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Exploring intermediate cell states through the lens of single 
cells

Adam L. MacLean1,4, Tian Hong3,4, and Qing Nie1,2

1Department of Mathematics and Center for Complex Biological Systems, University of California, 
Irvine, CA 92697, United States

2Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United 
States

3Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 
Knoxville, TN 37966, United States

Abstract

As our catalog of cell states expands, appropriate characterization of these states and the 

transitions between them is crucial. Here we discuss the roles of intermediate cell states (ICSs) in 

this growing collection. We begin with definitions and discuss evidence for the existence of ICSs 

and their relevance in various tissues. We then provide a list of possible functions for ICSs with 

examples. Finally, we describe means by which ICSs and their functional roles can be identified 

from single-cell data or predicted from models.
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Introduction

Studying single cells in high resolution has led to many advances, including new ways to 

characterize and understand cell states. These can be persistent and accompanied by well-

defined functions – commonly referred to as cell types – or they might occupy less well-

characterized roles in an atlas of cells (see the Human Cell Atlas project [1]). These latter 

cell states are referred to as intermediate, hybrid, or transition states in various contexts. 

Single-cell studies have advanced our ability to probe these states, but require new 

computational methods and theoretical models for analysis, as they are typically high 

dimensional (tens of thousands of genes measured in thousands of cells). With rapidly 

improving experimental techniques, more complex landscapes of cell states will be 

investigated and revealed, making development of appropriate tools even more important. 
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Characterizing the heterogeneity present within and between cell states is crucial to 

understanding them and defining their boundaries; here models accelerate progress, as cell 

states can be defined as attractors on a potential landscape. Below we will discuss the role of 

noise in cell states: how biology both accounts for it and exploits it, in various contexts.

Intermediate cell states (ICSs) can be defined in terms of cellular phenotype, i.e. the 

quantifiable characteristics of a cell, which include gene expression, protein abundances, 

post-translational modifications, and cell morphology. We consider any state that lies 

between two traditionally defined cell types (i.e. cell states that have accompanying 

functions) to be intermediate (Figure 1A) and we refer to a generic intermediate cell state as 

an ICS of Type 0. These cell types may be distinguished from each other by either 

quantitative or qualitative measurement. While heterogeneity within a given cell state may 

also be functionally relevant, we limit our discussion here to cell states with distinct 

functions.

ICSs become particularly important when they mediate transitions, which can have distinct 

meanings in different contexts (Figure 1B). ICSs can be ‘lineage siblings’ (Type 1), i.e. 

share a hierarchical level with terminal states. Other ICSs occupy distinct hierarchical levels 

from terminal states and potentially also between themselves (Types 2 and 3). ICSs can also 

exhibit more complex lineage relationships (Type 4).

In the following discussion, we seek to characterize ICSs and discuss how they may be 

predicted conceptually, either from models or data; we do not however provide specific 

methods with which to identify ICSs. For comparative purposes, we focus on three 

biological systems and the roles of ICSs in each. These are: the epithelial-to-mesenchymal 

transition (EMT); hematopoietic progenitor cell differentiation; and CD4+ T cell lineage 

specification. The ICSs in these systems can be classified with the definitions above (Figure 

1B) (EMT: Types 2 & 3; Hematopoietic stem/progenitor cell states: Types 2–4; CD4+ T 

cells: Type 1).

The existence of intermediate states

EMT

Epithelial and mesenchymal cells are distinguished by cellular function, morphology, 

migratory behavior and transcriptional programs. During embryonic development, epithelial 

cells undergo a transition to a mesenchymal state, a process known as epithelial– 

mesenchymal transition (EMT). This transition is associated with the loss of cell–cell 

junctions and cell polarity, and the acquisition of migratory and invasive properties. The 

EMT is reversible: mesenchymal-to-epithelial transition (MET) may occur in development 

and other physiological conditions, and is important for the morphogenesis of internal 

organs [2,3]. The EMT-MET system thus appears to be highly dynamic in response to either 

intrinsic signals or the microenvironment. Complex signaling and transcriptional networks 

[2,4] control this plasticity of cellular phenotypes.

