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Abstract

This paper proposes several definitions of “norm-observability” for nonlinear systems and explores
relationships among them. These observability properties involve the existence of a bound on the norm
of the state in terms of the norms of the output and the input on some time interval. A Lyapunov-like
sufficient condition for norm-observability is also obtained. As an application, we prove several variants
of LaSalle’s stability theorem for switched nonlinear systems. These results are demonstrated to be
useful for control design in the presence of switching as well as for developing stability results of Popov
type for switched feedback systems.

Keywords: nonlinear system, observability, switched system, LaSalle’s stability theorem.

1 Introduction

For linear time-invariant systems with outputs, there are several equivalent ways to define observability.
A standard approach is through distinguishability, which is the property that different initial conditions
produce different outputs. This is equivalent to 0-distinguishability, which says that nonzero initial con-
ditions produce nonzero outputs. The state of an observable linear system can be reconstructed from the
output measurements on a time interval of arbitrary length by inverting the observability Gramian.

In the nonlinear context, various definitions of observability are no longer equivalent, and in general
nonlinear observability is not as completely understood. In particular, the distinguishability concept has
a natural counterpart for nonlinear systems, but does not lend itself to an explicit state reconstruction
procedure as readily as in the linear case. In fact, it is well known that recovering the state of a nonlinear
system from its output, even asymptotically by means of a dynamic observer, is a difficult task. Also, the
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choice of inputs plays a nontrivial role in reconstructing the state. These issues are discussed in books such
as [20, 22, 34].

Instead of building an observer, however, it is sometimes sufficient for control purposes (although still
far from being trivial) to construct a “norm estimator”, i.e., to obtain an upper bound on the norm of the
state using the output; see [36] for a discussion and references. This motivates us to address the concept of
“norm-observability”, which concerns the ability to determine such a bound rather than the precise value
of the state.

Another notion related to observability is detectability, which for linear systems means that all solutions
producing zero outputs decay to zero. In [36], a variant of detectability for nonlinear systems (called
“output-to-state stability”) is defined as the property that the state is bounded in terms of the supremum
norm of the output, modulo a decaying term depending on initial conditions. This turns out to be a very
useful and natural property, which is dual to input-to-state stability (ISS). For systems with inputs, one
combines the inputs with the outputs and arrives at the concept of “input-output-to-state stability” which
has been studied in [23, 36].

In Section 2 we present several possible definitions of norm-observability for nonlinear systems with
inputs, which involve a bound on the norm of the state in terms of the norms of the output and the input
on some (arbitrarily small) time interval. We establish implications and equivalences among these notions
in Section 3. We demonstrate, in particular, that the length of the time interval can affect the existence
of a state bound. Our formulation is related to the developments of [23, 36] and helps establish a link
between observability and detectability in the nonlinear context. In fact, one of our definitions is obtained
directly from the notion of input-output-to-state stability by imposing an additional requirement which
says, loosely speaking, that the term describing the effects of initial conditions can be chosen to decay
arbitrarily fast. In the spirit of [36], we derive a Lyapunov-like sufficient condition for this property in
Section 4.

A problem of interest which serves as a motivation for studying these concepts is to extend LaSalle’s
invariance principle to switched systems. As shown in [17], a switched linear system is globally asymptoti-
cally stable if each subsystem possesses a weak Lyapunov function nonincreasing along its solutions and is
observable with respect to the derivative of this function, as long as one imposes a suitable non-chattering
assumption on the switching signal and a coupling assumption on the multiple Lyapunov functions. This
can be viewed as an invariance-like principle for switched linear systems. We generalize this result to
switched nonlinear systems in Section 5, exploiting the norm-observability notions introduced here. Sta-
bility theorems of LaSalle type for switched systems are useful in situations where it is natural—or even
necessary—to work with weak Lyapunov functions. In Section 6, we discuss several specific examples
of such situations arising in the context of stability analysis as well as control design in the presence of
switching.

Preliminary versions of our findings for systems without inputs were stated in [18]. The more general
treatment presented here relies on a novel result about boundedness of reachable sets for systems with
inputs, which is proved in the Appendix.

2 Observability properties

Consider the system

ẋ = f(x, u)
y = h(x, u)

(1)

where u is a measurable locally essentially bounded disturbance or control input taking values in a set
U ⊂ R

m containing the origin, f : R
n × U → R

n is a locally Lipschitz function with f(0, 0) = 0, and
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h : R
n × U → R

p is a continuous function with h(0, 0) = 0. We assume that this system has the
unboundedness observability property, which means that for each trajectory that becomes unbounded in
a finite time T , the output becomes unbounded as t → T (in the sense that lim supt→T |y(t)| = ∞). The
unboundedness observability property is strictly weaker than forward completeness, which is the property
that each trajectory is defined for all t ≥ 0; see, e.g., [3]. We also assume unboundedness observability
of the backward-in-time dynamics ẋ = −f(x, u), y = h(x, u). We will denote by ‖z‖J the (essential)
supremum norm of a signal z on an interval J ⊂ [0,∞). The standard Euclidean norm will be denoted by
| · | and the corresponding induced matrix norm by ‖ · ‖.

Our first observability definition involves a bound on the norm of the initial state in terms of the norms
of the output and the input on an arbitrarily small time interval. We will say that the system (1) is
small-time initial-state norm-observable if the following property holds1:

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x(0)| ≤ γ(‖y‖[0,τ ]) + χ(‖u‖[0,τ ]) ∀x(0), u. (2)

Rather than bounding the initial state in terms of the future output and input on an interval, we can
bound the state at the end of an interval in terms of the past output and input on that interval. Let us
say that the system (1) is small-time final-state norm-observable if

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x(τ)| ≤ γ(‖y‖[0,τ ]) + χ(‖u‖[0,τ ]) ∀x(0), u. (3)

We now define a different pair of observability properties, similar to the above, as follows. Let us say
that the system (1) is large-time initial-state norm-observable if

∃ τ > 0, γ, χ ∈ K∞ such that |x(0)| ≤ γ(‖y‖[0,τ ]) + χ(‖u‖[0,τ ]) ∀x(0), u. (4)

Note that the only difference between the conditions (2) and (4) is that in the former the length τ of the
time interval can be arbitrary, while the latter requires the inequalities to hold for at least one positive τ
(of course, they will then also hold for all larger values of τ). For linear systems these two properties are
known to be equivalent, but for nonlinear systems this is in general not true, as we will see below.

As before, we can bound the state in terms of past output and input rather than future output and
input. We will say that the system (1) is large-time final-state norm-observable if

∃ τ > 0, γ, χ ∈ K∞ such that |x(τ)| ≤ γ(‖y‖[0,τ ]) + χ(‖u‖[0,τ ]) ∀x(0), u. (5)

The above terminology is prompted by the one used in the controllability literature [15].
Continuing along the same lines, we can impose a bound on the initial state in terms of the output and

the input on the semi-infinite time interval. Let us say that the system (1) is infinite-time norm-observable
if

∃ γ, χ ∈ K∞ such that |x(0)| ≤ γ(‖y‖[0,∞)) + χ(‖u‖[0,∞)) ∀x(0), u. (6)

In [36], the authors define the property of input-output-to-state stability, which is a variant of de-
tectability and is characterized by an inequality of the form

|x(t)| ≤ β(|x(0)|, t) + γ(‖y‖[0,t]) + χ(‖u‖[0,t]) ∀x(0), u, t ≥ 0 (7)

1Recall that a function α : [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly increasing, and α(0) = 0. If
α is also unbounded, then it is said to be of class K∞. A function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL if
β(·, t) is of class K for each fixed t ≥ 0 and β(r, t) decreases to 0 as t → ∞ for each fixed r ≥ 0. We will use the shorthand
notation α ∈ K∞, β ∈ KL. We will exploit the simple fact that for every class K function α and arbitrary positive numbers
r1, r2, . . . , rk we have α(r1 + · · · + rk) < α(kr1) + · · · + α(krk).
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where β ∈ KL and γ, χ ∈ K∞. Strengthening this notion, we say that the system (1) is small-time-KL
norm-observable if for every ε > 0 and every function ν ∈ K there exist functions β ∈ KL and γ, χ ∈ K∞
such that the inequality (7) holds along all solutions and, moreover, we have

β(r, ε) ≤ ν(r) ∀ r ≥ 0. (8)

The condition (8) can be interpreted as saying that β can be chosen to decay arbitrarily fast in the second
argument, because ε can be arbitrarily small and ν can grow arbitrarily slowly while β(r, 0) ≥ r. (In
general, this is achieved at the expense of choosing γ and χ to be sufficiently large.)

