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Abstract

It is shown how a formally exacﬁ classical anélog éan be defined for
‘a finite dimensional (in Hilbeft space) quénﬁuﬁ_mechanical system; This
approaéh ié‘then used to obtain a classical model for thé electronic degrees
ofvfreedomvinra molecular collision system, and the combination of this with
the uSQal cléssical.descr;ptiop of thé heavy particle (i.e., nuclear) motion
provides avcompletely.claSSical quel for the electronic and heavy particle
dégrees of freedom. The resulting equationé of motioﬁ are shown to be
equivalent to deécribing the electronic degrees of freedom by the time-
dependent Schrodinger equation, the time dependence arising from the classical
motion of the'nuélei; the trajectory of which is determined by the quantum
mechanical average (i.e., Ehrenfest) force on the nuélei. Quéntizing the
system via classical S-matrix theory is shown to provide a dynamically
consistent description of non-adiabatic collision processes; i.e., different
electronic transitions have different heavy particle trajectories and, for
examplé, the total energy of the electronic and heavy particle degrees of
freedom is conserved. -Application of this classical model for the electronic
degrees of freedom (plus classical S-matrix theory) to the 2-state model

problem shows that the approach provides a good description of the electronic

dynamics.



I. Introduction

Recent Qorkl’z on the semiclassical theory of electronically non-adiabatic
collision processes has emphaéized the need for a model that treats all
degrees of freedom4-heévy particle (i.e., translation, rotation, and
vibration) and electronic--on tﬁe same dynamical footing. It has been
shown3 that semiclassical approaches which fail to do this can miss
important dynamical features inbthese collision phenomena.

The most straight-forward formulation that combines all degrees of
freedom in a consistent way is a completely quantum mechanical treatment,
'i.e.,lthe coupled-channel Schrodinger equat:ion[+ expanded in the révibronic
states of the collision partners; although this is obviously correct, it
is often too‘difficult to be useful. On the other hand, it is usually
feasible, and usefully accurate, to describe all the heavy particle degrees
of freedom by classical.mechanics, by computing classical trajectories on
a botential energy surface, but to be dynamically consistent it is then

necessary to treat the electronic degrees of freedom also by classical

mechanics. This does not mean that one must treat all the electrons of the
molecular system as classical particles orbiting about the nuclei, but that
one must construct a classical model for the relevant aspects of the
electronic degrees of ffeedom; Previous papersl’z.on this topic have shown <
how this can be done for several special cases and have also reported encouraging
results of numerical calculations applying»theSe models.

The purpose of this paper is to present and explofe another way of.
constructinga classical model for the electronic degrees of freedom. Section

IT develops this classical analog, and Section III discusses its general



_properfies. In a number of aspects it is seen that the classical analog

is formally ggggg; i.e., ‘involves no approximations af all. When coupled
with the clasSical.m§tion‘ofvthe nuciei, it is seen that the 6verall model
is equivalent to one that_has_been used by several other workers® ': the
electronic motion is described by the time—dependéﬁt electronic.SchrBdinger
equation, where the time-dependence comes from the classical motion of the
ﬁuclei, the.tréjéctory of which is determined by the quantum‘mechanical
average ofvthe force on the nuclei. However the Eoundary conditions usu‘allys—7
applied to these equations ére dynamically inconsistent; e.g., the trajectory
of the heavy particle degrees of freedom is independent of the final electronic
étate, a clearly unphysical situation. "By invoking the classical interpretation
of these equations and then applying the boundary conditions of classical
S-matrix théory, however, a dynamically correct theory is achieved. Finally,
‘Section IV considers the 2-state example' to show that the classical electronic

Hamiltonian plus classical S-matrix theory provides a good description of the

purely electronic aspect of the model.



II. The Classical Analog.

Consider a molecular collision system having F electronic states, for

which the quantum mechanical Hamiltonian operator is

2 ' _ -
R '

H=3 + 2 , |k> H, ., (x) <k'| (2.1)
O A1 ok =72

where X denotes the coordinates of all the heavy particle dégrees of

freedom and p their conjugate momentum operators, and Hk,k'(f) is the
"diabatic" electronic Hamiltonian matrix. For simplicity of notation,
ﬁhe ﬁuclear coordinates,g are assumed to be scaled so that the mass is

the same for all of them.

For the moment we drop the nuclear kinetic enefgy term in Eq. (2.1)
and let x = x(t) be some fixed trajectory; the time-~dependent electronic

Hamiltonian operator is then

Heg (0) = k ézl [l By o (xC0)) <kt (2.2)

If the time-dependent electronic wavefunction Y(t) is expanded in the

electronic basis {|k>},

lp(e)> = g: _ak(:)|k> , (2.3)

the time-dependent coefficients {ak(t)}‘satisfy the dsual first order

equations (with h = 1):

5 (0 = -i);; He o () a () 2:4)



which are derived in the standard way from the time-dependent Schrodinger
equation.
The real variables {nk} and {qk} are defined in terms of the complex

amplitudes {ak} by

ak(t) =‘/nk(t) e ‘ . . (2.5)
and the function Hel(E’S;t) is defined as the expectationAVélue of the

qperator-HeQ(t),

Hyg (mgst) = Y[Ry (©)]w>

[}

k,

; B B B (5(0)

