} is initialized to store the

final intersection results. The operator has pointers pointing to the beginning of each fragment.

The pointed-to values are compared: If all the values are the same, then this value is added to

the array and all pointers are incremented. Otherwise, all pointers except the one with maximal

value are moved forward until the pointed-to values are greater or equal than the maximal one.

Then it repeats the above step until all the values in a fragment have been accessed. The operator
→
∩
θ

L1,...,Lm
is introduced in the plan when the RQNA expression has a series of semijoins and the

right arguments of the semijoins are a single sorted column.

In particular, an RQNA subexpression πr.A1,...,r.An((R 7→ r) nr.B′=l1.B1 πl1.B1L1) n

. . .nr.B′=lm.Bm (πlm.BmLm) translates into
→
o
r.A1,...,r.An

B;R 7→r IR.B′
→
∩
θ

πl1.B1
L1),...,πlm.BmLm).

Aggregation. The aggregation operator γ1
r.D;α(s(A1,...,An)) groups its input according to

the single group-by attribute r.D and aggregates the results of the scalar function s(A1, . . . , An)

using the associative aggregation function α (e.g., min, max, count, sum).

Recall, in relationship queries the single group-by attribute r.D is the foreign key of

a relationship table or the ID of an entity. In either case, the range of r.D is the same as the

range of the underlying entity ID. Consequently, the γ1 operator’s superscript 1 signifies the

assumption that the domain of G is small enough to allow for the allocation of an array, whose

size is the domain of r.D and each entry is a number, initialized to zero. Every time a “tuple”

from r is processed, this array is updated at r.D accordingly. In addition, an array of booleans

registers which values of r.D were actually found. As was also the case with the lookup structure

of the semijoin, it is preferable to incur the penalty of initializing such arrays, instead of using

hash sets or tree-based sets that have more expensive lookup times. For example, the aggregation

γ1

Author ;
SUM (DT2.Fre×DT1.Fre)

(2017−DY .Year)

of the Query AS, as shown in Figure 2.9, initializes an array with size

of the domain Author to store the aggregated score for each author and also a boolean register

array to check which authors are actually accessed.

In non-relationship queries the group-by list may involve more than one group-by at-
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tributes, in which case it uses a hash table [32] instead of an array. In other non-relationship

queries, the aggregation function f is non-associative (e.g., the median) in which case it is not

enough to allocate an aggregate values’ array with just one number per domain entry.

2.5.3 Code Generator

The GQ-Fast code generator has two main components: to-be-emitted source code boxed

by dotted lines in the pseudocode; and control commands that determine which code pieces

should be emitted. The input of the code generator is (1) the physical plan and (2) GQ-Fast

metadata, which specifies the encoding of each fragment. The code generator has two phases:

(1) initialize necessary buffers (Lines 3–5); and (2) emit code pieces for each physical operator

(Lines 6–40). More precisely, in the first phase, the GQ-Fast code generator initializes an array

R to store final aggregation results and several boolean arrays for duplicate-checking in semijoin

operations. In the second phase, it emits code for selection operators {[B : c]} →1
r.A1,...,r.An

B;R 7→r IR.B′
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(Lines 8–10). The getDecodeFragment macro emits code for (1) retrieving a fragment (Lines

1–3) and (2) calling the corresponding decode macro (Lines 4–11); encoding information is

obtained from metadata. For each join L
→
1
r.A1,...,r.An

B;R 7→r IR.B′ and semijoin L
→
o
r.A1,...,r.An

B;R 7→r IR.B′

operator (Lines 11–23), the generator first checks whether the previous operator operates on

an entity table and the operated columns are the same. In that case a for-loop can be avoided

(Line 14). For a semijoin operator, one more duplicate-checking step should be added (Line 19).

The remaining steps (Lines 20-23) of join/semijoin are identical to the selection operator. For

each intersection operator
→
∩
α

F1,...,Fm
, the generator first identifies whether all the fragments are

encoded with the same bitmap encoding (metadata). If so (α = 0), the generator emits code

to perform intersection directly on encoded fragments (Lines 26–30). Otherwise, it emits code

to perform intersection on decoded fragments (Lines 32–36). Then, the code generator emits

aggregation code pieces (Lines 38–40) for an aggregation operator γ1α
r.D;α(s(A1,...,An)).

Memory Requirements. Query execution requires 4 · |r.D|+
∑k

i=1 ·|ri.B′| bytes, where

|r.D| is the domain size of r.D for an aggregation operator, k is the number of semijoin operators,

and |ri.B′| is the domain size of ri.B′ for the ith semijoin operator.

Parallel Computing. GQ-Fast can use multiple cores/threads to perform parallel com-

putation. The fact that in GQ-Fast (1) each fragment is independent of others, so GQ-Fast can

assign fragments to different threads; and (2) the query processing is more CPU-bounded than

memory-bounded especially when decompressing encoded fragments. We would like to mention

one important technical detail of how to handle two kinds of global arrays, i.e., boolean arrays

for each semijoin operation, and a numerical array for aggregation operator. To guarantee the

correctness of GQ-Fast, it applies spinlock [13] in each array slot, which is experimentally

verified to be more efficient than just using one spinlock on the entire boolean array.
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Table 2.2. Data characteristics of PubMed-M and PubMed-MS

Table name # rows
DT(Doc,Term,Fre) 207,092,075
DT(Doc,Term,Fre) 901,388,401
DA(Doc,Author) 61,329,130
Document(ID,Year) 23,176,635

Entity ID Domain Size
Doc(ument) 23,326,299
Term 27,883
Term 259,728
Author 6,301,521

Table Fragment Average size Maximal size Standard deviation

DT
Doc 7427.18 8192342 197.56
Term 14.48 667 17.52
Doc 3470.50 8192342 318.72

DT
Term 63.06 753 39.06

DA
Doc 5.99 5712 21.93
Author 4.35 3163 8.04

Document Year 1.00 1 0.00

2.6 Experiments

We evaluated GQ-Fast’s novelties by running relationship queries on three real-life

datasets. In all experiments, the entire data set was located in main memory.

2.6.1 Environment and Setting

All experiments were done with GQ-Fast 0.1 on a computer with a 4th generation Intel

i7-4770 processor (4 × 32 KB L1 data cache, 4 × 256 KB L2 cache, 8 MB shared L3 cache, 4

physical cores, 3.6 GHz), 16 GB RAM, and a Seagate ST2000DM001-1CH1 hard drive, running

Ubuntu 14.04.1. Generated C++ code was compiled with g++ 4.8.4, using -O3 optimization.

Dataset. We evaluated all selected DB systems and design choices with three datasets:

PubMed-M, PubMed-MS and SemMedDB. Table 2.2 10 and Table 2.3 summarize their data

characteristics (their schemas are presented in Chapter 2.1 and Chapter 2.2).

Compared Systems. To provide an end-to-end comparison, we compared GQ-Fast with

10PubMed-MS has more terms than PubMed-M, which results in larger size of DT table in PubMed-MS. Gray
cells indicate the difference between them.
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Table 2.3. Data characteristics of SemMedDB

Table # rows Table # rows
CS 1550482 Concept 1339227
PA 37508726 Sentence 146055876
SP 81929321 Predication 17359895

Table Fragment Ave size Max size Standard deviation

CS
concept semtype id 1.16 5.00 0.39

concept id 1.00 1.00 0.00

PA
predication id 122.00 109532 845.15

concept semtype id 2.15 38 0.53

SP
sentence id 4.65 125367 112.36

predication id 1.61 140 1.07

the graph database Neo4j 2.3.2 11, the row-oriented database PostgreSQL 9.4.0, the cluster-based

and column-oriented Vertica Analytics Platform, and the in-memory column database MonetDB.

We measure the warm running time for queries, i.e., each query is run twice and we only report

the second measurement. The first one is used just to bring all the necessary data (for the

evaluation of the query) into the RAM buffers. Furthermore, we run and average five warm runs.

To isolate the effect of compiled code from the other contributions of GQ-Fast, we

implemented two main-memory column databases serving as main-memory baselines. One

is a plain main-memory column database (PMC) without optimizations. The other one is a

fully optimized main-memory column database (OMC). They both utilize a code generator for

executable C++ plans. The logical query plans in PMC and OMC are identical to the ones in

GQ-Fast (same RQNA expressions). Both PMC and OMC use the operator-at-a-time execution

model as MonetDB [94, 3] does. PMC maintains one copy of each unsorted table, and uses

whole column scans when executing each operator. OMC maintains two copies of each table,

such that each copy is sorted based on one foreign key column. OMC applies all optimizations

that can improve the performance of relationship queries: (1) Applying run-length encoding for

11Since Neo4j does not support SQL syntax, we translated queries into Cypher, Neo4j’s query language.
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sorted columns, improving the lookup performance and reducing space costs; (2) utilizing binary

search for sorted columns instead of whole column scan.

2.6.2 Experimental Results

We ran the Queries SD, FSD, AD, FAD and AS on PubMed (PubMed-M and PubMed-

MS) and Query CS on SemMedDB (see queries in Chapter 2.2). We always chose the encoding

with the least space costs, if not stated otherwise; even though a different encoding might perform

better in terms of running time. We measured the warm running time for queries, i.e., each query

was run twice but only measured the second time.

We measured the overall runtime performance (Chapter 2.6.2.1) and the overall space cost

(Chapter 2.6.2.2) for each algorithm and database. The results show that GQ-Fast outperforms

MonetDB and OMC by 10–103 and 7–70 times, respectively, and generally uses less space, due

to a combination of the following effects:

• Compilation: Using a code generator to generate C++ code.

• Pipelining: Adopting a bottom-up pipelined execution strategy.

• Array-l: Using dense IDs to maintain an array look-up table instead of a hash table.

• Array-a: Using dense IDs to maintain an array to store aggregation results instead of hash

table.

• Compression: Applying aggressive data compression schemes.

The gap between the speedup of GQ-Fast and OMC over MonetDB reveals the power of

compiled code. In order to isolate the effect of the other four optimizations, we implemented

variants of GQ-Fast and OMC as summarized in Table 2.4.

GQ-Fast-UA is GQ-Fast with uncompressed arrays (as encoding). In addition, GQ-Fast-

UA(Bin) uses binary search instead of array lookup. Therefore, GQ-Fast-UA(Bin) does not

have the dense IDs optimization. GQ-Fast-UA(Map) is like GQ-Fast-UA but uses a hash map
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Table 2.4. Summary of different variants of GQ-Fast and OMC

Compile Pipeline Array-l Array-a Compress
GQ-Fast 3 3 3 3 3

GQ-Fast-UA 3 3 3 3 7

GQ-Fast-UA(Bin) 3 3 7 3 7

GQ-Fast-UA(Map) 3 3 3 7 7

OMC 3 7 7 7 312

OMC-denseID 3 7 3 3 313

instead of an array to store final aggregation results. It does not use the dense IDs optimization.

OMC-denseID is like OMC but uses arrays instead of hash maps in both lookup and aggregation,

which means OMC-denseID has the same lookup and aggregation data structures as GQ-Fast.

To isolate the effect of each single optimization, we conduced further experiments as

described in Chapter 2.6.2.3.

• To measure the effect of dense IDs, we compared (i) GQ-Fast-UA with GQ-Fast-UA(Bin)

(Table 2.8), and (ii) GQ-Fast-UA with GQ-Fast-UA(Map) (Table 2.9).

• To measure the effect of using bottom-up pipelining against materializing intermediate results,

we compared GQ-Fast-UA with OMC-denseID (Table 2.10).

• To measure the effect of applying different compressions, we analyzed the performance and

space cost of different compressions in GQ-Fast (Table 2.11).

Chapter 2.6.2.4 provides additional experiments to analyze (1) the effect of parallel

processing in GQ-Fast, and (2) the time required for building GQ-Fast indices.

2.6.2.1 Overall Runtime Performance

Table 2.6 reports the average running time of each query for each system, using 8

threads14. Overall, GQ-Fast shows superior performance for all queries. We further observed
12OMC uses RLE encoding and dictionary encoding.
13OMC-denseID uses RLE encoding and dictionary encoding.
14We applied spinlocks [13] to ensure correctness during concurrent access to shared arrays for the semijoin and

aggregate operators.
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Table 2.5. Running time on general graphs

SD AD AS
GQ-Fast on general-graphs 1.440 0.407 47.077

Neo4j on general-graphs 137.6 80.2 50121.9

that:

• On average, GQ-Fast outperforms Vertica, MonetDB and OMC by a factor of 100, 170, and

20, respectively (see ratio columns). If GQ-Fast only applies UA compression, it will achieve

better performance (running time of Query AS on PubMed-M is 4.45s).

• MonetDB outperforms PMC: Its indexed plans perform better than PMC’s compiled code.

OMC outperforms MonetDB, since (a) OMC uses code generation and (b) has two copies

of each relationship table. For example, OMC uses two copies of the DT table in Query SD.

Therefore, each OMC lookup is a binary search on the sorted column (hence essentially tieing

the index-based lookups of MonetDB) and lookup results are run-length encoded on the sorted

column, hence reducing the size of intermediate results.

• High fanout is favorable to GQ-Fast: The improvement over the competing systems is usually

higher in the queries SD, FSD, FAD and AS when they use DT of PubMed-M, compared

to queries that use DT of PubMed-MS. Term has a higher fanout in DT of PubMed-M.

We conjecture that high fanouts ammortize over larger fragments the fixed costs of the

decompression routines, therefore extending GQ-Fast’s advantages.

We also conducted experiments to evaluate the performance of GQ-Fast on general

graphs. As shown in Table 2.5, GQ-Fast is still about 100x faster than Neo4j, even after incurring

the 10x slowdown (due to lack of knowledge on types), which speaks to the applicability of the

GQ-Fast techniques in the case of general graphs.
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Table 2.6. End-to-end runtime performance (in seconds). Numbers in bold are the fastest ones.

(a) (b) (c) (d) (e) (f) (g) MonetDB
GQ-Fast

OMC
GQ-FastQuery Neo4j Postgres Vertica MonetDB PMC OMC GQ-Fast

PubMed-M

SD 14.7 211.2 5.19 10.8 23.36 2.47 0.230 47.0 10.7
FSD 86.6 567.5 12.32 23.9 33.98 5.93 0.821 29.1 7.2
AD 7.4 158.1 2.17 6.2 4.82 0.73 0.037 86.5 19.7

FAD 18.2 198.6 3.85 8.5 7.16 0.88 0.064 70.3 13.8
AS 5546.5 29520.5 42.34 4474.8 5832.30 194.77 5.662 790.3 34.4

PubMed-MS

SD 61.6 741.2 37.17 49.3 400.24 10.25 1.068 46.2 9.6
FSD 146.8 2148.7 53.48 112.8 1892.30 32.80 4.376 25.8 7.5
AD 6.9 112.9 5.60 5.2 19.67 0.67 0.035 77.1 19.1

FAD 11.1 119.6 15.17 3.5 24.99 0.71 0.062 56.5 11.5
AS 9604.8 180164.1 362.35 28918.8 33321.74 3083.30 54.720 528.5 56.3

SemMedDB CS 21.0 53.1 10.94 4.7 23.58 2.12 0.031 151.6 68.4

Table 2.7. Space cost for each system (in GB). Numbers in bold are the smallest ones

(a) (b) (c) (d) (e) (f) (g) MonetDB
GQ-Fast

OMC
GQ-FastNeo4j Postgres Vertica MonetDB PMC OMC GQ-Fast

PubMed-M 34.36 20.92 3.21 3.69 3.09 3.49 1.47 2.51 2.37
PubMed-MS 112.15 78.90 11.06 13.27 11.42 11.82 3.51 3.78 3.37
SemMedDB 10.39 6.84 2.89 1.23 0.97 2.05 1.36 0.90 1.51

2.6.2.2 Overall Space Cost

Table 2.7 presents the overall space costs. GQ-Fast has the lowest space cost in PubMed-

M and PubMed-MS. Interestingly, GQ-Fast also uses much less space than PMC even though

PMC stores only one copy of each table while GQ-Fast stores two “copies” (i.e., two indices);

this indicates the importance of dense compressions. In SemMedDB, GQ-Fast still uses less

space than OMC, but more space than PMC. The reason is the fanout of SemMedDB (averaging

at 1.16), which dilutes the effect of fragment compression since fragments are very small and

space is spent on padding them to full bytes. Even though PMC uses marginally less space than

GQ-Fast in SemMedDB, GQ-Fast is still the best overall choice as it is 760 (i.e., 23.58/0.031)

times faster (Table 2.6).
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Table 2.8. GQ-Fast-UA vs. GQ-Fast-UA(Bin) (in ms). The last column shows the improvement,
where θ = 1− GQ−Fast−UA

GQ−Fast−UA(Bin)

Ave # lookups GQ-Fast-UA(Bin) GQ-Fast-UA θ

SD 22 247.94 177.08 28.58%
FSD 21748262 1129.72 435.60 61.44%
AD 23609 38.67 30.33 21.57%
FAD 23609 27.84 25.95 6.79%
AS 58589421 7364.92 4510.11 38.76%
CS 132975 16.21 8.62 46.82%

2.6.2.3 Effect of Each Optimization

Effect of Dense IDs. The dense IDs assumption allows GQ-Fast to use arrays for

semijoins and aggregations instead of other data structures like hash maps.

