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Stability of laminar flames on upper and lower inclined fuel surfaces
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Abstract

Experiments have found substantial morphological differences between buoyancy-driven flames developing on the
upper and lower surfaces of inclined burning plates. These differences cannot be explained on the basis of existing
analytical solutions of steady semi-infinite flames, which provide identical descriptions for the top and bottom con-
figurations. To investigate the potential role of flame instabilities in the experimentally observed flow differences, a
temporal linear stability analysis is performed here. The problem is formulated in the limit of infinitely fast reaction,
taking into account the non-unity Lewis number of the fuel vapor. The stability analysis incorporates non-parallel
effects of the base flow and considers separately spanwise traveling waves and Görtler-like streamwise vortices. The
solution to the stability eigenvalue problem determines the downstream location at which the flow becomes unsta-
ble, characterized by a critical value of the relevant Grashof number, whose value varies with the plate inclination
angle. The results for the flame formed on the underside of the fuel surface indicate that instabilities emerge farther
downstream than they do for a flame developing over the top of the fuel surface, in agreement with experimental obser-
vations. Increased buoyancy-induced vorticity production is reasoned to be responsible for the augmented instability
tendency of topside flames.
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1. Introduction

Fires developing on both upper and lower inclined
surfaces are commonly encountered in both the built
and wildland environments. Inclined flame spread has
been a relevant topic of study in the context of fires
within enclosed spaces [1] and larger-scale wildland
fires. While some work has investigated flame spread on
the upper side of an inclined surface, flame spread along
the lower side of an inclined surface, relevant to fires in
attics and inclined ceilings, has received less attention.
Experiments [2, 3] have observed that the structure of a
flame that forms on the topside of an inclined fuel sur-
face is distinctly different from a flame that forms on
the underside of the fuel surface. A majority of studies
on topside flame spread have assumed the flame struc-
ture to be essentially two-dimensional; however, recent
studies have shown that flames often form unique three-
dimensional structures driven by instabilities in the flow,
such as spanwise waves and streamwise streaks, which
may contribute to augmented heat transfer, resulting in
faster flame spread [4, 5]. Both types of instabilities are
visible in the image of a flame developing over an in-
clined burner shown in Fig. 1.

A number of relevant studies on topside inclined
flame spread are summarized in [6]. Previous numer-
ical studies describe the flame shape, velocity and tem-
perature fields, and the mass burning rate [7, 8]. Studies
on upward flame spread have developed simplified the-
oretical models for steady laminar vertical flames [9].
Although no previous studies have addressed the stabil-
ity of these flows, a similar problem, the structure and
stability of the flow that develops over the topside of
an inclined heated plate, has been studied extensively
over the last fifty years. Early experiments [10, 11] and
theoretical analyses [12, 13] found two modes of insta-
bility, a vortex instability, characterized by stationary
Görtler-type streamwise vortices, and a wave instability,
characterized by Tollmein-Schlichting spanwise travel-
ing waves. As seen for flames in Fig. 1, these insta-
bilities develop to form streaks and waves of finite am-
plitude that interact in a nonlinear fashion, eventually
leading to a transition to turbulence. Early analytical
studies [12, 13] found that the flow became more unsta-
ble as the angle of inclination φ was increased from the
vertical. For small values of φ below a critical value of
φ ' 14 − 17◦, the wave mode was found to be domi-
nant; for larger angles, the vortex mode was found to be
dominant. While these early studies used the Boussi-
nesq approximation, recent analyses have considered
non-Boussinesq effects in describing the structure [14]
and stability [15] of the the flow over an inclined heated
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Figure 1: Top: steady streamwise streaks and traveling spanwise
waves are shown over a gas burner used to generate a flame over a
surface inclined 70◦ from the vertical with a very low ∼0.2 m/s cross-
flow. Bottom: (left) schematic of wave instability, (right) schematic
of vortex instability, modified from [16].

plate. The former [14] found that the flows over the
topside and underside of an inclined heated plate are
identical. The latter [15] found that, for the topside
configuration, the flow becomes increasingly unstable
as the value of the plate-to-ambient temperature ratio is
increased. When the ratio is increased above 1.8, the
wave mode becomes dominant for all φ. The present
work extends these previous non-Boussinesq studies to
cases in which density differences are due to a diffusion
flame burning the fuel vaporized from a semi-infinite
inclined surface with the oxygen in the surrounding air
atmosphere. In particular, we investigate whether the
instabilities in the flow can account for the observed ex-
perimental differences between topside and underside
flames.