/nknk, e Hk,k'(f(t)) , (2.6)

iK'
“where {ﬁk} and {d;T are taken here as independent-variables. Considering
Hel(n,q;t) in Eq. (2.6) as the classical electronic Hamiltonian function
and {n,} and {qk} as classical action-angle variables,8 the time-dependence
of nk(t) and qk(t) is given according to Hamilton's equations by

Hep (123 )

g, (t) = — | (2.7a)

o0H ,(n,q;t) .
. A ‘ . v
nk(t) = - _-Tiﬂ:——_—- . | (2.7b)

The remarkable, and most important fact, is that these classical equations



.

of motion, Eqs. (2.7) and (2.6),.are iaentical to Eq. (2.4), the time-
dependent Schrodinger equation, with {ak(t)} and'{nk(t), qk(t)} related by
Eq. (2.5);'i.e., the F complex équations of Eq. (2.4) are identical to the
2 F real equations of Eq. (2.7). This estabiishes an exact correspondenée
between the F-state quantum system with the Hamiltonian operator of
Eq. (2.2) and the classicai system of F degrees of freedom with ﬁamiltonian_
function of Eq. (2.6). |

.The complete classicalvﬂamiltonian function for the collision system |
is now obtained by adding the classical nuclear kinetic energy to Hel(g,g)
and by letting x by independentvvari5b1es; this gives the completé ciassiéal

Hamiltonian as

i(q,-q,,) | , |
H(p,x,n,q) = ﬁﬁ nyoe k 7k H () . (2.8)

~2uk

Hamilton's equations9 then determine the time evolution of all the coordinates

and momenta,

20 = =p - (2.9a)
Pi i _ .
. i-(q -q v) d 1(3) .
py(t) = 'aaTH = i R R ok "H—k'z’)::__ (2.9b)
i k,kT=1 © i

® JdH nk' : i(qk—qu) . :

q, (t) = +— = i —— Rele H ,,®] (2.9¢)
k o & ™ Kok~

° oH _ i(qk_qk')
nk(t) -qu— ;:1 &/nknk, Im[e Hk,k"(f)] . (2.94)

Eqs. (2.8)-(2.9) are the semiclassical model that results from this

approach: heavy particle degrees of freeddmv(p,x) and electronic degrees



o'fv fré,edom (n,q) are described consistently by classical mechanics.



I1I. Discussion

There are a number of observations one can make concerning the model

’

developed in the previous section.

a. Relation to "Ehrenfest" Model

It is interesting to see that Eqs. (2.9) are equivalent to a semiclassical

5-7

approach that several other workers have advocated.” ' The equations are

usually written in terms of the amplitudes {ak(t)}, however, rather than
the action-angle variables {nk(t);qk(t)}, and the equations are :ationalized
as follows: the equations fbr the electronic amplitudes are the time-

dependent Schrodinger equation,

B (6) = -1 g;l e o Ge(0) a, (),  (.1a)

where §(t) is_the'classical trajectory determined from the forces implied by

Ehrenfest's theérem,lo

. . aHeZ(f)
P I R() = - <pt)] —57— [v(r)>
s () S
— o« k k' ~ ‘
= _ kz ' a, (t) -—-——5—1{———— a, . (t) . (3.1b)

With Eq. (2.5), it is easy to show that Eqs. (2.9) and (3.1) are equivalent.
The primary problem with this semiclassical approach has to do with the

boundary conditions. The initial conditions for the heavy particle degrees

of freedom, (El’xl)’



plt)) =1,
' f(tl) =x s . (3.2)

are usually chosen via thg quasiclassical prescription, and for the amplitudes

{ak(t)} one ‘has

ak(tl) = Gk,kl , | _ ~ (3.3a3)
where kl is the initial electronic state. The final value of a, (t) then
v o ) ‘
determines the kl »> kz electronic transition probability,
P ek = Iak (tz)l2 - ' ~ (3.3b)
21 2 '
with tl + - and t2 + 4o, The problem is that Eqs. (3.1) with the boundary

 conditions of Eqs. (3.2)-(3.3) determine a single, unique classical trajectory,
independent'of the final electronic quantum number k2, whereas each electronic
transition kl + k2 should have its own ''best" trajectory (or.trajectories!).ll’12
The final‘nuclear kinetic energy, for example, is independen; of the final.
electronic state of the system, a clearly unsatisfactory siﬁﬁation. From
this poinf of view there is no way of overcoming these fundamental inconsistencies
of the model. In Section iIIg, however, it is shown how these defects of the
model can be overcome by thihking in terms of the eqﬁivalent classical analog,

Eqs. (2.8)-(2.9), rather than Eq. (3.1), and then "quantizing" the system within

classical S-matrix formalism,1

!
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b. Generalization

-

The classical analog developed for the electronic Hamiltonian can be
defined quite generally. For any operator A defined on the F-dimensional
Hilbert space {|k>},_k =1, ..., F, its classical analog A(n,q) is defined

by

_ i - i(qk—qu ) )
A(n,q) = ‘/nknk, e A s (3.4)
k, ' S

and one notes that A(E’S) is real if A is hermitian. One can also show
(see Appendix A) that if A(n,q) and B(n,q) are the classical analogs of
operators A and B, then the classical analog of the commutator [A,B] is

equal to the Poisson bracket13 of A(n,q) and B(n,q), i.e.,
i{A(n,q),B(n,q)} = [A,B](n,q) . (3.5)

The equivalence 6f Eqs; (2.9) and (3.1) is a special case of this more
general relation.

