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ABSTRACT OF THE DISSERTATION

Improved Inference for spatial and panel models

by

Min Seong Kim

Doctor of Philosophy in Economics

University of California, San Diego, 2011

Professor Yixiao Sun, Chair

Chapter 1 is “Heteroskedasticity and Spatiotemporal Dependence Robust
Inference for Linear Panel Models with Fixed Effects.” This chapter studies robust
inference for linear panel models with fixed effects in the presence of heteroskedas-
ticity and spatiotemporal dependence of unknown forms. We propose a bivariate
kernel covariance estimator, which is flexible to nest existing estimators as special
cases with certain choices of bandwidths. For distributional approximations, we
consider two different types of asymptotics. When the level of smoothing is as-
sumed to increase with the sample size, the proposed estimator is consistent and
the associated Wald statistic converges to a x? distribution. We show that our
covariance estimator improves upon existing estimators in terms of robustness and

efficiency. When we assume the level of smoothing to be held fixed, the covariance

xi



estimator has a random limit and we show by asymptotic expansion that the lim-
iting distribution of the test statistic depends on the bandwidth parameters, the
kernel function, and the number of restrictions being tested. As this distribution is
nonstandard, we establish the validity of an F-approximation to this distribution,
which greatly facilitates the test. For optimal bandwidth selection, we propose a
procedure based on the upper bound of asymptotic mean square error criterion.
The flexibility of our estimator and proposed bandwidth selection procedure make
our estimator adaptive to the dependence structure in data. This adaptiveness
automates the selection of covariance estimator. That is, our estimator reduces to
the existing estimators which are designed to cope with the particular dependence
structures. Simulation results show that the F-approximation and the adaptive-
ness work reasonably well.

Chapter 2 is “Spatial Heteroskedasticity and Autocorrelation Consistent Es-
timation of Covariance Matrix.”. This chpater considers spatial heteroskedasticity
and autocorrelation consistent (spatial HAC) estimation of covariance matrices of
parameter estimators. We generalize the spatial HAC estimators introduced by
Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with
moment conditions. We establish its consistency, rate of convergence and asymp-
totic truncated mean squared error (MSE). Based on the asymptotic truncated
MSE criterion, we derive the optimal bandwidth parameter and suggest its data
dependent estimation procedure using a parametric plug-in method. The finite
sample performances of the spatial HAC estimator are evaluated via Monte Carlo
simulation.

Chapter 3 is “k-step Bootstrap Bias Correction for Fixed Effects Estimator
in Nonlinear Panel Models.” Fixed effects estimators in nonlinear panel models
with fixed T usually suffer from inconsistency because of the incidental parameters
problem first noted by Neyman and Scott (1948). Moreover, even though 7" grows
at the same rate as n, they are asymptotically biased and therefore the associated
confidence interval has a large coverage error. This chapter proposes a k-step
parametric bootstrap bias corrected estimator. We prove that our estimator is

asymptotically normal and is centered at the true parameter if 7' grows faster

x1i



than /n. In addition to bias correction, we construct a confidence interval with a
double bootstrap procedure, and Monte Carlo experiments confirm that the error
in coverage probability of our CI’s is smaller than those of the alternatives. We

also propose bias correction for average marginal effects.
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Chapter 1

Heteroskedasticity and
Spatiotemporal Dependence

Robust Inference for Linear Panel

Models with Fixed Effects

1.1 Introduction

This paper studies robust inference for linear panel models with fixed effects
in the presence of heteroskedasticity and spatiotemporal dependence of unknown
forms. As economic data is potentially heterogeneous and correlated in unknown
ways across individuals and time, the robust inference in the panel setting is an
important issue. See, for example, Betrand, Duflo and Mullainathan (2004) and
Petersen (2009). The main interest in this problem lies in (i) how to construct
covariance estimators that take the correlation structure into account; (ii) how to
approximate the sampling distribution of the associated test statistic; and (iii) how
to select smoothing parameters in finite samples.

Regarding covariance estimation, we propose a bivariate kernel estimator.



In order to utilize the kernel in the spatial dimension, we need some a priori
knowledge about the dependence structure. It is often assumed that the covariance
of two random variables at locations ¢ and j is a decreasing function of an observable
distance measure d;; between them. An example of d;; is the economic distance.
The idea of using a distance measure to characterize spatial dependence is common
in the spatial econometrics literature. See, for example, Conley (1999), Kelejian
and Prucha (2007), Bester, Conley, Hansen and Vogelsang (2009, BCHV hereafter)
and Kim and Sun (2010, KS hearafter).

There are several robust covariance estimators with correlated panel data.
Liang and Zeger (1986) and Arellano (1987) propose the clustered covariance es-
timator (CCE) by extending White standard error (White, 1980) to account for
serial correlation. Wooldridge (2003) provides a concise review on the CCE and
Kezdi (2003) explores its properties in panel models with fixed effects. Driscoll and
Kraay (1998, DK hereafter) suggest a different approach that uses a time series
HAC estimator (Domowitz and White, 1982; and Newey and West, 1987) with
the cross-sectional averages of moment conditions. Gonglaves (2008) examines the
properties of this estimator in linear panel models with fixed effects. Another ap-
proach considered in this paper is the extension of the spatial HAC estimator with
serial averages of moment conditions, which we name the KS estimator. This is
symmetric to the DK estimator. The spatial HAC estimator is firstly proposed by
Conley (1999), and Kelejian and Prucha (2007) argue that it can be extended to
the panel setting with fixed 7.

As our estimator is based on the bivariate kernel, it nests these existing
estimators as special cases, reducing to each of them with certain bandwidth selec-
tion. We refer to this as flexibility. If the sequence of the bandwidth in the spatial
dimension, d,, is assumed to increase fast to satisfy certain condition, then our
estimator with the rectangular kernel converges to the DK estimator. Similarly, if
we assume the sequence of the bandwidth in the time dimension, dr, to increase

fast enough, then our estimator with the rectangular kernel converges to the KS



estimator. On the other hand, if d,, is assumed to approach to zero, our estimator
reduces to the generalized CCE.

For distributional approximations, we consider both the increasing smooth-
ing asymptotics and fixed smoothing asymptotics. Let ¢;,, denote the number of
individuals whose distance from individual 7 is less than or equal to d,, and /¢,
be the average of ¢;, across . If d,,dr — oo as n,T" — oo but slowly so that
loly/nT — 0, then the level of smoothing increases with the sample size. As a
result, our covariance estimator is consistent and the limiting distribution of the
associated Wald statistic is the x? distribution.

The alternative estimators are also consistent under some regularity condi-
tions, but each approach has an important limitation in practice. The properties
of the CCE heavily depend on spatial correlation. While this estimator is quite
efficient with zero correlation in the spatial dimension, even moderate spatial cor-
relation may lead to the substantial bias of the estimator and hence size distortion
in statistical inference. Though zero correlation between individuals is sometimes
assumed for convenience, they are generally not independent due to, for example,
spill-over effects, competition and so on.! For the DK estimator, collapsing spatial
dependence by the cross-sectional averaging, it is robust to arbitrary form of spa-
tial dependence. However, when spatial dependence decreases with some distance
measure, this estimator is not efficient because it does not downweigh or truncate
the covariance between spatially remote units. For the KS estimator, in contrast,
it does not employ downweighing or truncation in the time domain.

The proposed estimator improves upon the above estimators by employing

a bivariate kernel. It does not require zero spatial correlation for consistency in

'Recently, Bester, Conley and Hansen (2010) present consistency results for the CCE with
spatially dependent data by constructing clusters to be asymptotically independent. In this
paper, we consider a rather traditional panel CCE for which the cluster is defined based on
each individual so that the asymptotic independence condition is not valid. Cameron, Gelbach,
and Miller (2006) and Thompson (2009) address this problem by clustering on the time and
spatial dimensions simultaneously. While this allows for both the serial and spatial correlations,
observations on different individuals in different time are assumed to be uncorrelated.



contrast to the CCE and more efficient than the DK and KS estimators in general.
More specifically, if individuals are located on a 2-dimensional lattice and the
Bartlett kernel is used, our estimator is more efficient than the DK estimator if
T = o(n*?) and than the KS estimator if n = o(T*). The conditions are more
generous with the second order kernels, such as the Parzen kernel, i.e. T = o(n*/?)
and n = o(T9).

If 0,07 /nT is assumed to be held fixed, then the level of smoothing is fixed
with the sample size. Under fixed smoothing asymptotics, the covariance estimator
converges in distribution to a random matrix and the limiting distribution of Wald
statistic is nonstandard but pivotal. The fixed smoothing asymptotic approxima-
tion is firstly suggested by Kiefer, Vogelsang and Bunzel (2000) and Kiefer and
Vogelsang (2002a, 2002b, 2005) in the time series context. This is usually referred
to as ‘fixed-b’ asymptotics where b denotes the ratio of the bandwidth parameter
dr to the sample size T'. They show by simulation that the fixed-b asymptotic ap-
proximation is more accurate in size than the x? approximation. Jansson (2004),
Sun, Phillips and Jin (2008), and Sun and Phillips (2009) provide its theoretical
analyses.

We adopt the fixed smoothing asymptotics in the panel setting with our
covariance estimator. Using asymptotic expansion we show that the deviation of
this limiting distribution from the x? distribution depends on the smoothing pa-
rameters, kernel function and the number of restrictions being tested. We can
accommodate the estimation uncertainty of the parameter estimator and the ran-
domness of the covariance estimator under fixed smoothing asymptotics. As the
limiting distribution is nonstandard, we extend Sun (2010) to establish the validity
of an F-approximation to this distribution. Under fixed smoothing asymptotics,
the covariance estimator converges in distribution to an infinite weighted sum of
independent Wishart distributions. We approximate this with a single Wishart
distribution with an ‘equivalent degree of freedom.” With this result, the fixed

smoothing limiting distribution of the scaled Wald statistic with some correction



factor becomes approximately F' distributed. This F-approximation greatly fa-
cilitates the testing procedure because we can obtain the critical values without
simulation.

Several testing methods using the fixed smoothing asymptotics are recently
proposed in the spatial or panel setting. BCHV extend the fixed-b asymptotics to
the spatial context where dependence is indexed in more than one dimension, and
propose an i.i.d. bootstrap method to obtain the critical values. Vogelsang (2008)
develops a fixed-b asymptotic theory for statistics based on the generalized CCE
and the DK estimator. Besides the kernel methods, Hansen (2007) and Bester,
Conley and Hansen (2009) apply the fixed smoothing asymptotics to the testing
procedure with the CCE. They assume the number of clusters to be fixed and the
number of observations per cluster to increase with the sample size. Ibragimov
and Miiller (2010) consider fixed smoothing asymptotics for the Fama and Mac-
Beth (1973) type procedure by fixing the number of groups. Sun and Kim (2010)
considers a testing procedure using the series covariance estimator in the spatial
setting. They show that, when the number of basis functions is assumed to be
held fixed, the series estimator converges in distribution to a Wishart distribution,
and that the scaled Wald statistic converges to F' distribution. The motivation
of our F-approximation arises from the series method. All the kernel covariance
estimators with positive semi-definite kernels can be written as series covariance
estimators (Percival and Walden, 1993, p. 353). Actually, the other two ‘non-
kernel” methods also use the ¢t or F' distribution as the reference distribution while
the kernel methods by BCHV and Vogelsang (2008) have to simulate the critical
values. From this point of view, this paper fills the gap in the literature, providing
F-approximation for the kernel method in the panel setting.

We propose an optimal bandwidth selection procedure based on the upper
bound of the asymptotic mean square error (AMSE*) criterion. Though it is
standard practice to use the asymptotic mean square error (AMSE) criterion in

the HAC estimation literature (e.g. Andrews, 1991 and Newey and West, 1994),



it is not tractable for the proposed estimator. Our minimax criterion is simple to
implement and makes the bias and variance tradeoff transparent. It is interesting
to note that the level of persistence in each dimension affects both dj. and d7, the
optimal bandwidth parameters in the time and spatial dimensions respectively, but
in the opposite direction. We suggest a parametric plug-in procedure for practical
implementation using the spatiotemporal models in Anselin (2001).

Our bandwidth selection procedure does not apply directly to the rectan-
gular and, more broadly, flat-top kernel estimators. However, it is interesting to
consider flat-top kernel estimators because they are higher order accurate (Politis,
2010). This is particularly more important in our setting because the flexibility is
the main ingredient of the adaptiveness of our estimator which is explained below.
We modify our bandwidth selection procedure to be applicable to the rectangular
kernel. This modified procedure leads the rectangular kernel based estimator to
better asymptotic properties than the one with any finite order kernel we target.

The flexibility and proposed data-driven bandwidth selection procedure
make our estimator adaptive to the dependence structure in data. That is, our
estimator reduces to the estimators that are designed to cope with the particular
dependence structures. This adaptiveness is the salient feature of our method. As
it practically automates the selection of covariance estimator, our estimation pro-
cedure can be safely used in the presence of very general forms of spatiotemporal
dependences. This is confirmed by our Monte Carlo study.

The remainder of the paper is as follows. Section 2 introduces the panel
model, covariance estimator and hypothesis testing we consider. In section 3, we
examine the properties of our estimator and the associated test statistic under
increasing smoothing asymptotics. Section 4 develops an optimal bandwidth se-
lection procedure. Section 5 examines the properties of the existing estimators.
The flexibility and adaptiveness of our estimator are illustrated in section 6. In
section 7, we study the limit theory for our covariance estimator and the associ-

ated test statistic under fixed smoothing asymptotics. We also establish its F-



approximation. Section 8 reports simulation evidence. The last section concludes.

