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Abstract

End-to-End Large Scale Machine Learning with KeystoneML

by

Evan Randall Sparks

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael J. Franklin, Co-chair

Professor Benjamin Recht, Co-chair

The rise of data center computing and Internet-connected devices has led to an unparal-
leled explosion in the volumes of data collected across a multitude of industries and academic
disciplines. This data serves as fuel for statistical machine learning techniques that in turn
enable some of today’s most advanced applications including those powered by image clas-
sification, speech recognition, and natural language understanding, which we broadly term
machine learning applications.

Unfortunately, until recently the tools and techniques used to leverage recent advances
in machine learning at the scales demanded by modern datasets, and thus develop these
applications, have been available only to experts in fields such as distributed computing,
statistics, and optimization.

I describe my efforts to render these tools accessible to a broader audience of applica-
tion developers, and further demonstrate that by taking a holistic approach and capturing
end-to-end high level specifications of machine learning applications the systems I present
here can make novel, high impact optimizations to decrease resource consumption while
simultaneously increasing throughput. These improvements are designed to decrease ML
application development time, increase quality, and increase machine learning application
developer productivity. I demonstrate the viability of these optimizations via experiments
on a number of real-world applications in domains such as collaborative filtering, computer
vision, and natural language processing.

Many of the ideas presented in this thesis have already had practical impact as embodied
in the open source software packages KeystoneML and Apache Spark MLlib.
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Chapter 1

Introduction

In recent years, computer applications that had been relegated to the realm of science fiction
have become everyday technologies used in important industrial, commercial, scientific and
consumer products. We can speak out loud to our telephones or speaker systems and have
them follow our commands thanks to products such as Amazon’s Alexa or Apple’s Siri. Ma-
chines automatically categorize news stories and deliver customized reading experiences [46].
Recently, Google’s DeepMind beat a top human player at the game Go, a feat that some
experts had previously deemed impossible [12]. Self-driving cars with advanced obstacle and
pedestrian avoidance systems have been deployed by some of the largest companies on the
planet including Google, Uber, and Tesla. We owe many of these recent successes to a data
revolution, and the use of advanced Machine Learning (ML) models fueled by the collection
of unparalleled data volumes.

Unfortunately, each of the achievements above has come at the cost of heavy multi-year
Research and Development investments, with teams of experts in ML and distributed com-
puting required to build each application, often investing substantial resources in building
custom software for each new challenge. Further complicating matters, the very data vol-
umes that enable successful ML applications demand extensive use of storage, compute,
and communication infrastructure when building these applications. It is not uncommon
for state of the art models to require days or weeks of training in distributed computing
environments, and an order of magnitude or more longer on single node systems. Even with
the explosion of computational resources driven by cloud computing [11], mastery of the
mathematical and computational techniques to build ML Applications at scale remains out
of reach for all but the most savvy and well-funded organizations.

In this thesis I study techniques designed to lower this barrier to entry for large scale
ML. Further, I have implemented several practical systems that exploit these techniques to
decrease time to develop and deploy large large scale ML applications [142, 140, 141]. I now
review the important economic, intellectual, and social trends that have led to the need for
this work, and present an overview of the central abstractions developed in this work that
drive the key results presented here.
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Figure 1.1: Cost of storage over time [109].

1.1 Datacenter Explosion

Economies of scale and other economic forces have caused industry to converge on a small
number of dominant computer architectures.

Moore’s Law, which served us well for nearly 50 years, has finally run its course [136].
Processing capacity measured by the maximum number of transistors per square inch on
integrated circuits is no longer growing at an exponential rate. This fact, combined with the
ever growing thirst for processing power has forced practitioners to explore both scale-out
solutions (e.g. those that employ increased number of processing units) and scale-up (e.g.
those that employ faster individual processing units) to support their applications.

A dominant scale-out solution is the data center architecture. This architecture is char-
acterized by a number of commodity computers, each with multiple processing cores, fast
transient memory (RAM), and a number of large, persistent storage devices (i.e. HDDs or
SSDs), connected moderately fast networking in in a three tier or fat tree topology.

Coupled with the slow progress of Moore’s law, the cost of persistent storage has plum-
meted over the last several decades, as shown in Figure 1.1.

It has never been easier or cheaper to store information on an unprecedented scale.
Despite these falling costs, growth in the bandwidth between compute nodes and their

attached persistent storage has not kept up with growth in capacity, and has remained
relatively constant over the last decade. This has led to the increasing use of distributed
file systems such as the Hadoop Distributed File System (HDFS) [135], and shared-nothing
distributed database systems [50] to support scale-out data processing.

Each of these trends has combined to make the datacenter architecture a predominant
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computer architecture inside major organizations in many industries, and it is the dominant
architecture supported by cloud computing providers such as Amazon Web Services (AWS),
Google Compute Engine (GCE) and Microsoft Azure.

Consequently, organizations have increasing access to distributed computing resources
for their scaling needs, and this work focuses on scaling the training of ML applications
using this architecture.

1.2 The Promise of Machine Learning

While collecting and storing data has never been easier, an interesting question is: How can
this data can be used to enable scientific insight, better experiences for end users, or better
decision making for businesses?

Indeed, today’s advanced analytics applications increasingly use ML as a core technique
in areas ranging from business intelligence to recommendation to natural language process-
ing [104], speech recognition [77] and image classification [131].

ML methods take training data as input, and use that data to learn or train a model that
maps data in the input space to predictions in some desired output space–text categories,
phonemes, and image classes in the examples above. All else being equal, there is a direct
relationship between the volume of input data and model quality, and an order of magnitude
input data may be the difference between a model that produces acceptable predictions and
one that does not [68].

The promise of machine learning methods is clear: given enough training data, which
an organization may even collect as a byproduct of its usual business activities, machine
learning promises to automatically infer a program that translates previously unseen data
into predictions for some value of interest.

1.3 Machine Learning Pipelines

Simply stated, the promise of ML is that given enough training data and sophisticated enough
learning algorithms, a computer should be able to automatically infer arbitrary functions
mapping inputs of interest into a useful output space. The reality of using ML techniques
in practice is substantially more complicated.

In practice, real ML applications can be broken down into multi-stage data processing
pipelines involving feature extraction, dimensionality reduction, data transformations, and
the training of supervised and unsupervised learning models to achieve high accuracy. An
example pipeline for image classification based on the work presented by Coates, Lee, and
Ng in 2011 [41] that includes model validation is shown in Figure 1.2.

In the Figure, training data, which has been collected and labeled by the developer, is
first passed into several stages of data preprocessing, where data is mean-centered (Scale
Estimator, Normalizer), whitened using a matrix factorization technique (ZCA, Whitener),
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Figure 1.2: A “simple” image classification pipeline.

convolved with representative data samples (KMeans, Convolver), and has a non-linearity
applied to it (Symmetric Rectifier) before being spatially aggregated (Pooler). Finally, the
aggregated data is used as input to a linear Support Vector Machine (SVM) classifier.

Graphical depictions of the data flow such as those given in the Figure may be a conve-
nient way for developers used to working with Extract, Transform, and Load (ETL) systems
to understand the desired application behavior, but such a data flow can equivalently be
written as the composition of mathematical functions. For example, let feats(Data), the
output of the Pooler, denote the first argument to the SVM solver, and let labels(Data)
denote the labels of the training data, which is the second argument to the solver. The
Model that is emitted by the SVM solver, x?, can then be written as:

x? = SVM-Solve(feats(Data), labels(Data)) (1.1)

This equivalence between pipelines and functional expressions allows for whole-program
analysis and optimization, which we will study in the context of ML in Chapter 5.

1.4 The Challenges of Large Scale ML

As data has become less expensive to collect and store, the size of training datasets available
for ML applications has also grown. Given that ML applications perform better as their
training sets grow, it is natural to want to re-train existing ML applications using these ever
bigger datasets. Unfortunately, conventional solutions based on R, Python, or MATLAB are
typically built to operate only on a single computer machine than on a scale-out architecture
as described in Section 1.1. If training or intermediate data grows beyond available memory



CHAPTER 1. INTRODUCTION 5

Data Normalizer Patch 
Extractor Convolver

Linear 
SVM
Solver

Symmetric
Rectifier

ZCA KMeans
Clusterer

Feature Extractor

Label
Extractor

ModelLinear
Mapper

Test
Data

Label
Extractor

Feature 
Extractor

Test  
Error

Error
Computer

PoolerPatch
Whitener

Embarrassingly Parallel
Requires Coordination
Tricky to Scale

Scale
Estimator

Figure 1.3: A “simple” image classification pipeline annotated by ease of scalability.

on such a machine, these environments may crash or slow down significantly as underlying
virtual memory systems struggle to cope with the demanding load. Even well designed
single-node systems will be fundamentally limited by the throughput capacity of secondary
storage once training data reaches a certain scale. Consequently, I define large scale learning
as a machine learning problem where time to solution benefits significantly from the use of
resources beyond what is available on a single commodity workstation. This definition is
more subtle than it appears at first glance, and I study the question of when to scale up in
Chapter 4.

Earlier efforts at large scale ML have taken a straightforward approach [113, 73, 62,
153, 33]. Assuming that training an ML model is the main computational bottleneck in
developing an ML application, a natural strategy is to examine the ML training algorithm
in isolation and work to make it amenable to execution in a scale-out environment. As I
discuss in further detail in the next chapter, this is the approach taken by earlier works, and
it has been largely successful. However, these solutions are deficient for two main reasons.
First, these existing solutions in general do not allow the developer to describe an end-to-
end learning pipeline, instead offering scalability on a small handful of learning components.
Second, as I show in Chapters 4 and 5, simply implementing scalable learning algorithms in
isolation ignores several important avenues for performance improvement.

In Figure 1.3, the pipeline that was presented in Figure 1.2 has been annotated by
highlighting the operators in the pipeline that require coordination among workers and those
that can benefit from distributed execution in a scale-out setting. In the figure, operators
that can be executed in a data parallel manner (that is, independently per input record)
are highlighted in green. Those that require some minimal coordination (e.g. to compute
simple sums or sufficient statistics of the data) are yellow. The operators that require
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significant coordination and possibly multiple passes of communication (e.g. estimating
model parameters) are highlighted in red with dotted outlines.

Each stage may operate on some or all of the training or test data. Some stages are trivial
to scale up in a datacenter environment. In general, such stages involve only operations that
can work in parallel on individual data items in the training data set. Other operators
may fundamentally require coordination. Few machine learning models, for example, can be
accurately estimated on only subsets of the training data.

While scaling out ML operators is an important first step, a central argument in this work
is that merely scaling out individual operators is not enough to scale out the training of ML
applications, and that the strategy of scaling out ML algorithms in isolation potentially
ignores significant opportunities for performance optimization.

1.5 Decisions, Decisions

Performance optimizations geared at accelerating the training of a single ML application
also ignore an important practicality: the need for hyperparameter tuning. Informally, each
operator in a machine-learning pipeline may have application-specific parameters that, in
conventional systems, need to be set by the application developer. Such hyperparameters
might include regularization penalties in regression or classification operators, strides or
widths for convolution operators, and target dimensionality for dimensionality reduction
operators. Figure 1.4 highlights the operators with hyperparameters in the simple image
classification pipeline. I further note that even the choice of learning algorithm, say, KMeans
vs. Gaussian Mixture Model (GMM) or SVM vs. Random Forest can be considered a
hyperparameter, so the design space is even richer than what is illustrated here.

Little guidance exists for setting these parameters, and in practice hyperparameter tuning
requires a search process where many instances of an ML application all with slightly different
hyperparameter settings may be trained, and then the best one selected. The space of
hyperparameter configurations grows exponentially with pipeline complexity, and so the
practical limit to the number of applications that can be evaluated is often a developer’s
time or financial budget, or both.

In one major thrust of this thesis, I reduce the budget required for hyperparameter tuning
by capturing the semantics of end-to-end ML applications and exploiting key properties of
the application structure. For example, the system presented in Chapter 4 employs batching
and early stopping techniques to make hyperparameter tuning up to 10× more efficient than
sequentially executed pipelines. I also identify and exploit the fact that much of the compu-
tation across different hyperparameter settings of ML applications is redundant, and that by
capturing end-to-end pipeline definitions for each application instance–a single application
hypeparameter configuration–the system can capture this redundancy and eliminate it. I
explore this optimization in depth in Chapter 6.
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Figure 1.4: A “simple” image classification pipeline annotated with hyperparameters.

1.6 Thesis Overview and Contributions

Given the rise of the scale-out datacenter architecture, the promise of ML techniques on
massive modern datasets, and the complexity of building ML applications, a natural question
to ask is whether an ML application development environment can be constructed to simplify
and expedite the process of large-scale ML application development. This question is the
central topic of this thesis.

In this thesis, I make the following contributions [142, 140, 141]:

• I explore the challenges associated with building high quality ML applications on mas-
sive datasets in a conventional data center environment.

• I propose and evaluate novel declarative programming interfaces designed to hide the
complexity of distributed computing from ML algorithm developers, and the complex-
ity of both distributed computing and ML from ML application developers.

• By hiding this complexity, I open the door for extensive performance modeling and
automatic optimization by the execution system at runtime that relies on knowledge of
the end-to-end application. I propose performance models and optimization strategies
for various aspects of these applications.

• I evaluate these proposals extensively via three main mechanisms: (1) micro-benchmarks
designed to measure the performance of the system vs. theoretically justified limits, (2)
ablation studies comparing the system with and without certain optimizations enabled,
and (3) comparison with existing state of the art systems for large scale learning.
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The ultimate aim of my work has been to lower the barrier of entry to building large scale
ML applications. By separating ML application definition from its physical execution, the
work of figuring out how to run ML at scale is offloaded from the ML application developers
and pushed into the system. By capturing the end-to-end application specification, many
sophisticated inter- and intra-application optimizations can be leveraged in the context of
large scale learning.

1.7 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background on large
scale ML application development and existing systems for large scale machine learning and
automatic hyperparameter tuning.

Chapter 3 describes a programming interface designed to simplify the development and
use of Machine Learning algorithms on Apache Spark. This interface combines ideas from
relational database systems, popular data science platforms, and statistical programming
environments. Using this interface, high quality algorithms that are competitive with existing
systems for scalable ML can be written in tens of lines of code. Many of the ideas in this
chapter formed the basis for Apache Spark MLlib, the standard library for machine learning
in Apache Spark, and the implementations I describe served as the initial implementations
in MLlib. Further, the concept of a distributed Table or Data Frame that is a key component
of this interface has become a central developer-facing abstraction in Spark in more recent
versions of the system.

Chapter 4 describes my work on large scale hyperparameter search for single-stage learn-
ing applications. I evaluate several state of the art methods for hyperparameter search, and
draw the surprising conclusion that random search seems to work about as well as many
more sophisticated methods on this problem. This finding has been echoed in subsequent
works [98, 82]. This chapter further explores optimal compute cluster configuration and the
use of early stopping and batching techniques to speed up this important step in the develop-
ment of learning applications. By combining high speed search, early stopping, batching, and
optimal cluster resource allocation the system achieves an order-of-magnitude improvement
in throughput over a baseline that reflects standard practice.

Chapter 5 presents my work on combining several stages of data preprocessing, featuriza-
tion, and model training into pipelines. I describe a system, KeystoneML that allows ML
application developers to concisely specify learning pipelines using natural syntax at a logi-
cal level. Given such a specification, the system optimizes the execution of each operator in
the pipeline and chooses among different physical implementations for each logical operator.
Finally, the system performs end-to-end optimization of pipeline training to increase total
throughput. I evaluate KeystoneML on several real-world workloads and demonstrate its
ability to capture recent academic workloads concisely while delivering performance that
exceeds the performance of existing state-of-the-art systems. I also study the impact of the
optimizations on training throughput.
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In Chapter 6 I explore the opportunities and challenges that arise when combining the
hyperparameter tuning techniques from Chapter 4 with the pipeline designs of Chapter 5. In
particular, I examine the opportunities for computational reuse that present themselves when
certain hyperparameter tuning algorithms are employed. I then discuss the limits of these
opportunities in the context of memory constraints, before describing the important problem
of optimal cache scheduling in distributed dataflow systems. I propose a solution to this
problem that employs mixed-integer linear programming before evaluating the effectiveness
of greedy heuristics on finding an optimal solution.

Finally, Chapter 7 remarks on the successes and limitations of the current state of this
work and discuss future directions for research on large-scale machine learning application
development. It concludes with a summary of the main results of the thesis.
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Chapter 2

Background

In this chapter I provide an introduction to the large scale ML application development
process. I use this background to identify key challenges in this process and delineate the
scope of this thesis, before discussing how my work relates to other research in the area of
systems for large scale ML.

The central focus of this thesis is the study of systems for scalable ML that allow de-
velopers to describe machine learning applications using high level semantics without direct
concern for how the underlying primitives supporting their applications are implemented.
The separation of the description of the operators and application pipelines from their un-
derlying implementation opens the door for optimizations such as those discussed in later
chapters.

In this chapter I review the basics of applied machine learning, and describe how ML
applications can be built using modular operators, along with some of the difficulties involved
in doing so. I then discuss the computational challenges associated with scaling machine
learning across commodity clusters. Finally I describe related academic and industrial efforts
towards systems support for large scale ML application development.

2.1 Machine Learning Application Development

As with traditional software application development, the ML application development life
cycle starts with a goal, called the learning goal in the context of ML. Example learning goals
might include: a system that automatically categorizes text into a set of predetermined
categories, a system that automatically recognizes pedestrians in video from a dashboard
mounted camera, a system that finds high quality content recommendations, or a system
that serves advertisements with the highest likelihood of generating revenue.

Given such a goal, the ML application developer then begins the ML application de-
velopment process illustrated in Figure 2.1. At a high level, this process consists of four
main stages: data collection, preprocessing-processing and featurization, model building,
and deployment. Each stage may have feedback loops returning to any previous stage. For
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Figure 2.1: A high level view of the ML application development cycle.

example, results obtained during the model training process may indicate that more data
needs to be collected. I next review each of the components in this process as they relate to
the work presented in later chapters.

2.1.1 Data Collection

The first step in this process is the identification of a collection of datasets that provide
suitable training data for the task at hand. In an ideal case, this training data is exhaustive,
is perfectly suited to the task at hand, and is something the ML developer already has
access to. In reality, this data may come from a number of possible sources: It may be
manually collected from the Web and tagged by human workers (such as the ImageNet [18]
dataset). It may be generated from simulation, as is the case in several autonomous vehicle
applications [128]. It may also be a byproduct of existing work. For example, a search
engine operator likely already has a large history of billions of mappings between search
term and the resulting page a user clicked on–information that may be used to determine
the best ads to serve to a particular user. Further, this data should be similar to what can
be obtained when the application is deployed. For example, if the developer is building a
content recommendation system based on a user’s taste preferences, there must be some
method of acquiring (or proxying) a new user’s taste preferences when they first use the
system.

In this thesis, I assume that the learning goal has already been identified and training
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data has been collected and put into a suitable format by the ML application developer.
That is, if building an image classification system, the developer needs to have collected
training images and associated labels and stored them in a database or file system. While
this is a crucial step in the development of an ML application, its study is beyond the scope
of this thesis.

2.1.2 Data Preprocessing and Featurization

Once data has been collected, and before data can be used as input to an algorithm that trains
an ML model, it must be transformed from its native format (e.g. an image bitmap) into a
feature vector, which is the conventional input to a learning algorithm. One natural question
is why the raw bytes of an input file or database record are not a sufficient representation of
such a feature vector.

First, per file in an input collection, feature vectors generated by such a process would
likely be of different length because files are generally variable sized. This violates an im-
portant assumption that all the training features come from the same space. Second, the
individual bytes may not be informative on their own. For example, it is unlikely that know-
ing that byte 334 of an image is “red” tells an algorithm very much about the content of
an image. It is the “spatial context” of this byte that is important [115]. Thus, interesting
combinations of the bytes in the file must be extracted and fed to the learning algorithm in
order to give it this context, or knowledge of how to extract context must be encoded into
the learning algorithm itself, as is the case in convolutional neural networks [97]. Further,
many learning algorithms make other assumptions about their inputs. For example, SVMs
typically assume that each input feature is on the same scale and thus it is common practice
to make sure that each input feature in the training dataset has zero mean and unit variance.

As such, many domain-specific [102, 149, 59, 51] and general-purpose [156, 58, 119]
feature extraction techniques have been developed to take raw data from variable-length and
spatially-sensitive formats such as text, speech, and images and convert them into features
amenable to training via a learning algorithm. Note, however, that one stage of featurization
may not be enough–image features may be too big to feed to a conventional algorithm or
may violate the same-scale assumption mentioned above.

Further, feature extractors may be combined. As a simple example, the popular SIFT
descriptor assumes grayscale images are input and provides only information about edge
data in the image. Most people would agree that color is also important information in
many human visual tasks, and so color information, such as from the Local Color Statistic
(LCS) descriptor, may also provide useful features.

As such, in may real world ML applications, developers may compose multiple feature
extractors and data transformation steps in a row to form inputs to the learning algorithm,
and they may synthesize features from multiple data sources or run multiple parallel feature
extraction steps on the same input data.

To give a simple example, consider a very simple pipeline for image regression. Imagine
a developer has n training images with associated real valued labels b ∈ Rn. The data, R ∈



CHAPTER 2. BACKGROUND 13

{images}n. Further, imagine the existence of a featurization function f(.) ∈ images ⇒ Rd,
and a standardization function, s(.) ∈ Rd ⇒ Rd, then featurized, standardized images can
be expressed as:

A = s(f(R)) (2.1)

The matrix, A ∈ Rn×d, is a collection of training features to be used as input to a machine
learning algorithm.

2.1.3 Machine Learning Algorithms

Machine Learning, as a discipline, is at a basic level concerned with how, given training data,
a machine can build a model to make better predictions or decisions about the world. While
there exist a multitude of communities, algorithms, and techniques concerned with this goal
in the fields of Computer Science and Statistics, all techniques share the property that the
model is derived from training data.

Within the scope of machine learning, there are two important sub types: supervised
learning, and unsupervised learning.

Supervised Learning

In supervised learning, a learning algorithm is given a training data set of features or at-
tributes (typically ∈ Rn×d) and training labels (typically ∈ 0, 1n×k in the case of multiclass
classification or ∈ Rn in the case of regression) and asked to learn a model or function that
will map new items from the same feature space to a prediction in the label space. n denotes
the number of training examples, and d to denote the number of training features. For multi-
class or multi-label problems k to denotes the number of distinct label values. A learning
algorithm will generally identify the model parameters that minimize some loss function be-
tween the training examples and training labels. Common types of supervised learning tasks
include classification tasks such as text categorization, image recognition, speech detection
and regression that attempts to learn the mapping between input data and a real-valued
number. While there are a multitude of models and algorithms available for these problems,
common examples include linear regression and classification, Naive Bayes, Support Vec-
tor Machines, tree-based methods such as Decision Trees and Random Forests, and Neural
Networks. The reader is referred to several resources on these methods [81, 115].

Perhaps the simplest model, linear regression, models the data in the following form:

b = Ax+ ε (2.2)

Where b ∈ Rn are training labels, A ∈ Rn×d are training features, x ∈ Rd are the model
parameters, and ε ∈ Rn are the errors–that is, the data that is unexplained by the model.
Rearranging terms, it is simple to see that:

ε = b− Ax (2.3)
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In Linear Regression, the loss function is least squares loss, that is, the objective is to
find the x? that minimizes squared error. Formally:

x? = minimize
x

l(x) = minimize
x

‖b− Ax‖2
2 (2.4)

Using the notation for feature extraction above, the training objective of an end-to-end
model for simple image regression might be specified as:

x? = minimize
x

‖b− s(f(R))x‖2
2 (2.5)

The conditions under which a linear model is an appropriate model choice are out of
scope of this thesis, but the reader is referred to the discussion in [71] for more. I continue
to use this simple model family throughout this chapter to illustrate the key issues explored
in this thesis.

Unsupervised Learning

In unsupervised learning, a learning algorithm is given training data without training labels,
and asked to find patterns among the data. This is a much less well-defined task as there
may not be an obvious metric to use when evaluating the effectiveness of such algorithms
(e.g. accuracy at predicting training labels). Common unsupervised learning tasks include
clustering, dimensionality reduction, and low-rank factorization. Techniques are various and
include K-Means, Principal Component Analysis (PCA), Gaussian Mixture Models, and
Latent Dirichlet Allocation, among others.

Compound Learning Applications

In machine learning applications, developers frequently mix techniques at various stages of
the learning pipeline. I call such applications compound learning applications For example, in
the image classification pipeline described in the previous chapter uses unsupervised learning
at two stages–for dimensionality reduction/whitening of image patches via ZCA, and later for
soft-assignment clustering of these features to Fisher Vectors learned via Gaussian Mixture
Models. Finally, the pipeline uses a linear SVM classifier to predict labels from the Fisher
Vector features.

Other Kinds of Learning

There are, of course, further types of machine learning to consider, semi-supervised learning
works on data that is only partially labeled and is often used in the important task of
knowledge base construction [117]. Reinforcement learning typically comes up in the study
of robotics and addresses how to learn a model when rewards or punishments are only
occasionally observed. Closely related is the field of active learning, which analyzes explore-
exploit tradeoffs in the context of collecting training data to train higher fidelity models,
hyperparameter tuning, and other settings where data is ingested incrementally.
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These last three types of machine learning are less widely used in practice than supervised
and unsupervised learning techniques and are out of the scope of this thesis, but their
incorporation into pipeline systems like KeystoneML (which I present in Chapter 5) is
exciting future work. I instead focus on compound learning applications that use supervised
and unsupervised techniques.

2.1.4 Deployment

Once an application is developed and the developer is comfortable that it will provide robust
performance, it is deployed. In ML applications, this means that when raw, unlabeled data
enters the system as input, features must be extracted from it in the same way they were
extracted at training time. These features are then fed into the trained model to render
predictions.

In the image regression example above, at test time, the system may output a prediction
b̂test ∈ R based on test data rtest ∈ {images}, using the following:

b̂test = s(f(rtest))
>x? (2.6)

The KeystoneML system described in Chapter 5 allows developers to export their
trained application and load it in a serving system at deployment time. This support is at
present basic and provides no guarantees that the model will execute fast enough, e.g., meet
service level agreements (SLAs), or degrade gracefully, or adapt to new data. These concerns
present several interesting research challenges and are explored in related work [43].

2.1.5 Overfitting and Hyperparameter Tuning

Two common issues arise when developing machine learning applications in practice: overfit-
ting, and the need for hyperparameter tuning. These issues represent the first set of feedback
loops, as illustrated in Figure 2.1, that I study.

Overfitting

An important goal in building machine learning applications is to find models that generalize
to previously unseen data. That is, models should make good predictions on test data. To
give an extreme example, imagine that the “model” is simply a look-up table that has
perfectly memorized every input example in the training set and its associated output label.
If an item is not in the lookup table the system puts out a random answer. The accuracy
of this model will be 100% on inputs that are in the training set, but the model will do no
better than random guessing on test data. Conventionally, a model is said to be overfit if it
does not generalize to test data.

A common way to estimate whether a model will generalize to unseen data is a procedure
called cross validation. Subsets of the training data are input to the learning model, a model
is trained, and then the model is evaluated on a held-out subset of the training data. This
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procedure is repeated until a sample of held out evaluations are collected. If the evaluations
are sufficiently better than random, then a final model on all the training data is trained
and that model is used going forward.

One common way to combat overfitting is via a technique called regularization. To
provide a concrete example, imagine that the developer wants to predict a real value b from
training features A using the model described above in Equation 2.2.

In situations where d (the dimensionality of the data) is very big relative to the size of
an input dataset (e.g. a regression problem is over-determined), it is possible to find a map
x such that each data example maps perfectly to an output, b, but without any guarantee
that the x applied to new data items will correctly map to unseen data.

When regularizing the model, the loss function is modified by adding a penalty term, for
example, Lasso regression minimizes the loss function:

x? = minimize
x

‖Ax− b‖2
2 + λ‖x‖1 (2.7)

Where λ ∈ R > 0 is a regularization parameter. This new term penalizes x? for having too
many terms that are non-zero, and produces models that are simpler and generalize better
despite having training loss that is at least as bad as the loss minimized in Equation 2.4.
The reader is referred to [71] for a detailed discussion of this point. However, one obvious
question, comes up: how does the developer set this new magic value, λ?

Hyperparameter Tuning

In the setting above, λ is a hyperparameter–a parameter to the model that is not inferred
automatically from the data and instead must be set by the ML application developer.
Given the above description of cross-validation, a natural approach would be to just try out
a number of different settings for λ and inspect their cross-validated performance and pick
the best one. This is common practice.

Unfortunately, a given learning pipeline may contain many such hyperparameters. In fact,
a given ML model may have anywhere from 0 (e.g. Naive Bayes, Ordinary Least Squares) or
a small handful (Lasso, Ridge, ElasticNet, Decision Trees) to tens of hyperparameters (e.g.
architecture of a convolutional neural network) [19]. Further, each preprocessing stage may
contain its own set of hyperparameters that must be set via trial and error. For example, the
width of a Gaussian kernel in random feature projection, or the number of n-grams to use
in text processing. Even discretized into a small number of potential values, the number of
possible hyperparameter configurations grows exponentially with the number of parameters
and trying them all out sequentially is infeasible.

