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ABSTRACT 

A mirage trajectory is a Regge trajectory which 

has no physical particle lying on it. We discuss both its 

poss~ble dynamic origin and its peculiar properties. In 

particular, we consider the possibility that the Pomeranchon 

is a mirage trajectory. This conjecture: (l) simplifies 

the structure of Mandelstam-type cuts, (2) gives a simple 

physical interpretation of the Harari · hypothesis, and 

(3) indicates a possible explanation for the smallness of 

the Pomeranchon slope near t = 0, while still allows the 

Pomeranchon to be a moving pole. 
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I. INTRO))UCTION 

The existence Qf the Port:teranchuk trajectory was first conjectured 

by Chew and Frautschi-1 and by Gribov. 2 It is assumed to be an even 

signatured Regge trajectory with the quantum numbers of the vacuum, 

which passes through the angular momentum value j = l at precisely 

zero energy. If no other j -singularities have these properties, one 

is able to readily u~derstand many features of high energy scattering 

of strongly interacting particles. However, both theoretical and 

experimental uncertainties3 have kept physicists from establishing the 

true nature of the Pomeranchon. One particularly puzzling feature of 

.the Pomeranchuk trajectory is its usual small slope· as indicated by 

fitting the high energy nN and NN scattering data using Regge 

4 poles. Recently, an interesting observation on the difference between 

Pomeranchon and other ordinary Regge trajectories has been made by 

H. Harari.5 Within the context of finite energy sum rule bootstrap, 

Harari conjectured that the Pomeranchon is mostly built by the nonreso-

nating background, while the ordinary trajectories are built by the low 

energy resonances. Although this conjecture does not preclude the 

dynamical equivalence of all hadrons, it does indicate a special 

characteristic associated yli th the Pomeranchon, not shared by most 

other trajectories. 

Another puzzling feature of hadron physics is.the existence of 

branch points (cuts) in the j-plane. They were first shown to be 

present by Mandelsta.m6 in a perturbation theory model; and they have 
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the effect of removing the Gribov-Pomeranchuk7 essential singularities. 

However, if the Pomeranchon has a zero-energy intercept of 1, one 

finds that an accumulation of indefinitely many cuts will occur. This .. 
- . 

occurrence does not necessarily violate any obvious S-matrix principle, 
- . 8 

yet it is considered by many as a defect of the present model. 

Many attempts9 in trying to understand and resolve these and 

other related puzzling problems have been made, with no satisfactory 

explanation having yet been reached. We would like to suggest a new 

possibility which: (1) allows the possibility of simplifying the 

structure of Mandelstam-type of cuts, (2) gives a simple physical 

interpretation to the Harari conjectur~and (3) indicates why the 

slope of the Pomeranchuk trajectory may be small near t (the total 

energy) = 0, while still allows the Pomeranchon to be a rrioving pole. 

We shall consider in this paper the possibility that the Pomeranchon 

is a mirage Regge trajectory. A mirage trajectory is a moving Regge 

pole in the j-plane, which "decouples" from all physical communicating 

channels wl:ienever the pole moves through a physical value (j =0,2,4··· 

in the case of the Pomeranchon). Consequently, no "physical" particle 

poles (stable or unstable) lie on a mirage trajectory. We shall show 

in what follows how this possibility can greatly simplify these 

mysteries surrounding the Pomeranchon. 
• 

In Sectionii, we discuss the dynamical nature of a mirage 

·trajectory. In particular, we shall construct a model to exhibit the • 
ingredients which are required for a mirage trajectory to be present. 
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We next turn to the discussion on consequences of our conjectures. In 

·~section III, we review the argument for the necessity of Mandelstam cuts. 

We show that there is an intimate connection between the cuts of 

Mandelstam type and the normal threshold singularities of scattering 

amplitudes. As a consequence, we argue that it is possible for a mirage 

trajectory not to part'icipate in producing :Mandelstam cuts. In Section 

IV we exami'rie the conjecture of Harari and show that it can have a 

simple physical interpretation if the Pomeranchon is a mirage trajectory. 

We add in Section V further remarks concerning our conjecture including 

a possible explanation for the smallness of the Pomeranchon slope near 

zero total energy . 
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II. DYNAMICAL CONSIDERATIONS 

When a mirage trajectory passes through a physical j value 

at S = s0, the residue of a physical channel 

f3ss ~ c1 (s - s0 )n, where .c1 .= o or finite. 

will have the behavior 

Consequently, no physical particle 

with spin j will be present at s0 . We know there are three kinds 

of pole-elimination mechanisms that will give this kind of behavior: 

Chew mechanism, Gell-Mann mechanism, and noncompensation mechanism. 10 . 