GQ-Fast-UA vs. GQ-Fast-UA(Bin). We conducted experiments to evaluate the per-

formance of retrieving fragments. Table 2.8 shows the running time of different queries for

GQ-Fast-UA(Bin) and GQ-Fast-UA on PubMed-M and SemMedDB15. GQ-Fast-UA outperforms

GQ-Fast-UA(Bin) for all queries. For example, GQ-Fast-UA saves around 12% running time

over GQ-Fast-UA(Bin) for Query AS. In addition, we also observed that, queries with larger

number of lookup requests (FSD, AS and CS) benefit more compared to queries with smaller

number of lookup requests, e.g., SD and AD.

GQ-Fast-UA vs. GQ-Fast-UA(Map). We measured the benefit of choosing an array for

aggregation in GQ-Fast over a hash map by comparing GQ-Fast-UA with GQ-Fast-UA(Map). As

shown in Table 2.9, GQ-Fast-UA outperforms GQ-Fast-UA(Map) for all queries. GQ-Fast-UA

performs better for the queries with a large output (e.g., Query AS; GQ-Fast-UA saves about

33% of running time) compared to queries with smaller output (e.g., Query CS).

Effect of Pipelining. In this experiment we compared OMC-denseID with GQ-Fast-UA

in order to measure the benefit of pipelining over materializing intermediate results. OMC-

denseID and GQ-Fast-UA have the same lookup data structure and use an array for final

15We achieve similar improvements in PubMed-MS.
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Table 2.9. GQ-Fast-UA vs. GQ-Fast-UA(Map) (in ms). The last column shows the
improvement where θ = 1− GQ−Fast−UA

GQ−Fast−UA(Map)

Ave # results GQ-Fast-UA(Map) GQ-Fast-UA θ

SD 27,443,100 908.95 177.08 80.52%
FSD 27,307,529 1342.82 435.60 67.56%
AD 200,679 34.84 30.33 12.94%
FAD 56,518 31.63 25.95 17.96%
AS 20,019,297 7766.83 4510.11 41.93%
CS 5,057 10.06 8.62 14.31%

Table 2.10. Avoiding intermediate results

# fragments # elements OMC-denseID GQ-Fast-UA
A1 7,484,532 51,730,682 4.12 1.02
A2 9,287,804 65,687,183 22.15 2.24
A3 87,467,470 619,809,092 74.90 5.38
A4 184,219,134 1,305,764,797 171.33 13.76
A5 585,932,678 4,153,322,719 297.47 49.01

aggregation. Table 2.10 reports the running time of GQ-Fast-UA and OMC-denseID on five

instances of Query AS, where each instance queries for another author ID, A1–A5. The number

of accessed fragments for those queries varies from around 7M to 585M. As shown, GQ-Fast-UA

outperforms OMC-denseID by a factor of 15. As the number of accessed elements increases, the

running time of OMC-denseID increases significantly, since OMC-denseID materializes larger

intermediate result columns.

Analysis of Different Encoding Methods. We analyzed the performance (compression

rate and decompression time) of all encoding methods that are employed by GQ-Fast: uncom-

pressed array (UA), bit-aligned compressed array (BCA), byte-aligned bitmap (BB) and Huffman

encoding. Table 2.11 reports the encoded size of each column in the PubMed-MS dataset. As

shown, no single encoding is optimal for all columns. Adopting a suitable compression method

can significantly save space. For example, by using BB, the space cost of dt1.Term reduced

from 3660.29 MB to 1431.12 MB. The selection of a suitable compression method is based on
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Table 2.11. Size of encoded columns (MB). The bold fonts show the minimal space for each
column. BB only applies for fragments with unique values, so dt1.Fre and dt2.Fre are not

encoded by BB.

UA BCA BB Huffman
dt1.Term 3605.55 2033.25 1376.39 1565.60
dt1.Fre 901.39 454.12 N/A 142.46
dt2.Doc 3605.55 2816.93 1047.71 2779.37
dt2.Fre 901.39 450.74 N/A 134.84
da1.Doc 245.26 198.75 187.54 325.70

da2.Author 245.26 183.95 205.10 275.56
dy.Year 57.17 14.20 N/A 14.29

Table 2.12. Space cost and decompression time for BCA, BB, and Huffman. Domain size is 1
billion, data follows Zipf distribution with factor s = 1.5. Fragments only contain unique values,

which simulates fragments in foreign-key columns.

# elements per fragment # fragments compression ratio 1 thread 2 threads 4 threads 8 threads
BCA 100000±1000 8000 76.23% 1535.51 864.60 450.89 378.23

BB 100000±1000 8000 31.75% 1501.81 835.15 428.82 371.44
Huffman 100000±1000 8000 73.08% 52198.71 29688.66 14934.78 7925.45

our analysis results in Chapter 2.4. For example, as we discussed, UA always uses most space.

In addition, BB achieves the minimal space on dt2.Doc, which indicates the correctness of our

analysis.

Based on the analysis results, the best encodings for DT.Term, DT.Doc and DA.Doc

are byte-aligned compressed bitmaps (BB), while the best one for DA.Author is bit-aligned

dictionary (BD). For example, the domain size of DT.Term is 223705 < 223. As shown in

Table 2.2, the average size of fragment is 22.51. Therefore, for DT.Term, BB should be the

best one theoretically.

We also conducted experiments to evaluate the decompression performance of these

encoding methods for two kinds of (synthetic) fragments: fragments on foreign key columns

containing only unique values (Table 2.12) and fragments on measure attributes with many

duplicates (Table 2.13). In the former case, we observed that BB achieves the highest compression
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Table 2.13. Space cost and decompression time for BCA and Huffman. Domain size is 100,
data follows Zipf distribution with factor s = 1.5. Fragments contain duplicates, which

simulates fragments in measure attributes.

# elements per fragment # fragments compression ratio 1 thread 2 threads 4 threads 8 threads

BCA
100 8000000 21.88% 1581.17 801.31 410.04 348.42

10000000 80 21.88% 1286.58 652.02 333.65 283.51

Huffman
100 8000000 12.28% 5055.16 2543.28 1280.83 668.05

10000000 80 11.39% 4374.84 2201.00 1108.45 578.14

Table 2.14. Running time for building indices (seconds)

(1) GQ-Fast-UA (2) GQ-Fast (1)+r
(2)+r

PubMed-M 152.52 153.89 73.74%

PubMed-MS 540.33 561.02 72.54%

SemMedDB 74.68 103.30 66.15%

(saving 69.25% space) and the highest decompression performance (about 30 times faster than

Huffman). Huffman has the worst performance, since the domain size is large, which requires

maintaining a large decoding table (tree) that is too big for CPU L1/L2 caches. In the latter

case, we noticed that Huffman achieves the highest compression quality and has decompression

performance comparable to BCA, as shown in Table 2.13. Compared to the results in Table 2.12,

the decompression performance of Huffman improved significantly, because the Huffman table

can fit into the L1 cache when the domain size is small (say 100). This result also indicates that

Huffman is suitable for measure attributes.

2.6.2.4 Addition Experiments

Effect of Multiple Threads. We evaluated the effect of multiple threads for the overall

performance. Figure 2.10 shows the running time of selected queries with 1–8 threads. Parallel

processing improves performance but does not scale linearly, mostly due to skewed data. The

skewed problem can be solved by employing load-balance algorithms.

Building Indices. Table 2.14 reports the time for building indices in-memory. For

GQ-Fast, this process takes a bit more time than for GQ-Fast-UA, since it spends extra time on
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Figure 2.10. Running time for query AS (PubMed-M, PubMed-MS and Query CS
(SemMedDB), 1–8 threads

encoding fragments. The last column shows the ratio, where r is the time required for reading

data from disk to memory, which is 361.14s for PubMed-M, 1283.32s for PubMed-MS, and

149.77s for SemMedDB.

2.7 Related Work

GQ-Fast Indices vs. Database Indices. Database indices (B+ trees, hash indices and

bitmaps) are built on top of the original tables, i.e., the database has both tables and indices.

In contrast, the entire dataset of a GQ-Fast database is in GQ-Fast indices. This difference

has repercussions in query processing. A database index is given a key and returns row IDs.

Depending on the system, a row ID may be a tuple pointer, a block pointer or an array index. At

any rate, the database then accesses the tuples that are identified by the row IDs and collects the

relevant attributes in the original tables. In contrast, the GQ-Fast index is a data-to-data index,

which gets rid of row IDs. Given a key and an attribute, it returns directly the attribute values

that relate to the particular key.

Comparison of Pipelining Methods. In row-oriented databases, the top-down iterator

model [33] reduces the memory footprint of intermediate results. However, the top-down iterator

model shows poor performance on modern CPUs due to lack of locality, frequent instruction
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mispredictions and too many function calls [73]. Therefore, modern column databases choose

either to (1) pass blocks of tuples (batch-oriented processing) between operators, reducing the

number of function invocations [75, 73], or (2) materialize all intermediate results to eliminate

the need of calling an input operator repeatedly, which simplifies operator interaction [66, 40], or

(3) choose a middle way by passing large vectors of data and evaluating queries in a vectorized

manner on each chunk [106].

However, none of the above techniques reaches the speed of hand-written code [73].

GQ-Fast’s code generator compiles physical plans to code to improve performance. While

many aspects of GQ-Fast code generation (e.g., function call avoidance) have been employed in

previous work employing code generation16

GQ-Fast produces code that is very close to what a human would do. Crucially, the

compiled code utilizes simple for-loops (e.g., see Generated Code in Chapter 2.1) that access

the elements in a fragment. Tight for-loops create high instruction locality which eliminates the

instruction cache-miss problem. Intermediate results are stored in loop variables, such as the

vdt1.Term. Such simple loops are amenable to compiler optimizations (e.g., register allocation of

loop variables) and CPU out-of-order speculation [40].

Data Cubes vs. Graph Analytics. The fact table of data cubes involves typically k > 2

foreign keys. Hence, if we perceive the fact table as a k-ary relationship, we would create

k GQ-Fast indices, inducing data redundancy that would eventually surpass the compression

advantages. Alternately, we could think of facts as entities, connected to the dimensions via

many-to-one relationships. However, once we model a data cube in this way and apply GQ-Fast

to it, the benefit of GQ-Fast in performing paths of many-to-many joins is not exhibited anymore.

Hence, it becomes apparent that data cube queries and graph queries are significantly different in

their SQL OLAP needs and GQ-Fast is tuned towards the latter.

Graph Processing. High-level graph engines allow users to write in SQL or other

16Among others, generating code is used to speed up data cube queries [73], view maintenance [7] and path-
counting queries [70].
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declarative languages, e.g., Datalog, which is easier to use but orders of magnitude slower [4]

than low-level graph engines [38, 74]. GQ-Fast meets the performance of low-level graph

engines while supporting a high-level programming interface. It is worth mentioning that,

EmptyHeaded [4] has the same design goal as GQ-Fast but they have several differences: (1)

GQ-Fast uses an encoded fragment-based data structure, while EmptyHeaded employs a trie

data structure; and (2) GQ-Fast focuses on CPU caching effects, while EmptyHeaded focuses on

leveraging SIMD (single-instruction multiple-data) to speed up performance.

2.8 Chapter Summary

In this chapter, we studied the relationship queries. GQ-Fast used a new fragment-

based data structure and a new, coordinated bottom-up pipelining execution strategy to answer

relationship queries. Further, it employed a code generator to produce efficient compiled codes.

We itemized the sources of GQ-Fast superior performance and measured how much each one of

them contributes to the overall performance speedup.

This chapter contains material from “Fast In-Memory SQL Analytics on Typed Graphs”

by Chunbin Lin, Benjamin Mandel, Yannis Papakonstantinou and Matthias Springer, which

appears in Proceedings of VLDB Endowment, Volume 10, Number 3, November 2016. The

dissertation author was the primary investigator of this paper.
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Chapter 3

Plato: Supporting Anytime Queries over
Compressed Time Series with Determinis-
tic Error Guarantees

3.1 Introduction

Attention to time series analytics is bound to increase in the IoT era as cheap sensors can

now deliver vast volumes of many types of measurements. The size of the data is also bound

to increase. E.g., an IoT-ready oil drilling rig produces about 8 TB of operational data in one

day. 1 One way to solve this problem is to increase the expense in computing and storage in

order to catch up. However, in many domains, the data size increase is expected to outpace

the increase of computing abilities, thus making this approach unattractive [31, 17]. Another

solution is approximate analytics over compressed time series.

Approximate analytics enables fast computation over historical time series data. For

example, consider the database in Figure 3.1, which has a Temperature table and a Pressure

table. Each table contains (i) one Timeseries column containing time series data, as a UDT [28]

and (ii) several other “dimension” attributes D, such as geographic locations and other properties

of the sensors that delivered the time series. The Plato SQL query in Figure 3.1(c) “returns

the top-10 temperature/pressure 5-second cross-correlation scores among all the (temperature,

1https://wasabi.com/storage-solutions/internet-of-things/

45



Figure 3.1. Example of SQL query using the TSA UDF.

pressure) pairs satisfying a (not detailed in the example) condition over the dimension attributes”.

Notice, the first argument of the TSA UDF is a time series analytic expression (in red italics).

We could write simply ’CCorr(t.timeseries, p.timeseries, 5)’, as there is a built-in cross-

correlation expression CCorr but, instead, the example writes the equivalent expression that uses

more basic functions (such as the average µ, the standard deviation σ and the time Shifting) to

exhibit the ability of Plato to process expressions that are compositions of well-known arithmetic

operators, vector operators, aggregation and time shifting. Either way, computing the accurate

cross-correlations would cost more than 10 minutes. However, Plato reduces the running time

to within one second by computing the approximate correlations. It also delivers deterministic

error guarantees. Notice that Plato allows users to specify error budgets and returns approximate
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answers with deterministic error guarantees no greater than the error budgets. For example, the

Plato SQL query in Figure 3.1(c) specifies the error budget to be 0.005. We will show later Plato

returns an approximate answer with an error guarantee 0.0032, which is less than the error budget

0.005. (In SQL, the result is a string concatenation of the approximate answer and the error

guarantee. The functions approximateAnswer and guarantee extract the respective pieces.)

