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SUMMARY
Weexplored the dysregulation of G-protein-coupled receptor (GPCR) ligand systems in cancer transcriptom-
ics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of re-
ceptors with ligands and their biosynthetic enzymes. Multiple GPCRs are differentially regulated together
with their upstream partners across cancer subtypes and are associated to specific transcriptional programs
and to patient survival patterns. The expression of both receptor-ligand (or enzymes) partners improved pa-
tient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer
phenotypes. Remarkably, we identifiedmany such axes across several cancermolecular subtypes, including
many involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these
actionable axes, including, e.g., muscarinic, adenosine, 5-hydroxytryptamine, and chemokine receptors,
are the targets ofmultiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens, which
we further validated. We have made the results generated in this study freely available through a webapp
(gpcrcanceraxes.bioinfolab.sns.it).
INTRODUCTION

G-protein-coupled receptors (GPCRs) are the largest family of

transmembrane proteins and transduce a wide range of physical

and chemical stimuli into the cell by coupling to intracellular het-

erotrimeric G proteins, thereby controlling multiple downstream

signaling pathways and transcriptional programs.1–3 The GPCR

repertoire expanded and diversified to meet the increasing

need for inter-cellular communication in evolvingmulticellular or-

ganisms.4,5 Systematic efforts are being undertaken to illuminate

the complex circuitry of GPCR signaling both at the intracel-

lular5–11 as well as the extracellular ligand level.12

Cancer genomics provides the possibility to systematically

shed light on cancer somatic alterations affecting GPCRs and

their interacting partners.13–17 Indeed, a landscape of GPCR-

centric autocrine, paracrine, juxtacrine, or endocrine signaling

networks is emerging as a critical component for the interaction

of cancer cells with their tumor micro-environment (TME), ulti-

mately leading to cancer progression and therapy resis-

tance.15,16 For instance, chemokines, such as CXCL1, CXCL2,

and CXCL8, bind and activate their receptors, primarily CXCR1
Cell Genomics 4, 100557,
This is an open access article under the
and CXCR2 on immune suppressive myeloid derived cells,

thereby disabling anti-tumoral immune surveillance mecha-

nisms.15 Several GPCRs and their associated components

mediating inflammation have also been connected to immune

evasive TME, such as prostaglandins (in particular PGE2), their

biosynthesizing enzymes (PTGS1 and PTGS2), and cognate

prostanoid receptors (e.g., PTGER2 and PTGER4).15 Ectonu-

cleotidases (such asNT5E or ENTPD1) and adenosine receptors

are also well known to induce an immunosuppressive TME.15

Recent studies have also shown the emergent role of innervation

in promoting tumor growth (reviewed in Hanahan and Monje18).

Notably, it has emerged that there is a crosstalk between the

neurotrophin pathway, particularly the nerve growth factor

(NGF)-NTRK1 axes, and GPCR signaling mediated by either

(nor)adrenaline-ADRB2 in pancreatic cancer,19 or acetylcho-

line-CHRM1 andCHRM3 in gastric cancer.20 The neuron-cancer

cell communication can also be established via additional

routes, such as the one of 5-hydroxytryptamine, which is pro-

duced by enteric serotonergic neurons, and activates cognate

receptors expressed on colorectal cancer stem cells, which un-

dergo self-renewal and tumorigenesis.21 However, defining
May 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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these immune-evasive and tumor-promoting networks has been

elusive. This is also due to the interaction complexity arising from

the two keymolecular recognition steps governingGPCRs’ func-

tion; i.e., the binding of extracellular ligands and the engagement

and activation of intracellular transducers, both of which are

frequently dysregulated in cancer.

In this regard, single-cell and spatial sequencing technologies

are enabling the study of mechanisms of cell-cell communica-

tions at an unprecedented resolution.22 In the most comprehen-

sive resource to date used to infer ligand-receptor pairs medi-

ating cell-cell communication,23 GPCRs-ligand interactions are

surprisingly depleted, representing roughly less than 5% of the

total curated interactions, despite being the most abundant

class of transmembrane proteins involved in signal transmission.

This is probably because GPCRs typically interact with small

organic molecules, such as neurotransmitters and various me-

tabolites, whose expression is not detectable by transcriptomics

techniques, thus preventing the identification of such interac-

tions by canonical cell-cell communication algorithms.

In the present study, we considered an extended network of

signaling axes formed by GPCRs with interacting ligands, as

well as biosynthetic enzyme pathways, to systematically explore

their aberrant regulation in cancer transcriptomics datasets and

investigate their value for patient stratification for personalized

medicine treatments.

RESULTS

GPCRs extracellular signaling network and associated
onco-programs
We first generated a comprehensive catalog of upstream and

downstream molecular interactions involving GPCRs

(Figures 1A–1C; see STARMethods). Briefly, we retrieved known

GPCR ligands from IUPHAR (International Union of Basic and

Clinical Pharmacology)/Guide to Pharmacology database

(GtoPDB), which we mapped to individual ligand-synthesizing

enzymes and to known biosynthetic pathways, as well as to

pathways mediating signal transduction (STAR Methods;

Tables S1, and S2). This yielded a total of 236 ligands, 309

biosynthetic pathways, and 82 enzyme-associated instances

(Figures 1A–1C). We found that 86% of ligands and 99% of en-
Figure 1. GPCR extracellular signaling network and overview of the da

(A) Workflow of the study involving the procedure to generate the interacting enzy

network (center), the dataset employed (left top and bottom) to perform the DE an

analysis steps (right).

(B) Sunburst charts providing an overview of the number of liganded and orphan G

GPCRs based on their ligand type, i.e., either peptide, organic, or a combination o

Reactome pathways. The included ligands are additionally subcategorized base

domains with which they are linked. For enzymes, only the second layer of this i

(C) The network of GPCRs and cognate ligands and biosynthetic enzymes.

(D) Funnel plot exhibiting the frequency of differentially expressed (TCGA vs. GTEx

to each whole tissue.

(E) Stacked bar plot displaying the number of significantly enriched ligand-ass

signaling by GPCR) and metabolism (R-HSA-1430728:metabolism). Each bar re

whole, with respect to each tissue. An enriched pathway refers to a pathway en

p <0.01.

(F) The bar plot illustrates the top 30 enriched transcription factors, with the y ax

subtypes in which they are enriched.
zymes were already annotated within biological pathway knowl-

edgebases (i.e., Reactome; Figure 1B). A total of 211 (53%) non-

olfactory receptors have known ligands in GtoPdb, 95 of which

exclusively bind organic ligands, 90 peptides, and 26 both ligand

types (Figure 1B). While the vast majority of peptide ligands are

annotated in signaling pathways, the organic ligands are instead

extensively annotated as part of metabolic processes (Figure 1B,

and Table S1).

We then computed genome-wide differential expression (DE)

by contrasting cancer samples from The Cancer Genome Atlas

(TCGA) project to those from corresponding healthy tissues

from the Genotype-Tissue Expression (GTEx) project to derive

expression signatures of genes and pathways mediating

GPCR signaling. We considered a total of 15,000 samples

(10,500 from TCGA and 4,500 fromGTEx), encompassing 16 tis-

sues, as well as 79 cancer molecular subtypes (see STAR

Methods; Table S3).

Remarkably, we found a widespread, cancer-specific regula-

tion of GPCR-related genes with respect to the corresponding

healthy tissues. We found, on average, 91 upregulated and 92

downregulated GPCRs (false discovery rate [FDR] <0.01, |

log2FC| > 1) per cancer. When considered together with their

cognate ligands and biosynthetic enzymes, we obtained an

average of 161 upregulated and 133 downregulated instances

(Figure 1D). The amount of significantly differentially expressed

genes varies across tissues, with testis, skin, and ovary being

themost affected, and bladder the least (Figure 1D). Certain can-

cer tissues are characterized by a prevalence of either signifi-

cantly over-expressed (e.g., pancreas) or downregulated (e.g.,

brain) GPCRs (Figure S1A). We found no significant trend when

grouping differentially expressed receptors based on their

G-protein coupling specificity (Figure S1A). On the other hand,

DE of heterotrimeric G-protein a subunits showed that GNAS

was the single most widely upregulated subunit, being signifi-

cantly over-expressed in 94% of cancer tissues (Figures S1A,

and S1C), confirming previous analyses.15,17

At the process level, we found a widespread DE regulation

(FDR < 0.01) of GPCR pathways across cancers (Figure 1E). In

particular, 40% of cancer tissues are either more enriched in

biosynthetic or signal transduction processes, while 20%of can-

cer tissues are equally affected in both (Figure 1E). Several
tasets considered

me-receptor pairs (left center) to generate the GPCR-ligand-enzyme extended

d survival analysis (center top and bottom) and subsequently the downstream

-protein-coupled receptors (GPCRs) considered; classification of the liganded

f both; number of enzymes that are either currently included or absent within the

d on the frequency of their types and the frequency of the Reactome pathway

nformation is shown.

, BH-corrected adjusted p <0.01) GPCRs, ligands, and enzymes corresponding

ociated pathways within Reactome sub-domains: signaling (R-HSA-372790:

presents the relative proportions of different categories as percentages of the

riched in TCGA with a GSEA enrichment score >0 and BH-corrected adjusted

is representing the transcription factors and the x axis indicating the count of
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pathways are found to be extensively affected (e.g., upregulation

of chemokine receptors), while others are exclusively regulated

in certain tumor types (Figure S1D). Overall, these data show

that every cancer tissue is characterized by highly specific

GPCR pathway signatures (Figure S1D). Analysis of the over-

representation of genes regulating transcriptional activity for

differentially expressed GPCRs further emphasized that each

cancer subtype displays specific transcriptional programs

significantly associated (FDR < 0.05) with differentially ex-

pressed GPCRs (Figures 1F, and S2; see STAR Methods). For

example, we found that certain genes, such as HMGA1 or

TEAD1, are recurrently associated with GPCRs’ expression

across multiple tumor subtypes (Figure 1F). Gastro-intestinal

tract tumor types, such as the stomach subtypes ‘‘chromosomal

instability’’ (Stomach_GI.CIN) or ‘‘genomically stable’’

(Stomach_GI.GS), display the highest number of transcriptional

regulators associated with differentially expressed GPCRs

(Figure S2).

The landscape of peptide ligand-GPCRsdysregulation in
cancer
We focused our analysis on the extracellular components of the

GPCR signaling machinery (e.g., ligands and related metabo-

lizing enzymes) to understand their contribution to the overall

dysregulation of GPCR signaling in cancer.

We found, on average, 66 significantly differentially expressed

peptide ligand precursors per cancer in 16 cancer tissues, and,

on average, 60 instances per cancer in 79 molecular subtypes.