Initial characterization of EMT indicated a binary decision between E (epithelial) and M 

(mesenchymal) states. While the notion of a direct transition is useful and parsimonious, it 
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cannot explain key observations regarding partial phenotypes exhibiting both E and M 

characteristics, during morphogenesis or cancer progression. These data have stimulated 

mathematical modeling and quantitative experimentation to characterize partial EMT. 

Modeling studies have revealed that complex EMT regulatory networks govern the existence 

and stability of multiple ICSs [5–9], for example two EMT ICSs displaying distinct 

differentiation propensities [5]. Experiments have found evidence for these states in the 

mammary epithelium, both naturally and signal-induced [5], in agreement with experiments 

showing multiple ICSs in similar systems [10–13]. These systems approaches have led to a 

new paradigm for EMT involving multiple transitional stages [14]. Intermediate EMT states 

can be classified as Type 3 in Figure 1B, where they serve as ‘waypoints’ assisting with 

cellular plasticity, but recent association of EMT ICSs with stemness leads to the hypothesis 

that these states may be more undifferentiated (Type 2) [15]. The differential stability and 

dynamic behaviors of these intermediate may be critical to morphogenesis, wound healing 

and disease progression [14].

Hematopoietic progenitor cells

Hematopoiesis proceeds by an archetypical stem cell process: a rare cell population with the 

capacity to self-renew indefinitely gives rise to the many differentiated cell types of the 

blood system. Characterization of the differentiation paths traveled by hematopoietic stem 

cells (HSCs) led to the construction of a hematopoietic lineage tree consisting of multiple 

lineage-restricted progenitor cell populations controlling successive bifurcations (Type 4 in 

Figure 1B), leading eventually to the various distinct and specialized cell lineages [16]. 

Whereas some progenitor cell populations represent cell types, others may be ICSs; our 

characterization of these is incomplete. Furthermore, each of these lineages may still contain 

(unipotent) progenitor cells and have capacity for further specification and complex cell fate 

dynamics involving ICSs (e.g. the CD4+ T cell lineage). Experiments mostly based on cell 

surface marker expression via flow cytometry led to this view of hematopoiesis; but 

differentiation culture experiments were performed at a population level and thus unable to 

resolve single progenitor cell fate decisions. Modeling studies have been able to delineate 

the landscapes and cell states of stem and progenitor populations, as well as the timings of 

cell fate decisions and some of the regulatory networks that control these decisions [17–22]. 

In the case of multiple steady states, generalized stability analysis can map out the global 

stability properties of the landscape and thus define the basins of attraction in parameter 

space [23]; progenitor cell states tend to lie in shallower wells than stem or differentiated 

cell states [24]. These studies have, until recently, focused for the most part on population 

dynamics. Significant plasticity/heterogeneity within progenitor cell populations has been 

hinted at in the past [25], but only recently have we become able to probe these phenomena 

in detail.

Single-cell analysis and models have led to dramatic changes in our characterization and 

understanding of cell states during hematopoietic differentiation. Previously well-defined 

intermediate progenitor states were revealed to be – rather than a single population – 

mixtures of heterogeneous cell populations [26,27]. Thus rather than a bifurcating tree-like 

lineage, a fan-like lineage has been proposed with fewer intermediate progenitor states and 

earlier lineage restriction (Figure 1B Type 1). Single-cell differentiation assays provide 
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functional means to test the composition of these controversial states, and have found that, in 

agreement with gene expression data, the megakaryocytic-erythrocytic progenitor population 

is not in fact composed of bipotent progenitor cells, but rather consists of lineage-restricted 

erythroid or megakaryocyte progenitors, along with cells exhibiting high plasticity (see 

Function 4) [28]. In addition, new ICSs have emerged, for example a “multi-lineage” state 

associated with the monocytic-granulocytic cell fate choice that might act as a primed state 

in which cells can become “trapped” if they do not receive the appropriate transcriptional 

cues [29].