In the same spirit as before, we introduce a variant of the above property by requiring that (8) hold
for all ν ∈ K and at least one positive ε (it will then hold for all larger values of ε). Namely, we will say
that the system (1) is large-time-KL norm-observable if there exists an ε > 0 such that for every function
ν ∈ K there exist functions β ∈ KL and γ, χ ∈ K∞ for which the conditions (7) and (8) are satisfied.

Remark 1 One could also define local variants of the above observability properties, by allowing the
functions γ and χ to be undefined (or take the value ∞) outside some bounded intervals. The corresponding
definitions can also be rewritten in more familiar ε, δ terms. For example, the local variant of the small-time
initial-state norm-observability property (2) would be

∀ τ > 0, ε > 0 ∃ δ > 0 such that ‖y‖[0,τ ], ‖u‖[0,τ ] ≤ δ ⇒ |x(0)| ≤ ε.

Such a weaker observability notion (for systems with no inputs) was considered in [39].

State bounds provided by the above definitions involve the norms of the output and the input on some
time interval of positive length. An alternative way to define observability, which is known to work for
linear systems, is to demand that the state be bounded in terms of the instantaneous values of the output,
the input, and a suitable number of their derivatives. We do not study such observability properties here.
Notions of this kind are frequently encountered in the nonlinear control literature (see, e.g., [30, 13, 37, 27]).

For the system with no inputs

ẋ = f(x)
y = h(x)

(9)

one can define corresponding observability notions by simply dropping the terms depending on u from the
right-hand sides; see [18] for details. In this way one also obtains stronger versions of the above observability
notions for the system (1), which require that the state be bounded in terms of the output only, uniformly
over all inputs. These settings fit into our more general framework; we will return to this topic at the end
of Section 3.

3 Implications and equivalences

In this section we study the relationships among the observability properties introduced in Section 2.

Technical lemmas

The following lemma is proved in the Appendix.

Lemma 1 For every τ > 0 there exist functions νf , γf , χf ∈ K∞ such that along all solutions of the
system (1) we have

|x(t2)| ≤ νf (|x(t1)|) + γf (‖y‖[t1,t2]) + χf (‖u‖[t1,t2]) (10)

for each pair of times t1, t2 satisfying t1 ≥ 0 and t2 ∈ [t1, t1 + τ ].
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We also need the backward-in-time counterpart.

Lemma 2 For every τ > 0 there exist functions νb, γb, χb ∈ K∞ such that along all solutions of the
system (1) we have

|x(t1)| ≤ νb(|x(t2)|) + γb(‖y‖[t1,t2]) + χb(‖u‖[t1,t2])

for each pair of times t1, t2 satisfying t1 ≥ 0 and t2 ∈ [t1, t1 + τ ].

Small-time norm-observability

It is useful and simple to give several slight reformulations of the small-time initial-state norm-observability
property. By time-invariance, the condition (2) can be equivalently expressed as

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x(t)| ≤ γ(‖y‖[t,t+τ ]) + χ(‖u‖[t,t+τ ]) ∀x(0), u, t ≥ 0 (11)

or, after taking the supremum over t ∈ [t1, t2] for arbitrary t2 ≥ t1 ≥ 0, as

∀ τ > 0 ∃ γ, χ ∈ K∞ such that ‖x‖[t1,t2] ≤ γ(‖y‖[t1,t2+τ ]) + χ(‖u‖[t1,t2+τ ]) ∀x(0), u, t2 ≥ t1 ≥ 0. (12)

This last condition includes (2) as a special case (just let t1 = t2 = 0), and so it is easy to see that (2),
(11), and (12) are equivalent.

Similar remarks apply to small-time final-state norm-observability. By time-invariance, (3) is equivalent
to

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x(t)| ≤ γ(‖y‖[t−τ,t]) + χ(‖u‖[t−τ,t]) ∀x(0), u, t ≥ τ. (13)

Taking the supremum over t ∈ [t1, t2] for arbitrary t2 ≥ t1 ≥ τ , we arrive at

∀ τ > 0 ∃ γ, χ ∈ K∞ such that ‖x‖[t1,t2] ≤ γ(‖y‖[t1−τ,t2]) + χ(‖u‖[t1−τ,t2]) ∀x(0), u, t2 ≥ t1 ≥ τ (14)

and this includes (3) as a special case.
We show next that all the variants of small-time norm-observability introduced in Section 2 are in fact

equivalent, and that they are also equivalent to another property which involves a bound on the norm of
the state on an interval in terms of the norms of the output and the input on the same interval.

Proposition 3 The following statements are equivalent:

1. The system (1) is small-time initial-state norm-observable.

2. The system (1) is small-time final-state norm-observable.

3. The system (1) satisfies the condition

∀ τ > 0 ∃ γ, χ ∈ K∞ such that ‖x‖[t1,t2] ≤ γ(‖y‖[t1,t2])+χ(‖u‖[t1,t2]) ∀x(0), u, t1 ≥ 0, t2 ≥ t1+τ. (15)

4. The system (1) is small-time-KL norm-observable.

Proof. The equivalences 1 ⇔ 2 ⇔ 3 follow rather easily from Lemmas 1 and 2. Indeed, (2) implies (3) in
view of Lemma 1, as can be seen from the inequalities

|x(τ)| ≤ νf (|x(0)|) + γf (‖y‖[0,τ ]) + χf (‖u‖[0,τ ])

≤ νf

(
γ(‖y‖[0,τ ]) + χ(‖u‖[0,τ ])

)
+ γf (‖y‖[0,τ ]) + χf (‖u‖[0,τ ])

≤ γ̄(‖y‖[0,τ ]) + χ̄(‖u‖[0,τ ])
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where γ̄(r) := νf (2γ(r)) + γf (r) and χ̄(r) := νf (2χ(r)) + χf (r). This proves that 1 ⇒ 2. The converse
implication follows from Lemma 2 in the same manner. The fact that (12) implies (15) is deduced similarly
with the help of Lemma 1, while the converse is straightforward. Since (12) is one of the equivalent
formulations of small-time initial-state norm-observability, this proves that 1 ⇔ 3.

We now turn to proving the more interesting fact that the first three properties are equivalent to the last
one. Suppose that the system is small-time-KL norm-observable. Pick an arbitrary τ > 0. By Lemma 2,
there exist class K∞ functions νb, γb and χb such that

|x(0)| ≤ νb(|x(τ)|) + γb(‖y‖[0,τ ]) + χb(‖u‖[0,τ ]) (16)

for all x(0) and all u. By small-time-KL observability, for ε := τ and

ν(r) :=
1
3
ν−1

b (r/2) (17)

there exist functions β ∈ KL and γ, χ ∈ K∞ such that the conditions (7) and (8) hold. In particular, (8)
and (17) give

νb(3β(|x(0)|, τ)) ≤ |x(0)|/2 (18)

while (16) and (7) with t = τ yield

|x(0)| ≤ νb

(
β(|x(0)|, τ) + γ(‖y‖[0,τ ]) + χ(‖u‖[0,τ ])

)
+ γb(‖y‖[0,τ ]) + χb(‖u‖[0,τ ])

≤ νb(3β(|x(0)|, τ)) + νb(3γ(‖y‖[0,τ ])) + νb(3χ(‖u‖[0,τ ])) + γb(‖y‖[0,τ ]) + χb(‖u‖[0,τ ]).

Using (18), we conclude that
|x(0)| ≤ γ̄(‖y‖[0,τ ]) + χ̄(‖u‖[0,τ ])

where γ̄(r) := 2νb(3γ(r))+2γb(r) and χ̄(r) := 2νb(3χ(r))+2χb(r). Therefore, the condition (2) holds, and
so we have shown that 4 ⇒ 1.

Finally, we prove that 2 ⇒ 4, using the formulation of small-time final-state norm-observability provided
by the condition (13). Pick arbitrary ε > 0 and ν ∈ K. Let τ := ε/2. Applying (13), we conclude that
there exist functions γ, χ ∈ K∞ such that all trajectories satisfy

|x(t)| ≤ γ(‖y‖[t−ε/2,t]) + χ(‖u‖[t−ε/2,t]) ≤ γ(‖y‖[0,t]) + χ(‖u‖[0,t]) ∀ t ≥ ε/2. (19)

Also, Lemma 1 gives

|x(t)| ≤ νf (|x(0)|) + γf (‖y‖[0,t]) + χf (‖u‖[0,t]) ∀ t ∈ [0, ε/2] (20)

for some νf , γf , χf ∈ K∞. Choose a function β ∈ KL such that for all r ≥ 0 we have

β(r, ε/2) ≥ νf (r) (21)

and
β(r, ε) = ν(r/2). (22)

One possible definition is

β(r, t) := max
{

2νf (r)
ε− t

ε
, ν(r/2)

2ε
t+ ε

}
.