1.2 Panel model, covariance estimator and hy-
pothesis testing

In this paper, we consider a static linear panel regression model with fixed
effects?:

Yie = Xipfo + ai + fi 4 wi, (1.1)
where X;; and [ are p-vectors and «; and f; denote scalar individual and time
effects respectively. When Xj; is correlated with «; and f;, we may use a fixed
effects estimation approach. Let Z, = T Zthl Zity Zy =130 Zy and Z =
(nT)_1 Yo Zle Zi. We also define Z;; = Zy — Zi — Z, + Z. Then, the fixed
effects estimator, B, is defined as

n T A
3= (Z > Xitf(;t) > XuYi. (1.2)
i=1 t=1 i=1 t=1

Under some regularity conditions, the asymptotic distribution of B is
(QnTJnTQ;LT)_% vnT (B - ﬁ0> 4N (0,1,) as n,T — oo,

where
n T -1 n T
Qnr = ((nT)_l Z E P@Q@;]) and J,r = var ((nT)_l/2 Z Z f(itu,-t> )
i=1 t=1 i=1 t=1
To make inference on 3y, we have to estimate unknown quantities in the asymptotic
variance of B Since ), is consistently estimated with its sample analog, our

central interest is on Jyp. Letting V{; ;) = Xyuy, Jor can be rewritten as

1 n T 1 n T
T === 3 3 E VoVl = =5 D0 D e (1.3)

i,j=1t,5=1 i,j=1t,s=1

2Qur analysis can potentially be generalized to the GMM setting. We focus on a static linear
panel model to be free from the incidental parameters problem (Neyman and Scott, 1948) which
the fixed effects estimators of nonlinear and dynamic panel models usually suffer from. See
Arellano and Hahn (2006) for detail.



We propose a bivariate kernel covariance estimator which is given as

n T
ij=1t,s=1

where ‘A/(Lt) = Xit(f/,-t — X{tﬁ) and K(-) is a real-valued kernel function.? d;; and
d;s denote the distance measures in the spatial and time dimensions and d,, and
dr are the corresponding bandwidth parameters. Whereas it is natural to define
dis = |t — s|, what is used to measure d;; differs with applications. Geographic
distance is one of the most common measures, but other measures can also be
considered, e.g. transportation cost (Conley and Ligon, 2000) and similarity of
input and output structure (Chen and Conley, 2001; and Conley and Dupor, 2003).

Consider the null hypothesis Hy : RS = ry and alternative hypothesis
H, : RB # 1o where R is a g X p matrix and ry is a g-vector. For hypothesis

testing, we use the Wald statistic

Wor = VT (R3 —10) (RQur @y R VT (RE =)
where Q,r = ((nT)_1 S X}-tf({t> _1, and its F-test version

FnT = WnT/g

1.3 Increasing smoothing asymptotics

1.3.1 Basic setting

We employ the linear transformation of n7T'p common innovations to repre-

sent the process of V{;;) as follows:

Vi) = Riine, (1.5)

3For simplicity of our analysis, we employ a product kernel with the same kernel function in
each dimension.



where

~(1) ~(1) ~(1)
( T,y T2y itn,1) ) e 0

Ry =

~(p) ~(p) ~(p)
0 e (D D )

is a p x nT'p block diagonal matrix with unknown elements and
. 1))/ OV i il (e ~(c) RO 0 \ A
£ = ((6(1)) sy (E@) > in which ¢ = (5(171), s €y E(ray - ,5(n,T)> . Asin

KS, we assume that
var (5(0)) = 0cclyr, COV (5(6), é(d)) = 0cqlpr

and

var (§) = X ® Ly with & = (0cq) ,

where ¢,d = 1,...,p and ® denotes the Kronecker product. This type of linear
array processes allows for nonstationarity and unconditional heteroskedasticity of
V(i) and includes many spatiotemporal parametric models such as spatial dynamic
models (Anselin, 2001) as special cases. It also treats the temporal and spatial
dependence in a symmetric way.

Let Ry == Ry (B2 @ Lir) and € == (c1,...,enrp) = (E7V2® Lir) &
Then,

Viiyy = Rine and var (€) = Lypp. (1.6)

The matrix R(;; can be written more explicitly as

(1) (1)
( Tana o Taonrp )
Ry = :
(p)
( T(f,t),l T(it)nTp )
11 ~(1) ~(1) 1 ~(1) ~(1)
g < Fatay - Tt ) S ( Tatan)y - Ttn,T) >
1 () ~(p) ~(p) ~(p)
o’ < o) o T ) e o ( Paea1) o Tim) >



10

where 0 denotes the (c, d)-th element of /2. We make the following assumption

on g;.

Assumption I1. For alll = 1,...,nTp, & SE (0,1) with E [¢}] < cg for some

constant cg < o0.

For simplicity, we assume that ; is independent of ¢, for [ # k. We can relax
independence assumption to zero correlation but with more tedious calculations.

Under Assumption F'5, the covariance matrix of V(; ) and V{;, is given by

() ) _ _
Ditjs) = <7(z-t,js)> = E [Viio Vi) = Ran R0, (1.7)

(cd)
(it,gs

where the (c, d)-th element of I j5) is denoted by v - Accordingly, the covari-

ance matrix can be restated as

n T
1 /
Jir === > > R R, (1.8)

4,j=1t,5=1

and the (c, d)-th element of J,r is

n T nTp
1 © ()
o) = 1 33 (St 19
ij=1ts=1 \I=1

5

Assumption 12. Foralll =1,..nTp,c=1,...p,n and T, 3" S, 7’((2. 9 z‘ <

cr for some constant cr, 0 < cr < 00.

Assumption 13. There exist qi,q2 > 0 such that

1 " T 1 n T
o 2o 2 ITawlldf < oo and 2>, 3 [Caegs | dis < o0

ij=1t,s=1 ij=1t,s=1

for allm and T, where ||Al| denotes the Euclidean norm of matriz A.

Assumptions F6 and F7 impose the conditions on the persistence of the
process. If |0 < C for a constant C' > 0, then Assumption F6 holds if

>y Zthl |fgi)7j7s)| < cg/C. Since |f§i{jvs)\ can be regarded as the (absolute) change
(d)

of V(gdt)) in response to one unit change in é(j s

X the summability condition requires



11

that the aggregate response to an innovation be finite. Assumption F7 implies
that I'¢ js) decays to zero fast as d;; and dys increase so that the two summability

conditions holds. These conditions hold if

1
n_TZZ ZZ (it,a,b) ]sab) d; < oo, (1.10)

i,j=1t,s=1 |a=1 b=1

% Z Z ZZ "(it,a,b) ~(jsab) df; < oo (1.11)

i,j=1t,s=1 |a=1 b=1

for all cand d. (1.10) and (1.11) imply that as d;; or d;s increases, the corresponding
two row vectors in R, and R, (féft),l,ly o ,fgl.ct)’n’T)) and (7 ]z 1) Fg;l;mT))
become nearly orthogonal. As the row vector represents the aggregate response of
a unit to all the innovations, this assumption implies the responses of two units
become independent as they become spatially or serially distant. Assumption F7
enables us to truncate the sum of I ;5 and downweigh the summand without
incurring much bias.

As Assumption F7 implies, the key property of d;; is to characterize the
decaying pattern of the spatial dependence. In addition, we assume that d;; satisfies
the properties of distance in a metric space: (i) d;; > 0, (ii) d;; = 0, (iii) d;; = d;i,
and (iv) di; < dii + d;. In practice, nonetheless, the symmetry condition (iii) may
not hold for some candidates of economic distance. Conley and Ligon (2000), for
example, notice that transportation costs among countries violate this condition
if tariff barriers are asymmetric. In such a case adjustment should be made.*
This adjustment does not affect the asymptotic properties of our estimator from a
perspective of the measurement error problem as explained below.

Observed distance data available to empirical researchers usually contain
measurement errors, and the results in this paper can be generalized to the case
when d;; is error contaminated. Following KS, we can show that our asymptotic

results are still valid under the following conditions: (i) the measurement error

4In Conley and Ligon (2000), the asymmetry of transportation costs are adjusted by using
the minimum cost between two countries.



12

is independent of ¢;; (ii) it is of order o(d,) as d, increases; and (iii) the first
summability condition in Assumption F7 holds with an error contaminated dis-
tance measure. In this paper, however, we do not consider measurement errors for
simplicity.

Let

n

lin =Y Ydj <d,}and {, =n"" ih
=1

j=1

?; », is the number of pseudo-neighbors that unit ¢ has and ¢, is the average number
of pseudo-neighbors. Here we use the terminology “pseudo-neighbor” in order to
differentiate it from the common usage of “neighbor” in spatial modeling. We

maintain the following assumption on the number of pseudo-neighbors.
Assumption 14. For allt=1,...,n, {;,, < C¥, for some constant C.

Assumption F9 allows the units to be irregularly located but rules out the
case that they are concentrated only in some limited area while other area is scarce.
To be symmetric, we also define

T T
b =Y Wdiy <dr}and by =T by =2dp + 1 —

s=1 t=1

dr(dr + 1)
T Y

where —dr(dr+1)/T is an adjustment coming from the points near the boundary.

In order to obtain the properties of the estimator in Theorem 7 below, it
is important to control for the boundary effects. That is, the effects of the units
near the boundary should become negligible as the sample size increases, so that

the asymptotic properties depend only on the behavior of the units in the interior.

We define

n

E,={ili,="0,+0(l,)}, m 221{2' cE,},no=n—m
i=1

Er = {t : ét,T = fp + O(ET)}, T, = Z 1 {t € ET} and 1o =T —Tj.

t=1
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E, and Ep represent the nonboundary sets in the spatial and time dimensions.
ny and T} denote the sizes of F,, and Er and ny and 75 denote the sizes of the
boundary sets. These definitions imply that the size of a boundary set relies on
choice of the corresponding bandwidth. We can mitigate the boundary effects by
raising d,, and dp slowly as n and 7" increase to make the interior large enough.
Provided that ny/n and T5/T are o(1), the boundary effects are asymptotically
negligible.  When units are regularly spaced on a lattice in R?, ny/n = o(1) if

ly/n=0(1). Ty/T = o(1) holds if l7/T = o(1).

1.3.2 Properties of J,;r and limiting distribution of Wald

statistic under increasing smoothing asymptotics

We present the consistency, the rate of convergence, and the AMSE of
the estimator and the limiting distribution of the associated test statistic under
increasing smoothing asymptotics. We begin by introducing the assumption on

the kernel used in the estimator.

Assumption I5. (i) The kernel K : R — [0,1] satisfies K(0) = 1,K(z) =
K(—z),K(z) =0 for |x| > 1. (i) For all x1,x9 € R there is a constant, c;, < 0,
such that

| K (1) — K (22)] < cp oy — o]

(iii) €1 >0 K? (%) — Ky foralli € E,.

Examples of kernels which satisfy Assumptions F11(i) and (ii) are the
Bartlett, Tukey-Hanning and Parzen kernels. The quadratic spectral (QS) kernel
does not satisfy Assumption F11(i) because it does not truncate. We may gener-
alized our results to include the QS kernel but this requires considerable amount
of work. Assumption F11(iii) is more of an assumption on the distribution of the

units. When the observations are located on a 2-dimensional integer lattice and
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d;; is the Euclidian distance, we have

//_ JisE x2+y>dydff:2/olrl(2(r)dr,

In finite samples, we may use

321 ()

for IC;. For the kernel in time dimension, we define

ZK2 (d“> /K2 )dr = Ks.

The asymptotic variance of Jr depends on J which is the limit value of

J = n%lgloo JnT = n%lgloo nT Z Z (it,js) -

i,j=1t,s=1

Assumption 16. For: € E, and t € Er,

n’lTir_r}OOvar m Z Z Vis | = J-

jidig<dn s:des<dp

Assumption F10 states that the covariance matrix defined locally for each
nonboundary unit converges to the same limiting value of J,r. This assumption is
related to covariance stationarity but weaker. It is implied by covariance station-
arity but it can hold even though covariance stationarity is violated. Stationarity
seems to be a very strong assumption especially in the spatial dimension because
a spatial process is nonstationary simply if each unit has different numbers of
neighbors. This assumption is similar to the homogeneity assumption in Bester,
Hansen and Conley (2009). They assume that the covariance matrix in each cluster
converges to the same limit.

The asymptotic bias of Jor is determined by the smoothness of the kernel
at zero and the decaying rates of the spatial and temporal dependence in terms of
d;;j and dys. Define
T e )

x—0 |l’|QO

K

0 , for gy € [0, 00).
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and let ¢ = max{q : K,, < oo} be the Parzen characteristic exponent of K(x).
The magnitude of ¢ reflects the smoothness of K (z) at x = 0. Under the assump-
tion that ¢ < ¢; with ¢ = 1,2, we define

n T
@ _ o (@) @_ L o
b = lim b, where b = — > Tiody,

n,T'—o0

i,j=1t,s=1
1 n T
(@ _ 1: (@) (@ _ *+ o
by = n,lil’gloobT , where by’ = nT thzl Uit sy dis-
i,j=11,s=

Next we introduce additional assumptions required to obtain the asymptotic prop-

erties of J,r.

Assumption I7. (i) v/nT (B - 50> = 0,(1). (i) WD) 2 ST ug = 0, (1).
(iii) (nT)"2 " ST Ky = O, (1) . (iv) sup,, EX2 < oc.

Assumption F12 is rather standard. It excludes the case of strong spatial
dependence, which is considered in Gongalves (2010).