The success of approximate querying on IoT time series data is based on an important

beneficial property of time series data: the points in the sequence of values normally depend on

the previous points and exhibit continuity. For example, a temperature sensor is very unlikely to

report a 100 degrees increase within a second. Therefore, in the signal processing and data mining

communities [47, 43, 29, 14], time series data is usually modeled and compressed by continuous

functions in order to reduce its size. For instance, the Piecewise Aggregate Approximation

(PAA) [47] and the Piecewise Linear Representation (PLR) [43] adopt polynomial functions

(0-degree in PAA and 1-degree in PLR) to compress the time series; [76] uses Gaussian functions;

[96] applies natural logarithmic functions and natural exponential functions to compress time

series. Plato is open to any existing time series compression techniques. Notice that there is no

one-size-fits-all function family that can best model all kinds of time series data. For example,

polynomials and ARMA models are better at modeling data from physical processes such as

temperature [68, 24], while Gaussian functions are better for modeling relatively randomized

data [52] such as stock prices. How to choose the best function family has been widely studied

in prior work [82, 102, 27, 56] and recent efforts even attempt to automate the process [57]. We

assume that the Plato users make a proper selection of how to model/compress the time series

data and we do not further discuss this issue.

Architecture. Figure 3.2 shows the high-level architecture. During insertion time, the

provided time series is compressed. In particular, a compression function family (e.g., 2nd-degree

polynomials) is chosen by the user. Internally, each time series is partitioned, compressed,

and organized as a segment tree structure. Chapter 3.3 presents the details of the segment tree

structure and also the segment tree building algorithm. Figure 3.3 gives an example segment
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tree structure. Each node in the tree corresponds to a time series segment. For each segment

T ji Plato finds the best estimation function f ∗
T ji

, which is the member of the function family

that best approximates the values in this segment. The most common definition of “best” is

the minimization of the reconstruction error, i.e., the minimization of the Euclidean distance

between the original and the estimated values. This is also the definition that Plato assumes.

Plato stores the coefficients of the estimation function for each segment, which take much less

space than the original time series data. In addition, Plato also computes error measures Φ(T ji )

(one to three parameters depending on the selected function families) for each segment.

Consequently, given a query q with TSA UDF calls 2 and an error budget, Plato is able

to give an approximate answer with a tight deterministic error guarantee (no greater than the

error budget) by accessing the minimal number of nodes in the trees. Plato accesses the segment

trees in a top-down way. It recursively picks a node to access its children nodes and computes

the current error guarantee (Chapter 3.4 shows how to compute error guarantees by using error

measures stored in the current nodes.) until the current error guarantee is no greater than the given

error budget. Chapter 3.5 introduces the detailed top-down segment tree navigation algorithm.

Note, the TSAs may combine multiple time series; e.g., a correlation or a cross-correlation.

Example 1. Consider a room temperature time series T1 and an air pressure time series T2 in

Figure 3.4 and consider the TSA(‘Ccorr(T1, T2, 60)’, T1, T2) where ‘Ccorr(T1, T2, 60)’ refers to

the 60-seconds cross-correlation of T1 and T2 (see definition in Table 3.5) along with an error

budget 0.005. Both T1 and T2 have 600 data points at 1-second resolution and are segmented by

variable length segmentation methods and compressed by PLR (1-degree polynomial functions).

The precise answer is 0.303 which can be obtained by accessing the 1200 (600 × 2) original

data points. Instead of accessing the 1200 original data points, Plato accesses the segment

trees in a top-down way. Assume Plato now is accessing the nodes with grey background

2We focus on aggregation queries whose results are single scalar values, so the approximate answers are also
scalar values.
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Figure 3.2. Plato’s approximate querying

Figure 3.3. Compressed time series segment tree structure.

colors (the corresponding segments are visualized in the right side). 3 Plato produces the

approximate answer 0.300 (error is 0.003) by using just the function parameters (−0.072, 69.38),

(−0.002, 65.77) for T1 and (−0.046, 37.23), (−0.038, 38.04) for T2. 4

The well-known downside of approximate querying is that errors are introduced. When

the example’s user receives the approximate answer 0.300 she cannot tell how far this answer

is from the true answer, i.e., the precise answer. The novelty of Plato is the provision of tight

(i.e., lower bound) deterministic error guarantees for the answers, even when the time series
3How to access the nodes in the segment trees will be fully described in Chapter 3.5.
4Due to reasons relating to computation efficiency, as explained in Chapter 3.4.3.2, Plato does not actually store

the parameters (−0.072, 69.38), (−0.002, 65.77) and (−0.046, 37.23), (−0.038, 38.04) in their standard basis but
rather it stores coefficients in an orthonormal basis.

49



Figure 3.4. Example navigation tree.

expressions combine multiple series. In Example 1, Plato guarantees that the true answer is

within ±0.0032 of the approximate answer 0.300 with 100% confidence. The error guarantee

0.0032 is no greater than the given error budget 0.005. (Indeed, the true answer 0.303 is within

±0.0032 of 0.300.) It produces these guarantees by utilizing error measures associated with

each segment.

Scope of Queries and Error Guarantees. Plato supports the time series analytic ex-

pressions formally defined in Table 3.4 (Chapter 3.2).They are composed of vector operators

(+, −, ×, Shift), arithmetic operators, the aggregation operator Sum that turns its input vec-

tor into a scalar, and the Constant operator that turns its input scalar into a vector. As such,

Plato queries can express not only statistics that involve one time series (eg, average, variance,

and n-th moment) but also statistics that involve multiple time series, such as correlation and

cross-correlation.

The error guarantee framework is also general. It allows efficient error guarantee compu-

tation for all possible estimation function families, as long as the error measures of Table 3.1 are

computed in advance. 5 Figure 3.4 shows the error measures Φ (in blue) for each segment of the

5We will show that in certain cases one or two measures suffice.
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Table 3.1. Error measures stored for a time series segment T running from a to b and
approximated with the estimation function f ∗T .

Error measures Comments

‖εT‖2 =
√∑b

i=a(T [i]− f ∗T (i))2 L2-norm of the estimation errors

‖fT‖2 =
√∑b

i=a(f
∗
T (i))2 L2-norm of the estimated values

rεT = |
∑b

i=a T [i]−
∑b

i=a f
∗
T (i)| Absolute reconstruction error

example. With the help of the error measures, no matter whether a time series is compressed by

trigonometric functions or polynomial functions or some other family, Plato is able to give tight

deterministic error guarantees for queries involving the compressed time series.

Function Family Groups Producing Practical Error Guarantees. Plato produces

tight error guarantees, for any function family that may have been used in the compression. In

addition, our theoretical and experimental analysis identifies which families lead to high quality

guarantees.

The formulas of Table 3.2 and Table 3.3 provide error guarantees for characteristic,

simple expressions and exhibit the difference in guarantee quality. Any other expression, e.g.,

the statistics of Table 3.5, are also given error guarantees by composing the error measures and

guarantees of their subexpressions (as shown in the paper) and the same quality characterizations

apply to them inductively.

This is how to interpret the results of Table 3.2 and Table 3.3: Three function family

groups have been identified: (1) The Linear Scalable Family group (LSF), (2) the Vector Space

(VS), which includes the LSF and (3) ANY, which, according to its name, includes everything.

Given the function family F used in the compression, we first categorize F in one of LSF or

VS/LSF (i.e., VS excluding LSF) or ANY/VS. For example, if F is the 2-degree polynomials,

then F belongs to LSF. See Figure 3.5 for other examples. Next, we consider whether the

segments of the involved compressed time series are aligned or misaligned and finally we look at

the error guarantee formula for the expression.

The specifics of interpreting the table’s results and the specifics of their efficient compu-
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Table 3.2. Error guarantees for the time series analytic (TSA) Sum(T1 � T2) where
� ∈ {×,+,−} on aligned time series compressed by estimation functions in different families.

function error guarantees on
AI Tight

family aligned time series

Sum(T1× T2)

ANY\VS

k∑
i=1

(
‖εT i1‖2 × ‖εT i2‖2

)
7 3

+
k∑
i=1

(
‖εT i1‖2 × ‖fT i2‖2

)
+

k∑
i=1

(
‖εT i2‖2 × ‖fT i1‖2

)
VS\LSF

k∑
i=1

(
‖εT i1‖2 × ‖fT i2‖2

)
3 3

LSF

Sum(T1 + T2)

ANY
k∑
i=1

(rε
T i1

+ rε
T i2

) 3 3

Sum(T1− T2)

tation require the detailed discussion of the paper. (Eg, the summation index OPT corresponds

to the optimal segment combination (Chapter 3.4.3.1.) Nevertheless, a clear and general high

level lesson about the practicality of the error guarantees emerges from the table’s summary:

Some function families allow for much higher quality error guarantees than other function

families. The typical characteristic of “higher quality” is Amplitude Independence (AI). If an

error guarantee is AI, then it is not influenced by the ‖fT‖2 measure, i.e., it is not affected by the

amplitude of the values of the estimation functions and, thus, it is not affected from the amplitude

of the original data. An AI error guarantee is only affected by the reconstruction errors caused

by the estimation functions, which intuitively implies that AI error guarantees are close to the

actual error.

These guarantees are tight in the following sense. Given (a) the function family catego-

rization into LSF, VS/LSF or ANY/VS and (b) segments with the error measures of Table 3.1,

the formula provided by Table 3.2 and Table 3.3 produces an error guarantee that is as small as
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Table 3.3. Error guarantees for the time series analytic (TSA) Sum(T1 � T2) where
� ∈ {×,+,−} on misaligned time series compressed by estimation functions in different

families. OPT (LT1 , LT2) is the optimal segment combination returned by the algorithm OS in
Chapter 3.4.3.1

function error guarantees on
AI Tight

family misaligned time series

Sum(T1× T2)

ANY\VS

∑k1
i=1

(
‖εT i1‖2 × (

∑
j∈Π

T2,[a
i
1,b
i
1]
‖fT j2 ‖

2
2)

1
2

)
7 3+

∑k2
i=1

(
‖εT i2‖2 × (

∑
j∈Π

T1,[a
i
2,b
i
2]
‖fT j1 ‖

2
2)

1
2

)
+

∑
[a,b]∈OPT (LT1 ,LT2 )

((∑
i∈ΠT1,[a,b]

‖εT i1‖
2
2

) 1
2

VS\LSF ×
(∑

i∈ΠT2,[a,b]
‖εT i2‖

2
2

) 1
2

)

LSF

∑k1
i=1

(
‖εT i1‖2 × ‖fT2|[ai

1,b
i
1]
− f∗

T i
1
‖2

)
3

3
+
∑k2

i=1

(
‖εT i2‖2 × ‖fT1|[ai

2,b
i
2]
− f∗

T i
2
‖2

)
+

∑
[a,b]∈OPT (LT1 ,LT2 )

((∑
i∈ΠT1,[a,b]

‖εT i1‖
2
2

) 1
2

×
(∑

i∈ΠT2,[a,b]
‖εT i2‖

2
2

) 1
2

)
Sum(T1 + T2)

ANY
k1∑
i=1

rε
T i1

+
k2∑
j=1

rε
T j2

3 3

Sum(T1− T2)

possible. That is, for this superfamily and for the given error measures, any attempt to create a

better (i.e., smaller) error guarantee will fail because there are provably time series and at least

one time series analytics expression where the true error is exactly as large as the error guarantee.

The experimental results, where we tried data sets with different characteristics and

different compression methods, verified the above intuition: AI error guarantees were order(s) of

magnitude smaller than their amplitude dependent counterparts. Indeed, AI ones over variable-

length compressions were invariably small enough to be practically meaningful, while non-AI

guarantees were too large to be practically useful.

Particularly interesting are the analytics that combine multiple vectors, such as correlation

and cross-correlation, by vector multiplication. Then the amplitude independence of the error

guarantees does not apply generally. Rather the dichotomy illustrated in Figure 3.6 emerges:
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Figure 3.5. Function family groups and examples.

Figure 3.6. Function family groups and resulting guarantees

(i) for compressions with aligned time series segments, the error guarantee is AI when the

used function family forms a Vector Space (VS) in the conventional sense [36]; and (ii) for

compressions with misaligned time series segments, which are the more common case, choosing

a VS family is not enough for AI guarantees. The family must be a Linear Scalable Family

(LSF), which is a property that we define in this paper (Chapter 3.3.1.1).

The contributions are summarized as follows.

• We deliver tight deterministic error guarantees for a wide class of analytics over compressed

time series. The key challenge is analytics (e.g., correlation and cross-correlation) that

combine multiple time series but it is not known in advance which time series may be

combined. Thus, each time series has been compressed individually, much before a query

arrives. The reconstruction errors of the individual time series’ compressions cannot provide,

by themselves, decent guarantees for queries that multiply time series. To make the problem

harder, time series segmentations are generally misaligned.6

6Misalignment happens because the most effective compressions use variable length segmentations. But even if
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• The provided guarantees apply regardless of the specifics of the segmentation and estimation

function family used during the compression, thus making the provided deterministic error

guarantees applicable to any prior work on segment-based compression (eg, variable-sized

histograms etc). The only requirement is the common assumption that the estimation function

minimizes the Euclidean distance between the actual values and the estimates.

• We identify broad estimation function family groups (namely, the already defined Vector

Space family and the presently defined Linear Scalable Family) that lead to theoretically and

practically high quality guarantees. The theoretical aspect of high quality is crisply captured by

the Amplitude Independence (AI) property. Furthermore, the error guarantees are computed

very efficiently, in time proportional to the number of segments.

• The results broadly apply to analytics involving composition of the typical operators, which is

powerful enough to express common statistics, such as variance, correlation, cross-correlation

and other in any time range.

• We propose a native compressed segment tree structure and a top-down tree navigation

algorithm to support analytic queries with error/time budgets. In addition, we propose an

incremental estimation function computation method to significantly improve the tree building

performance and also an incremental error guarantee computation optimization to improve the

error guarantee computation performance.

• We conduct an extensive empirical evaluation on four real-life datasets to evaluate the error

guarantees provided by Plato and the importance of the VS and LSF properties on error

estimation. The results show that the AI error guarantees are very narrow - thus, practical.

Furthermore, we compare to sampling-based approximation and show experimentally that

Plato delivers deterministic (100% confidence) error guarantees using fewer data than it takes

to produce probabilistic error guarantees with 95% and 99% confidence via sampling.

the segmentations were fixed length, queries such as cross-correlation and cross-auto-correlation time shift one of
their time series, thus producing misalignment with the second time series.
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Table 3.4. Grammar of time series analytic (TSA). Let T1 = (a1, b1, [T1[a1], ...,T1[b1]]) and
T2 = (a2, b2, [T2[a2], ...,T2[b2]]) be the input time series in the time series expressions,

a = max(a1, a2) and b = min(b1, b2)

Time Series Analytic (TSA)
Q → Ar

Arithmetic Expression (Ar)
Ar → literal value in R

— Ar ⊗ Ar where ⊗ ∈ {+,−,×,÷,√ }
— Agg

Aggregation Expression (Agg)
Agg → Sum(T , a′, b′)

∑b′

i=a′ T [i], where [a′, b′] ⊆ [a, b]

Time Series Expression (TSE)
T → input time series

— Serialize(υ, a, b) (a, b, [υ, υ, ..., υ︸ ︷︷ ︸
b−a+1

])

— Shift(T , k) (a+ k, b+ k, [T [a], ...,T [b]])

— T1 + T2 (a, b, [T1[a] + T2[a], ...,T1[b] + T2[b]])

— T1− T2 (a, b, [T1[a]− T2[a], ...,T1[b]− T2[b]])

— T1× T2 (a, b, [T1[a]× T2[a], ...,T1[b]× T2[b]])

3.2 Time Series and Expressions

Time Series. A time series T = (a, b, [T [a],T [a + 1], ...,T [b]]), a ∈ N , b ∈ N , is

a sequence of data points [T [a],T [a + 1], ...,T [b]] observed from start time a to end time b

(a, b ∈ N ). Following the assumptions in [69, 20, 98] we assume that time is discrete and the

resolution of any two time series is the same. Equivalently, we say T is fully defined in the

integer time domain [a, b]. We assume a domain [1, n] is the global domain meaning that all the

time series are defined within subsets of this domain. When the domain of a time series T is

implied by the context, then T can be simplified as T = [T [a],T [a+ 1], ...,T [b]].