We next assessed the degree of correlation of expression

changes between receptors and interacting ligands and found

a widespread co-regulation of receptor-ligand precursor pairs

in multiple cancer tissues and subtypes (Figures 2A, and S3;

see STAR Methods). By focusing on the receptor-ligand pairs

more recurrently co-regulated, we identified two clusters,

showing respectively a prevalence of concordantly upregulated

(i.e., cluster 1) and concordantly downregulated (i.e., cluster 2)

axes across subtypes (Figure 2A). The majority of the regulated

ligands are agonists, except for CCL4; CCL7; and CXCL8, 10,

and 11, which might act as either agonists or antagonists de-
Figure 2. Peptide ligand-receptor co-regulation

(A) Heatmap (center panel) displaying the co-differential regulation for receptor-lig

red represents both receptor and ligand significantly co-upregulated in TCGA (i.e

both receptor and ligand significantly co-downregulated in TCGA (i.e., LFC < 1

significantly differentially expressed (i.e., |LFC| > 1 for both but adjusted p < 0.01 f

in at least one of them. Only those pairs that are affected in at least 25%of TCGA s

Hierarchical clustering, is shown in themiddle. Hierarchical clustering was perform

within-cluster variance based on the sum of squared differences of feature value

codes to display the ligand’s mechanism of action in ‘‘Action,’’ G-protein coupling

the information contained in the left panel as concise bar plots for each of the two

well as GPCR families represented as count of the number of receptors.

(B) The scatterplot displays aGPCR-centric view of the heatmap in (A) based on tis

the average of the pairwise Euclidean distances between co-differential expressio

is a similar metric across tissues (i.e., horizontally). The size of the markers is pro

difference in the number of co-up and co-down profiles. GPCRs located in the t

(C) Diverse co-DE profiles are observed with respect to different ligands and tis

sponding ligands exhibit an almost exclusively co-upregulated profile irrespect

profiles, implying a varying interaction with its ligands in different tissue (or canc

(D) The bar plot visually presents the ranking of oncogenes based on the averag

denotes individual oncogenes/tumor suppressor genes (TSGs), color-coded sepa
pending on the bound receptor (Figure 2A). Most axes in cluster

1 involve chemokine receptors (e.g., CCR1, CCR3, CCR4,

CCR5,CCR6,CCR8,CXCR3,CXCR6, XCR1) as well as other re-

ceptors such as APLNR, CALCR, GRPR, MCHR1, GPR37,

CCKBR, NPBWR1, KISS1R, and their cognate ligands. The

main transduction mechanism in this group is through Gi/o pro-

teins, as well as to a lesser extent via Gq/11 andG12/13 (Figure 2A).

Cluster 2 contains instead receptor-ligand axes that are more

frequently concordantly downregulated in cancer subtypes,

although several of thesemight still be concordantly upregulated

in specific subtypes (e.g., CXCR2, EDNRB, FFPR2, or LGR6,

GALR2, and UTS2R; Figure 2A). The axes in cluster 2 involve re-

ceptors that are members of various families from class A and B.

Receptors in this group have a more heterogeneous/promiscu-

ous coupling profile to Gq/11, Gi/o, and Gs, but very little to

G12/13 (Figure 2A).

In general, every cancer subtype is characterized by a highly

specific receptor-ligand co-expression signature. However,

certain tissues display similar subtype co-expression patterns

(e.g., liver, breast, ovary, thyroid, stomach, lung, skin, and

pancreas). Others show higher heterogeneity (e.g., kidney, co-

lon, bladder, esophagus, prostate, brain) (Figure 2A).We also as-

sessed the similarities of GPCR DE profiles across tissues and

ligands (see STAR Methods), which revealed that co-regulation

patterns of a given receptor can vary on a tissue and ligand basis

(Figures 2B, and S3). Certain receptors display consistent co-

regulation patterns across cancer tissues and subtypes even if

bound to multiple ligands (e.g., CXCR3, CCR3, CCR5;

Figures 2B and 2C). Others show more variable co-regulation

patterns that vary in a tissue (or subtype) and ligand specific

fashion (e.g., CALCRL or RXFP2; Figures 2B and 2C). Strikingly,

we found that 73 out of 79 cancer subtypes (92.4%) are charac-

terized by a prevalence of concordant (i.e., having the same

log2-fold change (LFC) directionality) vs. discordant (i.e., having

opposite LFC directionality) regulation of GPCR axes, suggest-

ing tight correlated expression of the components of the same

receptor-ligand axis (Figure S4).

We associated the most frequently mutated cancer genes in

each TCGA subtype with the presence of up- or downregulated
and pairs across different TCGA subtypes (color coded at the top row). Darker

., log2-fold change, LFC > 1 and adjusted p <0.01) and darker blue represents

and adjusted p <0.01). Paler colors represent either the receptor or ligand as

or only one of these). White cells indicate anti-regulation or no fold change at all

ubtypes are displayed. A dashed line separating the two clusters, created using

ed using theWardmethod to identify two homogeneous clusters byminimizing

s; i.e., scores˛[�2, + 2] assigned to each pair. Heatmap (left panel) uses color

associated with the GPCRs, and GPCR family. Heatmap (right panel) displays

clusters. For each cluster, bar plots indicate G-protein coupling preferences as

sue-wise or ligand-wise similarity. Here, ligand-wise similarity for eachGPCR is

n (co-DE) profiles across its ligands (i.e., vertically), while tissue-wise similarity

portional to the number of ligands, and the colors correspond to the average

op-right corner are more diverse in terms of their ligand interactions.

sues corresponding to the same GPCR. For example, CXCR3 and its corre-

ive of tissue type, while CALCRL and its ligands display varied co-regulation

er) types.

e count of co-regulated GPCR-ligand instances across subtypes. The x axis

rately for clarity, while the y axis represents the corresponding average count.

Cell Genomics 4, 100557, May 8, 2024 5
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GPCR axes (Figure S5; see STAR Methods). Based on cancer

gene mutation clustering, we could find a group of subtypes

(mainly prostate and brain tumors) that are characterized by

overall co-downregulation of GPCR axes and concomitant mu-

tations of several tumor suppressor genes (TSGs). G-protein

couplings of concordantly downregulated axes are transversely

decreased. In the concordantly upregulated axes, we found

instead much variability, with G12/13 prevailing, relative to co-

downregulated axes, as well as Gs completely lacking in certain

tumors (Figure S5A–S5E). Cancer subtypes with G12/13 preva-

lence in the concordantly upregulated axes are characterized

by mutations of the KRAS, PIK3CA, andMLLT3 oncogenes (Fig-

ure S5E, and Table S4). By ranking cancer genes based on the

average count of co-regulated GPCR-ligand instances across

subtypes, we found that the majority of top associated cancer

genes are TSGs (seven out of the top 10). Interestingly, APC,

FBXW7, ZFHX3, and SMAD4 are all associated with a preva-

lence of concordantly upregulated signaling axes, while

PIK3R1 or ATRX are overall associated with concordantly down-

regulated GPCRs (Figure 2D).

Expression of biosynthetic pathway enzymes inform on
the levels of organic endogenous ligands
We reasoned that the expression levels of the enzymes synthe-

sizing organic GPCR ligands could be informative of their levels

and thus be used as a proxy to model ligand abundance in tran-

scriptomics datasets. To this end, we assessed enzyme and

biosynthetic pathway activities from differential gene expression

signatures (see STAR Methods).

We found, on average, 63 and eight significantly regulated en-

zymes and biosynthetic pathways, respectively, across cancers,

suggesting a widespread dysregulation of GPCR-ligand biosyn-

thetic pathways in human malignancies, which in some cases

was specific to distinct cancer subtypes (Figure 3A). Clustering

of biosynthetic pathways via enrichment scores revealed two

main groups: one characterized by processes, such as those

related to selenocysteine synthesis and di/triphosphate nucleo-

tide interconversion, which are overall upregulated in most can-

cer subtypes; and one instead characterized by processes
Figure 3. Biosynthetic pathway enrichment

(A) Heatmap of GSEA pathway enrichment analysis for differentially expressed

pathways related to signaling and metabolism. Red cells indicate pathways enri

indicate no enrichment. Cells marked with an asterisk (*) correspond to a statisti

(B) Concordant pathway enrichment analysis considering both differentially expres

[PAS]). A score of 1 (red) indicates co enrichment in cancer (ES and PAS >0), and a

(C) Bar plot displaying numerical values for ES and PAS for the purine catabolism

(D) Heatmap of differentially expressed genes for the purine catabolism pathwa

indicate downregulated genes in TCGA, and cells marked with an asterisk (*) co

(E) A functional interaction network between genes (ovals) and metabolites (diam

upregulated components, blue nodes indicate downregulated components, and

activation of the pathway is contributed by over-expression of both genes and m

(F) Sunburst chart (left panel) displaying the distribution of co-differentially regu

ligand co-regulation analysis (Figure S7). Darker red represents the number of re

adjusted p <0.01) and darker blue represents the number of receptor-enzyme pai

represent the number of pairs wherein either the receptor or enzyme is significan

one of these). Gray indicates pairs with anti-regulation or no fold change at all in a

subtypes are utilized for the clustering. For each cluster, bar plots (center and right

as count of the number of receptors.
recurrently downregulated, such as phase I, functionalization

of compounds, or eicosanoids (Figure 3A). Other biosynthetic

pathways are specifically enriched in given cancer subtypes.

For example, arachidonic acid metabolism is downregulated in

several kidney and skin cancer subtypes, while it is significantly

upregulated in ovary mesenchymal and pancreas glandular (GL)

subtypes. Other pancreatic cancer subtypes, such as the transi-

tional (TR) and undifferentiated (UN),24 displayed instead signifi-

cant enrichment of the synthesis of prostaglandins (PGs) and

thromboxanes (TXs) pathway (Figure 3A).

In order to determine if differentially expressed gene tran-

scripts are mirrored by DE of the corresponding metabolites,

we compared pathway enrichment scores of differentially ex-

pressed transcripts with differential abundance scores of differ-

entially expressed metabolites from a pan-cancer metabolomic

profiling dataset,25 considering a set of curated biosynthetic

pathways (e.g., Reactome; see STAR Methods, and Table S5).

We found a total of 33 significant pathways (FDR < 0.01) in at

least one of the five cancer types considered, which showed

concordant pathway enrichment when considering both differ-

entially expressed transcripts and metabolites (Figure 3B). The

cancer type showing the highest number of concordant signa-

tures is pancreatic adenocarcinoma (PAAD). Certain pathways

show concordant upregulation in multiple cancer types,

including activation of gene expression by SREBF (SREBP), pu-

rine catabolism, and pyruvate metabolism, each found upregu-

lated in three distinct cancer types (Figure 3B). For example, pu-

rine catabolism is always upregulated when considering both

transcriptome and metabolome in breast, pancreas, and pros-

tate cancers (Figure 3C). Inspection of differentially expressed

genes (Figure 3D) and metabolites on a functional interaction

network shows that the over-activation of the pathway is contrib-

uted by the over-expression of both transcript and metabolite

components (Figure 3E). However, only a few enzymes or me-

tabolites in this pathway are invariably over-expressed across

cancers (e.g., NUDT1, LEF1, 9H-xanthine; Figures 3D, and S6).