The condition (8) automatically holds because of (22). Now, for t ∈ [0, ε/2] we can use (20) and (21) to
write

|x(t)| ≤ νf (|x(0)|) + γf (‖y‖[0,t]) + χf (‖u‖[0,t])

≤ β(|x(0)|, ε/2) + γf (‖y‖[0,t]) + χf (‖u‖[0,t])

≤ β(|x(0)|, t) + γf (‖y‖[0,t]) + χf (‖u‖[0,t]).
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Combining this with (19), we deduce that for all t ≥ 0 we have the inequality

|x(t)| ≤ β(|x(0)|, t) + γ̄(‖y‖[0,t]) + χ̄(‖u‖[0,t])

where γ̄ := γf + γ and χ̄ := χf + χ. Therefore, the condition (7) holds.
In view of Proposition 3, we will drop the unnecessary qualifiers and refer to each of the properties

appearing in its statement as small-time norm-observability.

Remark 2 In the sequel, we will encounter a restricted version of small-time-KL norm-observability, which
is limited to functions ν ∈ K that are bounded from below by a linear function with a positive slope. A
close examination of the proof of Proposition 3 (the implication 4 ⇒ 1) reveals that this weaker form of
small-time-KL norm-observability is equivalent to the other small-time observability properties if we can
take the function νb in Lemma 2 to be linear (or with a linear upper bound). This condition on νb holds
true for every linear system and also for every nonlinear system with a uniform exponential bound on the
growth of solutions.

Large-time norm-observability

Our treatment of large-time norm-observability parallels that of small-time norm-observability. By time-
invariance, large-time initial-state norm-observability defined by (4) is equivalent to

∃ τ > 0, γ, χ ∈ K∞ such that |x(t)| ≤ γ(‖y‖[t,t+τ ]) + χ(‖u‖[t,t+τ ]) ∀x(0), u, t ≥ 0. (23)

Taking the supremum over t ∈ [t1, t2], we can further rewrite this as

∃ τ > 0, γ, χ ∈ K∞ such that ‖x‖[t1,t2] ≤ γ(‖y‖[t1,t2+τ ]) + χ(‖u‖[t1,t2+τ ]) ∀x(0), u, t2 ≥ t1 ≥ 0. (24)

The condition (4) is a special case of (24), and we easily see that (4), (23), and (24) are equivalent.
Similarly, large-time final-state norm-observability defined by (5) can be equivalently rewritten as

∃ τ > 0, γ, χ ∈ K∞ such that |x(t)| ≤ γ(‖y‖[t−τ,t]) + χ(‖u‖[t−τ,t]) ∀x(0), u, t ≥ τ (25)

or, taking the supremum over t ∈ [t1, t2], as

∃ τ > 0, γ, χ ∈ K∞ such that ‖x‖[t1,t2] ≤ γ(‖y‖[t1−τ,t2]) + χ(‖u‖[t1−τ,t2]) ∀x(0), u, t2 ≥ t1 ≥ τ. (26)

The following result is established by the same arguments (for a given τ) as Proposition 3.

Proposition 4 The following statements are equivalent:

1. The system (1) is large-time initial-state norm-observable.

2. The system (1) is large-time final-state norm-observable.

3. The system (1) satisfies the condition

∃ τ > 0, γ, χ ∈ K∞ such that ‖x‖[t1,t2] ≤ γ(‖y‖[t1,t2]) + χ(‖u‖[t1,t2]) ∀x(0), u, t1 ≥ 0, t2 ≥ t1 + τ. (27)

4. The system (1) is large-time-KL norm-observable.

We will henceforth refer to each of these properties as large-time norm-observability.

7



Infinite-time norm-observability

In the same way as before, we can rewrite the condition (6) as

∃ γ, χ ∈ K∞ such that |x(t)| ≤ γ(‖y‖[t,∞)) + χ(‖u‖[t,∞)) ∀x(0), u, t ≥ 0 (28)

or as
∃ γ, χ ∈ K∞ such that ‖x‖[t1,t2] ≤ γ(‖y‖[t1,∞)) + χ(‖u‖[t1,∞)) ∀x(0), u, t2 ≥ t1 ≥ 0. (29)

In particular, taking t1 = 0 and t2 = ∞ in the last formula, we arrive at

∃ γ, χ ∈ K∞ such that ‖x‖[0,∞) ≤ γ(‖y‖[0,∞)) + χ(‖u‖[0,∞)) ∀x(0), u (30)

thus recovering precisely the strong observability property as defined in [32]. However, this terminology
is not suitable here because, as we will see next, infinite-time norm-observability is actually the weakest
among all the observability notions studied in this paper.

Relationships among the different notions

The following theorem is the main result of this section.

Theorem 5 The only implications that hold among the observability properties defined above for the sys-
tem (1) are:

small-time (2) ⇔ (11) ⇔ (12)︸ ︷︷ ︸
initial-state

⇔ (3) ⇔ (13) ⇔ (14)︸ ︷︷ ︸
final-state

⇔ (15) ⇔ ∀ ε : (7)&(8)︸ ︷︷ ︸
KLnorm-observability

⇓

large-time (4) ⇔ (23) ⇔ (24)︸ ︷︷ ︸
initial-state

⇔ (5) ⇔ (25) ⇔ (26)︸ ︷︷ ︸
final-state

⇔ (27) ⇔ ∃ ε : (7)&(8)︸ ︷︷ ︸
KLnorm-observability

⇓

infinite-time norm-observability (6) ⇔ (28) ⇔ (29) ⇔ (30)

Proof. We have already established all the equivalences for each property. The implications shown for the
different properties are apparent from the definitions. It remains to prove that the converse implications
do not hold.

We first give a counterexample showing that large-time norm-observability does not imply small-time
norm-observability. It is enough to do this for the case of no inputs. Consider the system (9) with x ∈ R

and f and h both odd functions satisfying

f(0) = 0, f(x) = 1 if x ≥ 1

8



and
h(x) = x if x ∈ [0, 1], h(x) = 0 if x ∈ [2, 3], h(x) = x− 3 if x ≥ 4

respectively (extended arbitrarily to those x for which their values are not specified; see Figure 1, left).
Then it is straightforward to verify that the condition (4) is satisfied with τ = 3 and γ the identity function
(omitting u). Indeed, for x(0) ∈ [0, 1] we have y(0) = x(0), whereas for x(0) > 1 we have x(3) > 4 hence
y(3) = x(3)− 3 = x(0); the arguments for x(0) < 0 are similar. On the other hand, the condition (2) does
not hold for any τ ≤ 1, because for x(0) = 2 we have y(t) ≡ 0 on [0, 1].

y

x

ẋ = 1
1

1

2

2

3

3

4

y

x

ẋ = x
1

1
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Figure 1: The two counterexamples

As a counterexample showing that infinite-time norm-observability does not imply large-time norm-
observability, consider again the system (9) with x ∈ R and f and h both odd functions such that

f(x) = x if x ∈ [0, 2]

(the behavior of f for x > 2 is unimportant) and

h(x) = 0 if x ∈ [0, 1], h(x) ∈ [0, 2] if x ∈ [1, 2], h(x) = x if x ≥ 2

respectively (see Figure 1, right). Then the condition (4) cannot hold for any τ > 0, no matter how large,
since for every τ > 0 we can find a sufficiently small x(0) > 0 such that along the corresponding solution
we have ‖y‖[0,τ ] = 0. On the other hand, (30) is satisfied because we have ‖x‖[0,∞) = ‖y‖[0,∞). (In fact, by
a proper choice of f we can ensure that these norms are finite for all initial conditions.)

Remark 3 It is easy to see that each of the observability properties considered here implies 0-distinguish-
ability under the zero input: the only subset of ker h(·, 0) which is invariant under the zero input is {0}.
Note that the converse does not hold. As an example, consider the scalar system ẋ = x, y = arctan x. It
is clearly 0-distinguishable (in fact, distinguishable: the output map is invertible), but x blows up while y
stays bounded.

Remark 4 For linear systems, all of the above properties are equivalent to the usual observability. For the
properties expressed by the conditions (2)–(6) this can be easily shown using the observability Gramian. For
(small-time-)KL norm-observability this fact is less obvious, and can be viewed as a generalization of the
squashing lemma from [29] which is a refinement of the well-known result about arbitrary pole placement
by output injection. This lemma says that if (C,A) is an observable pair, then for every ε > 0 and every
δ > 0 there exist a λ > 0 and an output injection matrix K such that we have ‖e(A+KC)t‖ ≤ δe−λ(t−ε),
which implies ‖e(A+KC)ε‖ ≤ δ. Therefore, in the linear case the function β in (7) can be chosen to satisfy
β(r, ε) ≤ δr with δ arbitrarily small. This means that the condition (8) can be fulfilled if and only if the
function ν is restricted to be bounded from below by a linear function with a positive slope. We know from
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Remark 2 that for linear systems, this restricted form of small-time-KL norm-observability is equivalent
to the other small-time observability properties, because we can take the function νb in Lemma 2 to be
linear.