Further complicating matters, the cost of evaluating a single hyperparameter configura-
tion may be very expensive (up to days for modern neural network architectures), and so
minimizing the raw number of hyperparameter configurations evaluated (and the time to
evaluate each one) can provide substantial benefits in terms of both time to build an ML
application and in terms of the cost of building such an application.
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A central focus of this thesis is to determine how to solve the hyperparameter tuning
problem in a resource-efficient way, which I consider in detail in Chapters 4 and 6.

2.1.6 Scaling Up Machine Learning

At the center of ML’s recent success is the observation that, all else being equal, more training
data makes models better [68]. A natural consequence of this fact is that ML application
developers want to train models on ever increasing amounts of training data.

As stated in the introduction, a learning problem becomes large scale when it can benefit
significantly from the use of distributed computing resources. I now motivate this definition
with a brief discussion of large scale linear solvers.

Exact Solvers

So far, I have described machine learning applications in declarative mathematical terms. I
have paid no attention to the problem of finding the optimal parameters (x? in the running
example). A machine learning algorithm or solver is responsible for finding such parameters.
In some cases, such as the case of linear regression (Equation 2.4), the optimal value can be
found via a closed form solution:

x? = (A>A)−1A>b (2.8)

For a matrix A ∈ Rn×d, the algorithmic complexity of this operation is O(nd2+d3). While
this computation can be parallelized, for example, via Tall and Skinny QR decomposition
(TSQR) [47], for sufficiently large values of n or d, the computational overheads of such an
algorithm may be prohibitive.

Approximate Solvers

To cope with these problems, modern machine learning applications tend to use approximate
solvers that find some approximate solution, in the example x̃?, where |l(x̃?)−l(x?)| < εapprox,
where l(.) denotes the loss function and εapprox ∈ R is the approximation error.

Fortunately, if the loss function is convex with respect to the model parameters, there
are a host of methods [26, 22] that offer approximate solutions to these loss functions in time
that is linear with the dataset size.

Perhaps the simplest such method is Gradient Descent, which operates by taking gradi-
ents of the loss function and iteratively updating an estimate of the model parameters. The
gradient update is:

x̃?t+1 = x̃?t − η∇l(x̃?t ) (2.9)

This step is run iteratively for some fixed number of iterations or until x̃?t+1 is not much
different from its predecessor (i.e., it has converged). In the running example ∇l(x̃?t ) =
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A>Ax − A>b can be computed in O(nd) time, and so the total runtime is proportional to
O(ind) where i is the number of iterations of the algorithm. In the large scale learning
regime this number will typically be much less than n or d unless the optimization problem
is very poorly conditioned.

The iterative nature of solvers is something that is fundamental and common to many
approximate solvers, and opens the door for computational reuse, a property that I exploit
to increase throughput in subsequent chapters.

Distributed Solvers

While there is ample exciting work to be done in optimizing implementations of machine
learning algorithms on single node machines [30, 127, 162], these solutions are naturally
limited by the computational capacity and bandwidth of the machine they run on.

Distributed computing, and in particular computing over clusters of commodity machines
in a datacenter environment, provides an exciting way to move beyond the limitations im-
posed by single node systems. Extensive study has been made of communication-avoiding
distributed exact solvers [158] and more recent work has been done on analyzing properties
of distributed approximate solvers [150].

In the big data regime, one common strategy for solving very large optimization problems,
is to make use of data parallelism and use distributed processing technologies (e.g. Apache
Spark [160]) to compute answers to sub problems individually. For example, the calculation
of ∇l(x?t ) of the problem above can trivially be parallelized across w workers, leading to the
computation of an update in O(nd

w
) time, and workers must communicate O(d) weights to a

central master where they are aggregated, the gradient update is performed, and then they
are sent out again. This communication may take O(d log2w) time to perform.

The overheads of both this communication and in coordinating the distributed computa-
tion may be non-trivial, but for large enough problems this strategy may provide near-linear
speedups over running the same algorithm on a single machine.

In Chapter 3 we describe interfaces that can be used to describe distributed solvers and
other kinds of learning algorithms using a distributed execution engine such as Apache Spark.

Picking a solver

Given the array of options for approximate, distributed, and local algorithms for solving
machine learning problems, a natural question is: What is the right algorithm to use? The
answer is: it depends. It depends strongly on data properties such as number of examples
and features, but also on sparsity. In a distributed environment, it depends on the data’s
initial placement and partitioning, as well as the size of the compute cluster and relative
speed of each node vs. their interconnect.

In Chapter 5 I explore this problem in detail and build a cost model not only for solvers
but for other components of ML pipelines.
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2.2 Related Work

There is a significant body of work related to large scale learning systems. Many of the
foundational sources have been covered earlier in this section, but I review the most closely
related work here.

2.2.1 Learning Systems

Some of the earliest efforts in computer science and numerical computing can be viewed
as the development of computing environments designed to aid in the practice of statistical
inference. For example, systems for high performance linear algebra [96, 9] and programming
environments built on top of them such as MATLAB and R date back to the 1970s. While
still popular for small scale problems, these systems have not been sufficiently adapted to
make use of distributed computing resources, and do not provide sufficient tools to manage
the end-to-end ML application development process.

More recent efforts include support for graphical models [100, 101], approximate solvers [64],
and deep learning [83, 105]. While many of these systems provide support for learning mod-
els in a distributed fashion, they are in general focused on learning a particular class of
models and support a single step in the ML application development process, and support
for hyperparameter tuning is at best very basic.

Several systems [120, 21] are built to facilitate the construction of end-to-end learning
applications, but so far few are designed to scale in a cluster environment.

2.2.2 Large Scale Learning

Several systems designed for large scale learning exist, and I subdivide them into two cate-
gories: scale up and scale out.

Scale up systems

Scale up systems attempt to increase the amount of data processed by machine learning
algorithms by taking advantage of key trends in modern hardware: many core processing,
large main memory systems, and general-purpose graphics processing units (GPUs). Such
systems include: Bismarck [56], DimmWitted [162], TupleWare [44], BIDMach [30], Vowpal
Wabbit [153], Shogun [134], LibLinear [55], the original GraphLab [100],and a host of GPU-
backed learning systems including TensorFlow [105] and Caffe [83].

These systems have some attractive properties when compared with distributed sys-
tems. In particular, local interconnects are an order of magnitude or more faster than the
fastest network interconnects, and so algorithms that are communication bottlenecked on
distributed systems may not be on local systems.

On the other hand, fundamentally these systems are limited by their local physical re-
sources, whether compute or I/O.
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For example, suppose a developer wants to run a gradient step on of the linear regression
problem discussed above. Fundamentally, this calculation comes down to running matrix-
vector multiply between the data A and the current model x̃?t . For a dense A matrix that
fits in memory, on conventional architectures (e.g. x86) this operation is well known to be
bottlenecked by the speed of main memory [111]. If A is partitioned across w servers, then
each server can perform |A

w
| work while a single node system is forced to scan the entirety

of A. In many practical cases, this leads to a speedup that is linear with the number of
workers. Further, if the single node does not have enough memory to hold A in its entirety,
then A must be read from secondary storage in a streaming fashion, which may make the
algorithm orders of magnitude slower.

Scale out systems

Scale out systems, on the other hand, are designed such that they scale linearly with the
amount of data by adding additional nodes in a distributed processing environment. Such
systems have been studied in the database community since the 1980s [50, 24].

Many machine learning systems from the database community have been developed [73,
61, 123] according to shared-nothing principles, and more recent systems such as Mahout [10]
and PowerGraph [101] are also built around this principle.

Spark ML [112] and MLlib [113] were directly influenced by the work done in this thesis,
with the author contributing design, code, training and support to the Apache Spark project.
However, both efforts represent an earlier snapshot of the ideas in this work as they developed.
In particular, the focus on dynamic optimization of end-to-end learning is absent from either
system, and support for hyperparameter tuning is nascent in both systems.

Existing systems generally constrain themselves to optimizations that are local to indi-
vidual machine learning methods. That is–they do not take a holistic approach to optimizing
logical large-scale ML applications as I do in this work.

The work in this thesis is primarily done in the scale out setting. However, I note that
the scale-out and scale-up settings are not mutually exclusive. For example, the algorithms
developed for this thesis make use of all machine cores, and make heavy use of large memories
available on modern hardware. Careful attention was paid in this work to ensure that the
per-node performance of each algorithm was within an acceptable margin of machine peak.
This was achieved by being wary of Java Virtual Machine overheads and leveraging high
performance libraries under the systems wherever possible. Where such libraries didn’t
exist, extensive profiling and hand-tuning of time-dominant algorithms was conducted.

2.2.3 Hyperparameter Tuning

As indicated in Section 2.1.5, hyperparameter tuning is a field of study in its own right and
has been explored by the ML community extensively. Four main strategies exist: Grid and
Random Search, Derivative Free Optimization, Bayesian Optimization and Active Learning.
In this section I assume that for a given problem, a hyperparameter space H ∈ Rd×2 can be
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defined over the d hyperparameters of a given problem. That is, a given hyperparameter
configuration h, H:,0 5 h 5 H:,1. Assuming that there are resources to train a budget of
b ∈ Z hyperparameter configurations, I now provide a high level overview of the operation
of each of these algorithms.

Grid and Random Search

As discussed previously, Grid Search and Random Search are perhaps the most obvious
algorithms for hyperparameter search.

Grid Search proceeds as follows: given H, select d
√
b equally spaced points along each

dimension and compute their Cartesian product. Cross-validate all b resulting hyperparam-
eter configurations and return the one that the works best as measured by cross-validated
accuracy or some other metric.

Random Search proceeds as follows: select b hyperparameter configurations from H uni-
formly at random. Cross-validate each configuration and return the one that works the
best.

While these methods are simple, they are by far the most commonly deployed methods
in practice. As I show in Chapter 4, there is perhaps good reason for this.

Derivative-Free Optimization

Derivative-free optimization [42] attempts to optimize functions that produce a single value
given a real-valued vector input. Methods such as Nelder-Mead [116] and Powell’s Method [122]
have existed since the 1960s.

If the function of interest is the mapping of hyperparameter configuration to some statistic
of interest (say, cross-validated test error), these methods can be used for hyperparameter
tuning. Each of these methods has the general property that it assumes that the function it
is optimizing is smooth and attempt to approximate a gradient from it by computing several
points on the surface, and these assumptions may be unsuitable for the hyperparameter
tuning setting.

Bayesian Optimization

Similar to derivative-free optimization, Bayesian Optimization attempts to learn the shape
of a function using Bayesian methods. Commonly deployed methods include those based on
Upper Confidence Bounds [143], Gaussian Processes [138], or tree-based methods [20, 78].

These methods differ from classical derivative-free optimization techniques in that they
allow for priors on the space of allowable inputs, which may allow for faster learning of the
hyperparameter response function.
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Active Learning

Inspired in part by the work in Chapter 4 recently there has been an increase in interest
from the Active Learning community in using these methods for hyperparameter optimiza-
tion. Jamieson et. al. [82] and Li et. al. [98] study the hyperparameter tuning problem in
theoretical depth and conclude (as I find, empirically) that under reasonable assumptions
that Random Search is in expectation an optimal solution to this problem.

In this thesis, I present several techniques to speed up hyperparameter tuning based on
better resource utilization and modeling (as in Chapter 4) and optimal computational reuse
(Chapter 6).

2.2.4 Declarative Programming and Database Optimization

Database query optimization is a highly influential technique in the data management liter-
ature. The use of this technique in data processing systems dates back to the 1970s [133].
In traditional relational database management systems, programmers specify queries (pro-
grams) to the system in a declarative language (e.g. SQL)

The MLbase paper [88] described an architecture for a declarative system for large scale
ML. Many of the ideas in that work are central to the rest of this study, in particular, efficient
distributed algorithms, automatic operator selection, and automated hyperparameter tuning.

Other works [162] explore optimization opportunities in ML systems, while others still
address the construction ML algorithms using declarative programming environments [154,
49].

SystemML [61] is a closely related system that optimizes the execution of declarative
ML programs specified in an R-like syntax. The level of abstraction presented to the pro-
grammer by SystemML is too low level and consequently leaves substantial opportunities
for optimization on the table. As a concrete example, I refer the reader to the comparisons
with SystemML in Chapter 5.

In this work, I consider in depth the optimization opportunities that arise in distributed
environments and leverage tools from the distributed systems community [160] as an execu-
tion layer for the higher-level programming primitives presented here.

2.2.5 Non-Goals: Generative Models, Tiny Data, and Deep
Learning

While the goal of this thesis is to investigate systems support for large scale machine learning,
I cannot possibly hope to cover all of this incredibly diverse field in a single study.

In particular, while generative models, such as those trained via Expectation Maximiza-
tion and Gibbs Sampling are implemented and supported in KeystoneML (see, e.g. the
study of GMM in chapter 5), the formal analysis in this work focuses on support for dis-
criminative models. Generative models capture a full probabilistic model of all the variables
in is model, while a discriminative model provides a model for the labels conditioned on



CHAPTER 2. BACKGROUND 23

the training data. However, the cost modeling and performance optimizations we discuss in
subsequent chapters can apply to distributed algorithms for learning generative models.

Also absent from this thesis is a detailed review of when to use large-scale methods vs.
methods that fit on a single machine. While the cost models used by KeystoneML can be
applied to the latter case, they omit factors that capture important effects on single machine
systems (e.g. local cache hierarchies and diverse local compute capabilities such as GPUs).
However, the cost modeling framework I propose is general and can be extended to handle
distributed and local computation on such resources.

One particular area that is not directly addressed in detail is the recently popular Deep
Learning, which rose to prominence following success on image classification tasks using
convolutional neural networks.

Chapter 5 compares KeystoneML to one system for convolutional neural networks.
While it is interesting to think about extending KeystoneML to support these types of
models, this support has limited for a number of reasons. First, Deep Learning is a recent
trend and the majority of industrial use of ML is still focused on traditional methods. Sec-
ond, Deep Learning models are in general non-convex, and thus fitting them using convex
optimization routines (while perhaps empirically justified) is more art than science. For ex-
ample, sensitivities of deep models to factors like batch size in minibatch stochastic gradient
descent (SGD) optimization have been documented and currently popular models for com-
puter vision such those presented by Krizhevsky et. al. [89] are not amenable to distributed
training in commodity cluster environments. Recent works [114, 80] suggest that scalability
for these popular models are severely limited by the speed of commodity networks, and even
when using state-of-the-art Infiniband networks on models that are designed for scale out
performance, their scalability as measured by time to convergence is significantly sub-linear.

As such, in this work I focus on traditional discriminative learning models that optimize
convex loss functions with predictable communication and computation patterns.

2.2.6 Other Related Work

Systems support for ML at large scale is a topic of increasing interest, and while other
works discuss solutions to similar problems to those studied in this thesis, they are not
directly related. Other works such as Starfish [74] and Ernest [152] have studied performance
modeling of MapReduce and Spark jobs in depth. While these works apply broadly to
programs written against MapReduce clusters, they use black-box strategies to infer job
execution costs, while I build cost models explicitly based on developer knowledge of the
algorithms in use. This is possible in the restricted environment of ML algorithms under the
APIs provided by the systems I present, but may not be generally feasible.

The caching strategy described in Chapter 5 can be viewed as a form of view selection
for materialized view maintenance over queries with expensive user-defined functions [38,
72], I focus on materialization for intra-query optimization, as opposed to inter-query opti-
mization [70, 35, 164, 52, 121]. While much of the related work focuses on the challenging
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problem of view maintenance in the presence of updates, in this thesis I exploit the iterative
nature and immutable properties of this state.

Other work [161, 2] has looked at optimizing caching strategies and operator selection in
the regime of feature selection and feature generation workloads. This thesis considers similar
problems in the context of distributed ML operators and end-to-end learning pipelines.
Developed concurrently to this work is TensorFlow [105]. While designed to support different
learning workloads the optimizations that are a part of this work can also be applied to
systems like TensorFlow.

The concept of using a high-level programming model has been explored in a number
of other contexts, including compilers [95] and networking [85]. In this thesis I focus on
machine learning workloads and propose node-level and end-to-end optimizations.
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Chapter 3

MLI: An API for Distributed
Machine Learning

Having set the stage for the large scale ML problem, I now describe key components of a
system for large scale ML application development: a set of learning algorithms designed
to run in a distributed setting on large scale datasets. Large scale learning algorithms that
work on distributed data sets often share a set of code patterns and can make use of a
common set of underlying data structures. In this chapter, I introduce MLI, an API for
distributed machine learning designed to capture these common patterns and data structures
and offer a programming environment amenable to the rapid implementation of large scale
ML algorithms, such as the ones that are foundational sub-routines in future chapters.

3.1 Introduction

As described in Chapter 1, the recent success stories of machine learning (ML) driven ap-
plications have created an increasing demand for scalable ML solutions. Nonetheless, ML
researchers often prefer to code their solutions in statistical computing languages such as
MATLAB or R, as these languages allow them to code in fewer lines using syntax that
resembles high-level pseudocode. MATLAB and R allow researchers to avoid low-level im-
plementation details, leading to quickly developed prototypes that are often sufficient for
small scale exploration. However, these prototypes are typically ad-hoc, non-robust, and
non-scalable implementations. In contrast, industrial implementations of these solutions of-
ten require a high degree of development effort and are difficult to change once implemented.

The disconnect between ad-hoc scripts and the growing need for scalable ML, in par-
ticular systems that leverage the increasingly pervasive datacenter computing architectures
discussed in Chapter 1, has spurred the development of several distributed systems for ML.
Initial attempts at developing such systems exposed a restricted set of low-level primitives for
development, e.g., MapReduce [10] or graph-based [100, 62] interfaces. The systems devel-
oped using these interfaces are often significantly faster and more scalable than MATLAB or
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R scripts. They also tend to be much less accessible to ML researchers, as ML algorithms do
not always naturally fit into the exposed low-level primitives, and moreover, efficient use of
these primitives requires a fairly advanced knowledge of the underlying distributed system.

Subsequent attempts at developing distributed systems for ML have exposed high-level
interfaces that compile down to low-level primitives. These systems abstract away much of
the communication and parallelization complexity inherent in distributed ML implementa-
tions [61, 27, 145]. Although these systems can in theory obtain excellent performance, they
are quite difficult to implement in practice, as they either heavily rely on optimizers to effec-
tively transform high-level code into efficient distributed implementations, or utilize pattern
matching techniques to identify regions that can be replaced by low-level implementations.
The need for fast ML algorithms has also led to the development of highly specialized systems
for ML using a restricted set of algorithms [134, 153], with varying degrees of scalability.

Given the difficulty that developers face when using low-level systems for large scale
ML and the complexity inherent in developing for the high-level systems, ML researchers
have yet to widely adopt any of the existing systems. Indeed, ML researchers, both in
academic and industrial environments, often rely on system programmers to translate the
prototypes of their novel, and often subtle, algorithmic insights into scalable and robust
implementations. Unfortunately, there is often a ‘loss in translation’ during this process;
small misinterpretation and/or minor errors are unavoidable and can significantly impact
the quality of the algorithm. Furthermore, due to the randomized nature of many ML
algorithms, it is not always straightforward to construct appropriate test-cases and discover
these bugs.
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Figure 3.1: Landscape of existing development platforms for ML.

In this chapter, I present a novel API for ML, called MLI, to bridge this gap between
prototypes and industry-grade ML software. I provide abstractions that simplify ML devel-
opment in comparison to pure MapReduce and graph-based primitives, while nonetheless
allowing developers control of the communication and parallelization patterns of their algo-
rithms, thus obviating the need for a complex optimizer. MLI aims to be in the top right
corner of Figure 3.1, by providing a development environment that is nearly on par with the
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usability of MATLAB or R, while matching the scalability of and approaching the walltime
of low-level distributed systems. I make the following contributions in this chapter:

• Syntax and Interfaces: I show how MLI-supported high-level ML abstractions nat-
urally target common ML problems related to data loading, feature extraction, model
training and testing.

• Usability: I demonstrate that implementing ML algorithms written against MLI
yields concise, readable code, comparable to MATLAB or R.

• Scalability: I describe an implementation of MLI on Apache Spark [160], a clus-
ter computing system designed for iterative computation in a large scale distributed
setting.

The results of performance experiments using logistic regression and matrix factorization in
this chapter illustrate that MLI/Spark vastly outperforms Mahout and matches the scaling
properties of specialized, low-level systems (Vowpal Wabbit, GraphLab), with performance
within a small constant factor.

3.2 The MLI Interface

MLI promotes the design and implementation of developer-friendly, scalable algorithms.
The interface consists of two fundamental objects – MLTable and LocalMatrix – each with
its own API. These objects are used by developers to build Optimizers, which in turn are
used by Algorithms to produce Models. It should be noted that these APIs are system-
independent - that is, they can be implemented in local and distributed settings (Shared
Memory, MPI, Spark, or Hadoop). The first implementation supporting this interface is
built on the Spark platform.

These APIs help developers solve several common problems. First, MLTable assists in
data loading and feature extraction. While other systems [153, 10, 62, 100] require data to be
imported in custom formats, MLTable allows developers to load their data in an unstructured
or semi-structured format, apply a series of transformations, and subsequently train a model.
I address feature extraction more completely in Chapter 5.

LocalMatrix provides linear algebra operations on subsets of the fully featurized dataset.
By breaking the full dataset into row-wise partitions of the original dataset and operating
locally on those partitions, MLI gives the developer access to higher level programming
primitives while still allowing them to control the communication that takes place between
nodes and reason about the computational complexity of their algorithms.

As part of MLI, I also pre-define a set of common interfaces for Optimization, Algorithms,
and Models to encourage code reuse and to ensure a consistent external system interface. In
the remainder of this section I describe these abstractions in more detail.
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3.2.1 MLTable

MLTable is an object that provides a familiar table-like interface to a developer, and is
designed to mimic a SQL table, an R data.frame, or a MATLAB Dataset Array. The
basic MLTable API is illustrated in Figure 3.2. An MLTable is a collection of rows, each of
which conforms to the table’s column schema. Each column is of a particular type, optionally
has a name, and can be of the following basic types: String, Integer, Boolean, and Scalar
(floating point numeric data). Importantly, any cell in the table can be “Empty” and this
is represented with a special value. The table interface, which should be familiar to many
developers, supports common operations like relational joins, unions, and projections - as
well as map and reduce operations on rows that follow similar semantics to other MapReduce
systems. Table 3.2 captures only core operations of the API and is not exhaustive.

Additionally, tables support batch operations on partitions of the data, which enable
parallel data-local operation on multiple data items. While ML algorithms primarily expect
numerical data as input, MLI exposes MLTable as an interface for processing the semi-
structured, mixed type data that are present in real-world applications, and transforming
this raw data into feature vectors for model training. Given this interface, developers are
able to load structured data into an MLTable, and then apply a series of transformations
to the data in parallel to produce input that is suitable for a ML algorithm. By supporting
common data integration tasks out of the box in a straightforward and consistent manner,
MLI significantly decreases the amount of time spent during data preparation and feature
extraction.

Once data is featurized, it can be cast into an MLNumericTable, which is a convenience
type that most ML algorithms will expect as input. The MLNumericTable interface is the
same as MLTable, but it guarantees that all columns are numeric, and by convention each
row will be treated as a single feature vector.

3.2.2 LocalMatrix

At their core, many ML algorithms are concisely expressed using linear algebra operations.
For example, the update step in stochastic gradient descent for generalized linear models
such as logistic regression, linear regression, etc. involves computing the gradient of a weight
vector with respect to a test class and a training point. In the case of logistic regression,
this is ultimately the dot product of two vectors, (or a matrix/vector multiplication in the
case of mini-batch SGD), followed by a vector/vector subtraction.

LocalMatrix provides these linear algebra primitives but on partitions of data. The
partitions of the data presented to the developer are typically automatically determined
by the system. That is, MLI requires programmers to develop algorithms such that all
operations can be performed locally and later combined via global reduce operations. This
re-assembles to a large degree the shared nothing principle from distributed computing and
often leads to highly scalable algorithms. I also considered exposing globally distributed
linear algebra operations, but explicitly decided against it primarily because global operators
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Operation Arguments Returns Semantics
project Seq[Index] MLTable Select a subset of columns from

a table.
union MLTable MLTable Concatenate two tables with

identical schemas.
filter MLRow ⇒ Bool MLTable Select a subset of rows from a

data table given a functional
predicate.

join MLTable, Seq[Index] MLTable Inner join of two tables based
on a sequence of shared
columns.

map MLRow ⇒ MLRow MLTable Apply a function to each row
in the table.

flatMap MLRow ⇒ TraversableOnce[MLRow] MLTable Apply a function to each row,
producing 0 or more rows as
output.

reduce Seq[MLRow] ⇒ MLRow MLTable Combine all rows in a table us-
ing an associative, commuta-
tive reduce function.

reduceByKey Int, Seq[MLRow] ⇒ MLRow MLTable Combine all rows in a table us-
ing an associative, commuta-
tive reduce function on a key-
by-key basis where a key col-
umn is the first argument.

matrixBatchMap LocalMatrix ⇒ LocalMatrix MLNumericTable Execute a batch function on
a local partition of the data.
Output matrices are concate-
nated to form a new table.

numRows None Long Returns number of rows in the
table.

numCols None Long Returns the number of
columns in the table.

Figure 3.2: MLTable API Illustration.

would hide the computational complexity and communication overhead of performing these
operations. Instead, by offering linear algebra on subsets (i.e., partitions) of the data, MLI
provides developers with a high level of abstraction while encouraging them to reason about
efficiency.

Aside from the semantic difference that operations are performed on individual partitions,
LocalMatrix is designed to resemble a matrix in MATLAB, R, or most other numerical
programming environments. It supports indexing by rows, columns, or slices of each. A Lo-
calMatrix also supports Matrix-Matrix and Matrix-Scalar algebraic operations, and common
linear algebra routines like matrix inversion.

3.2.3 Optimization, Models, and Algorithms

In addition to MLTable and LocalMatrix, MLI provide additional interfaces called Opti-
mizer, Algorithm, and Model.

Many models cannot be solved via closed form solutions, and even when closed-form so-
lutions exist, the computational complexity of these solutions often increases super-linearly
with data size, as in the case with basic linear regression. As a result, various optimization
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Family Example Uses Returns Semantics
Shape dims(mat), mat.numRows,

mat.numCols
Int or (Int,Int) Matrix dimensions.

Composition matA on matB, matA then matB Matrix Combine two matrices row-
wise or column-wise.

Indexing mat(0,??), mat(10,10), mat(Seq(2,4),
1)

Matrix or Scalar Select elements or sub-
matrices.

Reverse Indexing mat(0,??).nonZeroIndices Seq[Index] Find indices of non-zero ele-
ments.

Updating mat(1,2) = 5, mat(1, Seq(3,10)) =
matB

None Assign values to elements or
sub-matrices.

Arithmetic matA + matB, matA - 5, matA /
matB

Matrix Element-wise arithmetic be-
tween matrices and scalars or
matrices.

Linear Algebra matA times matB, matA dot matB,
matA.transpose, matA.solve(v),
matA.svd, matA.eigen, matA.rank

Matrix or Scalar Basic and extended linear alge-
bra support.

Figure 3.3: LocalMatrix API Illustration

techniques are used to converge to an approximate solution while iterating over the data.
I treat optimization as a first class citizen in this API, and the system is built to support
new optimizers. The reader is referred to the reference implementation for Stochastic Gra-
dient Descent in Figure 3.6. For comparison, an implementation in MATLAB is shown in
Figure 3.5.

Finally, MLI encourages developers to implement their algorithms using the Algorithm
interface, which should return a model as specified by the Model interface. An algorithm
implementing the Algorithm interface is a class with a train() method that accepts data
and hyperparameters as input, and produces a Model. A Model is an object that makes
predictions. In the case of a classification model, this would be a predicted class given a new
example point. In the case of a collaborative filtering model, this might be recommendations
for an existing user in the system. Both interfaces are rather simple, but crucially help to
provide one common interface for developers (and to the MLbase system as a whole).

3.3 Examples

To evaluate the design claims made in the earlier sections, I evaluate MLI as well as com-
peting ML systems on two representative real-world problems, namely binary classification
and matrix factorization. When implementing algorithms against MLI, Spark was chosen
as the first platform because it is well-suited for computationally intensive, iterative jobs
on large datasets that are characteristic of large ML workloads. Moreover, many large-scale
ML systems, e.g, [153, 62] do not emphasize fault tolerance. In contrast, Spark’s resilience
properties, due to automatic data replication and computation lineage, are quite attractive
in a distributed environments where automatic recovery from node failure is a necessity.
Given the choice to build on top of Spark, it was natural for the first implementation of the
API to be in Scala.
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The experiments illustrate three attractive features about MLI. First, I show that MLI
yields concise and readable code. We compare the code length for comparable implemen-
tations of algorithms in MATLAB and MLI. Second, I argue that MLI supports a wide
variety of algorithms. Although I focus on two problem settings, these examples demon-
strate wide-ranging functionality of MLI and in fact naturally extend to a diverse group
of ML algorithms, e.g., linear SVMs, linear regression, and (L1, L2, elastic net)-regularized
variants therein, simply by changing the expression of the gradient function (and adding a
proximal operator in the case of L1-regularization). Third, I demonstrate that the imple-
mentations written against MLI are performant and scalable. I present performance results
comparing execution times of various systems on the two examples. I further present exten-
sive strong and weak scalability results. Both sets of results show that the implementations
in MLI match the scalability of low-level distributed systems with performance within a
small constant factor.
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Figure 3.4: Logistic regression experiments. (a) Lines of code. (b) Execution time for weak
scaling. (c) Weak scaling.

