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ABSTRACT

A mirage trajecﬁbry is a Regge trajectory which
has no physigal particle lying on it. We discuss both its
possible dynamic origin and its peéuliar properties. In
particular, we consider the possibility that the Ppmeranéhon
is a mirage trajectory. This conjecture: (1) simplifies
the structure of Mandelstam-type cuté, (2) gives a simple
physiéal interpretatioﬁ of the Harari = hypothesis, and
(3)_indicates a possible explanation-for the smallness of
the Pomeranchon'slope neai_ t = 0, while still allows the

Pomeranchon to be a moving pole.
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I. INTRODUCTION

The existence of the Pomeranchuk trajectdry was first.cbnjectured' |
By:Chewiand Frautsch{l énd by Gribov.2 It is assumed to be an even
-signéturgd Regge trajectory with the quantum numbers ofvthe vacuum,
whiChpassgsthrough the angular momentum Value J =1 at precisely
" gero energy. If no other j-singularities have these properties, one
isvablé tovreadily understand many features of high energy scattering
‘of strongly interacting particles. However, béthvtheoretical and

p

experimental uncertainties” have kept physigists from establishing the
true ﬁatﬁre of the'Pomeranchoﬁ. One particularly puzzlihg featqre of
the Pomeranchukvtréjectory is its usual small élope'as indiCated by
fitting the high energy N and NN scatterihg data using Regge
poles.% Recently, an interesting observation on the differencé between
Pomeranchon and other ordinary Regge trajectofieé has been made by
"H. Harari.5' Within the context of finite énergy sum rule bootstrap;
Harari conjectured that the Pomeranchon is mostly built by the nonreso-
nating background, while the ordinary trajectoriés aré built by the low
energy resonances. Although this conjecture does not preclude the
dynamical equivalence of all hadrons,.it does indicate a special
characterisfic associated with the Pomeranchon, not shared byvmost
ofher trajectories.

Another -puzzling feature of hadron physics is;the existencevof
bfanchbpqints (cuts) in the j-plane. They were first shown to be

present by Mahdelstam6 in a perturbation theory model; and they have
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the effect of removing the Gr_ibov—Pomeranchuk7 essential singularities.
However, if the Pomeranchon has a zero-energy intercept of 1, one
finds that an accumulation of indefinitely many cuts will occur. This
occurrence does not necessarily violate any obvious S-matrix principle,
yet it is considered'by mahy8 as a defect of the present model.

9

vMany attempts in trying to understandvand resolve these aﬁd'
other related puzzling préblems have been made, with no satisfactory :
éxplanétion having.yet been reached. We would like to sugéest a new
‘possibility.which: (1) allows the possibility of simplifying'the.
structure of MandelétamQtype of Cuts, (2) gives a‘simple physical
interpfetation to the Harari ‘conjecture,and (3) indicates why the
Sloﬁe of the Pomeranchuk trajectory may be small near t (the total
fenergy).='0, while still allows the Pomeranchon to be a moving pole.
We shall éonéider in this paper fhe'possibiiity that_the”Pomeranchon
is 5 mirage Regge trajectory._ A mirage trajectory ié a moVing'Reggev
?ole in the j-plane, which ”deéouples” from all physical communicaﬁing
channels whenevervthe pole moves through a physical value (j\:“O,E,h"'
in the case of the Pomeranchon). Consequently, no "physical” particle
poles (stable or unstable).lie on a mirage trajectory. We shall show
in what follows how this possibility can greafly simplify these
.mysteries éurrounding the Pomeranchon.