Example 2. Assume the global domain is [1, 100]. Consider two time series T1 = (1, 5, [61.52,

59.54, 58.64, 59.36, 60.44]) and T2 = (3, 6, [1.02, 1.03, 1.02, 1.02]). Then T1 and T2 are fully

defined in domains [1,5] and [3,6] respectively. T2[4] = 1.03 refers to the 2nd data point of T2
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Table 3.5. Example TSA’s for common statistics. Let T1 = (a1, b1, [· · · ]) and
T2 = (a2, b2, [· · · ]) be the input time series in the time series analytic

TSA Expression Equivalent TSA Expression Usage of error
measures

Average µT1

‘µ(T1)’
1

b1 − a1 + 1
(Sum(T1)) rεT1

Standard
Deviation σT1

‘σ(T1)’

√
1

b1−a1+1 × Sum(T1 − Serialize(µT1)) rεT1

Correlation
r(T1,T2)

‘Corr(T1,T2)’

Sum
(

(T1 − Serialize(µT1))× (T2 − Serialize(µT2))
)

σT1 × σT2

‖εT1
‖2,‖fT1

‖2,rεT1
,

‖εT2
‖2,‖fT2

‖2,rεT2

Cross-correlation
r(T1,T2,m)

‘CCorr(T1,T2,m)’

Sum
(

(T1 − Serialize(µT1))× (Shift(T2,m)− Serialize(µT2))
)

σT1 × σT2

‖εT1
‖2,‖fT1

‖2,rεT1
,

‖εT2
‖2,‖fT2

‖2,rεT2

Auto-correlation
r(T1,m)

‘ACorr(T1,m)’

Sum
(

(T1 − Serialize(µT1
))× (Shift(T1,m)− Serialize(µT1

))
)

σT1
× σT1

‖εT1‖2,‖fT1‖2,rεT1

at the 4-th position in the global domain.

Time Series Analytic (TSA) Expressions. Table 3.4 shows the formal definition of

the time series analytic (called TSA). The TSAs supported are expressions composed of linear

algebra operators and arithmetic operators. Typically, the TSA has subexpressions that compose

one or more linear algebra operators over multiple time series vectors as defined below.

• Given a numeric value υ and two integers a and b, Serialize(υ, a, b) = (a, b, [υ, ..., υ]). For

example, Serialize(1.6, 3, 5) produces (3, 5, [1.6, 1.6, 1.6]).

• Given a time series T = (a, b, [T [a], ...,T [b]]) and an integer value k, Shift(T , k)=(a+ k, b+

k, [T [a], ...,T [b]]). Notice Shift(T , k)[i+ k] = T [i] for all a ≤ i ≤ b. Figure 3.7(a) visualizes

the Shift operator. Consider the time series T = (1, 3, [1.8, 1.6, 1.6]), then Shift(T , 6) is (7, 9,

[1.8, 1.6, 1.6]).

• Given two time series T1 = (a1, b1, [T1[a1], ...,T1[b1]]) and T2 = (a2, b2, [T2[a2], ...,T2[b2]]),

T1×T2 = (a, b, [T1[a]×T2[a], ...,T1[b]×T2[b]]) where a = max(a1, a2) and b = min(b1, b2). 7

7Setting a = max(a1, a2) and b = min(b1, b2) ensures all the data points in T1 × T2 are defined.
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Figure 3.7. Time series Shift and Restriction operators.

For example, given T1 = (1, 2, [3.3, 3.5]) and T2 = (1, 2, [1.0, 1.2]) then T1 × T2 =

(1, 2, [3.3, 4.2]). Similarly, we define T1 + T2 and T1− T2.

A time series analytic (TSA) is an arithmetic expression of the form Arr1 ⊗ Arr2 ⊗

. . . Arrn, where ⊗ are the standard arithmetic operators (+,−,×,÷,√ ) and Arri is either an

arithmetic literal or an aggregation over a time series expression. An aggregation expression

Sum(T , a′, b′) computes the summation of the data points of T in the domain [a′, b′], i.e.,

Sum(T , a′, b′)=
∑b′

i=a′ T [i] where T can be an input time series or a derived time series computed

by time series expressions (TSEs). 8 When the bounds of a′ and b′ are implied from the context,

we simplify Sum(T , a′, b′) to Sum(T ).

3.3 Internal, Compressed Time Series Segment Tree

When a user inserts a time series into the database, Plato physically stores the compressed

time series segment tree (called STree) instead of the raw time series. More precisely, the user

provides (i) a time series T , (ii) the maximal error bound θ, which restricts the maximal error

produced in each segment, and (iii) the identifier of a function family, which is selected from a

list provided by Plato. Internally, Plato calls the tree building algorithm to build an STree for T .

Each node stores a compressed segment representation T̃ i = (a, b, f̃ ∗T ,Φ(T )) of the segment T ,

where a is the start position, b is the end position, f̃ ∗T is the function representation of f ∗T , where

f ∗T is the estimation function chosen from the identified function family and Φ(T ) is a set of (one

to three depending on the function family) error measures.

8Note that, when the time series expressions involve time shifting, we assume that the aggregation will only
operator in the valid data points, that is the data points in the defined range.
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Overall, for a time series T , Plato physically stores (i) a compressed segment tree, and

(ii) one token (which can simply be an integer) as the function family identifier.

Next, we introduce the structure of STree in Chapter 3.3.1. Then we present the segment

tree building algorithm in Chapter 3.3.2.

3.3.1 Compressed Segment Tree Structure

Plato builds one compressed segment tree structure (STree) for each time series. STree

has the following properties:

• Each node in an STree logically represents a time series segment T and physically stores the

compressed segment representation T̃ i = (a, b, f̃ ∗T ,Φ(T )), where a is the start position, b is

the end position, f̃ ∗T is the function representation of f ∗T , where f ∗T is the estimation function

chosen from the identified function family and Φ(T ) is a set of (one to three depending on the

function family) error measures.

• An STree may not be a balanced tree. Some segments of a time series may be relatively smooth

and well behaved. Such segments can be easily compressed with very little estimation error.

On the other hand, some segments may be quite ill-behaved. These segments require us to

partition the data into several sub-segments in order to reduce the estimation error. Motivated

by the above observations, STree uses more nodes on the ill-behaved segments while fewer

nodes on the well-behaved segments, which leads to an unbalanced tree structure.

Figure 3.3 provides an example of an STree constructed with 1-degree polynomial

estimation functions.

In the following, we introduce the estimation function selection (Chapter 3.3.1.1) and

error measures computation (Chapter 3.3.1.2).

3.3.1.1 Estimation Function Selection

Choosing an estimation function for a time series segment has two steps: (i) user identifies

the function family, and (ii) Plato selects the best function in the family, i.e., the function that
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Table 3.6. Example function family identifiers

τ Expression Comment

pi {
∑i

i=0 aix
i|ai ∈ R} i-degree Polynomial

g {a exp(−(x−b)2
2c2

) + d|a, b, c, d ∈ R} Gaussian
l { L

1+exp(ax+b)
+ c|L, a, b ∈ R} Logistic

minimizes the Euclidean distance between the original values and the estimated values produced

by the function.

Step 1: Function family selection. Table 3.6 gives example function family identifiers,

which the user may select, and the corresponding function expressions. For example, τ=“p2”

means that the chosen function family is the “second-degree polynomial function family” and

the corresponding function family expression is {ax2 + bx+ c|a, b, c ∈ R}.

Step 2: Estimation function selection. Any function f in the chosen function family F

is a candidate estimation function. Following the prior work [60, 6], Plato selects the candidate

estimation function that minimizes the Euclidean distance between the original values and the

estimated values produced by the function to be the final estimation function. More precisely,

f ∗T = arg min
f∈F

( b∑
i=a

(T [i]− f(i))2
)1/2

(3.1)

Example 3. Given a time series T = (1, 5, [0.2, 0.4, 0.4, 0.5, 0.6]), assume the function family

identifier is “p1” (i.e., “first-degree polynomial function family”). Functions f1 = 0.05× i+ 0.3

and f2 = 0.09 × i + 0.15 are two candidate estimation functions. Finally, Plato selects

f2 = 0.09× i+ 0.15 as the estimation function since it produces the minimal Euclidean error,

i.e., 0.0837.

Function Representation (Physical) vs. Function (Logical). Once an estimation func-

tion f ∗T is selected, Plato stores the corresponding function representation f̃ ∗T , which includes (i)

the coefficients of the function f ∗T , and (ii) the function family identifier τ . 9 For example, the

9All the segments in the same time series share one token τ .
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function representation of the estimation function in Example 3 is f̃ ∗T = ((0.09, 0.15) , p1) where

p1 is a function family identifier indicating that the function family is “1-degree polynomial

function family”.

When we talk about the function itself logically, it can be regarded as a vector that maps

time series: given a domain [a, b], the vector [f(a), f(a + 1), . . . , f(b)] maps a value to each

position in the domain [a, b]. For example, consider the estimation function f ∗T = 0.09× i+ 0.15

in Example 3. Then T −f ∗T = [0.2−f ∗T (1), 0.4−f ∗T (2), 0.4−f ∗T (3), 0.5−f ∗T (4), 0.6−f ∗T (5)] =

[0.2− 0.24, 0.4− 0.33, 0.4− 0.42, 0.5− 0.51, 0.6− 0.6] = [0.04, 0.07,−0.02,−0.01, 0].

Coefficients in an orthonormal basis. For a finite vector space (including the LSF), we

physically store the coefficients of the estimation function in an orthonormal basis. The benefit

of using coefficients in an orthonormal basis is that it supports fast computation of L2-norm of

the estimation functions, which is important in providing error guarantees for queries involving

misaligned time series.

Let (ϕT1 , ..., ϕ
T
dim(FT )) be an orthonormal basis of F for the scalar product 〈f1, f2〉 =∑b

i=a f1(i) × f2(i), where dim(F) is the dimension of FT . For example, if F is 1-degree

polynomial function family, then F = 2. Notice dim(F) is much smaller than |T |, otherwise the

original data points can be directly stored instead of using functions. Such orthonormal basis

can be computed by using Gram-Schmidt process [9]. Example 4 shows (i) how to compute

the orthonormal basis, and (ii) how to transform coefficients from the standard basis to the

orthonormal basis. Notice that, the complexities of step (i) and (ii) are O(dim(F)).

Example 4 (Orthonormal basis). Consider the 1-degree polynomial function family and a domain

[1,m+1], then the standard basis is [~v1, ~v2] = [~1, ~X]. Based on the GramSchmidt process, [~v1, ~v2]

can be converted to orthogonal vectors [ ~u1, ~u2] as follows:

~u1 = ~v1 = ~1

~u2 = ~v2 −
〈 ~u1, ~v2〉
〈 ~u1, ~u1〉

~u1 = ~X − 〈
~1, ~X〉
〈~1,~1〉

~1 = ~X − m+ 1

2
~1
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Then [ ~u1, ~u2] can be normalized to orthonormal basis [φ1, φ2] as follows:

φ1 =
~u1

‖ ~u1‖
=

~1

‖~1‖
=

~1√
m+ 1

φ2 =
~u2

‖ ~u2‖
=

~X − m+1
2
~1

‖ ~X − m+1
2
~1‖

=
~X − m+1

2
~1√

m+1
12

((m+ 1)2 − 1)

Consider the time series segment T |[1,9] with an estimation function f ∗T = 1.2 + 0.1x.

The coefficients in the standard basis are as follows:

c0

c1

 =

1.2

0.1


In order to obtain the corresponding coefficients [c′0, c

′
1] in the orthonormal basis, we

first need to compute a change-of-basis matrix M mapping the standard basis to the orthonormal

basis. The M can be computed from the following two equations.

~1 = a0φ0 + a1φ1

~x = b0φ0 + b1φ1

From here we derive the change-of-basis matrix M :

M =

a0 b0

a1 b1

 =

√n
√
n(n+1)

2

0
√

n
12

(n2 − 1)


In this example, we have n = 9, so the final M is:

M =

3 6

0
√
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Then the coefficients [c′0, c
′
1] in orthonomal basis can be derived in the following formula:

c′0
c′1

 = M

c0

c1

 =

3 6

0
√

60


1.2

0.1

 =

 4.2

0.2
√

15


Notice that, the coefficients [c′0, c

′
1] in orthonomal basis can be converted back to the [c0, c1] in

the standard basis by computing

c0

c1

 = M−1

c′0
c′1


3.3.1.2 Error Measures

In addition to the estimation function, Plato stores extra error measures Φ(T ) =

{‖εT‖2, ‖fT‖2, r
ε
T} for each time series segment T (defined in domain [a, b]) where ‖εT‖2,

‖fT‖2, and rεT are defined in Table 3.1.

Example 5. Consider the time series T = (1, 5, [0.2, 0.4, 0.4, 0.5, 0.6]) in Example 3 again.

f ∗T = 0.09×i+0.15 is the estimation function. Thus ‖εT‖2 =
√∑5

i=1(T [i]− f ∗T (i))2 = 0.0837,

‖fT‖2 =
√∑5

i=1(f ∗T (i))2 = 0.9813, and rεT = |
∑5

i=1 T [i]−
∑5

i=1 f
∗
T (i)| = 2.1− 2.1 = 0.

Elimination of rεT . We will see in Lemma 9 (Chapter 3.4.2.1) that if the selected function

family forms a vector space, then rεT is guaranteed to be 0. Then we can avoid storing it.

3.3.2 Compressed Segment Tree Building Algorithm

We first introduce the segment tree building algorithm STreeBuilder in Chapter 3.3.2.1,

then we improve the performance of STreeBuilder by applying the optimization of the incremental

estimation function computation (Chapter 3.3.2.2).
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Algorithm: STreeBuilder
Input: Time series T with domain [a, b] and maximal error bound θ
Output: STree root

1 f ∗T ← ComputeEstimationFunction(T );
2 root←CreateNode(f ∗T , T );
3 ε←ComputeError(f ∗T , T );
4 if ε > θ then
5 p←FindBestPosition(T );
6 (root→ left)←STreeBuilder(T |[a,p], θ);
7 (root→ right)←STreeBuilder(T |[p+1,b], θ);

8 Return root;

3.3.2.1 Top-down Building Algorithm

The segment tree building algorithm STreeBuilder takes a time series T and a maximal

error bound θ as input and outputs a compressed segment tree structure STree. STreeBuilder is a

top-down building algorithm, which works as follows:

1. STreeBuilder first compresses time series T using the best fitting estimation function f ∗T (line

1). Then it creates the root node for T (line 2) and calculates the estimation error ε (line 3).

2. If ε is greater than the given error bound θ (line 4), then it finds the best cutting position p

(line 5), and recursively calls STreeBuilder to build the left subtree for T |[a,p] (line 6) and the

right subtree for T |[p+1,b] (line 7). Otherwise, it outputs root (line 8).

Figure 3.3 is an example STree built by the STreeBuilder algorithm.

Best Cutting Position Selection. Basically, the best cutting position p is the position

leading to the minimum total estimation errors. Consider a time series segment T |[a,b], then

point p ∈ [a, b] is the best cutting position if @c ∈ [a, b] s.t. (‖εT |[a,c]‖2 + ‖εT |[c+1,b]
‖2) <

(‖εT |[a,p]‖2 + ‖εT |[p+1,b]
‖2).

Let N be the number of data points in time series segment T . The function FindBest-

Position 10 needs to compute 2N estimation functions in order to find the best cutting position.

10The complexity of STreeBuilder algorithm is dominated by the function FindBestPosition.
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And the cost of each computation of estimation function is O(N). Therefore, the total time

complexity of function FindBestPosition is O(N2).

3.3.2.2 Incremental Building Algorithm

Recall that the complexity of function FindBestPosition is O(N2) due to the fact that we

need to compute the estimation function by using all the data points in the segment, which is

time-consuming. For example, building an STree for a time series with 1 million data points by

Algorithm takes more than 10 hours.