Remark 5 It is interesting to compare our findings with the results reported in [31] for discrete-time
systems. For example, the counterparts of initial-state observability and final-state observability in discrete
time are not equivalent. To see why, it is enough to consider a system whose output map is zero and whose
state becomes zero after one step, regardless of the input. (The difference with the above continuous-time
setting is that backward-in-time dynamics in this example are not well defined.)

Uniform observability and systems with no inputs

Now, consider the observability notions obtained by omitting the term of the form χ(‖u‖J ) from the
right-hand sides of the inequalities (2)–(7) and demanding that the inequalities hold for the system (1)
uniformly over all inputs or, for the system without inputs (9), simply over all trajectories (cf. the end
of Section 2). Then the same implications among the resulting properties as those in Theorem 5 remain
valid, provided that U is a compact set and f(0, u) = 0 for all u ∈ U when inputs are present. This is
proved by the same arguments with suitable minor modifications, using appropriate versions of Lemmas 1
and 2 which are mentioned in Remark 12 in the Appendix; compactness of U is required for these lemmas
to hold. An explicit treatment of (forward and backward complete) systems with no inputs can be found
in [18]. The terms small-time norm-observability and large-time norm-observability will also be used for
the corresponding variants of the observability notions for systems with no inputs. When the system with
inputs (1) satisfies these observability properties without the input-dependent terms on the right-hand
sides, we will call it uniformly small-time norm-observable or uniformly large-time norm-observable.

4 Lyapunov functions

One advantage of defining observability via the formulas (7) and (8) lies in the fact that this leads to
characterizations of small-time and large-time norm-observability in terms of Lyapunov-like inequalities,
as we now show.

Proposition 6 Consider the system (1). Suppose that for every ε > 0 and every ν ∈ K there exist a
C1 function V : R

n → R, class K∞ functions α1, α2 and ρ, and a positive definite continuous function
α3 : [0,∞) → [0,∞) such that we have

α1(|x|) ≤ V (x) ≤ α2(|x|) (31)

and

|x| ≥ ρ
(∣∣∣(y

u

)∣∣∣) ⇒ ∂V

∂x
f(x, u) ≤ −α3(V (x)) (32)

and moreover
η−1(η(r) + ε) ≤ α1 ◦ ν ◦ α−1

2 (r) ∀ r ≥ 0 (33)

where η is defined by2

η(r) := −
∫ r

1

ds

α3(s)
.

Then the system is small-time norm-observable. If the above conditions hold for some ε > 0 and every
ν ∈ K, then the system is large-time norm-observable.

2Decreasing α3 near zero if necessary, we can assume with no loss of generality that limr→0+ η(r) = ∞; see [28, proof of
Lemma 4.4]. We thus use the conventions η(0) = ∞ and η−1(∞) = 0 which are consistent with continuity of η.
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Proof. Let ε > 0 and ν ∈ K be given and suppose that all the conditions in the statement are satisfied.
Following the proofs of [28, Lemma 4.4] and [36, Lemma 11], we conclude that all solutions of (1) satisfy
the inequality (7) with

β(r, t) = α−1
1 ◦ η−1(η ◦ α2(r) + t) (34)

and
γ(r) = α−1

1 ◦ α2 ◦ ρ(r).
To derive the condition (8), simply write (33) for α2(r) in place of r and substitute it into (34) written for
t = ε.

An informal interpretation of Proposition 6 is that the system is small-time norm-observable if there
exists a positive definite radially unbounded function V which decays along solutions whenever |x| is
sufficiently large compared to |y| and |u| and, moreover, this decay rate—described by the function α3—
can be made arbitrarily fast by a proper choice of V . (The “gain margin” function ρ, on the other hand,
may have to be increased in order to achieve this; note that the extra condition (33) does not involve ρ.)
To better understand the role of α3, note that if α3 grows rapidly, then the graph of η is “flat”, and
consequently the function η−1(η(·) + ε) is small. In fact, this function is approximated, up to the first-
order term in ε, by r − α3(r)ε. It is straightforward to obtain a counterpart of Proposition 6 for the case
when the observability notions do not involve inputs, by simply dropping u from the formula (32).

Example 1 Consider the system

ẋ1 = x2

ẋ2 = −x1 − x2 − ϕ(x1)
y = x2

where the function ϕ satisfies the sector condition

|ϕ(x1)| ≤ δ|x1|, δ ∈ (0, 1). (35)

Systems of this form are frequently encountered as models of mass-spring systems and electrical circuits.
Let us rewrite this system in the “output-injected” form(

ẋ1

ẋ2

)
= Ak

(
x1

x2

)
−

(
0

ϕ(x1)

)
+Ky

y = x2

(36)

where

Ak :=
(

0 1 + 4λ2
k

−1 −1 − k

)
, K :=

(−4λ2
k

k

)
, λk :=

k + 1
4

and k is an arbitrary positive number. It is straightforward to check that the derivative of the positive
definite quadratic function

Vk := x2
1 + 2λkx1x2 + (1 + 2λ2

k)x
2
2

along solutions of the system (36) is given by

V̇k = −2λkVk − 2λkx1ϕ(x1) + (2λkk − 8λ2
k)x1x2 − 2(1 + 2λ2

k)x2ϕ(x1) + 2(k − 2λk + 2λ2
kk − 6λ3

k)x
2
2. (37)

Using this formula and the inequality (35), it can be easily shown that given an arbitrary number c > 0,
we can choose sufficiently large numbers k and d to have

|x1| ≥ d|x2| ⇒ V̇k ≤ −cVk.
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For each k, the function V = Vk satisfies the conditions (31) and (32) with α1(r) = a1r
2 and α2(r) = a2r

2,
for some a2 > a1 > 0, and α3(r) = cr so that η−1(η(r) + ε) = e−cεr. By enforcing a sufficiently large c, we
can satisfy the condition (33) if and only if ν is bounded from below by a linear function with a positive
slope. In view of Remark 2, this implies that the system is small-time norm-observable, because it is clear
from (35) and (37) that the state of (36) admits a uniform exponential growth bound.

We remark also that the condition (32) with α3(r) = cr leads naturally to the design of a dynamic
state-norm estimator for (1). This is a system with inputs y and u and state z such that for some β ∈ KL
and µ ∈ K∞, the inequality |x(t)| ≤ β(|x(0)| + |z(0)|, t) + µ(|z(t)|) holds along all solutions; see [36].
Rewriting (32) as V̇ ≤ −cV +α4(|y|) + α5(|u|) for suitable α4, α5 ∈ K∞, we are led to the norm estimator
ż = −cz+α4(|y|)+α5(|u|). If c can be made arbitrarily large, then V (x(t))−z(t) converges to 0 arbitrarily
fast. On the other hand, one can loosely interpret the small-time norm-observability property as providing
an arbitrarily fast norm estimator, obtained directly from the definitions rather than constructed using
Lyapunov functions.

5 Stability of switched systems: theorems of LaSalle type

Systems with no inputs

Consider the system ẋ = f(x), x ∈ R
n. One version (in fact, a special case) of the well-known LaSalle’s

invariance principle3 can be stated as follows. If there exists a positive definite, radially unbounded,
continuously differentiable (C1) function V : R

n → R whose derivative along solutions satisfies ∂V
∂x f(x) ≤

−W (x) ≤ 0 for all x, and if moreover the largest invariant set contained in the set {x : W (x) = 0} is
equal to {0}, then the system is globally asymptotically stable. The second condition can be regarded as
observability (0-distinguishability) with respect to the auxiliary output y := −W (x); see, e.g., [5] for a
discussion of this relationship. Here and below, the negative sign is used for convenience, so that y ≥ 0.

In this section we extend the above result to switched systems. This generalizes the earlier work on
switched linear systems reported in [17]. Some remarks on relationships to other LaSalle-like theorems
available in the literature are provided afterwards.

Consider the family of systems
ẋ = fp(x), p ∈ P (38)

where P is a finite index set and fp : R
n → R

n is a locally Lipschitz function for each p ∈ P. We impose
the following two assumptions on each of these systems, which parallel the assumptions for the traditional
LaSalle’s theorem stated above. The first assumption is the existence of a weak (i.e., nonstrictly decreasing)
Lyapunov function, and the second one is observability with respect to an auxiliary output defined exactly
as shown earlier for the case of a single system (however, instead of 0-distinguishability we require the
stronger small-time norm-observability property; see Remark 3 in Section 3.)

Assumption 1. For each p ∈ P there exist a positive definite radially unbounded C1 function Vp : R
n →

R and a nonnegative definite continuous function Wp : R
n → R such that

∂Vp

∂x
fp(x) ≤ −Wp(x) ∀x.