It is also shown in Appendix A that a duantum mechaniéal basis set
transformation {|k>} » {|K>} corresponds in general to the classical
canonical transformation14 (9’3) -+ (§,g), where the o0ld and new classical

variables are related by
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. so that
-iq : )
e W= e o ke (3.6a)
or ihversely.
-ig -iQ |
e “Ju - Y e ARVAREE Y] CHE (3.6b)
K

An example of this is the transformation from the "diabatic" representation
of the Hamiltonian in Eq. (2.8) to the adiabatié representation, the basis
set that diagonalizes Hel at fixgd X, I1f (§’9) are action-angle variables
correspoﬁding to these adiabatic electronic states, then it is shown in
Appendix B that the cléssical Hamiltonian is given in the adiabatic

representation by

Hpax,N,Q) = 37+ P E(. Qa0 /u + [FON,Q320 |/ 2

+ g; E GO N, - (3.7)

where

~ e . _l

' 1(Qp-Qur)
F(N,Q;x) = -i S W e B8 e (3.8)
K, : ~K,
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TK K.(x) and EK(x) are the adiabatic coupling elements and the adiabatic

eigenvalues, respectively.

c. Semiclassical Eigenvalues.

-Another general consequenée of the canonical transformation property
of Eq. (3.6) is that the semiclassical eigenvalues of the cléssical analog
of a Hamiltonian--e.g., H(g,g) of Eq. (2.6) for fixéd x--are identical to
the-eigenvalues of the matrix {Hk,k'}’ i.e., to the quantum mechanical
eigthalues.

To see thié, let the basis {|K>} in Eq. (3.6) be the eigenvectors of
'{Hk,k'}’ i.e., the eigenstates of the quantum Hamiltonian. rThe classical

Hamiltonian is expressed in terms of the new variables (N,g) by using Eq.

(3.6b):
. 1(qk qu) :
H(N,Q) = e H .
~o k,k' k k k,k
. 1(Q -Q.+)
k, k' K,K' i .

1(Q=Qyr)

‘/N—N—'  e HK,K'» . o (3.9)

ko
=

But since HK X' is diagonal,
. 9

-8 (3.10)
HK,K' dx,x' Ex ’

Eq. (3.9) becomes

' : 3.11
u(g,g) | NKEK . ( )
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The semiclassical eigenvalues are obtained by requiring the "good" action
variables {NK} to be integral, and since conservation of probability (seé

next -section) requires that they sum to unity,

; Ne=1 o, (3.12)

this means all but one of the action variables must be zero, and the non-zero
one must be unity. These conditions, with Eq. (3.11), show that the semi-

classical eigenvalues are {EK}, the quantum mechanical ones.

d. Conservation of Probability.

It is quite straight-forward to show that the classical Hamiltonian of

Eq. (2.8) conserves the total electronic probability, i.e.,

[a W
n|°‘
A N
5
=}
.
~~
r
~—~
]
[} i
e
-
~~
rt
-

- ’aa—H = 0 | | (3.13)
= dqy

so that only (F-1) of the F variables {nk} are independent. It is thus
possible to make a canonical transformation to a new set of variables, one
of which is a conserved and thus time-independent quantity.

The new variables {nL} are defined by

! . (3.14 5
= . a
D MR | |

n.=n , k=2, ..., F . (3.14b)



14—

. 14 . ' . :
and the generating function  which effects the transformation (n,q) + (n',q')
is

F

Fy(q,n') = qpn, + é (a,-a,)n, : o (3.15)

' . . 15
The transformation relations

qk = ———a—n—l'(————- . ‘ (3.163)
oF, (q,n") : o

n = —2==~ " (3.16b)

k qu ? S ,

reproduce Eqs. (3.14) and then lead to the following definition of the new

angle variables:

v . 3.17a
G =9 o ( )

' ' .
= q - = 3.17b
gk 9 k 2, ..., F . | ( )

The Hamiltonian of Eq. (2.8), expressed in terms of the new variables

(n',q"'), is independent of qi, so that n,

is time—dependent and appears

in the Hamiltonian only as a parameter. Since the initial conditions

) ‘ . ' ‘ ] :
of Eq. (3.3) correspond to ny ‘having the initial value 1, i.e.,

and since this value is conserved, one concludes in general that conservation

]

1 should be set to 1.

of probability implies that n
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e.A Example: Two States.

It is illustrative to see the specific form of the classical electronic

Hamiltonian function for the simplest case F = 2. Eq. (2.6) is
Hel(nl’nZ’ql’qz) = anll + nZH22 + L/nlnz cos(qz—q_l)H12 s (3.18)

where the x dependence is not denoted explicitly and where Hk K is assumed
~ H

real so that le = H21. In terms of the new variables (n',q') of Egs.
(3.14) and (3.17),
_ | 1_1;
n, =mn;-n, = l-n,
-l
n =n

_and

4,79; = 4, ’

so that Eq. (3.18) becomes a system with only one degree of freedom (n;,q;) =

(n,q),

Hez(n,q) = (l—n)Hll.+IIH22 + 2y/n(1-n)' cosq le o (3.19)

which one recalls is identical to the form obtained for the two state case

by Miller and McCurdy1 on more heuristic grounds.

f. A 3-State Example.

For F > 2 the classical analog developed in this paper provides a

different classical model for the electronic degrees of freedom than the

ones suggested earlier.l’2 The case of a P-state atom A colliding with a
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closed shell 1Z'diatomic molecule BC is a 3-state system, corresponding to
the unpaired p-orbital of the atom having‘projection m= -1, 0 or +1.