1 function w = log_reg(X, y, maxiter, learning_rate)
2 [n, d] = size(X);
3 w = zeros(d,1);
4 for iter = 1:maxiter
5 grad = X’ * (sigmoid(X * w) - y);
6 w = w - learning_rate * grad;
7 end
8 end
9

10 % applies sigmoid function component-wise on the vector x
11 function s = sigmoid(x)
12 s = 1 ./ (1 + exp(-1 .* x));
13 end

Figure 3.5: Logistic Regression Code in MATLAB.
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1 object LRAlgorithm extends NumericAlgorithm[LRParameters] {
2 def defaultParameters() = LRParameters()
3 def sigmoid(z: Double): Double = 1.0/(1.0 + math.exp(-1.0*z))
4 def train(data: MLNumericTable, params: LRParameters): LRModel = {
5 val d = data.numCols-1
6
7 def gradient(vec: MLVector, w: MLVector): MLVector = {
8 val x = MLVector(vec.slice(1,vec.length))
9 x times (sigmoid(x dot w) - vec(0))

10 }
11
12 //Run gradient descent on the data.
13 val optParams = SGDParameters(
14 wInit = MLVector.zeros(d),
15 grad = gradient,
16 learningRate = params.learningRate)
17 val weights = SGDescent(data, optParams)
18
19 new LRModel(data.toMLTable, params, weights)
20 }
21 }

1 object SGD extends MLOpt with Serializable {
2
3 def apply(data: MLNumericTable, params: SGDParameters): MLVector = {
4 var weights = wInit
5 var i = 0
6
7 //Main loop of SGD. Calls local SGD and averages parameters.
8 while(i < params.maxIter) {
9 weights = data.matrixBatchMap(localSGD(_, weights, params.learningRate, params.grad)

).reduce(_ plus _) over data.partitions.length
10 i+=1
11 }
12 weights
13 }
14
15 def localSGD(data: LocalMatrix, weights: MLVector, lambda: Double, gradientFunction: (

MLVector, MLVector) => MLVector): LocalMatrix = {
16 var localWeights = weights
17 for (i <- data.toMLVectors) {
18 //Compute the gradient and update the model.
19 val grad = gradientFunction(i, loc)
20 localWeights = localWeights minus (grad times lambda)
21 }
22 localWeights
23 }
24 }

Figure 3.6: Logistic Regression Code in MLI (middle, bottom).
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Figure 3.7: Execution time for strong scaling for logistic regression.
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Figure 3.8: Strong scaling for logistic regression

3.3.1 Binary Classification: Logistic Regression

Let X ∈ Rn×d be a dataset of n points with d features, xi ∈ Rd be the ith data point, and
define y ∈ {0, 1}n as the corresponding set of binary labels. Logistic regression is a canonical
classification algorithm. The optimal parameter vector w∗ ∈ Rd can be found by minimizing
the negative likelihood function, f(w) = − log p(X|w). Taking the gradient of the negative
log likelihood, we have:

∇f =
n∑
i=1

[(
σ(w>xi)− yi

)
xi

]
, (3.1)

where σ(x) = 1/(1 + exp−x) is the logistic sigmoid function. Gradient descent (GD) is a
standard first-order iterative method to solve for w∗; at the tth iteration the algorithm moves
in the direction of the negative gradient with step size controlled by a learning rate, η, i.e.,
set wt+1 = wt− η∇f . Stochastic gradient descent (SGD) involves approximating the sum in
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Equation 3.1 by a single summand.

Experimental Setup and Data

I ran both strong and weak scaling experiments on 1, 2, 4, 8, 16, and 32 machines. All are
Amazon m2.4xlarge EC2 instances with 68GB of RAM and 8 virtual cores running in the
us1-east region. They are configured using the default Spark 0.7.0 AMI and are running
a recent version of Spark and Hadoop 1.0.4. I compare the system to version 7.2 of Vowpal
Wabbit (VW) running on the same cluster, and MATLAB running on a similarly configured
(single node) machine. I do not compare against Mahout for these experiments because its
implementation of Logistic Regression via SGD is very communication intensive, and this
implementation would not provide a fair comparison for Mahout.

I ran the weak scaling experiments on a training set of up to approximately 200GB of
featurized ImageNet [18] data where each image is represented with 160K dense features,
yielding approximately 200K images total for the 32-node experiment. The number of input
points used is proportional to the number of nodes in the cluster for the experiment. I
further note that this experiment only represents approximately 20% of the full ImageNet
dataset. While I was able to train a full classifier using MLI in approximately 2.5 hours, the
preprocessing required to prepare the data for VW on the full set of data was too onerous
to complete the experiment. In the strong scaling experiments, I trained on 5% of this base
data for the same number of nodes.

Implementation

I have implemented logistic regression via SGD. To approximate the algorithm used in
VW [39] I ran SGD locally on each partition before averaging parameters globally. I note,
however, that there are several alternative methods to implement SGD on top of MLI.
Implementing Logistic Regression in MLI is as simple as defining the form of the gradient
function and calling the SGD Optimizer with that function. Additionally, the code that
implements StochasticGradientDescent is both short and fairly interpretable.

Algorithmically, the MLI implementation is identical to VW, with one meaningful dif-
ference, namely aggregating results across worker nodes after each round. VW uses an
“AllReduce” communication primitive to build an aggregation tree when averaging together
model parameters after each iteration. It then uses the same tree to broadcast these results
back to workers. In MLI takes a more traditional MapReduce approach and average all
parameters at the cluster’s master node at each iteration, then broadcast the parameters
to each node using a one-to-many broadcast. As the number of machines increases, VW’s
approach is theoretically more efficient from the perspective of communication and paral-
lelizes better with respect to computation. In practice, scaling results are comparable as
more machines are added.

In MATLAB, gradient descent was implemented instead of SGD, as gradient descent
requires roughly the same number of numeric operations as SGD but does not require an
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inner loop to pass over the data. It can thus be implemented in a ‘vectorized’ fashion, which
leads to a significantly more favorable runtime. I show MATLAB’s performance here as a
reference for training a model on a similarly sized dataset on a single multicore machine.

Results

In the weak scaling experiments (Figures 3.4b, 3.4c), one can see that the clustered system
begins to outperform MATLAB at even moderate levels of data, and while MATLAB runs
out of memory and cannot complete the experiment on the 200K point dataset, the system
finishes in less than 10 minutes. Moreover, the highly specialized VW is on average 35%
faster than MLI, and never twice as fast. These times do not include time spent preparing
data for input input for VW, which was significant, but I expect that these would be a
one-time cost in a production environment.

From the perspective of strong scaling the MLI actually outperforms VW in raw time
to train a model on a fixed dataset size when using 16 and 32 machines, and exhibits
better strong scaling properties, much closer to the gold standard of linear scaling for these
algorithms. The cause is unclear.
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Figure 3.9: ALS experiments. (a) Lines of code. (b) Execution time for weak scaling. (c)
Weak scaling.

3.3.2 Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender systems to predict user-product
associations. Let M ∈ Rm×n be some underlying matrix and suppose that only a small
subset, Ω(M), of its entries are revealed. The goal of matrix factorization is to find low-rank
matrices U ∈ Rm×k and V ∈ Rn×k, where k � n,m, such that M ≈ UV T . Commonly, U
and V are estimated using the following bi-convex objective:

min
U,V

∑
(i,j)∈Ω(M)

(Mij − UT
i Vj)

2 + λ(||U ||2F + ||V ||2F ) . (3.2)



CHAPTER 3. MLI: AN API FOR DISTRIBUTED MACHINE LEARNING 36

MLI/Spark GraphLab Mahout Matlab−mex
0

2000

4000

6000

8000

10000

12000

14000

16000

w
a
ll
ti

m
e
 (

s
)

 

 

1 Machine

4 Machines

9 Machines

16 Machines

25 Machines

Figure 3.10: Execution time for strong scaling for ALS.
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Figure 3.11: Strong scaling for ALS

Alternating least squares (ALS) is a widely used method for matrix factorization that solves
(3.2) by alternating between optimizing U with V fixed, and V with U fixed, using a well-
known closed-form solution at each step [87].

Experimental Setup and Data

I tested both strong and weak scaling experiments using 1, 4, 9, 16, and 25 machines with the
same specifications as in the previous experiments. I ran the weak scaling experiments on a
training set of up to approximately 50 GB of collaborative filtering data. This data is created
by repeatedly tiling the Netflix collaborative filtering dataset. This allows us to maintain the
sparsity structure of the dataset, and increase the number of parameters in a fixed manner.
For weak scaling, the size of the dataset is proportional to the number of machines used in
the cluster for the experiment. Thus, when running the largest experiment on 25 machines,
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1 function [U, V] = ALS_matlab(M, U, V, k, lambda, maxiter)
2
3 % Initialize variables
4 [m,n] = size(M);
5 lambI = lambda * eye(k);
6 for q = 1:m
7 Vinds{q} = find(M(q,:) ˜= 0);
8 end
9 for q=1:n

10 Uinds{q} = find(M(:,q) ˜= 0);
11 end
12
13 % ALS main loop
14 for iter=1:maxiter
15 parfor q=1:m
16 Vq = V(Vinds{q},:);
17 U(q,:) = (Vq’*Vq + lambI) \ (Vq’ * M(q,Vinds{q})’);
18 end
19 parfor q=1:n
20 Uq = U(Uinds{q},:);
21 V(q,:) = (Uq’*Uq + lambI) \ (Uq’ * M(Uinds{q},q));
22 end
23 end
24 end

Figure 3.12: Matrix Factorization via ALS code in MATLAB.

I used a dataset that is 25x the size of the Netflix dataset. In the strong scaling experiments,
I trained on 9x the Netflix dataset, changing only the number of machines.

For both strong and weak scaling experiments, the following parameters are kept fixed.
I ran ALS for 10 iterations, use a rank of 10, and set λ = .01. Training and testing error are
not calculate training, but note that ALS methods from all systems achieved comparable
error rates at the end of 10 iterations.

Implementation

ALS was implemented by updating the rows of U or V in parallel across machines, and
then broadcasting the factors to each machine after each update. The system distribute
both the matrix M and a transposed version of this matrix across machines in order to
quickly access relevant ratings. The reference implementation makes use of several features
of MLI, including support for CSR-compressed sparse representations of matrices, several
linear algebra primitives, and heavy use of MLTable functionality. Linear algebra methods
such as matrix transpose, matrix multiplication, and solving linear systems are supported.
LocalMatrix also supports important access methods, such as the nonZeroIndices, which
returns the nonzero column indices for a given row.

I compare MLI to the Mahout v0.6 and GraphLab v2.1 on the same cluster, and MAT-
LAB running on a similarly configured machine. In addition, I tested a version of ALS in
MATLAB using mex, an interface that allows MATLAB to call directly into C++/Fortran
routines. Comparing MLI to these other implementations, one can see that the MLNumer-
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1 object BroadcastALS {
2 def train(trainData: MLTable, k: Int, lambda: Double,
3 maxIter: Int): (LocalMatrix, LocalMatrix) = {
4 val ctx = trainData.context
5 val m = trainData.numRows
6 val n = trainData.numCols
7 val trainDataTrans = trainData.transpose
8 val lambI = LocalMatrix.eye(k) * lambda
9 // Initialize U and V matrices randomly

10 val U0 = LocalMatrix.rand(m, k)
11 val V0 = LocalMatrix.rand(n, k)
12 (0 until maxIter).foldLeft((U0, V0))((UV, iterNum) => {
13 val U = UV._1
14 val V = UV._2
15 // Broadcast V
16 val V_b = ctx.broadcast(V)
17 // Update U matrix
18 val newU = computeFactor(trainData, V_b, lambI)
19 // Broadcast U
20 val U_b = ctx.broadcast(newU)
21 // Update V matrix
22 val newV = computeFactor(trainDataTrans, U_b, lambI)
23 (newU, newV)
24 })
25 }
26
27 def computeFactor(trainData: MLTable, fixedFactor: Broadcast[LocalMatrix],
28 lambI: LocalMatrix): LocalMatrix = {
29 trainData.map(localALS(_, fixedFactor.value, lambI)).toLocalMatrix
30 }
31
32 def localALS(trainDataPart: MLRow, Y: LocalMatrix, lambI: LocalMatrix) = {
33 val tuple = trainDataPart.tuple
34 val Yq = Y.getRows(tuple.nonZeroIndices)
35 val resultMat = ((Yq.transpose times Yq) + lambI).solve(Yq.transpose times tuple.

nonZeroProjection)
36 resultMat.toVector
37 }
38 }

Figure 3.13: Matrix Factorization via ALS MLI.

icTable and LocalMatrix objects provide convenient abstractions for patterns, thus resulting
in concise code. Indeed, comparing Figure 3.12 and Figure 3.13 shows that the MLI imple-
mentation is about the same length as the MATLAB code, while Figure 3.9(a) shows the
stark comparison in code length in comparison to Mahout and GraphLab.

Results

In the weak scaling experiments for ALS (Figures 3.9b, 3.9c), one can see that MLI outper-
forms MATLAB and the highly-optimized MATLAB-Mex, at even moderate levels of data.
Both MATLAB and MATLAB-Mex run out of memory before successfully running the 16x
or 25x Netflix datasets. MLI remains within 4x of the highly specialized system GraphLab,
and maintain a similar scaling pattern. MLI outperform Mahout both in terms of total
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execution time for each run and scaling across cluster size.
MLI achieves similarly promising results with the strong scaling experiments, with MAT-

LAB running out of memory before completing on the 9x Netflix dataset, and GraphLab
outperforming MLI by less than a factor of 4x.

3.3.3 Configuration Considerations

Although I ran all of the experiments presented here on comparable or identical hardware,
different software systems varied drastically in terms of ease of installation, configuration,
and executing code.

Vowpal Wabbit

To use VW in cluster mode, developers must carefully partition their datasets into equally
sized compressed files of training data, where the total number of files should equal the
number of map tasks that the developer desires to use concurrently on the cluster. Although
VW uses Hadoop Streaming to launch cluster tasks, it eschews the traditional MapReduce
paradigm in favor of AllReduce. To support this new communication primitive, it must
open a side-channel TCP socket between map tasks to communicate incremental results.
The combination leads to a failure-prone system as well as difficulty in data preparation.

Mahout

Mahout is fairly easy to set up on an already existing Hadoop cluster, and its input file for-
mats are reasonably close to those used in MLI. However, in order to run Mahout effectively
on problems larger than the traditional Netflix dataset, the developer must take great care
to tune job memory configuration parameters correctly to ensure that jobs complete in a
performant manner.

GraphLab

While GraphLab performed very well in the speed and scalability tests, it was rather difficult
to set up and integrate with an existing cluster with distributed data stored in HDFS. In
order to set up GraphLab, developers must configure their clusters with MPI, download,
build and install GraphLab and its required dependencies, and manually copy the software
to each machine on the cluster. If a single input matrix will not fit into memory, it must
be stored and loaded as multiple separate files. This complicates preprocessing and requires
developers to take extra steps depending on their problem sizes.

MLI and Spark

Setting up and configuring the system is comparatively easy. Launching a well configured
cluster required a single command, and the software ships with all its dependencies listed in



CHAPTER 3. MLI: AN API FOR DISTRIBUTED MACHINE LEARNING 40

SBT, and can be compiled and run on a cluster simply by setting a few environment variables
and running one Scala program. New algorithms can be easily added to the system as new
Scala classes, and driver programs are easily generated based on examples in the existing
library.

3.4 Related work

The widespread application of ML techniques has inspired the development of new ML
platforms with focuses ranging from productivity to scalability. In this section we review a
few of the representative projects. It is worth nothing that in many cases MLI is inspired
and guided by these earlier efforts.

Systems like MATLAB and R pioneered high-productivity numerical computing. By
combining high-level languages tailored to application domains with intuitive interfaces and
interactive interpreted execution, these systems have redefined the way scientists and statis-
ticians interact with data. From the database community, projects like MADLib [73] and
Hazy [93] have tried to expose ML algorithms in the context of well established systems. Al-
ternatively, projects like Weka [155], scikit-learn [120] and Google Predict [63] have sought
to expose a library of ML tools in an intuitive interface. However, none of these systems
focus on the challenges of scaling ML to the emerging distributed data setting.

High productivity tools have struggled to keep up with the growing computational, band-
width, and storage demands of modern large-scale ML. Although both MATLAB and R now
provide limited support for multi-core and distributed scaling, they adopt the traditional pro-
cess centric approach and are not well suited for large-scale distributed data-centric work-
loads [151, 107]. In the R community, efforts have been made to run R on data-centric
runtimes like Hadoop [124], but to my knowledge none have obtained widespread adoption.

Early efforts to develop more scalable tools and APIs for ML focused on specific applica-
tions. Systems like liblinear [55], Vowpal Wabbit [153], and Shogun [134] initially focused on
linear models, online learning, and kernel methods, respectively. Others, like MLPack [45],
started to develop entire collections of learning algorithms optimized for multicore architec-
tures. These efforts lead to highly efficient systems for specialized tasks, but do not directly
simplify the design and implementation of new scalable ML methods, and most are not
well-suited to distributed learning.

Various methods have leveraged MapReduce platforms like Hadoop to develop distributed
ML libraries. Mahout [10] does not simplify the design and development of new ML meth-
ods, and its reliance on HDFS to store and communicate intermediate state makes it poorly
suited for iterative algorithms. SystemML [61] introduces a low-level algebra that it then
compiles to MapReduce jobs. This algebra exposes the opportunity for advanced optimiza-
tion, but also complicates the system, and SystemML also suffers from Hadoop’s limitations
on iterative computation.

Others have sought to generalize the MapReduce computational model. Systems like
DryadLinq [159] and Hyracks [25] can efficiently execute complex distributed data-flow op-
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erations and express full relational algebras. However, these systems expose low-level APIs
and require the ML expert to recast their algorithms as dataflow operators. In contrast,
GraphLab [62] is well suited to certain types of ML tasks, its low-level API and focus on
graphs makes it challenging to apply to more traditional ML problems. Alternatively, Op-
tiML [145] and SEJITS [32] provide higher level embedded DSLs capable of expressing both
graph and matrix operations and compiling those operations down to hardware accelerated
routines. Both rely on pattern matching to find regions of code that can be mapped to effi-
cient low-level implementations. Unfortunately, finding common patterns can be challenging
in rapidly evolving disciplines like machine learning.

3.5 Conclusion

In this chapter, I have presented MLI, an API for building scalable distributed machine
learning algorithms. I have shown that its components, MLTable and LocalMatrix, are
useful primitives for data loading and transformation as well as data-local linear algebra
operations. I have shown how these primitives can be used to code two fairly different but
representative algorithms. I evaluated these algorithms in terms of both ease-of-development
and computational performance, based on an implementation of MLI against Spark, com-
paring the system with several existing ones. The results show that MLI provides ML
developers the tools to construct high performance distributed ML algorithms without oner-
ous programming complexity. MLI is a foundational layer that informed the design and
implementation of the other components of this thesis.

While this work was carried out early in the exploration of this thesis, it has had signifi-
cant impact on the core abstractions for Machine Learning in Apache Spark. In particular,
the Algorithm/Model abstractions proposed here were included in Apache Spark v0.8 as part
of the initial release of MLlib, and the initial versions of both Generalized Linear Models
(e.g. Logistic Regression) and Alternating Least Squares for Collaborative Filtering within
MLlib were based on the implementations described here. Further, in subsequent releases of
Apache Spark, MLlib was integrated with the DataFrame API–a declarative interface which
allows programmers to use both relational operators, map-reduce operators, and statistical
operators on collections of DenseVector or Matrix objects–which is identical in spirit to the
MLTable API.

I next focus on the problem of efficiently hyperparameter tuning large-scale ML algo-
rithms implemented using MLI as an underlying framework for algorithm development.
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Chapter 4

TuPAQ: Automating Model Search
for Large Scale Machine Learning

In the previous chapter, I presented a simplified programming interface for ML algorithm
developers and ML application developers. This interface enables developer to write ML
algorithms and also use off-the-shelf algorithms and run them scalably in a datacenter en-
vironment. However, little guidance has been proposed thus far on which model family to
use or how to configure these models to produce a high quality models. Ultimately, deci-
sions about choice of model family and algorithm configuration are problem-dependent, and
in practice many developers simply take a pragmatic approach–that is, they use whatever
combination of model family and settings works best on their problem. This pragmatic
approach is often inefficient, and leaves substantial room for improvement in terms of de-
creased time to solution. In this chapter, I explore the process of hyperparameter tuning in
the context of model training and describe several optimizations that, in concert, can speed
up hyperparameter tuning by an order of magnitude compared to common practice.

4.1 Introduction

As I described in Section 1.5, to develop high quality models that make accurate predic-
tions, researchers, data scientists, and business analysts must make a number of important
decisions. First, an input dataset must be transformed from a domain specific format to
features that are predictive of the field of interest. Although this feature engineering task is
challenging, it addresses only a portion of the design space of machine learning. I return to
this challenge in Chapters 5 and 6.

Once features have been engineered, an ML application developer must make several
other important decisions. They must pick a learning setting appropriate to their problem—
for example, regression, classification, or recommendation. Next, the developer must choose
an appropriate model, such as Logistic Regression or a Kernel SVM. Each model family
has a number of hyperparameters, such as degree of regularization or learning rate, and
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Figure 4.1: Illustration of the model search process.

each of these must be tuned to an appropriate value. Finally, the developer must pick a
software package that can train their model, choose to configure one or more machines to
execute the training routine, and evaluate the resulting model’s quality. The initial model
configuration selected by the developer is almost always suboptimal, owing to the complexity
and number of decisions that precede it. Identifying a high quality model thus typically
involves a costly and often manual search process. The decision process and exponentially
large space of candidate configurations is illustrated in Figure 4.1. Finding an appropriate
predictive model for a dataset is a process of continuous refinement. Each stage must be
carefully tuned to ensure high quality. TuPAQ, a system designed to efficiently and find
and train high quality predictive models, automates this process. In the figure, ‘lr’ denotes
a learning rate parameter, ‘reg‘ the degree of regularization, ‘kType’ a kernel to use and
‘nFeats‘ the number of random features to use.

As I argued in previous chapters, distributed and cloud computing provide a compelling
way to accelerate this process, but also present additional challenges. Though parallel stor-
age and processing techniques enable developers to train models on massive datasets and
accelerate the search process by training multiple models at once, the distributed setting
forces several more decisions upon developers: what parallel execution strategy to use, how
big a cluster to provision, how to efficiently distribute computation across it, and what ma-
chine learning framework to use. These decisions are onerous—particularly for developers
who are experts in their own field but inexperienced in machine learning and distributed
systems.

Existing techniques to automate the search for high-quality predictive models focus on
the single node setting; extensions for large-scale problems or distributed settings are very
basic [86]. Moreover, while many machine learning frameworks have been designed to train
a single predictive model with fixed hyperparameter configurations efficiently, they provide
at best rudimentary and inefficient tools to aid in the search among hyperparameter config-
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urations for a high quality model.
To address these challenges, I present TuPAQ (short for Training supported Predictive

Analytic Queries). Central to the system is a planning algorithm that decides on an efficient
parallel execution strategy during model training, and uses sophisticated techniques both to
identify new hyperparameter configurations to try and to proactively eliminate models that
are unlikely to provide good results.

In this chapter, I make the following contributions:

• I introduce a simple, workload-driven cluster size estimator that determines the ap-
propriate number of machines to use when fitting large-scale ML models.

• I describe the TuPAQ algorithm for large scale model search that combines advanced
hyperparameter tuning techniques with physical optimization for efficient execution.

• I describe an implementation of the TuPAQ algorithm in Apache Spark, building on
earlier work on the MLbase architecture [88].

• I evaluate several points in the design space with respect to each logical and physical
optimization, and demonstrate that proper selection of each can dramatically improve
both accuracy and efficiency.

• I present experimental results on large, distributed datasets up to Terabytes in size,
demonstrating that TuPAQ’s search techniques converge to high quality models an
order of magnitude faster than a standard model search strategy.

In the remainder of this chapter, I formally define the model search problem, and provide
a high level overview of TuPAQ and its architecture. Next, I present details about TuPAQ’s
four main optimizations. Then, I present a large-scale evaluation of TuPAQ. I conclude
with a discussion of related and future work.

4.2 Model Search and TUPAQ

In this section, I define the model search problem in more detail, and compare two approaches
to solving it. The first, which I call the baseline approach, is inspired by common practice.
The second approach, used by TuPAQ, allows us to take advantage of logical and physical
optimizations in the model search process. TuPAQ has a rich design space, which I describe
in further detail in Section 4.3. Finally, I describe the architecture of TuPAQ and how it
fits into the broader MLbase architecture.

4.2.1 Defining Model Search

Given a dataset, an attribute of that dataset to predict, and a space of possible model
configurations to consider, the goal of model search is to find a supervised learning model that
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will provide good predictions for the attribute of interest on unseen data—that is, a model
with low generalization error. I focus specifically on the supervised learning setting, where
each element of the training dataset has a label or score associated with it. In TuPAQ’s
environment, the developer’s dataset may consist of up to millions of training data points
and hundreds of thousands of features. Datasets this size are commonly needed to build
high quality models in domains such as computer vision, speech recognition, and natural
language processing.

The model search procedure aims to find a model that maximizes some measure of quality
(e.g., in terms of goodness of fit to held-out data) in a short amount of time, where learning
resources are constrained by some budget in terms of the number of models considered,
maximum execution time, number of scans over the training data, or even total money to
spend with a cloud computing provider. The model search procedure thus takes as input a
training dataset, a description of a space of models to search, and some budget or stopping
criterion. The description of the space of models to search includes the set of model families
to search over (e.g., SVM, decision tree, etc.) and reasonable ranges for their associated
hyperparameters (e.g., regularization parameter for a regularized linear model or maximum
depth of a decision tree). The output of the procedure is a model that can be applied to
unlabeled data points to obtain a prediction for the desired attribute.

4.2.2 Problem Setting

In this chapter, I assume a scenario where individual models are of dimensionality d, where
d is less than the total number of example data points n. In the binary classification setting
this corresponds to d features in the training data. Note that, despite being smaller than
n, d can nonetheless be quite large, e.g., d = 200, 000 in the large-scale speech experiments
and d = 160, 000 in the large scale image experiments presented in Section 4.5. The work is
focused on the situation where the data size (n× d) is very large. Section 4.5 reports results
from experiments on up to terabytes of training data and TuPAQ is designed to scale
even further. Further, this chapter is focused on the classification setting, and I consider
only a small number of model families, f ∈ F , each with several hyperparameters, λ ∈ Λ.
Additionally, TuPAQ is focused on model families that are trained via multiple sequential
scans of the training data as opposed to model families that require random access to training
data to estimate their parameters.

These assumptions map well to reality, as there are only a handful of general-purpose
classification methods that are typically deployed in practice. Further, it is reasonable to
expect that these techniques will naturally apply to other supervised learning tasks—such
as regression and collaborative filtering. For example, a variant of both the batching opti-
mization described here and the early stopping mechanism is implemented in the regression
tree algorithm in Apache Spark MLlib. Further, many of the techniques I describe here have
been validated in subsequent work [98]. The iterative sequential access pattern encompasses
a wide range of learning algorithms [56], especially in the large-scale distributed setting. For
instance, efficient distributed implementations of linear regression, tree based models, Naive
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Bayes classifiers, and k-means clustering all follow this same access pattern [113, 118]. In
particular, I focus on three model families: linear Support Vector Machines (SVM), logistic
regression trained via gradient descent, and nonlinear SVMs using random features [126]
trained via block coordinate descent. These model families were chosen primarily because
of their wide adoption, as well as the ease with which the batching optimization described
in Section 4.3 can be applied to them.

The quality of each model is evaluated by computing accuracy on held-out datasets, and
search time is measured as the amount of time required to explore a fixed number of models
from some model space. This accuracy measure is the measure of model quality used by
the system to pick a high quality model. In the large-scale distributed experiments (see
Section 4.5) runtimes are reported in parallel.

4.2.3 Connections to Query Optimization

Model search can be considered as a form of query optimization. If one views model search
as a task that is specified declaratively in terms of a search space, data, and an objective
function, this becomes more clear. Given this observation, it is natural to draw connections
between automating the model search process and the decades worth of research in optimizing
declarative relational database queries. Traditional database systems invest in the costly
process of query planning to determine a good execution plan that can be reused repeatedly
upon subsequent execution of similar queries. Similarly, model search involves the costly
process of identifying a high quality predictive model in order to subsequently perform near
real-time model evaluation. Indeed, relational query optimization is commonly viewed as a
search problem, where the optimizer must find a good query plan in the large space of join
orderings and access methods, just as model search must find a good model in the large
space of potential model families and their configurations.

