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Abstract 

It is shown how a formally exact classical analog can be defined for 

a finite dimensional (in Hilbert space) quantum mechanical system. This 

approach is then used to obtain a classical model for the electronic degrees 

of freedom in a molecular collision system, and the combination of this with 

the usual classical description of the heavy particle (Le., nuclear) motion 

provides a completely classical model for the electronic and heavy particle 

degrees of freedom. The resulting equations of motion are shown to be 

equivalent to describing the electronic degrees of freedom by the time­

dependent Schrodingerequation, the time dependence arising from the classical 

motion of the nuclei, the trajectory of which is determined by the quantum 

mechanical average (i.e., Ehrenfest) force on the nuclei. Quantizing the 

system via classical S-matrix theory is shown to provide a dynamically 

consistent description of non-adiabatic collision processes; i.e., different 

electronic transitions have different heavy particle trajectories and, for 

example, the total energy of the electronic and heavy particle degrees of 

freedom is conserved. Application of this classical model for the electronic 

degrees of freedom (plus classical S-matrix theory) to the 2-state model 

problem shows that the approach provides a good description of the electronic 

dynamics. 
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I. Introduction 

1 2 
Recent work' on the semiclassical theory of electronically non-adiabatic 

collision processes has emphasized the need for a model that treats all 

degrees of freedom":'-heavy particle (Le., translation, rotation, and 

vibration) and electronic--on the same dynamical footing. It has been 

shown
3 

that semiclassical approaches which fail to do this can miss 

important dynamical features in these collision phenomena. 

The most straight-forward formulation that combines all degrees of 

freedom in a consistent way is a completely quantum mechanical treatment, 

i.e., the coupled-channel Schrodinger equation4 expanded in the rovibronic 

states of the collision partners; although this is obviously correct, it 

is often too difficult to be useful. On the other hand, it is usually 

feasible, and usefully accurate, to describe all the heavy particle degrees 

of freedom by classical mechanics, by computing classical trajectories on 

a potential energy surface, but to be dynamically consistent it is then 

necessary to treat the electronic degrees of freedom also by classical 

mechanics. This does not mean that one must treat all the electrons of the 

molecular system as classical particles orbiting about the nuclei, but that 

one must construct a classical model for the relevant aspects of the 

electronic degrees of freedom. 1 2 Previous papers' on this topic have shown 

how this can be done for several special cases and have also reported encouraging 

results of numerical calculations applying theSe models. 

The purpose of this paper is to present and explore another way of. 

constructinga classical model for the electronic degrees of freedom. Section 

II develops this classical analog, and Section III discusses its general 

" 
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properties. In a number of aspects it is seen that the classical analog 

is formally exact, i.e., involves no approximations at all. When coupled 

with the classical motion of the nuclei, it is seen that the overall model 

5-7 is equivalent to one that has been used by several other workers : the 

electronic motion is described by the time-dependent electronic Schrodinger 

equation, where the time-dependence comes from the classical motion of the 

nuclei, the trajectory of which is determined by the quantum mechanical 

average of the force on the nuclei. 5-7 However the boundary conditions usually 

applied to these equations are dynamically inconsistent; e.g., the trajectory 

of the heavy particle degrees of freedom is independent of the final electronic 

state, a clearly unphysical situation. By invoking the classical interpretation 

of these equations and then applying the boundary conditions of classical 

S-matrix theory, however, a dynamically correct theory is achieved. Finally, 

Section IV considers the 2-state example to show that the classical electronic 

Hamiltonian plus classical S-matrix theory provides a good description of the 

purely electronic aspect of the model . 
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II. The Classical Analog. 

Consider a molecular collision system having F electronic states, for 

which the quantum mechanical Hamiltonian operator is 

l? 
H = 2~ + t Ik> Hk k' (x) <k'i 

k, k =1 ,-

where x denotes the coordinates of all the heavy particle degrees of 

freedom and f their conjugate momentum operators, and Hk,k'(~) is the 

"diabatic" electronic Hamiltonian matrix. For simplicity of notation, 

the nuclear coordinates ,x are assumed to be scaled so that the mass is 

the same for all of them. 

(2.1) 

For the moment we drop the nuclear kinetic energy term in Eq. (2.1) 

and let x = x(t) be some fixed trajectory; the time-dependent electronic 

Hamiltonian operator is then 

If the time-dependent electronic wavefunction ~(t) is expanded in the 

electronic basis {Ik>}, 

the time-dependent coefficients {ak(t)} satisfy the usual first order 

equations (with h = 1): 

(2.2) 

(2.3) 

(2.4) 

'. 
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which are derived in the standard way from the time-dependent Schrodinger 

equatiop.. 