In order to be more specific, let us construct a model based on the 

Gell-Mann mechanism. As is well known in this case, the residues 

behave in this manner: 

f3ss ' 

f3nn ~ c 2 
2 ' 

1 

f3sn ~ c1c2 (s - s )2 
0 (2.1) 

We shall first explain how this is possible from the dynamical point 

of view and then generalize to the case of a mirage trajectory which 

chooses "nonsense" at every physical j-value (j = 0,2,4,···, for 

Pomeranchon). 

A. Gell-Mann Mechanism 

Consider two spin ! particles interacting with a local 

spherically symmetric potential. The most general forrri of potential 

V(~) can be written as 

• 

• 

• 
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v(;~:) v (r) A(O) + V (r) A(l) + V (r) ,S 
l - 2 - 3 - 12 

, (2.2) 

where and A(l) are projection operators on singlet and triplet 

spin states, and s12 is the tensor operator. The 

are fUnctions of ~ only. 

Let us concentrate on th~ tripletstates with parity (-l)J+l, and 

labelling states by lj, £ j ± 1), the partial-wave analysis lead 

to a set of ordinary coupled radial Schrodinger equations. Once the 

potential is given,, the Jost fUnctions can be obtained from the solution 

of this set of diff~ren,tial equations. ,Let us assume that the solution 

contains Regge poles such that the leading Regge trajectory a(S) 

passes through j = 0 at S = s
0 

below threshold, and we shall 
; 

investigate the behavior of Regge residues associated with this pole. 

At j = 0, the state I j, £ = j - l) has become "nonsense." 

The set of equations will decouple as j approaches this value. They 

have the form 

(L + vl + 2v3) ljfn = k21jf 
' dr2 n 

( 'd2 2 
vl - 4v3}'s k21jf 

dr2 +2+ ' s r 

where ljJ , ljJ are wave functions for the nonsense and sense states n s 

respectively. The analytically continued partial-wave amplitude 

(2.3) 

(2.4) 

a (J· s) should then coincide at J. = 0 with that calculated from 
ss ' 
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(2.4) alone. . Now, it is easy to see that in order for the.pole to be 

absent in ass(j,S) at j o, s = so, the potential (vl - 4v ) = 3 
must not produce a P-wave bound state there. This can always be done 

by adjusting functions v1 (y) and v3 (~). For instance, _by choosing 

-2v
3

(r}>> v1 (r) > 0, the combination (v1 - 4v
3

) will correspond to 

a repulsive potential. Consequently the Regge pole a(S) will remain 

only in the amplitude a (j,s), not in a (j,s); nn ss · The residues f3ss' 

. f3sn' and .. f3nn will behave as in (2.1). 

To summarize, the Gell-Mann mechanism occurs if the "force" 

that is responsible for producing a Regge pole comes completely from 

the nonsense channel. At the j = 0, the sense and nonsense channels 

decouple from each other. This pole will only remain in the nonsense;_ 

nonsense amplitude, and we say this pole has chosen "nonsense." However, 

as one moves away from j = 0, the distinction between the "sense" 

channel and the "nonsense" channel is lost. This Regge pole will couple 

to all analytically continued partial-wave channels. 

It is obvious that the above model is not adequate to produce 

a mirage trajectory. As one moves to the next intege~ j = 2, both 

channels I.e = j + 1) and I.e = j - 1) are physical there (we shall 

ignore signature for now). Consequently this trajectory a(S) cannot 

choose nonsense, there. In order to build a mirage trajectory, it is 

clear that additional structure12 has to be introduced into the model. 

r ·-' 

• 

• 
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B. A Mirage Trajectory by Choosing Nonsense 

at all Physical J Values 

What we need is a model which allows a Regge trajectory to 

choose nonsense at all-physical j v~lues, regardless of how high the 

spin is. Dynamics'involving high-spin particles or multiparticle 

channels is obviously required. 
.· 13 

The model of "nearby dominance," 

used for discussing rising Regge trajectories, seems most appropriate 

here. The model asserts that one could study the dynamics of a Regge 

trajectory at one small energy region at a time. At any particular 

energy region, the dominant forces that bind this Regge trajectory come 

from the high-spin channels whose thresholds lie in that region. With 

respect to these dominant channels, the "orbital" angular momenta could 

thus remain small. The physical justification of this model is 

discussed in Ref. 13, and we shall only concentrate here on discussing 

how a mirage trajectory can be formed within this model. 

We shall generalize the case of two spin ¥particles to the 

case of two particles with arbitrary spin and We assume 

that aRegge trajectory is formed, in a particular energy region, by· 

the interaction between these two particles. The interaction potential 

has the form V(£) ~ V.(r)A., where each V.(r) is a scalar ~ 1 1 1 

potential, and each Ai is a tensorial operator in the spin space. 