2. General formulation

A description of a laminar flame burning over a semi-
infinite fuel surface inclined at an angle φ from the ver-
tical, shown in Fig. 2, must consider the continuity and
momentum equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v
∂t

+v·∇v = −
∇p
ρ

+
1
ρ
∇·[µ(∇v+∇vT )]+

(
1 −

ρ∞
ρ

)
g, (2)
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Figure 2: A schematic representation of the flame forming over the
topside or the underside of an inclined fuel surface. The coordinate
system is indicated for a topside flame; for the underside flame, the
y-coordinate points in the opposite, downward, direction.

where ρ, µ, and v represent the dimensional density, vis-
cosity, and velocity of the gas, and the subscript ∞ de-
notes ambient air properties. The flow is characterized
by small values of the associated Mach number, so that
the spatial variations of the pressure are much smaller
than the ambient value. In (2), p denotes the sum of the
pressure difference from the ambient hydrostatic value
and the isotropic component of the stress tensor. Carte-
sian coordinates are used to describe the flow, including
the streamwise coordinate x, the transverse coordinate
y, and the spanwise coordinate z, with corresponding
velocity components v = (vx, vy, vz). The gravity vector
is g = −g cos φ ex − g sin φ ey, where g is the magnitude
of the gravitational acceleration and the e’s are unit vec-
tors in the subscript direction. The differences between
the topside and underside flame are a result of the trans-
verse gravitational acceleration −g sin φ, negative on the
topside (φ > 0) and positive on the underside (φ < 0).

The reaction between the fuel and the oxygen in the
air is taken to occur according to a global irreversible
reaction F + sO2 −→ (1 + s)P + q′, where s and q′

are the mass of oxygen consumed and the amount of
heat released per unit mass of fuel burnt, respectively.
These thermochemical parameters appear in the equa-
tions below as S = s/YO2A and q = q′/(cpT∞), where
YO2A ' 0.232 is the ambient oxygen mass fraction, cp

is the specific heat at constant pressure, assumed to be
constant, and T is the temperature. Values of S , the
mass of air needed to burn a unit mass of fuel vapor, are
of order S ∼ 6 for alcohol fuels and S ∼ 15 for alka-
nes, while the ratio q/S is approximately q/S ' 7 for
all fuels of interest.

In the limit of infinitely fast reaction considered here,
the flame appears as an infinitesimally thin surface sep-

arating an oxygen-free fuel region from the surround-
ing fuel-free air. Following [16, 17] the problem is for-
mulated in terms of coupling functions that account for
non-unity values of the Lewis number of the fuel va-
por LeF. The description includes two different mixture
fractions

Z =
S YF − YO + 1

S + 1
and Z̃ =

S YF/LeF − YO + 1
S/LeF + 1

(3)

and a modified enthalpy

ξ =
T/T∞ − 1 + (q/S )(YO − 1)

TB/T∞ − 1 − q/S
(4)

with associated transport equations

ρ
∂Z
∂t

+ ρv · ∇Z =
1

Le
∇ · (ρDT∇Z̃) (5)

and
ρ
∂ξ

∂t
+ ρv · ∇ξ = ∇ · (ρDT∇ξ). (6)

Here YF and YO = YO2
/YO2A are, respectively, the mass

fraction of the fuel vapor and the normalized mass frac-
tion of the oxygen, Le = (S + 1)/(S/LeF + 1) is an ef-
fective Lewis number, DT is the thermal diffusivity of
the gas mixture, and TB is the boiling temperature of
the fuel. As discussed in [18], the effect of heat losses
by radiation, which has been neglected in writing (6),
could be incorporated approximately in the description
by lowering the value of q.