The real variables {nk} and {qk} are defined in terms of the complex 

amplitudes {ak} by 

and the function He~(~,s;t) is defined as the expectation value of the 

operator He~(t), 

(2.5) 

-whe~e hlk} and {elk} are taken- here as independent variables. Considering 

He~(~,s;t) in Eq. (2.6) as the classical electronic Hamiltonian function 

and {nk} and {qk} as classical action-angle variables,8 the time-dependence 

9 
of nk(t) and qk(t) is given according to Hamilton's equations by 

~k(t) 

aHe~(~'s;t) 
i)n

k 
(2. 7 a) 

(2.7b) 

The remarkable, and most important fact, is that these classical equations 
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of motion, Eqs. (2.7) and (2.6), are identical to Eq. (2.4), the time-

dependent Schrodinger equation, with {ak(t)} and {~(t), qk(t)} related by 

Eq. (2.5); i.e., the F complex equations of Eq. (2.4) are identical to the 

2 F real equations of Eq. (2.7). This establishes an exact correspondence 

between the F-state quantum system with the Hamiltonian operator of 

Eq. (2.2) and the classical system of F degrees of freedom with Hamiltonian 

function of Eq. (2.6). 

The complete classical Hamiltonian function for the collision system 

is now obtained by adding the classical nuclear kinetic energy to H n(n,q) eN _ _ 

and by letting x by independent variables; this gives the complete classical 

Hamiltonian as 

(2.8) 

9 Hamilton's equations then determine the time evolution of all the coordinates 

and momenta, 

· ClH x. (t) = -- = p/~ 
1 Clp. 

1 

(2.9a) 

· ClH ~ , i(qk-qk') Cl~,k'(~) 
p. (t) = - Clx. = - Jnknk , e 

1 Clx. 
1 k,k =1 1 

(2.9b) 

• ClH tIY . i(qk-qk') 
qk (t) = -- = Re[e Hk,k' (~)] Clnk k=l nk 

(2.9c) 

• ClH ~ '4/nknk,' 
i(qk-qk' ) 

nk(t) = --- = Im[e ~,k'(~)] . Clqk k =1 . 
(2.9d) 

Eqs. (2.8)-(2.9) are the semiclassical model that results from this 

approach: heavy particle degrees of freedom (p,x) and electronic degrees 
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of freedom (~,g) are described consistently by classical mechanics. 
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III. Discussion 

There are a number of observations one can make concerning the model 

developed in the previous section. 

a. Relation to "Ehrenfest" Model 

It is interesting to see that Eqs. (2.9) are equivalent to a semiclassical 

5-7 approach that several other workers have advocated. The equations are 

usually written in terms of the amplitudes {ak(t)}, however, rather than 

the action-angle variables {nk(t)~qk(t)}, and the equations are rationalized 

as follows: the equations for the electronic amplitudes are the time-

dependent Schrodinger equation, 

~k(t) = -i ~ 
kl 

(3.la) 

where x(t) is the classical trajectory determined from the forces implied by 

. 10 
Ehrenfest's theorem, 

x(t) = - <1jJ(t)'1 
dHeR,(~) 

11jJ(t» p - II dX -

-&' * dHklk'(~) ak,(t) (3.lb) = ak(t) dX , 

With Eq. (2.5), it is easy to show that Eqs. (2.9) and (3.1) are equivalent. 

The primary problem with this semiclassical approach has to do with the 

boundary conditions. The initial conditions for the heavy particle degrees 

,. 
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(3.2) 

are usually chosen via the quasiclassical prescription, and for the amplitudes 

where kl is the initial electronic state. 

(3.3a) 

The final value of a
k 

(t) then 
2 

determines the kl ~ k2 electronic transition probability, 

(3.3b) 

with tl ~ -00 and t2 ~ +00. The problem is that Eqs. (3.1) with the boundary 

conditions of Eqs. (3.2)-(3.3) determine a single, unique classical trajectory, 

independent of the final electronic quantum number k2 , whereas each electronic 

transition kl ~ k2 should have its own "best" trajectory (ortrajectoriesl).11,12 

The final nuclear kinet ic energy, for example, is independen,~ of the final 

electronic state of the system, a clearly unsatisfactory situation. From 

this point of view there is no way of overcoming these fundamental inconsistencies 

of the model. In Section IIIg, however, it is shown how these defects of the 

model can be overcome by thinking in terms of the equivalent classical analog, 

Eqs. (2.8)-(2.9), rather than Eq. (3.1), and then "quantizing" the system within 

. 12 
classical S-matrix formalism. 
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b. Generalization 

The classical analog developed for the electronic Hamiltonian can be 

defined quite generally. For any operator A defined on the F .... dimensional 

Hilbert space {Ik>},k = 1, ... , F, its classical analog A(~,S) is defined 

by 

A(n,q) = - -

and one notes that A(~'9) is real if A is hermitian. One can also show 

(see Appendix A) that if A(~,S) and B(~,S) are the classical analogs of 

operators A and B, then the classical analog of the commutator [A,B] is 

equal to the Poisson bracket13 of A(n,q) and B(~,g), i.e., 

i{A(n,q),B(n,q)} = [A,B](n,q) 

The equivalence of Eqs. (2.9) and (3.1) is a special case of this more 

general relation. 