There are some notable differences between these two problems, however, leading to a
novel set of challenges to address in the context of model search. First, unlike traditional
database queries, due to the inherent uncertainty in predictive models learned from finite
datasets, the model search process does not yield a unique answer. Hence, model search
must focus on both quality and efficiency (traditional query planning need only consider
efficiency), and must trade off between the two objectives when they conflict. Second, the
search space for models is not endowed with well-defined algebraic properties, as it consists
of possibly unrelated model families, each with its own access patterns and hyperparameters.
Third, evaluating a candidate model is expensive and in this context involves learning the
parameters of a statistical model. Learning the parameters of a single model can involve
upwards of hundreds of passes over the input data, and there exist few heuristics to estimate
the effectiveness of a model before this costly training process.

Now, I turn my attention to scalable model search strategies.
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4.2.4 Baseline Model Search

The conventional approach to model search is sequential grid search [65, 120, 91], which
divides the hyperparameter space into a regular grid and trains models at these grid points.
For instance, consider a single ML model family with two hyperparameters. If the two hyper-
parameters are in the range 0 to 100 and the budget allows for 25 total model configurations,
then each hyperparameter will be sampled at (0, 25, 50, 75, 100).

In the cluster setting, in current systems developers decide how to parallelize the execu-
tion of grid search. In cases where data is small enough to fit in memory of a single machine,
often each machine is responsible for trying a set of grid points on a copy of the training
data—I refer to this situation as model parallel. However, if data is too large to fit in mem-
ory on a single machine, data parallel strategies are employed, where partial statistics of a
model update are computed on worker machines, communicated back to a master machine,
combined to produce an updated model, and sent back out to each worker. In either setting,
an important factor that impacts job completion time is the size of the cluster to use. This
choice of execution strategy is typically made by the developer of the application, and is not
dynamically made by the search procedure. The intuition is that when data no longer fits in
memory on a single node, it makes sense to operate in the data parallel setting. I validate
this intuition in Section 4.4.

Sequential grid search has several shortcomings. First, it is not adaptive—the search
plan is statically determined a priori and intermediate results do not inform subsequent
model fittings. Second, the curse of dimensionality limits the usefulness of this method
in high dimensional hyperparameter spaces. Third, grid points may not represent a good
approximation of global minima—true global minima may be hidden between grid points,
particularly in the case of a very coarse grid. Nonetheless, sequential grid search is commonly
used in practice, and is a natural baseline against which I compare TuPAQ.

Algorithm 1 lists this grid search strategy. In the figure, the function “gridPoints” returns
a coarse grid over the dimensions of model space, where the total number of grid points is
determined by the budget. In this example, the budget is the total number of models to
train.

4.2.5 TuPAQ Model Search

As discussed in Section 4.2.4, grid search is a suboptimal search method despite its popularity.
Moreover, from a systems perspective, a naive implementation of Algorithm 1 would have
additional drawbacks beyond those of grid search. In particular, it would ignore several
physical optimizations such as proper use of batching and optimal use of cluster resources.

In contrast, I propose the TuPAQ algorithm, described in Algorithm 2, to address these
shortcomings via logical and physical optimizations. In the figure, ‘executor’ and ‘searcher’
represent handles to execution engine and search procedure, respectively. ‘trainPartial’ re-
turns a partially trained model, and the bandit allocation strategy decides which models
to keep training. The algorithm returns the best model it has seen once the budget is ex-
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input : LabeledData, ModelSpace, Budget
output: BestModel

1 bestModel ← ∅;
2 grid ← gridPoints(ModelSpace, Budget);
3 while Budget > 0 do
4 proposal ← nextPoint(grid);
5 model ← train(proposal, LabeledData,);
6 if quality(model) > quality(bestModel) then
7 bestModel ← model;
8 end
9 Budget ← Budget − 1;

10 end
11 return bestModel ;

Algorithm 1: Pseudocode for conventional grid search.

hausted. The TuPAQ algorithm automatically determines an ideal execution strategy based
on properties of the data and the budget (Line 1). The TuPAQ algorithm also allows for
more sophisticated hyperparameter tuning strategies. Line 7 shows that the TuPAQ model
search procedure can now use training history as input. Here, “proposeModel” can be an
arbitrary model search algorithm. Second, the TuPAQ algorithm performs batching to
train multiple models simultaneously (Line 8). Third, the TuPAQ algorithm deploys bandit
resource allocation via runtime inspection to make on-the-fly decisions. Specifically, the algo-
rithm compares the quality of the models currently being trained with historical information
about the training process, and determines which of the current models should be trained
further (Line 10).

These four optimizations are discussed in detail in Section 4.3, with a focus on the
design space for each of them. In Section 4.4, I evaluate the options in this design space
experimentally, and then in Section 4.5 compare the baseline algorithm (Algorithm 1) to
TuPAQ running with good choices for execution strategy, hyperparameter tuning method,
batch size, and bandit allocation criterion, i.e., choices informed by the results of Section 4.4.

I now explore the design space for the TuPAQ algorithm.

TuPAQ Architecture

TuPAQ is designed according to the principles of modularization and reuse. In particular,
it consists of several components that adhere to an abstract interface. The interaction of
these components is illustrated in Figure 4.2.

The driver is some higher level component that calls into the planner. The driver is
responsible for providing a model search space, and a budget. The planner passes this infor-
mation on to the hyperparameter tuner whose job is to produce new model configurations
to try. The planner passes these configurations to an executor that is responsible for actu-
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input : LabeledData, ModelSpace, Budget, BatchSize
output: BestModel

1 (bestModel, history, activeProposals) ← ∅;
2 searcher.setSearchSpace(ModelSpace);
3 executor.determineExecStrategy(LabeledData, Budget) // Execution Strategy
4 while Budget > 0 do
5 freeSlots ← BatchSize − size(activeProposals);
6 activeProposals ← activeProposals ∪ searcher.proposeModels(freeSlots, history)

// Hyperparameter Tuning
7 (models, budgetUsed) ← executor.trainPartial(activeProposals, LabeledData)

// Batching
8 (finishedModels, activeProposals) ← banditAllocation(models, history)

// Bandits
9 history ← history ∪ models;

10 Budget ← Budget − budgetUsed;

11 end
12 bestModel ← getBestFromHistory(history);
13 return (bestModel);

Algorithm 2: Pseudocode for the planning procedure used by TuPAQ.

Driver

Planner

Executor

Hyperparameter  
Tuner

Search Space,  
Data,  

Budget

Configurations, 
Data

Best Models

Configuration 
Proposals

Search Space, 
Configuration 

Results 

Trained Models

Figure 4.2: TuPAQ is composed of several components, each of which has a standard
interface and may have multiple implementations.
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Name Type Scale

IntegerP Continuous Uniform
FloatP Continuous Uniform/Log
DiscreteP Discrete Uniform
ChoiceP Set[Parameter] Uniform
SequenceP Seq[Parameter] N/A

Table 4.1: A listing of hyperparameter types supported by TuPAQ.

1 val searchSpace = ChoiceP("family",
2 Set(
3 SeqP("RandomForest",
4 Seq(
5 DiscreteP("loss", Seq("gini","entr")),
6 FloatP("fracFeatures", 0.0, 1.0),
7 IntP("minSplit", 1, 20),
8 IntP("maxDepth", 2, 30)
9 )

10 ),
11 SeqP("LogisticRegression",
12 Seq(
13 FloatP("Reg", 1e-6, 1e6, scale=Log),
14 FloatP("Step", 1e-6, 1e6, scale=Log)
15 )
16 )
17 )

Figure 4.3: An example search space definition.

ally training models given a handle to the developer’s dataset. The executor determines an
appropriate execution strategy back to the planner, which in turn relays these to the hyper-
parameter tuner and polls it for new configurations to try. After the budget is exhausted,
the planner returns the best models it has seen to the driver.

Developers define their search space using an extensible API. Table 4.1 lists the data
structures used to represent parameters and available parameter types. Developers define
parameter spaces by composing potentially nested parameters of various types.

Figure 4.3 shows an example search space defined using the API. Using the small set of
parameters from Table 4.1, developers are able to construct rich parameter search spaces.
In the figure, the developer supplies parameter ranges to try for Random Forests or Logistic
Regression models.

While the system currently expects developers to specify their search space, it is pos-
sible that developers can inform the system about reasonable options for hyperparameter
settings (e.g. step size should be > 0.0), leaving the developer oblivious to the methods and
parameters used to fit their models.

Now that I have discussed the architecture of the system, I turn my attention to its design
space.
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4.3 TUPAQ Design Choices

In this section, I examine the design choices available for the TuPAQ model search pro-
cedure. TuPAQ targets algorithms that run on tens to thousands of nodes in commodity
computing clusters, and training datasets that fit comfortably into cluster memory—on the
order of tens of gigabytes to terabytes. Training a single model to convergence on such
a cluster is expected to require tens to hundreds of passes through the training data, and
may take on the order of minutes. With a multi-terabyte dataset, performing a grid search
involving even just 100 model configurations each with a budget of 100 scans of the training
data could take hours to days of processing time, even assuming that the algorithm runs at
memory speed. Hence, in this regime the baseline model search procedure is tremendously
costly.

I new describe how system and algorithms presented in Section 4.2 can be optimized to
support fast, high quality search. In the remainder of this section, I present the following
optimization four optimizations that in concert provide TuPAQ with an order-of-magnitude
gain in performance over the baseline approach.

4.3.1 Cost-based Execution Strategy Selection

When data is too big to fit on a single node, data parallelism provides scalability that is
linear with respect to cluster size. However, data parallel execution presents its own set
of drawbacks. In particular, it requires more coordination among workers than the model
parallel strategy. Further, there are no formal procedures to estimate the optimal number
of nodes to provision, and available guidance consists only of conventional wisdom and rules
of thumb.

In this section, I present a simple cost-based model of estimated execution time in the
data parallel setting that provides guidance for optimal cluster sizing based on the workload,
hardware, and cluster management system used to execute parallel jobs.

Estimating Job Latency

Data parallel execution is the natural choice for model search if the compute requirements of
the model training become excessive or the data required to train a single model no longer
fit in memory. For systems operating in the data parallel setting, one must choose a cluster
size to be large enough to take advantage of parallel data processing, but not so large that
the speedup provided by parallelism is dominated by increased coordination (and therefore
network bandwidth usage) between machines. Amdahl’s law [6] provides an upper bound on
the speedup one can hope to achieve: the maximum speedup due to parallelization is inversely
proportional to the percentage of a job that is sequential. Commonly used cluster computing
frameworks rely on a centralized master to manage distributed jobs, which increases the serial
portion of execution time even for tasks that are embarrassingly parallel.
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These effects can be captured in the following cost-based model of cluster job execution
time:

tjob(w) = k0 + k1w + Icpuk2
c

w
+ Imemk3

m

w
+ Inetk4

b

w
(4.1)

Equation 4.1 describes the TuPAQ estimator, a function of w, the number of worker
nodes in the cluster, which encapsulates several important insights. First, the estimator
explicitly separates the requirements of the job from the capacity of the cluster hardware.
The constants k2, k3, and k4 capture the (average) compute, memory, and network bandwidth
available on each node in the cluster independently of c, m, and b, which are functions that
describe the total compute, memory, and network requirements of the task given properties
of the data in terms of FLOPS required, or bytes to be read from memory or across the
network. While these functions must be defined ahead of time by an algorithm developer
(or, alternatively, by sampling empirical job behavior), this makes the TuPAQ model easy to
use in practice: developers simply specify the hardware specifications of their cluster (readily
available from cloud computing providers like Amazon EC2) and the resource requirements
of the algorithm to be run. I show an example of how these parameters may be estimated
in Section 4.4.1.

In addition, the estimator is based on a roofline [158] model of the tradeoff between
job-specific memory and compute requirements. That is, the system asks ML algorithm
developers to specify whether their job is memory, network or compute-bound, and assume
that only the most constrained resource will affect overall job latency. The model captures
this assumption with three indicator variables: Icpu, Imem, and Inet. TuPAQ estimates
the execution time of memory-bound jobs based on the total memory requirements of the
job divided by the number of parallel workers, and the execution time of compute-bound
jobs based on the total compute requirements of the job divided by the number of parallel
workers.

Finally, the TuPAQ model makes the assumption that overheads associated with the
cluster compute framework itself can be completely separated from the job execution time.
That is, all framework-specific overheads are captured in the variables k0 and k1. k0 describes
one-time static costs of using the framework to run a job, for example code compilation and
DAG optimization, or serialization of code and (intermediate) results. k1 describes frame-
work costs that scale with the number of workers running the job, primarily the overhead of
making scheduling decisions and associated queueing delays. Both of these parameters are
framework-dependent.

Intuitively, TuPAQ estimates that a data-parallel job will take time that is dictated
by fixed cluster overheads, some marginal additional time for each node in a cluster, and
the greatest of the parallel time devoted to moving data through the CPU, memory, or the
network.

While this model is clearly a simplification of the nuances of cluster job performance,
experimental results reported in Section 4.4 show that it estimates execution time for data-
parallel iterative machine learning jobs reasonably well, making it useful for TuPAQ’s model
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search task. I now describe the use of the TuPAQ model to determine the size of clusters,
and will evaluate its use in Section 4.4.

Right Sizing the Cluster

The primary purpose of the TuPAQ estimator is to allow TuPAQ to determine a good
choice for the number of nodes it should use to train a model in a data parallel environment.
This optimum can be computed as the number of workers that should lead to the lowest
possible job execution time, w∗ = arg minw tjob(w). Since this model is simple and linear,
one can easily find a closed-form solution by differentiating with respect to w and finding
the roots:

w∗ =

√
Icpuk2c+ Imemk3m+ Inetk4b

k1

. (4.2)

The solution in Equation 4.2 corresponds to intuitions about the tradeoffs of cluster
computing. If the overheads of distributing the job to more workers (k1) are as large as the
resource requirements of the job (Icpuk2c + Imemk3m + Inetk4b), then the model tells us not
to distribute (w∗ = 1).

While a simple application of Amdahl’s law would prescribe an infinite number of work-
ers in the presence of unlimited budget, the linear penalty applied to workers via k1 in the
TuPAQ model causes there to be a unique minimum in the above solution. To my knowl-
edge, this type of penalty has not been explicitly modeled elsewhere in the cluster computing
literature.

I evaluate the effectiveness of this estimator in Section 4.4 but first describe better search
algorithms.

4.3.2 Advanced Hyperparameter Tuning

One can view hyperparameter tuning as an optimization problem over a potentially non-
smooth, non-convex function in high dimensional space. This function is expensive to eval-
uate and there exists no closed form expression for it (hence, one cannot cannot compute
derivatives). Although grid search remains the standard solution to this problem, various
alternatives have been proposed for the general problem of derivative-free optimization, some
of which are particularly well-suited for hyperparameter tuning. Each of these methods pro-
vides an opportunity to speed up TuPAQ’s model search time, and in this section I provide
a brief survey of the most commonly used methods.

Traditional methods for derivative-free optimization include grid search (the baseline
choice for model search) as well as random search, Powell’s method [122], and the Nelder-
Mead method [116]. Given a hyperparameter space, grid search selects evenly spaced points
(in linear or log space) from this space, while random search samples points uniformly at
random from this space. Powell’s method can be seen as a derivative-free analog to coordinate
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descent, while the Nelder-Mead method can be roughly interpreted as a derivative-free analog
to gradient descent.

Both Powell’s method and the Nelder-Mead method expect unconstrained search spaces,
but function evaluations can be modified to severely penalize exploring out of the search
space. However, both methods require some degree of smoothness in the hyperparameter
space to work well, and can easily get stuck in local minima. Additionally, neither method
lends itself well to categorical hyperparameters, since the function space is modeled as con-
tinuous. For these reasons, it is unsurprising that they are inappropriate methods to use
in the model search problem where optimization is done over an unknown function that is
likely non-smooth and not convex.

More recently, various methods specifically for hyperparameter tuning have been recently
introduced in the ML community, including Tree-based Parzen Estimators (HyperOpt) [20],
Sequential Model-based Algorithm Configuration (Auto-WEKA) [148] and Gaussian Process
based methods, e.g., Spearmint [138]. These algorithms all share the property that they can
search over spaces that are nested (e.g. multiple model families) and accept categorical
hyperparameters (e.g. regularization method). HyperOpt begins with a random search and
then probabilistically samples from points with more promising minima, Auto-WEKA builds
a Random Forest model from observed hyperparameter results, and Spearmint implements a
Bayesian method based on Gaussian Processes. Section 4.4 reports the results of experiments
designed to evaluate each method on several datasets to determine which method is most
suitable for model search.

4.3.3 Bandit Resource Allocation

Models are not all created equal. In the context of model search, typically only a fraction
of the models are of high-quality, with many of the remaining models performing drastically
worse. Under certain assumptions, allocating resources among different model configurations
can be naturally framed as a multi-armed bandit problem [28]. Indeed, assume the system
is given a fixed set of k model configurations to evaluate, as in the case of grid or random
search, along with a fixed budget B. Then, each model can be viewed as an ‘arm’ and the
model search problem can be cast as a k-armed bandit problem with T rounds. At each
round the system performs a single iteration of a particular model configuration, and return
a reward indicating the quality of the updated model, e.g., validation accuracy. In such
settings, multi-armed bandit algorithms can be used to determine a scheduling policy to
efficiently allocate resources across the k model configurations. Typically, these algorithms
keep a running score for each of the k arms, and at each iteration choose an arm as a function
of the current scores.

The setting we consider for TuPAQ differs from this standard setting in two crucial
ways. First, several of the search algorithms used in TuPAQ select model configurations to
evaluate in an iterative fashion, so the system does not have advanced access to a fixed set
of k model configurations. Second, in addition to efficiently allocating resources, the system
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input : currentModels, history
output: finishedModels, activeProposals

1 (finishedModels, activeProposals) ← ∅[];
2 bestModel ← getBestFromHistory(history);
3 for m in currentModels do
4 if fullyTrained(m) then
5 finishedModels ← finishedModels ∪ m;
6 else if quality(m) ∗(1 + ε) > quality(bestModel) then
7 activeProposals ← activeProposals ∪ m;
8 end

9 end
10 return (finishedModels, activeProposals);

Algorithm 3: The bandit allocation strategy used by TuPAQ.

aims to return a reasonable result to a developer as quickly as possible, and hence there is
a benefit to finish training promising model configurations once they have been identified.

The bandit selection strategy employed here is a variant of the action elimination algo-
rithm of [54], and to my knowledge this is the first time this algorithm has been applied
to hyperparameter tuning. This strategy is detailed in Algorithm 3. This strategy preemp-
tively prunes models that fail to show promise of converging. For each model (or batch of
models), the system first allocates a fixed number of iterations for training; in Algorithm 2
the trainPartial() function trains each model for PartialIters iterations. Partially trained
models are fed into the bandit allocation algorithm, which determines whether to train the
model to completion by comparing the quality of these models to the quality of the best
model that has been trained to date. This procedure acts as a filter on whether models
should be trained any further. Moreover, this comparison is performed using a slack factor
of (1+ ε); in these experiments I set ε = .5 and thus continue to train all models with quality
within 50% of the best quality model observed so far. I chose this value for ε because it
provided a good tradeoff between maintaining model quality and speeding up search in the
experiments. The algorithm stops allocating further resources to models that fail this test,
as well as to models that have already been trained to completion.

4.3.4 Batching

Batching is a natural system optimization in the context of training machine learning models,
with applications for cross validation and ensembling [92, 31], however, it has not previously
been applied to model search. For model search, I note that the access pattern over the
training set is identical for many machine learning algorithms. Specifically, each algorithm
takes multiple passes over the input data and updates some intermediate state (e.g., model
weights) during each pass. As a result, it is possible to batch together the training of
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multiple models effectively sharing scans across multiple model estimations. In a data parallel
distributed environment, this has several advantages:

1. Better CPU utilization by reducing wasted cycles.

2. Amortized task launching overhead across several models at once.

3. Amortized network latency across several models at once.

Ultimately, these three advantages lead to a significant reduction in learning time. The
system takes advantage of this optimization in line 8 of Algorithm 2.

For concreteness and simplicity, I focus on one algorithm—logistic regression trained via
gradient descent—for the remainder of this section, but I note that these techniques apply
to many model families and learning algorithms.

Logistic Regression

Logistic Regression is a widely used machine learning model for binary classification. The
procedure estimates a set of model parameters, w ∈ Rd, given a set of data features X ∈
Rn×d, and binary labels y ∈ {0, 1}n. The optimal model w∗ ∈ Rd can be found by minimizing
the negative likelihood function, f(w) = − log p(X|w). Taking the gradient of the negative
log likelihood, we have:

∇f =
n∑
i=1

[(
σ(w>xi)− yi

)
xi

]
, (4.3)

where σ is the logistic function. The gradient descent algorithm (Algorithm 4) must evaluate
this gradient function for all input data points, a task that can be easily performed in a data
parallel fashion. Similarly, minibatch Stochastic Gradient Descent (SGD) has an identical
access pattern and can be optimized in the same way by working with contiguous subsets of
the input data on each partition.

input : X, LearningRate, MaxIterations
output: Model

1 i← 0;
2 Initialize Model;
3 while i < MaxIterations do
4 read current;
5 Model ← Model - LearningRate * Gradient(Model, X);
6 i← i+ 1;

7 end

Algorithm 4: Pseudocode for convex optimization via gradient descent.
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The above formulation represents the computation of the gradient by taking a single
point and single model at a time. The formulation can naturally be extended to multiple
models simultaneously if models are represented as a matrix W ∈ Rd×k, where k is the
number of models to train simultaneously, i.e.,

∇f =

[
X>
(
σ(XW )− y

)]
. (4.4)

In effect, by computing the gradient of several models simultaneously, the system is able
to compute several model updates simultaneously. By scaling each of these updates by the
appropriate learning rate (an element-wise operation on the model), the procedure supports
several learning rates.

This operation can be easily parallelized across data items with each worker in a dis-
tributed system computing the portion of the gradient for the data that it stores locally.
Specifically, the portion of the gradient that is derived from the set of local data is computed
independently at each machine, and these gradients are simply summed at the end of an
iteration. The size of the partial gradients (in this case O(d × k)) is much smaller than
the actual data (which is O(n × d)), so overheads of transferring these over the network is
relatively small. For large datasets, the time spent performing this operation is almost com-
pletely determined by the cost of performing two matrix multiplications—the input to the
σ function that takes O(ndk) operations and requires a scan of the input data as well as the
final multiply by X> that also takes O(ndk) operations and requires a scan of the data. This
formulation allows us to leverage high performance linear algebra libraries that implement
BLAS [96]—these libraries are tailored to execute exactly dense linear algebra operations as
efficiently as possible and are automatically tuned to the architecture the experiments are
running on via [157].

Machine Balance

One obvious question the reader may ask is why implementing these algorithms via matrix-
multiplication should offer speedup over vector/vector versions of the algorithms. After all,
the runtime complexities of both algorithms are identical. However, modern x86 machines
have been shown to have processor cores that significantly outperform their ability to read
data from main memory [110]. In particular, on a typical x86 machine, the hardware is
capable of reading 0.45B doubles/s from main memory per core, while the hardware is capable
of executing 6.8B FLOPS in the same amount of time [111]. Specifically, on the machines
I tested (Amazon c3.8xlarge EC2 instances), LINPACK reported peak GFLOPS of 110
GFLOPS/s when running on all cores, while the STREAM benchmark reported 60GB/s of
throughput across 16 physical cores. This equates to a machine balance of approximately 15
FLOPS per double precision floating point number read from main memory if the machine
is using both all available FLOPs and all available memory bandwidth solely for its core
computation. This approximate value for the machine balance suggests an opportunity
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for optimization by reducing unused resources, i.e., wasted cycles. By performing more
computation for every number read from memory, this resource gap can be reduced.

The Roofline model [158] offers a more formal way to study this effect. According to the
model, total throughput of an algorithm is bounded by the smaller of 1) peak floating point
performance of the machine, and 2) memory bandwidth times operational intensity of the
algorithm, where operational intensity is a function of the number of FLOPs performed per
byte read from memory. That is, for an efficiently implemented algorithm, the bottleneck is
either I/O bandwidth from memory or CPU FLOPs.

Analysis of the unbatched gradient descent algorithm reveals that the number of FLOPs
required per byte is quite small—just over 2 flops per number read from memory—a multiply
and an add—and since data is represented as double-precision floating point numbers, this
equates to 1/2 FLOP per byte. Batching allows us to move “up the roofline” by increasing
algorithmic complexity by a factor of k, the batch size. The exact setting of k that achieves
balance (and maximizes throughput) is hardware dependent, but I show in Section 4.5 that
on modern machines, k = 10 is a reasonable choice.

Amortized Overheads

As discussed earlier, the cluster computing framework introduces overheads with each new
job that is run. Batching multiple hyperparameter settings into the same Spark job allows
us to share a single scan of the data across several hyperparameters and amortize these
overheads to decrease the effective overhead per model trained.

4.4 Design Space Evaluation

Now that I have laid out the possible optimizations available to TuPAQ, I investigate the
potential speedup offered by each in turn. In all experiments I split the base datasets into
70% training, 20% validation, and 10% testing. In all cases, models were fit to minimize
classification error on the training set, while model search occurs based on classification error
on the validation set (validation error).1 I only report validation error numbers here, but
test error was similar. TuPAQ is capable of optimizing for arbitrary performance metrics as
long as they can be computed mid-flight, and extends to other supervised learning scenarios.

4.4.1 Execution Strategy Selection

To demonstrate the value of the estimator, I first investigated the consequences of choosing
an inappropriate cluster size. I examined the overheads of data-parallel execution on a 16-
node cluster running two jobs, one that operates on a 100 GB dataset and one that operates
on only 1 GB of data. In the larger job (more appropriate for a 16-node cluster), only a

1While I have thus far discussed model quality, for the remainder of the chapter I report validation error,
i.e., the inverse of quality, because it is more commonly reported in practice.
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small fraction (< 10%) of execution was spent on cluster overheads. In the smaller job,
however, virtually all (> 90%) of the execution time was consumed by task scheduling and
serialization/deserialization overheads.
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Figure 4.4: Measured vs. Modeled time for an SVM workload.

Next, I evaluated the usefulness of the estimator by instrumenting both a high-quality
multi-core machine learning framework [39] and the Scala/Spark codebase and executing
SVM model training runs at data scales ranging from 100 MB to 100 GB and cluster sizes
ranging from 1 to 64 Amazon c3.8xlarge EC2 instances (each having 60GB of RAM). In
this case, the goal of the model is to predict the execution time for a single iteration of linear
SVM for binary classification via gradient descent. As such, the input memory requirement
(m in the estimator) is the size of the dataset in memory (the product of its dimensions
and the size of a double-precision floating point number). The compute requirement, c, can
be similarly defined. Because the CPU and memory requirements are the same, the task is
memory-bound (Imem = 1) on this hardware. The network requirements are much smaller
than the CPU or memory requirements, but are proportional to the number of columns in
the input dataset per machine.

Given these job requirements, the parameters of the TuPAQ model (Equation 4.1) were
estimated by fitting a regression to the observed data, and found that the model explains
a significant portion of the variance in the training data (cross-validated R2 = 80.1%). I
followed a standard 5-fold cross validation procedure where 5 separate models were trained on
80% of the training data and results are presented on the remaining held-out 20%. Figure 4.4
demonstrates the tightness of this fit visually, showing the estimated execution times overlaid
on the times observed in the experimental data. The figure shows measured time to run SVM
for 20 iterations on small to larger datasets at various cluster sizes. In red, the observed time
to run a particular configuration. In blue, cross-validated time predicted by the TuPAQ
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estimator. One and two machine configurations for the 100.0GB case not shown because the
datasets do not fit in cluster memory.

In addition, the coefficients fit by regression matched my knowledge about the hardware
the jobs were run on and my experience with the overheads associated with Apache Spark’s
scheduler. The k0 term maps to 175ms of task overhead to launch a Spark job, the k1 term
indicates an additional 6ms of overhead per cluster node (penalizing very large clusters),
while the k3 term maps to 30GB/s of memory bandwidth on this memory-constrained job.

100 MB 1 GB 10 GB 100 GB

Vowpal Wabbit 0.4 2.2 19.1 1445.1
MLlib 2.9 3.5 38.4 268.8
MLLib Cluster Size 1 2 8 32

Table 4.2: Time to fit SVM in various systems.

Finally, I used the TuPAQ model to validate the intuition that model parallel execution
only makes sense while the data fits in memory on a single node. Table 4.2 reports execution
times (in machines × seconds) of the SVM model training runs described above. The figure
compares time training an SVM in an optimized single-node framework (Vowpal Wabbit)
and a data-parallel framework (MLlib). Once the problem can no longer be solved in-memory
on a single node, it is better to use the data-parallel framework. The MLlib runs are the best
times for the cluster size varying from 1 to 32 nodes. Note that the per machine execution
time for Vowpal Wabbit is significantly lower than MLLib for datasets that fit comfortably
in memory, indicating that a model parallel strategy is reasonable in this regime. However,
once data does not fit into a single node’s memory (i.e., 100GB datasets), Vowpal Wabbit
must read from disk and data-parallel execution strategies on the cluster make more sense.

I use cluster sizes advised by this model for the remainder of the chapter, rounding to
the nearest power of two for simplicity of interpretation.