We define the MSE as

T . T
MSE (n_ajnT7SnT) - "

0 07 anTE |:V€C(jnT - JnT)’SnTVGC(jnT — JnT)] ,

where S, is some p? X p? weighting matrix and vec(+) is the column by column
vectorization function. We also define jnT as the pseudo-estimator that is identical
to J,7 but is based on the true parameter, (3, in place of B That is,
~ 1 & d d;j dys
o= 20 2 () () i
ij=1t,s=1
Under the assumptions above, the effect of using B instead of 3y on the asymptotic

property is 0,(1) as Theorem 7(c) states below. Therefore, we use J,r to analyze

the asymptotic properties of jnT.

Assumption I8. Fori=1,...,p E[B,P < 00, where Bl is the i'" element ofﬁ.
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Assumption I8 rules out the case when B has an infinite second moment
(Mariano, 1972; and Kinal, 1980) which causes the underlying estimation error to

dominate the MSE.?

Assumption 19. S, is positive semidefinite and S,y = S for a positive definite

matrixz S.

Let tr denote the trace function and K,, the p? x p?> commutation matrix.

Under the assumptions above, we have the following theorem.

Theorem 1. Suppose that Assumptions F5-F10 hold, d,,,dr — 00, ns (d,) = o(n),
Ty(dr) = o(T), £, = o(n) and by = o(T).

(a) lim, 7 %var (UGCjnT) = K1Ko(Lp +K,p) (J @ J).

(b) Let kyp = dp/d, and kyp — k >0 asn, T — oo. Then, lim, 7o d%(EJp —
Jir) = =K, (M9 + 5047

(c) If Assumption F12 holds and d*1,lr/nT — 7 € (0,00), then

A

2L (Jur = dur) = 0p(1) and 2 (Jur = Jur) = 0,(1).

(d) Under the conditions of part (c), Assumptions I8 and A.17,

A

n,T'—o00 enéT, "
T -
= lim MSE(—— Jur. S
n,T—o00 EnET
o 1K2vec b(Q) + ib(q) ISvec b(Q) + ib(q)
- T q 1 La 2 1 ka 2

+ K1 Kotr (S(I+Kpp) (J @ ).

SInstead of Assumption I8, we can consider asymptotic truncated MSE as Andrews (1991)
and Kim and Sun (2009).
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Proofs are given in the appendix. For each element of J,r, the asymptotic

variance in Theorem 7(a) is rewritten as

T ~ ~
cov (JnT (c1,dv), Jnr (c2, d2)>

n,T—oo L, by

= K12 [J (e1,¢0) J (dv,da) + J (c1,dg) J (dy, c2)],

Theorem 7(a) and (b) show that the asymptotic variance and bias of J,; depend
on the choice of d,, and dr. When we enlarge d,, and/or dr, the bias decreases
while the variance increases and vice versa. The second part of Theorem 7(c)
states that, in comparison with the variance term in part (a), the effect of using
V(i,t) instead of V{;, in the construction of jnT is of smaller order. Therefore, the
convergence rate of Jor is obtained by balancing the variance and the squared
bias of Jur. Accordingly, (,0r = o(nT) is the condition for the consistency and
its rate of convergence is \/nT/l,lr. Tt is also required that Ty(dr) = o(T) and
ns (d,) = o(n) to control the boundary effects. Let ny = 1. If we set £, = O(d}")
and ¢r = O(d!") for some 1, > 0, then the rate of convergence under the rate
condition d20, 0y /nT — 7 € (0, 00) is (nT)%/ Patmm+mr),

As Jr is consistent, the limiting distribution of the Wald statistic is a Xﬁ

distribution. This is rather standard. Under H,

Wop - X; and Fr 5 X;/g.

1.4 Optimal bandwidth selection procedure

This section presents optimal bandwidth choice in the sense of minimizing
the upper bound of AMSE of Jr and proposes a parametric plug-in procedure for

practical implementation. Let
/
By, = vec <b§q)) S, rvec (b@) ,
/
Boyy = vec <b§q)) S, rvec (bé”) ,

/
Byy = vec <b§q)) S,rvec (bg‘n) .
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Then, up to smaller order terms

BH B12 BQQ gngT 1
AMSE = K? (d%q T ) + KKty [Sur (L + Kyp) (1 © )]
B B bl . —
2 11 22 ntT
< 2Kq (d%q + d%q) + nT /C1/C2tr [SnT ([pp + Kpp) (J ® J)]
= AMSE",

where the inequality holds by the Cauchy inequality. AMSE* can be regarded as
AMSE in the worst case:

AMSE* = max AMSE,
(bl,bg)e%

where

B — {(bl, by) : vec (bg‘”)' Survee (M) = B, vec (bg‘”)' Survee (1) = Bzz} .

We select (d7, d) to minimize the AMSE*:

B B Colr .
*x g%\ : 2 11 22 ntT
(d,dy) = ard%ilr;m 2K, (diq + dQTq) + e KAk, C, (1.12)

where C' = tr [Syur(L,, + K,p)(J ® J)]. Here, we use the AMSE* instead of the
AMSE as the criterion. In the HAC estimation literature, it is standard practice
to use the AMSE criterion , e.g. Andrews (1991) and Newey and West (1994).
In our setting, though, it is intractable. Suppose Bjy = —+/B;1B2y. This may
occur when we are interested in a single component of . In this case, bandwidth
choices satisfying d4 /d?. = \/m make the first order bias terms cancel out
with each other. Therefore, in theory, the trade-off becomes between the second
order bias and the variance term. However, this choice is infeasible in practice. As
Bi1/Bag is unknown, we have to estimate this ratio and the estimation error is of
the same order as the first order bias, bandwidth selection based on the trade-off
between the second order bias and variance give too much weight on the variance.
In contrast, our minimax criterion is simple to implement, as d; and d} depend
only on two bias terms but not on their interaction. It also effectively controls for

the MSE in terms of the upper bound.
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Figure 1.1: Level curves of d, and d} with respect to spatio-temporal dependences

Under the boundary condition in the time dimension, {7/T — 0, {7 = 2dr+
o(dr). In some cases, it is also possible to approximate ¢, as a function of d,,. For
example, if individuals are on a 2-dimensional lattice and the Euclidean distance
is used, ¢,, = 7d? would be a reasonable approximation. With the specification of

by, = ad!™ and p = ard]’, we obtain explicit formulas of d and d} as follows:

4qK2311 1/(2¢+mm+nT) nr B nr/[2¢(2q+nn+nT)]
ds = i_—_ __nT —_ ) 1.13
" (nnanaT’ClK2C ) (ﬁan ) ( )
4q Kg By 1/(2q¢+nm+n1) 11n Bas 1 /12q(2q+0n+n1))]
ko = T il . 1.14
T (nTanOfTIClK:2Cn > <77TBU> ( )

(1.13) and (1.14) show that the degree of persistence in one dimension affects
both d}, and d} but in the opposite direction. For example, if a process becomes
spatially persistent, d is increased to address the increasing bias, which comes
from the usage of kernel in the spatial domain. But, the increase of d, at the
same time, magnifies the variance term. Therefore, in order to minimize AMSE*,
d% is decreased to moderate the inflation of the asymptotic variance. Figure 1
illustrates this relation of d} and d} with different dependence structure. The two

graphs are the level curves of d) and d} as functions of A and p, which determine
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the spatial and temporal persistence respectively in the following DGP:
Vi=AVi1 4w, up = pWyuy + €4 and g, ~ (0, 1,),

where V;, u; and g; are n-vectors such as V; = (V(l,t), Ve, V(n,t))/ and W, is
a spatial weight matrix. These two graphs indicate that d; increases as spatial
dependence increases or temporal dependence decreases and that d}. increases as

temporal dependence grows or spatial dependence is reduced.

Corollary 1. Suppose Assumptions F5-A.17 hold. Assume that ¢, = a,d™ and
Uy = apd) for some n,,nr > 0, a, = a1 +0(1) and ar = as+o(1). Then, for any
sequence of bandwidth parameters {d,,dr} such that d*W,lr/nT — 7 € (0, 00),
{dx,d%} is preferred in the sense that

lim [ max MSE <(nT)2q/(2q+”"+nT),jnT(dn,dT),SnT)

n,T—oo | (by,b2)eB

- s MSE (a0 (), snT)} >0

The inequality is strict unless d, = df + o <(nT)1/(2q+n"+”T)> and dr = d% +
o ((nT)l/(2q+nn+nT)> _

Our bandwidth selection procedure does not apply directly to the rectan-
gular kernel estimator, and more broadly, flat-top kernel estimators because their
asymptotic bias is of smaller order than the one in Theorem 1(b). However, it is
interesting to consider flat-top kernel estimators because they are higher order ac-
curate. This is particularly important in our setting because the rectangular kernel
is completely compatible with the adaptiveness of our estimator as explained below
while finite order kernels yield some discrepancy. In time series HAC estimation,
Andrews (1991, footnote on p. 834) and Lin and Shinichi (2009) suggest a practical
rule for the rectangular kernel estimator based on the AMSE criterion. Sun and
Kaplan (2010) explore this problem rigorously and provide a bandwidth selection
procedure that is testing optimal. By extending these preceding methods, we ob-

tain the optimal bandwidth parameters for the rectangular kernel, (dy.. ., dr..1)
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which lead the rectangular kernel estimator to smaller AMSFE* than any finite
order kernel estimator we target.
Let Kiqr(+) be the target kernel and (d; tarr) e its optimal bandwidth

tar,n’

arameters. Given ¢, = o, d’ and {7 = apd’*, if we set
n T >

’atar 1 ) Y (/th 2 ) L/nz
d:ecn = d*arn ( e 7 and d:ec = d*ar = 7 5 1.15
’ far, ICrec,l ! tar T ’Crec,2 ( )

then the asymptotic variance of the rectangular-kernel estimator is the same as that
of the estimator based on the target kernel. However, under some smootherness
conditions, the asymptotic bias of the rectangular-kernel estimator is of smaller
order. As a result, the rectangular kernel estimator has smaller AMSE* than the
one based on the target kernel.

As (A.9) is the function of unknown values such as By, Boy and C, they need
to be estimated for implementation with given data in a parametric (e.g. Andrews,
1991; and Kim and Sun, 2010) or nonparametric way (e.g. Newey and West, 1994).
In this paper, we suggest a parametric plug-in method. We consider the following
four different spatiotemporal parametric models, which are introduced in Anselin

(2001).

Vi = pe [Wéc)‘/t(f)l]i +&9,, (1.16)

Vi = AVl + e (WIVE| + e, (1.17)
© _y 1©

V(i,t) o >‘cv(i7t_1) + ¢c

Vgct)) = >‘CV((-C) ) + ¢ Wrsc)vt(c

(, i,t—1

WOV &) (1.18)

~
|

+ pe [W(C)Vt(ﬂ] 4 &9 (1.19)

where égf)t) (0, 00) and WOV, 9], s the it element of vector Wi?V,). The
spatial weight matrix W9 is determined a priori and by convention it is row-

standardized and its diagonal elements are zeros. For an illustrative purpose, let’s
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consider the model in (1.16). It can be rewritten in a recursive way as follows

W = p WOV + L’
C c 2 C
Vi = gt (W) Vo + pW0e

n

c) + In ~(c)

VA = pl (W) Vi 4 pl =t (W) D) 4 g2 (W) e 4 1,EY

Imposing the initial condition of Vj = 0, we can estimator p. by OLS with V,

(v ‘7( t)) We define

11y
I, ift—s=0
:(c) . ~ () t—s B
Rts - chn , ift—s>0
0, otherwise,

and
Rgz?,)t) = [Rzgi)iv RES??:’ T RE;“),J )
Consequently, we approximate .J, bgq and

where RES » denotes the i-th row of Rts

qu) by
L GaN~\ A 5
ZZZZ (B0) (RE) - (1.20)
i=1 j=1 t=1 s=1
Ged N~ SN ORY
0= S S () () e
i=1 j=1 t=1 s=1
a'd n n T T A ~ p ,
b7 (c,d) = 223 SN S T (RE) (B) i (122)
i=1 j=1 t=1 s=1
where
1 /
- ~(0)) (2(d)
Ted n(T—1)—1(6 ) (£9)
g@ = (&9, L EQyy, &9 = V9 and &9 = V9 — s WV for t > 2.

Substituting these estimators into (A.9) for the true parameters, we obtain the

data-driven bandwidth parameters, (czn, a?T) as follows
Bu B Coly A
L 22) + L. (1.23)

2
<d”’ dT) = argmin 2K, (d,%q &7 )T
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where

(ﬁ::tr[ng(z-%Egm)@f jﬂ.
Correspondingly, using the specification of ¢,, = «,,d]] we obtain

S 1/(2¢+nn+n7) A nr/12q(2¢+nn+nT)]
R 49K2%B B
d, = L T T . (1.24)
N0 oKy Ko C nBoo
~ 1/(2q+nn+nT) A nn/[24(2¢-+1n+nT)]
R 49K2B B
dr = 02072 7 222 . (1.25)
NroarkCi KeC nrBu
It also follows
3 7 Ictar 1 1/71n 1 ’Ctar 2 1/T)T
dreen = darp | = and drec =d ar, . 1.26
y e <’C7’ec,1) r tar T ’Crec,Q ( )

Since the models in (1.17), (1.18) and (1.19) can be rewritten as
V) = [k W) V] 426
Cc I c -1 C c -1 4 C

%%—(h—%ww)(AI+&W“HNW+UQ_@Wpy%mJ

we can derive the data dependent bandwidth parameters with these models using
the same procedures as (1.16). While the OLS estimator is consistent for (1.17),
it is not for (1.18) and (1.19) due to endogeneity of [Wnc) V;(C)]Z-. For these models,
we can have consistent estimators using QMLE as follows:

T
PN 1
N 1 ]
()\ca (bca Pes Ucc) = argmin 2 In Occ— ln ‘[ ¢CW 2Ucc nT Z < > < ) ’

AcsPesPeyTce t=1

See Yu, de Jong and Lee (2008) for detail. In fact, however, the simple OLS can
still be used for (1.18) and (1.19). Since the parametric models are most likely
to be mis-specified, the QML estimator is not necessarily preferred. In addition,
as argued by Andrews (1991), good performance of the estimator only requires
(czn, cZT) to be near the optimal bandwidth values and not to be precisely equal to

them. Furthermore, OLS estimation is computationally much less demanding.