The conservation equations are supplemented by the
equation of state written in the low-Mach number form

ρ

ρ∞

T
T∞

=

[
YF

(
WA

WF

− 1
)

+ 1
]
, (7)

which accounts for the large density variations associ-
ated with the presence of the fuel vapor, with WF and
WA representing the molecular masses of the fuel and
air, respectively. The presumed power law

µ

µ∞
=

ρ

ρ∞

DT

DT,∞

=

(
T
T∞

)σ
(8)

with σ = 0.7 is used in the numerical integration for the
temperature dependence of the transport properties.

Vaporization of the liquid fuel is taken to occur at
the boiling temperature of the fuel with latent heat of
vaporization Lv. A dimensionless heat of vaporiza-
tion lv = [Lv + cl(TB − T∞)]/(cpT∞) is introduced to ac-
count for the energy required to raise the temperature of
the liquid fuel, with specific heat cl, from T∞ to TB.

The equilibrium condition associated with the in-
finitely fast reaction limit YFYO = 0 is used to solve (1),

3



(2), (5), and (6) supplemented by (7) and (8). Both re-
actants reach the flame with zero mass fraction, so that
the flame values of the mixture fraction variables are
Z = ZS = 1/(S + 1) and Z̃ = Z̃S = 1/(S/LeF + 1). Using
the equilibrium condition and the definitions (3) and (4)
provides

YO = 0, YF =
Z − ZS

1 − ZS

=
Z̃ − Z̃S

1 − Z̃S

, and

T/T∞ − 1 = (TB/T∞ − 1) ξ + (q/S )(1 − ξ) (9)

on the fuel side of the flame sheet, where Z̃ ≥ Z̃S, and

YF = 0, 1 − YO = Z/ZS = Z̃/Z̃S, and

T/T∞ − 1 = (TB/T∞ − 1) ξ + (q/S )
(
Z̃/Z̃S − ξ

)
(10)

on the air side of the flame sheet, where Z̃ ≤ Z̃S. Equa-
tions (9) and (10) give piecewise linear relations for the
evaluation of YF, YO, and Z in terms of Z̃, and of T in
terms of Z̃ and ξ.

To complete the problem, boundary conditions are
given in the farfield

vx = vy = p = Z̃ = ξ = 0

as (x2 + y2)→ ∞ for y , 0 (11)

and at the fuel surface

vx = ξ − 1 = 0

−ρDT

∂ξ

∂y
= αρvy

−ρDT

∂Z̃
∂y

= LeF ρvy(1 − Z̃)


at y = 0 for x > 0,

(12)

where α = lv/[(q/S ) + 1 − TB/T∞]. The condition ξ = 1
corresponds to T = TB at the fuel surface, where YO = 0.

3. Self-similar formulation for steady flames

Interest here lies in the slender boundary layer that
develops over the fuel surface at distances from the
plate leading edge x that are large compared with the
size δNS = [ν2

∞
/(g cos φ)] of the so-called Navier-Stokes

region [14]. An order-of-magnitude analysis of the
continuity and momentum equations provides the es-
timates δ = (ν2

∞
x)1/4(g cos φ)−1/4, uc = (xg cos φ)1/2,

and vc = (ν2
∞
g cos φ/x)1/4 for the variation with x

of the boundary-layer thickness δ and the associated
streamwise and transverse velocity components, uc and
vc. These values are used in writing dimensionless

Table 1: Fuel properties used in numerical integration

WF/WA lv θB LeF q/S S
Methanol 1.1 2.87 1.12 1.2 7.7 6.47
Ethanol 1.59 2.29 1.17 1.4 7.35 8.98
Heptane 3.46 1.14 1.24 1.8 7.0 15.2

conservation equations for the base flow. The solu-
tion is expressed in terms of the self-similar coordi-
nate η = y (ν2