4.4.2 Hyperparameter Tuning

I evaluated the strategies for model search with a variable model fitting budget on five rep-
resentative datasets for binary classification taken from the UCI Machine Learning Repos-
itory [13]. The model search task involved tuning four hyperparameters—learning rate, L2
regularization parameter, size of a random projection matrix, and noise associated with the
random feature matrix. The random features are constructed according to the procedure
outlined in [126]. To accommodate the linear scale-up that comes with adding random fea-
tures, the system down samples the number of data points for each model training by the
same proportion.

The ranges for these hyperparameters were learning rate ∈ (10−3, 101), regularization
∈ (10−4, 102), projection size ∈ (1× d, 10× d), and noise ∈ (10−4, 102).

I evaluated seven tuning methods: grid search, random search, Powell’s method, the
Nelder-Mead method, Auto-WEKA, HyperOpt, and Spearmint.
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GRID RANDOM NELDER_MEAD POWELL SPEARMINT AUTOWEKA HYPEROPT
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Figure 4.5: A comparison of hyperparameter tuning methods with several datasets and
budgets.

Each dataset was processed with each search method with a varying number of model
fittings, chosen to align well with a regular grid of n4 points where n is varied from 2 to 5. This
restriction on a regular grid is only necessary for grid search but included for comparability.

Results of the hyperparameter tuning experiments are presented in Figure 4.5. Each
tile represents a different dataset/tuning method combination. Each bar within the tile
represents a different budget in terms of models trained. The height of each bar represents
classification error on the validation dataset.

With this experiment, the objective is to find tuning methods that converge to good
models in as small a budget as possible. Of all methods tried, HyperOpt and Auto-WEKA
tend to achieve this criteria best, but random search is not far behind.

This result has been noted by others [19], but intuitively this is because, absent other
information, routines for hyperparameter tuning can do no better than random sampling at
initialization. As with traditional statistical methods, one must collect a reasonable number
of samples to get a good idea of the shape of “model space.” In the regime I consider here,
each model is expensive to compute, so the resources to try many models are limited. I chose
to integrate HyperOpt into the larger experiments because it performed slightly better than
Auto-WEKA.
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Figure 4.6: Model throughput and accuracy for the bandit strategy vs. other strategies.

4.4.3 Bandit Resource Allocation

I evaluated the TuPAQ bandit resource allocation scheme on the same datasets with ran-
dom search and 625 total function evaluations—the same as the maximum budget in the
search experiments. The key question to answer here was whether the system could identify
and terminate poorly performing models early in the training process without significantly
affecting overall search quality.

In Figure 4.6 I illustrate the effect that the TuPAQ bandit strategy has on validation
error as well as on the number of total scans of the input dataset. Models were allocated 100
iterations to converge on the correct answer. After the first 10 iterations, models that were
not within 50% of the classification error of the best model trained so far were preemptively
terminated. A large percentage of models that show little or no promise of converging to a
reasonable validation error were eliminated.

In the figure, the top set of bars represents the number of scans of the training data
at the end of the entire search process. The bottom set of bars represent the validation
error achieved at the end of the search procedure. The four scenarios evaluated—No Bandit,
Bandit, Budget, and Baseline—represent the results of the search with no bandit allocation
procedure (that is, each model is trained to completion), the algorithm the bandit allocation
procedure enabled, a procedure with a limited budget (that is, exactly 10 scans per model
evaluated), and the baseline error rate for each dataset. The Baseline scenario is a classifier
that simply picks the most common class for each dataset, which is a natural naive baseline
that can be trained by only looking at the training labels. Any reasonable machine learning
method should improve on this result.

There was an 84% decrease in total epochs across these five datasets, and the validation
error was roughly comparable to the unoptimized strategy. On average, this method achieves
97% reduction in model error vs. not stopping early when compared with validation error
of a model that deterministically picks the most frequent class. By comparison, the Budget
strategy only achieves an 89% reduction in model error with a 90% decrease in total epochs
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across these datasets, with higher variance. This relatively simple resource allocation method
presents opportunities for dramatic reductions in runtime.

These results represent one point in the tradeoff space between training everything to
full budget and training every model with only a very limited set of resources. This heuristic
works well for the workloads and datasets we discuss here, and it has already inspired further
study [82].

4.4.4 Batching

To evaluate the batching optimization, I used a synthetic dataset of 1, 000, 000 data points
in various dimensionality. To illustrate the effects of amortizing scheduler overheads vs.
achieving machine balance, these datasets vary in size between 750MB and 75GB.

I trained these models on a 16-node cluster of c3.8xlarge nodes on Amazon EC2,
running Apache Spark 1.1.0. I trained a logistic regression model on these data points
via gradient descent with no batching (batch size = 1) and batching up to 20 models at
once. I implemented both a naive version of this optimization—with while loops evaluating
Equation 4.3 over each model in each task—as well as a more sophisticated version of this
model that makes BLAS calls to perform the computation described in equation 4.4. For
the batching experiments, I ran each algorithm for 10 iterations over the input data.

D
Batch Size 100 1000 10000

1 826.44 599.60 553.59
2 1521.23 1214.37 701.07
5 2411.53 3037.97 992.01
8 5557.69 3502.79 1243.79

10 7148.53 4216.44 1769.12
15 7874.01 6260.14 2485.15
20 11881.18 8248.36 2445.98

(a) Models trained per hour for varying
batch sizes and model complexity.

D
Batch Size 100 1000 10000

1 1.00 1.00 1.00
2 1.84 2.02 1.26
5 2.91 5.06 1.79
8 6.72 5.84 2.24

10 8.64 7.03 3.19
15 9.52 10.44 4.48
20 14.37 13.75 4.41

(b) Speedup factor vs fastest sequential un-
batched method for varying batch size and
model complexity.

Table 4.3: Effect of batching on a 16 node cluster.

In Table 4.3 I show the total throughput of the system in terms of models trained per
hour varying the batch size and the model complexity. In the Table, data sizes ranged from
750MB (D=100) to 75GB (D=10000).

For models trained on the smaller dataset, one can see the total number of models per
hour can increase by up to a factor of 15 for large batch sizes. This effect should not be
surprising, as the actual time spent computing is on the order of milliseconds and virtually
all the time goes to scheduling task execution. In its current implementation, due to these
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Figure 4.7: Comparison of batching methods vs. an un-batched baselin.

scheduling overheads, this implementation of the algorithm under Spark will not outperform
a single machine implementation for a dataset this small. As discussed earlier, data sets this
small should likely be trained on a single node. I discuss an alternative execution strategy
that would better utilize cluster resources for situations where the input dataset is small in
Section 4.7.

At the other end of the spectrum in terms of data size and model complexity, one can see
the effects of scheduler delay start to lessen, and the system achieves maximum throughput in
terms of models per hour at batch size 15. In Figure 4.7 I compare two different strategies of
implementing batching—one via the naive method, and the other via the more sophisticated
method—computing gradient updates via BLAS matrix multiplication. For small batch
sizes, the naive implementation actually performs faster than the BLAS optimized one.
The matrix-based implementation easily dominates the naive implementation as batch size
increases because the algorithm is slightly more cache efficient and requires only a single pass
through the input data. The overall speedup due to batching with matrix multiplication is
nearly a factor of 5.

A downside to batching in the context of model search is that the system may gain
information by trying models sequentially that could inform subsequent models that is not
incorporated in later runs. By fixing the batch size to a relatively small constant (O(10))
the system is able to balance this tradeoff.

4.5 Putting It All Together

Having examined each point in the model search design space individually, I evaluate the
end-to-end performance of the TuPAQ procedure and show that the techniques evaluated
in the previous section yield a 10× increase in raw throughput (models trained per unit
time) while finding models that have as good or higher quality than those found with the
baseline approach. I evaluate TuPAQ on very large scale data problems, at cluster sizes
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ranging from 16 to 128 nodes and datasets ranging from 30GB to over 3TB in size. These
sizes represent the size of the actual features the model was trained on.

4.5.1 Platform Configuration

I evaluated TuPAQ on Linux machines running under Amazon EC2, instance type c3.8xlarge.
These machines were configured with Redhat Enterprise Linux, Scala 2.10, version 1.9 of the
Anaconda python distribution from Continuum Analytics[7], and Apache Spark 1.1.0. Addi-
tionally, I made use of Hadoop 1.0.4 configured on local disks as the data store for the large
scale experiments. Total runtime would have been similar if I had used a cloud provider’s file
system infrastructure, because the datasets used fit comfortably into cluster memory and are
cached after first use–that is, most of the time in model search goes into making hundreds or
thousands of passes over the dataset in memory. Finally, I used MLI as of commit 3e164a2d8c
as a basis for TuPAQ. As with any complex system, proper configuration of the platform
to execute a given workload is necessary and Apache Spark is no exception. Specifically—
choosing a correct BLAS implementation, configuring Spark to use it, and picking the right
balance of executor threads per executor process took considerable effort. This configuration
is generally applicable to BLAS-heavy, machine learning workloads and shouldn’t need to
change appreciably given a new dataset. The complete system involves a Scala codebase
built on top of Apache Spark, MLlib, and MLI.

Tuning Method
Optimization Grid Random HyperOpt

None 104.7 100.5 103.9
Bandits Only 31.3 29.7 50.5

Batching Only 31.3 32.1 31.8
All (TuPAQ) 11.5 10.4 15.8

Figure 4.8: Learning time in minutes for a 128-configuration budget across various optimiza-
tion levels for ImageNet data.

4.5.2 Experimental Setup and Datasets

I used two datasets with two different learning objectives to evaluate the system at scale.
The first dataset is a pre-featurized version of the ImageNet 2010 dataset [18], featurized

Search Method Search Time (m) Test Error (%)

Grid (unoptimized) 104.7 11.05
Random (optimized) 10.4 11.41

HyperOpt (optimized) 15.8 10.38

Figure 4.9: Search time and best achieved model error for training 128 models on the 16-node
ImageNet task.
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using a procedure attributed to [48]. This process yields a dataset with 160, 000 features and
approximately 1, 200, 000 examples, or 1.4 TB of raw image features. In the 16-node exper-
iments I downsampled to the first 16, 000 of these features and use 20% of the base dataset
for model training, which is approximately 30GB of data. In the 128-node experiments I
train on the entire dataset. The system explores five hyperparameters here—one parameter
for the classifier being train—SVM or logistic regression, as well as learning rate and L2
Regularization parameters for each matching the above experiments. I allot a budget of 128
model fittings to the problem, each with 100 iterations over the training data. The cluster
sizes are informed by the estimator presented in Section 4.3. While this process is not yet
fully automated, future iterations of the system will use models similar to those described
here to automatically determine the cluster size.

For this dataset, the system searches for a model capable of discriminating plants from
non-plants given these image features. The images are generally in 1000 base classes, but
these classes form a hierarchy and thus can be mapped into plant vs. non-plant categories.
Baseline error for this modeling task is 14.2%, which is a bit more skewed than the previous
examples. The goal is to reduce validation error as much as possible, but my experience with
this particular dataset has put a lower bound on validation error to around 9% accuracy with
linear classification models.

The second dataset is a pre-featurized version of the TIMIT Acoustic-Phonetic contin-
uous speech corpus [60], featurized according to the procedure described in [129]—yielding
roughly 2, 300, 000 examples each having 440 features. While this dataset is quite small,
in order to achieve strong performance on this dataset, other researchers have noted that
Kernel Methods offer the best performance [77]. Following the process of [126], this involves
expanding the feature space of the dataset by nearly two orders of magnitude, yielding a
dataset that has 204, 800 features, or approximately 3.4 TB. The system explores five hyper-
parameters here—one parameter describing the distribution family of the random projection
matrix—in this case Cauchy or Gaussian, the scale and skew of these distributions, as well
as the L2 regularization parameter for this model, which will have a different setting for each
distribution.

A necessary precondition to supporting speech-to-text systems, this dataset provides a
examples of labeled phonemes, and the challenge is to find a model capable of labeling
phonemes given some input audio. Baseline error for this modeling task is 95%, and state-
of-the-art performance on this dataset is 35% error [77].

4.5.3 Optimization Effects

In Figure 4.8 one can see the effects of batching and bandit allocation on the throughput
of the model search process for the ImageNet dataset. Specifically, though it takes nearly
104 minutes to fit all 128 models on the 30GB dataset on the 16 node cluster without
any optimizations, with the bandit rule and batching turned on, the system takes just 10
minutes to train 128 random search models to completion. This is a 10× speedup in the case
of random search and a 7× speedup in the slightly slower case of HyperOpt. HyperOpt takes
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Figure 4.10: Performance of TuPAQ on large-scale problems using a 128-node cluster.

a bit longer because it does a good job of picking points that do not need to be terminated
preemptively by the bandit strategy. That is, more of the models that HyperOpt selects are
trained to completion than random search. Accordingly, HyperOpt arrives at a better model
than random search given the same training budget.

Turning attention to statistical performance illustrated in Figure 4.9, one can see that
on this dataset HyperOpt converges to the best answer in just 15 minutes, while random
search converges to within 5% of the best test error achieved by grid search a full order of
magnitude faster than the baseline approach. Both optimized HyperOpt and Random search
perform significantly faster than unoptimized Grid search, while HyperOpt yields the best
model for this image classification problem.

4.5.4 Large Scale Speech and Vision

Because the system employs data-parallel versions of the learning algorithms, TuPAQ read-
ily scales to multi-terabyte datasets that are an order of magnitude more complicated with
respect to the feature space. For the ImageNet experiments, I used the same parameter
search settings used with the smaller dataset, but I fixed the budget to 32 models to train.
The results are illustrated in Figure 4.10(top). Using the fully optimized HyperOpt based
search method, the system is able to search this space in under 90 minutes, and the method
achieves a validation error of 8.2% in that time. In contrast, training all 32 models to
completion using sequential grid search would have taken over 8 hours and cost upwards of
$2000.00—an expense we chose not to incur.

Turning attention to an entirely different application area, I demonstrate the ability of
the system to scale to a multi-terabyte, multi-class phoneme classification problem. Here,
a multi-class kernel SVM was trained on 2, 251, 569 data points with 204, 800 features, in
147 distinct classes. As shown in Figure 4.10(right), the system is capable of getting to a
model with 39.5% test error—approaching that of state-of-the-art results in speech-to-text
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modeling—in just 3.5 hours. In this setting, for this particular dataset, training all 32 models
to completion without batching or bandit allocation would have taken 35 hours.

4.6 Related Work

There has been a recent proliferation of systems designed for low-level, ad-hoc distributed
predictive analytics, e.g., Apache Spark [160], GraphLab [62], Stratosphere [5], but few
provide tooling for searching over a large space of predictive models.

In terms of system-level optimization, both Kumar et. al. [92] and Canny et. al. [31]
discuss batching as an optimization for speeding up machine learning systems. However,
Kumar et. al. discuss this technique in the context of automatic feature selection, an impor-
tant problem but distinct from model search, while Canny et. al. explore this technique in
the context of parameter exploration, model tuning, ensemble methods and cross validation.
In this chapter explore the impact of batching in a distributed setting at greater depth in
this work, and present a novel application of this technique to the model search problem.

Herodotu et. al. [74] explore performance modeling for MapReduce jobs on Hadoop
clusters in great depth, but their model requires extensive profiling in order to accurately
estimate job completion time. In contrast, the estimator presented here requires more input
from an algorithm developer and is focused on predicting a reasonable cluster size for a given
machine learning model.

In the data mining and machine learning communities, most related to TuPAQ is Auto-
WEKA [148]. As the name suggests, Auto-WEKA aims to automate the use of Weka [155]
by applying recent derivative-free optimization algorithms, in particular Sequential Model-
based Algorithm Configuration (SMAC) [78], to the hyperparameter tuning problem. In
fact, their proposed algorithm is one of the many optimization algorithms used as part of
TuPAQ. However, in contrast to TuPAQ, Auto-WEKA focuses on single node performance
and does not optimize the parallel execution of algorithms. Moreover, Auto-WEKA treats
algorithms as black boxes to be executed and observed, while TuPAQ takes advantage of
knowledge of algorithm execution from both a statistical and physical perspective. Aside
from SMAC, various methods for derivative-free optimization and hyperparameter tuning
have been proposed. I discuss and evaluate several of these methods in Sections 4.3 and 4.4,
and two of these methods are used in TuPAQ.

With respect to the bandit optimization discussed in Section 4.3, both Agarwal et. al. [3]
and Jamieson et. al. [82] have discussed bandit-like techniques for pruning during model
search. Agarwal et. al., however, require explicit forms of the convergence rate behavior of
intermediate results, which may be difficult to calculate and thus make their work difficult
to implement in practice. Jamieson et. al. drew inspiration from TuPAQ when formulat-
ing their theoretically principled algorithm, and versions of this may be included in future
versions of the system.

Weka [155], MLlib [113], Vowpal Wabbit [39], Hyracks [25] and Mahout [10] are notable
open-source ML libraries. These systems (all distributed with the exception of Weka), along
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with proprietary projects such as SystemML [61], all focus on training single models rather
than model search.

While much recent work on image classification and speech recognition has been done in
the context of “Deep Learning” [89, 75], the present focus is on learning methods that scale
horizontally for efficient use of cluster resources, which can be difficult with Deep Learning
methods.

4.7 Future Work and Conclusions

In this chapter, I have described a system for large scale model search that leverages both log-
ical and physical improvements to provide faster search over conventional methods. Specifi-
cally, by combining better model search methods, bandit methods, batching techniques, and
a cost-based cluster sizing estimator, TuPAQ can find high quality models built on very
large datasets an order of magnitude more efficiently than than the baseline approach.

Several avenues exist for further exploration, and I note two broad classes of natural
extensions to TuPAQ.

Machine learning extensions. From an accuracy point of view, as additional model
families are added to MLbase, TuPAQ could naturally lend itself to the construction of
ensemble models at training time—effectively for free. That is, while TuPAQ discards all
but the best model as part of its training process, the process of model training is expensive,
and the results can potentially be reused for better performance. Ensembles over a diverse set
of methods are particularly known to improve predictive performance, but as more models
and more hyperparameter configurations are considered, model search systems run the risk
of overfitting to the validation data, and accounting for this issue, e.g., by controlling the
false discovery rate [17], would become especially important.

Systems extensions. As discussed earlier in Section 5.1, multi-stage ML pipelines, in
which the initial data is transformed one or more times before being fed into a supervised
learning algorithm, are common in most practical ML systems. Since each stage will likely in-
troduce additional hyperparameters, model search becomes more challenging in the pipeline
setting. In a regime where a dataset is relatively small but developers still have access to clus-
ter resources, there can be benefits (both in terms of simplicity and speed) to broadcast the
data to each worker machine and train various models locally on each worker. Model search
could be made more efficient by considering the tradeoffs between these regimes. Training
models on subsets of data can efficiently yield noisy evaluations of candidate models, though
careful subsampling is required to yield high-quality and trustworthy models [4]. Akin to
traditional query planners, model search systems can learn from knowledge of the data they
store and historical workloads. A model search system could store search statistics to tailor
its search strategy to the types of models have been used for a developer’s data in the past.
The evaluation of these techniques in TuPAQ will be natural once the system has been
exposed to a larger set of workloads. I revisit this important problem in Chapter 6.
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Before turning to hyperparameter tuning of end-to-end pipelines, I first present Key-
stoneML, a system built for the construction of scalable, end-to-end ML pipelines and their
optimization.
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Chapter 5

KeystoneML: Optimizing Pipelines
for Large-Scale Advanced Analytics

Chapter 3 presented an interface for describing large scale ML algorithms. This interface was
designed to simplify the succinct construction of new algorithms and present developers with
a consistent interface for accessing new algorithms. In this chapter, we turn our attention
to interfaces for pipeline construction, and discuss the optimization opportunities that exist
when end-to-end pipelines are captured by the system. Armed with APIs for algorithm
development and pipeline construction, developers are able to construct, optimize, and train
end-to-end applications under a particular hyperparameter configuration. The next chapter
focuses on efficiently exploring the hyperparameter space for such pipelines.

5.1 Introduction

As I discussed in Chapter 1, machine learning application developers commonly build com-
plex, end-to-end data processing pipelines to deliver high quality predictions from raw data.

To assemble such pipelines, developers typically piece together domain specific libraries1

for feature extraction and general purpose numerical optimization packages [94, 113] for
supervised learning. This is often a cumbersome and error-prone process [132]. As previously
discussed, these pipelines often need to be completely re-engineered when the training data
or features grow by an order of magnitude–often the difference between an application that
provides good statistical accuracy and one that does not [68]. As no broader system has
purview of the end-to-end application, only narrow optimizations can be applied.

These challenges motivate the need for a system that

• Allows developers to specify end-to-end ML applications in a single system using high
level logical operators.

• Scales out dynamically as data volumes and problem complexity change.

1e.g. OpenCV for Images (http://opencv.org/), Kaldi for Speech (http://kaldi-asr.org/)



CHAPTER 5. KEYSTONEML: OPTIMIZING PIPELINES FOR LARGE-SCALE
ADVANCED ANALYTICS 72

1. Pipeline Specification 2. Logical Operator DAG

3. Optimized Physical DAG 4. Distributed Training

val pipe = 
  Preprocess andThen 
  Featurize andThen 
  (Est, data, labels)

Figure 5.1: KeystoneML takes a high-level ML application specification, optimizes and
trains it in a distributed environment. The trained pipeline is used to make predictions on
new data.

• Automatically optimizes these applications given a library of ML operators and the
developer’s compute resources.

While existing efforts in the data management community [73, 61, 113] and in the broader
machine learning systems community [94, 120, 105] have built systems to address some of
these problems, each of them misses the mark on at least one of the points above.

I present KeystoneML, a framework for ML pipelines designed to satisfy the above
requirements. Fundamental to the design of KeystoneML is the observation that model
training is only one component of an ML application. While a significant body of recent work
has focused on high performance algorithms [162, 127], and scalable implementations [44,
113] for model training, they do not capture the featurization process or the logical intent
of the workflow. KeystoneML provides a high-level, type-safe API built around logical
operators to capture end-to-end applications.

To optimize ML pipelines, database query optimization provides a natural motivation
for the core design of such a system [88]. However, compared to relational database query
optimization, ML applications present an additional set of concerns. First, ML operators
are often iterative and may require multiple passes over their inputs, presenting opportu-
nities for data reuse. Second, many ML operators provide only approximate answers to
their inputs [127]. Third, numerical data properties such as sparsity and dimensionality
are a necessary source of information when selecting optimal execution plans and conven-
tional optimizers do not consider such measures. Finally, the system should be aware of
the computation-vs-communication tradeoffs inherent in distributed processing of ML work-
loads [61, 94] and choose appropriate execution strategies in this regime.

To address these challenges I develop techniques to do both per-operator optimization
and end-to-end pipeline optimization for ML pipelines. KeystoneML uses a cost-based



CHAPTER 5. KEYSTONEML: OPTIMIZING PIPELINES FOR LARGE-SCALE
ADVANCED ANALYTICS 73

optimizer that accounts for both computation and communication costs and the cost model
can easily accommodate new operators and hardware configurations. To determine which
intermediate states are materialized in memory during iterative execution, I formulate an
optimization problem and present a greedy algorithm that works efficiently and accurately
in practice.

I measure the importance of cost-based optimization and its associated overheads using
real-world workloads from computer vision, speech and natural language processing. I find
that end-to-end optimization can improve performance by 7× and that physical operator op-
timizations combined with end-to-end optimizations can improve performance by up to 15×
versus unoptimized execution. I show that poor physical operator selection can result in up
to a 260× slowdown. Using an image classification pipeline on over 1M images [131], I show
that KeystoneML provides linear performance scalability across various cluster sizes, and
statistical performance comparable to recent results [34, 131]. Additionally, KeystoneML
can match the performance of a specialized phoneme classification system on a BlueGene
supercomputer while using 8× fewer resources.

In summary, in this chapter I make the following contributions:

• I present KeystoneML, a system for describing ML applications using high level
logical operators. KeystoneML enables end-to-end optimization of ML applications
at both the operator and pipeline level.

• I demonstrate the importance of physical operator selection in the context of input
characteristics of three commonly used logical ML operators, and propose a cost model
for making this selection.

• I present and evaluate an initial set of whole-pipeline optimizations, including a novel
algorithm that automatically identifies a subset of intermediate data to materialize to
speed up pipeline execution.

• I evaluate these optimizations in the context of real-world pipelines in a diverse set of
domains: phoneme classification, image classification, and textual sentiment analysis,
and demonstrate near-linear scalability over 100s of machines with strong statistical
performance.

• I compare KeystoneML with several recent systems for large-scale learning and
demonstrate superior runtime from these optimization techniques and scale-out strat-
egy.

KeystoneML is open source software2 and is being used in scientific applications in
solar physics [84] and genomics [53]

2http://www.keystone-ml.org/
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1 val textClassifier = Trim andThen
2 LowerCase andThen
3 Tokenizer andThen
4 NGramsFeaturizer(1 to 2) andThen
5 TermFrequency(x => 1) andThen
6 (CommonSparseFeatures(1e5), data) andThen
7 (LinearSolver(), data, labels)
8 val predictions = textClassifier(testData)

Figure 5.2: A text classification pipeline is specified using a small set of logical operators.

5.2 Pipeline Construction and Core APIs

In this section I introduce the KeystoneML API that can be used to express end-to-end ML
pipelines. Each pipeline is composed of a number of operators that are chained together. For
example, Figure 5.2 shows the KeystoneML source code for a complete text classification
pipeline. I next describe the building blocks of the KeystoneML API.

5.2.1 Logical ML Operators

Conventional analytics queries are typically composed using a small number of well studied
relational database operators. This well-defined environment enables important optimiza-
tions. However, ML applications lack such an abstraction and practitioners typically piece
together imperative libraries. Recent efforts have proposed using linear algebra operators
such as matrix multiplication [61], convex optimization routines [56] or multi-dimensional
arrays as logical building blocks [144].

In contrast, with KeystoneML I propose a design where high-level ML operations (such
as PCA, LinearSolver) are used as building blocks. The KeystoneML approach has
two major benefits: First, it simplifies building applications. Even complex pipelines can
be built using just a handful of operators. Second, this higher level abstraction allows us
to perform a wider range of optimizations. The key insight here is that there are usually
multiple well studied algorithms for a given ML operator, but that their performance and
statistical characteristics vary based on the inputs and system configuration. I next describe
the API for operators in KeystoneML.

Pipelines are composed of operators. Transformers and Estimators are two abstract
types of operators in KeystoneML. An operator is a function that operates on zero or
more inputs to produce some output. A logical operator satisfies some logical contract. For
example, it takes an image and converts it to grayscale. Every logical operator must have
at least one physical operator associated with it that implements its logic. Logical operators
with multiple physical implementations are candidates for optimization. They are marked
Optimizable and have a set of CostModels associated with them. Operators that are
iterative with respect to their inputs are marked Iterative.

A Transformer is an operator that can be applied to individual data items (or to a
collection of items) and produces a new data item (or a collection of data items)–it is a de-
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1 trait Transformer[A, B] extends Pipeline[A, B] {
2 def apply(in: Dataset[A]): Dataset[B] = in.map(apply)
3 def apply(in: A): B
4 }

1 trait Estimator[A, B] {
2 def fit(data: Dataset[A]): Transformer[A, B]
3 }

1 trait Optimizable[T, A, B] {
2 val options: List[(CostModel, T[A,B])]
3 def optimize(sample: Dataset[A], d: ResourceDesc): T[A,B]
4 }
5
6 class CostProfile(flops: Long, bytes: Long, network: Long)
7
8 trait CostModel {
9 def cost(sample: Dataset[A], workers: Int): CostProfile

10 }
11
12 trait Iterative {
13 def weight: Int
14 }

Figure 5.3: The KeystoneML API consists of two extendable operator types and interfaces
for optimization.

terministic unary function without side-effects. Examples of Transformers in KeystoneML
include basic data transformations, feature extractors and model application. The determin-
istic and side-effect free properties affords the ability to reorder and optimize the execution
of the functions without changing the result.

An Estimator is applied to a distributed collection of data items and produces a Transformer–
it is a function generating function. ML algorithms provided by the KeystoneML Standard
Library are Estimators, while featurizers are Transformers. For example, LinearSolver
is an Estimator that takes a data set and labels, finds the linear model that minimizes the
square loss between the training data and labels, and produces a Transformer that can apply
this model to new data.

5.2.2 Pipeline Construction

Transformers and Estimators are chained together into a Pipeline using a consistent set
of rules. The chaining methods are summarized in Figure 5.4. In addition to linear chaining
of nodes using andThen, KeystoneML’s API allows for pipeline branching. When a de-
veloper calls andThen a new Pipeline object is returned. By calling andThen multiple
times on the same pipeline, developers can create multiple pipelines that branch out. De-
velopers join the output of multiple pipelines of using gather. Redundancy is eliminated
via common sub-expression optimization detailed in Section 5.4. I find that these APIs are
sufficient for a number of ML applications (Section 5.5), but expect to extend them over
time.
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1 trait Pipeline[A,B] {
2 def andThen[C](next: Pipeline[B, C]): Pipeline[A, C]
3 def andThen[C](est: Estimator[B, C], data: Dataset[A]): Pipeline[A, C]
4 // Combine the outputs of branches into a sequence
5 def gather[A, B](branches: Seq[Pipeline[A, B]]): Pipeline[A, Seq[B]]
6 }

Figure 5.4: Transformers and Estimators are chained using a syntax designed to allow de-
velopers to incrementally build pipelines.