It is also shown in Appendix A that a quantum mechanical basis set 

transformation {Ik>} -+ {IK>} corresponds in general to the classical 

(3.4) 

(3.5) 

. 1 f . 14 ( ) canon1ca trans ormat1on ~,S-+ (~,g), where the old and new classical 

variables are related by 
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-iq 

~e kJr\ Ik> 
-iQ L:e kIN;. IK> 

K 

so that 

-iQ 
e KJN;= 

-iq Le k~ 
k 

<Klk> (3.6a) 

or inversely 

-iq -iQ 
e k ~ = ~e K IN;. 

K 
<kIK> (3. 6b) 

An example of this is the transformation from the "diabatic" representation 

of the Hamiltonian in Eq. (2.8) to the adiabatic representation, the basis 

set that diagonalizes He~ at fixed x. If (N,Q) are action-angle variables 

corresponding to these adiabatic electronic states, then it is shown in 

Appendix B that the classical Hamiltonian is given in the adiabatic 

representation by 

2 
H(£,~,~,g) = ~~ + £.~(~,g;x)/~ + 1~(~,g;~)12/2~ 

(3.7) 

where 

F(N,Q;x) (3.8) 
.................... 
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!K,K'(~) and EK(~) are the adiabatic coupling elements and the adiabatic 

eigenvalues, respectively. 

c. Semiclassical Eigenvalues. 

Another general consequence of the canonical transformation property 

of Eq. (3.~ is that the semiclassical eigenvalues of the classical analog 

of a Hamiltonian--e.g., H(~'9) of Eq. (2.6) for fixed ~--are identical to 

the eigenvalues of the matrix {Hk k'}' i.e., to the quantum mechanical , 
eigenvalues. 

To see this, let the basis {IK>} in Eq. (3.6) be the eigenvectors of 

{Hk k'}' i. e., the eigenstates of the quantum Hamiltonian. The classical , 
Hamiltonian is expressed in terms of the new variables (N,Q) by using Eq. 

(3.6b): 

L: Jnknk : 
k,k' 

t;, , 
L JNKNK,' 
K,K' 

~ JNKNK,' 
K,K' 

(3.9) . 

But since a_ is diagonal, 
-~,K' 

l1<,K' = oK K' EK , 
(3.10) 

Eq. (3.9) becomes 

(3.11) 
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The semiclassicaleigenval~es are obtained by requiring the "good" action 

variables {N
K

} to be integral, and since conservation of probability (see 

next section) requires that they sum to unity, 

(3.12) 

this means all but one of the action variables must be zero, and the non-zero 

one must be unity. These conditions, with Eq. (3.11), show that the semi-

classical eigenvalues are {E1<}' the quantum mechanical ones. 

d. Conservation of Probability. 

It is quite straight-forward to show that the classical Hamiltonian of 

Eq. (2.8) conserves the total electronic probability, i.e., 

d 
dt 

(3.l3) 

so that only (F-l) of the F variables {~} are independent. It is thus 

possible to make a canonical transformation to a new set of variables, one 

of which is a conserved and thus time-independent quantity. 
, 

The new variables ink} are defined by . 

, 
n 

1 

2, ••. , F 

(3.14a) 

(3.l4b) 
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14 
and the generating function which effects the transformation (~,S) + (~' ,g') 

is 

15 
The transformation relations 

, 
qk = 

n
k 

(3.15) 

aF2(~'~') 

an~ 
(3.l6a) 

aF2(S'~') 

aqk 
(3.l6b) 

reproduce Eqs. (3.]4) and then lead to the following definition of the new 

angle variables: 

The Hamiltonian of Eq. (2.8), expressed in terms of the new variables 

(~'.g'), is independent of q~, so that n~ is time-dependent and appears 

in the Hamiltonian only as a parameter. Since the initial conditions 

of Eq. (3.3) correspond to n1 baving the initial value 1, i.e., 

(3.l7a) 

(3.l7b) 

and since this value is conserved, one concludes in general that conservation 
, 

of probability implies that nl should be set to 1. 

• 
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e. Example: Two States. 