Assumption 2. For each p ∈ P the system

ẋ = fp(x)
y = Wp(x)

(39)

3See, e.g., [22, Section 4.3]. Although we make reference to LaSalle [24], the particular result stated here was proved earlier
by Barbashin and Krasovskii [7].
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is small-time norm-observable. For our present purposes, the most convenient way to state this property
is via the condition (11), which in the absence of inputs reads

∀ τ > 0 ∃ γ ∈ K∞ such that |x(t)| ≤ γ(‖y‖[t,t+τ ]) ∀x(0), t ≥ 0. (40)

Since P is a finite set, there is no loss of generality in taking γ to be independent of p.

Remark 6 In view of Remark 3 and the standard LaSalle’s theorem cited earlier, Assumptions 1 and 2
imply that all systems in the family (38) are globally asymptotically stable.

We now consider the switched system
ẋ = fσ(x) (41)

where σ : [0,∞) → P is a piecewise constant switching signal, continuous from the right. We denote by
ti, i = 1, 2, . . . the consecutive discontinuities of σ (the switching times). With regard to this switched
system, two more assumptions are needed. The first one is a rather mild non-chattering requirement on σ,
which will be further examined below.

Assumption 3. If there are infinitely many switching times, there exists a τ > 0 such that for every
T ≥ 0 we can find a positive integer i for which ti+1−τ ≥ ti ≥ T . In other words, we persistently encounter
intervals of length at least τ between switching times.

Our last assumption imposes a condition on the evolution of the functions Vp, p ∈ P at switching times,
of the type typically encountered in results involving multiple Lyapunov functions (see [12, 16, 26]). It is
trivially satisfied in the case of a common weak Lyapunov function, i.e., when the functions Vp, p ∈ P are
the same.

Assumption 4. For each p ∈ P and every pair of switching times ti < tj such that σ(ti) = σ(tj) = p,
we have

Vp(x(tj)) ≤ Vp(x(ti+1)). (42)

In other words, the value of Vp at the beginning of each interval on which σ = p does not exceed the value
of Vp at the end of the previous such interval (if one exists).

Remark 7 Note that when the switching is controlled by a supervisor, Assumption 4 can be explicitly
incorporated into the switching logic so that it holds by construction. For example, suppose that for some
times t̄ > ti and indices p, q ∈ P we have σ(ti) = p, σ(t̄) = q, and Vp(x(t̄)) > Vp(x(ti+1)). Then a switch to
σ = p at time tj := t̄ is disallowed because it would violate (42). However, the system ẋ = fq(x) is globally
asymptotically stable by Remark 6. Thus we know that if σ is held fixed at q, then x(t) will decay to 0
and there will be another time tj > t̄ at which (42) will hold. From that time onward, a switch to σ = p
can be enabled. Note that by ensuring that the switching is not too fast, we also simultaneously enforce
Assumption 3 (see below for more details on this issue). Supervisory control algorithms with switchings
triggered by values of Lyapunov functions, although with a different purpose, are considered in [14, 2].

Theorem 7 Under Assumptions 1–4 the switched system (41) is globally asymptotically stable.

Proof. Stability of the origin in the sense of Lyapunov follows from Assumptions 1 and 4 and the
finiteness of P by virtue of [9, Theorem 2.3]. Now, take an arbitrary solution of (41). Our goal is to prove
that it converges to 0. We are assuming that there are infinitely many switching times, for otherwise the
result immediately follows from Remark 6. In light of Assumption 3 and the fact that P is finite, we can
pick an infinite subsequence of switching times ti1 , ti2 , . . . such that the corresponding intervals [tij , tij+1),
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j = 1, 2, . . . have length no smaller than some fixed τ > 0 and the value of σ on all these intervals is the
same, say, q ∈ P. Let us denote the union of these intervals by Q and consider the auxiliary function

yQ(t) :=

{
Wq(x(t)) if t ∈ Q
0 otherwise

In view of Assumptions 1 and 4, for every t ≥ 0 we have∫ t

0
yQ(s)ds ≤ Vq(x(ti1)) − Vq(x(t)) ≤ Vq(x(ti1)).

Since yQ is nonnegative by Assumption 1, we see that yQ ∈ L1.
We proceed to prove4 that yQ(t) → 0 as t → ∞. Suppose that this is not true. Then there exist an

ε > 0 and an infinite sequence of times s1, s2, . . . such that the values yQ(s1), yQ(s2), . . . are bounded away
from zero by at least ε. It follows from the definition of yQ that the times s1, s2, . . . necessarily belong
to Q. Assumption 1 guarantees that x remains bounded, hence ẋ is also bounded and so yQ is uniformly
continuous on Q. Therefore, we can find a δ > 0 such that each si is contained in some interval of length
δ on which yQ(t) ≥ ε/2 (recall that the length of each interval in Q is bounded from below by τ). This
contradicts the assertion proved earlier that yQ ∈ L1, thus indeed yQ(t) → 0.

To show that x(t) converges to 0, we invoke Assumption 2. Applying the condition (40) with t = tij ,
j = 1, 2, . . . and using the above analysis, we conclude that x(tij ) → 0 as j → ∞. It then follows from
stability of the origin in the sense of Lyapunov that x(t) → 0 as needed.

Remark 8 If we strengthen Assumption 4 by assuming that Vσ(x) is nonincreasing in time, then the
finiteness requirement on P can be dropped, provided that γ in (40) is still independent of p. This applies
in particular to the case of a common weak Lyapunov function. The proof proceeds along the above lines
but works with y := Wσ(x) rather than yQ (cf. the linear version in [17, Theorem 4]).

Remark 9 The above theorem asserts global asymptotic stability (in the standard sense of this term as
applied to time-varying systems) for each fixed switching signal σ satisfying Assumption 3. While stability
is uniform over all such σ, asymptotic convergence is not. For linear systems, the convergence is uniform
over a smaller class of switching signals (obtained by imposing an upper bound on the separation between
consecutive intervals of length at least τ in Assumption 3), provided that Assumption 4 is also strengthened;
see [17] for details.

Remark 10 It is clear from the above proof that a local version of the small-time norm-observability
condition (40), defined as explained in Remark 1 and in [39], is sufficient for Theorem 7 to hold. In [39],
a similar argument was used to establish that a suitably defined passivity property implies closed-loop
stability under negative output feedback for switched control systems.

One way to satisfy Assumption 3 is to demand that consecutive switching times be separated by some
positive dwell time τD. A less severe condition is provided by the following concept, introduced in [19].
The switching signal σ is said to have average dwell time τAD > 0 if the number of its discontinuities on
an arbitrary interval (t1, t2), which we denote by Nσ(t2, t1), satisfies

Nσ(t2, t1) ≤ N0 +
t2 − t1
τAD

(43)

for some N0 > 0. Under suitable conditions, a useful class of hysteresis-based switching logics is known to
guarantee the average dwell time property [19, 26].

4The argument that follows mimics the standard proof of the so-called Barbalat’s lemma, which cannot be directly applied
in the present case because y is not continuous.
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Lemma 8 If σ has average dwell time τAD, then Assumption 3 holds with an arbitrary τ in the interval
(0, τAD).

Proof. Suppose the contrary: there exist numbers τ ∈ (0, τAD) and T ≥ 0 such that for t ≥ T all intervals
between switching times have length smaller than τ . In this case, for every positive integer k the interval
(T, T + kτ) must contain at least k switching times. The formula (43) then implies

k ≤ N0 +
kτ

τAD

but this is clearly false for sufficiently large k.
Note that the average dwell time τAD in the above result can be arbitrarily small, as long as it exists.

If τAD is known, then we can relax Assumption 2 by requiring only that the system (39) be large-time
norm-observable with τ < τAD. Accordingly, if this system is known to be large-time norm-observable
but not small-time norm-observable, then a variant of Theorem 7 can be established under a suitable slow
switching condition. We thus introduce the following modified versions of Assumptions 2 and 3.

Assumption 2 ′. For each p ∈ P the system (39) is large-time norm-observable, which can be stated as:

∃ τ > 0, γ ∈ K∞ such that |x(t)| ≤ γ(‖y‖[t,t+τ ]) ∀x(0), t ≥ 0. (44)

Assumption 3 ′. If there are infinitely many switching times, for every T ≥ 0 we can find a positive
integer i for which ti+1 − τ ≥ ti ≥ T . Here τ is the number provided by (44), which we take to be
independent of p (this is no loss of generality since P is a finite set).

The following result is proved by the same arguments as Theorem 7.

Theorem 9 Under Assumptions 1, 2 ′, 3 ′, and 4 the switched system (41) is globally asymptotically stable.

A different version of LaSalle’s invariance principle for systems with switching events has appeared
in [38, Theorem 1]. That result states that if for a given hybrid system with a finite number of discrete
states one can find a function of both the continuous and the discrete state which is nonincreasing along
solutions, then all bounded solutions approach the largest invariant set inside the set of states where the
instantaneous change of this function is zero. The proof proceeds along the same lines as the standard
argument for continuous time-invariant systems, using the notion of invariance suitably adapted to deal
with hybrid systems. See also [25] for a similar result.