Other processes show concordant enrichment with a cancer

dependent directionality; e.g., nicotinate metabolism, which is

upregulated in pancreas and downregulated in prostate, or
genes in cancer (TCGA) over normal (GTEx) samples, considering Reactome

ched in TCGA, blue cells indicate pathways enriched in GTEx, and white cells

cally significant enrichment (adjusted p <0.01).

sed genes (enrichment score [ES]) andmetabolites (pathway abundance score

score of�1 (blue) indicates co enrichment in normal samples (ES and PAS <0).

pathway in three different tissues: breast, bladder, and prostate.

y in breast cancer. Red cells indicate upregulated genes in TCGA, blue cells

rrespond to a statistically significant DE (adjusted p <0.01).

onds) in the purine catabolism pathway in breast cancer. Red nodes indicate

green nodes indicate no information available. The network shows that over-

etabolites.

lated receptor-enzyme pairs across two different clusters similar to receptor-

ceptor-enzyme pairs significantly co-up regulated in TCGA (i.e., LFC > 1 and

rs co-downregulated in TCGA (i.e., LFC < 1 and adjusted p <0.01). Paler colors

tly differentially expressed (i.e., |LFC| > 1 for both but adjusted p <0.01 for only

t least one of them. Only those pairs that are affected in at least 25% of TCGA

) indicate G-protein coupling preferences as well as GPCR families represented

Cell Genomics 4, 100557, May 8, 2024 7
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creatine metabolism, downregulated in pancreas and upregu-

lated in breast (Figure 3B). Several other pathways are exclu-

sively enriched in specific cancer tissues; for example,

glucagon-like peptide-1 (GLP1) regulates insulin secretion, syn-

thesis of PGs and TXs, and acetylcholine regulates insulin secre-

tion are hallmarks of pancreatic cancer and might contribute to

reinforcing the known role of the Gs-PKA signaling axis in this

cancer type.26,27

Similarly to receptor-ligand pairs, we correlated changes in

expression for receptor-enzyme pairs. Also in this case, we

found two major clusters, characterized by a majority of concor-

dantly up- (i.e., cluster 1) or downregulated (i.e., cluster 2)

enzyme-receptor pairs (Figures 3F; and S7). In the first cluster

we found exclusive upregulation of axes including those of

5-hydroxytryptamine and adenosine receptors with biosynthetic

enzymes for their cognate ligands (Figures 3F, and S7). In the

second cluster, we found exclusive concordantly downregula-

tion of prostanoid and calcium-sensing receptors (Figures 3F;

and S7). Other receptor classes are represented in both clusters,

via the involvement of distinct receptors and enzymes members

(e.g., adrenoceptors, metabotropic glutamate receptors). On

average, we found 63 receptor-enzyme pairs whose expression

is significantly correlated with respect to a background random

model (Figure S8, and Table S6; see STAR Methods).

Expression of GPCRs signaling network components
correlates with patient survival
We systematically assessed correlations between expression of

GPCR network components and patient survival. Briefly, we

defined groups of patients based on the expression of a GPCR

component, i.e., high or low expression, respectively, if above

or below the median of the distribution of expression values of

that gene in the samples and tested whether these groups had

significantly different survivals (see STAR Methods).

We first considered the capability of the expression of individ-

ual components (e.g., receptors, transducers, ligand, or biosyn-

thetic enzymes) to discriminate patients based on their survival.

We found a total of 302 unique significant receptor instances (log

rank p value <0.05, FDR < 0.1) in 11 cancer tissues, 103 ligands

in 10 cancers, and 71 enzymes in 10 cancers (Figure 4A, and

Tables S7–S9). Some cancer tissues display overall more com-

ponents whose expression is associated with higher (e.g.,

pancreas, skin, or head and neck) or lower (e.g., brain, breast,

lining of body cavities, and white blood cell) survival (Figure 4A).

Overall, the expression of GPCR genes is associated with poorer

survival in 59% of cases across all cancers. CELSR3, GPR25,

EDNRB, and F2RL2 are significantly associated with patients’

survival in four cancers each, with an equal prevalence for lower

and higher survival (Figures 4B, and Table S7). Some receptors

show consistent associations across cancers; for example,

ADORA2A is invariably associated to higher survival across

four distinct cancer tissues (including pancreas, breast, skin,

and head and neck; Figure 4B), which might be consistent with

its known role in regulating CD8+ T cell activity and survival in

the TME.28 Certain receptors are instead invariably associated

with poorer survival, such as OXTR, ADORA2B, GPR3, FZD6,

GPRC5A, and LPAR3. We also found a large prevalence of asso-

ciations between GPCR-peptide ligand precursor expression
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and lower survival of patients, with 67.2% of the significant in-

stances across cancers. Among the most recurring ligands, we

found several instances that are either invariably associated to

lower survival, e.g., CXCL5, CXCL1, GAL, and RPS19, or have

opposite associations depending on the cancer type, e.g.,

CXCL9 (Figures 4B, and Table S8).

We reasoned that, in those patients with higher expression of

both receptors and ligands (or biosynthetic enzymes), a likely

enhanced activation of the signaling axis should better corre-

late with specific patient phenotypes (e.g., lower or higher sur-

vival) than when considering individual components. We there-

fore assessed differences in the survival of patients grouped

based on the expression levels of GPCRs and ligand precur-

sors (or enzymes), either alone or in combination. We then

shortlisted receptor-ligand pairs characterized by higher signif-

icance as well as greater hazard ratios of patient survival

compared to the individual interaction partners (Figure 4C,

and Tables S10–S11, see STAR Methods). Intriguingly, we

found several axes, such asNPBWR2-NPW orCALCR-CALCB,

associated with lower survival more significantly than consid-

ering interaction partners alone in multiple cancer types

(Figures 4C and 4D, and S9). Certain cancer types show multi-

ple significant instances of associations between receptor-

ligand axis and survival (e.g., lower survival in adrenal gland,

eye; Figure 4C), suggesting a potential polypharmacology

strategy for these tumor types.

Interestingly, it appears that some receptors participating in

significant axes within the same cancer type share, to some

extent, similar signal transduction mechanisms. For example,

in head and neck cancers, we found significant correlation of

higher survival and higher expression of the SSTR2-SST (Fig-

ure S10A), RXFP3-INSL5, and RXFP1-RLN3 signaling axis,

which all share similar coupling profiles (e.g., Gq/11, particularly

GNA14, as well as Gi/o; Figure S11). RXFP1-RLN3 is instead

associated with lower survival in breast carcinoma patients,

highlighting the specificity of function and survival associations

of these axes with cancer subtypes. Likewise, SSTR2-SST is

associated to lower survival in adrenal gland patients

(Figure S10B).

Notably, some of the receptor-ligand pairs that we found

differentially co-regulated in terms of expression are also signif-

icantly associated with survival differences (Figure 4E). In detail,

we found a total of 24 receptor-ligand pairs from 15 cancer sub-

types. CCR5 is the receptor-ligand forming pair (with CCL7 and

CCL8) that is more frequently concordantly differentially ex-

pressed, being at the same time significantly associated with

survival. In particular, CCR5 concordant upregulation is invari-

ably associated with a better prognosis, irrespective of the can-

cer subtype considered. Other pairs, such as those mediated by

CXCR2, display cancer subtype-specific patterns of both DE

and correlation with patient survival (Figure 4E). On the other

hand, pairs such as CCR1-CCL4 are always co-upregulated

but with different prognostic values; i.e., they are associated to

higher survival in melanoma (RAS and BRAF hotspot mutant

subtypes), and to lower survival in genomically stable gastric

cancer (GI.GS subtype; Figure 4E). The latter is also an example

of cancer subtype with multiple axes associated to lower sur-

vival. Other subtypes, such as the glandular (GL) pancreas, are



Figure 4. Association of GPCR-peptide ligands axes to survival

(A) Survival association of GPCR components in various cancer types. The funnel plot shows the number of significant instances of individual components, such

as receptors, ligands, and enzymes, whose expression values are associated with patient survival across various cancer types. A total of 302 unique significant

receptor instances (log rank p <0.05, FDR < 0.1) were identified in 11 cancer tissues, 103 ligands in 10 cancers, and 71 enzymes in 10 cancers.

(B) Scatterplots for individual receptor instances, enzymes, and ligands associated with patient survival in various cancer types. (log rank p <0.05, FDR < 0.1). The

x axis displays the number of tissues in which the genes are associated with lower survival (inverted blue triangles) and, vice versa, y axis displays the number of

tissues inwhich the genes are associatedwith higher survival (red triangles). Only the genes that are significantly associatedwith survival in at least two tissues are

shown.

(C) The bubble plot shows the correlation between the combined expression levels of GPCR-ligand pairs and patient survival across various cancer types. The

pairs with a log rank p < 0.05 and also lower than log rank p values for individual GPCR/ligand are displayed. Bubble color is proportional to HR; i.e., HR > 1, high

expression is correlated with high survival (red); HR < 1, high expression is correlated with poor survival (blue). Bubble diameters are proportional to the

�log10(log rank p value). Green highlighted bubbles represent the most significant instances (sample sizes >5, FDR < 0.1).

(D) The expression values for the CALCR-CALCB axes in breast cancer (right) and corresponding Kaplan-Meier (KM) curve for survival analysis of patients

stratified based on the individual as well as combined receptor/ligand expression.

(E) Scatterplot showing with differentially co-expressed GPCR-ligand pairs (upper triangle, co-upregulation; lower triangle, co-downregulation) that were

significantly associated with patient survival (red, higher survival; blue, lower survival). A total of 24 receptor-ligand pairs from 15 cancer subtypes were identified.

Reported p values inside KM plots have been obtained through the log rank test.
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Figure 5. Association of GPCR-enzymes axes to survival

(A) The bubble plot shows the correlation between the combined expression levels of GPCR-enzyme pairs and patient survival across various cancer types. The

pairs with a log rank p < 0.05 and also lower than log rank p values for individual GPCR/enzyme are displayed. Further, the pairs with rate-limiting enzymes having

less than 100 PubMed references are not shown. Bubble color is proportional to HR; i.e., HR > 1, high expression is correlated with high survival (red); HR < 1, high

expression is correlated with poor survival (blue). Bubble diameters are proportional to the�log(log rank p value). Green highlighted bubbles represent the most

significant instances (sample sizes >5, FDR < 0.1).