∞
x/g cos φ)−1/4, the dimensionless tem-

perature, Θ(η) = T/T∞, and the stream function ψ =

ρ∞(ν2
∞

x3g cos φ)1/4F(η) related to velocity by

U = vx/(xg cos φ)1/2 = F′/ρ (13)

V = vy/(ν2
∞
g cos φ/x)1/4 = 1

4 (ηF′ − 3F)/ρ (14)

where ρ = ρ/ρ∞ and the prime is used to denote differ-
entiation with respect to η. The problem reduces to the
integration of (2), (5), and (6) written in the self-similar
form

[Θσ(F′/ρ)′]′ + 3
4 F(F′/ρ)′ − 1

2 (F′)2/ρ

+1 − ρ = 0 (15)

(ΘσZ̃′)′ + 3
4 LePrFZ′ = 0 (16)

(Θσξ′)′ + 3
4 PrFξ′ = 0 (17)

with boundary conditions F′ = Z̃ = ξ = 0 as η→ ∞ and
F′ = ξ−1 = 0 and 3/4PrΘ−σB F = ξ′/α = Z̃′[LeF(1−
Z̃)]−1 at η = 0, corresponding to (11) and (12).

The solution to (15)-(17), independent of the incli-
nation angle, is complicated by discontinuities in the
derivatives of the density and temperature at the flame.
In order to overcome this difficulty, the problem is split
into two domains separated by the flame surface η =

ηs. In each domain, the system of ordinary differential
equations is solved using a Chebyshev spectral collo-
cation method. The split domain introduces unknown
boundary conditions at ηs, which are solved iteratively
using a standard Newton-Raphson algorithm. The self-
similar base flow was solved using the transport, ther-
mochemical, and vaporization properties of methanol,
ethanol, and heptane, given in Table 1.

4. Solution for the steady base flow

Results for the base flow, including dimensionless
profiles of velocity, temperature, and density, are shown
in Fig. 3. The profiles, which differ considerably from
those obtained previously for the heated plate [14], ex-
hibit discontinuities in slope at the flame, which is lo-
cated at ηs = 6.9, 7.3, and 8.5 for methanol, ethanol,
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Figure 3: From top to bottom: dimensionless measures of streamwise
and transverse velocity, following (13) and (14), dimensionless tem-
perature, and dimensionless density as a function of η.

and heptane, respectively. Perhaps unexpectedly, differ-
ences in flame location between different fuels remain
relatively small, a result that can be attributed to can-
cellation of competing effects. The large LeF of heptane
indicates that it is less diffusive than the alcohols, which
would result in a flame that lies closer to the plate. On
the other hand, the amount of air needed to oxidize a
unit mass of heptane S is much larger than the corre-
sponding values for methanol or ethanol (shown in Ta-
ble 1), which would cause the heptane flame to lie far-
ther from the plate than the alcohol flames. The two
effects tend to cancel each other, with the result that the
heptane flame lies only slightly farther from the plate
than do the alcohol flames. The most significant dif-
ferences between the base flow of the heptane and al-
cohol flames are found in the density profiles, with the
heptane flame exhibiting larger density differences than
the alcohol flames, a result of the disparities in molecu-
lar weight. Although radiation is generally found to be
small in comparison to convection for small-scale lam-
inar flames [19, 20], future work should consider the
effects of radiation, which may be larger for heptane.
The selection of a smaller value of the heat release pa-
rameter q may lead to lower and more realistic flame
temperatures [18].

5. Formulation of the linear stability analysis

The temporal linear stability of the flow to wave and
vortex modes is investigated by introducing perturba-
tions into (1), (2), (5), and (6) at a point x = x0 some dis-
tance from the leading edge of the plate, such that x0 �

δNS. The characteristic values δ0 = [(ν2
∞

x0)/(g cos φ)]1/4

and u0 = (x0g cos φ)1/2 are used as length and velocity
scales to nondimensionalize the problem with δ0/u0 cor-
respondingly used as the time scale. Density and trans-
port properties are scaled with their relevant ambient
values. The self-similar profiles and their corresponding
derivatives (denoted by a prime) will be used to evalu-
ate the base flow. The ratio of the streamwise distance to
the local boundary-layer thickness defines the Grashof
number Gr = x0/δ0 = (x3