In analogy to the triplet states, we shall consider those states 

corresponding to a total spin 1£1 

sub-spin-space can be labeled by lj, .e = j ± (cr- n)), n = O,l,···cr. 

This model of nearby dominance asse'rts that the produced Regge trajectory 
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a(S) will have a value a(S) ~ a in the neighborhood of the threshold 

of these two particles. Let us first adjust the potentials so that 

a(s ) = a - 1, at a point s near this threshold; and, in particular, 
a a 

we choose the V.(r) in such a way that the dominant force for binding 
~ 

this trajectory comes from the channel labeled by lj, £ = j - a). 

However, this channel is "nonsense'' at j = a - 1. As one moves toward 

this j value, this Regge trajectory will be choosing "nonsense" there. 

As one goes up in energy, one just has to keep on changing the 

spin and of the dominant channel. By adjusting the potential 

appropriately, the output trajectory will be able to choose nonsense at 

every physical angular momentum value. Consequently, there will be no 

physical particles lying on this Regge trajectory, and, by definition, 

it is a mirage trajectory. 

We have demonstrated one type of mirage trajectory here to show 

that their existence is really not .so unlikely as it would seem at 

first sight. In fact, other models can readily be constructed. One 

can easily convince oneself that they do not violate any accepted 

property of scattering amplitudes, and their presence will lead to many 

interesting consequences .. We shall next consider some of them. 

• 
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III. MANDELSTAM CUTS AND MIRAGE TRAJECTORIES 

By Mandelstam cuts, we mean those moving branch points in the 

j-plane which owe their existence to the presence ofGribov-Pomeranchuk 

. 6-8 
fixed poles. In the following, we shall first review the necessity 

for Mandelstam cuts and their relation with the normal threshold singu-

larities in the energy plane. We then discuss the case where mirage 

trajectories are involved and show that it is possible for them not to 

participate in producing Mandelstam cuts. 

It has become a well-known fact that the existence of Gribov-

Pomeranchuk fixed poles at wrong-signature, nonsense j values forces 

the presence of moving cuts if we are to avoid essential singularities 

in the j-plane. These essential singularities, which are due to the 

accumulation of poles, would violate crossed-channel unitarity when 

high-spin particles are present. 

For the even-signatured partial-wave scattering amplitude of two 

particles with spins crA and crB' the nonsense, wrong-signature points 

occur at 

J = ' 
n (3.1) 

They correspond to the system having a nonsensical orbital angular 

momentum £ = -1, -3, -s,···. To avoid essential singularities, the 

moving cuts will have to have the special property that they coincide 

with the normal threshold s = (rnA + ~) 2 at t.hese j values, so that 

the "elastic"· discontinuity formula would no longer be applicable. 

In terms of the position of the nth cut in the j plane, the above 

condition corresponds to 

c 
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. c,n[ 
a:[A,B] S 

2 
= (mA + ~) ] = n = 1,3,5,···. 

Mandelstam, by investigating those perturbation diagrams con-

taining Gribov-Pomeranchuk fixed poles, has found cuts which satisfy 

(Eq. 3.2). Their positions are given by 

c,n( ) 
a:[A,B] S ' 

= 

where a:A(S) and a:B(S) are Regge trajectories on which particles 

A and B lie respectively. 

(3-3) 

We would like to point out that in the case where fixed poles 

are absent, the necessity for the existence of moving cuts is removed. 

One such case is when a:A or (or both) is a mirage tra.jectory. 

Since particle A realiy does not exist, there will be no normal 

threshold at the point 2 
S = (mA + ~) • Consequently, moving cuts 

and c,n( ) 
a:[B A] S 

' ' 
are not required. 

It is not surprising to find that Mandelstam' s proof for the 

existence of moving cuts also fails in this case. The proof made use 

of the existence of Gribov-Pomeranchuk fixed poles to show that the 

discontinuity across "formal" branch cuts cannot vanish. However, if 

one of the trajectories involved is a mirage trajectory, the existence 

of a Gribov.;.Pomeranchuk fixed pole can no longer be ascertained. 

• 
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Consequently, the proof for the existence of Mandelstam cuts will no 

longer go through. 

We have just seen that the type of cuts described by Eq. (3.3) 

does not have to be present if one of the trajectories involved is a 

mirage _trajectory, in contrast with that associated with ordinary Regge 

trajectories. in all the above arguments,.we implicitly assume that 

amplitudes with one or more external Reggeons can be defined. If this 

' 14 1 
can be done, then a great simplification 5 on high energy Regge 

r~preseritation can be achieved. 