(legend continued on next page)
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instead characterized by multiple axes associated to higher sur-

vival (Figure 4E). Overall, we found 124 receptor-ligand pairs in

48 cancer subtypes more significantly correlated to survival

than their individual instances (Figure S12).

Biosynthetic enzymes and cognate GPCRs form
surrogate signaling pairs with prognostic value
We found multiple ligand-synthesizing enzymes whose expres-

sion correlates with patients’ survival in multiple cancers,

with 70% of them significantly linked to worse survival (log

rank p value <0.05, FDR < 0.1). Remarkably, the 50-nucleotidase
NT5E is invariably associated to lower survival in four distinct

cancer types, namely breast, brain, stomach, and pancreas

(Figure 4B, and Table S9). Other enzymesmost recurrently asso-

ciated with lower survival are lysophosphatidylcholine acyltrans-

ferase 2 (LPCAT2), beta-1,4-galactosyltransferase 3 (B4GALT3),

as well as prostacyclin synthase (PTGIS). On the other hand, en-

zymes such as bis(50-adenosyl)-triphosphatase (ENPP4), aryl-

sulfatase G (ARSG), and the long-chain fatty acid transport pro-

tein 2 (SLC27A2) are recurrently associated to higher survival

(Figure 4B).

We similarly testedwhether improvement of the survival statis-

tics could be achieved when considering the combined expres-

sion of receptor-enzyme interaction partners (STAR Methods;

Table S11). This revealed several instances involving biosyn-

thetic enzymes for neurotransmitters and cognate receptors

(Figure 5A, and Table S11). Multiple pairs involve enzymes for

monoamine neurotransmitter biosynthesis, such as tryptophan

5-hydroxylase 2 (TPH2), the rate-limiting enzyme for serotonin

synthesis, which is significantly associated to lower survival

with multiple serotonergic receptors (e.g., HTR1A in liver,

HTR2C and HTR6 in adrenal gland, and HTR7 in white blood

cell). Several dopamine receptors are significantly correlated

along with enzymes mediating catecholamine biosynthesis,

including DDR3-DDC (liver) and DDR2 and DDR3-TH (prostate).

The latter enzyme, which rate limits the catecholamine pathway,

is also significantly associated with ADRA1D in lymphatic tissue.

The axes formed by choline O-acetyltransferase (CHAT) and

muscarinic receptorsCHRM1, 3, and 5 are associatedwith lower

survival in multiple cancers (Figures 5A and 5B), including liver

and esophageal cancer (Figure 5A). We found multiple instances

of glutamate receptors (e.g., GRM1, 2, 4, 5) and glutamate de-

carboxylase 1 and 2 (GAD1, 2), with the axes of GAD2 with

GRM1, 4 and 5 being always significantly associated with lower

survival in endometrium and thyroid cancer tissues. We also

found several instances of receptors for purines whose aberrant

expression co-occur with that of multiple enzymes of the purine
(B) The CHRM3-CHAT axis is recurrently correlated with lower survival rates in e

when CHRM3-CHAT combined stratification was applied as compared to individu

axis is also consistently associated with lower survival rates in uterine cancer, as

been obtained through the log rank test.

(C and D) The boxplot visualizes the results of the receptor-ligand (C) and recepto

nine boxes on the x axis represents distinct parameters, including Cox PH regres

their combinatorial effect (b_c). Additionally, hazard ratios (HRs) and �log10(p va

the�log10 transformed significance cutoff (log rank p < 0.05) for model selection

reflects the relationship between individual and combinatorial regression coefficie

significance and impact on survival across various cancer datasets.
catabolism pathway. In detail, while the ADORA2B-PNP pair is

associated to lower survival in uterus (Figures 5A, and 5B),

P2RY4 axes with ENPP3 and ENTPD1 are associated to higher

survival in the same cancer. The latter axis is instead significantly

associated with lower survival in adrenal gland (Figure 5A). Over-

all, we found 115 receptor-enzyme pairs in 45 cancer subtypes

more significantly correlated to survival than individual instances

(Figure S13).

To begin addressing the different contribution of the axis com-

ponents to the survival analysis, we performed univariate Cox PH

to assess the impact of individual receptor and ligand/enzyme

pairs on survival, deriving cancer subtype-specific Cox regres-

sion coefficients. Subsequently, we conducted combinatorial

Cox PH analyses for receptor-ligand and receptor-enzyme pairs

from our network, formulating predictor variables based on these

coefficients and evaluating their combined effects on survival

across diverse cancer types. We then employed multivariate

linear regression to scrutinize the relationship between combina-

torial and individual receptor, ligand, or enzyme regression coef-

ficients for selected models (see STAR Methods). We found

greater coefficients for receptors-enzymes than for receptors-li-

gands, indicating a higher prognostic impact of the former

(Figures 5C and 5D), which is likely due to the complex regulatory

networks of biosynthetic enzymes.

Drugs for GPCR networks hold the potential to inhibit
cancer cell growth
We retrieved GPCRs ligands showing cancer-growth-inhibitory

capacity from a public resource containing the activity of 4,518

drugs tested across 578 human cancer cell lines.29 A total of

13 out of 52 GPCR ligands tested were found to significantly

inhibit the growth of cancer cell lines (Figure 6A).29 We checked

the targets of these ligands on the pooled list of GPCRs that we

found to mediate axes significantly associated with cancer sur-

vival. Strikingly, all these drugs bind to receptors that are signif-

icantly co-regulated axes with either their ligands or biosynthetic

enzymes (Figures 6A, 6B, and Table S12). In particular, among

themwe foundmultiple ligands targeting certain GPCRs classes,

including adenosine receptors (i.e., CGS-15943, MRS-1220,

SCH-58261), muscarinic receptors (i.e., VU0238429, xanome-

line, terfenadine), and opioid receptors (i.e., BNTX and JTC-

801). Interestingly, the vast majority (76%) of these drugs are an-

tagonists. Moreover, receptors targeted by antagonists appear

to be more promiscuous and coupled primarily to Gq/11 or Gi/o

but also to a lesser extent to Gs and G12/13 proteins (Figure 6C).

We also considered an updated version of the PRISM (profiling

relative inhibition simultaneously inmixtures) assay of cancer cell
sophageal cancer. The KM plots (left) display the risk enhancement achieved

al CHRM3/CHAT as evident by log rank p values. Similarly, the ADORA2B-PNP

evident from the KM plot on the right. Reported p values inside KM plots have

r-enzyme (D) combinatorial Cox proportional hazards (PH) analysis. Each of the

sion coefficients for individual receptor (b_r), ligand (b_l), or enzyme (b_e), and

lues) for each component are depicted. The red horizontal line at 1.3 serves as

. The multiple linear regression equation (b_c = f(b_r, b_l, or b_e)) above the plot

nts. Medians and error bars provide a comprehensive overview of the statistical
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sensitivity by pooling the data of 1,514 GPCR drugs tested

against 906 cell lines (Figures 6D and 6E; see STAR Methods).

The GPCR drugs with the highest potential of cancer cell line

growth inhibition target adrenergic receptors, CC chemokine,

glutamate, histamine, opioid, acetylcholine, and dopamine re-

ceptors (Figure 6D). Among the top 10 individual targets are

ADRB2, muscarinic, 5-hydroxytryptamine, and DRD2 receptors

(Figure 6E). While cell lines from certain tissues seem to be

equally inhibited by top GPCR drugs (e.g., lung), others are sen-

sitive to specific GPCR drugs, such as lymphoid cancer cells,

which are particularly inhibited by DRD2, CHRM1, CHRM2,

HTR1A, andHTR2A antagonists (Figure 6E, and Table S13). Mul-

tiple targetedGPCRs are expressed across cell lines. At the tran-

scriptomics level,ADORA2B is the single most expressed GPCR

across cell lines (Figure S14A), while, at the proteomic level,

HRH1 is the most expressed (Figure S14B).

We have validated the growth-inhibitory potential of two of the

most promising GPCRdrug candidates. Given the increasing ev-

idence showing anti-tumor effects of adenosine receptor target-

ing in hepatocellular carcinoma (e.g., Allard et al., Mazziottaet al.,

Myojin et al.30–32), we focused our analysis on liver cancer cell

lines (Figure S14C), which we used to test adenosine receptor in-

hibitors. In detail, we performed cell-line drug response and

viability assays on the human HEPG2 hepatoblastoma cell line

for CGS-15943, an ADORA2A and ADORA1 inhibitor, which is

reported to act against multiple adenosine receptors (Figure 6C),

and MRS-1220, an ADORA3 and ADORA2B inhibitor. We

showed that the viability of the HEPG2 cell lines is significantly

reduced upon both CGS-15943 and MRS-1220 treatment

(Figures 6F, and S15) in a dose-dependent manner, with a half-

maximal effective concentration (EC50) of 0.003 mM and

5.9 mM, respectively (Figure 6G), which is very close to or falls

within the EC50 range of the liver cell lines tested with the same

drugs in PRISM (0.009–3.8 mM and 0.01–12 mM; Figure S15C).

DISCUSSION

In recent years, themultifaceted role of GPCR signaling in cancer

has begun to emerge,15,16 although an overall mechanistic pic-

ture is still lagging. At a molecular level, this is mainly due to
Figure 6. GPCR ligands with cancer cell line growth-inhibitory capacit

(A) The scatterplot displays 52 GPCR ligands that were tested in 578 cell lines in P

significantly inhibit the growth of cancer cell lines (correlation > 0.2, bimodality c

(B) Venn diagram showing the overlap of GPCRs in the target proteins of these

associated GPCR-ligand/GPCR-enzyme axes.

(C) The heatmap displays the 13 shortlisted ligands and their corresponding GPCR

significant axes. Heatmap also displays the overall action mode of ligand, more de

GPCR.

(D) Stacked bar plot of top 10MOAs involving the top 10 GPCR drug with the highe

each cell line). Each stack is proportional to the number of cell lines of a given tis

drugs. Stack coloring is tissue specific.

(E) Stacked bar plot, normalized for the total cell line-drug pairs count, of top 10

potential (ranked according to the negative of the log2FC in each cell line). Each

hitting the specific target is ranked among the top 10 inhibiting drugs. Stack colo

(F) Graph showing viability changes in HEPG2 cells following treatment with MRS

significance of the difference in the mean of the non-treated and treated cells, pai

***p % 0.001).

(G) Dose-response curve depicts the corresponding response of the HEPG2 cell

standard error of the mean.
the lack of a precise mechanistic understanding of how recep-

tors transduce external signals intracellularly in the context of

the TME. Additionally, there is a lack of clarity regarding how

the upstream ligand and biosynthetic pathway components

contribute to trigger an aberrant GPCR signaling network in tu-

mor cells as well as in their associated stroma and infiltrating im-

mune cells. At a higher level, the complex circuitry wired by

multi-component GPCRs systems is highly tailored to specific

cellular contexts. Pathways dysregulation might be initiated

through perturbations of these multi-component systems at

different levels, all of which may converge to an overall dysregu-

lation and/or persistent activation of GPCR downstream

signaling.