0 g cos φ)1/4ν−1/2
∞
� 1, the rel-

evant bifurcation parameter in the stability study. The
linearized equations for the quasi-parallel flow are ex-
pressed in terms of normal-mode perturbations

ei(kx̃+lz̃−ωt̃)
[
ρ̂, µ̂, p̂, v̂x, v̂y, v̂z, Ẑ, ˆ̃Z, ξ̂

]
(ỹ), (18)

involving the dimensionless variables x̃ = (x − x0)/δ0,
ỹ = y/δ0, z̃ = z/δ0, and t̃ = t/(δ0/u0). The coeffi-
cients k and l in the exponential factor are the dimen-
sionless streamwise and spanwise wave numbers, while
ω = ωr + iωi defines the frequency ωr and the growth
rate ωi of the perturbations. We anticipate two modes
of instability, a wave instability for which l = 0 and a
vortex instability for which k = 0 and ωr = 0.

As in previous work [15], the slow streamwise vari-
ation of the base flow and molecular transport effects,
terms in the equations not involving Gr, are accounted
for when writing the linearized equations, as is needed
for increased accuracy when the Grashof number is
not large. The introduction of normal modes into the
linearized equations leads to the following eigenvalue
problem

iGr(kU − ω)ρ̂ + [U/2 − (ỹ/4)U′ + DV]ρ̂ + [iGrkρ

−(ỹ/4)ρ′]v̂x + iGr(Dρ)v̂y + iGrlρv̂z = 0, (19)
[U(U/2 − (ỹ/4)U′) + U′V + 1]ρ̂ − (DU′)µ̂ + iGrkp̂

+[iGrρ(kU − ω) + U/2 − (ỹ/4)U′ + Θσ(2k2 + l2)]v̂x

+[ρVD − D(ΘσD)]v̂x + [iGrρU′ + k(DΘσ)]v̂y

+klΘσv̂z = 0, (20)
GrD p̂ + tan φρ̂ − ikU′µ̂ − ikΘσDv̂x + [Grρ(ω − kU)

+iΘσ(k2 + l2)]v̂y + i[ρ(DV) − 2D(ΘσD)]v̂y

−ilΘσDv̂z = 0, (21)
iGrlp̂ + klΘσv̂x + l(DΘσ)v̂y + [iGrρ(kU − ω)

+Θσ(k2 + 2l2)]v̂z + [ρVD − D(ΘσD)]v̂z = 0, (22)
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Z
′
[V − (ỹ/4)U]ρ̂ − (LePr)−1(DZ̃′)µ̂ − (ỹ/4)ρZ′v̂x

+iGrρZ′v̂y + [iGrρ(kU − ω) + ρVD]Ẑ

+(LePr)−1[Θσ(k2 + l2) − D(ΘσD)] ˆ̃Z = 0, (23)

ξ
′
[V − (ỹ/4)U]ρ̂ − Pr−1(Dξ

′
)µ̂ − (ỹ/4)ρξ′v̂x

+iGrρξ′v̂y + [iGrρ(kU − ω) + ρVD]ξ̂

+Pr−1[Θσ(k2 + l2) − D(ΘσD)]ξ̂ = 0, (24)

with homogeneous boundary conditions in the farfield

p̂ = v̂x = v̂y = v̂z = ˆ̃Z = ξ̂ = 0 as ỹ→ ∞ (25)

and on the vaporizing surface ỹ = 0

v̂x = v̂z = ξ̂ = 0, (26)

(1 − Z̃)(V ρ̂ + iGrρv̂y) − ρV ˆ̃Z

+(LeFPr)−1[(ΘσD) ˆ̃Z + Z̃
′

µ̂] = 0, and (27)

α(ρ̂V + iGrρv̂y) + Pr−1[(ΘσD)ξ̂ + ξ
′
µ̂] = 0 (28)

where the base-flow functions are evaluated at ỹ, and
symbols immediately following D are to be multiplied
by the eigenfunction prior to differentiation, as in [15].