It is illustrative to see the specific form of the classical electronic 

Hamiltonian function for the simplest case F = 2. Eq. (2.6) is 

(3.18) 

where the ~ dependence is not denoted explicitly and where ~,k' is assumed 

real so that H12 = H2l . In terms of the new variables (n' ,q') of Eqs. 

(3.14) and (3.17), 

, , , 
n

l 
n l -n2 = l-n2 

, 
n2 = n2 

and 

, , 
so that Eq. (3.18) becomes a system with only one degree of freedom (n2 ,q2) -

(n,q), 

(3.19) 

which one recalls is identical to the form obtained for the two state case 

1 
by Miller and McCurdy on more heuristic grounds. 

f. A 3-State Example. 

For F > 2 the classical analog developed in this paper provides a 

different classical model for the electronic degrees of freedom than the 

1 2 
ones suggested earlier.' The case of a P-state atom A colliding with a 
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1 closed shell E diatomic molecule Be is a 3-state system, corresponding to 

the unpaired p-orbital of the atom having projection m = -1, 0 or +1. 

1 For fixed nuclear positions, the diabatic electronic matrix has the form 

-1 

-1 

[H ,] = m,m o 

+1 

o 

H 
-i J..!:. 
·R 

H zz 

H 
iJ..!:. 
12 

+1 

(3.20) 

We denote the three action variables by n+l = n+, nO' and n_l - n_, rather 

than nl , n2 , and n
3

, and as discussed above, only two of them are independent; 

e.g., we take nO - l-n+-n_. It is not hard to show that Eq . .(2.6), with the 

transformations of Eqs. (3.14) and (3.17) to eliminate (no,qO)' gives the 

classical analog of this Hamiltonian matrix as 

= (n++n_)H + (l-n -n )H + - zz 

- J2n (l-n -n j H sinq+ + + - yz 
(3.21) 

The classical analogs of the three components of electronic orbital angular 

momentum ar~ also needed in order to construct other terms in the Hamiltonian 

(e.g., spin-orbit and coriolis coupling), and since their matrices are 

(3.22a) 
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(i:~ 
i/12 

(Ly)m,m' = 0 

-i/12 

G~ 
1/12 

(L) , = 0 
x m,m 

1/./2 

the following 

n -n + -

expressions 

i:~) 

1:12) 

for their classical analogs: 

L (n+,n ,q+,q ) = r2 n (l-n -n ) 'sinq - J2n (l-n -n j sinq_ y _ _ V + + _ + _ +_ 

(3.22b) 

(3.22c) 

(3.23a) 

(3.23b) 

(3.23c) 

Eqs. (3.21) and (3.23) clearly constitute a different classical model 

for the electronic states of the A(P) + BC system than the one obtained 

I , 1,2, h' ., f d f f d h h l' ear ler ln t at lt conslsts 0 two egrees 0 ree om w ereas t e ear ler 

one involved only one degree of freedom. Because of the many desirable 

features of the classical analog that have been discussed in this paper, we 

feel that the above model will probably be a more accurate model than our 

earlier one, but this must be tested by calculations. 

g. Classical S-Matrix. 

f h 1 11 k 5- 7 ,. fl' So ar we ave added litt e to the we - nown approxlmatl0n 0 so vlng 

the time-dependent Schrodinger equation along the classical path deter~ined by 

the average (i.e., Ehrenfest) force, other than presenting a new "classical" 

way of looking at it. Here, however, we show how the principal defect of 

the model, as discussed at the end of Section IIIa--i.e., that a single 
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trajectory determines all electronic transitions, rather than each transition 

having a different trajectory--can be overcome by using this new classical 

interpretation. One thinks in ~erms of the classical analog, Eqs. (2.8)-(2.9), 

rather than Eq. (3.1), and "quantizes" the classical-system within the frame­

-12 work of classical S-matrix theory. 

To describe the specific k1 ~ k2 electronic transition one thus needs 

to integrate the classical equations of motion Eq. (2.9) with the initial conditions 
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nk (t
1

) = <5 k,k
1 

(3. 24a) 

qk(t
1

) = ? (3.24b) 

where the F initial angle variables {qk(t
1

)} are chosen so that the final 

action variables {nk (t 2)} are 

n k (t2) = <5 k,k
2 

(3.24c) 

The electronic transition probabi1ity is then given, for example in the 

completely classical version of this theory, by the determinant of the 

Jacobian of the final action variables with respect to the initial angles: 

= [(2n)F ,dn(t2), -1 
d~(t ) ] 

1 
(3.24d) 

If more than one trajectory satisfies the boundary conditions of Eq. (3.24), 

then the transition probability also involves the differences in the action 

integrals for the trajectories (cf. Section IV). 