Theorems 7 and 9 apply to a different class of systems than the hybrid systems studied in [38], because
in the present setting the switching is not assumed to be state-dependent. Of course, one way in which a
switched system of the type considered here may arise is from a hybrid system by means of an abstraction
procedure (i.e., when details of the switching mechanism are neglected). In this case, our observability
assumptions would serve as sufficient conditions for the largest invariant set mentioned earlier to be the
origin, since they guarantee that along a nonzero solution the output cannot remain identically zero on any
interval between switching times (cf. Remark 3). Note, however, that we do not require the existence of
a single function nonincreasing along solutions, and instead work with multiple weak Lyapunov functions
satisfying Assumption 4. This aspect of the results presented above—namely, that they rely to a large
extent on separate conditions regarding the individual systems being switched—also sets them apart from
LaSalle-like theorems available in the literature for certain classes of time-varying and other systems. (On
the other hand, the conclusions provided by results such as Theorem 1 of [38] are stronger and closer in
spirit to those of the classical LaSalle’s theorem.)
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Systems with inputs

There are several ways to extend Theorem 7 to systems with inputs. We collect them in the statement
of the next theorem. The proof follows along the same lines as the proof of Theorem 7 and is omitted.
Theorem 9 can be generalized in a completely analogous fashion.

Consider the family of systems
ẋ = fp(x, u), p ∈ P (45)

where P is a finite index set, u ∈ U ⊂ R
m, and fp : R

n × U → R
n is locally Lipschitz for each p ∈ P. We

write the corresponding switched system as

ẋ = fσ(x, u) (46)

where σ is a switching signal with switching times ti, i = 1, 2, . . . as before.

Theorem 10

A. Let U be a compact set. Suppose that for each p ∈ P we have fp(0, ·) ≡ 0, there exist a positive
definite radially unbounded C1 function Vp : R

n → R and a nonnegative definite continuous function
Wp : R

n × U → R such that
∂Vp

∂x
fp(x, u) ≤ −Wp(x, u) ∀x, u

and the system

ẋ = fp(x, u)
y = Wp(x, u)

(47)

is uniformly small-time norm-observable in the sense of Section 3 (so that, e.g., the condition (40) holds
uniformly over inputs). Let the switching signal σ be such that Assumptions 3 and 4 are satisfied. Then
the switched system (46) has the following properties.

Uniform stability: For every ε > 0 there exists a δ > 0 such that for every initial condition satisfying
|x(0)| ≤ δ and every input, we have |x(t)| ≤ ε for all t ≥ 0.

Global attractivity: For all initial conditions and all uniformly continuous inputs, we have x(t) → 0 as
t→ ∞.

B. Suppose that for each p ∈ P there exist functions Vp and Wp as in A and the system (47) is small-time
norm-observable, e.g., in the sense of (11). Let the switching signal σ be such that Assumptions 3 and 4 are
satisfied. Then the switched system (46) has the same uniform stability property as in A and the following
property.

Asymptotic gain: There exists a function χ̄ ∈ K∞ such that for all initial conditions and all bounded
uniformly continuous inputs we have

lim sup
t→∞

|x(t)| ≤ lim sup
t→∞

χ̄(|u(t)|). (48)

C. Suppose that for each p ∈ P there exist a positive definite radially unbounded C1 function Vp : R
n → R,

a nonnegative definite continuous function Wp : R
n × U → R, and a continuous function Up : U → R with

Up(0) = 0 such that
∂Vp

∂x
fp(x, u) ≤ −Wp(x, u) + Up(u) ∀x, u
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and the system

ẋ = fp(x, u)
y = Wp(x, u)

is small-time norm-observable. Let the switching signal σ be such that Assumptions 3 and 4 are satisfied.
Then the switched system (46) has the following properties.

Stability under zero input: For every ε > 0 there exists a δ > 0 such that for every initial condition
satisfying |x(0)| ≤ δ, the corresponding solution of the system ẋ = fσ(x, 0) satisfies |x(t)| ≤ ε for all
t ≥ 0.

Asymptotic gain under bounded-energy inputs: There exists a function χ̄ ∈ K∞ such that for all initial
conditions and all bounded uniformly continuous inputs satisfying

∫ ∞
0 Up(u(s))ds <∞ for all p ∈ P,

the condition (48) holds.

Remark 11 The uniform continuity assumption on the inputs can be dropped when Wp does not depend
on u. For differentiable u, this assumption means that u̇ is bounded; such assumptions on disturbance
inputs have been explored in the literature (see, e.g., [21]).

6 Stability of switched systems: examples

Since each system in the family (38) is globally asymptotically stable by Remark 6, it does admit a
Lyapunov function (strictly decreasing along nonzero solutions). There is a multitude of results on stability
of switched systems which employ such multiple Lyapunov functions [12, 16, 26]. The precise conditions on
the evolution of these functions at switching times are usually milder than Assumption 4. Under suitable
slow switching requirements such as the existence of a sufficiently large (average) dwell time, it is sometimes
possible to prove that such conditions automatically hold, thereby deducing global asymptotic stability
of the switched system from global asymptotic stability of individual subsystems (see [19, 26]). However,
in the nonlinear context these results rely on additional, often restrictive assumptions on the Lyapunov
functions, and the required bounds on the switching rate are much more conservative than Assumption 3′

and especially than Assumption 3. Thus Theorems 7 and 9 provide a useful alternative approach to stability
analysis of switched systems. (It must be noted, though, that unless the functions Vp, p ∈ P are strictly
decreasing along nonzero solutions, Assumption 4 does not automatically follow from any slow switching
condition.)

The usefulness of Theorems 7 and 9 stems in part from the fact that it is sometimes easier to find
weak Lyapunov functions nonincreasing along solutions and satisfying Assumption 4 (or even a common
weak Lyapunov function for a given family of systems) than to find strictly decreasing Lyapunov functions
satisfying suitable conditions on their evolution at switching times (or, in particular, a common Lyapunov
function). The following example illustrates this point.

Example 2 Consider the two systems

ẋ1 = x2 ẋ1 = −x2

ẋ2 = −x1 − x2 − ϕ(x1) ẋ2 = x1 − x2 + ϕ(x1)

where ϕ satisfies the condition (35). We know from Example 1 that the first system is small-time norm-
observable with respect to the output y = x2. The same is true for the second system, since it is obtained
from the first one by the coordinate transformation x2 → −x2. It is not hard to check that these two
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systems do not possess a common Lyapunov function; indeed, otherwise the sum of the two right-hand
sides would be an asymptotically stable vector field (see, e.g., [26, Corollary 2.3]), which it is not. On the
other hand, the function

V (x) :=
1
2
x2

1 +
1
2
x2

2 +
∫ x1

0
ϕ(z)dz (49)

serves as a common weak Lyapunov function, with derivative along solutions of each system being V̇ = −x2
2.

Thus Assumption 4 is trivially satisfied. It is clear that small-time norm-observability with respect to y = x2

implies small-time norm-observability with respect to y = x2
2 (just modify the function γ in the definitions

of Section 2 by composing it with the square root function). Therefore, Assumptions 1 and 2 are fulfilled,
and the switched system generated by these two subsystems is globally asymptotically stable for every
switching signal satisfying Assumption 3.

An important problem which leads one to consider weak common Lyapunov functions, and thus provides
further motivation for the results of Section 5, is the problem of feedback stabilization for systems with
switching dynamics. A positive definite C1 function V : R

n → R is said to be a common control Lyapunov
function for the family of control systems (45) if

inf
u

{
∂V

∂x
fp(x, u)

}
< 0 ∀x �= 0, p ∈ P

(in the case of a single system, this reduces to the standard control Lyapunov function concept [6, 33]).
If the above property holds with the nonstrict inequality instead of the strict one, then we say that V
is a common weak control Lyapunov function for the family (45). We now demonstrate that for certain
families of control-affine systems, common control Lyapunov functions do not exist—while there may exist
common weak control Lyapunov functions.

Proposition 11 Suppose that the right-hand sides of the systems from (45) take the form

fp(x, u) = f̄p(x) +G(x)u, p ∈ P (50)

where 1 ≤ m < n (m and n are the input and state dimensions) and rankG(0) = m. Then there is no
common control Lyapunov function for the family (45) if

co {f̄p(x), p ∈ P}
⋂

rangeG(x) �= ∅ ∀x �= 0 (51)

(here co denotes convex hull).