For fixed nuclear positions, the diabatic electronic matrix has the form1

-1 0 +1
He,
-1 R -1 —XT , A
V2
Fyz
[Hm,m'] = 0 , sz , "1\/? o (3.20)
H —
+1 , :1;%% , H

=n,, n = n_, rather

We denote the three action variables by n, =n.,mn,

s andvn_1

than ny, Ny, and ng, and as discussed above, only two of them are independent;

0 = 1—n+—n_. It is not hard to show that Eq. (2.6), with the

transformations of Eqs. (3.14) and (3.17) to eliminate (no,qo), gives the

e.g., we take n

classical analog of this Hamiltonian matrix as

(n++n_)H + (1—n+-n_)Hzz
+ 2¢n+n_ A'cos(q+—q;) +-J2§£1-n+-n_) Hyz sing_
—\/2n+(1-n+—n_) Hyz sinq . ‘ (3.21)

i

H(n+,n_,q+.q_)

The classical analogs of the three components of electronic orbital angular
momentum are also needed in order to construct other terms in the Hamiltonian

(e.g., spin-orbit and coriolis coupling), and since their matrices are

Copa ={0 0 0 ~ (3.223)
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0 i/vZ 0 |
Ay T -i/v2 0 i/V2 (3.22b)
0 -i/V2 0
0 1/YZ 0\
w) = {2 0 1/VZ (3.22¢)
X 'm,m _
0 1/v2 o ‘

Eq. (3.4) giveé the following expressions for their classical analogs:

L, (m ,q.,9) =n.-n . (3.23a)

—-— - ‘ . 1 - — — 3
v/2n+(l n, n_) sinq, v2n (1 n, n_) sing_ (3.23b)

Ly(n+,n_,q+,q_)

Lx(§+,n_,q+,q;) f vé n+(1—n+—n_) cosq +-v2n_(l—n+—n_)bcosq_ . (3.23¢)

Eqs. (3.21) and (3.23) clearly constitute a different classical model

- for the electronic states of the A(P) + BC system than the one obtained

earlierl’,2 in that it consists of two degrees of freedom whereas the earlier
one involved only one degree of freedom. Because of the many desirable
featureé of the classical analog that‘have been discussed in this paper, we
feel that the above model will probably be a more accurate model than our

earlier one, but this must be tested by calculations.

g. Classical S-Matrix.

So far we have added little to the well—knowns—7 approximétion of solving
the time-dependent Schrodinger equation along the classical path deterfiined by
the average (i.e., Ehrenfest) force, other than presenting a new '"classical"
way of looking at it. Here, however, we show how the principal defect of

the model, as discussed at the end of Section IIIa--i.e., that a single
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trajectory determines all electronic transitions, rather tﬁan each transition
haviﬁg a different trajectory--can be overéome by using this new classical
interpretation. One thinks in terms of the classicai analog, Eqs. (2.8)-(2.9),
rather thaq Eq. (3.1), and "quantizes" the classical-system within the frame-
work pf classical S-matrix theopy;lz

To describe the specific kl -+ k2 electronic transition one thus needs

to integrate the classical equations of motion Eq. (2.9) with the initial conditions
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Qk(tl) = Gk,k (3.24a)

(3.24b)

n
<

qk(tl) 7,

where the F initial angle variables {qk(tl)} are chosen so that the final

action variables {nk(tz)} are

= (3.24¢)
m (t)) Gk,kz

The electronic transition probability is then given, for example in the
completely classical version of this theory, by the determinant of the
Jacobian of the final action variables with respect to the initial angles:

on(t,)

2)|]—1 . | (3.24d)
1

P ~ r o0
k +kl = [(Zﬂ) lgézz——

2

If more than one trajectory satisfies the boundary conditions of Eq. (3.24),
then the transition probability also involves the differences in the action
infegrals for the trajectories (cf. Section IV).

For the case of two electronic states, for example, the boundary conditions

forithe 1 + 2 transition are
n. (t =1
N l( 1)
nz(tl) =0 R

with ql(tl) and q2(tl) chosen so that
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[
o

nl(té) =
nz(tz) =1 s

with tl + —o and tz > 4, The boundary conditions for the heavy particle

; . . oy 12
degrees of freedom are chosen as in conventional classical S-matrix theory,

. . 15
or one may want to '"partially average"

over them in which case they would
be chosen by the quasiclassical prescription. |

It is clear that theée boundary conditions based on.classical S-matrix -
theory provide a dynamically consistent description of the
electronic transition: different electronic transitioﬁs involve different
cléssiéal trajectories, and since the classical Hamiltonian of Eq. (2.8)
conserves the total énergy of the system, it is clear that energy conserva-
tion is correctly obeyed; e.g.,!for the trajectory or trajectories determined
by the boundary conditions of Eq. (3.24) the nuclear degrees of freedom will
gain (or loose) the amount of energy lost (or gained) by the electronic
transition. It is also clear from classical S-matrix theory that the
electronic transition probability'will be microscopically reversible.