For the case of two electronic states, for example, the boundary conditions 

for the 1 ~ 2 transition are 
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with tl ~ _00 and t z ~ +00. The boundary conditions for the heavy particle 

lZ degrees of freedom are chosen as in conventional classical S-matrix theory, 

15 
or one may want to "partially average" over them in which case they would 

be chosen by the quasiclassical prescription. 

It is clear that these boundary conditions based on classical S-matrix -

theory provide a dynamically consistent description of the 

electronic transition: different electronic transitions involve different 

classical trajectories, and since the classical Hamiltonian of Eq. (Z.8) 

conserves the total energy of the system, it is clear that energy conserva-

tion is correctly obeyed; e.g." for the trajectory or trajectories determined 

by the boundary conditions of Eq. (3.24) the nuclear degrees of freedom will 

gain (or loose) the amount of energy lost (or gained) by the electronic 

transition. It is also clear from classical S-matrix theory that the 

electronic transition probability will be microscopically reversible. 

There is a flaw, however, in the model as it stands: with the Hamiltonian 

of Eq. (3.28) and the boundary conditions of Eq. (3.24), the ~irial action 

variables {n
k

(t
2

)} are actually independent of the initial angle variables 

{qk(t
l

)}, so that one cannot satisfy 8qs. (3.24) by varying them. (One can 

see this most easily by referring to the equivalent time-dependent Schrodinger 

equation, Eqs. (2.3)- (2. 5); since all the initial amplitudes {ak (t l )} are zero 

except for k = k
l

, the final values of the amplitudes cannot depend on the 

Also, qk (t
l

) appears as an overall phase 
1 
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factor in the total wavefunction, so nothing can depend on it either.) This 

defect of the model is corrected by invoking the ubiquitous Langer-type 

modification to the electronic Hamiltonian, Le., by adding "~" to all the 

action variables {nk}. The electronic Hamiltonian then becomes 

(3.25) 

but this also is not totally satisfactory because it changes the adiabatic 

electronic eigenvalues; i.e., in terms of the adiabatic action-angle 

variables (Nk,Qk) this Langer-modified Hamiltonian is 

(3.26) 

because adding "~" to all nk's has the effect of adding "~" to all NK's. 

Thus setting NK = OK K in Eq. (3.26) does not give the adiabatic eigenvalue I 

, ' I 
EK (x). This problem is easily remedied, however, by subtracting the term 

I -

from Eq. (3.26), so that the desired form of the adiabatic Hamiltonian is 

recovered: 

(3.27) 

This term that is subtracted from the Hamiltonian is a constant so far as 

the electronic action-angle variables are concerned and thus does not 
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change the electronic dynamics. It must also be subtracted from the 

Hamiltonian in the diabatic representation, Eq. (3.25), and since 

1 ~ ) 1 ( _1 
2 ~ EK(~ = Z tr ~e~(x» - Z 

subtracting this term from Eq. (3.25) gives 

F 

~ Hk,k(x_) f="l 

F 

+ ~ 
k,k'=l 

I. 1 ' i(qk-qk') 
v(nk +z)(nk , +1) e ~,k' (~) 

k#k' (3.28) 

Eq. (3.28) is the final form of the Langer-modified electronic Hamiltonian, 

and one notes that the above analysis has the simple effect of making the 

Langer modification only in the off-diagonal terms. As noted, it still gives 

the correct semiclassical eigenvalues, i.e., it is given in adiabatic 

representation by Eq. (3.27). The complete Hamiltonian for the collision 

system is obtained by adding the nuclear kinetic energy 

2 

H(~,~,~,~) = ~ + He~(~'~;~) (3.29) 

with He£ of Eq. (3.28). It can now be used in a conventional classical 

S-matrix treatment which, as discussed above, allows electronic and heavy 

particle degrees of freedom to interact so that different electronic 

transitions have different heavy particle trajectories and conserves the 

total energy correctly for all transitions. 
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IV. Test of the Semiclassical Electronic Transition Probability. 

It is clear frotn the discussion in Section IIIg that the Langer-modified 

classical electronic Hamiltonian [Eq. (3.28)], used in conjunction with 

classical S-matrix theory, treats the coupling between heavy particle motion 

and electronic degrees of freedom in a consistent way; i.e., different 

electronic transitions have different heavy particle trajectories and, for 

example, the heavy. particle degrees of freedom gain or loose energy to 

compensate for the change in electronic energy. As discussed in Section 

IlIa, this is not the case with conventional classical path models, even 

those that use the classical path determined by the Ehrenfest force. 