The stability equations (19)-(24), with ρ̂, µ̂, and
Ẑ written as functions of ξ̂ and ˆ̃Z using (7)-(10),
are discretized using a Chebyshev spectral collocation
method. Upon discretization, the stability equations
are written as the discrete generalized eigenvalue prob-
lem Aq = ωBq for the complex eigenvalue ω, where
q = ( p̂, v̂x, v̂y, v̂z,

ˆ̃Z, ξ̂) and A and B are the discretized
matrices associated with the stability equations that are
dependent on k, l, Gr, and the base flow.

6. Results of the linear stability analysis

All modes are found to be stable at sufficiently small
values of the Grashof number. Above a critical value of
the Grashof number GrC, one of these modes begins to
exhibit a positive growth rate. The characteristics of that
mode and the GrC at which it becomes unstable deter-
mine the nature of the instability that initially develops
and the position along the inclined plate at which that
development occurs, for any given φ. The numerical
solution can be simplified for the vortex mode because
k = ωr = 0 allows tan φ to be scaled out of the normal-
mode equations by setting

(Ǧr, v̌, ρ̌, µ̌, Ž, ˇ̃Z, ξ̌)

= (Gr, v̂, ρ̂, µ̂, Ẑ, ˆ̃Z, ξ̂) tan φ, p̌ = p̂/ tan φ. (29)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.2

-0.15
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0
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0.1

k

Gr = 2.0
Grc = 3.9
Gr = 5.0
Gr = 10.0

i

Figure 4: Growth rate of the wave-mode instability for a heptane flame
as a function of wave number at φ = 0 (vertical) for increasing Gr.
Below ωi = 0, the flame is stable; for values of ωi > 0, the flame is
unstable for the corresponding wave numbers.

As a result, the vortex mode can be solved indepen-
dently of φ to determine the critical value ǦrC of Ǧr,
which in turn provides the expression

GrC = ǦrC/ tan φ (30)

for the inclination dependence of the vortex mode. This
type of simplification is unavailable for the wave mode.

The linearized normal-mode equations are solved for
a given wave number and Grashof number to determine
the growth rate of the instability. As Gr is increased, the
flame eventually becomes unstable for one wave num-
ber; as it is further increased, it becomes unstable for
a larger range of wave numbers. Figure 4 shows this
trend for a vertical laminar heptane flame, where the
wave mode is dominant. For low Gr, the flame is stable
for all wave numbers. At GrC = 3.9, the flame becomes
unstable for k = 0.29. As Gr is further increased, a
larger range of k becomes unstable.

The dependence on inclination angle of the criti-
cal Grashof number of the wave and vortex instability
modes is shown in Fig. 5 for both the topside (right)
and underside (left) flame. The results for the vortex
mode correspond to the prediction (30), with Ǧrc = 3.33
and 26.48 for the topside and underside, respectively.
Since the critical value of the Grashof number diverges
as φ → 0, the flame for the vertical orientation is sub-
ject only to the wave-mode instability, with GrC = 3.9
for φ = 0◦. The vortex mode curves are plotted only
for angles below φ = 80◦, above which the surface is
near-horizontal. For the flame in the horizontal orienta-
tion, the pressure differences across the boundary layer,
negligible in the self-similar inclined analysis, become
significant.
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Figure 5: Variation of GrC with inclination angle for the wave mode
and vortex mode for a topside heptane flame and an underside heptane
flame. For the vortex mode, ǦrC = 3.33 and 26.48 for the topside and
underside, respectively.

For the topside flame, the wave-mode results can be
calculated only as far as φ = 47.22◦, for which GrC be-
comes exactly GrC = 1. For larger values of φ, the nu-
merical analysis was unable to find stable conditions,
regardless of the value of Gr. This breakdown is at-
tributed to the limitations of the slender-flow analysis,
in that, for Gr < 1, the terms of order Gr−2 and higher
that were discarded in writing the stability problem be-
come larger than those retained.