Grayscaler SIFT 
Extractor

Reduce 
Dimensions

Fisher 
Vector Normalize

Column 
Sampler

Linear 
Map

PCA Column 
Sampler GMM Linear 

Solver

Grayscale

PCA GMM

SIFT
Weighted 

Linear Solver

Top 5 
Classifier

Fisher Vector Normalize Top 5 
Classifier

Training 
Labels

Figure 5.5: A pipeline DAG for image classification. Estimators are shaded.

5.2.3 Pipeline Execution

KeystoneML is designed to run with large, distributed datasets on commodity clusters.
The high level API and optimizers can be executed using any distributed data-flow engine.
The execution flow of KeystoneML is shown in Figure 5.1. First, developers specify
pipelines using the KeystoneML APIs described above. As calls to these APIs are made,
KeystoneML incrementally builds an operator DAG for the pipeline. An example operator
DAG for image classification is shown in Figure 5.5. Once a pipeline is applied to some data,
this DAG is then optimized using a set of optimizations described below– this stage is
optimization time. Once the application has been optimized, the DAG is traversed depth-
first and operators are executed one at a time, with nodes up until pipeline breakers (i.e.
Estimators) packed into the same job–this stage is runtime. This lazy optimization procedure
gives the optimizer full information about the application in question. I now discuss the
optimizations made by KeystoneML.

5.3 Operator-Level Optimization

In this section I describe the operator-level optimization procedure used in KeystoneML.
Similar to database query optimizers, the goal of the operator-level optimizer is to choose
the best physical implementation for every machine learning operator in the pipeline. This
is challenging to do because operators in KeystoneML are distributed i.e. they involve
computation and communication across the cluster. Operator performance may also depend
on statistical properties like sparsity of input data and level of accuracy desired. Finally,
as discussed in Section 5.2, KeystoneML consists of a set of high-level operators. The
advantage of having high-level operators is that the system can perform more wide-ranging
optimizations. But this makes designing an optimizer more challenging because unlike rela-
tional operators or linear algebra [61], the set of operators in KeystoneML is not closed.
I next discuss how I addressed these challenges.
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Approach: The approach taken in KeystoneML is to develop a cost-based optimizer
that splits the cost model into two parts: an operator-specific part and a cluster-specific part.
The operator-specific part models the computation and communication time given statistics
of the input data and number of workers and the cluster specific part is used to weigh their
relative importance. More formally, the cost estimate for each physical operator, f can be
expressed as:

c(f, As, R) = Rexeccexec(f, As, Rw) +Rcoordccoord(f, As, Rw)

Where f is the operator in question, As contains statistics of a dataset to be used as
its input, and R, the cluster resource descriptor represents the cluster computing, memory,
and networking resources available. The cluster resource descriptor is collected via config-
uration data and microbenchmarks. Statistics captured include per-node CPU throughput
(in GFLOP/s), disk and memory bandwidth (GB/s), and network speed (GB/s), as well
as information about the number of nodes available. As is determined through a process I
discuss in Section 5.4. Rw is the number of cluster nodes available.

The functions, cexec, and ccoord are developer-defined operator-specific functions (defined
as part of the operator CostModel) that describe execution and coordination costs in terms
of the longest critical path in the execution graph of the individual operators [158], e.g. the
most FLOPS used by a node in the cluster or the amount of data transferred over the most
loaded link. Such functions are also used in the analysis of parallel algorithms [14] and are
well known for common linear algebra based operators. Rexec and Rcoord are determined by
the optimizer from the cluster resource descriptor (R) and capture the relative speed of local
and network resources on the cluster.

Splitting the cost model in this fashion allows the the optimizer to easily adapt to new
hardware (e.g., GPUs or Infiniband networks) and also for it to work with both existing and
future operators. Operator developers only need to implement a CostModel and the system
accounts for hardware properties. Finally I note that the cost model used here is approximate
and that the cost c need not be equal to the actual running time of the operator. Rather, as
in conventional query optimizers, the goal of the cost model is to avoid bad decisions, which
a roughly accurate model will do. At the boundary of two nearly equivalent operators, either
should be acceptable in terms of runtime. I next illustrate the cost functions for three central
operators in KeystoneML and the performance trade-offs that arise from varying input
properties.

Linear Solvers are supervised Estimators that learn a linear map X between an input
dataset A in Rn×d to a labels dataset B in Rn×k by finding the X that minimizes the
value ||AX − B||F . In a multi-class classification setting, n is the number of examples or
data points, d the number of features and k the number of classes. In the KeystoneML
Standard Library there are several implementations of linear solvers, distributed and local,
including

• Exact solvers [47] that compute closed form solutions to the least squares loss and
return an X to extremely high precision.
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Algorithm Compute Network Memory

Local QR O(nd(d + k)) O(n(d + k)) O(d(n + k))

Dist. QR O(nd(d+k)
w ) O(d(d + k)) O(nd

w + d2)
L-BFGS O( insk

w ) O(idk) O(ns
w + dk)

Block Solve O( ind(b+k)
w ) O(id(b + k)) O(nb

w + dk)

Table 5.1: Resource requirements for linear solvers. w is the number of workers in the cluster,
i the number of passes over the dataset. For the sparse solvers s is the the average number
of non-zero features per example, and b is the block size for the block solver. Compute and
Memory requirements are per-node, while network requirements are in terms of the data
sent over the most loaded link.

• Block solvers that partition the features into a set of blocks and use second-order Jacobi
or Gauss-Seidel [23] updates to converge to the right solution.

• Gradient based methods like SGD [127] or L-BFGS [37] that perform iterative updates
using the gradient and converge to a globally optimal solution.

Table 5.1 summarizes the cost model for each method. Constants are omitted for readability
but are necessary in practice.

To illustrate these cost tradeoffs empirically, I vary the number of features generated
by the featurization stage of two different pipelines and measure the training time and the
training loss. I compare the methods on a 16 node cluster.

On an Amazon Reviews dataset (see Table 5.3) with a text classification pipeline, as the
number of features are increased from 1k to 16k one can see in Figure 5.6 that L-BFGS
performs 5-20× faster than the exact solver and 26-260× faster than the block-wise solver.
Additionally the exact solver crashes for greater than 4k features as the memory requirements
are too high. The reason for this speedup is that the features generated in text classification
problems are sparse and the L-BFGS solver exploits the sparse inputs to calculate gradients
cheaply.

The optimal solver choice does not always stay the same as the problem size is increased
or as sparsity changes. For the TIMIT dataset, which has dense features, one can see that
the exact solver is 3-9× faster than L-BFGS for smaller number of features. However when
the number of features goes beyond 8k one can see that the exact solver becomes slower than
the block-wise solver, which is also 2-3× faster than L-BFGS.

Principal Component Analysis (PCA) is an Estimator used for tasks ranging from
dimensionality reduction to whitening to visualization. PCA takes an input dataset A in
Rn×d, and a value k and produces a Transformer which can apply a matrix P in Rd×k,
where P consists of the first k eigenvectors of the covariance matrix of A. The P matrix
can be found using several techniques including the SVD or via an approximate algorithm,
Truncated SVD [69]. In the KeystoneML cost model, SVD has runtime O(nd2) and offers
an exact answer, while TSVD runs in O(nk2). Both methods may parallelized over a cluster.
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Figure 5.6: A poor choice of solver can mean orders of magnitude difference in runtime.
Runtime for exact solve grows quadratically in the number of features and times out with
4096 features for Amazon and 16384 features for TIMIT running on 16 c3.4xlarge nodes.

d = 256 d = 4096

k = 1 16 64 k = 16 64 1024

n = 104

SVD 0.1 0.1 0.1 26 26 26
TSVD 0.2 0.3 0.4 3 6 34

Dist. SVD 1.7 1.7 1.7 106 106 106
Dist. TSVD 4.9 3.8 5.3 6 22 104

n = 106

SVD 11 11 11 x x x
TSVD 14 30 65 x x x

Dist. SVD 2 2 2 260 260 260
Dist. TSVD 16 59 262 75 1,326 8,310

Table 5.2: Comparison of runtimes (in seconds) for approximate and exact PCA operators
across different dataset sizes. A dataset has n examples and d features. k is an algorithm
input. An x indicates that the operation did not complete.

To better illustrate how the choice of a PCA implementation affects the run time, I
constructed a micro-benchmark that varies problem size along n, d, and k, and executed
both local and distributed implementations of the approximate and exact algorithm on a
16-node cluster. In Table 5.2, one can see that as data volumes increase in n and d it makes
sense to run PCA in a distributed fashion, while for relatively small values of k, it can make
sense to use the approximate method.

Convolution is a critical building block of Signal, Speech, and Image Processing pipelines.
In image processing, the Transformer takes in an Image of size n×n×d and applies a bank of
b filters (each of size k× k, where k < n) to the Image and returns the b resulting convolved
images of size m × m, where m = n − k + 1. There are three main ways to implement
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Figure 5.7: Time to perform 50 convolutions on a 256x256 3-channel image. As convolution
size increases, the optimal method changes.

convolutions: via a matrix-vector product scheme when convolutions are separable, using
BLAS matrix-matrix multiplication [2], or via a Fast Fourier Transform (FFT) [106].

The cost model for the matrix-vector product scheme takes O(dbk(n − k + 1)2 + bk3)
time, but only works when filters are linearly separable. Meanwhile, the matrix-matrix
multiplication scheme has a cost of O(dbk2(n − k + 1)2). Finally, the FFT based scheme
takes O(6dbn2 log n+ 4dbn2), and does not depend on k.

To illustrate the tradeoffs between these methods, in Figure 5.7, the size of the convolution
filter, k, is varied and representative input images and batch sizes are used. For small values
of k, one can see that BLAS the is fastest operator. However, as k grows, the algorithm’s
dependence on k2 makes this approach inappropriate. If the filters are separable, it is faster
to use the matrix-vector algorithm. The FFT algorithm does not depend on k and thus
performs the same regardless of k.

Cost Model Evaluation: To evaluate how well the KeystoneML cost model works,
I compared the physical operator chosen by the optimizer against the best choice from
empirically measured values for linear solvers (Figure 5.6) and PCA (Table 5.2). I found
that the optimizer made the right choice 90% of the time for linear solvers and 84% of the
time for PCA. In both cases I found that the wrong choices were made when the running
time of two operators were close to each other and thus the approximate cost model did
not severely impact overall performance. For example, for the linear solver with 4096 dense
features, the optimizer chooses the BlockSolver but empirically the Exact solver is about
30% faster.

As seen from the three examples above, the choice of optimal physical execution depends
on hardware properties and on properties of the input data. Thus, choices made in support
of operator-level optimization depend on upstream processing and cheaply estimating data
properties at various points in the pipeline is an important problem. I next discuss how
operator chaining semantics can help in achieving this.
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5.4 Whole-Pipeline Optimization

5.4.1 Execution Subsampling

Operator optimization in KeystoneML requires the collection of statistics about input data
at each pipeline stage. For example, a text featurization operator might map a string into
a 10, 000-dimensional sparse feature vector. Without statistics about the input (e.g. vector
sparsity) after featurization, a downstream operator will be unable to make its optimization
decision. As such, dataset statistics (As) are determined by first estimating the size of
the initial input dataset (in records), and optimizing the first operator in the pipeline with
statistics derived from a sample of the input data. The optimized operator is then executed
on the sample, and subsequent operators are optimized. This procedure continues until
all nodes have been optimized. Along the way, the system forms a pipeline profile, which
includes not just the information needed to form As at each step, but also information
about operator execution time and memory consumption of each operator’s execution on
the sample. The system uses the pipeline profile to inform the Automatic Materialization
optimization described below. I also evaluate the overheads from profiling in Section 5.5.3.

5.4.2 Common Sub-expression Elimination

One of the whole-pipeline rewrites done by KeystoneML is a form of common sub-
expression elimination. It is common for training data or the output of featurization stages to
be used in several stages of a pipeline. As a concrete example, in a text classification pipeline
the system might first tokenize the training data then determine the 100, 000 most common
bigrams in a text corpus, featurize the data to a binary vector indicating the presence of
each bigram, and then train a classifier on the same training data. Thus, the pipeline needs
the bigrams of each document both in the most common features calculation as well as when
training the classifier. KeystoneML identifies and merges such common sub-expressions
to enable computation reuse.

5.4.3 Automatic Materialization

Cache management and automatic selection of materialized views are important optimiza-
tions used by database management systems [38] and they have been studied in the context
of analytical query systems [164, 70], and feature selection [161]. For ML workloads, ma-
terialization of intermediate data is very important for performance because the iterative
nature of these workloads means that recomputation costs are multiplied across iterations.
By capturing the iterative nature of the pipelines in the DAG, the optimizer is capable of
identifying opportunities for reuse, eliminating redundant computation. I next describe a
formulation for the materialization problem in iterative pipelines and propose an algorithm
to automatically select a good set of intermediate objects to materialize in order to speed
up ML pipeline execution.
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Given the depth-first execution model and the deterministic and side-effect free nature
of KeystoneML operators, a natural strategy is materialization of operator outputs that
are visited multiple times during the execution. This optimization works well in the absence
of memory constraints.

However, in many applications we have built with KeystoneML, intermediate output
can grow to multiple terabytes in size, even for modestly sized inputs. On current hardware,
this output is too big to fit in memory, even with hundreds of GB of memory per machine.
Commonly used caching policies such as LRU can result in suboptimal run times because
the decision to cache a large object (e.g. intermediate features) may evict a smaller object
that is needed later in the pipeline and may be expensive to recompute (e.g. image features).

I propose an algorithm to automatically select the items to cache in the presence of
memory constraints, given that the system knows how often the objects will be accessed, that
it can estimate their size, and that it can estimate the runtime associated with materializing
them.

I formulate the problem as follows: Given a memory budget, the objective is to find the
set of nodes to include in the cache set that minimizes total execution time.

Let v be the node of interest in a pipeline G, t(v) is the time taken to do the computation
that is local to node v per iteration, C(v) is the number of times a node will by called by
its direct successors during execution, and wv is the number of times a node iterates over its
inputs. T (n), the total execution time of the pipeline up to and including node v is:

T (v) =

wv(t(v) +
∑

c∈χ(v)

T (c))

C(v)κv
(5.1)

where κv ∈ {0, 1} is a binary indicator variable signifying whether a node is cached or not,
and χ(v) represents the direct predecessors of v in the DAG.

Where C(v) is defined as follows:

C(v) =


∑

p∈π(v)

wpC(p)κp , |π(v)| > 0

1, otherwise
(5.2)

where π(v) represents the direct successors of v in the DAG. Because of the DAG structure
of the pipeline graph, it is guaranteed that there are no cycles in this graph, thus both T (v)
and C(v) are well-defined.

The problem of minimizing pipeline execution time can be stated formally as an opti-
mization problem with linear constraints as follows:

min
κ
T (sink(G))

s.t.
∑
v∈V

size(v)κv ≤ memSize
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1 Algorithm GreedyOptimizer
input : G, t, size, memSize
output: cache

2 cache ← ∅;
3 memLeft ← memSize;
4 next ← pickNext (G, cache, size, memLeft, t);
5 while nextNode 6= ∅ do
6 cache ← cache ∪ next;
7 memLeft ← memLeft - size(next);
8 next ← pickNext (G, cache, size, memLeft, t);

9 end
10 return cache;

1 Procedure pickNext()
input : G, cache, size, memLeft, t
output: next

2 minTime ← ∞;
3 next ← ∅;
4 for v ∈ nodes(G) do
5 runtime ← estRuntime (G, cache ∪ v, t);
6 if runtime < minTime & size(v) < memLeft then
7 next ← v;
8 minTime ← runtime;

9 end

10 end
11 return next;

Algorithm 5: The caching algorithm in KeystoneML builds a cache set by finding the
node that will maximize time saved subject to memory constraints. estRuntime is a
procedure that computes T (v) for a given DAG, cache set, and node.

Where sink(G) is the pipeline terminus, size(v) the size of v’s output, and memSize the
memory constraint.

This problem can also be thought of as problem of finding an optimal cache schedule.
It is tempting to reach for classical results [16, 125] in the optimal paging literature to
identify an optimal or near-optimal schedule for this problem. However, neither of these
results matches the problem setting fully. In particular, Belady’s algorithm is only optimal
when each item has a fixed cost to bring into cache (as is common in reads from a two-
level memory hierarchy), while in the current problem these costs are variable and depend
heavily on the computation time to materialize them–in many cases recomputing may be
two orders of magnitude faster than reading from disk but an order of magnitude slower
than reading from memory, and each operator will have a different computational profile.
Second, algorithms for the weighted paging problem don’t take into account weights that are
dependent on the current state of the cache. e.g. it may be much faster to compute image
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Dataset Train Size Num Train Test Size Num Test Classes Type Solve Density Solve Size
(GB) (m) (GB) (m) Features (GB)

Amazon 13.97 65 3.88 18 2 text 100000 0.1% 89.1
TIMIT 7.5 2.2 0.39 0.11 147 vector 528000 100% 8857

ImageNet 74 1.2 3.3 0.05 1000 image 262144 100% 2502
VOC 0.428 0.005 0.420 0.005 20 image 40960 100% 1.52

CIFAR-10 0.500 0.5 0.001 0.01 10 image 135168 100% 62.9
Youtube8m 22.07 5.7 6.3 1.6 4800 vector 1024 100% 44.15

Table 5.3: Dataset Characteristics. While raw input sizes may be modest, intermediate state
may grow by orders of magnitude before being input to a solver.

features if images are already in cluster memory than if they need to be retrieved from disk.
We will see in the next chapter that it is possible to write this problem down as a mixed-

integer linear program. However, the costs of solving such a program may be prohibitive.
Instead, KeystoneML implement the greedy Algorithm 5. Given an unoptimized

pipeline DAG, the algorithm chooses to cache the node that will lead to the largest sav-
ings in terms of execution time but whose output fits in available memory. This process
proceeds iteratively until either no benefit to additional caching is possible or all available
memory has been used.

5.5 Evaluation

To evaluate the effectiveness of KeystoneML, I explore its ability to efficiently support
large scale ML applications in three domains. I also compare KeystoneML with other sys-
tems for large scale ML and show how the system’s high-level operators and optimizations
can improve performance. Following that I break down the end-to-end benefits of the pre-
viously discussed optimizations. Finally, I assess the system’s ability to scale and show that
KeystoneML scales well by enabling the development of scalable, composable components.

Implementation: I implement KeystoneML on top of Apache Spark, a cluster com-
puting engine that has been shown to have good scalability and performance for many
iterative ML algorithms [113]. KeystoneML contains an additional cache-management
layer that is aware of the multiple Spark jobs that comprise a pipeline, and implemented ML
operators in the KeystoneML Standard Library that are absent from Spark MLlib. While
the current implementation of the system is Spark-specific, Spark is merely a distributed
execution environment and the system can be ported to other backends.

Experiments are run on Amazon EC2 r3.4xlarge instances. Each machine has 8
physical cores, 122 GB of memory, and a 320 GB SSD, and was running Apache Spark 1.3.1,
Scala 2.10, and HDFS from the CDH4 distribution of Hadoop. I have also run KeystoneML
on Apache Spark 1.5, 1.6 and not encountered any performance regressions. I use OpenBLAS
for numerical operations and Vowpal Wabbit [94] v8.0 and SystemML [61] v0.9 in these
comparisons. If not otherwise specified, experiments are run on a 16-node cluster.
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5.5.1 End-to-End ML Applications

To demonstrate the flexibility and generality of the KeystoneML API, end-to-end machine
learning pipelines were implemented in several domains including text classification, image
classification and speech recognition. I next describe these pipelines and compare statistical
accuracy and performance results obtained using KeystoneML to previously published
results. Every effort was taken to recreate these pipelines as they were described by their
authors, and it was ensured that pipelines achieved comparable or better statistical results
than those reported by each benchmark’s respective authors.

The operators used to implement these applications are outlined in Table 5.4, and the
datasets used to train them are described in Table 5.3. In each case, the datasets significantly
increase in size as part of the featurization process, so at model fitting time the size is
substantially larger than the raw data, as shown in the last two columns of the table. The
Solve Size is the size of the dataset that is input to a Linear Solver. This may be too large for
available cluster memory, as is the case for TIMIT. Accuracy results on each dataset achieved
with KeystoneML as well as those achieved with the original authors code or (where code
was unavailable) as reported in their respective works, are reported in Table 5.5.

Text Analytics: KeystoneML makes it simple for developers to scale their text
pipelines to large datasets. Combined with libraries like CoreNLP [103], KeystoneML
allows for scalable implementations of many text classification pipelines such as the one
shown in Figure 5.2. A text classification pipeline based on [104] was evaluated on the Ama-
zon Reviews dataset of 65m product reviews [108] with 100k sparse features. It was found
that KeystoneML matches the statistical performance of a Vowpal Wabbit [94] pipeline
when run on identical resources with the same solver, finishing in 440s.

Kernel SVM for Speech Recognition: Kernel SVMs can be used in many classifi-
cation scenarios as they can approximate any function. Often their performance has been
shown to be much better than simpler generalized linear models [76]. Kernel evaluations can
be efficiently approximated using random feature transformations [126, 137] and pipelines
are a natural way to specify such transformations. Statistical operators like FFTs and cosine
transformations and APIs to merge features help us succinctly describe the pipeline in Key-
stoneML. A kernel SVM solver was evaluated on the TIMIT dataset with 528k features.
Using KeystoneML this pipeline runs in 138 minutes on 64 machines. By contrast, a 256
node IBM Blue Gene machine with 16 cores per machine takes around 120 minutes [137]. In
this case, while KeystoneML may be 11% slower, it is using only 1

8
the number of cores

to solve this computationally demanding problem.
Image Classification: Image classification systems are useful in many settings. As

images carry local information (i.e. information specific to where in the image a feature ap-
pears), locality sensitive techniques, e.g. convolutions or spatially-pooled fisher vectors [131],
can be used to generate training features. KeystoneML makes it easy to modularize the
pipeline to use efficient implementations of image processing operators like SIFT [102] and
Fisher Vectors [131, 34]. Many of the same operators considered here are necessary com-
ponents of “deep-learning” pipelines [90] that typically train neural networks via stochastic



CHAPTER 5. KEYSTONEML: OPTIMIZING PIPELINES FOR LARGE-SCALE
ADVANCED ANALYTICS 86

Task Type Operators Used

Amazon Text LowerCase, Tokenize
Reviews NGrams, TermFrequency

Classification LogisticRegression

TIMIT Speech RandomFeatures, Pipeline.gather
Kernel SVM LinearSolver

ImageNet Image GrayScale, SIFT, LCS, PCA, GMM
Classification FisherVector, LinearSolver

VOC Image GrayScale, SIFT, PCA, GMM
Classification FisherVector, LinearSolver

CIFAR-10 Image Windower, PatchExtractor
Classification ZCAWhitener, Convolver, LinearSolver

SymmetricRectifier, Pooler

Table 5.4: Operators used in constructing pipelines for datasets in Table 5.3.

gradient descent and back-propagation.
Using the VOC dataset, the pipeline described in [34] was implemented. This pipeline

executes end-to-end on 32 nodes using KeystoneML in just 7 minutes. Using the authors
original source code the same workload takes 1 hour and 27 minutes to execute on a single
16-core machine with 256 GB of RAM–KeystoneML achieves a 12.4× speedup with 16×
the cores. A Fisher Vector based pipeline was evaluated on ImageNet with 256k features.
The KeystoneML pipeline runs in 4.5 hours on 100 machines. The original pipeline takes
four days [130] to run using a highly specialized codebase on a 16-core machine, a 21×
speedup on 50× the cores.

In summary, using KeystoneML achieves one to two orders of magnitude improvement
in end-to-end throughput versus a single node, and equivalent or better performance over
cluster systems running similar workloads. These improvements mean much quicker ML
application development, which leads to higher developer productivity. Next I compare
KeystoneML to other large scale learning systems.

5.5.2 KeystoneML vs. Other Systems

I compare runtimes for the KeystoneML solver with both a specialized system, Vow-
pal Wabbit [94], built to estimate linear models, and SystemML [61], a general purpose
ML system, which optimizes the implementation of linear algebra operators used in spe-
cific algorithms (e.g., Conjugate Gradient Method), but does not choose among logically
equivalent algorithms. I compare solver performance across different feature sizes for two
binary classification problems: Amazon and a binary version of TIMIT. The systems were

3I report accuracy on 64k features for ImageNet, while time is reported on 256k features due to lack of
consistent reporting by the original authors. The workloads are otherwise similar.
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Dataset KeystoneML Reported
Accuracy Time (m) Accuracy Time (m)

Amazon [104] 91.6% 3.3 - -
TIMIT [77] 66.06% 138 66.33% 120

ImageNet [131]3 67.43% 270 66.58% 5760
VOC 2007 [34] 57.2% 7 59.2% 87
CIFAR-10 [147] 84.0% 28.7 84.0% 50.0

Table 5.5: Time to Accuracy with KeystoneML obtained on ML pipelines described in the
relevant publication. Accuracy for VOC is mean average precision. Accuracy for ImageNet
is Top-5 error.
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Figure 5.8: KeystoneML’s optimizing linear solver outperforms both a specialized and
optimizing ML system for two problems across feature sizes. Times are on log scale.

run with identical inputs and objective functions, and I report end-to-end solve time. For
this comparison, I solve binary problems because SystemML does not include a multiclass
linear solver.

The results are shown in Figure 5.8. The optimized solver in KeystoneML outperforms
both Vowpal Wabbit and SystemML because it selects an appropriate algorithm to solve the
logical problem, as opposed to relying on a one-size fits all operator. At 1024 features for the
Binary TIMIT problem, KeystoneML chooses to run an exact solve, while from 2048 to
32768 features it chooses a Dense L-BFGS implementation. At 65536 features (not pictured),
KeystoneML finishes in 17 minutes, while SystemML takes 1 hour and 40 minutes to
converge to worse training loss over 10 iterations, a speedup of 5.5×.

The reasons for these performance differences are twofold: first, since KeystoneML
raises the level of abstraction to the logical level, the system can automatically select, for
example, a sparse solver for sparse data or an exact algorithm when the number of features
is low, or a block solver when the features are high. In the middle, particularly for Key-
stoneML vs. SystemML on the Binary TIMIT dataset, the algorithms are similar in terms
of complexity and access patterns. In this case KeystoneML is faster because feature
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Machines 1 2 4 8 16 32

TensorFlow (strong) 184 90 57 67 122 292
TensorFlow (weak) 184 135 135 114 xxx xxx
KeystoneML 235 125 69 43 32 29

Table 5.6: Time, in minutes, to 84% accuracy on the CIFAR-10 dataset with KeystoneML
and TensorFlow configured for both strong and weak scaling. In large weak scaling regimes
TensorFlow failed to converge to a good model.

extraction is pipelined with the solver, while SystemML requires a conversion process for
data to be fed into a format suitable for the solver. If only the solve step of the pipeline is
considered, KeystoneML is roughly 1.5× faster than SystemML for this problem.

TensorFlow is a newly open-sourced ML system developed by Google [105]. Developed
concurrently to KeystoneML, TensorFlow also represents pipelines as graph of dataflow
operators. However, the design goals of the two systems are fundamentally different. Key-
stoneML is designed to support horizontally scalable workloads to offer good scale out
performance for conventional machine learning applications consisting of featurization and
model estimation, while TensorFlow is designed to support neural network models trained
via mini-batch SGD with back-propagation. I compare against TensorFlow v0.8 and adapt
a multi-GPU example [147] to a distributed setting in a procedure similar to [36].

To illustrate the differences, I compare the systems’ performance on CIFAR-10 top-1 clas-
sification performance. While the learning tasks are identical (i.e., make good predictions
on a test dataset, given a training dataset), the workloads are not identical. Specifically,
TensorFlow implements a model similar to the one presented in [90], while in KeystoneML
I implement a version of the model similar to [40]. TensorFlow was run with default param-
eters and I experimented with strong scaling (fixed 128 image batch size) and weak scaling
(batch size of 128×Machines).

For this workload, TensorFlow achieves its best performance on 4-node cluster with 32
total CPU cores, running in 57 minutes. Meanwhile, KeystoneML surpasses its perfor-
mance at 8 nodes and continues to improve in total runtime out to 32 nodes, achieving
a minimum runtime of 29 minutes, or a 1.97× speedup. These results are summarized in
Table 5.6. I ran TensorFlow on CPUs for the sake of comparability. Prior benchmarks [147]
have shown that the speed of a single multi-core CPU is comparable to a single GPU; thus
the same pipeline finishes in 50 minutes on a 4 GPU machine.

TensorFlow’s lack of scalability on this task is fundamental to the chosen model and
the algorithm being used to fit it. Minimizing a non-convex loss function via minibatch
Stochastic Gradient Descent (SGD) requires coordination of the model parameters after a
small number of examples are seen. In this case, the coordination requirements surpass the
savings from parallelism at a small number of nodes. While TensorFlow has better scalability
on some model architectures [146], it is not scalable for other architectures. By contrast,
by using a communication-avoiding solver KeystoneML’s performance on this task can be
scaled out significantly further.
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Figure 5.9: Impact of optimization levels on three applications, broken down by stage.