If we consider the landscape of hematopoietic differentiation, these new data suggest we 

must go beyond Waddington’s classical bifurcating valleys [30]; instead, saddle points might 

lead to three or more new cell states [31]. This additional complexity presents both a 

challenge and an opportunity for modelers. These results also have implications for non-

hematopoietic tissues such as the skin, which have simpler differentiation trajectories (fewer 

– or perhaps no – bifurcations), but still pass through intermediate progenitor states en route 

to terminal differentiation. As we begin to interrogate these lineages in greater detail [32], 

our understanding of the existence and nature of ICSs may again be subject to change.

CD4+T cells

CD4+ T cells play an essential role in the adaptive immune response, exhibiting a 

remarkable diversity of transcriptional programs and functions. They coordinate an immune 

response by releasing cytokines specific to the immune activity and to their own identity. 

Differentiation of CD4+ T cells is triggered by pathogenic challenges to an organism, which 

are followed by antigen-presentation to the naïve (undifferentiated) CD4+ T cells, influenced 

by surrounding cytokines [33]. These antigen and cytokine signals determine the fates of the 

CD4+ T cells.

Previous experimental and modeling studies focused on signaling networks controlling fate 

determination of CD4+ T cells, with the underlying assumption that cells adopt discrete and 

mutually exclusive transcription programs upon differentiation [34–38]. However, mutually 

exclusive differentiation has been challenged by numerous observations in the past decade: 

multiple studies have found intermediate (hybrid/double-positive) CD4+ T cells, which are 

generated together with the ‘terminal’ cells and stably maintained (Type 1, Figure 1B). For 

example, cells expressing both RORγt (master regulator of Th17) and Foxp3 (master 

regulator of Treg) exist in human and mouse, and can be stably maintained in culture under 

non-polarizing conditions [39–41]. Other ICSs, e.g. Th1–Th2 and Th1–Th17 cells, can be 

found in various physiologically relevant conditions [42–47]. The formation of these ICSs 

can be explained by modeling the core transcriptional networks [48–50]. In addition to the 

identification of cells that express key factors of two lineages, stable cellular states with 

varying lineage-defining factors have been reported for CD4+ T cells [51,52]. Eizenberg-

Magar et al. found that CD4+ T cells combine cytokine signals and choose their fates in a 

linear continuum in vitro, although the stability of these states in vivo has not been examined 

[52]. Th1 cells have been shown to have stable quantitative memory in terms of the cytokine 

production rates [51]. These observations suggest that many possible cellular states exist 

between the extrema of the CD4+ T cell phenotypic spectrum. The stability of some of these 
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ICSs has been demonstrated, however the fates of CD4+ T cells are plastic, and transitions 

between states can occur during immune responses [53–56]. The relative contributions of 

cells undergoing lineage transitions between ICSs are less clear.

The three examples discussed above are among many biological systems where ICSs exist. 

In fact, the ICS may appear ubiquitously in developmental processes involving gradual cell 

fate determination [57–60]. In mature systems, ICSs may appear between cell types that 

possess sufficient plasticity, including cancer cells, and those systems which involve 

dynamics among multiple subpopulations [61,62].

The role of noise in intermediate states

The plastic nature of epithelial and mesenchymal cell states (along with ICSs) highlights the 

importance of studying the dynamics of this system in fine detail. Intercellular signaling 

molecules such as TGF-β and BMP influence EMT-MET transitions, but it is not clear how 

intracellular noise influences the transition dynamics. Stochastic simulations suggest that 

ICSs have different differentiation propensities, driven by fluctuations in gene expression, 

and that noise can trigger transitions into an ICS from a terminal state [5]. In addition, an 

ICS allows noise-induced switching more easily, such as the transition from a main state to 

an ICS, then to another main state. Such noise-induced switching is beneficial in cell fate 

specification [63,64].

Stochasticity plays a central role in hematopoietic progenitor cell dynamics, and new states 

have been gained and lost according to different measurement and analysis techniques 

[26,29,65]. Mathematical models have been used to study stochastic hematopoietic 

dynamics in various ways [66–68], but have yet to describe single-cell fate decision 

dynamics. Experimentally, techniques are improving to observe cell-to-cell heterogeneity 

[28], highlighting the importance of these effects during hematopoietic differentiation.