0 
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. IV. HARARI Is CONJECTURE AND MIRAGE TRAJECTORY 
' 

An interesting ~b:servation15 has been made by H. Harari on the 
"~ 

different roles played by the Pomeranchon and other Regge trajectories 

in relating ·the high-energy behavior of scattering amplitudes to their 

low-energy behavior. It has led him to conjecture that, within the 

context of finite energy sum rules, the Pomeranchon is mostly built by 

the nonresonating background, while "ordinary" Regge trajectories can 

·be bootstrapped by using the resonance approximation. Preliminarytests16 

of this conjecture have been encouraging. 

The failure of resonance saturation in the case of the Pomeranchon 

does not necessarily indicate doubts on the "bootstrap" nature of the 

Pomeranchon; however, it shows signs of having certain peculiar 

properties which "ordinary" trajectories do not possess. We would like 

to suggest that a mirage trajectory would lead to the phenomenon 

observed by H. Harari. This phenomenon arises because a mirage 

trajectory fails to give rise to long-range attractive forces when 

being exchanged in any allowed reaction. 

In order to introduce the notion of forces, we can, for instance, 

adopt the method of Charap and Fubini,17 who demonstrated that an 

energy•independent local potential could be given a meaning in a 

rela:ti vis tic theory at low energies. In particular, the long-range 

part of this potential is shown to correspond exactly-to poles in small 

t region. When a Regge trajectory with low-inass particles is exchanged, 

it will give rise to forc,es that are '-~f }ong range (either attractive 
_.,~!l' 

or repulsive). Conversely, if Pomeranchon is a mirage trajectory, it 

•• 

L> 
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will not give rise to a long range Yukawa force, because Pomeranchon 

does not correspond to poles of the full amplitude in the t plane. It 

is a well-known fact that in nonrelativistic potential theory problems 

without attractive long-range force, no resonances can be found. Since 

our example is approximately given by potential theory in the low 

energy region, it is then natural to expect that no resonances are 

being formed due to the exchange of the Pomeranchon. Furthermore, if one 

is allowed to interchange the "cause" and "effect" in the discussion of 

finite energy sum rule bootstrap the part of the Harari conjecture on 

the Pomeranchon then follows from the argument given above. 

We would like to add that there might be other Regge trajectories 

which in most instances behave as "ordinary" trajectories, but not in 

f:)ome ot,her instances. These include trajectories whose first few 

recurrences are missing, or whose coupling to specific channels13 is 

very weak. If this is true, a generalization of Harari's conjecture 

is required. 
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V. CONCLUDING REMARKS 

We have discussed in this paper several interesting consequences 
\·,~ ' ' 

of the assumption that th~Pomeranchon is a mirage Regge trajectory. 

These include the explanation: of the Harari hypothesis, and the 

possible removal of Pomeranchon cuts. We have also pointed out the 

possible dynamical origin of mirage trajectories and have illustrated a 

special model in which a mirage trajectory is formed by choosing 

nonsense at every physical value of angular momentum. 

The mysteries surrounding the Pomeranchon are by no means 

solved. Our conjecture perhaps provides a new route of attacking 

these puzzling problems. One unique property of the Pomeranchon is the 

possibility of its small slope near t = 0. Let us consider the 

low-threshold two-particle channels that communicate with the Pomeranchon. 

We find that all the lowest ones n:n:, NN(939), etc ... cannot be the 

dominating channels in producing the mirage Pomeranchon, because at 

j = 2 all these channels have cr < 2, thus are sense channels. In fact, 

the lowest channels that can be nonsense channels at j = 2 are 

L* -* 
N N (1238) or N(939)N (1688). They have thresholds around 2.5 GeV. 

If all hadron bound states are not very deeply bounded due to the 

finite range and strength of the strong interaction force, then in our 

mode~ as mentioned in Sec. II(B), 

threshold of the external particles 

~(Scr) equals to 

2 2 
["'(2.5) GeV ] 

cr - 1, with S near the 
cr 

and cr ~ 3 in 

this case. The slope will be -2 
~· ~ 0.2 GeV . Of course these are 

only very crude arguments, the essential point is: the fact that 

Pomeranchon chooses nonsense at. j = 2 requires that it can couple 

I') 
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strongly only to those channels with thresholds higher than the 

thresholds of the channels that coupled to ordinary meson trajectories. 

I.." Other problems which our conjecture might shed some light on 

include: why the diffractive dissociation cross section is small 

compared with the elastic cross section and the possibility of a vanishing 

. h h 1 . . lt . d 18 
res~d~e of Pomeranc o~-Pomeranc on coup ~ng ~n mu ~-Regge mo el. 

'" 
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