- In SectionII, we discuss the dynamical nature 5f a'mirage
-trajectory. In parficular, we shall construct a model to exhibit the

ingredients which are required for a mirage trajectory to be present.
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We next turn to the discﬁésion on conseéuences of our conjectures. In
@SecfionIII,we'revieW‘thé argﬁment for the‘necessity of Mandelstam cuts.
We show that there is an infimate connecfion between.the éutSZOf
Mandelstam ﬁype and the normal threshold Singulérities of écatferiﬁg
amplitudes. As a conéequence, we argue that it is possible for a mirage
:>trajeétoryvnot to ﬁarﬁﬁéipaté in prodﬁcingvMandelstam cuts. In Section
IV we examine the conjecture of Harari and show that it can have a
simple physicél interpretation if the_Pomeranéhon is a mirage trajectory.
.We add in Section V fﬁrther remarks concerning our conjecture‘inéluding
a poésible explanation.for the smallness of the Pomerahchon slope near |

zero total energy.
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' II. DYNAMICAL CONSIDERATIONS

When a mirage trajectory passes through a physical J value 4
at § = SO’ the residue of a physical channel will have the behavior

[$]

‘ n
Bss ~ C (8 - 8,)7, where Cy

with spin’ j will be present at S

L= O"or finite. Consequently, no physical particle
0" We know there are three kinds
of pole-elimination mechanismsvthat will give this kind of behavior:.
Chew mechanism, Gell-Mann mechanism, and noncompensation mechanism.lo
In order to be more specific, let us chstrucf»a model baséd on the

Gell-Mann mechanism. -As is well known in this case, the residues

behave in this manner:

5 .
?l (S = SO) ’

BSS ~
2
Pan = Co >
: 1 .

We Shall first explain how this is possible from the dynamical point
of viewvand then generalize'fo the case of a mirage trajectory which
chooses "nonsense" at every physical j-value (J = 0,2k, *+, for

Pomeranchon).

A. Gell-Mann Mechanism
Consider two spin ‘%- particles interacting with a ldcal
sphérically symmetric potential. The most general form of potential

V({) can be written as
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v(r) = Vl(E)'A(O) + vg(}:) /{(l) + VB(E).=S12 ,} (2.2)

Where A(O) and;,A(l) afe projection operators on singlet and triplet

spin states, and Slé is the tensor operator. The V

12 Vg, and V

3

are functions of r only.

Let us concentrate on the triplet states with parity (-1);%1, and

g labelling states by J, £ =3 % l}, the partial-wave analysis lead

te é set of ordinary coupled radial SchrBdinger equations. _Once the
potential is_given,Athe.Jost functiohs can be obtained from the solﬁtioﬁ.
of this set of differential equations. Let us assume that the solution
contains Regge poles sﬁch-that the leading Regge tr@jectory._d(s)

Sy belcﬁ.threshold, and we shali
investggate the behavior of Regge residues associated with this pole.'»_

At j = 0, the state |j, 2=3 - 1) has become "nonsense."

The set of equations will decouple as j approaches this value. They

have the form
2 ' ' :
da 2
- + V1,+2V3) Vo= KV, (2.3)

5 . v _ '
qc 2 2 S
dr r o ) o

where wn, ws are wave functiocris for the nohsense and sense states
respectively. The analytically continued partial-wave»amplitude

ass(j, S) should then coincide at j = O with that calculated from '
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(2.4) alone. Now,it is eésy to see that in order forfhe;pole to be

. . i.' ' . s ._ B i . - . I .L-J
absent in ass(J,S) at j =0, 8 =85, the potential (Vl MVB) :

must not produce a P-wave bound state there. This can always be done
by adjuéfing functions. Vl(z) and V3(£).>'For instance, by choosing
-2V3(r)w>> Vl(r) > 0, the combination (Vl

a repulsive potential. Consequently the Regge polé a(s) will remain

- hVB) will correspond to

only in the amplitude ann(j,s),'not in’ ésé(j,s); The residues Bgg?
_Bsﬁ, and g~ will behave as in (2.1). | |
'To summafize, the Geéll-Mann mechanism occurs if the "force"

that is responsible for producing a Regge.pole.comesucomple#ely from
the nonsénéé channel. At the j =0, tﬁe sense and‘nonsense‘éhannels
decouple  from egéh other.‘ This pole wiil only reﬁain in the nonsense=-
ﬁonsénse émplitude, and.we.éay this pole has chosen "nonsense. " Hoﬁever,
as one mpVes away from j = 0O, the distinction between the "éénse“ |
channel and the "nonsense".channel'is losf.' This Regge pole will couple
to-all analytically continﬁed partial-wave channéls.