Figure 5 indicates that the underside flame is clearly
more stable than the topside flame, for both instabil-
ity modes. The wave mode is the first bifurcation for
the topside and also for most values of φ of the un-
derside. While GrC decreases monotonically with in-
creasing |φ| for the vortex mode, the value of GrC for
the wave mode decreases for the topside flames, but in-
creases for underside flames. Unlike previous work on
the inclined heated plate [15], the topside flame exhibits
no crossover angle, at which the dominant instability
switches modes. A crossover angle does occur, how-
ever, for the underside flame at φ = −60◦; at angles
closer to the horizontal, the vortex mode dominates.

7. Discussion

The results presented for the stability of the flame
may be compared with the results for the stability of
the flow over an inclined heated plate [15]. In that anal-
ysis, the flow is found to become increasingly unsta-
ble as the plate temperature increases. For example,
at an inclination angle of 10◦ from the vertical, as the
plate-to-ambient temperature ratio was increased from
1.03 to 3.0, the GrC dropped from approximately 75 to

15. The study did not consider larger temperature ra-
tios. Nonetheless, the trend indicates that GrC for larger
temperature ratios would be of the same order of mag-
nitude as that found here for the stability of the inclined
topside flame.

The differences in the stability of the flame forming
on the topside as opposed to the underside of an inclined
fuel surface can be investigated by considering the phys-
ical mechanisms governing the growth of instabilities.
The vortex mode instability is similar to the Rayleigh-
Bénard instability; the flame becomes unstable because
of perturbations resulting from density differences. This
effect is larger on the topside than on the underside be-
cause above the flame there is a large unstable region,
similar to the situation found for the hot plate, while the
flame on the underside possesses only a thin unstable
region, confined between the flame and the fuel surface.

The wave instability is associated with vorticity pro-
duction in the spanwise direction resulting from ei-
ther buoyancy-induced or baroclinic-torque effects. The
magnitude of the vorticity production and whether it
enhances or suppresses a perturbation influences the
stability of the flame. The equation for the vorticity
perturbation Ωz has two production terms, the baro-
clinic torque Γb = −∇(1/ρ) × ∇p, and the buoyancy-
induced torque Γg = −∇(ρ/ρ2) × (ēx + tan φēy), where
ēx and ēy are the unit vectors in the x and y direc-
tions, respectively. In normal mode form, the vorticity
can be written as Ω̂z = −kv̂y − Dv̂x, and the produc-
tion terms as Γ̂b = −(1/ρ2)(ikρ′ p̂ + Gr−1ỹρ′Dp̂/4) and
Γ̂g = −(Gr−1/ρ2)[(ik tan φ+2ρ′/ρ)ρ̂−Dρ̂]. The effects of
buoyancy-induced vorticity are dominated by the sign
of tan φ. As the fuel surface is tilted from the vertical,
the topside becomes incrementally less stable, while the
underside stabilizes. The stabilizing and de-stabilizing
contributions of both baroclinic and buoyancy-induced
torque should be analyzed in future work following the
method presented in [21].

8. Conclusions and future work

The results of the linear stability analysis indicate
that instabilities in the flame may contribute to some of
the morphological differences observed between flames
forming on the topside and the underside of an inclined
fuel surface. The underside flame is seen to be more
stable than the topside flame, which is consistent with
experimental observations. Nonetheless, the quantita-
tive results must be taken with caution because of the
resulting order-unity values of GrC obtained for the top-
side flame. For a more accurate quantification of the
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flame stability, a model would need to take into account
the spatial development of the instabilities. The present
analysis is a first step in understanding the differences
between topside and underside flames. Future work will
compare results from the theoretical analysis with ex-
periments to test the predictions and assess the validity
of the underlying assumptions. New experiments are
in progress because of the paucity of experimental re-
sults. It is possible that the instability may help to trig-
ger liftoff of the flame from the top surface of the plate,
a phenomenon that has been seen experimentally. Com-
parisons of instability predictions with experimentally
measured liftoff conditions can ultimately indicate how
helpful the stability analyses can be in estimating when
liftoff may occur.
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