There is a flaw, however, in the model as it stands: with the Hamiltonian
.of Eq. (3.28) and the boundary conditions of Eq. (3.24), the final action
variables {nk(tz)} are actually'indegéhdent of the initiél angle varigbles
{qk(tl)}, so that one cannot satisfy Eqs. (3.24) by varying themT (One can
see this most easily by referring to the equivalent time-dependent Schrodinger
equation; Egs. (2.3)—(2.5); éince all fhe initial amplitudes {ak(tl)}.are zero

except for k = k the final values of the amplitudes cannot depend on the

l,

initial phases {qk(tl)}, k # kl' Also, 9 (tl) appears as an overall phase
1l .
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factor in the total wavefunction, so nothing can depend on it either.) This
defect of the model is corrected by invoking the ubiquitous Langer-type
modification to the electronic Hamiltonian, i.e., by adding "%” to all the

action variables {nk}. The electronic Hamiltonian then becomes

S 0 ila-q..) '
H  (n,q;x) = Z \/n )(n +3) e k B ,(x) , (3.25)
el "’ ’s v 2 yk!' '~
k,k'=
but this also is not totally satisfactory because it changes the adiabatic
electronic eigenvalues; i.e., in terms of the adiabatic action-angle

variables (Nk’Qk) this Langer-modified Hamiltonian is

F - | '
1
N,Q3x) = 27 (N +3) E (x) (3.26)
T K 27 "k‘Z .
K=1
: "lll L . . : "lll 1
because adding > to all n 's has the effect of adding 5 to all NK S.
Thus setting NK = GK k in Eq. (3.26) does not give the adiabatic eigenvalue'
’ 1 .

,(x).. This problem isveasily remedied, however, by subtracting the term
l"‘.

F
23 E®

=1 K"~

from Eq. (3.26), so that the desired form of the adiabatic Hamiltonian is

recovered:
a\

F
H_, (N, 9;5 g N Ep () ) (3.27)

This term that is subtracted from the Hamiltonian is a constant so far as

the electronic action-angle variables are concerned and thus does not
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change the electronic dynamics. It must also be subtracted from the

Hamiltonian in the diabatic representation, Eq. (3.25), and since

1 F 1 F
2 Z'Ex(f) 2 tr(HeQ(x)) =3 )y Hk k(35) ,
=1 =1
subtraéting this term from Eq. (3.25) gives
F
H o (n,q;%) = kz—: m H k(35)
F v i(q,-q,,)
l k “k
+ k?‘ \/(nk+2)(nk. +3) e Hk,k' (x) .
k#k' (3.28)

Eq. (3.28) is.the final form of the Langer-modified electronic Hamiltonian,
and one notes that the above ahalysis haé the simple effecf of making fhe
Langér modification only in the off;diagonal terms. As noted, it still gives
the correct semiclassical eigenvalues, i.e., it is giyén in adiabatic
representation by Eq..(3.27). "The complete Hamiltonian for the collision
system islobtained by adding the nuclear kinetic energy |

Ko < Bt i@ BNCR

‘with He2 of Eq. (3.28). It can now be used in a conventional classical
S-matrix treatment which, as discussed above, allows electronic and heavy
particle degrees of freedom to interact so that different electronic

transitions have different heavy particle trajectories and conserves the

total energy correctly for all transitions.
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IV.._Test of the Semiclassical Electronic Transition Probability.

It is'clear from the discussion.in Section IIlg that the Langer-modified
élassiéal-electronic Hamiltonian [Eq. (3.28)], used in conjunction with
classiéal S-matrix theory;-treats tﬁe coupling between heavy particle motion
and electronic degfees.of freedom in a consistent way; i.e., different
electronic transitions have different heavy particle trajectories and, for
example, the heavy:particle.degrees of freedom gain or loose energy to
compensate for the chahge in electronic energy. As discussed in Section
IIIa, this is not the case with conventional classical path ﬁodels, even
those that use the élassical path determined by the Ehrenfest force.

There is a price that has been paid for the achievement of this dynamical
consistency, however, namely that the electronic degrees of freedom are
described'By classical_rather thanvquantum mechanics. Therefore although
this abproach describes the electronic and nuclear dynamics more consistently,
it.provides a cruderzdescfiption of the electronic degrees of freedom them-
selves. An important question, therefore, is how well the classical/semi-
classical model for the electronic degrees of freedom can describe the

purely electronic aspect of the process, i.e., the electronic transition

probability. A simple test of this particular aspect of the model can be
made by ignoriﬁg the nuclear degrees of freedom and considering just the
ti;e—dependent elecﬁronic problem.

In this section we thus consider the time-dependent 2-state electronic
problem, the goal being to see how well the ciassicél model for the
electronic degreeé of freédom (with classical S-matrix theory) can describe

the electronic transition probability. For two states the Langer-modified

classical Hamiltonian of Eq. (3.28) is
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Hyp (6 # my Hy(®)

»

Hez(vnl’ql’nZ’qZ;t) = nl

+ 2o +7) (0, +3) H (1) coslaya) (4.1)

and using conservation of probability to eliminate n, as in Section IIId

(cf. Eq. (3.19)) gives .