Finally, a recent benchmark dataset from YouTube [1] describes learning pipelines in-
volving featurization with a neural network [146] followed by a logistic regression model or
SVM. The authors claim that “models train to convergence in less than a day on a single
machine using the publicly-available TensorFlow framework.” A best-effort replication of
this pipeline was performed using KeystoneML. We are unable to replicate the author’s
claimed accuracy–the KeystoneML pipeline achieves 21% mAP while they report 28%
mAP. KeystoneML trains a linear classifier on this dataset in 3 minutes, and a converged
logistic regression model with worse accuracy in 90 minutes (31 batch gradient evaluations)
on a 32-node cluster. The ability to choose an appropriate solver and readily scale out are
the key enablers of KeystoneML’s performance.

I now evaluate the effectiveness of KeystoneML’s optimizations at improving the
throughput of these example workloads.

5.5.3 Optimization Levels

The end-to-end results reported earlier in this section are achieved by taking advantage of
the complete set of optimizations available in KeystoneML. To understand how impor-
tant the per-operator and whole-pipeline optimizations described in Sections 5.3 and 5.4
are I compare three different levels of optimization: a default unoptimized configuration
(None), a configuration where only whole-pipeline optimizations are used (Pipe Only)
and a configuration with operator-level and whole-pipeline optimizations (KEYSTONEML).

Results comparing these levels, with a breakdown of stage-level timings on the VOC,
Amazon and TIMIT pipelines are shown in Figure 5.9. For the Amazon pipeline the whole-
pipeline optimizations improve performance by 7×, but the operator optimizations do not
help further, because the Amazon pipeline uses CoreNLP featurizers which do not have
statistical optimizations associated with them, and the default L-BFGS solver turns out to
be optimal. The performance gains come from caching intermediate features just before
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Figure 5.10: The KeystoneML caching strategy outperforms a rule-based and LRU caching
strategy at many levels of memory constraints and responds well to memory pressure.

the L-BFGS solve. For the TIMIT pipeline, run with 16k features, one can see that the
end-to-end optimizations only give a 1.3× speedup but that selecting the appropriate solver
results in a 8× speedup over the baseline. Finally in the VOC pipeline the whole pipeline
optimization gives around 3× speedup. Operator-level optimization chooses good PCA,
GMM and solver operators resulting in a 12× improvement over the baseline, or 15× if
I amortize the optimization costs across many runs of a similar pipeline. Optimization
overheads are insignificant except for the VOC pipeline. This dataset has relatively few
examples, so the sampling strategy takes more time relative to the other datasets.

5.5.4 Automatic Materialization Strategies

As discussed in Section 5.4, one key optimization enabled by KeystoneML’s ability to
capture the complete application DAG to dynamically determine where to materialize reused
intermediate objects, particularly in the presence of memory constraints. In Figure 5.10 I
demonstrate the effectiveness of the greedy caching algorithm proposed in Section 5.4. Since
the algorithm needs local profiles of each node’s performance, I measured each node’s running
time on two samples of 512 and 1024 examples. The system extrapolates the node’s memory
usage and runtime to full scale using linear regression. I found that memory estimates from
this process are highly accurate and runtime estimates were within 15% of actual runtimes.
If estimates are inaccurate, the system falls back to an LRU replacement policy for the
cache set determined by this procedure. While this measurement process is imperfect, it
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is adequate at identifying relative running times and thus is sufficient for the purpose of
resource management.

I compare this strategy with two alternatives–the first is a simple rule-based approach
which only caches the results of Estimators. This is a sensible rule to follow, as the result of
an Estimator (a Transformer or model) is computationally expensive to acquire and typically
holds a small memory footprint. However, this is not sufficient for most practical pipelines
because if a pipeline contains more than one Estimator, often the input to the first Estimator
will be used downstream, thus presenting an opportunity for reuse. The second approach
is a Least Recently Used (LRU) policy: in a regime where memory is unconstrained, LRU
matches the ideal strategy and further, LRU is the default memory management strategy
used by Apache Spark. However, LRU does not take into account that datasets from other
jobs (even ones in the same pipeline) are vying for presence in cluster memory.

From Figure 5.10 one can notice several important trends. First, the KeystoneML
strategy is nearly always better than either of the other strategies. In the unconstrained
case, the algorithm is going to remember all reused items as late in their journey through
the pipeline as possible. In the constrained case, it will do as least as well as remembering
the (small) estimators which are by definition reused later in the pipeline. Additionally, the
strategy degrades effectively, mixing between the best performance of the limited-memory
rule-based strategy and the LRU based “cache everything” strategy which works well in
unconstrained settings. Curiously, as memory available to caching per-node was increased,
the LRU strategy performed worse for the Amazon pipeline. Upon further investigation, this
is because Spark has an implicit admission control policy which only allows objects under
some proportion of the cache size to be admitted to the cache at runtime. As the cache size
gets bigger in the LRU case, massive objects which are not then reused are admitted to the
cache and evict smaller objects which are reused and thus need to be recomputed.

To give a concrete example of the optimizer in action, consider the VOC pipeline shown
in Figure 5.5 in Section 5.2. When memory is not constrained (80 GB per node), the
outputs from the SIFT, ReduceDimensions, Normalize and TrainingLabels are
cached. When memory is restricted (5 GB per node) only the output from Normalize and
TrainingLabels are cached.

These results show that both per-operator and whole-pipeline optimizations are impor-
tant for end-to-end performance improvements. I next study the scalability of the system
on three workloads

5.5.5 Scalability

As discussed in previous sections, KeystoneML’s API design encourages the construction of
scalable operators. However, some estimators like linear solvers need coordination [47] among
workers to compute correct results. In Figure 5.11 I demonstrate the scaling properties from
8 to 128 nodes of the text, image, and Kernel SVM pipelines on the Amazon, ImageNet (with
16k features) and TIMIT datasets (with 65k features) respectively. The ImageNet pipeline
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Figure 5.11: Time breakdown of workloads by stage. The red line indicates ideal strong
scaling performance over 8 nodes.

exhibits near-perfect horizontal scalability up to 128 nodes, while the Amazon and TIMIT
pipeline scale well up to 64 nodes.

To understand why the Amazon and TIMIT pipeline do not scale linearly to 128 nodes,
I further analyze the breakdown of time take by each stage. One can see that each pipeline
is dominated by a different part of its computation. The TIMIT pipeline is dominated by its
solve stage, while featurization dominates the Amazon and ImageNet pipelines. Scaling linear
solvers is known to require coordination [47], which leads directly to sub-linear scalability of
the whole pipeline. Similarly, in the Amazon pipeline, one of the featurization steps uses an
aggregation tree which does not scale linearly.

5.6 Related Work

ML Frameworks: ML researchers have traditionally used MATLAB or R packages to
develop ML routines. The importance of feature engineering has led to tools like scikit-
learn [120] and KNIME [21] adding support for featurization for small datasets. Further, ex-
isting libraries for large scale ML [29] like Vowpal Wabbit [94], GraphLab [101], MLlib [113],
RIOT [163], DimmWitted [162] focus on efficient implementations of learning algorithms
like regression, classification and linear algebra routines. In KeystoneML, I focus on
pipelines that include featurization and show how to optimize performance with end-to-end
information. Work in Parameter Servers [99] has studied how to share model updates. Key-
stoneML presents a high-level API for linear solvers and can leverage parameter servers in
our architecture.

Closely related to KeystoneML is SystemML [61], which also uses an optimization
based approach to determine the physical execution strategy of ML algorithms. However,
SystemML places less emphasis on support for UDFs and featurization, while instead focus-
ing on linear algebra operators that have well specified semantics. To handle featurization
I develop an extensible API in KeystoneML that allows for cost profiling of arbitrary
nodes and uses these cost estimates to make node-level and whole-pipeline optimizations.
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Other work [161, 2] has looked at optimizing caching strategies and operator selection in the
regime of feature selection and feature generation workloads. KeystoneML considers sim-
ilar problems in the context of distributed ML operators and end-to-end learning pipelines.
Developed concurrently to KeystoneML is TensorFlow [105]. While designed to support
different learning workloads the optimizations that are a part of KeystoneML can also be
applied to systems like TensorFlow.

Projects such as Bismarck [56], MADLib [73], and GLADE [123] have proposed tech-
niques to integrate ML algorithms inside database engines. In KeystoneML, I develop a
high level API and show how the system can achieve similar benefits of modularity and end-
to-end optimization while also being scalable. These systems do not present cross-operator
optimizations and do not consider tradeoffs at the operator level that are considered in Key-
stoneML. Finally, Spark ML [112] represents an early design of a similar high-level API for
machine learning. We present a type safe API and optimization framework for such a system.
The version presented here differs in its use of type-safe operations, support for complex data
flows, internal DAG representation and optimizations discussed in Sections 5.3 and 5.4.
Query Optimization, Modular Design, Caching: There are several similarities between
the optimizations made by KeystoneML and traditional relational query optimizers. Even
the earliest relational query optimizers [133] used multiple physical implementations of equiv-
alent logical operators, and like many relational optimizers, the KeystoneML optimizer
is cost-based. However, KeystoneML supports a much richer set of data types than a
traditional relational query system, but its operators lack some relational algebra semantics,
such as commutativity, limiting the system’s ability to perform certain optimizations. Fur-
ther, KeystoneML switches among operators that provide exact answers vs approximate
ones to save time due to the workload setting. Data characteristics such as sparsity are not
traditionally considered by optimizers.

As previously stated, the caching strategy employed by KeystoneML can be viewed as
a form of view selection for materialized view maintenance over queries with expensive user-
defined functions [38, 72], I focus on materialization for intra-query optimization, as opposed
to inter-query optimization [70, 35, 164, 52, 121]. While much of the related work focuses
on the challenging problem of view maintenance in the presence of updates, KeystoneML
exploits the iterative nature and immutable properties of this state.

5.7 Future Work and Conclusion

KeystoneML represents a significant first step towards easy-to-use, robust, and efficient
end-to-end ML at massive scale. The existing KeystoneML operator APIs are synchronous
and the pipelines presented here are acyclic. Future study could examine how algorithms
like asynchronous SGD [99] or back-propagation can be integrated with the robustness and
scalability that KeystoneML provides.

In this chapter, I have presented the design of KeystoneML, a system that enables
the development end-to-end ML pipelines. By capturing the end-to-end application, Key-
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stoneML can automatically optimize execution at both the operator and whole-pipeline
levels, enabling solutions that automatically adapt to changes in data, hardware, and other
environmental characteristics.

In the next chapter, I show how combining whole-pipeline optimizations such as those
presented here with accelerated hyperparameter tuning methods such as those presented in
Chapter 4 can lead to decreased ML application development time.
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Chapter 6

Piperplanned: Resource Aware
Pipeline Hyperparameter Tuning

In Chapter 4 I discussed optimizations designed to accelerate hyperparameter tuning of
individual learning algorithms. In Chapter 5 I focused on APIs that enable the construction
of end-to-end learning pipelines and the optimizations that are enabled by capturing these
workloads end-to-end in a single system. A natural follow-on question is whether these
techniques can be combined to accelerate end-to-end large scale ML application development.
In this chapter, I explore this question in depth.

6.1 Introduction

As described in the preceding chapters, ML pipelines combine multiple stages of data-
preprocessing, feature extraction, and supervised and unsupervised machine learning to
achieve high statistical accuracy on problems in various of domains [131, 57]. Recent machine
learning tool kits have been designed to enable such complex workflows [112, 120], including
the work presented in Chapter 5. However, each stage of a pipeline may have one or more
configuration parameters, or hyperparameters, that must be set by the application devel-
oper. The task of identifying a hyperparameter configuration that achieves high statistical
performance, a problem called hyperparameter optimization, has thus emerged as a crucial
component in the development of ML applications in order to boost predictive accuracy.

Hyperparameter optimization also introduces a significant computational burden. Exe-
cuting a pipeline with a fixed hyperparameter configuration can take hours to weeks even
when executing on hundreds of machines in a cluster, and classical methods such as grid
search or random search typically evaluate tens to thousands of configurations. Several re-
cent methods have been developed to improve upon these classical methods, and these mod-
ern techniques roughly fall into two categories. ‘Configuration-selection’ techniques select
hyperparameter configurations in an adaptive manner, e.g., [138, 57], while ‘configuration-
evaluation’ methods allocate more resources to promising hyperparameter configurations
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and quickly eliminate poor ones. Inspired by the work I presented in Chapter 4, researchers
from Berkeley and UCLA proposed a configuration-evaluation method called Hyperband,
which is a simple and principled multi-armed bandit-based approach that exhibits state-
of-the-art empirical accuracy on several benchmarks [98]. In spite of their differences, all
three classes of approaches (classical, configuration-selection, configuration-evaluation) eval-
uate each hyperparameter configuration independently. Unfortunately, this independence
assumption fundamentally limits the usefulness of existing methods on modern pipelines, es-
pecially since the number of hyperparameters usually grows with number of pipeline stages
(causing the size of the corresponding search space to grow exponentially).

However, hyperparameters at various pipeline stages are often highly interdependent,
and in fact, this underlying pipeline structure can be naturally leveraged by removing the
independence assumption associated with existing methods. To illustrate this idea, consider
the three basic pipelines in Figure 6.1(a), which consist of three operators (A, B, C), each
of which has a single hyperparameter (denoted by the subscript). The three pipelines are
composed of the same three operators, but differ in their hyperparameter configurations.
Notably, all three pipelines have an identical hyperparameter configuration for operator A,
and the first two pipelines also have the same configuration for operator B. By taking this
structure into account, one can succinctly represent the joint computation graph for all
three pipelines, as illustrated in Figure 6.1(b). Now, assuming that each operator represents
a single unit of computation, the potential for savings is immediately obvious. The first set
of graphs consists of 9 operators, while the second graph consists of only 6, for a hypothetical
savings of 33%. Alternatively, if operator A were the computational bottleneck and a system
jointly evaluated 20 pipelines rather than three, one could expect to see nearly a 20× speedup.
Although this is just a simple example, these ideas can naturally be extended by modeling
the dependencies among various pipelines via a directed acyclic graph (DAG) that encodes
all putative pipeline configurations. By considering more complex pipelines and larger batch
sizes (i.e., evaluating more pipelines simultaneously), a developer can potentially experience
significant computational speedups via efficient traversal of the corresponding DAGs.

I formalize these ideas and develop a novel pipeline-aware approach for hyperparameter
optimization, integrated with KeystoneML, called PiperPlanned. This approach is
based on three critical observations.

1. Hyperparameter optimization involves evaluating pipelines that are very similar but
not identical, leading to redundant work when evaluating hyperparameter configura-
tions independently.

2. By analyzing pipeline structure and carefully planning computation jointly across mul-
tiple hyperparameter configurations, the system can eliminate this redundant work and
substantially decrease end-to-end runtime.

3. This approach is complementary to existing hyperparameter optimization methods.
The set of hyperparameter configurations that are considered can either be selected
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Figure 6.1: Three pipelines with a overlapping hyperparameter configurations. (a): Three
independent computation pipelines. (b): Multiple computation pipelines can be merged into
a single tree to eliminate redundancy.
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Figure 6.2: The PiperPlanned architecture.

randomly for classical and configuration-evaluation methods, or from some non-uniform
posterior distribution for configuration-selection methods.

The architecture of this approach is shown in Figure 6.2. Using a syntax defined in Sec-
tion 6.3, developers describe a pipeline search space, which delineates the space of allowable
pipeline configurations, the available hyperparameters, and their associated ranges. These
hyperparameters can be real valued, integral, or discrete, and can be nested and chained to
form complex spaces. This space is used as input to a hyperparameter search algorithm that
can enumerate or sample hyperparameter configurations from the hyperparameter space.
In conventional systems, these hyperparameter samples would be executed sequentially. In
this architecture, however, multiple configurations are fed to the hyperparameter pipeline
planner that consolidates multiple pipelines into a single execution plan and automatically
optimizes its execution. In this design, the hyperparameter pipeline planner is independent
of the search algorithm.

Caching intermediate pipeline results is a natural approach to encourage reuse. However,
in large-scale settings, these intermediate results will often be large, and the system will face
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memory-constraints when storing them for later reuse.
Furthermore, conventional caching strategies fail to account for the dependency structure

among data objects encoded in the data flow graph, leading to sub-optimal performance on
real-world workloads even on single-shot pipelines, as was illustrated in the previous chapter.

To efficiently execute many hyperparameter configurations simultaneously, the executing
system needs a resource-aware cache control schedule for a given dataflow graph representing
a hyperparameter tuning workload that minimizes total execution time for the graph subject
to memory constraints. In this chapter, I formulate the problem of finding such a schedule
as a constrained mixed integer linear program. The solution to this program is the optimal
schedule for the given workload. While actually computing the optimal schedule may be
infeasible for large graphs under this formulation, it serves as an absolute lower bound on
the performance of any cache schedule and thus I use it to study the effectiveness of several
conventional algorithms on sample workloads.

In the remainder of this chapter, I first describe the issues with existing hyperparameter
optimization efforts in further depth in Section 6.2. I describe the salient features of Piper-
Planned in Section 6.3 before establishing formalism to describe the maximum savings
available due to reuse in the unconstrained memory setting in Section 6.4. I then formally
describe the challenging problem of finding an optimal cache control schedule for a data flow
graph in Section 6.4.3 and propose a solution to this problem. Finally, I evaluate the prac-
ticality of finding and implementing the optimal policy on a number of synthetic and real
workloads and compare it with several existing caching algorithms in Section 6.5, including
the one presented in Chapter 5.

6.2 Hyperparameter Optimization

In this section, I describe the hyperparameter optimization problem and illustrate why knowl-
edge of application structure is crucial to accelerating hyperparameter optimization.

6.2.1 Hyperparameter Search

As discussed in Chapter 2 and in Chapter 4, hyperparameter optimization, can be formally
stated as an optimization problem as follows:

h? = minimize
h∈H

l(m(h,Dtrain), Dval) (6.1)

Here, h represents a hyperparameter configuration from some larger hyperparameter
configuration space H. Dtrain represents training data, and Dval represents validation data.
m here is a function that returns a model for a given training configuration and training data,
and l is a function that computes a loss metric, such as prediction error of a model, on test
data. Simply put, the goal of hyperparameter optimization is to find the hyperparameter
setting that minimizes validation loss.
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In general, the hyperparameter loss function, l is not convex or even differentiable, and
thus optimizing it is difficult.

Conventional hyperparameter optimization methods attempt to solve the problem of
finding an optimal hyperparameter configuration via brute force, enumerating some number
of configurations from X and picking the best one. On the other hand, configuration selection
and configuration evaluation techniques attempt to learn the curvature of the space of l for a
hyperparameter space X by sampling observations from x and exploring regions more likely
to minimize the loss function.

These methods are powerful and general purpose in part because they make no assump-
tions about the underlying model fitting process, m, and treat m as a function that can
be evaluated independently across runs. However, in the context of a system like Key-
stoneML, it is not necessary to treat model fitting runs independently.

6.2.2 Pipelines

In practice, machine learning applications are composed of multi-stage computational pipelines,
where each stage has its own hyperparameters. Downstream stages are dependent on up-
stream stages. As I discussed in the introduction to this chapter, and in Chapter 2, the
training of a model can be expressed as functional operations on data. Returning to the ex-
ample from Chapter 2, one can represent a hyperparameter tuning pipeline as the following:

(x?, λ?1, λ
?
2) = minimize

x,λ1,λ2
‖s(f(D), λ1)x− b‖2

2 + λ2‖x‖1 (6.2)

In this modified example, the hypothetical pipeline is represented with two preprocessing
steps: s(.), which takes a dataset and a single hyperparameter, and f(.), which takes only
a dataset and is parameter free. Solving for a model for any instance of a hyperparameter
setting, (λ1, λ2) relies on evaluating f(D), which is parameter-free. Further, any configura-
tions with the same value for λ1 will rely on evaluating s(f(D), λ1). If the result of s(.) or
f(.) is expensive to compute, storing their result could lead to substantial savings during
hyperparameter search.

Further, adding pipeline parameters increases the complexity of the traditional hyper-
parameter optimization setup dramatically due to the curse of dimensionality. Even under
the assumption that each hyperparameter is binary, if there are h hyperparameters, then
there are 2h possible hyperparameter settings for a given pipeline. In reality, the situation
is much worse. Hyperparameters may be continuous, discrete, integral, or even compound
parameters of any of the above.

6.2.3 Pipeline Tuning

The key insight behind PiperPlanned is that by analyzing pipeline structure (or the
functional structure of all of the pipeline configurations to be trained by a system at runtime)
the traditional black-box optimization problem can be opened up for reuse.
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1 case class TransformerP[PT,I,O](name: String, x: PT => Transformer[I,O], p:
Parameter[PT]) extends PipelineParameter

2 case class EstimatorP[PT,I,E,O](name: String, x: PT => Estimator[E,O], p:
Parameter[PT], data: RDD[I]) extends PipelineParameter

3 case class LabelEstimatorP[PT,I,E,O,L](name: String, x: PT => LabelEstimator[E,O
,L], p: Parameter[PT], data: RDD[I], labels: RDD[L]) extends
PipelineParameter

4
5 trait PipelineParameter extends PPChainable {
6 def toParameterPipeline: ParameterPipeline = {
7 new ParameterPipeline(Seq(this))
8 }
9 }

10

11 trait PPChainable {
12 def andThen(p: PipelineParameter): ParameterPipeline = {
13 new ParameterPipeline(this.toParameterPipeline.nodes :+ p)
14 }
15 }

Figure 6.3: Pipeline hyperparameter API.

I now describe the implementation of the PiperPlanned hyperparameter tuning sub-
system for KeystoneML. I then derive a an expression for the maximum reuse achievable
within such a system and show how to best leverage reuse in a limited memory setting.

6.3 Implementation

I now describe the implementation of PiperPlanned and its integration with KeystoneML.

6.3.1 Search Space Description

Inspired by the syntax presented in Chapters 5 and 4 and in [79], I have implemented a set
of APIs designed to allow developers to construct pipelines with a hyperparameter search
space.

This API allows developers to write down pipelines in a concise and familiar syntax,
chaining together parameterized nodes with andThen syntax, similar to the API used in
KeystoneML. The API is comprised of two parts: the parameter space for the individual
pipeline elements, which is captured in Table 4.1, and an API used to capture pipeline
structure. The API used to describe the search space is defined in Figure 6.3.

The three new objects introduced by this API are TransformerP, EstimatorP, and
LabelEstimatorP, each takes a function that transforms a parameter setting into a con-
crete instance of an operator of the appropriate type, and an appropriately typed parameter
from Table 4.1. Using the andThen syntax from KeystoneML, developers are able to
chain arbitrary search spaces together.
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1 val pipeSpace = TransformerP("Trim", {x: Unit => Trim}, EmptyParameter())
andThen

2 TransformerP("LowerCase", {x: Unit => LowerCase()}, EmptyParameter()) andThen
3 TransformerP("Tokenizer", {x: Unit => Tokenizer()}, EmptyParameter()) andThen
4 TransformerP("NGramsFeaturizer",
5 {x:Int => NGramsFeaturizer(1 to x)},
6 IntParameter("maxGrams", conf.nGramsMin, conf.nGramsMax)) andThen
7 TransformerP("TermFrequency", {x:Unit => tf}, EmptyParameter()) andThen
8 EstimatorP("CommonSparseFeatures",
9 {x:Int => CommonSparseFeatures[Seq[String]](math.pow(10,x).toInt)},

10 IntParameter("commonSparseFeatures", conf.commonFeatsMin, conf.
commonFeatsMax),

11 trainData.data) andThen
12 LabelEstimatorP("NaiveBayesEstimator",
13 {x:Double => NaiveBayesEstimator[SparseVector[Double]](numClasses,x)},
14 ContinuousParameter("lambda", conf.lambdaMin, conf.lambdaMax, scale=Scale.

Log),
15 trainData.data,
16 trainData.labels) andThen
17 TransformerP("MaxClassifier", {x:Unit => MaxClassifier}, EmptyParameter())

Figure 6.4: An example pipeline search space definition.

Trim Lowercase Tokenizer nGrams 
n=1,2,3

TopFeatures 
d=10,000

TopFeatures 
Transformer

NaiveBayes 
lambda=1e-3

NaiveBayes 
Model

Labels

Data

Figure 6.5: A sample hyperparameter configuration.

An example search space is shown in Figure 6.4. This pipeline is similar to the pipeline
I illustrated in Figure 5.2, but is annotated with a pipeline search space. While the cur-
rent syntax has substantial boilerplate code, the parameters are identified in bold in the
Figure: In line 6, an IntParameter is associated with featurization process, in line
10 an IntParameter controls how many sparse features should be kept, and in line
14 a ContinuousParameter on a log scale determines the regularization used in the
NaiveBayesEstimator. Of course, alternative pipeline search spaces could easily be
constructed. Likewise, additional hyperparameters could be added to the existing pipeline.

Once a search space is defined, example pipelines may be sampled from it, and a sample
pipeline is returned to be executed. The output of the sample is a pipeline with a single
hyperparameter configuration. An example sample pipeline generated from the search space
in Figure 6.4 is shown in Figure 6.5. The pipeline has not yet been fit, just constructed (i.e.
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(a) Pre-elimination batch-executed pipeline.
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(b) Post-elimination batch-executed pipeline.

Figure 6.6: Ten sample hyperparameter configurations before and after common subexpres-
sion elimination.

its parameters have not been estimated). In this chapter, the system takes advantage of this
lazy execution model to sample several pipelines before fitting them in tandem.

6.3.2 Operator Graphs

The output of the sample procedure above is a pipeline graph. This graph represents all
of the computation that needs to be done to produce a model capable of making predictions
on unseen data.

I then introduce the concept of a batch executor that takes in a number of pipelines
with a handle to training data and labels and a metric by which these pipelines should be
evaluated.

The batch executor returns the best (estimated) pipeline to the caller among this set. It
can take an arbitrary number of inputs, but here we consider 10s to 100s.

Internally, the pipeline executor takes the operator graphs as input, merges them, elim-
inates common prefixes (common subexpressions), all using standard KeystoneML opti-
mizations. Before-and after snapshots of this process for 10 example pipeline configurations
are shown in Figure 6.6. This figure zooms out on Figure 6.5 and shows the common struc-
ture among 10 hyperparameter configurations of the same pipeline. While the individual
items in the pipeline are not identifiable, one can see that a great degree of redundancy is
eliminated in this example.

6.3.3 Execution Planner

One of the most significant pieces of the system is the execution planner that looks at the
(merged) execution plan and decides how to execute the plan operators and what interme-
diate states to materialize. The key challenge in building the execution planner has been
determining the cache management policy to use to take advantage of maximum reuse when
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executing hyperparameter pipelines in limited-memory settings. In the next Section, I for-
mally define this problem and provide one solution.

6.4 Optimal Reuse in Pipeline Execution

I now define and set bounds on the maximum speedups achievable due to reuse in the
execution graphs that are used as input to the batch executor in the case where memory is
unconstrained. I next introduce memory constraints to the execution model and introduce
the concept of a cache control policy as a mechanism for minimizing execution time in a
setting where intermediate state is too large to be entirely stored in fast memory and some
must be recomputed. Finally, I frame the problem of finding an optimal cache control
policy for a given dataflow graph under the execution model we described in Chapter 5 as a
mixed-integer linear program (ILP).

6.4.1 Maximum Achievable Reuse

In the absence of memory constraints, execution time for a single pipeline p is simply the
time required to evaluate each of its local operators, or

T (p) =
∑
v∈Vp

t(v) (6.3)

Similarly, the time taken to compute the outputs of a set of pipelines P , independently
is:

TP (P ) =
∑
p∈P

T (p) =
∑
p∈P

∑
v∈Vp

t(v) (6.4)

For the purposes of illustration, if one holds t(v) constant and assumes that each pipeline
has the same length, |V |, it is simple to see that TP (p) = |P ||V |t(v), the runtime for each
pipeline, is proportional to the number of operators in the pipeline.

Using the common subexpression elimination rules I discussed in Chapter 5, it is possible
to merge together multiple pipelines and produce savings if the pipelines share any prefixes
in common.

The system merges two expressions if:

• The root of the expressions are “equal” (that is, they are the same operation with the
same hyperparameters).

• Their dependencies are all equal.

That is, two operators are equivalent if they are the same operation on the same inputs
The runtime for a set of merged pipelines is T (∪p∈P ) =

∑
v∈Vpmerged

t(v), where ∪ is the

merge operator. The ratio, TP (P )
T (∪p∈P )

is the speedup achieved from merging two pipelines.
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Again, for the purposes of illustration, let’s hold |V | equal across all of the pipelines, and
hold t(v) fixed. If all the pipelines in the set are disjoint (that is, there is no opportunity
for merging, then TP (P ) = T (∪p∈P ), and the speedup is 1×. On the other hand, if all
the pipelines are maximally similar that is, they differ only in the last node, then the total
execution time T (∪p∈P ) = |V | + |P | − 1, yielding a maximum speedup ratio in this setting

of |V ||P |
|V |+|P |−1

. At the limit, when all pipelines are long, speedup tends to |P |, the number of

pipelines in the set. If one relaxes the assumption that t(v) is fixed, and assumes that the
mergeable pipelines are expensive relative to the last stages of the pipeline, then the speedup
is O(|P ||V | − |P | − |V |), which is potentially substantial.

6.4.2 Memory Constraints

The previous section assumed that it is always possible to store the output of an expression
in some fast memory and refer to it later without paying the cost T (p) to recompute it.
Unfortunately, fast memory is finite and in big data settings, the intermediate expression
results can be very large. Additionally, in many applications we have studied, the cost of
reading from disk is substantially more than the cost of recomputing results in memory.