In order to improve the performance, we employ an incremental estimation function

computation optimization, which can reduce the complexity of function FindBestPosition from

O(N2) to O(N ×dim(F)). The main idea of the incremental estimation function computation is

that we can compute the estimation function of T[1,m+1] without performing the entire regression

process over all the data points from 1 to m+ 1, but just by reusing the estimation function of

T |[1,m]. More precisely, f ∗T |[1,m+1]
is computed as follows:

f ∗T |[1,m+1]
= f ∗T |[1,m]

+ ∆f

where ∆f can be computed in O(dim(F )), which will be introduced next.

Before jumping deeper into the incremental update optimization, we highlight the power

of the optimization here: with the optimized algorithm, the segment index building algorithm

can achieve two-orders of magnitudes speedup. For example, building the STree for the time

series with 1 million data points now takes less than 1 minutes.

Computation of ∆f . The key challenge of the incremental update optimization is to compute

∆f in O(dim(F )). We employ the orthonormal basis to achieve this goal. More precisely, ∆f

can be calculated as follows:

∆f =

dim(F )∑
i=1

∆ciφ
[m+1]
i =

dim(F )∑
i=1

(T [m+ 1]− f ∗T (m+ 1))(φ
[m+1]
i (m+ 1))φ

[m+1]
i
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where φi is the i-th vector in the orthonormal basis respect to the inner product space, which can

be converted from the normal basis via the GramSchmidt process [9] in O(dim(F )).

Example 6 shows how to compute ∆f in O(dim(F)) with the help of the orthonormal

basis.

Example 6 (Computation of ∆f ). Assume the function family is chosen to be the 1-degree

polynomial function family, consider a segment T |[1,8] with an estimation function f ∗T = 0.1x+1.2,

then the estimation function of the segment T ′ = T |[1,9] with one new data point T [9] = 2.6 can

be computed as f ∗T ′ = f ∗T + ∆f = (0.1x+ 1.2) + ∆f . To compute ∆f , we have:

∆f =
2∑
i=1

ciφ
[9]
i =

2∑
i=1

(T [9]− f ∗T (9))(φ
[9]
i (9))φ

[9]
i

= (2.6− 2.1)× φ[9]
1 (9)× φ[9]

1 + (2.6− 2.1)× φ[9]
2 (9)× φ[9]

2

=
1

2
× 1

3
×
~1

3
+

1

2
× 2√

15
×

~X − 9
2
~1

√
60

=
~X

30
−

~1

8
√

15

Finally, f ∗T ′ = f ∗T + ∆f = (0.1x+ 1.2) + ∆f = (0.1 + 1
30

)x+ (1.2− 1
8
√

15
).

3.4 Error Guarantee Computation on Compressed Segment
Lists

Before directly jumping into computing the error guarantees on compressed segment

trees, in this chapter, we first introduce the simpler case, i.e., computing the error guarantees

on compressed segment lists, which serves as the fundamental operation in computing error

guarantees on compressed segment trees.

Error Guarantee Definition. Given a TSA q involving time series T1, .., Tn, let R be

the accurate answer of q by executing q directly on the original data points of T1, .., Tn. Let R̂ be

the approximate answer of q by executing q on the compressed time series representations. Then
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ε = |R̂−R| is the true error of q. Notice that ε is unknown sinceR is unknown. An upper bound

ε̂ (ε̂ ≥ ε) of the true error is called a deterministic error guarantee of q. With the help of ε̂, we

know that the accurate answer R is within the range [R̂− ε̂, R̂+ ε̂] with 100% confidence. Plato

provides tight deterministic error guarantees for time series expressions defined in Table 3.4

(Chapter 3.2).

Error Guarantee Decomposition. Recall that the time series analytic q defined in

Table 3.4 (Chapter 3.2) combines one or more time series aggregation operations via arithmetic

operators, i.e., q = Agg1⊗Agg2⊗· · ·⊗Aggn where⊗ ∈ {+,−,×,÷,√ }. In order to provide

the deterministic error guarantee ε̂ of the time series analytic q, the key step is to calculate the

deterministic error guarantee ε̂Aggi of each aggregation operation Aggi. Once we have ε̂Aggi for

each aggregate expression, it is not hard to combine them to get the final error guarantee. For

arithmetic operator Ar1 ⊗ Ar2 where ⊗{+,−,×,÷}. If both Ar1 and Ar2 are scalar values,

the Plato gives accurate answers. Then we discuss in the following two cases: (i) Ar1 or Ar2

is an aggregation result produced by Plato, and (ii) both Ar1 and Ar2 are aggregation results

produced by Plato.

• Case 1. Without loss of generality, we assume Ar1 is an aggregation operator and Ar2 is

a scalar value. Let R̂ be the approximate answer provided by Plato for Ar1 and ε̂ is the

corresponding error guarantee. The approximate answer and the error guarantee of Ar1⊗ Ar2

is summarized in Table 3.7.

• Case 2. Both Ar1 and Ar2 are aggregation operators. Let R̂1 (resp. R̂2) and ε̂1 (resp. ε̂2) be

the approximate answer and error guarantee provided by Plato for Ar1 and Ar2 respectively.

The approximate answer and the error guarantee of Ar1 ⊗ Ar2 is summarized in Table 3.8.

Given a TSA Agg = Sum(T ) and the compressed time series representation LT =

{T̃ 1, ..., T̃ k}. When calculating ε̂Agg, there are two cases depending on whether T is an input

time series or not. 11

11If a time series is generated by applying some time series operators, then it is not a base time series. For
example, T = T1 × T2, then T is not a base time series.
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Table 3.7. Error guarantee propagation in case 1

Operator approximate answer error guarantee
Ar1 + Ar2 R̂ + Ar2 ε̂

Ar1 − Ar2 R̂− Ar2 ε̂

Ar1 × Ar2 R̂× Ar2 ε̂× Ar2

Ar1 ÷ Ar2 R̂÷ Ar2 ε̂÷ Ar2

Table 3.8. Error guarantee propagation in case 2

Operator approximate answer error guarantee
Ar1 + Ar2 R̂1 + R̂2 ε̂1 + ε̂2

Ar1 − Ar2 R̂1 − R̂2 ε̂1 + ε̂2

Ar1 × Ar2 R̂1 × R̂2 ε̂1R̂2 + ε̂2R̂1 + R̂1R̂2

Ar1 ÷ Ar2 R̂1 ÷ R̂2
(ε̂1R̂2 + ε̂2R̂1)

(R̂2 − ε̂2)R̂2

• Case 1. T is an input time series, then ε̂Agg =
∑k

i=1 r
ε
T i where rεT i is the reconstruction error

in the error measures of T i. 12

• Case 2. T is a derived time series by applying the time series operators (recursively), Se-

rialize(υ, a, b), Shift(T , k), T1 + T2, T1 − T2 and T1 × T2. In this case, the aggregation

operator Agg = Sum(T ) can be depicted as a tree. Figure 3.8 shows an example tree of the

aggregation operator in the “correlation TSA” (Error measures in black color are precomputed

offline during insertion time, while error measures in blue color are computed during the TSA

processing time. The final error guarantees are in red color.). In order to compute ε̂Agg, we

first calculate the error measures Φ(T ) = (‖εT‖2, ‖fT‖2, r
ε
T ) for the root time series in the

tree by propagating the error measures from the bottom time series to the root. Then we return

the rεT in the Φ(T ) as the final error guarantee.

Next, we focus on computing the error measures for derived time series. We first explain

the simpler case where each time series is a single segment. Table 3.9 shows the formulas for

computing error measures for derived time series in this case. For the general scenario where
12Here we assume the aggregation operator aggregates the whole time series.
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Figure 3.8. Example of error measures propagation.

Figure 3.9. Example of aligned segments and misaligned segments.

multiple segments are involved in each input time series in the expression, there are two cases

depending on whether the segments are aligned or not: If the i-th segment in T1 has the same

domain with the i-th segment in T2 for all i, then T1 and T2 are aligned, otherwise, they are

misaligned.

The computation of error guarantees of other expressions (i.e., Serialize(υ, a, b), Shift(T , k),

T1 + T2 and T1− T2) is presented in Chapter 3.4.1.

3.4.1 Error Guarantees of Other Expressions

In this part, we present the error guarantees for the other core expressions, i.e., (i)

Sum(Serialize(v, a, b)), (ii) Sum(Shift(T, k)), (iii) Sum(T1 + T2), and (iv) Sum(T1 − T2).
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Table 3.9. Error measures propagation. rεT=T1×T2
has two possible computation methods. If the

estimation function family forms a vector space, then we use the one in the grey background.

Generated Error Measures
‖εT‖2 ‖fT‖2 rεT

T = T1 + T2 ‖εT1‖2 + ‖εT2‖2 ‖fT1‖2 + ‖fT2‖2 rεT1 + rεT2
T = T1− T2 ‖εT1‖2 + ‖εT2‖2 ‖fT1‖2 + ‖fT2‖2 rεT1 + rεT2

T = T1× T2

‖εT1‖2‖εT2‖2

‖fT1‖2‖fT2‖2

‖εT1‖2‖εT2‖2

+‖εT1‖2‖fT2‖2 ‖εT1‖2‖εT2‖2

+‖εT2‖2‖fT2‖2 +‖εT1‖2‖fT2‖2

+‖εT2‖2‖fT2‖2

Error guarantee of Sum(Serialize(v, a, b)). For the time series T=Serialize(υ, a, b),

the estimation function is f ∗T = υ 13, then the error measures stored by Plato are (‖εT‖2 = 0,

‖fT‖2 = υ
√
b− a+ 1, rεT = 0). The error guarantee of Sum(Serialize(v, a, b)) is rεT = 0.

Error guarantee of Sum(Shift(T, k)). For the time series T=Shift(T, k), we need to

use the error measures (‖εT‖2, ‖fT‖2, rεT ) defined in domain [a + k, b + k]. Then the error

guarantee of Sum(Shift(T, k)) is rεT .

Error guarantees of Sum(T1 + T2) and Sum(T1 − T2). Given two time series T1 =

(T 1
1 , ..., T

k1
1 ) and T2 = (T 1

2 , ..., T
k2
2 ). Then the error measures of T = T1 + T2 are (‖εT‖2,

‖fT‖2, rεT ) where ‖εT‖2 =
∑k1

i ‖εT i1‖2 +
∑k2

i ‖εT i2‖2, ‖fT‖2 =
∑k1

i ‖fT i1‖2 +
∑k2

i ‖fT i2‖2, and

rεT =
∑k1

i rε
T i1

+
∑k2

i rε
T i2

. And the error guarantees of Sum(T1 +T2) is rεT =
∑k1

i rε
T i1

+
∑k2

i rε
T i2

.

The error measures of T1 − T2 are the same with those of T1 + T2.

In the following, we will show how to compute the most challenging error guarantee

ε̂Sum(T1×T2) in both aligned and misaligned cases in Chapter 3.4.2 and Chapter 3.4.3 respectively.

3.4.2 Error Guarantee on Aligned Segments

Notations. Given a time series T = (T [a], ...,T [b]) and the estimation function f ∗T of T ,

εT = T−f ∗T = (T [a]−f ∗T (a), ...,T [b]−f ∗T (b)) is the vector of errors produced by the estimation

13Under the reasonable assumption that any practical family will also include the constant function.
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function. In the following, T , f ∗T and ε are all regarded as vectors. 〈f1, f2〉 =
∑b

i=a f1(i)f2(i) is

the inner product of f1 and f2. V |[a,b] is a restriction operation, which restricts a vector V to the

domain [a,b]. Recall a time series segment is a subsequence of a time series. Thus, a segment is

the restriction of a time series T from a bigger domain [a, b] into a smaller domain [a′, b′] ⊆ [a, b],

denoted as T |[a′,b′]. Figure 3.7(b) visualizes the restriction operator. For example, consider a time

series T = (1, 4, [1.2, 1.3, 1.3, 1.2]), then T |[2,3] = (2, 3, [1.3, 1.3]) is a restriction of T . Note

that T |[a′,b′][i] = T [i] for all i ∈ [a′, b′].

Given two compressed time series representationLT1 = (T̃ 1
1 , ..., T̃

k
1 ) andLT1 = (T̃ 1

2 , ..., T̃
k
2 )

for the aligned time series T1 = (T 1
1 , ..., T

k
1 ) and T2 = (T i2, ..., T

k
2 ) where T i1 = T1|[ai,bi] and

T i2 = T2|[ai,bi]. Notice T i1 and T i2 have the same domain, i.e., [ai, bi], for all i ∈ [1, k]. For any

estimation function family, the error guarantee of Sum(T1× T2) on aligned time series is:

ε =
∣∣∣ b∑
i=a

T1[i]T2[i]−
b∑
i=a

f ∗T1(i)f
∗
T2

(i)
∣∣∣

=
∣∣∣ k∑
i=1

( bi∑
j=ai

T1[i]T2[i]−
bi∑

j=ai

f ∗T1(i)f
∗
T2

(i)
)∣∣∣

=
∣∣∣ k∑
i=1

(
〈εT i1 , f

∗
T i2
〉+ 〈εT i2 , f

∗
T i1
〉+ 〈εT i1 , εT i2〉

)∣∣∣
≤
∣∣∣ k∑
i=1

〈εT i1 , f
∗
T i2
〉
∣∣∣+
∣∣∣ k∑
i=1

〈εT i2 , f
∗
T i1
〉
∣∣∣+
∣∣∣ k∑
i=1

〈εT i1 , εT i2〉
∣∣∣

≤
k∑
i=1

(
‖εT i1‖2‖εT i2‖2 + ‖εT i1‖2‖fT i2‖2 + ‖fT i1‖2‖εT i2‖2

)
(3.2)

The last inequality is obtained by Applying the Hölder inequality [23].

Example 7. Consider the two aligned time series in Figure 3.9(a). Both T1 and T2 are partitioned

into two segments in this case, i.e., (T 1
1 , T

2
1 ) and (T 1

2 , T
2
2 ). Plato stores the error measures Φ(T ji )

for each segment T ji . For instance, Φ(T 1
1 ) = (‖εT 1

1
‖2, ‖fT 1

1
‖2, r

ε
T 1
1
) = (0.023, 0.95, 0). Then the

error guarantee of Sum(T1×T2) on T1 and T2 is computed as (‖εT 1
1
‖2‖εT 1

2
‖2 +‖εT 1

1
‖2‖fT 1

2
‖2 +

‖fT 1
1
‖2‖εT 1

2
‖2) + (‖εT 2

1
‖2‖εT 2

2
‖2 + ‖εT 2

1
‖2‖fT 2

2
‖2 + ‖fT 2

1
‖2‖εT 2

2
‖2) = (0.023× 0.009 + 0.023×
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Figure 3.10. Example of orthogonal projection. (a) shows the estimation function for three data
points. (b) visualizes the orthogonal projection of the three data points onto the 2-dimensional

plane F.

0.074 + 0.095× 0.009) + (0.035× 0.042 + 0.035× 0.068 + 0.163× 0.042) = 0.01346.

3.4.2.1 Orthogonal projection optimization

If the estimation function family forms a vector space (VS), 14 then we can apply the

orthogonal projection property in VS to significantly reduce the error guarantee of sum(T1×T2)

from Formula 3.2 to Formula 3.3.

ε =
∣∣∣ k∑
i=1

(
〈εT i1 , f

∗
T i2
〉︸ ︷︷ ︸

=0 in V S

+ 〈εT i2 , f
∗
T i1
〉︸ ︷︷ ︸

=0 in V S

+〈εT i1 , εT i2〉
)∣∣∣

≤
k∑
i=1

(
‖εT i1‖2‖εT i2‖2

)
(3.3)

Example 8. Consider the two aligned time series in Figure 3.9(a) again. The estimation function

family is polynomial function family, it is VS. Based on Formula 3, the error guarantee for

Sum(T1×T2) is ‖εT 1
1
‖2×‖εT 1

2
‖2 + ‖εT 2

1
‖2×‖εT 2

2
‖2= 0.023×0.009+0.035×0.042 = 0.001677.