| It:is obvious that the above model is ﬁot adequate to produce
a mirage trajectory. As one moves to_the_next integer, j = 2, both
channels .[Z'=,j +1) and |£=j -1) are physical thefe (we shall
ignbrevsignatﬁre for now). Conseéuently this trajectory a(S)A.cannot

chodse.nonsenseathere.\ In order to build a mirage trajéctory,’it is

clear that additional-sti'ucturel2 haé to be introduced into the model.
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B. A Mirage Trajectory by'Choosing Nonsense.
at all Physical' J Values |
What we ﬁeed is -a model ﬁhich allowé a Regge trajectory to

Qhoose nonsense at ailvﬁhysical J v?lues, regardless o£>how high the
spin'is. Dynamicsfiﬁﬁolving high;spin particles or mﬁltiparticle
channels is obviously requirea. The--model15 of "nearbj dominaﬁce,"
used for di5cu§5iﬁg rising Reggé trajectories, seems most appropriate
here._‘The model asserts-thaf one could study the dynamics of a Regge
trajec£o¥y éf one small energy region at a time. At any particular
energy region, the,déminant forces that Bind this Regge ffajectory come

from the high-spin channels whose thresholds lie in that region. With

respect to these dominant channels, the "orbital" angular momenta could

thus remain small. The physical justification of this'ﬁodel is
discussed in Ref. 13, and we shall only cbncentrate here én.discussing
how a mirage trajectory can be formed within this model.

We shall generalige the case of two spin'%,particles to the
casé of two parficles with arbitrary spih oy and Oy Wevassume
that a. Regge tréjectory is formed,'in a particular energyvregion, by

the interaction between these two particles{ The interaction potential

has the form V(r) = '2: Vi(r)Ai, where each ,Vi(r) is a scalar

potential, and each Ai is a tensorial operator in the spih Spabe.

In analogy to the triplet states, we shall consider those states

corresponding to a total spin |g| = |gl[ + lc The states in this

AR

‘sub-spin-space can be labeled by 15, =3+ (c-n)), n=0,1," 0.

- This model of nearby dominance asserts that the produced Regge trajectory

‘.
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a(s) will have a value o(8) ~ o in thé.peighborhood of the threshold
vof ﬁhese two particles. Let.us first_adjust‘the potentials so that
a(sc) =-6 -1, at a poigt s, near this threshoid; gnd, in particular,
we qhoose the vi(r). in such a way»that the dominant force for.bindiné
tﬁis trajectdry comes from the chapnel labeled - by. lj,»Z'=vj - c}..
"However, ﬁhis,channelbis "nonsense” at = o - 1. As.bne-moVes_toward
tﬂis‘j value, fhis Regge trajectory will‘he chéosing'"nonsenéeﬁ there.'
As one goés gp in energy, dne_just'has to keep on changing the .
spin 0y and o5 of;thé dominant Chanﬁel. By adjusting the poténtial
apﬁfopriately, the outﬁut trajécfory will be able to éhoose.nonsénse at
_' every physical‘angular,ﬁomentum value. Cdnsequently, therevwili be no
physical pérticlés lying on this Regge trajectory, and, by defiﬁition,:
it_is a mirage trajectory. .

.We have demonstrated one type of mirage trajectory hefe to show
fhat their'existence:is ieally nof .80 unlikély.as it woula séem at
first sight. ‘In fact; bthe¥ models can readily be cdnstructed; One
can easily convince onéself that they d6 not violate any accepted

property'of scattering’amplitudes, and their presence will lead to many

interesting consequences. . We shall next consider some of them.
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ITT. MANDELSTAM CUTS AND MIRAGE TRAJECTORIES
'By Mandelstam éuts, we mean those moving branch points in the
j-plane which owe their existence to the presence of Gribov-Pomeranchuk

fixed poles{6-8

In the following,.we shall first review the necessity
for Mandelstam cuts and their relation with the normal threshold singu-
"léfitieé in the energy plane. .We then diséuss the case where mirage
trajectories aré involved and show that it is possible for them not to
participate in producingYMandelstam cuts. .