In the present study, we systematically inferred GPCR path-

ways activities from cancer transcriptomic datasets, with a spe-

cial focus on the dysregulation of GPCR signaling axes involving

the co-regulation of the expression of their direct ligands as well

as biosynthetic pathways controlling ligand availability. We

showed that GPCRs activity is associated to cancer-specific

pathways and transcriptional programs. We found subtype-spe-

cific patterns of transcriptional regulators that are significantly

over-represented for differentially expressed GPCRs. Notably,

the transcriptional regulator most associated with GPCR dereg-

ulation is HMGA1, a chromatin protein that was reported to pro-

mote cancer aggressiveness in part via Wnt signaling amplifica-

tion.33 Another recurrently associated transcriptional regulator is

TEAD1, a transcription factor that recruits the YAP/TAZ coregu-

lators to promote cancer cell proliferation, survival, and stem-

ness.34We found that multiple GPCRs are co-regulated together

with their cognate ligands or biosynthetic enzymes, suggesting a

coordinated effect on the signaling axis. Some of these are wide-

spread and co-regulated across cancers; others are affected in

specific tumor contexts. This study revealed some emerging

patterns, among them that chemokine receptors and their

cognate chemokines are certainly the most co-regulated axes.

The precise role in pro- or anti-tumor immunity played by these

chemokine receptor networks is known to depend on the precise

cellular and tumor subtype context.15,35 We have reported

CXCR3 to be concordantly upregulated together with its ligands

across cancer subtypes. Intriguingly, its expression in regulatory
y

RISM drug repurposing resource. Thirteen GPCR ligands (in red) were found to

oefficient >0.35).

13 ligands with the pooled list of GPCRs that were found to mediate survival-

targets. The targets marked with asterisks (*) are the GPCRs overlapping with

tailed mechanism of action (MOA), and G-protein coupling associated with the

st growth inhibition potential (ranked according to the negative of the log2FC in

sue where a drug belonging to that MOA is ranked among the top 10 inhibiting

drug targets hit by the top 10 GPCR drug with the highest growth inhibition

stack is proportional to the number of cell lines of a given tissue where a drug

ring is tissue specific.

1220 and CGS15943, normalized to non-treated cells. To assess the statistical

rwise Wilcoxon test was used (non-significant, p > 0.05; *p% 0.05; **p% 0.01;

line to the drugs and the calculated log10 of EC50. The error bars indicate the
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T (Treg) cells has been recently shown to be central for immune

suppression of the CD8+-mediated response in multiple can-

cers.36 Our map also revealed slightly different co-regulation

patterns for chemokine axes entailing different types of ligand

action on the receptors, such as the known CXCR3 agonist

CXCL11, which also antagonizes CCR3.37 The known tumor-

promoting CXCR2 is found co-downregulated together with

CXCL2 in liver cancer (iCluster2 subtype) and with PPBP, the

precursor of CXCL7, in lung (LUAD.3 subtype). Remarkably, in

both cases, the co-downregulation is associated with higher sur-

vival (Figure 4E). The co-upregulation of this axis is associated

with lower survival in stomach cancer (genomically stable

GI.GS subtype) and with higher survival in pancreatic cancer

(GL subtype), similarly to CXCR2-CXCL3. Other chemokine re-

ceptors, such asCCR1,CCR3, orCCR5, are significantly co-up-

regulated across different cancer subtypes. While CCR1-CCL4

has distinct correlation to survival depending on the cancer

type considered, CCR5-CCL7 or CCR5-CCL8 co-upregulation

is always associated with higher survival, suggesting a general

anti-tumor immunity of these axes in the specific cancer sub-

types (Figure 4E).

Interestingly, we also found a few non-chemokine receptors

that are broadly co-up activated, such as KISS1, NPBWR,

MCHR1, and APLNR, which suggest the existence of signaling

mechanisms other than chemokine sustaining the cell-cell inter-

action within the TME. Another notable example of highly

context-specific co-regulation of signaling axes is the one medi-

ated by CALCR and its close paralog, CALCRL, whose interac-

tion with ADM is a critical factor determining relapse and drug

resistance in leukemia.38 We found that many of the co-regu-

lated signaling axes are also associated with patient survival.

For example, in head and neck cancer, we have found multiple

signaling axes significantly associated to higher survival, such

as SSTR2-SST, RXFP3-INSL5, and RXFP1-RLN3. Intriguingly,

all the three receptors show converging couplings toward

Gq/11 and Gi/o proteins. Notably, SSTR2-SST has been signifi-

cantly associated to higher survival rates in Epstein-Barr virus

(EBV)-nasopharyngeal cancer, a class of head and neck cancer,

and its targeting with a peptide-drug conjugate (i.e., PEN-221)

has been proposed to treat this type of tumor.39 SSTR2-SST is

also one of the axes with the strongest literature support for a

role in cancer, along with several others, including MC1R-

POMC and GHRHR-GHRH (Figure S16, and Table S14).

We found that GNAS is widespread over-expressed across

cancer (Figures S1B, and S1C), which might be connected to

its critical role in controlling cell energetics and metabolism via

cyclic AMP (cAMP) and PKA signaling, ultimately sustaining

tumorigenesis and resistance mechanisms.14,15 However,

many Gs receptor-peptide axes (Figure S5), or the whole Gs

pathway (Figure S1D), are downregulated in many tumor sub-

types. We speculate that GNAS over-activation, via over-

expression, amplification, or activating mutations, would make

the over-expression of upstream, cognate receptors most often

unnecessary, therefore rendering its activation independent of

external stimulus and coupling to cognate receptors, which we

recently showed to be a tightly regulated structural process.11

Many GPCR axes are de-regulated along with recurrent can-

cer gene mutations. This is particularly evident for well-known
14 Cell Genomics 4, 100557, May 8, 2024
TSGs such as APC, FBXW7, ZFHX3, and SMAD4, which are

all associated with a prevalence of upregulated signaling

axes, or PIK3R1 and ATRX, associated with downregulated

GPCRs. While the connection with GPCR signaling is better es-

tablished for genes such as APC, via Wnt signaling,40 or

SMAD4, via transforming growth factor (TGF)-b,41 emerging

evidence suggests that also ZFHX342 andATRX43 might control

GPCR signaling.

Along with the mRNA expression of peptide ligand precur-

sors, we also considered the expression of synthesizing en-

zymes as a proxy to model upstream signals from small organic

ligands. Indeed, we found a significant correlation of patients’

survival with expression of axes formed by receptors and

biosynthetic enzyme pairs. Similarly to the receptor-ligand

axes, we found receptor-enzymatic axes recurrently associ-

ated with survival in a cancer-type-specific fashion. For

example, we found multiple instances of muscarinic receptors

and CHAT co-regulation with patient outcome. Cholinergic

signaling has been established as a key factor mediating

gastric cancer tumorigenesis via an NGF-promoted feedfor-

ward loop.20 Intriguingly, the association between the expres-

sion of muscarinic receptors-CHAT axis with lower survival in

hepatocellular carcinoma correlates with the known involve-

ment of acetylcholinesterase, which opposes CHAT function

by degrading acetylcholine, and is associated to better prog-

nosis in HCC.44 Other biosynthetic enzyme axes that we have

identified are also supported by additional lines of evidence

from the literature (Figure S16D) and strongly emphasize the

role of the signaling of several neurotransmitters in fostering

oncogenic growth. The information about biosynthetic en-

zymes is indeed particularly important for receptor systems

such as GPCRs, which frequently bind to organic ligands,

andmight represent a resource complementing existing knowl-

edge bases for receptor-ligand interactions used to charac-

terize cell-cell communication from spatial transcriptomics

datasets.23 It will be critical in the future to dissect the cell-

context-specific role played by these GPCRs signaling axes

by analyzing single-cell as well as spatial transcriptomics

RNA sequencing (RNA-seq) datasets, as we recently began

exploring in the context of CD8-T cell function.45

Taken together, we have found a few hundreds of receptor

pairs with either ligands or enzymes to be significantly associ-

ated to different survival in tens of cancer molecular subtypes,

suggesting a host of actionable opportunities to modulate onco-

genic phenotypes. Strikingly, all the GPCR drugs that have been

reported to significantly hamper cancer cell line growth in a

recent systematic screen29 indeed target receptors of axes

that we found significantly correlated with patient survival, with

a particular emphasis on receptors for neurotransmitters and

adenosine. We have independently validated two adenosine re-

ceptor inhibitors (i.e., CGS-15943 and MRS-1220) that showed

significant capacity to hamper a hepatoblastoma cell line

growth. In the future, it will be interesting to explore the anti-

cancer activity of the many GPCR axes highlighted in our anal-

ysis, with a particular focus on (biased) agonists, in addition to

antagonists, as well as on drug combinations. In addition to

directly hampering cancer growth, the targeting of GPCR net-

works is emerging as a promising therapeutic option in
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combination with immunotherapy.15 For instance, adenosine

signaling is an established factor that dampens the immune

response in inflamed tissues and targeting of either adenosine

receptors (particularly ADORA2A) or adenosine-synthesizing

enzymes (NT5E and ENTPD1) is currently being evaluated in

combination with cancer immunotherapies.46,47 Moreover, the

Gs-PKA axis has been recently identified as a key pathway

dampening the anti-tumor CD8 T cell activity and resulting in im-

mune checkpoint blockade failure. This study suggests that

additional Gs-coupled receptors (e.g., EP2, EP4, b1AR, and

b2AR), other than ADORA2A, could be targeted in combination

with immunotherapy.45

Ultimately, our data-driven approach, which integrates high-

dimensional transcriptomics datasets and highly curated

signaling networks, may enable the functional interpretation of

GPCRs’ dysregulation mechanisms and guide the development

of novel pharmacological strategies and drug repurposing op-

portunities targeting GPCRs in cancer.