Proof (sketch). Fix an arbitrary x �= 0. The condition (51) implies that we have
∑k

i=1 λpi f̄pi(x) =
G(x)l for some vector l ∈ R

m, indices p1, . . . , pk ∈ P, and nonnegative numbers λp1 , . . . , λpk
satisfying

λp1 + · · · + λpk
= 1. Suppose that the family (45), (50) admits a common control Lyapunov function V .

Then for each p, there exists a control value up such that (∂V /∂x)(f̄p(x) + G(x)up) < 0. Combining the
above formulas, we obtain (∂V /∂x)G(x)(l +

∑k
i=1 λpiupi) < 0. Since x �= 0 was arbitrary, this means that

V is a control Lyapunov function for the system ẋ = G(x)u, which is known to contradict Brockett’s
necessary condition for feedback stabilizability [11] (see [35] for details).

The condition (51) clearly holds when co {f̄p(x), p ∈ P} contains the origin for all x �= 0, which would
happen, e.g., if f̄p(x) = pf̄(x) for some f̄ and P ⊂ R contains both positive and negative values. Letting

f̄p(x) := p

(
x2

−x1 − ϕ(x1)

)
, G(x) :=

(
0
1

)
, P := {−1, 1} (52)
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and applying the feedback law u = −x2, we recover the two systems considered in Example 2. Propo-
sition 11 confirms that those two systems do not have a common Lyapunov function. More generally, it
implies that the same is true for two systems obtained from the pair of control systems defined by (45),
(50) and (52) using an arbitrary pair of feedback laws (it is not necessary to use the same feedback law
for both systems).5 On the other hand, a common weak control Lyapunov function for this pair of control
systems does exist and is given by (49).

The next example is a variation on Example 2 and also builds on Example 1.

Example 3 Consider the two systems

ẋ1 = x2 ẋ1 = x2

ẋ2 = −x1 − x2 − ϕ1(x1) ẋ2 = −x1 − x2 − ϕ2(x1)

where ϕ1 and ϕ2 satisfy (35). Define the functions

Vi(x) :=
1
2
x2

1 +
1
2
x2

2 +
∫ x1

0
ϕi(z)dz, i = 1, 2.

Then Assumptions 1 and 2 can be checked as in Example 2, and the switched system generated by
these two subsystems is globally asymptotically stable for every switching signal satisfying Assumptions 3
and 4. The latter assumption holds, for example, if the switching is constrained to occur on the set
{x :

∫ x1

0 ϕ1(z)dz =
∫ x1

0 ϕ2(z)dz} ⊃ {x : x1 = 0}; this condition still leaves considerable freedom in defining
a specific switching rule. If the switching is controlled by a supervisor, then Assumptions 3 and 4 can be
directly incorporated into the switching logic (see Remark 7).

Functions V : R
n → R consisting of a quadratic form plus an integral of a nonlinearity—such as the

ones considered in Examples 2 and 3 above—frequently arise as (weak) Lyapunov functions in absolute
stability theory, which studies nonlinear feedback systems of the form

ẋ = Ax− bϕ(cTx), x, b, c ∈ R
n. (53)

Consider the transfer function g(s) = cT (sI − A)−1b and assume that it has no pole-zero cancellations. If
g has one pole at 0 and the rest in the open left half-plane and the function (1+as)g(s) is positive real for
some a ≥ 0, then there exists a positive definite matrix P (independent of ϕ) such that the derivative of the
function V (x) = xTPx + a

∫ cT x
0 ϕ(z)dz along solutions of (53) satisfies V̇ ≤ −cTxϕ(cTx). Observability

of the pair (cT , A) combined with LaSalle’s theorem can now be used to conclude that the system (53)
is globally asymptotically stable for every function ϕ that satisfies the sector condition 0 < yϕ(y) for all
y �= 0. (This is one version of Popov’s stability criterion; see, e.g., [10] for details.)

With the help of Theorem 7, we can then study stability of the switched system generated by a finite
family of systems of the form (53), with the same linear part but different nonlinearities:

ẋ = Ax− bϕp(cTx), p ∈ P. (54)

Under the conditions of Popov’s criterion cited above, the corresponding weak Lyapunov functions take
the form Vp(x) = xTPx+ a

∫ cT x
0 ϕp(z)dz. An argument similar to the one employed in Example 1 shows

that the system

ẋ = Ax− bϕp(cTx)

y = cTxϕp(cTx)

5This statement remains valid if the second component of the vector used to define f̄p(x) in (52) is replaced by 0.
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is small-time norm-observable for each p ∈ P provided that the functions ϕp, p ∈ P satisfy the slightly
strengthened sector condition

∀ p ∈ P ∃ ρp ∈ K∞, kp > 0 such that ρp(|y|) ≤ yϕp(y) ≤ kp|y|2 ∀ y. (55)

As in Example 3, we see that Assumption 4 is satisfied whenever the switching is confined to the set of
equal “potential energies”{

x :
∫ cT x

0
ϕp(z)dz =

∫ cT x

0
ϕq(z)dz ∀ p, q ∈ P

}
⊃ {x : cTx = 0}. (56)

We have established the following corollary of Theorem 7 (a variant corresponding to Theorem 9 is also
straightforward to obtain).

Proposition 12 Consider the family of systems (54), where P is a finite index set and the functions ϕp,
p ∈ P satisfy the sector condition (55). Assume that the transfer function g(s) = cT (sI − A)−1b has no
pole-zero cancellations, one pole at 0, and all other poles in the open left half-plane, and that the function
(1 + as)g(s) is positive real for some a ≥ 0. Then the switched system ẋ = Ax − bϕσ(cTx) is globally
asymptotically stable if the switching signal σ satisfies Assumption 3 and x belongs to the first set in (56)
at every switching time.

7 Conclusions and remarks on related notions

We introduced and studied several norm-observability notions for nonlinear systems with inputs and out-
puts, in a set-up compatible with the input-to-state stability framework. Their application to LaSalle-like
stability analysis of switched systems was described and illustrated through examples. Potential implica-
tions for control design in the presence of switching were briefly sketched and remain to be investigated.
We end the paper with some remarks about related observability notions. For simplicity, we consider the
system with no inputs (9), although the extension to the general case of (1) is immediate.

Integral versions

Motivated by the integral versions of ISS and OSS (see [4]), we can modify the definitions by replacing
supremum norms on the outputs with integral norms. For example, in place of small-time initial-state
norm-observability for the system (9), consider the following property:

∀ τ > 0 ∃α, γ ∈ K∞ such that α(|x(0)|) ≤
∫ τ

0
γ(|y(s)|)ds ∀x(0).

Other notions can be obtained similarly. Using the integral versions of Lemmas 1 and 2 established in [3,
Section 2.6], one can show that the relationships proved in Section 3 remain valid for these new notions. It is
also not hard to see that the integral versions of the small-time and large-time properties are stronger than
their supremum-norm counterparts (just apply the mean value theorem), while this is not the case for the
infinite-time property (as can be shown by a counterexample). Unfortunately, these integral observability
notions do not seem to be as useful for establishing LaSalle-like stability theorems for switched systems,
unless the integral gain function γ happens to be the identity.
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Incremental versions

In order to come up with definitions that more closely relate to the traditional notions of observability
(i.e., the possibility of having a finite time estimate of the actual value of the state), one needs to resort
to incremental observability notions. By incremental notions, we mean inequalities involving norms of
differences of states, inputs and/or outputs rather than their absolute values. In particular, the incremental
notion of small-time initial-state observability for the system (9) would read as follows:

∀ τ > 0 ∃ γ ∈ K∞ such that |x1(0) − x2(0)| ≤ γ(‖y1 − y2‖[0,τ ]) ∀x1(0), x2(0)

where yi(·) is the output corresponding to the trajectory with the initial state xi(0), i = 1, 2. In this more
general context, norm-observability as discussed elsewhere in this paper becomes a special case, in which
an arbitrary trajectory is compared with the zero (equilibrium) trajectory. This line of thought has been
followed for instance in [36, Section 5], where a definition of incremental detectability is provided, or in
[1, Section 6.B], where a notion of incremental stability after output injection is considered. Generally
speaking, results which are based only on manipulation of estimates carry over to the incremental set-up;
results which involve some sort of compactness are usually much harder to derive, unless a priori bounds
on trajectories are explicitly assumed. Treatment of these notions in detail is outside the scope of the
present paper and we leave it open for future investigations. A related observability concept for linear
hybrid systems was studied in [8].

Appendix: Proof of Lemma 1

Fix an arbitrary τ > 0. We first need to show boundedness of reachable sets for the system (1) in time τ ,
starting from a compact set, for bounded inputs, and bounded outputs. For η ≥ 0, let

R(η) :=
{
x(t) : 0 ≤ t ≤ τ, |x(0)| ≤ η, ‖y‖[0,t] ≤ η, ‖u‖[0,t] ≤ η

}
where x(·) denotes a solution of (1) with initial condition x(0) and input u(·), and y(·) is the corresponding
output.