H (n,q58) = (1-n) Hy,(£) + 0 Hyy(t)

-+ 2Vn4- V -n H (t) cosq . (4.2)

To construct the 1+2 electronic transition probability one integrates

Hamilton's equations of motion,

9H ' 1-2n

5;1— = Hll(t) - H JI:TJ—:-_‘ (t) cosq

(4.3a)

n= - ) g 2vn +-:2£V%-n le(t) sing - . (4.3b)

with initial conditions
a(t) =q |  (4eba)

(4.4Db)

.
- O

n(tl)‘-

The values of n(t) and q(t) at the final time t, are denoted nz(ql) and

q2(ql); and one also needs the action integral ¢,
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. tz . ‘ : '
0@y =[ ar [-a(®) A0 - Ha(),a30] (4-52)
o t )
which can also be computed by
L) = - . ]
¢(ql) J/hql 9,(q)) n,'(q,) K (4.5b)
If,qI and q;q are the two roots (as is typically the case) of the.equation
nz(ql) = 1 ]

‘then the primitive classical transition probability is given by

CL
Poeg =Pyt P , (4.6a)

where
[ ’ -1 .
p = [2m|n," (q))]] (4.6b)
_w1th q; = 9 or drp-
At the completely classical level, however, it is usually better to

average the primitive classical result over an integer width about the

final quantum number; this gives the quasiclassical or "histogram" result,

14+

QCc _ T 72 1 ot
Poeg = Jldnz dn2| =2r | (4.7a)
' -= 2m|—=
2 dql

where'Aq1 is the increment of the 2m-length interval of ql for which

1
|n2(ql)—1| <3 . ‘ (4.7b)



~25-

For the two examples considered below it turns out that
pp = Py G P s

and in this case the uniform semiclassical approximation to the transition

probability takes the simple form
usc . 2
P2+1 = 4pm Jz 'Ai(-2) s (4.8a)

where Ai is the regular Airy function and

z = c% A¢)2/3 . (4.8b)
Ap = ¢(qII) = ¢(qp)
91
= - A dql qZ(ql) nz' (ql) . (4.8C)

I

a. Landau-Zener Model

We consider first the Landau-Zener model, for which the electronic

Hamiltonian matrix is

Hll(t) =0
sz(t) = Ft
le(t) = H, = constant =, (4.9)

and the time interval is tl + -, t2 ++o, This model describes the well-

known, curve-crossing situation and is thus an important example to consider.
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Integrating the classical equations of motion with this Hamiltonian

gives
n,€a;) = p - V3p(1-p) sing, ' (4.10a)
- -y -1 - E e .
_qz(ql) = tan = [(1-2p) tanq, - 2 3 secqll , (4.10b)

where p is the parameter
_ ‘ 12 '
p=1-exp[- T ] , (4.10c)

and whgfe 51 and 62 differ from 9, and 9, by irrelevant constants. The
action integral ¢ is computed by integrating Eq. (4.5b) numerically. The
correct quantum mechanical transition probability is given by

PzﬂQM =P | (4.11)
where p is the_pafameter defined by Eq. (4.10c).

Figureul shows the primitive ﬁlaséical (CL), quasiclassical (QC), and
uniform semiclassical (USC)lresults (computed from Eqs. (4.6)-(4.8) with
Eq. (4.10)) compared toAthe correct quantum mechanical (QM) result, as a
funcﬁion of the parameter p. The primifive classical result shows the
typical singularities which mark the transition between "classically
allowed" and "classically forbidden" regionms. The quasiclassical approxi-
mation smoothes out these.singularities and in géneral provides a better

description at the completely classical level.
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The uniform semiclﬁssical 5pproximation of Eq. (4.8).is in very good
agreement with the quantum mechénical result for all values of p Z.%, |
Figure 2 shows that this good agfeement persists into the classically
forbidden region where p << 1.

For p_3 %3 the Airy uniform approximation breaks down because the

quantum number function of Eq. (4.10a) becomes too flat. 1In this case,

however, the Bessel uniform approximationls’l6 is appropriate aﬁd_gives
U ' 2 -
Py s = mp 80 3y . (4.12)

2«1
As seen in Figure 1, this uniformization works well for large transition

probabilities.

b. General Two-State Model

It is interesting to show that the results obtained above for the
Landau-Zener model are actually true for any two-state model.
To see this we note that the initial and final values of the amplitudes

{ak} are related by an S—matrix,_
a(t,) = g'g(tl) ,
or written out explicitly for the 2fst§te c§se,
;l(té) =S a;(tl) * 512 éz(tl)
a,(t,) = 5,5 a(t)) + S, azitl)' o . (4.13)

Invoking the relation [Eq. (2.5)] between the amplitudes.{ék} and the

action-angle variables {nk,qk} gives
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- -iq (ﬁ ) iq, (t.) “iq, (t,) . -
_ 1727 _ 1'71 : 271
‘/nl(tZ) e = Sll nl(t1 e + SlZ/nZ(tl) e
-iq, (t,) -iq, (t.) -iq, (t.) ‘
2720 _ ' 1'71 271
. VG;;(;;?'e v 821 nl(tl) e o+ S22 nZ(tl) e .
. and.ifvconservation of probability is utilized this becomes
., -, 1Q 1Q, -iq
2 _ 1 1 1
\/l—n2 e = SlP/I n1 e + 812/n1 e T e
-iQ -iq, -iQ -iQ -iq
2 2 _ : 1 _ : 1 1
,/nz e e = S21 1 n, e + Szz,/n1 e e ,
where here
hl = n(tl)
n, = n(tz)
q; = a(ty)
q2j= q(tz)
Ql = Q(tl)
Q, = Q(ty))

and Q(t) is the angle variable
nz(t)-

; initial and final values of qQ,

conjugate to the conserved quantity nl(t) +

Forming the ratio of the above two equations eliminates the

iq1
e + 512/n1

(4.14)

+ 822 nl
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The 2 x 2 S-matrix is unitary and symmetric and can in general be

parameterized by two angles and a probability,

. ial
Sll =Jl-p e | ' (4.15a)
822 =}/1—p e ; i (4.15b)
, i(al-lﬁz) /2
S.,=5S,. =i/p e , (4.15¢)

12 - °21

and we note that the parameter p is the quantum mechanical 1 + 2 transition

probability,
P,., =[S |2 = | (4.16)
2¢1 T P12l TP - o '

Using Eq. (4.15), and also making the Langer modification, converts Eq.