| - It has become a well-known fact that the existehce of Gribov-
’ Poméranchuk fixed poles at wrongésignature, nonsense j values forces
vthe présence of moving qﬁts if we are.to avoid essential singularities
.in the j-plane. These essential singularities, which are due to the
éécumﬁlation of poles, would violate crossed-channel unitarity when
high-spin particles are present. | |

» | For the even-éignatured partial -wave scattering amplitude‘of two

and o, the nonsense, wrong-signature points

particles with spins qA

BJ

occur at

Jd = O‘A + OB - n » _n'= 1)3)5’.” . . (31)

They corresppnd to the system having a nonsensical Qrbital angular
_momentumv £ =-1, -3, =5,"**. To avoid essential singularities, the
moving cuts will have to have the special property that they coincide
with the normé; threshold S = (mA + mB)2 at these .J values, éo that
the '"elastie" discontinuity formula would no longer be.appiicable.

" In termé of the poéitioh-of the Eﬁh‘cut in the j piane, the ébove

condition corresponds to



-10- : UCRL-18688

. N _
: ‘a[A’-B]C;n[S =_(mA + m.B) ] = o'A + UB -n, n= 1’5’5’“".

‘(3-2) .

Mandelstam, by investigating those perturbatidn diagrams con-
taining Gribov-Pomeranchuk fixed poles, has found cuts which satiéfy
(Eq. 3.2). Their positions are given by

c,n(S) | i

ta,n Wl (- m)) oy 0

c;n(s)

. ' ';_. ' é ‘ L
YB,4] 75 + opl ()% - m)"] - S - (3:3)
whe?ev qA(S) and aB(S) are Regge trajectories on which pérticlgs
A and” B lie respectively. |
We wbuld'like to point out that in the casé where fixed poles_b
aré_ébsent, the:#ecessity for the existence of.movingvcuts is femoved.

One such case is when o, or O .(or both) ‘is a mirage trajectory.

A
Since partipie A really adeé not exist, theie will be no normal
thfesh§ldvat_the pbint S = (mA + mB)g. Coﬁseqﬁently, moving cuts
Q[A,B]c,n(s). and- q[B,A]c’n(S) are not fequired.

It is not surprising to find that Mandelstam's proof for the
' eXisténce Qf_movingICuts also fails in this case. The proof made use
of the,existénce of>Gribov?Pomeranchuk fixed polés to show thét the
diséohtinuity across "ermal"'branch cuts cannot vanish. However, if

one of the trajectories involved is a mirage trajectory, the existence

of a Gribov-Pomeranchuk fixed pole can no longer be ascertained.

-
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Consequently, the proof for the existence of Mandelstam cuts will no

' longer go through.

- We have just seen that the type of cuts described by Eq. (3.3)

'dqesfnot-have to be present if one of the trajectories involved is a
mirage trajectory, in contrast with that associated with ordinary Regge
 'trajectories. In all the above arguments, we implicitly assume that

'“.ampiifudes with one or more external'Reggeons can be defined. If this

15 on high energy Regge

representation can be achieved.
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‘ .IV. HARARI S CONJECTURE AND MIRAGE TRAJECTORY g

An interestlng observatlon 15 has been made by H. Harar1 on the
:different roles played*by the Pomeranchon and other Regge'tragectorles
in relatlng the high- energy behavior of scatterlng ampl1tudes to thelr
low-energy behav1or It has led him to congecture that w1th1n the

context of flnite energy ‘sum rules, the Pomeranchon is mostly bullt by _
the nonresonating:background, whlle ordlnary Regge tragectories can

- “be bootstrapped ﬁy using the resonance approximationf Preliminary‘testsl6
of this congecture have been encouraglng |

The failure of resonance saturatlon in the case of the Poneranchon
does not necessarily indicate doubts on the "bootstrap" nature of the
Pomeranchon ; however, it shows signs of hav1ng certaln pecullar'
pronerties'whioh "ordinary" trajectories do not possess. We would llke
to suggest that a mlrage tragectory would lead to the phenomenon
observed by H. Hararl. Thls phenomenon arises because a mlrage
trajectory fails to give rise to longwrange attractiVe forces‘when
-being eXchanged in any allowed reaction.