24

1.5 Comparison with CCE, DK and KS estima-
tors

For comparison, we examine the asymptotic properties of the CCE, DK
and KS estimators based on our data representation in (1.5) and (1.6) under the
increasing smoothing asymptotics. We also derive the optimal bandwidth param-

eters for DK and KS estimators using the AMSE criterion.

1.5.1 CCE
The CCE is defined as
1 n T
TA 5 Crl
B L

The critical condition for this estimator to be consistent is that each variable
from two different individuals (or clusters) is uncorrelated, i.e. EV(;yV(; ) = 0 if
1 # 7. Under this condition, j;;‘T is robust to heteroskedasticity and arbitrary forms
of serial correlation. Our spatiotemporal representation accommodates spatial

independence by imposing the following restriction.
Assumption I10. 7 ;) = 0 if i # j.

Under Assumption 110,

s=1
Assumption I11 implies the homogeneity of var(T~'/2 23:1 Vii,s)), under

which we can derive the asymptotic variance of J4. in Theorem 2(a) below.

Theorem 2. Suppose that Assumptions F5, F6, 110 and I11 hold.
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(a) lim, 17— n - var <Uec(j7fT)> = (I, + K,,) (J® J).
(b) If Assumption F12 holds, then \/n (jfT - J,fT> = 0,(1) and
Vi (Jike = Th) = 0,(1):
Proofs are given in the appendix. Theorem 2 implies /n-convergence of

JA. as n, T — oo, which is consistent with Hansen (2007).

1.5.2 DK estimator

The DK estimator is based on the time series HAC estimation method with

cross-sectional averages. The estimator is defined as
3o LSy () v L7
WT = n—T”Zﬂ t; (E) (i) V(o) (1.27)
For the asymptotic properties, we introduce the following assumptions in place of

Assumptions F7 and F10.

Assumption 112. There exists q; > 0 such that

1 & E
nT D Gt | dit < oo

i,j=1t,s=1

for alln,T.

Assumption I113. Fort € Er,
1 n
lim var | — Z Z V(j,s)> =J.
T ( Vilr S g

Compared with Assumption F7, Assumption 112 is sufficient for J2X be-
cause JDX is not involved with the bias that arises from a kernel in the spatial

dimension. Theorem 3 below states the asymptotic properties of j%jK .

Theorem 3. Suppose that Assumptions F5, F6, F11(i) and (ii), 112 and 113 hold,
and dy — oo, by = o(T).
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(a) lim, 7. %var (vecjff) = Ka(L, + K,p) (J @ J).
(b) lim, oo dL(EJBE — Jo7) = —K b

(c) If Assumption F12 holds and dyly/T — 7 € (0,00), then
w/% (jfl)TK — JnT> = 0,(1) and w/% (jT?TK — J:?TK> = 0,(1).

(d) Under the conditions of part (¢) and Assumption A.17,

T .
lim MSFE (— JT?TK,SnT>

n,T'—o0 ET’
— lim MSE (L, 2K s
n,'—o0 éT’ nT >

| / ]
- K (Uec bg”) S (vec bg‘”) + Kotr [S(Lp + Kpp) (J © ).

Proofs are given in the appendix. Theorem 3(a) and (b) imply that J2K
is consistent if dy — oo and ¢r = o(T). The rate of convergence obtained by
balancing the variance and the squared bias is 79/(2¢+7)  Therefore, the rate of
convergence of J,r is faster than that of J2K if T = o(n(2a+nm)/m).

The optimal bandwidth parameter of J2X based on the AMSE criterion is

2 1/(29+nT)
DK _ ( QqKq822 T) T

_ 1.28

where C' = tr [S,r (1, + K,,)(J ® J)]. Following Andrews (1991) and Newey and
West (1994), we can obtain the data-driven bandwidth parameter.

1.5.3 KS estimator

Analogous to the DK estimator, we can also consider the usage of spatial
HAC estimation with the averages across time especially when n is large. The KS
estimator with the serial averages is

n T
N 1 di:\ ~ N
KS __ %)
L DIP IS (d_n ) VeV

i,j=1t,s=1
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Assumption 114. There exists ¢; > 0 such that

1 T
nT D s || df < o

i,j=1ts=1

for alln,T.

Assumption 115. Fori € E,,

. 1 -
n}}goovar \/W Z ZV(JVS) =J.

j:dij Sdn s=1

Theorem 4 below states the asymptotic properties of J£7.

Theorem 4. Suppose that Assumptions F5, F6, F9, F11, 11} and 115 hold,

ny/n — 0, b, d, — oo and £,/n — 0.
(a) lim, 7 F-var (vech{}S) = K1(1, + K,p) (J @ J).
(b) lim,, oo d?(EJES — Jop) = —K b\

(c) If Assumption F12 holds and d*¥,/n — 7 € (0, 00), then | /7 (jgps — JnT> =
O,(1) and , /7 (jffTS — jffTS) = 0,(1).

(d) Under the conditions of part (c¢) and Assumption A.17,

2055 (3 25 5

n

— lim MSE (Qi{;ﬁs)

n,'—o0 én

1 ! _
= —KZvec <b§1)) Svec (b@) + Katr [S(Lyy + Kpp) (J ® J)].

T

A

Proofs are given in the appendix. If we can characterize ¢,, = o, d", J,r
achieves the faster convergence rate than jfTS if n = o(T(2a+m)/n7) " The optimal
bandwidth based on the AMSE criterion is

IS _ (QquBll )UQH%)

—Xalk (1.29)

We can obtain the data-driven bandwidth parameter following KS.
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1.6 Adaptiveness of J,r

1.6.1 Flexibility

A

Jor is flexible in the sense that it includes the estimators in the previous
section as special cases, reducing to each of them with certain choice of the band-

widths and kernel function. In order to illustrate the flexibility, we first introduce
the generalized CCE, JGA:
1 < — d
FGA _ ts \ 77 1r
L > Kne (E) Vi Viis)
i=1 t,s=1
where Kgp(z) = 1{|z| < 1} is the rectangular kernel function.

The following proposition shows the asymptotic equivalence of Jor to the

existing estimators with certain sequences of d,, and dr.
Proposition 1. For Jor with the rectangular kernel,
(a) If d, — 0 asn — oo, then J,p — JGA = 0,(1).

(b) If b,/n — 1 as n — oo, then J,r — JOK = o,(1).

(c) If br)T — 1 as T — oo, then Jup — JES = 0,(1).

n

Proofs are given in the appendix. The flexibility of our estimator relies
on the property that the rectangular kernel does not downweigh the covariances
between spatially or serially remote units. In contrast, J,r with finite order kernels
does not completely reduce to J2X and JX5 with large d, and dy, getting close

to them though.

1.6.2 Adaptiveness

While J,r has advantages in terms of robustness over J4, and in terms of
efficiency over JES and JDK | for certain dependence structure, one of the existing

estimators is expected to out-perform the other estimators. If a process is spatially



29

highly persistent, J2K is expected to out-perform the other estimators in that it
is robust to arbitrary form of spatial correlation. For the same reason, jﬁps tends
to perform better than the others, if a process is serially highly persistent. jfT is
more efficient than the other estimators in the absence of spatial correlation.

The attractiveness of our estimator jnT is that, with the data-driven band-
width choice, it becomes close to the estimator that is expected to perform the
best. This adaptiveness is the novel feature of our estimation method. It practi-
cally automates the selection of covariance estimator. As illustrated in Figure 2,
adaptiveness arises from the flexibility and automatic bandwidth selection proce-
dure. In case that a process is spatially highly persistent, the automatic bandwidth
selection procedure yields large cin so that jnT gets close to jj?TK . Analogously, jnT
becomes close to jfTS if a process is very persistent in the time dimension. In the
absence of spatial dependence, Jor becomes close to j,?T“‘ with small d,.

It should be pointed out that finite order kernels do not achieve complete
adaptiveness because downweighing restricts its flexibility in bridging the existing
estimators. We can fix this by employing the rectangular kernel. In this case,
with appropriate bandwidth choices, Jor s asymptotically equivalent to the best
estimator. The bandwidth selection rule in (1.15) meets the requirement, as the

selected bandwidths from (1.15) are the proportional to those from (A.9).6

6 Another issue with flat-top kernel estimators is that they are not positive semi-definite.
Politis (2010) and Lin and Sakata (2009) propose simple modification to the estimator to enforce
the positive (semi) definiteness without sacrificing efficiency. In our simulation, we use the
method suggested by Politis (2010).
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Figure 1.2: Adaptiveness of jnT

1.7 Fixed smoothing asymptotics

1.7.1 Limiting theory for J,r under fixed smoothing asymp-

totics

Following Conley (1999), we assume that, given a distance measure, it is
possible to map the individuals onto a 2-dimensional integer lattice so that d;; can
be expressed in terms of the lattice indices. Suppose that the locations are indexed
by (i1,i2) = [1,2,...,L,|®][1,2,..., M,]. We can then rewrite the sample moment
condition that defines B as

L, M, T

1 ~
L,M,T Z Z Z Liyio Viirint) = 0,

i1=110=1 t=1

where f/(ilﬂ-%t) is associated with an observation located at (i1, i2) and time ¢t. While
our analysis relies on the rectangular lattice structure, it can be potentially gen-
eralized to non-lattice case. See BCHV. As we do not assume the presence of an
observation at every lattice point, we introduce the indicator function 1;, ;, to de-

note the presence of an observation at a particular lattice point (i1, 43). Using this
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indicator function, we define

Vi int) = LiviaViiria), V(i

i1,92,t) i1,02,t)

1i1,12‘/(11 i9,t) and X (i1,i2,t) — 1i17i2X(i17i27t)'
We maintain the following high level assumptions.

Assumption F1. The functional central limit theorem
Let AN = J and W, (r1,7r9,7) = (W(l) (ri,79,7),..., W® (7“1,7’2,7'))/ be a p-

dimensional independent Wiener process with covariance given by
cov (W(i) (11,79, 7), W) (01, vs, /f)) = 0;; min (r1, v1) min (g, v2) min (7, K)

with d;; being a Kronecker delta.

[r1Ln] [reMy] [7T)

\/7 Z Z Zv(nlzt _>AW (7’1,7“2, )

i1=1 =1 t=1

holds for all (r1,74,7) € [0,1]°.

Assumption F2. For all (1,7, 7) € [0,1]°,

—1
[r1Ln] [roMy) [7T]

P
X(“ int) = rreTQ.
11=1 12=1 t=1

Assumptions F1 and F2 follow BCHV and Sun and Kim (2010). Under the

above assumptions, it is easy to see that

\/n_T<B_ﬂ):(L MTZnZnZXZMQt) 2122t)> (1.30)

i1=112=1 t=1
n n
fZZZme)
i1=110=1 t=1

L QAW, (1,1,1) == A*W, (1,1,1). (1.31)
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Therefore,

[r1Ly] [reMy] [7T)

T 2= 2 2 Vi

2117,21151

[r1Ln] [roMp] [7T] [r1Lp) [roMy] [7T]
z:l 231 ; (z1 ia,t) L M T Z:l z:l ; X(zl,zg,t) zl,zg,t)
11 192 1 12

x m (3-5)
A (W, (11,72, 7) — riratW, (1,1, 1)]
= AB, (r1,72,7),
where B, (r1, 79, T) is a p-dimensional tied-down Brownian sheet. The second term

in the equality reflects the estimation uncertainty in B . We introduce the following

assumption on the distance measure in the spatial dimension.

Assumption F3. Let d, ;) o) denote d;; between two observations at (iy,1i2)

and (j1,72). Then,

iy i2),(j1.j2) 4 11— J1 T2 — J2
d, d, = d, '

Assumption F3 implies that d;, ;,),(j,.j) is the function of i; — j; and iy — jo
and is homogeneous. This is not overly restrictive. p-norm distances that are
usually employed in practice satisfy this assumption.

Suppose the level of smoothing is held fixed: b; = d,,/L,, by = d,,/M,, and
by = drp /T where by = 61§ and Ln/M = ¢. Under Assumption F3, we have

Jop = - (11 - ]1’ 12]\; Jo t ;5> V(ZMQ, ijz, |

11J1 lig,jo=1t,5=1

(1.32)

where

T Yy z

Ky (z,y,2) =K <a, by b_3) and K (z,y,z2) = K(d(z,y))K(z).

We also define K, (z,y) = K(d(x,y)) and K(z,y) = K(d(x/by,y/by)) where the
subscript ‘n’ is used to differentiate K, a function of two variables, from K, a

function of a single variable. Note that K, does not depend on the sample size n.
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Assumption F4. (i) K, (z,y) : R? — [0,1] and K(2) : R — [0,1] are symmet-
ric with K(0) = 1. (i) [;° [)° Kn(z,y xdxdy <00, [ Kn(x,y)ydady < oo,
I K@, y)zydady < oo and fo 2)zdz < oo. (i) The Parzen character-

1stic exponent is greater than or equal to 1.