There is a price that has been paid for the achievement of this dynamical 

consistency, however, namely that the electronic degrees of freedom are 

described by classical rather than quantum mechanics. Therefore although 

this approach describes the electronic and nuclear dynamics more consistently, 

it provides a cruder description of the electronic degrees of freedom them-

selves. An important question, therefore, is how well the classical/semi-

classical model for the electronic degrees of freedom can describe the 

purely electronic aspect of the process, i.e., the electronic transition 

probability. A simple test of this particular aspect of the model can be 

made by ignoring the nuclear degrees of freedom and con$idering just the 

time-dependent electronic problem. 

In this section we thus consider the time-dependent 2-state electronic 

problem, the goal being to see how well the classical model for the 

electronic degrees of freedom (with classical S-matrix theory) can describe 

the electronic transition probability. For two states the Langer-modified 

classical Hamiltonian of Eq. 0.28) is 
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(4.1) 

and using conservation of probability to eliminate n1 as in Section IIId 

(cf. Eq. (3.19» gives 

He.R.(n,q;t) 

(4.2) 

To construct the 1~2 electronic transition probability one integrates 

Hamilton's equations of motion, 

aH 
q = an 

with initial conditions 

cosq 

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 

The values of n(t) and q(t) at the final time t2 are denoted n2(q1) and 

q2(ql)' and one also needs th~ action integral ~, 
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t2 

~(q1) =JC dt [-q(t) n(t) - H(n(t),q(t);t)] 
t1 

which can also be computed by 

(4.5a) 

(4.5b) 

IfqI and qlr are the two roots (as is typically the case) of the equation 

then the primitive classical transition probability is given by 

P CL = P + P 
2+1 r II (4.6a) 

where 

(4.6b) 

with q1 = qr or qlr· 

At the completely classical level, however, it is usually better to 

average the primitive classical result over an integer width about the 

final quantum number; this gives the quasic1assica1 or "histogram" result, 

QC 
l+! 

1 ~q1 
P2+l - /}n2 =--

dn 2lT 
2lTl~1 2 ql 

(4.7a) 

where~ql is the increment of the 2lT-length interval of q1 for which 

(4.7b) 
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For the two examples considered below it turns out that 

PI = Pn (= p) 

and in this case the uniform semiclassical approximation to the transition 

probability takes the simple form 

usc C1 2 
P2+l = 4pn VZ Ai(-z) 

where Ai is the regular Airy function and 

z = (1 b,¢)2/3 
4 . 

b,¢ ¢(qrr) - ¢(qr) 

q 

= -~~ql q2(ql) n2'(ql) 
qr 

a. Landau-Zener Model 

(4.8a) 

(4.8b) 

(4.8c) 

We consider first the Landau-Zener model, for which the electronic 

Hamiltonian matrix is 

(4.9) 

and the time interval is tl -+- _00, t2 -+- +00. This model describes the well-

known curve-crossing situation and is thus an important example to consider. 
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Integrating the classical equations of motion with this Hamiltonian 

gives 

(4.l0a) 

(4.l0b) 

where p is the parameter 

2 
2'ITH12 

p = 1 - exp[- IFI] (4.l0c) 

-and where ql and q2 differ from ql and q2 by irrelevant constants. The 

action integral ¢ is computed by integrating Eq. (4.5b) numerically. The 

correct quantum mechanical transition probability is given by 

P QM = P 
2+1 

where p is the parameter defined by Eq. (4.l0c). 

(4.11) 

Figure 1 shows the primitive classical (CL), quasiclassical (QC), and 

uniform semiclassical (USC) results (computed from Eqs. (4.6)-(4.8) with 

Eq. (4.10» compared to the correct quantum mechanical (QM) result, as a 

function of the parameter p. The primitive classical result shows the 

typical singularities which mark the transition between "classically 

allowed" and "classically forbidden" regions. The quasiclassical approxi-

mation smoothesout these singularities and in general provides a better 

description at the completely classical level. 
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The uniform semiclassical approximation of Eq. (4.8) is in very good 

3 agreement with the quantum mechanical result for all values of p < 4. 

Figure 2 shows that this good agreement persists into the classically 

forbidden region where p « 1. 

- 3 For p > 4' the Airy uniform approximation breaks down because the 

quantum number function of Eq. (4.10a) becomes too flat. In this case, 

however, the Bessel uniform approximation15 ,16 is appropriate and gives 

(4.12) 

As seen in Figure I, this uniformizationworks well for large transition 

probabilities. 

b. General Two-State Model 

It is interesting to show that the results obtained above for the 

Landau-Zener model are actually true for any two-state model. 