Stochastic fate choices for multiple CD4+ T cell lineages and corresponding ICSs have been 

observed and modeled [41,48–50]. Stochastic cytokine production has been reported in 

transitioning Th1–Th2 intermediate cells [69], however, differentiated Th1 cells have stable 

states in terms of their levels of cytokine production, and stochastic switching between the 

quantitative states is very limited [51]. Whether stochasticity contributes significantly to the 

long-term behavior of intermediate phenotypes remains an open question.

Possible functions of intermediate states

Here we discuss known or predicted functions of ICSs under five headings, and give 

examples for each. We consider two generic cell types (A and B) and the transitions that 

occur between them, which could be due to lineage dynamics or to metaplasticity.

1. The ICS controls bidirectional transitions between cell types

If cell types A and B are separated by a gap in phenotypic space, then an ICS might enable a 

transition from A to B. Or, if the transition A → B exists, but the transition B → A does 

not, an ICS might enable this reverse transition. An ICS could also have a negative effect on 
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the transition A → B, by either reducing the rate or halting the transition completely, thus 

acting as a sink.

In EMT, using landscape theory to characterize the kinetic paths of a three-state EMT 

system [70], we found that transitioning through an ICS may be required when an EMT-

inducing signal is not sufficient to convert E to M directly. In hematopoiesis, the existence of 

ICSs that were previously thought to drive bifurcations during differentiation has been 

challenged [26,27], leading to new roles for ICSs with greater lineage bias but reduced 

multipotency (perhaps precluding these states from performing function 4 below) [29]. Since 

new roles for ICSs in facilitating differentiation have yet to be carefully defined (a challenge 

exacerbated by the speed with which our understanding of the hematopoietic landscape is 

changing [59,71,72]), much work remains to be done; here modeling studies will likely play 

a crucial role. In culture or pathogenic settings, dedifferentiation can occur; such 

reversibility is also widespread for metastatic transitions: the role of ICSs in reversible (or 

reverse) transitions is likely important but remains to be well defined.

2. The ICS exhibits a hybrid phenotype

For cell types A and B with distinct functions, an ICS can display a hybrid phenotype 

containing characteristics of phenotype A and phenotype B. There could exist a transition A 

→ B, or B → A, or there could be no transition.

Several studies have found that intermediate CD4+ T cells produce cytokines of mixed 

lineage signatures and functions [40,43,45], and the dual-function of Th1–Th2 intermediate 

cells in limiting immunopathologic inflammation [47]. It has been proposed that the ICSs 

can serve as ‘moderators’ that help to avoid damage from extreme immune responses [73]. It 

has been suggested that intermediate EMT cells may exhibit a hybrid function with regards 

to collective migration; a key feature of invasive cancer cells requiring both cell-to-cell 

contact and the ability to migrate. As for hematopoiesis, in terms of the stemness axis, 

progenitor ICSs are – at least in part – by definition hybrid states, exhibiting mixed stem-like 

and differentiated cell characteristics [28,29].

3. The ICS controls size fluctuations of cell populations

An ICS between cell types A and B can regulate the variance of cell types A and B. This 

regulation might act to stabilize the cell populations via ICS transitions, or the ICS can be 

used by the system to increase the variance without changing the mean.

Models have predicted that multiple ICSs can facilitate the attenuation of fluctuating cell 

populations [74]. By absorbing some of the noise, these additional states serve as ‘buffers’ 

against environmental fluctuations, thereby preventing imbalances of cells in terminal states. 

These homeostatic properties could be hijacked by cancer; their misregulation leading to 

increased invasiveness. Recent experiments have shown that key genes – which may regulate 

ICSs and induce transitions – control fluctuations without affecting the mean of the gene 

expression state [75]. The level of temporal fluctuations is determined by a critical quantity 

called the Signed Activation Time [76,77], which may be regulated by ICSs. Increasing cell 

heterogeneity, made possible by ICSs, can also enable faster regeneration and reduce the 

variability in desired cell populations [78].
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4. The ICS expands the reach of a cell type

In various cell transition processes, including differentiation, reprogramming/

dedifferentiation, or direct reprogramming, the number of cell states accessible to a cell at 

any given time can change. The ICS can act to change this cell type “accessibility”, which 

can, in different contexts, be thought of as potency, stemness, or potential to broadcast 

information [79]. Increasing accessibility implies greater potency/stemness, while 

decreasing accessibility may correspond to/result from differentiation.