All the commonly used kernels satisfy this assumption. Assumption F4(ii)
enables us to use the Riemann-Lebesgue lemma.

Since K, (+, -, -) is square integrable, it has a Fourier series representation:
W —J1 2—J2 t—5
K
b ( Ln ’ Mn T )
11— J1 2 = J2 t—s
. ez X )\k N4 m%pbl, Ln (101)274 Mn Sob&m Tn

11 i2 jl jQ S
)\ mq) m CI) m T T As 0 .
Mzml kb;m b,k (L "M, T) b.ke < L, M, Tn)

ok () = exp (z%w(l@ — 1)) and {@kagm <L“ , ]\Zj T ) Dy, jem <—£—i, —1\%7 _Tin>} 1S
an orthonormal basis for L*([0,1]* x [0, 1]*) and the convergence is in the L? space.

It follows from Assumption F4(i) that
Z )\k,é,m =1
k.l m=1

Using the representation, we can obtain the following results.

Proposition 2. Under Assumptions F1 - F3, 7

~

1
e SA [/ Ky (r1 — w1, 70 = v, T — k) dB, (11,79, 7) dB,, (v1, v2, &) | A'.
0
(1.33)

Proofs are given in the appendix. It is interesting to note that the limiting
distribution of J,r is exactly analogous to the one in the time series setting. See
Sun, Phillips and Jin (2008). Boundary effects do not exist at least under regular

lattice structures.

"Let [ = [--- [ for simplification.
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Define the centered version of the kernel function Kj (-, -) as
Ky ((r1,72,7) , (01,02, K))
1
=Ky (11 — 01,79 — 02,7 — K) — / Ky (21 — 01,91 — v, 21 — k) dz1dyrdz
0
1
- / Ky (11 — 9,72 — Y2, T — 22) dwadyadzy
0
1
+/ Ky (71 — @2, Y1 — Yo, 21 — 22) dr1dyrdz1dzadyadz,.
0
Using K (-, ), (1.33) is equivalent to
1
A U K; ((r1,70,7) (01, 03, 5)) AW, (1,72, 7) WV (vl,vg,m)] N (1.34)
0

In (1.34), the integration is with respect to the standard Wiener process because
the centered kernel function captures the estimation uncertainty in B With (1.31)

and (1.34), we can show that under H,,
~ / A A oA -1 ~
Fur = VT [R (3= 50)] (RQur Qe R) VT [R (8~ )] /g
L (RA*W, (1,1,1))
1 -1
X (RA* [/ K3 ((r1,72,7) , (v1, 02, ) dW)y, (11,72, 7) AW (01, v, /i)} A*’R')
0
x (RA'W, (1,1,1)) /g
1 -1
4 W, (1,1,1) {/ K5 ((r1,72,7) , (v1, 02, K)) AWy (11,79, 7) dW, (v1, v, Ii):|
0
X Wg(la]-)l)/g

where the equality in distribution holds because RA*W,(x, y, 2) 4 DW,(z,y, z) for
a Wiener process Wy(z,y, z) and some ¢ x g matrix D such that DD' = RQJQ'R'.

1.7.2 Expansion of the distribution and F-approximation

We present the asymptotic expansion of the distribution of Fi,(g,b) in (1.35)
and establish the validity of a standard F-approximation. The distribution of
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F.(g,b) is nonstandard because of the random limit of jnT with fixed by, by and
bs as n,T — oo. As by, by and bs — 0, however, the effect of this randomness di-
minishes and gF(g,b) converges in distribution to the X?, distribution. Therefore,
we can develop an asymptotic expansion of the distribution of gF..(g,b) as by, by
and b3 — 0 to examine its difference from the Xz distribution.

Let

! " , V11 V12
/ I[{b ((T17T27T)7<U171}27’£)> de (7"177‘2,7') de (U17U27"£) = 5
0

V21 V22

where vy; is a scalar. Following Sun (2010), we can show that
P{gF(g9,b) < z} = EG, (2 (v11 — vi2v33'v91) ) = EG, (2v112)

where G, (-) is the cdf of a central Xg variate and vy19 = vy — 1112112_217121. As by, by
and b3 — 0, we expect vy12 to be concentrated around 1. By taking a Taylor
expansion Gy (zv112) around G, () and computing the moments of vy, we can

prove the following theorem.

Theorem 5. Suppose Assumptions F1 - F/j hold and L, /M, — <. As by, by and

bs — 0, we have
P {gFoo (g, b) S Z} = Gg (Z) + A (Z) blbgbg + (0] (b1b2b3>
where
A(z) =Gl (2) s — G (2) z[e1 + (9 — 1) o ,
¢ :/ K (z,y, z) dedydz and cs :/ K? (x,y, 2) dedydz.

Proof is given in the appendix. Theorem 5 implies that the deviation of
the fixed smoothing limiting distribution of the Wald statistic from the X§ distri-
bution depends on the smoothing parameters, kernel function and the number of

restrictions being tested.
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Since K3 ((r1,79,7), (v1,v2,K)) € L*([0,1]%), it has a Fourier series repre-

sentation:

KZ ((Tla T2, 7-) ) (Uly Vg, /f))

[e.9]

= D Mtk Py k(1) P (72) Py (7) Vg e (01) W0 (02) e (1)
kel € m! =1

o0

= g )\kemk'e'm'gb,kzm (7”17 ra, T)gb,k'e/m' (U1, (%D fi),
km,k' £ m'=1

where {gp rem (71,72, T) Gy prerms (1,02, )} is an orthonormal basis for L%([0,1]3 x
0,1]%). As
fol K3 ((x,y, 2) (v1, v2, k)) dedydz = 0 by definition, gy ke (2, y, 2) has the zero mean
property, i.e. )

/0 o kem (T, Y, 2)dxdydz = 0.

Using this representation, we have

1
/ K ((r1,72,7) , (v1, 02, 8)) AW, (11,79, T) dW,, (01, v2, K)
0

= Z Nkt e b ktmE (1.36)

klm,k 0 m/=1

1 iid.
where gb,kﬂm = fg gb,kﬂm('xv Y, Z)de (ZL‘, Y, Z) ~ N(Ov ]g>
We can simplify the above representation. First, using the Cantor tuple

function we can encode (hy, ho, h3) into a single natural number h. That is,
h= 78 (hy, hy, hs) == 7@ (7@ (hy, hy), hy),

where
1
7T(2)(h1,hQ) = §(h1 + ha)(h1 + hg + 1) + ho.
The map between (hy, ho, h3) and h is one-to-one and onto. With this definition,

we abuse the notation a little and write

>\h1h2h3h’1h/2h’3 = A and &p hynohy = Ep -
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With this result, we follow Sun and Kaplan (2010) to obtain

o0 o0

/ !

E Nkt 0m? Eb kemSh gy = E MGk G
k“ve7m7kl7€,7m/:1 k=1

where (;, s N(0,1,). By definition, ((;, is a Wishart distribution Wy(1,,1), so
> re 1 AkCiCy is an infinite weighted sum of independent Wishart distributions.
Let ¢ = W,y(1,1,1). Then, we have

00 —1
9Fw (g.b) = ¢/ [Z Akckc,;] ¢, (1.37)
k=1

where (} is independent of ¢ for all k.

Motivated from the spectral density estimation literature (e.g. Priestley,
1981, p. 467), Sun (2010) shows that the infinite weighted sum of Wishart distri-
butions can be approximated with a scaled single Wishart distribution by matching

the first two moments. We adopt this in the panel setting. Let

= pyt Z AeCrCy-
=1

where

s 1
=Y M= [ i (r1r2m) (o) drdrad
k=1 0

We approximate the distribution of ® by ¥ ~ W, (I, K) /K for some integer
K > 0. By the properties of the Wishart distribution, we have

EV = I, (1.38)

1 1
EVDW = —tr (D) I, + <1 + E) D (1.39)

for any symmetric matrix D. By construction, F® = EV. Following Example 7.1
in Bilodeau and Brenner (1999), we can show that

EOD® = 240 (D) I, + (1 + “—5) D (1.40)

M% 1251
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where
ZAQ / 5 (11,72, 7), (v1, 02, K)) ]erldrngdvldvgdﬁ.

From (1.39) and (1.40), it is reasonable to approximate the distribution of ® by
W, (I, K) /K with

K=
2

K is called equivalent degree of freedom (EDF) of .J,r. Combining this results
with (1.37), we have

d _
119Fx (g,0) = ¢'U 1.
By definition, ¢/¥~1¢ follows Hotelling’s T2 (g, K) distribution. As

K—-g+1

gK T? (gaK)NFg,ng+1>

we can use an F' distribution as the reference distribution based on the following
approximation:

K—-—g+1 d
i Kg )FOO (9,0) & Fyxgr1. (1.41)

Lemma 1. As by, by and b3 — 0, we have
(CL) H1 = 1— blbgbgcl +o (blbgbg) 3 (b) Mo = b1b2b302 + o0 (blbgbg) .

Proofs are given in the supplementary appendix.® Lemma 1 implies

— bibybs) . 1.42
K 1+b1bzbg(cl+(g—1)02)+0(l23) (1.42)

Hence, we can use 1/ (1 + bybabs (c1 + (9 — 1) ¢2)) as the correction factor. This is
always between zero and one.

The following theorem summarizes the F-approximation.

Theorem 6. Suppose Assumptions F'1 - Fj hold and FZ (g,b) is defined by

F(9,b) = Fs (9,0) /v

8The supplementary appendix is available at the author’s homepage.
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where

v=1+ (Cl + (g — 1) CQ) blebg.

As by, by and by — 0, we have
P{F,(9,b) < 2} = P{Fy i+ < 2} + 0(bibabs)
where K* = max(5, [1/ (bibabsca)]) and [-] denotes the integer part.

Proof is given in the appendix. Some comments on Theorem 6 are in order.
We use K* in place of K — g + 1 for the second degree of freedom in the F-
approximation. This modification ensures that the variance of the F' distribution
exists. Let F§(g,b) and F. denote the 1 — a quantiles of the distribution of
F.(g,b) and the F distribution with the degrees of freedom g and K*. Theorem

6 suggests that for the F-test version of Wald statistic, F, 7, we use

as the critical value for the test with nominal size a.

As the EDF is proportional to 1/(b1beb3), we may want to choose the large
EDF by increasing the degree of smoothing for more powerful inference. However,
for a given sample size, small b1byb3 introduces a large bias of jnT, which will cause
F,r/v to deviate substantially from Fj g+ distribution. At the same time, there

can be a significant loss in power if we choose too large bandwidths.

1.8 Monte Carlo simulation

In this section, we provide some simulation evidence on the finite sample
performance of our estimator and the associated testing procedures. We choose
the bandwidths based on the AMSE* criterion and consider the rectangular kernel
as well as the Parzen kernel to construct jnT. We compare the performance of jnT

with JDK | J4. and JE&5. We evaluate the estimators using the RMSE criterion and
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the coverage accuracy of the confidence intervals (Cls). We examine the robustness
to the measurement errors in economic distance. It is also investigated how the
number of restrictions being tested affects the performance of the Wald tests under
the two different smoothing asymptotics.

We assume a lattice structure, in which each individual is located on a
square grid of integers over time. We use the Euclidean distance for d;;. The data

generating processes we consider here are:

DGP1: Y = Bo + ui Bo = 0;

u =y 1 +e, g =001-— Wn)flvt, v, id.d.

~"N(0,1,);

DGP2: Yy =XUB0+ ...+ X80+ + fi + ua,

Bro=...=Bp=0, o= f =0; N

Xy = AXy + v, Dy = 9([ - Wn)‘lm, Nt Rt N(0> In)S

Uy = )\th + &4, &t = 6([ — Wn)_lvt, Vg Z.}\.Jd. N(O, [n);
where Xj; is a p-vector, X; = (X1, ..., Xn) and uy = (uyy, ..., uy)'. The param-

eter \ determines the strength of the temporal correlation of data. X; and wu, are
also spatially dependent as e, = (g1, ...,6n) and v, = (vyy, . .., Vp) follow spatial
AR(1) processes with parameter . The values considered for the model parame-
ters A and 6 are 0, 0.3, 0.6 and 0.9. W, is a contiguity matrix and individuals i
and j are neighbors if d;; = 1. Following convention, it is row-standardized and
its diagonal elements are zero.

DGP1 is used for the RMSE criterion and the DGP2 is for the coverage
accuracy of the associated ClIs. DGP2 includes the individual and time effects
and (3, is estimated with the fixed effects estimator. In contrast, these effects are
absent in DGP1 for easy calculation of the RMSE. We estimate 3, in DGP1 with
the sample average (= (nT) " S0 27 4.

For bandwidth selection, the formulas in (1.28) and (1.29) are considered
with the AR(1) and spatial AR(1) models for J2X and JES respectively. For J,z
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with the Parzen kernel, we choose the bandwidths based on (1.13) and (1.14) using
the spatiotemporal parametric model in (1.18). We use the Parzen kernel as the
target kernel to obtain the bandwidths for jnT with the rectangular kernel. One
concern of the rectangular kernel estimator is that it is not positive semi-definite.
However, we can attain positive semi-definiteness with a simple modification sug-
gested by Politis (2010). As Jor is symmetry, J,r = UAU’, where U is an orthogo-
nal matrix and A = diag(j\l, cee 5\1,) is a diagonal matrix whose diagonal elements
are the eigenvalues of J,p. Let At = diag(Af,..., 5\;) where AT = max()\,,0).
Then, we define our modified estimator as j:{:r — UA*U’. As each eigenvalue of
Jor is nonnegative, it is positive semi-definite.