Lemma 13 The set R(η) is bounded for every η ≥ 0.

Proof. Let η ≥ 0 be given. Introduce the auxiliary system6

ż = f(z, v)φη(|h(z, v)|), z ∈ R
n (57)

where φη : R → [0, 1] is some smooth function such that φη(r) = 1 for r ≤ η and φη(r) = 0 if and only if
r ≥ η + 1. The set R(η) is contained in the reachable set{

z(t) : 0 ≤ t ≤ τ, |z(0)| ≤ η, ‖v‖[0,t] ≤ η
}

for the system (57). If we show that the system (57) is forward complete, then we will be done, because
Proposition 5.1 from [28] says that reachable sets for forward complete systems, in bounded time, starting
from a compact set, and for bounded inputs are bounded.

6Existence of solutions for this system is guaranteed if the output map h is locally Lipschitz. Even if it is not, one can
prove the validity of all that follows by working with a suitable approximation of h; see [3, Remark 2.15].

21



Take a solution z(·) of (57) corresponding to some initial condition z(0) and some input v(·), and suppose
that |z(s)| → ∞ as s approaches some time S > 0. We now construct a new input v̄ by “collapsing” time
intervals on which φη(|h(z, v)|) = 0. Let ψ(s) :=

∫ s
0 Iη(r)dr, where

Iη(r) :=

{
1, |h(z(r), v(r))| < η + 1
0, |h(z(r), v(r))| ≥ η + 1

This defines a continuous mapping ψ from the interval [0, S) onto an interval [0, S̄), where S̄ ≤ S. For
s ∈ [0, S̄), let v̄(s) := v(s̄) where s̄ := min{r ∈ [0, S) : ψ(r) = s}. Let z̄(·) be the solution of the
system (57) corresponding to the same initial condition z(0) and this new input v̄(·). Since z̄ is obtained
from z by removing time intervals on which z is constant, the two trajectories are the same up to this time
reparameterization, and in particular, |z̄(s)| → ∞ as s→ S̄.

Now, consider

ϕ(s) :=
∫ s

0
φη(|h(z̄(r), v̄(r))|dr.

Since φη(|h(z̄(r), v̄(r))|) > 0 for almost all r ∈ [0, S̄) by construction, ϕ is a strictly increasing function
from [0, S̄) to some interval [0, T ), where actually T ≤ S̄ because φη ≤ 1 everywhere. For t ∈ [0, T ), let
x(t) := z̄(ϕ−1(t)). Then x(·) is absolutely continuous and satisfies ẋ = f(x, u), where u(t) := v̄(ϕ−1(t)).
Since |z̄(s)| → ∞ as s → S̄, we have |x(t)| → ∞ as t → T . The system (1) has the unboundedness
observability property by assumption, and so the output h(x, u) must become unbounded as t → T . But
we have h(x(t), u(t)) = h(z̄(ϕ−1(t)), v̄(ϕ−1(t)) = h(z̄(s), v̄(s)) and the norm of the last expression does not
exceed η + 1, which is a contradiction.

The above argument is an extension of the proof of Lemma 2.1 in [3], which establishes the corresponding
property of reachable sets for systems whose output maps do not depend on the inputs. We now proceed
with the proof of Lemma 1. For r ≥ 0, define

α̂(r) := sup
{|x| : x ∈ R(r)

}
.

The above function is well defined since the supremum is bounded for each r by virtue of Lemma 13. We
have α̂(0) = 0 because f(0, 0) = 0 and h(0, 0) = 0. Therefore, we can choose some class K∞ function α
such that α̂(r) ≤ α(r) for all r ≥ 0. This gives

|x(t)| ≤ α
(
max{|x(0)|, ‖y‖[0,t], ‖u‖[0,t]}

) ≤ α(|x(0)|) + α(‖y‖[0,t]) + α(‖u‖[0,t]) ∀ t ∈ [0, τ ]. (58)

Since the system is time-invariant, the lemma holds with νf = γf = χf := α.

Remark 12 A similar construction is used in the proof of Lemma 2.2 in [3]. In the case when the system
is forward complete, the condition involving y can be omitted from the definition of the reachable set R(η).
The reachable set is still bounded due to Proposition 5.1 from [28]. Thus for forward complete systems, y
disappears from (58) and Lemma 1 holds without the y-dependent term in (10). Alternatively, if inputs
are not present or take values in a compact set, then the condition involving u can be omitted from the
definition of R(η). In this case, assuming that f(0) = 0 when there are no inputs or f(0, u) = 0 for all u
when there are inputs, we see that Lemma 1 holds without the u-dependent term in (10). In particular,
for forward complete systems with no inputs the inequality (10) reduces to just |x(t2)| ≤ νf (|x(t1)|); this
special case of the result is a straightforward consequence of the continuous dependence of solutions on
initial conditions and the presence of the equilibrium at the origin. The same remarks apply to Lemma 2.

Acknowledgment. We thank Jan van Schuppen for calling our attention to the reference [38].

22



References

[1] D. Angeli. A Lyapunov approach to incremental stability properties. IEEE Trans. Automat. Control, 47:410–422,
2002.

[2] D. Angeli and E. Mosca. Lyapunov-based switching supervisory control of nonlinear uncertain systems. IEEE
Trans. Automat. Control, 47:500–505, 2002.

[3] D. Angeli and E. Sontag. Forward completeness, unboundedness observability, and their Lyapunov characteri-
zations. Systems Control Lett., 38:209–217, 1999.

[4] D. Angeli, E. Sontag, and Y. Wang. A characterization of integral input-to-state stability. IEEE Trans. Automat.
Control, 45:1082–1097, 2000.

[5] Z. Artstein. Stability, observability and invariance. J. Differential Equations, 44:224–248, 1982.

[6] Z. Artstein. Stabilization with relaxed controls. Nonlinear Anal., 7:1163–1173, 1983.

[7] E. A. Barbashin and N. N. Krasovskii. On stability of motion in the large. Dokl. Akad. Nauk SSSR, 86:453–456,
1952. (In Russian).

[8] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability of piecewise affine and hybrid
systems. IEEE Trans. Automat. Control, 45:1864–1876, 2000.

[9] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE
Trans. Automat. Control, 43:475–482, 1998.

[10] R. W. Brockett. On the stability of nonlinear feedback systems. IEEE Trans. Applications and Industry,
83:443–449, 1964.

[11] R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W. Brockett, R. S. Millman, and H. J.
Sussmann, editors, Differential Geometric Control Theory, pages 181–191. Birkhäuser, Boston, 1983.
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[27] D. Liberzon, A. S. Morse, and E. D. Sontag. Output-input stability and minimum-phase nonlinear systems.
IEEE Trans. Automat. Control, 47:422–436, 2002.

[28] Y. Lin, E. D. Sontag, and Y. Wang. A smooth converse Lyapunov theorem for robust stability. SIAM J. Control
Optim., 34:124–160, 1996.

[29] F. M. Pait and A. S. Morse. A cyclic switching strategy for parameter-adaptive control. IEEE Trans. Automat.
Control, 39:1172–1183, 1994.

[30] S. N. Singh. Invertibility of observable multivariable nonlinear systems. IEEE Trans. Automat. Control, 27:487–
489, 1982.

[31] E. D. Sontag. On the observability of polynomial systems, I: finite-time problems. SIAM J. Control Optim.,
17:139–151, 1979.

[32] E. D. Sontag. Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control, 34:435–443,
1989.

[33] E. D. Sontag. A “universal” construction of Artstein’s theorem on nonlinear stabilization. Systems Control
Lett., 13:117–123, 1989.

[34] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York,
2nd edition, 1998.

[35] E. D. Sontag. Stability and stabilization: discontinuities and the effect of disturbances. In F. H. Clarke, R. J.
Stern, and G. Sabidussi, editors, Nonlinear Analysis, Differential Equations and Control, pages 551–598. Kluwer,
Dordrecht, 1999.

[36] E. D. Sontag and Y. Wang. Output-to-state stability and detectability of nonlinear systems. Systems Control
Lett., 29:279–290, 1997.

[37] A. R. Teel and L. Praly. Tools for semiglobal stabilization by partial state and output feedback. SIAM J.
Control Optim., 33:1443–1488, 1995.

[38] J. Zhang, K. H. Johansson, J. Lygeros, and S. S. Sastry. Dynamical systems revisited: hybrid systems with Zeno
executions. In N. Lynch and B. H. Krogh, editors, Proc. 3rd Int. Workshop on Hybrid Systems: Computation
and Control, volume 1790 of Lecture Notes in Computer Science, pages 451–464. Springer, Berlin, 2000.

[39] J. Zhao and D. J. Hill. Passivity and stability of switched systems: a multiple storage function method. In
Proc. 43rd IEEE Conf. on Decision and Control, 2004. Submitted.

24