The bipotent characteristics of intermediate EMT states have led to suggestions that these 

states have higher stemness and invasiveness than terminal states. This association of the 

ICS with stemness has been found in cancer cell lines, and the signature genes associated 

with the intermediate state are correlated with poor cancer prognosis [15]. However, the 

functional role of multiple ICSs under normal physiological conditions is less clear. In 

hematopoiesis, controlling cell state accessibility during transitions is closely linked to the 

traditional functions of progenitor cell states, however (as discussed above) some of these 

functions have recently been called into question. The landscape of hematopoietic 

differentiation, which leads to many diverse cell types, must be controlled at points of 

lineage restriction/fate choice. Mutual inhibition (toggle-switch) models can control 

bifurcations [19,22,66], but if more complex decisions occur (see Ref. [29]), larger 

transcriptional networks may be required [5,31].

5. The ICS as a cell ledger

The ICS can be used to record information regarding cell dynamics, for example acting as a 

checkpoint during differentiation, requiring a certain threshold to be met by counting 

progenitor cells before differentiation proceeds.

For example, mesenchymal stem cell states exhibit memory in response to mechanical 

stimuli, thus providing a means to record cell counts [80]. In early T cell development, 

multiple intermediate stages may serve as checkpoints that ensure proper transcriptional 

programs and sufficient cell expansion are achieved [59,81]. In particular, DN1 (the earliest 

intermediate stage of T cell development in thymus) cells need to undergo multiple cell 

divisions before progress to the DN2 stage [82]. This regulation of differentiation 

competence by cell expansion is critical for T-cell homeostasis, and it could represent a more 

general strategy for maintaining cell populations through ICSs.

Modeling and computational approaches to find intermediate states

In many cases, prior knowledge of the gene regulatory networks of a biological system 

provides a good starting point for the identification of ICSs. Typically, models describe 

interactions among genes, protein abundances, post-translational modifications, or 

chromatin states, and are characterized by a system of equations (discrete or continuous). 

The challenge then becomes finding and classifying all the steady state solutions of the 

system that correspond to cell states [83]. Locations (in state space) and stability properties 

(e.g. stable, meta-stable, unstable) are critical quantities to consider for ICSs [84].
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One minimal condition for finding ICSs is the existence of five distinct steady state 

solutions, three of which need to be stable [49]. Network topologies that give rise to such 

multistability typically contain a core mutual inhibitory circuit with additional positive 

feedback loops on one or more genes. For systems of a small number of genes, nullclines 

and numerical bifurcation analysis are applicable for analysis [5,50], while for systems of a 

large number of genes, more sophisticated computational tools are required. Interestingly, in 

some cases, stable ICSs may emerge only in a stochastic model of the system [85]. 

Exploration of stochastic dynamical systems requires effective numerical methods that can 

deal with temporal stiffness in the rate constants [86–88].

When the cell state space is defined in high dimensions (e.g. by expression of many genes), 

statistical methods are needed to identify ICSs. Dimensionality reduction and hierarchical 

clustering are common strategies for quantifying the distances among cells and defining the 

state space in lower dimensions [10,89]. Additional metrics can be used to define a linear 

spectrum of phenotypes so that the possible states in the spectrum can be scored 

quantitatively [10,90].

Single-cell analysis approaches to find intermediate states

Single-cell transcriptomic data provide a flexible and unbiased way to search for ICSs in 

gene expression state space. For example, single-cell analysis has shown that metastatic 

mammary epithelial cells exhibit strong phenotypic variations [91], and indicates the 

involvement of one or more ICSs, but their relationships with stem cell subpopulations and 

EMT/MET need to be further analyzed. Bifurcation of Th1 and Tfh cells during 

Plasmodium infection has been discovered via single-cell sequencing [92], and multiple 

ICSs during CD4+ T cell differentiation have been suggested [93], however, these studies did 

not address a central question: how are mature CD4+ T cell ICSs distributed on a gene 

expression landscape? Future single-cell analysis will help to resolve this picture of mixed 

phenotype states [94,95]. Single-cell analysis of hematopoietic progenitors has led to 

dramatic changes in the understanding of the cell state landscape as discussed above, with 

corrections made to our previous (false) perceptions of some progenitor cell states [26–28], 

and the discovery of others [29].