This error guarantee is about 8× smaller than that in Example 7 (i.e., 0.01346), where we did

not take into account that the function family is VS.

Orthogonal projection property. Example 8 indicates the power of the orthogonal

14A vector space is a set that is closed under finite vector addition and scalar multiplication. http://mathworld.
wolfram.com/VectorSpace.html.
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projection optimization. Lemma 9 is a proof of Formula 3.3.

Lemma 9. (Orthogonal Projection Property) Let F be a function family forms a vector space

VS and f ∗T ∈ F be the estimation function of time series T . Then f ∗T is the orthogonal projection

of T onto F [72].

Lemma 9 implies that εT is orthogonal to any function fT ∈ F, which means 〈εT ,fT 〉 =

0. Therefore, given any two aligned segments T i1 and T i2, as both f ∗
T i1

and f ∗
T i2

are in VS, thus

〈εT i1 , f
∗
T i2
〉 = 0 and 〈εT i2 , f

∗
T i1
〉 = 0.

For visualization purposes, consider a time series with three data points T = (1, 3, [3.0, 4.8,

5.4]) and let F be the 1-degree polynomial function family (i.e., 2-dimensional). The estimation

function that minimizes the error to the original data is f ∗T = 1.2 × i + 2 (Figure 3.10(a)).

As shown in Figure 3.10(b), f ∗T is the orthogonal projection of T onto F. The error vector is

εT = (−0.2, 0.4,−0.2). Based on Lemma 9, for any candidate estimation function f = α×i+β

(α, β ∈ R), we have 〈εT ,f〉 = 0.8α− 0.8α + 0.4β − 0.4β = 0.

Elimination of rεT . We can get an extra benefit from the orthogonal projection property

in saving space, i.e., the error measure rεT can be avoided as it is guaranteed to be 0. This is

because rεT = 〈T − f ∗T , 1〉 and 1 is a constant function in the function family in VS. According

to Lemma 9, we know 〈T − f ∗T , 1〉 = 0. Therefore, we have rεT = 0.

Amplitude-independent (AI). The orthogonal projection optimization can significantly

reduce the error guarantees. It allows the error guarantees to get rid of the amplitudes of

the original time series values (referring to ‖fT‖2) by only consider the reconstruction error

(referring to ‖εT‖2) of each time series. The error guarantees provided by Plato in VS are called

amplitude-independent (AI) error guarantees.

3.4.3 Error Guarantee on Misaligned Segments

Given two compressed time series representation LT1 = (T̃ 1
1 , ...,

˜T k11 ) and LT1 =

(T̃ 1
2 , ...,

˜T k22 ) for the misaligned time series T1 = (T 1
1 , ..., T

k1
1 ) and T2 = (T 1

2 , ..., T
k2
2 ) where the
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domains of T i1 and T i2 are [a1
i , b

1
i ] and [a2

i , b
2
i ] respectively. The major challenge in the misaligned

case is that for a domain [ai1, b
i
1], the error measures of the segment T1|[ai1,bi1] are precomputed,

however, the error measures of the segment T2|[ai1,bi1] may be unknown as T2|[ai1,bi1] in general is

not one of the segments T 1
2 , ..., T

k2
2 .

Let ΠT,[a,b] be the set of segments in T covering the domain [a, b]. For example, consider

the two misaligned time series T1 and T2 in Figure 3.9(b), ΠT2,[a11,b
1
1] = {T 1

2 , T
2
2 } as the segments

T 1
2 and T 2

2 in T2 cover the domain [a1
1, b

1
1]. 15 If any kinds of function families are allowed, i.e.,

in ANY, the error guarantee ε̂ of Sum(T1× T2) on misaligned time series is:

Formula 3.4 is a stepping stone towards producing the final formula as the computation

of |〈εT1 , εT2〉| (Formula 3.4 2©) has not been given yet. It will be discussed in Chapter 3.4.3.1.

Chapter 3.4.3.2 discusses how to apply the orthogonal property optimization to improve For-

mula 3.4 1©.

3.4.3.1 Segment combination selection

To compute |〈εT1 , εT2〉|, one straightforward method (called IS) is to use the domains of

segments in T1 and T2 independently, then choose the one with minimal value. Let’s first see

15If time series T1 and T2 are aligned, then ΠT2,[ai
1,b

i
1]

always returns one single segment.
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Figure 3.11. Example of segment combination selection.

how to compute |〈εT1 , εT2〉| with the domains of segments in T1.

|〈εT1 , εT2〉| ≤
k1∑
i=1

∣∣〈εT1|[ai
1,bi1]

, εT2|[ai
1,bi1]
〉
∣∣ =

k1∑
i=1

∣∣〈εT i
1
, εT2|[ai

1,bi1]
〉
∣∣

≤
k1∑
i=1

(
‖εT i1‖2(

∑
j∈Π

T2,[a
i
1,b
i
1]

‖εT j2 ‖
2
2)

1
2

)

In the last step of the above Formula, T2|[ai1,bi1] is not a segment that Plato precomputed in T2.

Thus, we need to use all the segments in T2 covering [ai1, b
i
1], i.e., ΠT2,[ai1,b

i
1]. Similarly, we

can compute |〈εT1 , εT2〉| according to the domains of segments in T2. Finally, IS chooses the

minimal one between them. That is, the output of IS is:

min
( k1∑
i=1

(
‖εT i1‖2(

∑
j∈Π

T2,[a
i
1,b
i
1]

‖εT j2 ‖
2
2)

1
2

)
,

k2∑
i=1

(
‖εT i2‖2(

∑
j∈Π

T1,[a
i
2,b
i
2]

‖εT j1 ‖
2
2)

1
2

))

However, IS does not produce tight guarantees, Plato does not use it. Next, we show the tight

computation called OS, which is used by Plato.

Optimal strategy (OS). Algorithm OS first computes an error distribution array ET1
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(resp. ET2) for T1 (resp. T2) (line 2) according to the domains of the segments as follows:

ET1 =
{
‖εT i1‖2 ×

( ∑
j∈Π

T2,[a
i
1,b
i
1]

‖εT i2‖
2
2

) 1
2
∣∣∣1 ≤ i ≤ k1

}

ET2 =
{
‖εT i2‖2 ×

( ∑
j∈Π

T1,[a
i
2,b
i
2]

‖εT i1‖
2
2

) 1
2
∣∣∣1 ≤ i ≤ k2

}

Then OS increases ε1 (resp. ε2) by adding the values from ET1 (resp. ET2) (lines 4-7)

and checks whether the current domain achieves the minimal errors (lines 8-17). If yes, OS

adds the current domain (either [start, bi11 ] or [start, bi22 ]) to the final segment combination list.

After that, OS starts from a new domain and repeats the previous steps until all the segments are

processed. The time complexity of OS is O(k1 + k2).

Let OPT (LT1 , LT2) be the segment combination returned by OS. Then |〈εT1 , εT2〉| is

computed as follows:

|〈εT1 , εT2〉| ≤
∑

[a,b]∈OPT (LT1 ,LT2 )

∣∣∣〈εT1 |[a,b], εT2 |[a,b]〉
∣∣∣

≤
∑

[a,b]∈OPT (LT1 ,LT2 )

(( ∑
i∈ΠT1,[a,b]

‖εT i
1
‖2

2

) 1
2
( ∑
i∈ΠT2,[a,b]

‖εT i
2
‖2

2

) 1
2
)

OS provides the optimal segment combination that produces the minimum |〈εT1 , εT2〉|.

The tightness proof is presented as follows.

Proof. We use a proof by induction to show that the error guarantee produced by the segment

combination returned by OS (Algorithm ) is optimal.

Let OPT (T̃1, T̃2) = {[ai, bi]|i ∈ [1,m]} be the segment combination returned by OS.

First, let’s see the base case where OPT (T̃1, T̃2) = {[a1, b1]} has only one domain. There are

two cases depending on b1 = b1
1 or b1 = bt2 where ΠT2,[a1,b1] = {T 1

2 , ..., T
t
2}.

Case 1: b1 = b1
1. Since OS chooses [a1, b

1
1] as the domain, then b1

2 ≤ b1
1. Otherwise, OS

does not choose [a1, b
1
1]. This is because, (i) if ET1 [0] ≥ ET2 [0] then OS will choose [a1, b

1
2]
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instead; or (ii) if ET1 [0] < ET2 [0], then OS can not enter the loop in lines 8 - 17. Since

b1
2 ≤ b1

1, then we know ET1 [0] ≤ ET2 [0], so the error guarantee is ‖εT 1
1
‖2‖εT 1

2
‖2, which is the

minimal error guarantee in domain [a1, b1]. Assume we split the domain [a1, b1] into p (p ≥ 2)

sub-domains [a1, c1], [c1, c2], ..., [cp−1, b1], then the error guarantee is p‖εT 1
1
‖2‖εT 1

2
‖2, therefore,

domain [a1, b1] = [a1
1, b

1
1] produces the minimal error guarantee.

Case 2: b1 = bt2. Since OS chooses [a1, b
t
2] as the domain, we know that the error

guarantee is

( ∑
i∈Π

T2,[a
1
2,b
t
2]

‖εT 1
2
‖2

2

) 1
2
( ∑
i∈Π

T1,[a
1
2,b
t
2]

‖εT 1
1
‖2

2

) 1
2

which is less than ‖εT 1
1
‖2(
∑

i∈Π
T2,[a

1
1,b

1
1]
‖εT 1

2
‖2

2)
1
2 . If we split [a1

2, b
t
2] into several sub-domains, the

error guarantee is greater than ‖εT 1
1
‖2(
∑

i∈Π
T2,[a

1
1,b

1
1]
‖εT 1

2
‖2

2)
1
2 . Thus, [a1, b1] = [a1

2, b
t
2] produces

the minimal error guarantee.

Suppose OPT (T̃1, T̃2) = {[ai, bi]|i ∈ [1,m− 1]} produces the minimal error guarantee,

then for the case OPT (T̃1, T̃2) = {[ai, bi]|i ∈ [1,m]}, we only need to prove the last domain

[am, bm] produces the minimal error guarantee, which is the same to the base case.

Example 10. Consider the two misaligned time series in Figure 3.11. The value of ‖εT ji ‖2 for

each segment T ji is labeled there. OS produces the segment combination S = {[a1
1, b

1
2], [b1

2, b
101
2 ]}

as visualized by the red lines. Then |〈εT1 , εT2〉| = (3× (96× 12 + 22)
1
2 ) + (2× (100× 12)

1
2 ) =

3× 10 + 2× 10 = 50. However, IS outputs |〈εT1 , εT2〉| = min((3× 96 + 2×
√

100 + 9), (3×
√

96 + 22 + 100× 2)) = min(308.88, 230) = 230, which is 4.6× larger than the result returned

by OS.

3.4.3.2 Orthogonal projection optimization

In this part, we present how to apply orthogonal property optimization to improve

Formula 3.4 1©. Recall that in the aligned case (if the function family is in VS) we can apply the
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Algorithm: Optimal segment combination (OS)
Input: Compressed segment representations LT1 , LT2
Output: A segment combination OPT

1 ε1 = 0, ε2 = 0, ii = 0, i2 = 0, start = 0, OPT = ∅, current = ∅;
2 Compute ET1 and ET2 ;
3 while i1 < k1 or i2 < k2 do
4 if bi11 ≤ b

i2
2 then

5 ε1+ = ET1 [i1 + +];

6 else
7 ε2+ = ET2 [i2 + +] ;

8 if ε1 ≤ ε2 AND bi11 ≥ b
i2
2 then

9 current = [start, bi11 ];
10 OPT ← OPT ∪ {current};
11 start = bi11 + 1;
12 ε2 ← ε1;

13 if ε2 ≤ ε1 AND bi22 ≥ b
i1
1 then

14 current = [start, bi22 ];
15 OPT ← OPT ∪ {current};
16 start = bi22 + 1;
17 ε1 ← ε2;

18 Return OPT ;

orthogonal property optimization to guarantee 〈εT i1 , f
∗
T2
|[ai1,bi1]〉 = 0. This is because f ∗T2|[ai1,bi1] =

f ∗
T i2

, which is a function in the family. However, in misaligned case 〈εT i1 , f
∗
T2
|[ai1,bi1]〉 cannot

be guaranteed to be 0 since f ∗T2|[ai1,bi1] may not be a function in the family. For example, in

Figure 3.11 T2|[a12,b12] is not a pre-computed segment in T2, it is just a subsegment. The restriction

of the estimation function f ∗
T 1
2

to this sub-domain f ∗T2 |[a11,b11] may not be a function in the family

anymore.

To guarantee the restriction of the function from a bigger domain to a smaller domain

is still in the same function family, we identify a function family group called linear scalable

function family (LSF), which is subset of VS but superset of the polynomial function family.

Linear Scalable Function Family (LSF). Informally, a linear scalable family is a func-

tion family such that for any function f in that family and any translation a − a′, there is a

function f ′ in that family such that f ′(x+ a− a′) = f(x) for all x in the domain. Definition 11
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gives the formal definition.

Definition 11 (Linear scalable family (LSF)). Let F be a function family defined in domain [a, b],

F is a linear scalable family if for any function f ∈ F and any range [a′, b′] ⊆ [a, b], there exists

a function f ′ ∈ F such that Shift(f |[a′,b′], a− a′) = f ′|[a,a+b′−a′].

Lemma 12. The polynomial family belongs to the linear scalable family.

Proof. Let F = {
∑

i αit
i|αi ∈ R} be a polynomial function family defined on [a, b]. The

restriction of f ∈ F on [a′, b′] ⊆ [a, b] is f |[a′,b′] = (a′, b′, [
∑

i αi(a
′)i, ...,

∑
i αi(b

′)i]). The shift

of f |[a′,b′] to a − a′ steps is Shift(f |[a′,b′], a − a′) = (a, a + b′ − a′, [
∑

i αi(a
′)i, ...,

∑
i αi(b

′)i]).

[
∑

i αi(a
′)i, ...,

∑
i αi(b

′)i] can be transformed into [
∑

i βi(a)i, ...,
∑

i βi(a + b′ − a′)i] such

that βi = αi(a
′+k)i

(a+k)k
for all i ∈ [a, a + b′ − a′]. Let f ′ =

∑
i βit

i be a function in F. Thus

f ′|[a,a+b′−a′] = [
∑

i βi(a)i, ...,
∑

i βi(a+ b′ − a′)i] = Shift(f |[a′,b′], a− a′).

Recall that, in this paper, we study three different function family groups, i.e., ANY, VS,

and LSF. Figure 3.5 shows the relation of the three function family groups and also provides

example function families for each group.

In the following, we present how to use the orthogonal projection optimization in the

misaligned case to improve Formula 4 1©. Let fT1 (resp. fT2) be the function created from the

concatenation of the individual estimation functions on the segments T i1 (i ∈ [1, k1) (resp. T j2

(j ∈ [1, k2])). That is fT1|[ai
1,b

i
1]

= f ∗
T i1

for all i ∈ [1, k1] and fT2|[ai
2,b

i
2]

= f ∗
T i2

for all i ∈ [1, k2].

Then the Equation 4 1© in the misaligned environment can be reduced as follows. We highlight

the parts that would disappear if the segments were aligned.

k1∑
i=1

(
‖εT i1‖2 ×

=0 if aligned︷ ︸︸ ︷
‖fT2|[ai

1,b
i
1]
− f∗T i

1
‖2

)

+

k2∑
i=1

(
‖εT i2‖2 ×

=0 if aligned︷ ︸︸ ︷
‖fT1|[ai

2,b
i
2]
− f∗T i

2
‖2

)
(5)

The proof of the tightness is as follows.
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Proof. Let εSum(T1×T2) be the true error of Sum(T1 × T2).