In Chapter 5 I discussed an algorithm for picking a minimal set of intermediate states
to materialize in order to speed up training time for a single pipeline. Importantly, because
of the limited total number of execution stages in such a pipeline, I did not consider the
time-varying nature of cache contents. Specifically, the algorithm picks a static, conservative
set of objects to materialize before executing the pipeline.

In the hyperparameter tuning setting, this is an unacceptable restriction of the problem,
because as soon as a pipeline has been trained, none of its (unique) intermediate state needs
to be kept in cache, regardless of how much time it saved during the training process.

Given a merged pipeline, it is possible to express its execution plan as a depth-first
traversal of the operator graph from desired output to input. This linearization is the
sequence of operations that will produce the dataflow graph’s desired output.

At each stage of pipeline execution, a new result is produced. Once memory is full, the
system has a decision to make–does it store the current result in cache for later, and if so,
what does it evict to make room? The set of such decisions taken over the lifetime of the
program is a cache management schedule, and a schedule that minimizes total execution time
is called the optimal schedule. An algorithm that determines an optimal cache management
schedule is said to be an optimal cache management policy. In the current setting, this
problem is seemingly made easier by the fact that the system has knowledge of the entire
execution plan of the graph, and can plan ahead. Before presenting a solution, I review
existing optimal algorithms. While in general it is true that perfect information about future
program execution may be a necessary input to optimal policy algorithms, I show that this
does not necessarily mean that computing such a policy is trivial. Classically, finding an
optimal cache management policy is known as the paging problem [15].
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Optimal Algorithms

Belady’s algorithm [16] describes an optimal cache management policy for two-level cache
hierarchies. The policy, simply stated is: given an input program specified as a sequence of
reads, ρ = (ρ1, ρ2, ρ3, ..., ρT ), evict the item that will be next needed furthest in the future. If
there exist any items in the cache never needed in the future, evict one uniformly at random.
It can be proven that this simple strategy will result in the minimal number of cache misses,
and thus lowest execution time.

Classically, Belady’s algorithm makes two key assumptions to achieve optimality: that
all pages are the same size, and that all reads have the same cost. This algorithm is still
optimal in the case that objects have different sizes. If each ρi ∈ ρ has an integer size s(ρi)
associated with it, it is possible to simply re-write ρi as a length s(ρi) sequence of smaller
reads all of size 1. The weighted cost of the online algorithm is still optimal. The second
assumption is more difficult to deal with, and requires a different algorithm.

LRU is an online algorithm that is a popular and well studied and does not need complete
future knowledge of program execution to operate. It can be shown that LRU is k-competitive
with Belady’s algorithm in this setting. An algorithm is k-competitive if its worst case
performance is no more than a factor of k worse than the optimal algorithm, where k denotes
the size of the cache.

A particularly interesting variant of the paging problem is the weighted paging problem,
where each ρi ∈ ρ carries with it a different cost, t(ρi) of reading. Each item may be the
same size (or, as in the previous subsection, cut into equal-sized chunks), but each item may
have a different cost of retrieval. The objective of the weighted paging problem is to find a
policy that minimizes the total cost associated with program execution. It can be shown
that Belady’s algorithm is not optimal in this setting, and that LRU is not k-competitive
because it does not factor in the costs of requesting each page in. It has been shown that the
optimal offline policy for the weighted paging problem can be obtained by solving an Integer
Linear Program that is relaxed into a standard Linear Program [15]. However, a simple
online policy where items are evicted with probability 1

t(ρi)
can be shown to be k-competitive

in this setting.
In our setting, there are two additional constraint. The first is is evident from Equa-

tion 5.1 and Equation 5.2: the weight, or time to calculate an item is dependent on the state
of the cache at time t. The second constraint arises in our setting due to the memory model
of Apache Spark, the target execution engine. Specifically, in Spark, not every intermediate
output needs to fit in cache memory, because cache is a separate memory region from work-
ing memory. As such, a traditional assumption of paging problems, that all items in the read
set will enter cache and evict something else does not hold. Effectively, this means there
is a choice on both the admission and eviction policy. This means that the optimal policy
has more flexibility, but also adds additional complexity. This is a strictly more challenging
problem than the weighted paging problem, and I call this the cache-dependent weighted
paging problem.
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6.4.3 Optimal Dataflow Reuse with Constrained Memory

Given this background, I now formally define the cache-dependent weighted paging problem
in the context of dataflow execution and define an optimal offline algorithm for solving it as
a mixed-integer linear program. I evaluate the viability of solving this problem in the next
section and use results from solving such programs on real and synthetic graphs to motivate
a choice of cache management policy for PiperPlanned.

Let G denote a directed acyclic dataflow graph (DAG) consisting of vertices V and edges,
E. To execute the graph, the system walks from the sinks of the graph (any vx ∈ V such that
vx 6= vi∀(vi, vj) ∈ E), to the sources of the graph (any vx ∈ V such that vx 6= vj∀(vi, vj) ∈ E).
For a given source and destination pair, there may be multiple paths through the dag between
them. Each path is considered in the execution plan, and the current path is called the active
path.

Consider the graph in figure 6.1.
The execution plan becomes: Ap=0.1Bp=2Cp=10Ap=0.1Bp=2Cp=5Ap=0.1Bp=4Cp=8

The execution plan can be thought of as all of the outputs the program would would have
to compute in the absence of a cache–the only item in working memory being an operator’s
results and its direct inputs.

A program (i) is a vector length T where it is the index (node id) of an operation to
be executed at time t. The DAG and the execution plan jointly define a matrix A (defined
below) that tells us, given the cache state, whether or not the active operation, it, should be
counted in the execution of a program. At each time, the cost of computing a value is given
by the value of the cache and the state of its successors. If there exists no un-cached node
between a node it and the “active” sink on the current execution path, then time devoted
to it is 0, otherwise its ct. ct = C(it) where C is a cost vector mapping node id (it) to a
non-negative real number.

In the worst case (cache size of 0), total runtime is upper-bounded by the total time to
execute each operator, every time it occurs in the execution plan. For a program i, this is∑

it∈iC(it).
The state of a cache set at time t is:

Xj,t =
∑
s<t

∆j,s∀j ∈ V

where j is the index of a node in the input DAG.
I define ∆ as a sequence of valid actions on the cache, where ∆ is defined as follows:

∆j,t =


1 if j is added to the cache at time t

−1 if j is removed from the cache at time t

0 otherwise

The set of valid actions on the cache is severely limited. ∆j,t may only be positive if
j = it, and may only be negative if Xj,t−1 > 0. That is, the system can only add the active
item, and can only evict items that are currently in the cache.
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Let A ∈ {0, 1}V×T be a matrix that says whether or not a downstream operator influences
the state of the cache. That is,

Aj,t =

{
1 if j is on the active path between it and the sink

0 otherwise

Specifically, A = 1 for the active node (e.g. if the active node is already cached and
doesn’t need to be recomputed), and all of its successors along the active path in the tree.

Finally, the goal is to find the cache policy (deltas) that minimizes the following expres-
sion:

minimize
X

∑
t∈T

ctmax(0, 1−X>t At)

subject to ∆j,0 = 0 ∀j ∈ V,
∆j,t ≤ 0 ∀j 6= it,

∆it,t ≥ 0,

−1 ≤ ∆j,t ≤ 1 ∀j, t,
∆j,t ∈ Z ∀j, t,

Xj,t =
t∑

k=1

∆j,k ∀j,

0 ≤ Xj,t ≤ 1 ∀j, t,

0 ≤
n∑
i=1

Xi,tmi ≤M, ∀t

That is, the goal is to minimize total runtime of the DAG where the runtime is dependent
on the structure of the graph (At), the state of the cache at each point in time (Xt). The
system counts the node in the runtime if it has to run (max(0, 1−X>t At) > 0). The first four
constraints on ∆ enforce that the cache must be initially empty, that only the active node
may be added to cache, and that only non-active nodes may be removed from the cache,
and that ∆ is bounded above and below by 1 and −1. The fifth constraint, that ∆ must
be integral makes this program a mixed-integer linear program as opposed to a constrained
linear program. The equality constraint simply says that X is the linear sum of the changes
to the cache at each time t, and the final constraint says that at any time t, the values of
the cache, as represented by the sum of each of its objects individual sizes, must be below a
positive real number, M .

The function being minimized here is a convex function of X. This can be seen as follows:
0 is convex, 1−X>t At is convex, and the max of any two convex functions is convex, as is the
same function scaled by non-negative number. Finally, the sum of convex functions is also
convex. Further, each of the constraints on the program are linear or equality constraints,
with the exception of one integral constraint. As such, this program is a mixed integer linear
program (ILP).
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Despite the fact that solving ILPs is NP hard, several commercial solvers exist to assist
in solving such problems. I implemented the above as an ILP for graphs generated by the
PiperPlanned system and solve them using an off-the-shelf solver for such problems.

In the next section, I first study the practical scalability of solving these programs on cur-
rent hardware on synthetic datasets, and use these to motivate a choice of cache replacement
policy for PiperPlanned.

6.5 Evaluation

In this section, I evaluate the effectiveness of PiperPlanned. First, I discuss the feasibility
of running the optimal solver on real world pipelines with synthetic examples. Then, I
explore the expected runtime of several potential cache policies on simulated datasets and
compare their performance to the lower bound given by the solution to the ILP before
finally evaluating speedups achievable due to reuse on several real-world hyperparameter
tuning workloads.

6.5.1 Experimental Setup

In order to study the effectiveness of different cache policies at achieving maximal reuse
in the hyperparameter tuning, I have constructed a simulation framework that estimates
time to execute a fully merged hyperparameter pipeline DAG under a given replacement
policy at a particular memory level. The pipelines enter the simulator as DAGs with all
of the necessary metadata required to estimate their execution time associated with them-
specifically the local execution time for each node, memory footprint of each node’s output,
and number of iterations associated with each node.

I constructed these experiments on a branch of the KeystoneML master source code as
of June 2016 with Scala 2.10 and Apache Spark 1.6.1. The simulation framework is written
in Python 2.7 and I used Anaconda 4.0.0 with cvxpy 0.4.5 and Gurobi 6.5.2.

6.5.2 Limitations on Solving the ILP

As previously discussed, it is well known that solving integer linear programs is NP-hard.
However, there are a number of commercially available ILP solvers that can be used to solve
practical problems. I use one such solver, Gurobi [67], called via the cvxpy package to solve
the cache-dependent weighted paging problem.

In this set of experiments, the goal is to see how far the simulator can be driven in terms
of total problem complexity. I generated synthetic workloads designed to look like common
hyperparameter workloads in terms of size and rough complexity. The workload is a k-ary
operator graph of depth d that is designed to represent a workload of grid search with k grid
points for pipelines of length d with one hyperparameter at each node. While unimportant
for this setting, I assigned each operator a fixed output size of 10 memory units and a total
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k d p n T Size of X Runtime (s)

2 2 4 7 12 84 0.5
2 3 8 15 32 480 1.3
2 4 16 31 80 2480 3.8
2 5 32 63 192 12096 12.9
3 2 9 13 27 351 3.5
3 3 27 40 108 4320 70.9
3 4 81 121 405 49005 x
3 5 243 364 1458 530712 x
4 2 16 21 48 1008 27.3
4 3 64 85 256 21760 x
4 4 256 341 1280 436480 x
4 5 1024 1365 6144 8386560 x

Table 6.1: Time to solve ILP for various pipeline sizes.

cache size of 100 units. The root operator is assigned a computational cost of 100 while all
other operator have a cost of 1.

The size of each tree, n is given by the following formula:

n =
kd+1 − 1

k − 1

The total number of pipelines p = kd, and execution steps is given by T = kd(d + 1).
Therefore, variable X in the ILP solve is size n× T .

Empirical runtimes of the optimal algorithm in this setup for each tree size are given in
Table 6.1. Observations with an x timed out after 5 minutes.

While by no means exhaustive, this table provides guidance for when solving the offline
cache policy may be worthwhile. The results show that in under 5 minutes one can effectively
compute an optimal cache management policy for up to 10s of pipelines. While this may
not be enough for an exhaustive grid search, it may be plenty for algorithms like Hyperband
or Bayesian search, which may only need to operate on 10s of pipelines at a time.

6.5.3 Evaluating Cache Strategies

Given the results in the previous subsection, it is clear that beyond a certain limit, solving
an ILP to optimize reuse for this problem may not be practical in the hyperparameter tuning
setting. In this subsection I compare the optimal strategy to several online strategies across
four different workloads and maximum memory sizes.

The cache strategies I evaluate are:

• OPT: The optimal strategy presented in this chapter.

• LRU: Least Recently Used, a k-optimal strategy for the paging problem

• KEYSTONE: The strategy presented in Chapter 5.
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Figure 6.7: A comparison of cache management policies for 27 hyperparameter pipelines
with each operator having equal memory size and execution time.

• RECIPROCAL: A strategy where items are evicted with probability inversely pro-
portional to their cost to acquire. This is a k-optimal strategy for the weighted paging
problem.

• WRECIPROCAL: A weighted variant of the reciprocal strategy where objects are
evicted with probability inversely proportional to their cost to acquire and directly
proportional to their size.

When considering the randomized strategies, I ran each strategy 100 times to account
for variance.

The first workload I examine is the tree above where k = 3 and d = 3. Memory size of
each result is still fixed at 10, and runtimes are all 1 except for the first node. Figure 6.7
shows the results of this experiment. One can see that LRU is a terrible strategy for this
configuration precisely because the root node in the tree uses 100 units of computation and
LRU doesn’t account for this. The other strategies converge to within 10% of the execution
time of the optimal strategy relatively quickly, with the KEYSTONE strategy converging on
the same runtime as the optimal strategy at 140 units of memory. This plot also demonstrates
the power of reuse. Even with a small amount of memory available for cache, the workload
can be made 20× faster.

Next, I allowed the memory sizes to be variable, and each node is randomly given a size
of either 10 or 50 units uniformly at random and a corresponding cost of 1 or 100. Figure 6.8
shows the competitiveness of each strategy vs. the optimal strategy. Competitiveness is
defined as the ratio of the runtime of each strategy to the runtime of the optimal strategy.
In this setting, LRU is again the least effective policy. The KEYSTONE policy is slightly
less effective than the randomized policies.
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Figure 6.8: A comparison of relative runtime of cache management policies for 27 hyper-
parameter pipelines with each operator having equal execution time but variable memory
size.

Cache Size (GB)
Policy 5 10 15 20 100 250 500 1500
OPT 2.85 2.85 2.86 2.86 2.86 2.94 3.00 3.00
KEYSTONE 2.85 2.85 2.85 2.85 2.86 2.94 2.98 3.00
LRU 2.08 2.09 2.09 2.09 2.86 2.94 2.92 3.00
RECIPROCAL 2.70 2.85 2.09 2.85 2.86 2.86 2.92 3.00
WRECIPROCAL 2.55 2.85 2.31 2.85 2.86 2.94 2.94 3.00

Table 6.2: A comparison of speedups achieved by several cache management strategies on
the VOC workload.

Finally, I validate that the optimal strategy works on an iterative pipeline. In this case
I took the VOC pipeline and uses two-pass iterative solver on its inputs. This is a single
pipeline with limited iteration, so the savings due to reuse are modest. Nevertheless, with
modest memory available for caching, one can see a savings due to reuse up to a factor of 3,
and I find that aside from LRU, the strategies are all within 1% of optimal.

6.5.4 Results on Real Hyperparameter Configurations

In the evaluation, we take a number of real-world pipelines as described in Chapter 5 and
construct realistic hyperparameter search spaces for each pipeline. The pipelines in question
are Newsgroups [139] and TIMIT-Huang [77] datasets. In Figure 6.9 we summarize the
hyperparameter spaces searched over for each of these pipelines. For these experiments, we
sample random hyperparameter configurations randomly from a grid defined by each of these
spaces.

We examine potential savings due to reuse for 10 and 100 configurations trained simul-
taneously. Given the results from the previous section, it is not feasible to find the optimal
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Name Type Values

nGrams Integer (2,4)
Features Integer (103, 105)
λ Continuous (log) (0, 104)

(a) Search space for Newsgroups workload.

Name Type Values

γ Continuous (log) (5.5× 10−4, 5.5× 104)
Distribution Discrete {Cauchy, Gaussian}
λ Continuous (log) (0, 105)

(b) Search space for TIMIT workload.

Figure 6.9: Hyperparameter search spaces.

Cache Size (GB)
Policy 0 0.05 0.1 0.5 5
KEYSTONE 1.00 9.85 16.08 18.23 18.32
LRU 1.00 4.01 6.54 18.23 19.22
RECIPROCAL 1.00 10.70 14.34 18.23 18.81
WRECIPROCAL 1.00 11.71 15.38 18.21 19.11

(a) Achievable speedups from running 10 Newsgroups pipelines simultaneously.
Cache Size (GB)

Policy 0 0.05 0.1 0.5 5
KEYSTONE 1.00 16.67 40.58 70.62 71.40
LRU 1.00 2.01 3.07 11.39 18.64
RECIPROCAL 1.00 18.79 23.14 70.25 71.40
WRECIPROCAL 1.00 22.34 33.78 70.59 71.86

(b) Achievable speedups from running 100 Newsgroups pipelines simultaneously.

Figure 6.10: Effect of reuse on 10 and 100 Newsgroups configurations.

policy for 100 pipelines at many memory levels in a reasonable amount of time, but as we
saw, online methods tend to give reasonable performance for these sorts of workloads. How-
ever, based on calculations described in Section 6.4 of this chapter, we are able to bound
the maximum possible speedup due to reuse without memory constraints. This gives us an
upper bound for speedup, and a good cache management policy will reach this bound more
quickly than a bad one. In each of these experiments, we plot this bound with a red line.

On the Newsgroups pipeline, seen in Figure 6.10, aside from LRU, all strategies perform
well, offering up to a 72× speedup over executing without any reuse. This is because in this
pipeline the learning part of the work is relatively light compared with the featurization part
of the work. By caching, we save on several shared featurization steps: tokenization, NGrams
generation, and common sparse feature estimation. By comparison, model estimation time
is relatively small and so caching helps substantially. We calculate the maximum speedups
for these pipelines in the presence of no memory constraints to be 19.31× and 72.19×,
respectively.

On the TIMIT workload, we see lower total achievable speedups. In this workload, the last
stage of pipeline training takes approximately the same amount of time as the featurization
process. Because of this characteristic, the maximum speedup due to reuse in both cases is
9.74× and 9.75×, respectively. Eventually, the time is dominated by the slowest step (the
solve), and driving the feature training time down to 0 does not help speedup any further.

In both cases, we can see that choice of cache management policy can make a big differ-



CHAPTER 6. PIPERPLANNED: RESOURCE AWARE PIPELINE
HYPERPARAMETER TUNING 113

Cache Size (GB)
Policy 100 500 1000
KEYSTONE 1.02 1.12 1.40
LRU 1.02 9.68 9.70
RECIPROCAL 1.02 9.67 9.68
WRECIPROCAL 1.02 9.68 9.71

(a) Achievable speedups from running 10 TIMIT pipelines simultaneously.
Cache Size (GB)

Policy 100 500 1000
KEYSTONE 1.02 1.03 1.05
LRU 1.00 9.66 1.76
RECIPROCAL 1.02 9.66 9.67
WRECIPROCAL 1.02 9.68 9.71

(b) Achievable speedups from running 100 TIMIT pipelines simultaneously.

Figure 6.11: Effect of reuse on 10 and 100 TIMIT configurations.

ence. In particular, we see that choosing an LRU policy can lead to unpredictable effects as
memory size scales due to the fact that LRU does not take into account the cost of computing
the result. Meanwhile, while the KEYSTONE algorithm performs relatively well in the lim-
ited memory setting, its conservative nature means that in the larger memory settings with
more iterations it does not perform as well as the randomized eviction algorithms. Thus, in
the hyperparameter setting, we anticipate using the WRECIPROCAL as the default cache
management algorithm in PiperPlanned.

6.6 Related Work

As discussed in Chapter 4, hyperparameter tuning has received substantial attention in
the Bayesian optimization community [138, 19, 20, 78, 143]. However, these algorithms
generally view the functions mapping a hyperparameter configuration to a model quality
score as a black box, and make no optimizations based on the underlying computational
structure relating these models. More recent works have begun to open the black box and
exploit the iterative nature of these algorithms, which is an important first step [82, 98]
towards solving this challenging problem. Other works have studied the incorporation of
feature preprocessing into hyperparameter tuning but have ignored the opportunities for
computational reuse that present themselves in these settings [57].

The study of optimal policies for cache management is a classical problem in computer
science and has been extremely well studied in the theory as well as systems communities. In
particular, the paging problem, which assumes the presence of a two-level memory hierarchy
and seeks to find an optimal replacement policy has had a known optimal offline solution
since the 1960s [16], and it is well known that online strategies are k-optimal. In the case
when pages have constant but variable weights associated with them, it is known that the
offline solution can be computed by solving a linear program, and that a simple randomized
algorithm is k-optimal [15]. In the advanced analytics setting, the all or nothing property
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of a cache replacement algorithm has been shown to be important for these workloads,
particularly because data reading tends to be a key bottleneck [8]. Online replacement
policies that incorporate cost of computation and size of intermediate state have also been
proposed in this setting [66]. However, none of these works have incorporated the dataflow
dependency graph into their replacement policies.

6.7 Future Work and Conclusions

In this chapter, I have described the important problem of pipeline-aware hyperparameter op-
timization. I have demonstrated that by opening up the black box of learning pipelines, new
opportunities for acceleration are presented. I studied this problem in depth and mapped it
to a dataflow optimization problem. I then presented an a mixed-integer linear programming
formulation to identify the optimal cache management policy for hyperparameter tuning. I
then evaluated the practical viability of this strategy and compared it with existing cost-
aware cache eviction policies in a simulation framework. Finally, I used this simulation
framework to study the effectiveness of these policies on realistic hyperparameter search
workloads.
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Chapter 7

Future Work and Conclusions

In this thesis, I have described my work toward the construction of systems for practical
large scale ML. This work has covered programming interfaces for distributed ML algorithm
and application construction, the optimization opportunities that arise in such systems,
and the integration of automatic hyperparameter tuning techniques into these systems. I
have combined techniques from database query optimization, linear algebra, compilers, and
distributed and high performance computing to deliver systems that are capable of training
high quality learning applications significantly faster and with higher scalability than existing
solutions. In this chapter I summarize the main contributions of this work and briefly discuss
future challenges to be addressed in follow-on work.

7.1 Contributions

In Chapter 3 I proposed a programming model for defining scalable machine learning al-
gorithms that also provides ML application developers with a sensible interface to these
algorithms. I evaluated these interfaces from the perspective of programmer productivity
via comparisons of code complexity versus a high level programming environment for single-
node systems and found that by leveraging these interfaces it is possible to achieve an order
of magnitude reduction in code complexity over existing distributed ML systems, while de-
livering end-to-end performance that is as good or better than existing solutions. The MLI
system I described served as a research prototype for Apache Spark MLlib and many of the
core ideas have found their way into that system.

In Chapter 4 I then focused on the problem of model search via hyperparameter tuning
in the large scale setting. I evaluated several optimizations, including model-based cluster
sizing, derivative-free optimization techniques, early stopping heuristics, and joint data and
model batching to accelerate hyperparameter search for massive datasets on commodity
clusters. I evaluated these techniques both in the context of isolated microbenchmarks as
well as in the context of a model search system, TuPAQ, on two multi-terabyte training
data sets.
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In Chapter 5 I then evaluated the design and implementation of a system for end-to-end
learning pipelines KeystoneML that allows ML application developers to specify large-scale
end-to-end learning pipelines by composing a set of domain-specific and general-purpose ML
operators. I discussed several potential avenues of optimization that arise in such a system
and grouped them loosely into operator-level and whole-pipeline optimizations. I then used
the system to reproduce several recent academic learning pipelines from a number of diverse
domains, delivering high-scale throughput for problems that is up to an order of magnitude
faster than existing specialized solutions and uses up to 8× fewer resources, before comparing
the performance of the system to other state-of-the-art large-scale learning systems. Finally,
I performed ablation studies on the various optimizations in the system and studied its
scalability in detail. KeystoneML is open source software with an active community of
scientific and industrial ML application developers.

Finally, in Chapter 6 I described my work on hyperparameter tuning of end-to-end
pipelines in the context of PiperPlanned. This work is predicated on the simple ob-
servation that a single instance of a learning pipeline can be viewed as a computation graph
and that the computations done across multiple learning pipelines can often be redundant.
By combining computation graphs via standard techniques from the compiler literature is
possible to achieve large savings. I provided bounds on the total savings due to reuse in the
context of hyperparameter tuning, before turning my attention to finding an execution of
the computation graph that would maximize savings subject to finite memory constraints.
I described a mixed-integer linear programming solution to this challenging problem and
used it as a tool to evaluate the effectiveness of several standard and non-standard caching
strategies.

7.2 Limitations

This work has demonstrated the practical viability of systems support for large scale machine
learning in modern datacenter architectures using a dataflow execution engine. Many other
techniques for speeding up large scale learning exist, including scale-up solutions that use
high-end servers with hundreds of cores, terabytes of memory, and specialized hardware such
as GPUs and ASICs to achieve throughput. Many of these solutions are complimentary to
this work but I do not evaluate the effectiveness of combining such solutions.

Further, this work does not support every flavor of machine learning. The programming
model is inherently geared toward models that work over batches of static data in an iterative
fashion. While this encompasses both approximate and exact classical discriminative learning
methods trained via algorithms like Gauss-Seidel and flavors of Gradient and Coordinate
descent, it can also be extended to support Bayesian models that are traditionally trained
via Expectation-Minimization and similar algorithms, as well as discriminative models such
as decision trees that do not make use of gradient-based techniques to train.

Finally, in its current form our systems do not support describing or training Deep
Learning pipelines. The reasons for this are not fundamental to the programming model or



CHAPTER 7. FUTURE WORK AND CONCLUSIONS 117

implementation of the system: introducing back-propagation through our operators would
be a natural extension. However, tremendous care should be taken when considering training
deep learning models in a distributed setting. The size of deep learning models and com-
munication requirements required to update them can overwhelm even the fastest available
commodity networking hardware.

7.3 Future Challenges

One possible criticism of the approach presented here is that in general the applications
expressed in KeystoneML and MLI make the assumption that training data is both volu-
minous and fixed. Many of the solutions presented here are designed with these assumptions
in mind. However, initial work on extending the programming model to support incremental
updates to complete pipelines indicates that the system can be cleanly integrated with ex-
isting streaming interfaces such as Spark Streaming. Early results indicate that only minor
changes to the underlying APIs need to be made to offer such updates and that much of
the existing optimization infrastructure can be reused in this setting. Further, a ripe area
for investigation is how to take these solutions and execute them efficiently on individual
machines and custom hardware to get the best of both worlds: speed when the data is small
and dynamic scalability as the problem grows large.

One particularly interesting area for future work is in the realm of Deep Learning. These
general techniques have been shown to achieve high statistical performance on a number of
important problems in recent years. My collaborators and I have ongoing work exploring
the fundamental limits of scalability of the conventional algorithms used to estimate deep
learning models. This work uses bottom-up cost estimation similar to what I described in
Chapter 5 to determine the limits of scalability for an input model on developer-supplied
compute and networking hardware under a number of communication schemes. Commu-
nication avoiding algorithms for deep learning could prove to be a tremendously impactful
research area.

The work presented in Chapter 6 on pipeline-oriented hyperparameter tuning opens the
door for new research in cache optimization in the setting of dataflow graph execution. One
particularly interesting research challenge is the proposal of an efficient online algorithm that
is k-competitive with the optimal algorithm I propose. Another area of research is finding
a convex relaxation of the proposed integer linear program that does not violate memory
constraints. This would potentially enable the efficient calculation of an optimal cache pol-
icy in an offline fashion. Finally, another area of research along this line of work would be
in dynamic reordering of pipeline execution to make better use of available resources. The
current analysis applies to a given fixed execution schedule, but reordering the execution
schedule would not affect program semantics and could further increase throughput. Ad-
dressed naively this is an enormous combinatorial problem, but it is a reasonable conjecture
that simple algorithms exist to provide at least good approximations to optimal instruction
reordering.



CHAPTER 7. FUTURE WORK AND CONCLUSIONS 118

7.4 Final Remarks

Large Scale Machine Learning Applications have become an increasingly important use case
that designers of data processing systems need to support. Once developed, these applica-
tions may completely replace existing solutions. But, the pace at which new applications can
be developed is gated by developer expertise, ability to store and preprocess large quantities
of data, and the rate at which ideal configurations for these applications can be discovered.

In this work, I have examined how to substantially reduce the end-to-end time to solution
for a variety of large scale ML application development workloads in the context of datacenter
and cloud infrastructure. While this work is necessarily an academic prototype, many of the
solutions I have proposed have been adopted into real-world systems and commercial product
offerings.

This work has shown that data driven decision making and semi-automatic ML applica-
tion development at the scale of today’s massive datasets is practical on current commodity
datacenter and cloud-based computing infrastructure. Better algorithms, infrastructure, and
more high quality data will lead to applications that currently seem far beyond the realm of
possibility.
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