Limitations of the study
The current analysis of GPCR signaling axes is solely based on

DE analysis of bulk RNA-seq data. The integration of proteomics

data, of particular value for transmembrane receptors, will help

to further validate the expression levels of GPCRs axes compo-

nents. The integration of untargeted metabolomics data with the

transcriptomics and proteomics ones will provide unprece-

dented insights on the correlations between receptors and

cognate small organic ligands. A systematic analysis of GPCR

signaling axes on single-cell RNA-seq (scRNA-seq) and spatial

transcriptomics datasets will certainly illuminate the role of these

receptor systems in mediating TME interaction. The current

network only considers known ligand and biosynthetic pathways

for non-olfactory receptor (ORs). Given the increasing availability

of OR ligands knowledge, it will be possible to integrate the infor-

mation of biosynthetic pathways and enzymes for specific OR

ligands.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

MRS 1220 Tocris Bioscience Cat#1217; Cas: 183721-15-5

CGS 15943 Cayman Chemical Company Cat#CAYM22073-5; Cas:104615-18-1

Dimethyl sulfoxide Sigma Aldrich Cat#D2438-50ML

Critical commercial assays

Calcein, AM, cell-permeant dye Life Technologies Cat#C1430

Deposited data

GPCR-Ligand pairs Harding et al.48 IUPHAR: https://www.guidetopharmacology.

org/download.jsp

Enzyme list Lombardot et al.49 RheaDB: https://www.rhea-db.org/help/download

GPCR-Ligand-Enzyme network This paper Deposited to SIGNOR: https://signor.uniroma2.it

Reactome pathways Jassal et al.50 https://reactome.org/download-data

RNA-seq count and TPM dataset:

TCGA TARGET GTEX

Goldman et al.51 UCSC Xena: https://xenabrowser.net/datapages/

TCGA firehose legacy mutation data Cbioportal datasets https://www.cbioportal.org/datasets

OncoKB cancer gene list OncoKB website https://www.oncokb.org/cancer-genes

PRISM Repurposing 19Q3

Primary Screen

Corsello et al.29 DepMap portal: https://depmap.org/

portal/download/all/

PRISM Repurposing screens:

Repurposing-1M and Repurposing-300

Corsello et al.29 DepMap portal: https://depmap.org/portal/

download/all/?release=PRISM+Repurposing+

Public+23Q2&file=Repurposing_Public_23Q2_

Extended_Primary_Data_Matrix.csv

PRISM 23Q4 RNA-seq TPM Corsello et al.29 DepMap portal: https://depmap.org/

portal/download/all/?releasename=DepMap+

Public+23Q4&filename=

OmicsExpressionProteinCodingGenesTPMLogp1.csv

PRISM 23Q4 normalized

protein expression

Corsello et al.29 DepMap portal: https://depmap.org/portal/

download/all/?releasename=Proteomics&

filename=protein_quant_current_normalized.csv

Experimental models: Cell lines

Human: HEPG2 cells Laura Poliseno’s research group

(CNR Institute of Clinical Physiology,

Pisa, Italy)

RRID:CVCL_0027

Software and algorithms

R TCGAbiolinks Colaprico et al.52 https://github.com/BioinformaticsFMRP/

TCGAbiolinks

R caret NA https://topepo.github.io/caret/

R tidymodels NA https://github.com/tidymodels

R UCSCXenatools Goldman et al.51 https://github.com/ropensci/UCSCXenaTools

R DESeq2 Love et al.53 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

R WebGestaltR Wang et al.54 https://cran.r-project.org/web/packages/

WebGestaltR/index.html

EnrichR Kuleshov et al.55 https://maayanlab.cloud/Enrichr/

Pan Cancer Metabolism Data Explorer Reznik et al.25 http://projects.sanderlab.org/pancanmet/

MetaboAnalyst Xia et al.56 https://www.metaboanalyst.ca

Cytoscape Lotia et al.57 https://cytoscape.org
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R survival 4.3.0 NA https://cran.r-project.org/web/

packages/survival/index.html

R survminer 0.4.9 NA https://cran.r-project.org/web/packages/

survminer/index.html

Custom code This paper Github: https://github.com/raimondilab/

gpcrsignalingaxes and Zenodo:

https://doi.org/10.5281/zenodo.8349771

R ggplot2 3.4.3 NA https://cran.r-project.org/web/

packages/ggplot2/index.html

R drc 3.0.1 NA https://cran.r-project.org/web/

packages/drc/index.html

R ggprism 1.0.4 NA https://cran.r-project.org/web/

packages/ggprism/index.html

Other

Resource webserver complimenting

the study

This paper https://gpcrcanceraxes.bioinfolab.sns.it
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Lead contact
For additional details and inquiries regarding the resources, please direct your communication to Francesco Raimondi (francesco.

raimondi@sns.it).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data, whose sources are listed in key resources table. All original code has been

deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources table (https://doi.

org/10.5281/zenodo.8349771). The code used for this study as well as for the webapp is freely available via github (https://github.

com/raimondilab/gpcrsignalingaxes; https://zenodo.org/records/8349772). Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For in vitro cell culture studies, the human hepatocellular carcinoma cell lines (HEPG2) were generously provided by Laura Poliseno’s

research group (CNR Institute of Clinical Physiology, Pisa, Italy). The HEPG2 cell line was isolated from a 15-year-old, male youth with

liver cancer. The cells were maintained in Dulbecco’s modified Eagle Medium (DMEM) with L-glutamine (Euroclone, Italy), with 10%

fetal bovine serum (Thermo Fisher Scientific, USA), 1% penicillin-streptomycin (Thermo Fisher Scientific, USA). The cells were main-

tained in a 5% CO2 incubator at 37�C.

METHOD DETAILS

GPCR signaling network
To create an extended GPCR network, we have extracted the GPCR and ligand interactions from the IUPHAR/BPS Guide to

PHARMACOLOGY database (IUPHAR database).48 We retained only endogenous ligands, thereby extracting 243 GPCRs and

328 ligands. Based on database classification, the considered ligands can be grouped into five groups: 211 peptides, 107 metab-

olites, 7 synthetic organic, 2 inorganic and 1 natural product. All the other annotations describing GPCRs and ligandswere also pulled

from the database. To further extend our network we added biosynthetic enzymes for GPCR endogenous ligands. To this end we

used Rhea, a curated database of chemical reactions of biological relevance.49 To identify metabolizing enzymes for GPCRs ligands,

we first referenced IUPHAR ligands to ChEBI,58 which is used by Rhea to identify ligands. Ligand mapping between IUPHAR and

Rhea was carried out by using the IUPHAR International Chemical Identifiers (InChIs). As many of the chemical reactions are

happening under physiological pH of 7.3, the ChEBI identities of participants in Rhea reactions at pH 7.3 were considered. Using

our in-house python scripts, we have extracted all the enzymes catalyzing reactions where GPCR ligands participate as products,
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meaning that most of the reactions have left-right (LR) directionality or, in some cases, opposite (right-left - RL) direction. Moreover,

we also considered all the enzymes catalyzing reactions of unknown (UN) direction. Since it is possible that enzyme annotation is

available only for parent reactions, i.e., more generic chemical reactions, we also added parent reactions based on Rhea’s hierar-

chical reaction relationships. For each of the Rhea identities acquired, we extracted the corresponding human enzyme whenever

available. We extracted 1492 enzymes linked to GPCR ligands, which were filtered according to the following Gene Ontology cellular

components terms: ’plasma membrane’, ’axon terminus’, ’external side of plasma membrane’, ’extracellular’, ’neuron projection’,

’channel’, ’membrane transport’. We also included in our composite filter additional annotation terms from Pfam,59 Panther classi-

fication,60 Gene ontology processes (GO)61 or full UniProt62 enzyme name to filter out enzymes classified as kinases, channels, trans-

porters, cytochromes, and adenylyl cyclases. We also included rate-limiting enzymes, by mapping 3k human enzymes from RheaDB

onto Reactome pathways from ’Metabolism’ domain (R-HSA-1430728), which were first filtered, using similar class and domain an-

notations as above, to exclude kinases, channels, transporters, cytochromes, and adenylyl cyclases resulting in a total of 2261

unique enzymes, out of which 945 were found tomatch 163 pathways involving GPCR ligands. To determine which of these enzymes

were rate-limiting the whole biosynthetic pathway, we retrieved for each of them the number of PubMed articles using the following

search query: ’{Enzyme gene symbol} AND (rate limiting OR bottleneck)’. The enzymewith the highest number of PubMed references

for each metabolism pathway associated to GPCR ligands was retained (Supplementary Table S15).

After these filtering steps, we yielded a total list of 266 enzymes, each involved in interaction with one or multiple GPCRsmediated

by synthesized ligands. Receptor-enzymes were further filtered out by using the STRING database, a knowledgebase of known or

predicted protein-protein functional interactions.63 Via STRING, we mapped all possible interactions between GPCRs and enzymes

producing cognate ligands, by using a minimum confidence score of 150, and leading to a shortlist of 82 enzymes. The final network

contained 82 enzymes, 328 ligands and 243 receptors, for a total of 150 binary enzymes-ligand interactions, 646 ligand-GPCR, and

288 receptor-enzyme (ligand-mediated) interactions.

The whole network has been compiled containing different descriptions of each of the three main interactors and their interactions

are currently being deposited to SIGNOR64 database thanks to an ongoing dedicated curation project.

We created G protein-specific gene sets and annotations by aggregating consensus experimental transducer data (i.e., Universal

Coupling Map9) as well as predictions through Precogx.7

Transcriptomics dataset
We considered gene-level expressions from the dataset ‘TCGA TARGET GTEx’ publicly available at UCSC Xena (https://

xenabrowser.net/datapages/).51 These data were generated using the TOIL pipeline, a portable, open-source workflow software

that can be used to run scientific workflows on a large scale in cloud or high-performance computing (HPC) environments.65 The

Toil pipeline uses STAR66 to generate alignments and read coverage graphs, and performs quantification using RSEM67 and Kal-

listo.68 It was utilized to process �20,000 RNA-seq samples to create a consistent meta-analysis of datasets free of computational

batch effects.

We extracted the gene-level expression data, RSEM expected_count, using the R package ‘UCSCXenatools’ for 19109 samples.

Thereafter, the TARGET samples were filtered and only TCGA and GTEx samples were retained (n = 18305; Table S2). Due to un-

availability of GTEx data for all the tissue types, only 16whole cancer-types (TCGA) were contrasted to the healthy samples pertaining

to the same tissue (GTEx). The information for 76 distinct TCGA subtypes was retrieved from TCGAbiolinks52 (R4.2, Bioconductor

v3.16) except for ‘Pancreas’ and ‘Testis’ for whom it was unavailable.

For pancreatic cancer we employed a new classification of TCGA samples using a multi-class classifier already implemented to

classify three novel PDAC subtypes (Glandular, GL; Transitional, TR; Undifferentiated, UN) obtained from the transcriptional profiles

of multiple morphological distinguishable tumor areas isolated by laser micro-dissection (LMD) in primary PDACs of treatment-naı̈ve

patients.24 Briefly, a random Forest (RF) classification method was used to build the model setting the number of trees to 500. To

avoid overfitting issues, the k-fold cross validation was performed. A selection procedure to maintain only the most informative fea-

tures was implemented using the recursive feature elimination (rfe) function in caret R package (https://topepo.github.io/caret/). The

gene expression and clinical data of the TCGA study cohort were obtained by the GDC database and then the samples were further

selected for PDAC diagnosis. Read counts were normalized using DEseq2’s median of ratios. Normalized counts were Log2-trans-

formed and were preprocessed by centering and scaling samples using the Tidymodels R package (https://github.com/tidymodels).