εSum(T1×T2) = |〈εT1 ,fT2〉+ 〈εT2 ,fT1〉+ 〈εT1 , εT2〉|

≤ |〈εT1 ,fT2〉|+ |〈εT2 ,fT1〉|+ |〈εT1 , εT2〉|

The first term |〈εT1 ,fT2〉| can be rewritten as

|〈εT1 ,fT2〉| =
∣∣ k1∑
i=1

〈εT1|[ai,bi],fT2|[ai,bi]〉
∣∣

=
∣∣∣ k1∑
i=1

( =0︷ ︸︸ ︷
〈εT1|[ai1,bi1], f

∗
T i1
〉+〈εT1|[ai1,bi1],fT2|[ai1,bi1] − f ∗T i1〉

)∣∣∣
≤

k1∑
i=1

∣∣∣(〈εT1 |[ai1,bi1],fT2|[ai1,bi1] − f ∗T i1〉
)∣∣∣

≤
k1∑
i=1

∥∥εT1|[ai1,bi1]

∥∥
2

∥∥fT2|[ai1,bi1] − f ∗T i1
∥∥

2

=

k1∑
i=1

‖εT i1‖2‖fT2|[ai1,bi1] − f ∗T i1‖2

Similarly, we have:

|〈εT2 ,fT1〉| ≤
k2∑
i=1

(
‖εT i2‖2 × ‖fT1|[ai2,bi2] − f ∗T i2‖2

)

Recall that the computation of |〈εT1 , εT2〉| is presented in Chapter 3.4.3.1. Combining the results

of |〈εT1 , εT2〉|, |〈εT1 ,fT2〉|, and |〈fT1 , εT2〉| completes the proof.

Efficient Computation of the Error Guarantee. Notice that both ‖fT2|[ai
1,b

i
1]
− f∗

T i
1
‖2

and ‖fT1|[ai
2,b

i
2]
− f∗

T i
2
‖2 can only be computed during query processing time, since only then

the pairs of intersecting but misaligned segments become known. A brute force O(n) method,

where n is the size of the domain of the segment, would be to literally create the series of n

data points predicted by the estimation functions and then perform the straightforward calcula-
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tion/aggregation described by the formulas. Of course, such brute force approach would require

CPU cycles that are proportional to conventional (non-approximate) query processing. We show

that these formulas can be computed in O(dim(F)3) where dim(F) is the dimension of the

estimation function family. Obviously, the dimension is much smaller than the number of data

points in a segment - that is why we employ compression in the first place. For example, for a

1-degree polynomial function family, dim(F) = 2. The key intuition is to store the estimation

function’s coefficients in an orthonormal basis. The distance between two functions can be

efficiently computed using the dim(F) coefficients (in the orthonormal basis). Importantly, the

orthonormal basis also allows us to compute the coefficients of the restriction of an estimation

function in O(dim(F)3). The detailed algorithms and proofs complexity appear in the following.

Here we present how to compute ‖fT2|[ai
1,b

i
1]
− f∗

T i
1
‖2 and ‖fT1|[ai

2,b
i
2]
− f∗

T i
2
‖2 in

O(dim(F)3). Let’s first look into ‖fT2|[ai
1,b

i
1]
− f∗

T i
1
‖2.

‖fT2|[ai
1,b

i
1]
− f∗T i

1
‖2 =( ∑

j∈Π
T2,[a

i
1,b
i
1]

‖fT2|[ai
1,b

i
1]∩[a

j
2,b

j
2]
− f∗T i

1
|
[ai

1,b
i
1]∩[a

j
2,b

j
2]
‖2

2

) 1
2

=
( ∑
j∈ΠT2,[ai,bi]

‖Ψ([ai2, b
i
2], [ai1, b

i
1] ∩ [aj2, b

j
2])f ∗

T j2

−Ψ([ai1, b
i
1], [ai1, b

i
1] ∩ [aj2, b

j
2])f ∗T i1

‖2
2

) 1
2

where Ψ is an orthonormal basis transformation matrix, which can be computed in O(dim(F)3).

Ψ([ai2, b
i
2], [ai1, b

i
1] ∩ [aj2, b

j
2]) transforms the orthonormal basis from the domain [ai2, b

i
2] to the

sub-domain [ai1, b
i
1] ∩ [aj2, b

j
2]. In the following, we will show the details of computing Ψ.

Given a function family F, let (ϕ
[a,b]
i )1≤i≤dim(F) be an orthonormal basis of F on the

domain [a, b] for the scalar product 〈f1, f2〉 =
∑b

i=a(f1(i) × f2(i)) where f1, f2 ∈ F. Such

orthonormal basis can be obtained by using the Gram−Schmidt process [37]. Given a domain

[a, b] and one sub-domain [a′, b′] ⊂ [a, b], let Ψ([a, b], [a′, b′]) be the basis transform matrix such
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that

Ψ([a, b], [a′, b′])i,j = 〈ϕ[a,b]
i |[a′,b′], ϕ

[a′,b′]
j 〉

That is using Ψ, we can directly obtain the orthonormal basis for any sub-domain. The size of Ψ

is dim(F)2 and the computation of each Ψ([a, b], [a′, b′])i,j is O(dim(F)). Therefore, the overall

cost of computing Ψ is O(dim(F)3).

Elimination of ‖fT‖2. If T is compressed by a function in LSF 16, then ‖fT‖2 can be

safely eliminated. This is because the error guarantees provided by LSF can get rid of ‖fT‖2

while those given by ANY or VS rely on ‖fT‖2.

3.5 Error Guarantee Computation on Segment Trees

The previous chapter studies the computation of error guarantees for TSAs over com-

pressed segment lists. In this chapter, we first show how to compute error guarantees for anytime

analytic queries with error budgets on compressed segment trees (Chapter 3.5.1). Then we

propose an incremental error guarantee computation optimization (Chapter 3.5.2) to improve

the performance. We focus on supporting queries with error budgets and it is straightforward to

extend our algorithms to support queries with time budgets.

3.5.1 Error Guarantee Computation in Segment Tree

The main idea of supporting analytic queries with error budgets is to use a top-down

navigation strategy. Accessing more nodes leads to smaller error guarantees. As shown in

Algorithm EGC, it first gathers the currently accessed nodes N1 and N2 in the segment trees T1

and T2 (line 2). Then it computes the current error guarantee ε by using error measures stored in

N1 and N2
17 according to the formulas provided in Chapter 3.4 (line 3) . If ε is greater than the

given error budget ξ, EGC picks the best node N (how to choose the best node will be introduced

16And we know that it many only be combined with other segments compressed by a function in LSF.
17N1 and N2 can be viewed as compressed segment lists.
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Algorithm: Error Guarantee Computation (EGC)
Input: Query q, error budget ξ, STree T1, STree T2

Output: Error guarantee ε
1 ε← 0;
2 Let N1 = {T1.root} and N2 = {T2.root} be the current accessed nodes in T1 and

T2;
3 ε←ComputeErrorGuarantee(N1,N2, q);
4 while ε > ξ do
5 N ←ChooseBestNode(N1, N2, q);
6 if N ∈ N1 then
7 N1 = N1 − {N} ∪ {Nl, Nr};
8 else
9 N2 = N2 − {N} ∪ {Nl, Nr};

10 ε←ComputeErrorGuarantee(N1,N2, q);

11 Return ε;

later) to access it children nodes Nl and Nr and updates N1 or N2 (lines 5-9). Then it computes

the current error guarantee based on the error measures in the current nodes (line 10). Finally, if

ε ≤ ξ, then EGC outputs ε as the final error guarantee (line 11).

Best Node Selection. The motivation of choosing one best node N is to obtain the

maximal error guarantee reduction by replacing N with its children nodes N l and N r. Let TN ,

TN l and TNr be the associated segments ofN ,N l andN r respectively. Different expressions have

different guidelines. For Sum(T1 + T2) and Sum(T1− T2), we choose the node maximizing

rεTN − (rεT
Nl

+ rεTNr ). For Sum(T1×T2), we choose the node maximizing ‖εTN‖2− (‖εT
Nl
‖2 +

‖εTNr‖2).

3.5.2 Incremental Error Guarantee Computation

Algorithm EGC requires to use all the currently accessed nodes to compute error guaran-

tees at each step. Let k1 and k2 be the number of current accessed nodes in segment trees T1 and

T2 in the current step, then the complexity of the error guarantee computation in each stage is

O(k1 + k2). It is inefficient when (i) the number of the current accesses nodes is large, and (ii)

the number of executions of the error guarantee computation is large.
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Table 3.10. Computation of ε∆

TSE ε∆

Sum(T1 + T2) rεTN − (rεT
Nl

+ rεNr)

Sum(T1− T2) rεTN − (rεT
Nl

+ rεNr)

Sum(T1× T2)

(
‖εTN‖2(

∑
i∈ΠT2,[aN ,bN ]

‖εT i2‖
2
2)

1
2

−‖εT
Nl
‖2(
∑

i∈ΠT2,[aNl ,bNl ]
‖εT i2‖

2
2)

1
2

−‖εTNr‖2(
∑

i∈ΠT2,[aNr ,bNr ]
‖εT i2‖

2
2)

1
2

)
To improve the performance, we propose an incremental error guarantee computation

(IEGC) optimization. The main idea of IEGC is to reuse the error guarantee returned in the

previous step and the updated node N while avoiding accessing the other unchanged nodes.

Applying IEGC, we are able to reduce the complexity of error guarantee computation in each

step from O(k1 + k2) to O(1).

Let ε(i) be the error guarantee at step i, ε∆ be the delta error guarantee computed by

only using the updated node N and its children. Then the error guarantee at step i + 1 can be

computed incrementally as ε(i+1) = ε(i)− ε∆. Table 3.10 shows the computation of ε∆ in details

(assuming the chosen node N is in the STree of T1).

3.6 Experiments

3.6.1 Environment and Setting

All experiments were conducted on a computer with a 4th Intel i7-4770 processor (3.6

GHz), 16 GB RAM, running Ubuntu 14.04.1. The algorithms were implemented in C + + and

were compiled with g++ 4.8.4.

Datasets. We evaluated all the error guarantee methods on four real-life datasets.

• Historical Forex Data (HF) 18 are tick-by-tick market data for 15 Forex (foreign exchange) data

pairs, e.g., AUD/JPY (Australian Dollar vs. Japanese Yen) from May 2009 to November 2016.

18https://pepperstone.com/en/client-resources/historical-tick-data
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Table 3.11. Data characteristics

avg # of data points # of
resolution

in each time series time series
HF 126, 059, 817 15 millisecond
HI 2, 676, 311 14 second
HB 1, 669, 835 16 minute
HA 1, 587, 258 11 minute

Table 3.12. Number of coefficients and error measures

# of coefficients # of error measures
Polynomial 2 1

Gaussian 4 3

Each Forex pair is considered a time series with ∼ 126 million data points (3 per second).

• Historical IoT Data (HI) were provided by Teradata and measure the internal oil pressure

and the oil temperature every second from 8/19/2015 to 11/17/2015, as reported by seven

engines in mining trucks in Chile.

• Historical Bitcoin Exchanges Data (HB)19 contains 16 cryptocurrency exchange prices per

minute from January 2012 to January 2018. Each cryptocurrency is considered as a time

series.

• Historical Air Quality Data (HA)20 present 11 different air quality measurements such as air

pressure, air temperature and relative humidity from 09/10/2011 to 09/10/2014 in San Diego,

at 1-minute resolution.

Table 3.11 summarizes the data characteristics.

The HF and HB are financial market data, which are considered hard-to-model, while HI

and HA are climate data following certain patterns. For example, the temperature in afternoon

19https://www.kaggle.com/mczielinski/bitcoin-historical-data/data
20https://www.kaggle.com/ktochylin
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Figure 3.12. SQL query computing correlation TSA for all the time series pairs in HF.

is usually higher than that at night, etc. Not surprisingly, the HB experiments behaved very

similarly to the HF experiments, while the HA experiments behaved similarly to the HI ones.

Estimation Function Families. Following the prior work lessons [43, 76], we choose

the 1-degree polynomial function family ({ax+ b|a, b ∈ R}) and the Gaussian function family

({a exp
(
−(x−b)2

2c2

)
+ d|a, b, c, d ∈ R}) as representatives to compress the time series. Notice that

the Gaussian function family is in ANY, while the polynomial function family is in LSF (also

in VS). Table 3.12 summarizes the number of coefficients and error measures stored for each

segment compressed by the corresponding estimation functions.

3.6.2 Experimental Results

We evaluate the error guarantees provided by Plato on compressed segment lists and

segment trees in Chapter 3.6.2.1 and Chapter 3.6.2.2 respectively.

3.6.2.1 Experimental Results on Compressed Segment Lists

We evaluate the error guarantees for TSAs over (i) aligned, fixed-length time series

segmentations generated by applying the fixed-length segmentation (FL); (ii) and misaligned,

variable-length time series segmentations generated by using the sliding window algorithm (SW).

The details of segmentation algorithms are shown in Chapter 3.7. In order to provide a fair

comparison, we fix the space cost for both cases, i.e., they have the same compression ratios.

We evaluate the correlation TSA over all the time series pairs in each dataset. The

corresponding SQL queries are shown in Figure 3.12 (The SQL queries on the other three

datasets are similar by changing the table HF to HI, HB and HA respectively). All the error
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Figure 3.13. True errors and error guarantees in aligned (FL) and misaligned cases (SW). The
True-Error(SW) are 0.0132 and 0.00508 in (a) and (b).

guarantees and true errors reported in the following are the average values (including the standard

variances) across all correlations in a dataset.

Error Guarantees Quality. Figure 3.13 reports the absolute true errors and the error

guarantees of the correlation TSAs in the aligned/fixed-length (FL) and misaligned/variable-

length (SW) cases using the polynomial function family. Since the TSAs are correlations, the

approximate results may range between 1 (perfect correlation) and -1 (perfect reverse correlation),

with 0 meaning no correlation at all.

Under the same compression ratio 21 the variable-length error guarantees are much

smaller than the fixed-length error guarantees. In Figure 3.13, the misaligned Error-Guarantee

(SW) is 10× ∼ 20× smaller than the aligned Error-Guarantee (FL) on the average (ranging the

compression ratio from 10, 000 to 100). This is mainly because, as it has already been known,

21Compression ratio is the size of the original data over the size of the compressed data.
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Figure 3.14. Running time of TSAs in aligned and misaligned cases.

variable-length allows for much better estimation. Indeed, notice the misaligned true errors are

also much smaller than the aligned true errors. For example, In Figure 3.13, True-Error(SW) is

6× ∼ 11× smaller than True-Error(FL) on the average.

Importantly, the error guarantees are close to the true errors, especially for the misaligned

error guarantees, which matter most practically. In particular, Error-Guarantee(SW) is only

1.08× ∼ 1.11× larger than the True-Error(SW) in HF and HI respectively (on the average).

Furthermore, they are very small in absolute terms. This indicates the high quality and practicality

of AI (Amplitude-independent) error guarantees.

Run Time Performance. Figure 3.14 reports the total running time of the correlation

TSAs over (i) the original time series (Original), (ii) the time series segmented into a fixed length,

aligned segments (Plato-FL) and (iii) time series segmented into misaligned, variable-length

segments by SW (Plato-SW). The estimation function family is the polynomial family. The

x-axis is the compression ratio (from 10000 to 100).
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Figure 3.15. Space cost of sampling and Plato when providing the same error guarantees.

Figure 3.16. Running time of sampling and Plato when providing the same error guarantees.

Both Plato-FL and Plato-SW outperform vastly the Original in all the datasets. For

example, when the compression ratio is 1000, Plato-FL and Plato-SW are about three orders of

magnitude faster than Original.

Plato-SW is about 1.8× slower than Plato-FL due to the intricacy of the segment com-

bination selection algorithm. However, a mere 80% penalty is a minor price to pay for the

orders-of-magnitude superior error guarantees delivered by misaligned/variable-length segmen-

tations.

Comparison with Sampling. In this part, we compare (i) the space cost and (ii) the

runtime performance of Plato with the sampling methods when providing similar error guarantees.