In order:to introduce the notion Of'forces, we can, for instance,
l"adopt the method of Charap and Fublnl, 17 who demonstrated that an
energy-lndependent local potentlal could be glven a meanlng in a
relat1v1st1c theory at low energies.  In partlcular, the long-range
part of thls potentlal is shown to correspond exactly to poles in small
t ;reglon. When a Regge traJectory with low-mass particles is exchanged
it will<give rise to forces that are ofélong range (either attractive

or repulsive).‘ Conversely; if Pomeranchon is a mirage trajectory, it
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will not give rise to a long range Yukawa force, because Pomeranchon

-,ddés not correspond to poles of the full amplitude in the t plane. It

e is a well-known fact that in nonrelativistic potehtial,theory problems

without attractive long-range force, no resonances can be found. Since

oﬁr example is approximately given by potential theory in the low

- energy region, it is then natural to expect.thét no résonances are
vgeing formed due to the exchange of the Pomeranchon. Furthermore, if one
:iévaliéwed fo interchange the "cause" and "effect" in the discussion .of -

'f:finiﬁe eﬁergy sum ruie Eootstrap the part of the Harari conjecture on

the Pomeranchon then follows from the argument given above. .

-We would like to add that there might be other Regge trajectories

~which in most instances behave as "ordinary" trajectories, but not in

~ some othefvinstances. These include trajectories whose first few

= e s ; . 13 .,
recurrences are missing, or whose coupling to specific channels is

‘very weak. If this is true, a géneralization of Harari's conjectﬁre'

. is required.
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V. CONCLUDING REMARKS

.

We have discussed in this paper several interesting consequences B

N .
of the assumption that th§§P6merandhon is a mirage Regge trajgcfory.
Thésg include the‘explanation'of the Hérari hypothesis, Qﬁa the d
possible femoval of Pomeranéhon cuts. “Wé have also éointed'éut thé

possibie dynamical origin of mirage trajectories and have iliuétratea a
gpeciallmodel in which a mirage trajectofy is formed by chooéiné.

hqﬁsénéé at every'physical value Qf angulér momeﬁtum.v

| The mystéries.surrounding‘the Poméranchon are by no means

soived; Our cﬁnjeéture perhaps provides a new‘route of atﬁacking '

'these ﬁuizling problems. One unique prgpérty of_the‘Poméranchon‘is the
possibility‘of its small slope néar' t ; b. 'Let:us consider the

'low=threshold twp-particle,channels that communicéte with the fomeranchon.

We find that_all thé 1owe§t ones s, NN(939), etc. cannot be'fhe

dominating chaﬁnels in producing the miragé:?omeranchon; because at

j = 2 all these channels have o < 2, thus are éense éhéqnelé. In.fact,

the lowest channels that can be nonsense channelé‘at J ; 2 aré‘ |

Nﬁﬁ*(l258) or ,N(939)ﬁ*(l688). Théy have thresholds around 2.5 GeV.

if all hadron bound states are not very deeply bounded due to the

finite range and strength of the strong interaction force, thén in our

mode; as mentioned in Sec. I1I1(B), aP(SG) equals to ¢ - 1, with So~neaf the

B . . s}
threshold of the external particles [~(2.5)2 GeVg] and o =~3 in

this case. The slope will be aP' ~ 0.2 GeV-e. Of course these are L
~only very crude arguments, the essential point is: the fact that

Pomeranchon chooses nonsense at J = 2 requires that it can couple
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~ strongly only to those channels with thresholds higher than the

thresholds of the channels that coupled to ordinary mesoﬂ trajectories.
Other problems which our conjecture mighf shed some light on

incltde: why the diffractive dissociation cross section is small

~compared with the elastic cross section and the.possibility of a vanishing

1
residue of Pomeranchon-Pomeranchon coupling in multi-Regge model. 8
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reportiUbRLrl75ll;-January l967‘(unpublished).

-G. Chew and A. Pignotti, A Multiperipheral Bootstrap Model,

Lawrence Radiation Laboratdry report UCRL-18275;(Physl Rev. to

be published). .
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: '

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or ‘ ‘

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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