PDAC subtypeswere predicted in each TCGA sample using themodel originated abovewith the predict function in the randomForest

R package setting the parameter type to ‘‘class’’.

DE analysis
We obtained log-transformed gene-level count data (RSEM expected_count) from the UCSCXenatools,51 which was subsequently

inverse-transformed to raw expected count. TCGA matched normal samples were discarded, and a DE analysis was performed to

identify genes with significant expression changes across TCGA-GTEx samples. The DE analysis was conducted using DESeq2,53 a

widely used pipeline for DE analysis. We considered genes with an |LFC|>1 and an adjusted p value (Padj) < 0.01 (Benjamini-

Hochberg correction69) to be differentially expressed. This process was performed for each of the 16 whole tissue types and 79 sub-

types. The contrast for each whole tissue, or subtype, was performed using the corresponding GTEx whole tissue dataset.
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Co-regulation analysis
To identify co-differentially regulated receptor-ligand pairs, we assigned scores to each of these gene pairs. We considered three

major cases: (a) both co-recurrently up/downregulated with significant Padj values (a score of �2/+2), (b) both co-recurrently up/

downregulated with at least one of them having a significant Padj value (a score of�1/+1), and (c) no or anti co-differential regulation

(a score of 0). This information was displayed in the form of Seaborn clustermap (v0.11.2, Python v3.9.7) with hierarchical clustering

performed using the ‘ward’ method of the scipy.cluster library (v1.7.1, Python v3.9.7). On top of this heatmap, G-coupling information

(see STAR Methods section GPCR - G Protein coupling data) and ligand’s mechanism of action (from IUPHAR) was annotated as

separate heat maps using matploltib library (v3.4.3, Python v3.9.7) This way we identified differentially expressed genes and co-

differentially regulated receptor-ligand pairs in a comprehensive and robust manner. The use of DESeq2 and Benjamini-Hochberg

correction ensured the statistical significance of the results, and the consideration of multiple tissue types and subtypes allowed

for a more nuanced understanding of the data.

The gene-gene correlations were calculated using the pearsonr function from the scipy.stats library in Python v3.9.7. Subse-

quently, each correlation coefficient was compared to a background distribution of correlation coefficients derived from 1000

randomly selected gene pairs within the respective cancer subtype. The comparison was performed using a t test from the scipy.

stats library in Python v3.9.7. The t test examines the likelihood that the observed correlation arises from chance variations rather

than representing a genuine relationship. A low p value resulting from the t test indicates that the correlation coefficient significantly

deviates from the expected background distribution. This suggests a potential meaningful association between the genes under

investigation.

To account for multiple hypothesis testing, Benjamini-Hochberg correction was applied to the resulting t test p values. Themulti-

pletests function from the statsmodels library in Python v3.9.7 was utilized for this purpose. A gene pair was considered ’correlated’ if

the false discovery rate (FDR) corrected t test p value was less than 0.05, and the absolute value of the correlation coefficient ex-

ceeded 0.25.

We calculated "tissue-wise similarity" and ‘‘ligand-wise similarity’’, to illustrate GPCR-ligand systems across different TCGA sub-

types. The Tissue-wise Similarity metric measures the similarity in the differential expression profiles of GPCR-ligand pairs across

different tissues. The computation involves determining the average pairwise Euclidean distances between the co-differential

expression (co-DE) profiles of GPCR-ligand pairs for each tissue. In essence, it provides a quantitative measure of how closely

related or distinct the expression patterns of GPCR-ligand pairs are across various tissues. A higher tissue-wise similarity indicates

that the GPCR-ligand pairs exhibit similar expression patterns in different tissues, while lower similarity values suggest diverse

expression profiles. The Ligand-wise Similaritymetric assesses the similarity in the differential expression profiles of a GPCR across

its ligands. Similar to the tissue-wise similarity, this metric calculates the average pairwise Euclidean distances between the co-DE

profiles of ligands associated with a specific GPCR. Thismetric offers insights into how consistent or variable the expression patterns

of different ligands are when acting through a common GPCR. Higher ligand-wise similarity values suggest that the ligands associ-

ated with a GPCR exhibit similar expression patterns, while lower values indicate diversity in the differential expression profiles of

these ligands.

Gene set enrichment analysis
We performed gene set enrichment analysis (GSEA) using the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt).54 The GSEA

process was automated using the R package WebGestaltR. We chose the ’reactome’ pathway database50 for enrichment analysis.

The results from these analyses were employed to correlate the differentially expressed genes to various reactome pathway gene

sets with a positive (enriched in TCGA) or negative enrichment (enriched in GTEx) score with Padj<0.01. We considered GSEA results

for downstream analyses by filtering pathways containing the GPCR ligands or enzymes belonging to either Signal transduction

(‘signaling by GPCR’:R-HSA-372790) or Metabolism (‘metabolism’:R-HSA-1430728) reactome upper level domains.

Transcription factor enrichment
We utilized the differentially expressed GPCR genes (obtained earlier from DeSeq2) for a systematic transcription factor (TF) enrich-

ment analysis using EnrichR (https://maayanlab.cloud/Enrichr/),55 which included leveraging the EnrichR API via Python’s ‘requests’

library for TF database access, and ‘seaborn’ for visualization. Employing established approaches such as Transfac and Jaspar po-

sition weight matrices (PWMs), the top five significantly enriched TFs (adjusted p value <0.05) for each cancer subtype were iden-

tified. This analysis reveals the association between TFs and significantly differentially expressed GPCRs.

For visual representation of relationships among differentially expressed GPCR genes and enriched TFs, a clustermap was con-

structed using seaborn. The ’ward’ method from the scipy library was employed for clustering. The resulting heatmap effectively

showcases co-occurrence patterns, with filled cells indicating TF enrichment in specific cancer subtypes. The color intensity corre-

sponds to the count of differentially expressed GPCRs associated with the respective TF in each subtype. Additionally, a barplot atop

the clustermap provides insight into the count of subtypes in which each TF exhibited enrichment. This comprehensive approach

facilitates exploration of the regulatory TFs governing GPCR genes in diverse cancer subtypes.
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Comparative transcriptome-metabolome analysis
Wemapped differentially expressed transcripts andmetabolites onto a functional interaction network fromReactome pathways,70,71

which integrates in the same network information from proteins and small organic molecules. We first collected data from the Pan-

Cancer Metabolism Data Explorer,25 a comprehensive database that contains information about the differential regulation of metab-

olites associated with cancer aggressiveness. This resource gathered data from over 900 patient samples from five subtypes of

cancer: Breast (BRCA), Prostate (PRAD), Pancreas (PAAD), Kidney (KIRC) and Bladder (BLCA). Using this data, we identified the

DE regulation of enzyme(s) associated with ligand biosynthesis. For this purpose, we used the list of our curated enzymes to query

within this external dataset using an HMDB to ChEBI mapping done via MetaboAnalyst.56 Then, for each pathway, the LFC and Padj

values of constituent enzymes were retrieved. Subsequently, this information was merged with the Reactome functional interaction

network for a ligand-receptor signaling pathway to complete the entire axis. This was achieved by considering only the first neighbors

for involved participants. The resultant networks were used to visualize the directional regulation as well as the DE profiles by utilizing

Cytoscape.57

Pathway Abundance Score
We compared the enrichment scores of differentially expressed transcripts with the differential abundance scores of differentially

expressed metabolites obtained from the Pan-Cancer Metabolism Data Explorer. To this end, we respectively calculated the

GSEA Enrichment Score (ES) and the Pathway Abundance Score (PAS)25 by considering only the filtered set of curated biosynthetic

pathways fromReactome, specifically for metabolism (R-HSA-1430728). The PASwas calculated by using the formula (I-D)/S, where

I represents the number of metabolites (or enzymes) upregulated (LFC>0) in a pathway, D represents the number of metabolites

downregulated (LFC<0) in the pathway, and S is the sum of I and D or 1 if I + D = 0. A pathway is considered enriched in cancer if

the PAS is positive and negative otherwise (similar to ES). We utilized these two metrics to qualitatively evaluate the concordance

of enriched biosynthetic pathways in our findings.

Survival analysis
The study used univariate unadjusted Cox-Proportional Hazards (Cox-PH) regression models to compute hazard ratios (HR) for pre-

dicting the risks of death between high-risk and low-risk TCGA patient groups based on overall survival time. The survival and

censoring information was retrieved using TCGAbiolinks for 28 TCGA tissues and 118 subtypes. The risk groups were stratified

based on median values of expression, and Kaplan-Meier (KM) plots were used to compare their survival curves. ’survival’

(v4.3.0) and ’survminer’ packages (v0.4.9) in R (v4.2) were used for survival analyses, and statistical significance between survival

curves was estimated using log rank tests with p values less than 0.05 considered significant.

For the individual components (i.e., Receptors/Ligands/Enzymes), patients were stratified in two risk groups based on the median

expression value of each component and HR were estimated. Using the ‘low expression’ group as reference for HR calculations, we

label the resulting risk groups as ‘High Survival’ (HR > 1) or ‘Low Survival’ (0<HR < 1). We further employed the combined expression

levels for GPCR axes components i.e., GPCR-ligand/GPCR-enzyme for risk stratification. The patients were now stratified in the two

risk groups utilizing themedian cutoffs of both the components for e.g., for a GPCR-Ligand based stratification, patients with expres-

sion value, EV > MedianGPCR and EV > MedianLigand were placed in one group and the patients with EV < MedianGPCR and

EV < MedianLigand in another group. We then filtered out those significant GPCR-axis pairs wherein the Hazard-Ratio axis (HRaxis)

wasmore than 2-fold of theHR in both the individual stratifications (i.e., for above example [HRaxis/HRGPCR < 0.5 or HRaxis/HRGPCR> 2]

and [HRaxis/HRLigand < 0.5 or HRaxis/HRLigand > 2]) along with the criteria that the logrank-paxis is smaller than the logrank-p values

value of both of the individual stratifications and significant i.e., logrank-paxis<0.05. These instances were then displayed on a heat-

map created using Seaborn scatterplot created using matplotlib (v3.4.3, Python v3.9.7) with hierarchical clustering performed using

the ‘ward’ method of the scipy.cluster library (v1.7.1, Python v3.9.7).

Survival analyses were performed considering whole cancer tissues, as defined in Xena browser, or at the TCGA molecular sub-

type level.