We use a uniform random sampling scheme with a global seed in order to create a samples

database. We also assume knowledge of minimums and maximums. That is, let X1, ..., Xn be
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Figure 3.17. Effect of compression ratios.

the random variables such that dmin ≤ Xi ≤ dmax for all i where Xi = dT1i × dT2i , dmin =

min{dT1i } × min{dT2i }, and dmax = max{dT1i } × max{dT2i }. Let R =
∑n

i=1Xi and ε be the

error guarantee. Using the Chernoff bounds [35], we can obtain the minimal sample size needed

in order to achieve the desired error guarantee with certain confidence.

Figure 3.15 reports the sizes (as percentage to the original data size) of sampled data

points in order to provide similar error guarantees with the Plato-FL (the error guarantee of TSAs

over aligned, fixed-length time series produced by FL) and Plato-SW (the error guarantee of TSAs

over misaligned time series produced by SW) with 1000 compression ratio in HF respectively.

Figure 3.16 shows the corresponding runtime cost. To achieve similar error guarantees, sampling

needs more space and more time than Plato. We define “similar” to mean 90%, or 95% or 99%

confidence - in contrast to Plato’s deterministic, 100% confidence guarantees.

In the following, we study the effects of (i) compression ratios, (ii) estimation function

families, (iii) orthogonal optimizations, and (iv) segment combination selection strategies.
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Figure 3.18. Effect of estimation function families.

Compression Ratios. In order to isolate the effect of the compression ratios, 22 we fix

the estimation function family to be polynomials and fix the segment list building algorithm to

be SW. In Figure 3.17, we change the compression ratios from 10, 000 to 100 by controlling the

error threshold values and report the corresponding true errors (True-Error(SW)) and the error

guarantees (Error-Guarantee(SW)).

Naturally, higher compression ratios lead to smaller true errors and error guarantees.

For example, in Figure 3.17(a), the true error and error guarantee with 100 compression ratio

are 13.32× and 15.58× smaller than those with 10, 000 compression ratio on the average.

Importantly, the error guarantees provided by Plato are close to the true error in all the datasets

and are generally small in absolute terms (with the relative exception of 10, 000 compression on

HF). Again, this indicates the high quality of the error guarantees provided by Plato.

Estimation Function Families. In order to isolate the effect of the estimation function

families, we fix the segment list building algorithm to be SW and fix the compression ratio to

1000. Figure 3.18 presents the true errors and the error guarantees for TSAs over time series

compressed by polynomial functions (True-Error(Poly), Error-Guarantee(Poly)) and Gaussian

functions (True-Error(Gau), Error-Guarantee(Gau)) respectively.

The error guarantees with estimation functions from LSF (polynomials) are significantly

smaller than those with estimation functions in ANY (Gaussians). In Figure 3.18(a), Error-

22Compression ratio is the size of the original data over the size of the compressed data.
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Figure 3.19. Effect of orthogonal optimization.

Guarantee(Poly) (in LSF and VS) is about 10× smaller than Error-Guarantee(Gau) (in ANY)

on the average and in Figure 3.18(b), Error-Guarantee(Poly) (in LSF and VS) is about 160×

smaller than Error-Guarantee(Gau) (in ANY) on the average. Notice that the error guarantees

provided by Plato-Poly is AI, while those of Plato-Gau are not. So the results show that AI error

guarantees are practical while non-AI error guarantees are not. Interestingly, True-Error(Gau) is

smaller than True-Error(Poly) in the HF dataset, which indicates that Gaussian functions model

HF data better than the polynomial functions - not surprising given the more random movements

of financial data. The guarantees produced by the polynomials are far better thanks to AI.

Effect of Orthogonal Optimization and LSF. To measure the effect on error guarantees

of the orthogonal optimization (and its extension to misaligned segmentations, enabled by LSF)

we fix the estimation function family to the polynomials, which are LSF and, trivially, are

also in ANY. We use both the general error guarantees of ANY (Error-Guarantee(ANY)) and

the specialized error guarantees of LSF (Error-Guarantee(LSF)) for TSAs over misaligned

segments compressed by polynomial functions (using variable-length segmentations with the SW

algorithm). We fix the compression ratio to 1000. As shown in Figure 3.19, the error guarantee

for LSF certifies that the true result is just within ±0.0137 in HF and within ±0.0052 in HI.

Segment Combination Selection Strategies. To isolate the quality effect of employing

the optimal segment combination selection strategy (OS) we compare it with IS strategy (the
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Figure 3.20. Effect of segment combination selection strategies.

Figure 3.21. Running time with different error budgets.

straightforwad method mentioned in Chapter 3.4.3.1) on a case of variable-length compression

with an LSF function family (polynomials). Figure 3.20 shows that Plato-OS is about 5× smaller

than Plato-MS on the average. In addition, the running time of Plato-IS and Plato-OS are close.

For example, the running time of Plato-IS and Plato-OS are 0.536 and 0.548 seconds in HF

respectively.

3.6.2.2 Experimental Results on Compressed Segment Tree

Run Time Performance. We evaluate the same correlation TSA (shown in Figure 3.12)

on compressed segment trees with different error budgets. Plato-I (resp. Plato-NI) refers to

the error guarantee computation algorithm with (resp. without) the incremental error guarantee

computation optimization. According to the results in Figure 3.21, we have the following

observations:

• The running time decreases as the error budget increase (for both Plato-NI and Plato-I). This
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Figure 3.22. Effect of incremental segment tree building optimization.

is because Plato-NI (and Plato-I) accesses fewer nodes for queries with larger error budgets.

• Plato-I is about 5× faster than Plato-NI on the average.

Segment Tree Building. We evaluate the effect of the incremental estimation function

computation optimization by comparing Plato-Tree-NI with Plato-Tree-I, where Plato-Tree-NI

(resp. Plato-Tree-I) refers to the segment tree building algorithm without (resp. with) incremental

estimation function computation optimization. We fix the function family to be polynomials. As

shown in Figure 3.22, Plato-Tree-I outperforms Plato-Tree-NI by two orders of magnitudes on

the average. Notice the running time of Plato-Tree-NI on HF is more than 5 hours, we stop it

after 5 hours.

3.7 Related Work

Approximate query processing (AQP) and data compression have been widely studied,

whose most relevant aspects are summarized next. To the best of our knowledge, this is the first

work that provides deterministic guarantees for analytics over multiple compressed time series.

AQP with Probabilistic Error Guarantees. Approximate query processing using sam-

pling [15, 92, 77, 5] computes approximate answers by appropriately evaluating the queries on

small samples of the data, e.g., STRAT [15], SciBORQ [92], and BlinkDB [5]. Such approaches

typically leverage statistical inequalities and the central limit theorem to compute the confidence

interval (or variance) of the computed approximate answer. As a result, their error guarantees are
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probabilistic - as opposed to this work’s deterministic (100% confidence) ones. Note however

that, unlike sampling, our compression-based techniques are tuned for time series and continuous

data.

AQP with Deterministic Error Guarantees. Approximately answering queries while

providing deterministic error guarantees has been successfully applied in many applications [26,

34, 67, 85, 59, 84]. However, existing work in the area has focused on simple aggregation

queries that involve only a single time series (or table) and aggregates such as SUM, COUNT,

MIN, MAX and AVG. Our work extends the prior work, as it addresses analytics over multiple

compressed time series such as correlation, cross-correlation. In addition, this work is the first

one to categorize compression function families based on their suitability for error guarantees.

Data Summarizations and Compressions. Relevant work in this area has come mostly

from two different communities: the database community [41, 84, 78, 95] and the signal

processing community [47, 44, 43, 14, 29].

The database community has mostly focused on creating summarizations (also referred

to as synopses or sketches) that can be used to answer specific queries. These include among

others histograms [83, 41, 99, 89] (e.g., EquiWidth and EquiDepth histograms [83], V-Optimal

histograms [41], and Hierarchical Model Fitting (HMF) histograms [99]), used among other for

cardinality estimation [41] and selectivity estimation [84].

The signal processing community produced a variety of methods that can be used to

compress time series data and thus are more relevant to the present work, as they provide the

underlying compressions. These include among others the Piecewise Aggregate Approximation

(PAA) [47], and the Piecewise Linear Representation (PLR) [43]. Plato is orthogonal to those

data summarization and compression techniques.

Segmentation Algorithm. We summarize the state-of-the-art time series segmentation

algorithms, which can be classified into two categories:

• Fix-length segmentation (FL), which partitions a time series based on fixed time windows.
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The segments produced by the FL have equal lengths, and are utilized in our aligned-segments

experiments.

• Variable-length segmentation. There are three groups of algorithms produce variable-length

segmentations: the Top-down methods [61, 79], the Bottom-up approaches [48, 49] and

the Sliding-window techniques [55, 45]. Among them, the Sliding-window (SW) has been

proven to be more efficient than the Top-down and the Bottom-up methods [45, 46]. Thus, we

choose the Sliding-window (SW) as the representative variable length segmentation algorithm

in our experiments. The segments created by the SW have variable lengths [46] and are used

in our misaligned-segments experiments.

STree vs. Tree-based Wavelet. The prior tree-based wavelet [88] has a similar structure

compared with STree, however, they still have the following differences:

• Tree-based wavelet is a complete full binary tree, while STree may be unbalanced as it

considers the smoothness of the time series by only splitting shaking segments.

• Tree-based wavelet equally partition segment, while STree chooses the best cutting position,

which may not be the middle point. STree is error sensitive, while wavelet is not.

• Tree-based wavelet does not maintain error measures, while STree does, which can contribute

to error guarantees in query processing.

3.8 Chapter Summary

This chapter introduces Plato, which is an approximate query processing system sup-

porting anytime analytic queries over compressed time series with tight deterministic error

guarantees. It indicates that deterministic error guarantees are feasible and practical, given the

appropriate combination of error measures and estimation function family.

This chapter contains (i) material from “Plato: Approximate Queries over Compressed

Time Series with Tight Deterministic Error Guarantees” by Etienne Boursier, Jaqueline J. Brito,
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Chunbin Lin, and Yannis Papakonstantino, which was submitted for publication; and (ii) material

from from “Supporting Anytime Queries over Compressed Time Series with Deterministic

Error Guarantees” by Chunbin Lin, Joshua Lapacik, and Yannis Papakonstantino, which is in

preparation for submission. The dissertation author was the primary investigator of the papers.
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Chapter 4

Conclusion and Future Directions

In this dissertation, we first propose the GQ-Fast database, which is an indexed database

that roughly corresponds to efficient encoding of annotated adjacency lists that combines salient

features of column-based organization, indexing and compression. We used GQ-Fast to accelerate

queries for two OLAP dashboards in the biomedical field. GQ-Fast outperforms PostgreSQL by

2− 4 orders of magnitude and MonetDB, Vertica and Neo4j by 1− 3 orders of magnitude when

all of them are running on RAM.

Then we propose the approximate query processing system, called Plato, which supports

anytime analytic queries over compressed time series. Plato allows users to input a query with

TSA and an error budget, then it provides an approximate answer with a tight deterministic error

guarantee, which is no greater than the given error budget. The results indicate that deterministic

error guarantees are feasible and practical, given the appropriate combination of error measures

and estimation function family.

Future work

There are several promising future work opportunities towards improving the applicability

and the impact of the presented results.

For GQ-Fast, we will investigate how GQ-Fast can be incorporated in a general SQL

processor, where GQ-Fast will execute relationship subqueries and conventional query processing
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techniques will be used to combine and process the output of GQ-Fast. We will also study the

pushing aggregation down optimization in order to further improve the performance.

For Plato, future work may develop such combinations for other important families also.

Note that the tightness results of this paper do not preclude the future development of practical

and theoretically-sound deterministic error guarantees for families are currently outside the

LSF (or outside the VS in the case of aligned series). Rather, the tightness results merely state

that (i) without introducing additional assumptions about a function family and/or (ii) without

introducing different/additional error measures, no better error guarantees can be achieved.

Researchers may come up with other interesting properties of function families outside LSF (or

VS) and deliver good error guarantees, based on such properties. Finally, if some cases turn out to

be unaddressable by deterministic error guarantees, another interesting area of research would be

the delivery of probabilistic guarantees over compressed data. A number of applications-oriented

adjustments and extensions appear possible. In such cases, the results of this work will become

building blocks in more complex analysis settings. One such case is analyses that correspond

to multiple queries (in contrast to this fundamentals-oriented work that considered queries that

return a single number). For example, in an anomaly detection setting we would not simply be

asking how much cross-correlated is the air conditioning air flow with the air temperature. We

would rather ask for the time periods when the temperature decorrelated significantly from the

air flow. It is easy to see how the latter can be framed as multiple queries. Of course, additional

optimizations will be possible in the multiple query processing case.
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[9] Åke Björck. Solving linear least squares problems by gram-schmidt orthogonalization.
BIT Numerical Mathematics, 7(1):1–21, 1967.

[10] Peter Bloomfield. Fourier analysis of time series: an introduction. John Wiley & Sons,
2004.

[11] Subhrajyoti Bordoloi and Bichitra Kalita. Designing graph database models from existing
relational databases. IJCA, 74(1), 2013.

[12] Jaqueline Brito, Korhan Demirkaya, Boursier Etienne, Yannis Katsis, Chunbin Lin, and
Yannis Papakonstantinou. Efficient approximate query answering over sensor data with
deterministic error guarantees. CoRR, abs/1707.01414, 2017.

100



[13] John Catozzi and Sorana Rabinovici. Operating system extensions for the teradata parallel
VLDB. In VLDB, pages 679–682, 2001.

[14] Kin-pong Chan and Ada Wai-Chee Fu. Efficient time series matching by wavelets. In
ICDE, pages 126–133, 1999.

[15] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified sampling for
approximate query processing. TODS, 32(2):9, 2007.

[16] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP
technology. ACM Sigmod record, 26(1):65–74, 1997.

[17] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. Approximate query processing: no
silver bullet. In Sigmod, pages 511–519. ACM, 2017.

[18] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and S Yu Philip. Graph OLAP: a
multi-dimensional framework for graph data analysis. KAIS, 21(1):41–63, 2009.

[19] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S Yu. Graph OLAP: Towards
online analytical processing on graphs. In ICDM, pages 103–112, 2008.

[20] Lei Chen and Raymond T. Ng. On the marriage of lp-norms and edit distance. In VLDB,
pages 792–803, 2004.

[21] Peter Chen. Entity-relationship modeling: historical events, future trends, and lessons
learned. In Software pioneers, pages 296–310. Springer, 2002.

[22] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query optimization in compressed
database systems. ACM SIGMOD Record, 30(2):271–282, 2001.

[23] Ward Cheney and David Kincaid. Linear algebra: Theory and applications. The Australian
Mathematical Society, 110, 2009.

[24] ByoungSeon Choi. ARMA model identification. Springer Science & Business Media,
2012.

[25] Kuo-Liang Chung and Jung-Gen Wu. Level-compressed huffman decoding. TCOM,
47(10):1455–1457, 1999.

[26] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Effective compu-
tation of biased quantiles over data streams. In ICDE, pages 20–31, 2005.

[27] DGT Denison, BK Mallick, and AFM Smith. Automatic bayesian curve fitting. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 60(2):333–350, 1998.

[28] Andrew Eisenberg and Jim Melton. Sql/xml is making good progress. ACM Sigmod
Record, 31(2):101–108, 2002.

101



[29] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence match-
ing in time-series databases. In SIGMOD, pages 419–429, 1994.

[30] Edward J Franczek, John Thomas Bretscher, and Raymond Walden Bennett III. Computer
virus screening methods and systems, November 16 1999. US Patent 5,987,610.

[31] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska.
Revisiting reuse for approximate query processing. PVLDB, 10(10):1142–1153, 2017.

[32] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The
Complete Book. Prentice Hall Press, Upper Saddle River, NJ, USA, 2 edition, 2008.

[33] Goetz Graefe. Query evaluation techniques for large databases. CSUR, 25(2):73–169,
1993.

[34] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In SIGMOD, pages 58–66, 2001.
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