To see this we note that the initial and final values of the amplitudes 

{a
k

} are related by an S-matrix, 

or written out explicitly for the 2-state case, 

Invoking the relation [Eq. (2.5)] between the amplitudes {ak} and the 

action-angle variables {nk,qk} gives 

(4.13) 
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and if conservation of probability is utilized this becomes 

- iQ 2 -iQ -iQ -iq 
/1-n2' e sn/1-n1' e 1 + s12;;; e 

1 1 = e 

- iQ2 - iq2 -iQ -iQ -iq 

Fz S21/1-n1' e I + s22~ e 
I 1 e e = e 

where here 

n1 n(t l ) 

n2 = n(t
2

) 

q1 = q(t
1

) 

q2 q(t
2

) 

Q1 = Q(t l ) 

Q2 = Q(t2) 

and Q(t) is the angle variable conjugate to the conserved quantity n1 (t) + 

n2(t). Forming the ratio of the above two equations eliminates the 

initial and final values of Q, 

(4.14) 
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The 2 x 2 S-matrix is unitary and symmetric and can in general be 

parameterized by two angles and a probability, 

s = Jl-p 22 . 

. . . i(Cll -kl2) /2 
S12 = S2l = 1# e 

(4.l5a) 

(4.l5b) 

(4.l5c) 

and we note that the parameter p is the quantum mechanical 1 ~ 2 transition 

probability, 

(4.16) 

Using Eq. (4.15), and also making the Langer modification, converts Eq. 

(4.14) into 

(4.17) 

where 

- -From Eq. (4.17) one can determine n2 and q2 in terms ofql and n1 , 

,.' 
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(4.18a) 

(4.18b) 

and setting n
l 

= 0 gives Eqs. (4.10a) and (4.10b) of the Section IVa. Since 

the functions n2 (ql) and q2(ql) determine the classical and semiclassical 

transition probabilities, the comparisons shown in the previous section will 

thus be the same for any two-level system. 
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. IV. Concluding Remarks. 

We have shown how one can define a formally exact classical analog 

for a finite dimensional quantum mechanical system. If this is a set of 

diabatic electronic states to which the nuclear kinetic energy is added 

as in Eqs. (2.8)-(2.9), then the result is seen to be equivalent to the 

"Ehrenfest" model, for which the electronic amplitudes obey a time"':'dependent 

Schrodinger equation, the time dependence coming from the nuclei which follow 

a classical trajectory determined by the "Ehrenfest force". 

The boundary conditions usually applied to these equations are 

dynamically inconsistent, but it was seen that the classical interpretation 

of the equations plus the boundary conditions of classical S-matrix theory 

(and a Langer-modification of the Hamiltonian) leads to a ·dynamically 

consistent model. Application ,to two Simple model systems showed that the 

electronic dynamics is described quite well by this classical/semiclassical 

model. 

It appears, therefore, that this classical model of electronically 

non-adiabatic collision systems should provide a usefully accurate description 

of these processes. 

.. 
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Appendix A 

We wish to prove that 

~[A,B](n,q) = {A(n,q),B(n,q)} 1. _ _ 

where the commutator [A,B] and Poisson bracket {A,B} are 

[A,B] = AB - BA 

F 
{A(n,q),B(n,q)} = ~ 

with A(n,q) defined by Eq. (3.5), and B(n,q) similarly. Since 

dA(n,g) r!+.i i(q.-q,q) i(qt-q · ) 
an. - ~ (e J 

Ajt + e . J Atj) 
J - t 2nj 

dA(n,g) i~ 
i(q·-qt) i(q:t-q .) 

= (e J Ajt - e J Atj) 
dqj t ~ 

the Poisson bracket yields: 

{A(n,q),B(n.q)} = 4 
i(qt-~) 

+ e . (-An .B. + Bn .A. ) 
. A-J Jm A-J Jm 

-i(2q.-q -~) 
e J t (-AjnB .+A .Bn.)} 

'~ mJ mJ A-J 

(A.I) 

(A.2) 

(A.3) 
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The last two terms vanish upon summation due to symmetry, and the first two 

terms are the same. Thus 

{A,B} -i kRm i(q.R,-~) 
L(Af·B. -B.R,.A. ) = e 

. . J Jm J Jm ,m J 

k~ 
i(q.R,-qm) 

= -i e [A,B].R,m 
,m , 

1 
[A,B](n,q) (A.4) i 

It is also useful to note the relation of a canonical transformation 

between variables of this type to a quantum mechanical basis set transformation. 

Let {I k>} and {I K>} each be orthonormal sets; the relations between the "old" 

and "new" action-angle variables, (n,q) and (N,Q), are given by Eq. (3.6). 