Expanded pan-cancer survival assessment
Univariate and combinatorial Cox PH analyses

Univariate Cox-Proportional Hazards (Cox-PH) analyses assessed the individual impact of receptor and ligand/enzyme genes on sur-

vival in each cancer dataset. Dataset-specific Cox regression coefficients (br and bl or be) were derived using the median expression

as the stratification cutoff.

For receptor-ligand (and receptor-enzyme) pairs, we formulated predictor variables using dataset-specific regression coefficients

as following:

Predictori;d = br;dðiÞ � receptorðiÞ + bl;dðiÞ � ligandðiÞ (1)

where br,d(i) and bl,d(i) represent the dataset-specific regression coefficients obtained from the univariate Cox-PH analysis for the i-th

receptor and ligand gene in dataset (d). A similar approach was employed for receptor-enzyme pairs.

A subsequent round of univariate Cox-PH analysis, using the estimated predictors, evaluated their combined effects on survival

across diverse cancer types.
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Best-performing combinatorial models

Pooled results from all datasets identified best-performing combinatorial models based on hazard ratios (HRc) and log rank p values

(logrank_p_c). Selection criteria, as earlier, included a hazard ratio (HRc) twice that of individual receptor (HRr) and enzyme or ligand

(HRe or HRl) models, with a log rank p value (logrank_p_c < 0.05) less than logrank_p_r and logrank_p_l or logrank_p_e.

Multivariate linear regression

For selected models, multivariate linear regression analyzed the relationship (bc = f(br, bl or be)) between combinatorial (bc) and indi-

vidual receptor (br), ligand, or enzyme regression coefficients (bl or be). The estimated regression coefficients provided insights into

how the individual receptors/ligands/enzymes contributed to the overall impact on survival across multiple cancer datasets, when

restricted to best performing combinatorial models.

Subtype-associated mutational co-regulation analysis

In this study, we conducted a systematic analysis of mutation of cancer genes across multiple datasets, focusing on TCGA projects

and specifically utilizing data from the Firehose Legacy datasets. The mutation data, obtained from cBioPortal (https://www.

cbioportal.org/datasets), comprised ‘_data_mutations.txt’ files. To ensure biological relevance, we processed this genomic informa-

tion by extracting key details such as mutation status, tumor sample information, and gene classifications.

Our approach involved filtering for oncogenes and tumor suppressor genes based on the OncoKB cancer gene list (https://www.

oncokb.org/cancer-genes), refining the dataset to genes of significant biological importance. Subsequently, we associated these

mutations with specific cancer subtypes by integrating subtype information from TCGAbiolinks. We standardized Tumor Sample

Barcodes to ensure a consistent representation across all datasets.

To discern the landscape ofmutated genes linked to various cancer subtypes, we calculated gene frequencies within each subtype

and ranked the top 5 mutated genes per subtype. Thereafter, we integrated the subtype specific axes co-regulation information with

cancer genes mutational signatures to analyze correlations between the two. The entire process, encompassing data preprocessing

and result compilation, was performed in Python leveraging the Pandas library (Python v3.9.7) and the results were rendered using a

Seaborn heatmap combined with a Matplotlib (v3.4.3, Python v3.9.7) stacked barplot.

Analysis of GPCR drugs on PRISM drug repurposing resource

We retrieved GPCR ligands with cancer growth-inhibitory capacity from a publicly available resource, i.e., PRISM (Profiling Relative

Inhibition Simultaneously in Mixtures).29 This drug repurposing resource was developed to identify potential drugs for cancer treat-

ment. To predict drug response, PRISM utilizes genomic data from cancer cell lines and patient-derived xenografts, which are input-

ted into machine learning pipelines. By taking into account inter- and intra-species variability in drug response, PRISM aims to pro-

vide personalized treatment options for specific cancer subtypes. The dataset retrieved from PRISM contained information on the

growth-inhibitory activity of over 4,500 drugs tested on 578 human cancer cell lines. This data was filtered based on the drugs which

had GPCRs as targets and a list of 52 GPCR drugs/ligands was obtained. To identify active drugs for cancer treatment, PRISM uses

the bimodality coefficient and correlation as metrics. The bimodality coefficient measures the separation between the two peaks in a

drug response distribution, identifying drugs with a bimodal distribution of response across cancer cell lines. The correlation mea-

sures the strength of the relationship between predicted and actual drug response in patient-derived xenograft models. Following a

similar approach, we used these metrics (correlation>0.2, bimodality coefficient>0.35) to identify GPCR drugs that are active against

specific cancer subtypes. The active drugs were then investigated on the basis of GPCRs associated with survival in either of GPCR-

Ligand or GPCR-Enzyme axes. The information was further annotated with G-coupling information and ultimately displayed using

visual representations such as scatterplots, venn diagram and heatmaps utilizing seaborn (v0.11.2, Python v3.9.7) and matplotlib

libraries (v3.4.3, Python v3.9.7).

We also considered data obtained from two recent PRISM Repurposing screens: Repurposing-1M and Repurposing-300. These

screens assess the Log2 Fold Change (LFC) in cell counts, deploying the PRISM assay to evaluate 6658 compounds, of which 1514

target GPCRs. The compounds are administered at a dose of 2.5 mM over a 5-day treatment to 906 cancer cell lines. The final

LFC values are consolidated in the https://depmap.org/portal/download/all/?release=PRISM+Repurposing+Public+23Q2&file=

Repurposing_Public_23Q2_Extended_Primary_Data_Matrix.csv table, constituting a matrix where rows represent individual treat-

ments and columns correspond to the DepMap IDs. For convenience, this matrix also includes the compounds from the original

PRISM Repurposing Primary screen. The research also incorporates metadata for the drugs and the cell lines from Repurposing_

Public_23Q2_Extended_Primary_Data_Matrix.csv and the Model.csv file, respectively. Using the Model.csv, we leverage

DepMapID to stratify cell lines according to tissue type, following the OncoTree ontology. All of this data is freely accessible on

the DepMap portal. For each cell line, we considered the top 10GPCR drugs inhibiting cancer cell growth, i.e., having themost nega-

tive log2fold change.We then performed statistic considering theMechanism of Action (MOA) and Targets associated to each ligand.

To monitor GPCR expression on PRISM cell lines, we downloaded log2 transformed TPMRNA-seq data (https://depmap.org/portal/

download/all/?releasename=DepMap+Public+23Q4&filename=OmicsExpressionProteinCodingGenesTPMLogp1.csv), as well as

normalized protein expression data (https://depmap.org/portal/download/all/?releasename=Proteomics&filename=protein_quant_

current_normalized.csv) from DEPMAP.

Cell line culture

The human hepatocellular carcinoma cell lines (HEPG2) were generously provided by Laura Poliseno’s research group (CNR Institute

of Clinical Physiology, Pisa, Italy). The HEPG2 cell line was maintained in Dulbecco’s modified Eagle Medium (DMEM) with
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L-glutamine (Euroclone, Italy), with 10% fetal bovine serum (Thermo Fisher Scientific, USA), 1% penicillin-streptomycin (Thermo

Fisher Scientific, USA). The cells were maintained in a 5% CO2 incubator at 37�C.
Drug treatment

On the day before treatments, cells were harvested, counted, seeded onto 96-well plates at a density of 104 cells per well, and

adhered overnight.

For drug treatment, MRS-1220 (Tocris Bioscience, United Kingdom; CAS#183721-15-5) and CGS-15943 (Cayman Chemical

Company, USA; CAS#104615-18-1) were prepared in a stock solution of respectively 10mM and 1.7mM DMSO (Merck KGaA, Ger-

many). Serial dilutions using DMEMwere performed to achieve a range of concentrations from 0.1nM to 100mMof the drugs. Control

wells were treated with an equivalent volume of DMSO used for drug dilution. The treated and control cells were incubated for 72 h at

37�C, 5% CO2 incubator. All conditions were performed in triplicate to ensure reproducibility.

Viability test

72h after treatment, Calcein, AM, cell-permeant dye (Thermo Fisher Scientific, USA) assay was conducted in accordance with the

manufacturer’s guidelines. The cells were incubated with the dye for 1 h. Subsequently, the fluorescence signal was measured using

the Infinite M200 Nano Quant instrument (Tecan, Austria).

Fluorescence intensity values obtained from untreated cells were regarded as representing 100% cell viability. The concentration

of the drugs at which 50% cell growth inhibition (EC50) occurred was determined using the drc package (v 3.0.1, R v 4.1.2). The

ggplot (v 3.4.3, R v 4.1.2) and ggprism (v 1.0.4, R v 4.1.2) packages were used to draw the plots. Pairwise comparisons were con-

ducted using the Wilcoxon rank-sum test with continuity correction to assess the differences in treated cells compared to the un-

treated ones. p value adjustment for multiple comparisons was performed using the Benjamini-Hochberg (BH) method.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analysis in this study was robustly conducted using a variety of software tools and statistical tests. The DE analysis

employed log-transformed gene-level count data obtained from UCSCXenatools, with DESeq2 software utilized for analysis. Signif-

icance was determined using an Benjamini-Hochberg (BH) correction adjusted p value threshold of <0.01 and |LFC|>1. Correlation

analysis involved Pearson correlation coefficients computed using the scipy.stats library in Python, with significance assessed using

t tests and BH correction for multiple testing (see ‘Method Details:Co-regulation Analysis’). Tissue-wise and ligand-wise similarity

metrics, as defined in Method Details (’Co-regulation analysis’), were calculated to assess GPCR-ligand systems, employing custom

scripts in Python. GSEA utilized the WebGestalt tool, with Reactome pathway enrichment analysis performed using the reactome

pathway database and a BH adjusted Padj threshold 0.01. Transcription factor enrichment analysis was conducted with EnrichR,

incorporating Transfac and Jaspar position weight matrices (PWMs) and a BH adjusted Padj<0.05. Survival analysis employed uni-

variate Cox proportional hazards regression and Kaplan-Meier analysis, with statistical significance assessed using log rank tests

and a significance threshold of p < 0.05. Furthermore, for stratification of patients to conduct survival analysis, median expression

values of respective genes were utilized. The KM plots are complemented with risk tables displaying the number of patients in strat-

ified categories. Comparative transcriptome-metabolome analysis, mutation analysis, and drug response prediction were performed

using a combination of Python scripts, Pandas library, and various publicly available databases such as cBioPortal, PRISM, and

DepMap (see Method Details). The EC50 values, representing the drug concentrations inhibiting 50% of cell growth, were deter-

mined using the drc package (v 3.0.1, R v 4.1.2). Wilcoxon rank-sum tests with continuity correction assessed differences between

treated and untreated cells, with p value adjustment via the Benjamini-Hochberg method for multiple comparisons. All the softwares

have been referenced to appropriate sources in the key resources table.

Additional resources
The results from this study have been shared openly through aweb app, which can be accessed at gpcrcanceraxes.bioinfolab.sns.it.
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