(4.14) into

. @, g— T
%—nz iq2 e RA:B 7—n1+.w6:n1+%
1€ 7

. 1. ]fl — Ly
n2+2 : ‘ie aﬁi/%—nl+‘ﬂrmél+%

(4.17)

where

...b +.l( _
a; = qp + 5(ay-ay)

. 1 _
q; - 3lay-0y) .

From Eq. (4.17) one can determine n, and 52 in terms of-a1 and n,
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“2('4‘1,111) =p+ “1(1'2P) - ZJP(l- \/ +"\/ Si“ql N (4.18a)
(2n. -l)JP(l-P

az(élfnl) f [(l 2p)tanql v&n T3 ' secall , (4.18b)

7) (G- nl)

and setting n, = 0 gives Eqs. (4.10a) and (4.10b) of the Section IVa. Since

1
the functions nz(al) and'az(al) determine the classical and semiclassical

transition probabilities, the comparisons shown in the previous section will

thus be the same for any two-level system.
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“IV. Concluding Remarks.

We have shown how one can define a formally exact classical analog
for a finite dimensional quantuﬁ mechanical system; If this is a set of
diabatic electronic states to which the nuclear kinetic energy is added
as in Eqs; (2.8)-(2.9), then the reéult is seen to be equivalent to the
"Ehrenfest" model, for which the electronic amplitudes obey a time-dependent
Schrodinger equation, the time dependeﬂce coming from the nuclei which follow
a classical trajectory determined by the "Ehfenfest force". .

The boundary conditions usually applied to these equations are
dynamically inconsistent, but it was seen that the classical iﬁtérpretation
of the eqﬁations plus the boundary,cénditions of classical S-matrix theory
(and a Langer-modification of the Hamiltonian) leads to a‘dynamically
consistent model. Application to two simple model systems showed that the
electronic dynamics is described quite well by this classical/semiclassical

'

model.

It appears, therefore, that this classical model of electronically:
non-adiabatic collision systems should provide a usefully accurate description

of these processes.
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Appendix A
We wish to prove that
1(4,81(n,@) = (A(,9),B(n,q)) : (A.1)

“where the commutator [A,B] and Poisson bracket {A,B} are

[A,B] = AB - BA

%(,9) 3B(n,0) _ 2A@.g) 3B(@,9); |

F

{A(n,q),B(n,q)} = [
n,q),B(n,q :E; 3q. o T T4,
7= 9 j " 95

with A(n,q) defined by Eq. (3.5), and B(n,q) similarly. ‘Since

0A(n,g) f.n i(q,~-q,) i(q,-q,)
—— = YV e T s e FI a0
j T an it 23

dA(n,q) _ E ol J : J.
= 1 . ‘ A, ~ e. . A, . A.2

the Poisson bracket yields:

{A(g,g),B(E.g)}.

. i(qm-q ) :
i L
3 ; Z :m‘/nznm' {e (ijéj Q,_A_ijjl)

- i(qp-q )
L qm
-(-A, B + B, A
e . 7 ( 25%5m % jm)

i(2q,-q,-q)
i R S’
+ A, B, -A, B,
€ ( 2 im Jm 32)

-1(2q,-q,-q )
e i U % -

Angmj+Aij2j)} . (A.3)
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The last two terms vanish upon summation due to symmetry, and the first two

terms are the same. Thus

{a,B}

_ 1(q2 )
-1 ;;annm Z(ASLJ jm SLJ Jm)

1(q2~q )

-i .;,/ngnm' e [A,B]Q
, .

[

148100 . @

It is also useful to note the relation of a canonical transformation
between variables of this type to a quantum mechanical basis set transformation.
Let {lk>}’and {|K>} each be orthonormal sets; the relations between the "old"
and "new"'action—angle variables, (B,g) and (E,g), are given by Eq. (3.6).

Thus

Q; ko], @)

and one calculates

-lq *
S =-ie a? |1 [Z eyl <[]
B | iy
4+ complex conjugate,
1(Q,-q,)
=2mfe © X Nan il . (A.6)

Similarly,



-35-

-iQ ) : . o
nk=l;e A <k|ko|t | A7)

and differéﬁtiating, one finds

3n i(q,-Q) . -
ko k K _
EQ—K' = 2 Im [e ) nkNK <le>] e . (A.8)
But since
im(z) = —Im(z*)
* .
<k|K> = <K]k>

Eq. (A.8) is equivalent to

on | . i(Q -q.) . | T
k K. 'k : : : .
56; = - ZIm.[e VﬁKnk <K|k>] s (A.8")

SNK Bnk _ :
g = - et . . (A.9)
N % '

Thinking of {qk}»and {QK} as the independent variables, Eq. (A.9) implies

the existence of a function Fl(q,Q),such that

. NK = - ——-§'Q'—K——'— » o (A.10a)
OF, (3,Q) S
n =-— . _ (A.10b)

k qu

-
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The existence of such a function (the generating function) guarantees that
the (n,q) <> (N,Q) transformation is canonical.