W,, is the contiguity matrix in which individuals ¢ and j are neighbors if
dij = 1. We set n = 2 and ¢, = md%. Note that the approximating parametric
models for JZ{TS and J,r are mis-specified whereas the AR(1) model for jfTK is
correctly specified. We estimate parameters in (1.18) and (1.29) with the QMLE.

We consider three different sample sizes; (i) small 7" and n; T'= 15,n = 49
(7 x 7), (ii) large T" and small n; T' = 50,n = 49, and (iii) small 7" and large n;
T =15,n=196 (14 x 14).

We also allow for the case with measurement errors in the distance measure.
The error contaminated distance, d;; is generated as follows. If d;; < 2, then d;; is

observed without a measurement error. But if d;; > 2, then we observe d}; which

is generated from the following process:

-1 wp.1/3
dij = dij + €55, €5 = 0 wp.1/3
1 w.p. 1/3.

PHAC, CCE, DK and KS denote the test statistics based on jnT, jnAT, jTlL)TK, and
jffTS respectively. We use the F-approximation for fixed smoothing asymptotics.
Table 1 presents the ratios of the RMSE to J,,r for jnT and jT?TK evaluated

at the data dependent bandwidth parameters and at infeasible optimal bandwidth
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parameters. First, we find that Jor performs better than j,?TK in almost all the
cases. When spatial dependence is absent or weak, Jor has substantially smaller
ratio than jT?TK . This is because the DK estimator loses information in the spatial
dimension with the cross-sectional averaging. When 6 = 0.9, both the estimators
are not much different. Especially Jor with the rectangular kernel is as accurate as
and sometimes better than jETK . This implies that adaptiveness works well in this
setting. Second, the increase of n reduces only the ratio of J, while increasing
T improves the performance of both the estimators. Finally, the AMSE* criterion
tends to effectively controls the RMSE of jnT.

Table 2 reports the empirical coverage probabilities (ECPs) of 95% Cls
associated with the different covariance estimators; J,r, JOX, J4. and JE5. The
null hypothesis we consider is

H[)Z 5120

The DGP2 is used with a univariate regressor (p = 1). For the testing with jnT,
we use both the fixed smoothing asymptotics and increasing smoothing asymp-
totics. The simulation results verify our theoretical results. First, we compare
Jor with the other estimators under increasing smoothing asymptotics. PHAC
performs as well as CCE when # = 0 and is significantly more accurate when there
exists spatial dependence. Compared with the KS, the Cls associated with PHAC
is more precise unless the process is temporally highly persistent. Even under
strong temporal persistence (A = 0.9) PHAC is almost as good as KS especially
if n is small. Both the PHAC and KS become more accurate with large n, but
only the performance of PHAC improves when T increases. Comparison with DK
is quite similar to the RMSE criterion case. The PHAC tends to perform better
than DK except in some cases with § = 0.9. Even when 6 = 0.9, the ECP of
PHAC especially with the rectangular kernel is very close to that of DK. Second,

Table 2 compares the performance of PHAC using increasing smoothing asymp-

totics and fixed smoothing asymptotics. The results indicate that fixed smoothing
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asymptotic approximation is substantially more accurate than increasing smooth-
ing asymptotics. The difference increases as the process becomes more persistent.
When 0§ = 0.9, A =0.9 and T = 15,n = 49, the ECP of the PHAC with the Parzen
kernel under fixed smoothing asymptotics is 79.6% but it is 64.4% under increas-
ing smoothing asymptotics. This result shows that fixed smoothing asymptotics
captures the demeaning bias arising from the estimation errors of B while it is
ignored under increasing smoothing asymptotics. Third, Table 2 provides a strong
evidence that the rectangular kernel performs better than the finite order kernel
under fixed smoothing asymptotics. Especially in our simulation, PHAC with the
rectangular kernel is very robust to spatial dependence so that size distortion does
not increase with the spatial dependence. This size advantage of the rectangular
kernel may arise from its bias reducing property and adaptiveness. Finally, Table
2 shows that our testing procedure based on fixed smoothing asymptotics is rea-
sonably robust to measurement errors. As economic distance data is likely to be
error contaminated in practice, the robustness to measurement errors is a highly
desirable property. Comparing PHAC with PHAC,, we see that the performance
of PHAC, is quite close to that of PHAC in most cases.

Table 3 compares the two different asymptotics with the different number
of restrictions being tested. The DGP2 is used with p = 3. We consider a single

restriction (g = 1) and joint restrictions (g = 3)
Hyo: 51 =0, Ho: fi=0=0=0

respectively. The table evidently indicates that under increasing smoothing asymp-
totics the size distortion increases with the number of restrictions being tested.
This is especially severe when the process is highly persistent. When g = 3 and
0 =X =0.9, the ECP of PHAC with the Parzen kernel is only 27.1% under in-
creasing smoothing asymptotics. The size distortion of PHAC also increases under
fixed smoothing asymptotics with the number of restrictions being tested but much

lesser. This is consistent with our asymptotic expansion in Theorem 5. The theo-
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rem shows that fixed smoothing asymptotics allows for the number of restrictions

being tested and that the critical value of PHACFE is the increasing function of g.

1.9 Conclusion

In this paper we study robust inference for linear panel models with fixed
effects in the presence of heteroskedasticity and spatiotemporal dependence of un-
known forms. We consider a bivariate kernel covariance matrix estimator and
examine the properties of the covariance estimator and the associated test statis-
tics under both the increasing smoothing asymptotics and fixed smoothing asymp-
totics. We also derive the optimal selection procedures based on the upper bound
of AMSE. For the fixed smoothing asymptotic distribution, we establish the valid-
ity of F-approximation. The adaptiveness of our estimator enables our method to
be safely used without the knowledge of dependence structure.

Instead of using the upper bound of asymptotic MSE criterion, we can study
the optimal bandwidth selection based on a criterion which is most suitable for
hypothesis testing and CI construction. It is interesting to extend the bandwidth
selection methods by Sun, Phillips and Jin (2008), Sun (2010) and Sun and Kaplan
(2010) on time series HAC estimation to the panel setting.
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Table 1.1: RMSE/Estimand with J,r and J2K

Py 0
00 03 06 09 00 03 06 09

T=15, n=49
0.0 0.09 020 0.27 0.46 0.42 021 025 0.43
03| J,o [016 034 045 065| J,r |0.13 0.33 043 0.60
0.6 | (dn,dr) | 022 041 055 0.72 | (d%,d%) | 017 0.40 0.53 0.71
09| (PA) 035 053 067 084| (PA) |0.31 052 065 0.83
0.0 0.13 023 0.29 0.38 1.00 0.36 0.38 0.36
03| J,o 021 036 051 062 J,o |019 0.31 041 0.50
0.6 | (dn,dr) | 0.29 047 0.62 0.68 | (d%,d}) | 0.20 0.42 0.49 0.64
09| (RE) 038 056 070 0.83| (RE) |0.19 0.48 0.63 0.79
0.0 0.48 0.46 0.48 0.47 0.36 0.36 0.38 0.36
03| JPK 054 056 057 054 JB2K 056 056 0.58 0.54
0.6 | (d2%) [0.68 0.70 0.69 0.70 | (d2X) |0.70 0.71 0.71 0.72
0.9 0.80 0.88 0.88 0.88 0.89 0.89 0.88 0.88

T=50, n=49
0.0 0.05 0.13 0.18 0.40 0.42 0.12 0.17 0.39
03| Jo 010 024 034 055| Jo [014 024 033 0.50
0.6 | (dn,dr) | 0.14 033 050 0.64 | (d%,dy) | 0.13 0.31 042 0.58
09| (PA) |026 048 0.60 083| (PA) |0.21 043 057 0.76
0.0 0.08 0.14 0.18 0.21 1.00 0.20 0.19 0.20
03| Ju [0.13 026 037 057| Jur |021 022 029 0.32
0.6 | (dn,dr) | 0.19 041 0.67 0.58 | (d%,ds) | 020 0.28 0.36 0.46
09| (RE) |034 056 068 081| (RE) |0.20 040 054 0.70
0.0 028 029 0.27 0.28 021 020 0.19 0.20
0.3| JRK 1040 041 040 0.40| JBK |0.38 0.38 0.38 0.37
0.6 | (d2%) 053 054 055 0.56 | (d2X) | 052 052 0.53 0.52
0.9 0.77 0.76 0.77 0.78 0.77 0.76 0.77 0.78

The subscripts ‘PA’ and ‘RE’ denote the Parzen and rectangular kernels

respectively.
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Table 1.2: RMSE/Estimand with .J,7 and J2X - Cont.

Py 0
00 03 06 09 00 03 06 09

T=15, n=196
0.0 0.05 0.13 0.18 0.29 0.43 020 0.21 0.27
03| J,r 009 024 033 054| Jor |0.07 024 032 0.47
0.6 | (dn,dr) | 0.13 030 042 0.57 | (d%,d3) | 012 029 0.39 0.56
09| (PA) |029 043 052 0.72| (PA) |0.28 043 051 0.69
0.0 0.07 0.15 0.21 0.30 1.00 0.34 0.36 0.35
03| J, [011 027 037 062 J,r |009 0.23 028 0.41
0.6 | (dp,dr) | 0.15 0.36 0.51 0.62 | (d*,d%) | 0.10 0.26 0.37 0.50
09| (RE) |022 043 055 0.74| (RE) |0.10 0.35 045 0.66
0.0 0.47 0.43 0.48 0.47 0.37 0.34 0.36 0.35
03| JPK 053 056 055 0.55| J2K 054 056 0.56 0.55
0.6 | (d2%) 10.68 0.70 0.69 0.69 | (d2K) |0.70 0.72 0.71 0.70
0.9 0.88 0.87 0.88 0.88 0.89 0.88 0.89 0.89

The subscripts ‘PA’ and ‘RE’ denote the Parzen and rectangular kernels
respectively.
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Table 1.6: ECPs of Nominal 95% CIs with Different Number of Restrictions

A

g=1

g=3

0.0

0
0.3 0.6

0.9

0.0

0.3

7

0.6

0.9

PHAC
(PAF)

0.0
0.3
0.6
0.9

93.3
92.3
89.8
86.9

91.9 92.2
91.0 90.2
88.1 85.3
84.1 814

85.7
82.6
78.6
80.2

92.6
91.9
82.4
81.2

91.2
88.0
82.1
771

88.1
83.9
78.4
73.3

77.8
72.2
69.0
68.7

PHAC
(PA,T)

0.0
0.3
0.6
0.9

93.1
92.1
89.0
84.7

91.5 91.5
90.6 89.5
87.1 83.2
82.5 T75.8

84.8
80.9
70.6
62.5

924
91.4
80.7
774

90.3
86.9
79.7
70.8

85.9
81.5
70.6
55.4

72.2
65.5
46.8
27.1

PHAC
(RE,F)

0.0
0.3
0.6
0.9

93.7
92.4
89.7
85.8

92.2 93.3
90.8 92.2
89.6 89.6
85.1 85.8

92.7
91.7
88.2
83.0

93.0
91.6
84.9
82.0

92.5
89.2
85.1
78.5

91.4
88.9
87.9
83.4

93.0
92.7
87.8
83.8

PHAC
(RE,I)

0.0
0.3
0.6
0.9

93.5
91.7
88.7
82.5

91.7 925
90.5 89.7
88.3 84.9
81.6 74.2

86.9
83.8
72.6
62.5

92.0
89.9
80.1
71.2

91.1
86.6
79.5
66.2

87.1
82.2
72.3
49.2

76.5
68.1
47.9
44.1

See note to Table 2.
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1.11 Appendix

Proof of Theorem 1

For notational simplicity, we re-order the individuals and time and make
new indices. For Z(J) =1, "‘7€j7n7 di(j)j < dn, and for l(]) = €j+1,n7 .oo,n, di(j>j > d,.

Fortiy=1,....0e7p, dy, .« <dp,and for t( oy =l,r+1,...,T, d;, s > dr.
(s) ) (s) (s) > (s)

(a) Asymptotic Variance

We have

nT
0,07

cov (jnT (c1,dv), Jnr (c2, d2)> = Chinr + Conr + Cspr,

Cor = nTpE‘* S)Zn: ZT:K@K%K@
T = T eTlZ;( s d, dr d,

1,7,a,b=1t,s,u,v=1

duv \ (1) (d1) (e2) (da)
x K (E) TG0  Gand (a7 (bl

C nsz i Z ﬁ dts K @ K duv
e T€ ele 114,5,a,b=1t,s.u,v=1 dn dT dn dT

(c1) ,.(d1) (c2)  (d2)
X TG, )ﬂ”(mk (au),l T(bv)kv

me Tg ngk 114,j,a,b=1t,s,u,v=1 dT dn dT

(1) (d1)  (c2) (d2)
X0 Gos) kT (a) kT (b0),0"

For C1,7, under Assumptions F5 and F6

nTp

Z\Esl—3| CRCEp o(1) (A1)

|OlnT| = é f

For Cs,7, we can decompose as follows to consider boundary effects:

Cont := Dinr + Dopr + Dspr + Danr + Ds nr (A.2)
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where
lin  lam Gl » dun,
Dinr =~ 22222(>(7)
i (=11 V(u)

a
dts(t) “”(u) (0102) (d1d2)
(1t au)’y(j(i)s(t)vb(a)v(w)

Lan T Ll Ly d
D2nT:nT€ ET Z Z Z ZZ Z 1K( ﬂl)) (%)

4,a=1j(;y=1by=1t¢Er u=1 sp=1 v,y =

dy d
5(t) UV () (cre2) | (dida)
<R ( dr ) K ( dr ) Titsaw) Vit ey biayvn)

SRS D30 35 30 30 0 oL 1 A rIE T

t,a=1 j;= lb(a) 1t€Er u¢Er ()= 1U(u) 1

dy d, d
S(t) S(¢) UV (y) (c1c2) (dida)
<K ( dr ) K < dr ) K ( dr ) Teitaw) TGy 5oy brayvean)

pr= i D5 N3 5 3 5 k() ()

i¢Ey, a= 1]() 1b() lt’u,EETS(t) 1’1}(u> 1

dy d
5(t) UV () (cre2) | (dida)
<R ( dr ) K < dr ) Titsaw) Vit sce) biayvn)

RN 5050 3 v 3B o s E O PIC

1€En a¢ Ern J(1)=1bay=1 t, u€ET st)=1v(y)=1

dy d
5(t) WU (u) (cic2)  (drds)
<R ( dr ) K ( dr ) Titsaw) it sce) biayvin)

Dy, 7 is based on nonboundary units whereas the others are on boundary ones.