The existence of an ICS from single-cell data can be predicted by analysis methods. In 

Figure 2A, a hypothetical low-dimensional projection of single cell data (e.g. via RNA 

sequencing) is shown, colored by subpopulation identity. These subpopulations could be 

determined by biological markers or predicted by clustering [96] or energy-landscape based 

methods [97]. Three possible means to identify ICSs from such a dataset are shown (labels 

(i)–(iii)). Cluster C2, of class (i), is defined by its distinctness in pseudotime (Figure 2B), 

suggestive of a state involved in phenotype transitions. Class (ii) (Cluster C5) appears as a 

distinct subpopulation between other subpopulations, and may also represent an intermediate 

state. Finally, type (iii) represents a mixture of subpopulations (C6 and C7), which could 

also predict an ICS.

It can be particularly challenging to identify an ICS with transient properties, especially 

since most single-cell data give only a snapshot of time; cells can be analyzed in pseudotime 
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to give hints regarding transience [65] (populations occupying very little of pseudotime may 

be considered transient). Although preserving distances among clusters of cells in the 

projections can be useful for subsequent clustering analysis [98], possible ICSs might be lost 

by using these methods because of the potential bias towards separation of major clusters. If 

the number of cells in the intermediate state is significantly smaller than the terminal states 

[71] (a rare cell subpopulation), classical clustering or dimension reduction methods are 

insufficient, and new computational tools are needed to reveal ICSs and their connections to 

terminal states [71,99].

Conclusions

Accelerated by advances in single cell technologies, our ability to characterize cell types is 

expanding, and new forms of phenotypic diversity are revealed, including the intermediate 

cell states (ICSs) that lie between traditional categories of cells. ICSs re-ignite debate over 

how we should define cell types and cell type transitions [100]. Due to a lack of quantitative 

tools, cells were previously classified based on their morphologies and cell surface marker 

expression, which can lead to ambiguity and inaccuracy. Single-cell transcriptomics lead to 

definition of cell types using dimensionality reduction and clustering techniques, but it 

remains challenging to standardize these methods across multiple biological systems. The 

existence of many ICSs becomes suggestive of a ‘continuum’ of cellular phenotypes [14,52]. 

Although this could be a useful model for understanding certain systems, the 

implementation of this idea for defining cell types requires more generalized method 

development.

Given the importance of ICSs in induced cellular reprogramming and differentiation [101–

103], and their potential to regulate phenotypic switches, we are poised to undergo a 

transformation in our ability to control cell differentiation [104,105]. Success in these 

endeavors relies on our ability to provide suitable theoretical models of cell dynamics, and 

may lead to a renewal of the definitions we give for the cell states that define us.
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Figure 1. Identities of intermediate cell states (ICSs)
(A) An ICS (green, asterisk) refers to any phenotypic state lying between traditionally 

defined cell types (yellow or blue); generic ICSs are referred to as Type 0. (B) ICSs can 

facilitate cell state transitions in many ways, occupying the same (Type 1) or distinct (Types 

2&3) hierarchical levels as other cell states. Complex lineage transitions can be mediated by 

ICSs (Type 4).
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Figure 2. Methods to predict the existence of intermediate cell states (ICSs) from single-cell data
(A) Single cell data projection (e.g. via t-distributed stochastic neighbor embedding (t-

SNE)), with cells labeled by subpopulation (C1 to C7). (B) Cells ordered in pseudotime (an 

unobserved dimension that measures the progress of cell state transitions) by subpopulation. 

Three classes of ICS are postulated from these data (others are by all means possible): class 

(i) – distinct in pseudotime (C2), may indicate transitioning state; class (ii) – distinct on a 

low-dimensional projection (C5); class (iii) – mixture of subpopulations (C6 & C7).
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