Proceeding in a similar fashion, one can show more generally that

* aNK 1 .
3 =-—TRe(A, ,) _ (A.11a)
nk nk A](,k
aNK
ra—<1-1-<- = 2 Im(AK,,k) . ’ (A.llb)
aQ
K -1
—_—— = Im( ) . (A-llc)
3nk ZNKnk AK}k
aQ
K 1
— = —— Re( ) _, (A.114)
qu Ny AK,k _
where
i(QK-qk)

Ag.x = © ,/NKnk’ <K |k> . S (A.12)

By interchanging (n,q) <*(N,Q), or by a similar calculation as above, one

also finds
an
- k 1
— = _= Re( . ) (A.lBa)
W, N ALK
Bnk v
56; = g Im(Ak,K)’ : (A.13b)
aq
k___1_
W— = n N Im(Ak,K) (A-13C)

K 'k K
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aq
X =-j> Re(Ak ) . (A.13d)
3QK n ,K .
Since . ~
% v
Ak’K = Al(’k R ) 7 (A.l&) -

Eqs. (A.11) and (A.13) imply that

oN on
K Tk
Fr il —SQ—. : (A.15a)
99y K
9Q an
= = Sﬁk | (A.15b)
W K
oN aq
= = 565 (A.15c)
k K
3 aQ
355 = - 3;5 (A.15d)
K k
Egs. (A.15a)-(A.15d) imply, respectively, the existence of generating
functions Fl(q,Q), Fz(q,N); F3(h,Q), and Fa(n,N) such that
n = —_——, N =& c ————e—— . a
k 3q, K Qe
A GLN) 3 (W) (A.16b) i
P = — » Q, = — A.
k' aqk K 8NK
3F3(nb_Q) . 3F3(n,Q) (A.16¢)
q, = —=>= N =2 == .16c
k on, K 3



.,

qk = T ’ QK = T . ' (A.lﬁd)

"Any one of the paif of equations in Eq. (A.16) is sufficient to guarantee

. . 1
that the transformation is canonical.
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Appendix B

Let {lk>} and {|K>} denote the diabatic and adiabatic electronic states,
respectively; {|K>} depend parametrically on the nuclear coordinateé x. The

coupling elements IK,K'(E) are

10 ‘ D
= <K|— K'> =) < > — < ' v .
TR K’ Klax K z: K|k ™ k|K (B 1a)
. 5 ' ,
= -2 Gy KldklR> (B. 1b)
and we note that TK K' is skew-hermitian
~iy
ke =" x - - (8.2)
» oN
It is a lengthy but straight-forward matter to calculate —5;-and
9Qy ' ~
—gg-for fixed n and q. One obtains

-~

-2 Re e : N v T . - (B.3a)
- oy VAR Tk x |

K _
Yl
3Q 1(Qu=Qyr) ‘
K_ 1 KK
ox N I‘“z € Nelgr Tg ke (B.3b)
~ K K
The equations of motion for N and Q are then given by
: oN aN " oN oN . '
. - —I(. . —-_K . . _—l_(-.o - -—IS.. )
NK zk:(aqk A + Bnk nk) + X % 3x 2 . (B.4a)
. 3Q 9Q -9Q aQ
% =Y XKoo + K3 K. _K. '
K ;(3qk WrEm M T R (B.4b)
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where EK = E_(x) is the adiabatic eigenvalue, i.e., the adiabatic potential

energy surface.

The task is now to find a Hamiltonian that reproduces these equations

of motion. It is useful to define the quantity F(N,Q;x) by

1(Q -Q v)
Fa) = -1 ), e & KRN T T (8.5)

where we note that in lightnof Eq. (B.2) F is real. One finds that Eq. (B.3)

is equivalent to

oN

K 3F -
B .. (B.6a)
BN_ BQK .
aQ
K _ OF v
Bx - BNE . (B.6b?

It -is then relatively straight-forward to show that the Hamiltonian in
Eq. (3.7) produces the equations of motion in Eq. (B.4). More completely,

the Hamiltonian of Eq. (3.7) leads to the following equations of motion

for electronic and nuclear degrees of freedom in the adiabatic representation:

5 ,
fni = ZNK ax g}% (p+F)/u (B.7b)
o H F
Q = TOBN_ = E + a—%*- *(p+F)/u (B.7¢c)
" .
. 3H 3 .
& S T s?f; R 22U (B.7d)
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10.

11.

12.

13.

14,

15.

16.
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Figure Captions

Electronic tfansition probability for the 2-state model, as a function
of fhe parameter p. Tbe primitive classical (-*--) and quasiélassical
(---) results are computed via Eqs. (4.6) and (4.7), respectively, and
the uniform semiélassical (++++) results via Eqs. (4.8) and (4.12).
The correct quantum mechanical transition probability is the solid

line (—) Poey = P-

UscC QM

/P2<_1 - 1), in the uniform semiclassical

transition probability for the 2-state model in the limit of very

small (p << 1) transition probabilities.



43—

. XBL 7811-13175

Figure 1



44—

10113 <,

Figure 2

10-S 10-4 0-3 102 10!

10-6

XBL 7811-13177



—

This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the

University of California, the Lawrence Berkeley Laboratory or the
Department of Energy.




s ey te -

PR

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