In the following, we show that Dy, converges to K1KoJ (c1,¢2) J (di, dy) and the
other terms become negligible as n and T" increase.

For Dy,7, the first step is to show that

Lan b Ly i dst
FIR e B 55 S Sl 9 S T Pl Ly

i,aeEy, J@i)= 1 b(a) 1t,ueEr S(t)= 1 V(y)= 1

(c1e2) _ (did2)
(it,au)’y(j(i) 5(t)>0(a) V(w))

= I@JQJ (Cl, 02) J (dl, dg) s (AS)

X
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and the next step is to prove that

lim DlnT
n, I'—o0

et T u T d
2] i ts
= lim E E E § E E K2 ( @
n,T'—oo nTE E dT
i,a€ by, j(z) 1 b(a) TtuebT spy=1v)=1

(crc2) . (did2)
X Vit au) (d¢i)8(e)b(a)Vu)) (A.4)

did V4 d d
For (A.2), let 4\“%) = (¢,07)" th D DY h(l)i?(t),b(a)v(u))' Then,

('Ltvb(a)v(u)) -
%
K2 Uu dt%)
dr

i,aeEy, ]( )= 1 b ()= l1tucEr S)= 1 V(u)= 1

(crc2)  (d1da)
X Vit,au) (Gysy b(a)v<u>) (A.5)

:nTM 2 Z ZZ b gi i}@( ”<>) <d§;>>

1,a€En j(5y=1bq)=1t,u€ET s)=1v(,)=1
(a)= &= Y(w)=

(crc2)  (d1da)
Vitaw 7V (z, b<a)v<u))

b Ly " dst e
D 5 35 3 3 v o3 1 Py (T B

,a€Ey, ](2) 1 b(a) l1tucbr S(t)= 1 V()= 1

(d1d2) _(dids)
X (V(J'(i)sm,b(a)”(u)) 7(5f7b<a>”<u>)

= LlnT + LZnT- (A6)

L1,7 can be decomposed as
Lint = Ginr + Ganr

where

GlnT - Z Z 7(;122 1 {dm < Cn7dut < CT}

i, a€EE, tue B

1
X il cov Z Z V(gil)), Z Z V(édj))

Jidij<dpn s:dis<dr b:d gy <dp v:dyy, <dp

ez (@) xe )
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Gopr = — Z Z ’yftlfli [1{dia > p,dut > o7} + 1{dia > ¢y, du < o1}

i, a€E B, t,u€Ep

+ 1{dis < ¢y, dys > CT}] glg cov Z Z Véfli))’ Z Z V(%di))

Jidij<dpn s:dis<dr b:d gy <dp, v:idyy, <dp

(e () (e (@)

= o(1)

as ¢,,cr — 00. Thus, it suffices to consider Gy,,7. When d;, < ¢, and d;, < ¢, we

have
cov| Do D VES X X Vi
] d” <dn S: dtg<dT b: dab<dn v duv<dT
_ AN (d2)
okl U DD DI D DD DI
] d” <dn S: dtg<dT ]dz]Sdn SZdtSSdT
teou | > DLV > X Vim— > 2 Ve
] d” <dn S: dzs<dT b: dab<dn v duv<dT b: d1b<dn v: dtv<dT
but

> Vo 2 > Vaw

b: dab<dn v du1)<dT b: dzb<dn v dtv <dT
(d2) Z Z (d2)
> > Vewt Vb
b:dabgdn Vidyy SdT,dtU >dT b:dab<dn,d,b>dn vidgy <dT

Now dy, < d,, and d;, < ¢, implies that dy; < d,, + ¢,. As the result,

1
0ol cov Z Z V(g’fl;))’ Z Z V(gidj))

j'dij <dpn s:dts<dr b:dap<dn,d;p>dn vidiy <dr

YD DENED DD DI 210 w11

] dzj<dn b: dn<dzb<dn+cn s:dgs <dT vidiy <dT

S

=o(1),

by choosing ¢, such that Y, _, 1{d, < dp < d,, + ¢,} = o({,,) for all i. Similarly,

1 dz)
i cov Z Z V Z Z V(Ew = o(1).

T jidij<dy s:dys<dr bidap <dp viduy <dp,dyy>dr
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Hence

1 1 2
R DN SRTCED Sl ST

j:dij <dn s:dts<dr bidap<dn v:dyy<dr
_ 1 (d) (d2)
== A SNBSS SIS DI ERTI N
n jidij<dn s:dis<dr jidij<dn s:ds<dr

where o(1) term holds uniformly over ¢ and t.

Now under Assumption F10, we have

Cc1C2 1 2
SR DD DR 0 S RTCND DI DT

) aEEn t uEET ‘]d” Sdn S:dtSSdT ] d” <dn s:dts <dT
n T
1 d;s 1 d
x| =Y K* — > K== | (1401
(gnj 1 (dn>) iy 1 (dT (14 0(1))
= S(t):

— K;llage] (Cl, CQ) J(dl, dg)

by choosing d,, and dr such that n;/n — 1 and T} /T — 1.
For Lo,r in (A.4) the first step is to show

nTE T 2 Z Z ) § i (K2< ”<2)K2(d§;>)

zaGEn]() lb() 1tu€ETs(,) 1’[}() =1

diq d
. 2 2 tu (01 62) (dldg) o (d1 d2) —
K ( dn ) K ( dT ) > ’Y(it,au) <’y(](1)s(t)7b(a)v(u)) /y<lt,b(a)v(u))) 0(1)7 (Ag)

and the second step is to prove

D 5D 30 3 3 vl WA CAPII

i,a€FEy, J)= =1 b(a) 1tueEr S(t) =1 V(u) =1
(c1e2) (d1d2) _ (did2) _
" Titan) \ Vs b@ve) ~ Vibwow) ) o(1). (4.9)

For (A.8),

nTE T 2 Z Z ) EZT ZT (K2< ”<Z>)K2 (d;;;w)

1,a6€EEy jiy= 1b() Ltu€bT s@py=1v)=1

diq d
—K? 2 tu (c1c2) (d1d2) _(dida)
K ( dn ) K ( dT ) ) ’Y(it,au) (fy(j(ﬁs(t)’b(a)v(u)) ’Y(thb(a)v(u)))

< Myyr + Moy + Msyr + Mayr




where
1 ei,n ea,n Kt T K'u,,T
M i ‘ (c1c2) § : z : ‘ry(dldz)
1nT T § (it,au) EngT ‘ z : z : (Jei)s ) 0(a)V(u))
(Z,a)E.’Fl (t,u)Egl ](i)il b(a) 1 S(t)_l ’U(u)=1

_~didz)

a n Kt T u T
(dldz)
(Jei)s ) 0(a)V(u))

(i,a)€F2 (t,u)€G
(i,a)€F1 (t,u)€G2

(i,a)€F2 (t,u)€G2

)

Fir=A(i,a) : diy < fn & i,a€ E,}, Fo={(i,a) : din > fn & i,a € E,},

](z) 1ba) 15(,5) lv(u) 1

_ A (did2)
(Fbayvu) )

f Zan EtT uT

0,0 Z Z Z Z (f(t)dj()t b(a)V(u))

](z) 1ba) 1S(t) lv(u) 1

_ A~ (did2)
(i{,b(a) U(u) )

1 Ly ’ B
lpl Z Z Z 2 ‘Wézli)dg()t>vb(a>v<u>)

/\/\/_\/_\

_(didz)
(i{,b(a) U(u) )

and

gl :{(tvu):dtuégT&taueET}a g2:{(t7u):dtu>gT&t7ueET}a

in which f,,/d, = O(1) and gp/dr = O(1). It is straightforward to show

14
MlnT =0 (£n€T> ) M2nT =0 (%) and M3nT =0 (_n> .

nT n
For My,

M,
nT
a.'n, etT 'u.T

< fn Z Z ’7;122) i\ p 0 gT Z Z Z Z ‘7 dl?;w ba)¥(w)

(i,0)EF2 (t,u)EGa J@)= 1 b(a =1 S(y= 1 V()= 1

’L’ﬂ ZtT zn an etT uT

€2€2 Z Z Z Z Z Z ’ (Z(ltji?t) b(a)V(u))

T jay=1sy=1 h(zy=1b(a)=1 w(p)=1 v,y =1

=0 (f,9).

o6
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Therefore, (A.8) holds.
We also obtain (A.9) because

lom LT
E E d1 d2) . ’}/(dl d2)
Vwsob@re) ~ V(@bava)

la,
—1b<a> Lsn=1v)
lam b L
Z Z Z Z Gt
€T.':1 ~ 5.5 Vi) 506 b(ay o)
gtT a,'n Z

2 bin L
- Z Z Z (oo
V(hyweey bayvu)

h(z) l’l,U(t) 1b(a) 11} :

1
= YD D em

gngT
] d” <dn b: d1b<dn S: dts<dT v: dtv<dT

__(MT )Z DD D M o

h: d1h<dn b: dzb<dn w: dtw<dT 0N dt’u<dT

)

i,n

| M

=o(1).

Therefore, Ly,7 = 0 (1) and Ls,7r = (1), which completes the proof of (A.2). The

next step is to prove (A.3). In view of previous derivations, it suffices to show that

FI e 3B 3D 3 o D ML () e ()

i,a€FEn, j( Y= 1 b(a> 1t,ueEr S(t)= 1 V(u)= =1

—-K d“b(a) K d‘“’(u) ’ (cre2) . (dida)
dn dT 7(% au)/y( i)S(t)> b(a v(u))




nTE ET

ean th uT

YYY Y Y Y

1,a€En j;)=1 ba)=1ltuckr s@y= Toey=1

(i) = ()

K dab(a) K o, ’ (cic2)  (dida)
dn dr /y(itrau)’y(j(i)s(t)vb(a)v(u))

nT€

(4,7,a,b) L1 (t,8,u,0)ET1

(cic2) _ (did2)

X V(it,auﬂ(

nTﬁn T Z Z

3608 b(a) V) )

(i,5,a,b)EZL2 (t,s,u,v)ET1

(c1c2)  (didz)

X V(it,auﬂ( ,

nT€

30yt b(a) V) )

Y

(i,5,a,b) €1 (t,5,u,v)ET2

(c1c2)  (did2)

x V(it,auﬂ( '

nTE

3088 b(a) V) )

Y

(i,5,a,b)EL2 (t,5,u,v)ET2

(c1c2)  (d1d2)

x V(zt,au)”y(

303 (8)b(a) Vi) )

= FlnT -+ FQnT + F3nT + F4nT7

where

:{Zj,ab dijy —
:{Z],ab dijy —
:{tsuv dts

:{tsuv dts(t)

T k(e

dts dab duv
K (t) - K (a) K (u)
) ( dr > ( dn dr

dany| < 200 &0 € B, |
dab(a)‘ > 26, &i,0 € By,

— duv(u)‘ <2cr & t,u € ET}

uv(u)‘ > 2CT & t,u c ET} .

o8
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For Fi,r, we have

S OE ) () x (%)

(4,4,a,b)€Z1 (t,s,u,v)

d dij. dap 2
2 UV () 2 (i) _ A9(a) (c1e2) _(did2)
(5 (o () () 2 e

21 disy Ay \* | (i any)
SRS Zej[(dT a ) T\, "4,

(4,4,a,b) €1 (t,s,u,v)

FlnT

- nT€ gT

(c1c2) _(c1da2)
"Y it,au) ’y(]'(z‘)s(t) b(a)V(u))

2
2 CT (c1ec2)
S 86L< ) <TlT Z Z ’ ztau )
i,a€EEy, tueEp

Zan etT uT

LZZEZH@
(0 (J¢iy sty b(ayVu))

1b(a> ]_S(t) l'l)(u) =1

“o(8)+0(2). a0

d

iy dab(a)’ > 2¢,, then either d;, > ¢, or

For Fy,r, we note that if

Ajiiybiay > Cn- Without the loss of generality, we assume that d;, > ¢, for

(i,j(i), a, b(a)) € 7. In this case

2
°r (crea) _ (dida)
> ZQMWWWW

(4,4,a,b)EZ2 (t,8,u,0)ETN
(dia)iq

PR DR

nTE ET
(4,7,a,b)EZ2 (t,s,u,v)ET1

—o(3)+o(%)

With the similar procedure, we can show that Fy,r = O (cz?) + O (c2/d2) and

F4nT = O (1/0%)

By choosing ¢, and ¢r such that ¢, cr — oo but ¢, /d,,, cr/dr — 0, we have

Fy,
”—nTMT

) (dida)
Vit au) ()8 ) P(a)v(w))

FlnT = 0(1) s F2nT = 0(1), F3nT = 0(1) and F4nT = O(l)
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and (A.3) is proved.