Thus 

(A.S) 

and one calculates 

= -
.. iqk ~ -iqk * 

i e ':fii;. <K I k> [L,., e ~ <K I k> ] 
k' 

+ complex conjugate, 

(A.6) 

Similarly, 
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and differentiating, one finds 

But since 

* 1m(z) = -1m(z ) 

* <kl K> = <KI k> 

Eq. (A.8) is equivalent to 

an
k 

.. i(Q -q ) 
K k ~ I· ~Q = - 2 1m [e v'NvKnn'k_ <K k>] 

() K 

so that Eqs. (A.6) and (A.8') imply that 

(A. 7) 

(A.8) 

(A. 8' ) 

(A.9) 

Thinking of {qk} and {QK} as the independent variables, Eq. (A.9) implies 

the existence of a function Fl(~'9) such that 

(A. lOa) 

(A. lOb) 
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The existence of such a function (the generating function) guarantees that 

15 
the (~,~) ++ (~,g) transformation is canonical. 

Proceeding in a similar fashion, one can show more generally that 

(A.lla) 

dN
K 

- = 2 Im(A,.k) dqk -1( 
(A.llb) 

(A.llc) 

(A.lld) 

where 

(A.l2) 

By interchanging (n,q) ++(N,Q), or by a similar calculation as above, one 

also finds 

(A.l3a) 

(A.l3b) 

(A.l3c) 
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Since 

* ~,K = '\,k 

Eqs. (A.II) and (A.13) imply that 

Eqs. (A.15a)-(A.15d) imply, respectively, the exis,tence of 

functions FI(~'~)' F2(~'~)' F3(~'~)' and F4(~'~) such that 

oFI (9,g) 
N =-

oFI(g,g) 
n = 

oqk oQK k ' K 

oF2(g,~) 
, QK = 

oF2(g,~) 
P = oqk oN

K 
k 

q = 
oF3(~'~) 

, NK = 
oF3(~'~) 

k o~ oQK 

(A.13d) 

(A.14 ) 

(A. 15a) 

(A. 15b) 

(A.15c) 

(A.15d) 

generating 

(A. 16a) 

(A.16b) 

(A.16c) 
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(A.16d) 

Anyone of the pair of equations in Eq. (A.16) is sufficient to guarantee 

h h f .. . 1 15 t at t e trans ormat10n 1S canon1ca . 
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Appendix B 

Let {Ik>} and {IK>} denote the diabatic and adiabatic electronic states, 

respectively; {IK>} depend parametrically on the nuclear coordinates x. The 

coupling elements !K,K'(~) are 

T = <KIJL K'>=~<Klk> JL <kIK'> 
-K,K' ax ~ ax 

= -4 (a~ <Klk»<kIK'> 

and we note that !K,K' is skew-hermitian 

= -

aN
K It is a lengthy but straight-forward matter to calculateCl x and 

aQK 
--- for fixed nand q. One obtains ax 

The equations of motion forN anp Q are then given by 

. ClNK • ClNK • 
+ ---·x = --·x dX _ Clx_ 

Q _" ClQK • ClQK • . ClQK • ClQK • 
K-~(-,"\-qk+-,"\-nk)+-x=E +_·x 

k aq
k ank Clx K clx 

(B.la) 

(B.lb) 

(B.2) 

(B.3a) 

(B.3b) 

(B.4a) 

(B.4b) 
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where EK = EK(~) is the adiabatic eigenvalue, i.e., the adiabatic potential 

energy surface. 

The task is now to find a Hamiltonian that reproduces these equations 

of motion. It is useful to define the quantity F(N,Q;x) by 

F(x) (B.5) 

where we note that in light of Eq. (B.2) F is real. One finds that Eq. (B.3) 

is equivalent to 

(B.6a) 

(B.6b) 

It, is then relatively straight-forward to show that the, Hamiltonian in 

Eq. (3.7) produces the equations of motion in Eq. (B.4). More completely, 
" 

the Hamiltonian of Eq. (3.7) leads to the following equations of motion 

for electronic and nuclear degrees of freedom in the adiabatic representation: 

aH 
x. = -" - = (p. +F . ) III 
1ap. 1 1 

1 

• aH E aF • (p+F)/ll 
QK = oNK = K + aN~ ~ 

(B.7a) 

(B.7b) 

(B.7c) 

(B.7d) 
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Figure Captions 

1. Electronic transition probability for the 2-state model, as a function 

of the parameter p. The primitive classical (_.-.) and quasiclassical 

(---) results are computed via Eqs. (4.6) and (4.7), respectively, and 

the uniform semiclassical ( .••• ) results via Eqs. (4.8) and (4.12). 

The correct quantum mechanical transition probability is the solid 

line (---) P2+l = p. 

2 ( USC/P QM 1) h 'f 1 . Percent error, 100 X P2+l 2+1 - , in t e unl. orm semic assical 

transition probability for the 2-state model in the limit of very 

small (p « 1) transition probabilities. 
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