It is easy to show Do, r = 0(1), Danr = 0o(1), Dyur = 0(1) and D5, = o(1)
given Ty /T — 0 and ny/n — 0.

By symmetry,

lim CBnT == ,ClICQJ (Cl, dg) J (CQ, dl) .

n,T—o0

Therefore,

T
lim ng COov <=]nT (Cl, dl) y JnT (CQ, d2)>

n,T'—oo Lk

= ]Cllag(e] (61,02) J(dl,dg) + J(Cl,dg) J(Cg,dl)).

In terms of matrix form,

lim nl var (Vec (jnT>) = K1Ko(Lp +Kpp) (J & J) .

n,T'—oo Ll
(b) Asymptotic Bias

Let dr = k,rd, and k,r = k + o(1) where k > 0. We have

d? (EjnT - JnT>

n P -
_ nLT > ET: Litgo) | (dig)” : <(Z))q - (dts )" :

i,j=1ts=1

Therefore, lim,, 70 A% (Jpr — Jur) = —qug‘” — %qugq).

~ ~

() /7L (jnT - JnT) = 0,(1) and /L (JnT - JnT> — 0,(1)

By (a) and (b), it suffices to show that % (jnT - jnT) = 0,(1). This
holds if and only if /22 (b’jnTb - b’fnTb) = 0,(1) for any b € RP. In conse-
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quence, we can consider the case that J,r is a scalar without loss of generality.

nT
by

- W”_T (B_ﬁ(’)) \/mz EinT Z Z K( U) (Z;) XX
~ 2T (3~ ) \/@e eleTTZZK( ) (Z:)XZXta"t

j=1t,s5=1

\/W Z Z < ) (j—:) Xt Xjouir (@ + g — )

=1t,s=1

WZZK( )K(Z:)XX (t; + i — @) (U + Uy — )

J=1t,s=1

(- 1)

= Hypr + Hopr + Hspr + Hypr.

It is easy to show that Hy,; = 0,(1) and Ha,r = 0,(1) under Assumptions

F9 and F12. For Hs,; we need to show that for all ¢ and ¢

\/_ZZ ( ) (%:)st(ujJrus—u):op(l). (A.11)

j=1 s=1

First, u; + us — @ = 0, (1) uniformly. Second, by Assumption F12(iv)

(\ME; (2 (%) 5] o)

7, n Zt T
[ J(z)Sm]

J(z) Lsgy=1

— 0,

as A — oo. Therefore, Hs,r = 0,(1). With the similar procedures, we can show
that H4nT is Op(].).

As a result,
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(d) AMSE

The first equality holds by Theorem 1(c). For the second equality of The-
orem 1(d), since

nT’ d% d2
Coly — d290,00 /0T T+ 0(1)
we have
lim MSE (2 Jor Sur
n,T—o00 € fT
- / -
n%{ﬂ@ fnfT vec <EJnT — JnT> ST vec <EJnT — JnT>
+ n%gloo 7 (SnTvar(Vec JnT))
@, 1@
( )Svec(b —i—kqbQ)
+ ’C ICQtT [ (

Kpp)(J @ )],

where the last equality holds by Theorem 1(a) and (b)

Proof of Corollary 1

Letting k.7 = dr/d, and k,r — k as n,T — oo. By Theorem 1(d),
obtain

lim max MSFE ((nT)Zq/(2q+n"+nT) , jnT<dn, dr), Sy )
n,T'—oco (bl,bg)e%

A0, 0 (mntn7)/(29+nm+nT)
lim (anaTkZ§)2q/(2q+nn+nT) (&)

T —o00 nT
( 2, <B +B)+/C/cc>
&0l nT R ’

nr\24/(2a+tmm+nT) _(mn+nr)/(2q+nm+nT) 2K2 By = =
= (061062/§ T) 7m0 n+nT Bll + ki_Q +IC1,CQC ,
It is straightforward to show that this is uniquely minimized over 7 € (0, 00) by
4QK2 (Bll +

1/(29)
(k*)Qq) and k‘* _ 2 (2(] + nn) K(?BQQ
(1 + n1) K1K2C nr (2K2By; + K1 Ko Cr) 7

*

T
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since S is pd. Therefore,

* 4(]K§B11 * nnB22 2%1
= —-""and k=
77nIC1/C20 nTBll

and the sequence {(d,,,dr)} satisfies d?20, 07 /nT — 7* if and only if
d, =d5 +o ((nT)l/(2q+77+1)) and dp = d% + o ((nT)l/(2q+n+1))_

Proof of Theorem 2

The proofs of (a) and (b) are analogous to the proofs of Theorem 1(a) and

(c) respectively.

Proof of Theorem 3
(a) Asymptotic Variance

The proofs of (a), (b), (¢) and (d) are analogous to the proofs of Theorem
1(a), (b), (c) and (d) respectively.

Proof of Theorem 4

The proofs of (a), (b), (¢) and (d) are analogous to the proofs of Theorem
1(a), (b), (c) and (d) respectively.

Proof of Proposition 1
(a) Jup — JGA = 0,(1) if d,, — 0 as n — oo.
From Theorem 1(c), Jur — Jur = 0,(1) and similarly JGA — JGA = o,(1).

Therefore, it is enough to show that

Jur (¢, d) — JGA (¢, d) = 0,(1), (A.12)
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if d, — 0 as n — oo. By Chebyshev’s inequality, for any A > 0,

P
dab dts duv
Zab ) g [ 2B ) g 2

LT k() (%) ae (%) ()

i#j t,s=1 a#b u,v=1

xE[v Vvl v(gffg)]

(4,8) " (a,u)

Jor (e, d) — JCA (¢, d)‘ > A)

= Cipnr + Cong + Canr + Cuanr,

~ oy Qs o (o) o (o) o (o
Cor- LS SV (d—) (d_) " (E) " (E)
t ,S,u,0=1 I=1 i#£j a#b

© L@ .
x r(. t),l T(j s), lT(a w1 (byw),l (Egl - 3)

Cor = s 3 S S () g () g () e (2

t,s,u,v=11k=1 i#j a#b

PO @@ (@)
(i) ’"( >z7"<au>k7”<bv>k

nTp i dup dys Ay
Conr = 3323 5 ZZZK( ) (dn)K<dT)K(dT)
t,s,u,v=11,k=1 i#j a#b

A @@ (@)
(i) 7“(' >k7“< w), 1" (byo)

nT'p %J dab dts duv
t,s,u,v=11,k=1 i#j a#b n T T

(o () (c) (d)
X TG00 Gos) ok () kT (b0

Following (A.1), we can show Chor = o(1). For Con

< 3 (i o 2 (3 bty

t,s=1 i#j

2

as d,, — 0 because K (d;j/d,) = 0 for all i # j provided d,, < min; ; d;;. With the
similar procedures, we can show that Cs,p — 0 and Cyyy — 0. Therefore, (A.12)

holds.
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() Jur — JEE = 0,(1) if 617 /n — 1 as n — co.

From Theorem 3(c), J2K — JBK = ¢ (1). Therefore, it is enough to show
that
Fur (e.d) — T2 (c.d) = o,(1), (A13)

if (49 /n — 1 as n — oo.
By Chebyshev’s inequality, we have

P

Tur (e.d) = T (c.d)| > ) < éE (Fur () — T5E (e d)>2

= Chor + Cong + Canr + Cunr,

for any A, where

Cinr = A2n2T2 Z i:if( (Ccilﬁ 1> (K<%)_1>K(§_§)

,5,a,b=1t,s,u,v

dw) © @ © @ 4
x K (ﬁ) T d Gos)d (" (oya (€1 = 3)

n T nTp
= 1 1 dz dab dts
Conr = — K(Z2) 1) (K (22) 1)K (2
v 3 30 3 (e (3) ) (< () - 1) = (3)

b=1t,5,u,v=11 k=1

(T © @ © @
x dr Ta.007 Gos) T (au) kT (b) b
nT

n T p
X 1 1 dz dab dts
S K(Z22) -1 KlZ22) 1)K (2
Cont = 5o 2 ( (dn> ) ( (dn> > (dT)
i,5,a,b=1t,s,u,v=1 [ k=1

© (d) (@) (d)
x K (E) P00 (725) " (@07 (0)

o 55 F ((2) ) (+(8) ) (%)

,5,a,b=1t,s,u,v=1 [ k=1

d C C
X K( )r( ,) 77“(5.1) ’ r(a?u),krgl(;i,)v),l'

We can show that Cy,,7 = o0 (1) using the procedure in (A.1).
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For CQnT )
C'2nT

“wm 3 8 e B e () (%)

i,7,a,b=1t,s,u,v=1

(cd) (ed)
X "Y(it,js) (au,bv

n T 2
1 (1 di; g g
SP(n_T 1{d_n>0}d ’Y(ths d
ij=1t,s=1
) 2
< (7)) 3 (X pla) o
i,j=1t,s=1
as d,, — oo
For Cs,r,
CV’SnT

(cc) , (dd)
(it,au) /(5s,bv)

X

dab dia d‘b
i X S Bl e e )

i,j,a,b=1t,s,u,v=1

(cc) (dd)
(it,au) ’Y(js bv)

A2 nTZ Z Z ’Y(ztau)

=1 {a:d;q/dn<c} t,u=1

1
JdL Yy vl

{jidiz /dn>c} {b:djp/dn<c, dop/dn>c} s0=1

x‘v

o(1).
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As 552 < 00 with some constant C, if égf)/n — 1, then

1
DD DY Rt

{j:dij/dn >C} {b:djb/dn <c, dab/dn>c} sv=1

n— (9 1 dd)
=— ’ > > Z ey
(n—0?)

T {jidiy Jdn>c} bidsy/dne, dapdn>c} s0=1

— 0,
which implies Cy,,r — 0 as n, T — oo. With the same procedure, we can show that
Cunr = 0(1) . Therefore, (A.13) holds.
(€) Jur — JE5 = 0,(1) if égﬁ)/T —1las T — oc.
The proof is analogous to the proof of (b).

Lemma 2. Let

n n . ¢
1/ ZZZ%MW(L ]\242 T)‘/(let)

i1=110=1 t=1

Then, under F1 - F2

1 1 1
XiA/ / / Dy pom (11,72, 7) dBy (11,72, 7) -
o Jo Jo

Proof of Lemma 2

Proofs are in the supplementary appendix.

Proof of Proposition 2

To simplify the notation, we use ffooo to stand for ffooo ffooo foo and fol

—00

to stand for fol fol fol when there is no confusion. Let

e Y SO A( 1)

i1,J1= 112]2 1t,s=1k,l,m=1

S ~ ~
X (I)b kém ( _T) vu Ji2,t) V]l ,J2,8)
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Then, for any given A > 0
N . 1 A .
P(|[Jur = Jurll 2 A) < TE|Jur = Jurll = 0, 1, T — o0

because by Assumption I8

A~

BV, o Vil < 0

(i15i2,8) ¥ (J1,2,8)

and

\Kp(21 — 22, y1 — Y2, 21 — 22)

o
g Mot @b soem (21, Y1, 21) Pojotrm (—T2, —Ya, —22)| =0
k.4 m=1

by the Fourier series representation. This implies
It — Jnr = 0p(1). (A.14)

Hence, we can derive the limiting random matrix of Jor for that of jnT.

[e.e]

L, M, T
jnT: Z k@m\/izzz b,ktm (L M T)V117127

klm=1 t1=112=1 t=1
ZZZ o) Ve
bkém L ’M ,T (j17j275)
j1 1 j2=1 s=1 n n
00
H
E )\k,é,mXX )
k.l m=1

where superscript ‘H’ denotes the conjugate transpose.

From Lemma 2 and (A.14), we have

1 o]

& d

I — A/ Z )\k,é,mq)b,kém (7“1, T2, 7') q)b,kzm (_Ula —V2, —/'i) dBp (7“17 T2, T)
0

kl,m=1

X dB,, (v1, v, k) N

1
4 A/ Ky (11— v1,72 — 02,7 — k) dB, (r1,72,7) dB}, (v1,v2, ) A,
0
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where the equality in distribution holds because

1 (e'¢)
P(H / < Z )\k,é,mq)b,]dm (7’1, o, T) (I)b,kfm (—’Ul, —o, —:‘i)
0

k.l m=1

1 [e’e}
S / ( Z )\k,&mq)b,kzém (7“1, T, ’7') (I)b,kém (7“1’ T9, 7—) _ 1) [pdrldedT
0

klm=1

— Ky (r1 —vi, 7m0 — v, T — K) )dBp (r1,72,7) dB,, (v1, V2, K)

= 0.

Lemma 3. As by, by and bs — 0, we have
(a) E (vi1 — v12033021) = 1 — bibabscy — (g — 1) bibabsca + 0 (bibabs)
(b) E (011 — 019035 031)° = 1 = 2by1bybs (¢1 + (g — 2) ¢2) + 0 (bibabs) ,
(¢) E (v — V12V Va1) — 1}2 = 2b1bob3co + 0 (b1bobs) .

Proof of Lemma 3

This is a direct application of Lemma 3 in Sun (2010).

Proof of Theorem 5

Taking a Taylor expansion, we have

P{gF«(g,b) <z}

= BG, (= (011 — vivvar))

=Gy (2) + G (2) 2E [(v11 — v12055 021) — 1]
+ %Gg (2) 22 [(011 — vigvggvm) — 1]°

1
+ 5B [Gy(2) = Gy (2)] 2 [(on1 = vizvyg' o) = 1)°



where Z is between z and z (vll — v12v;21v21) . Using Lemma 3, we have

o (2 )2202 - Glg (2)z(cr+(g—1) 02)] b1babs + 0 (b1b2b3)

(
(Z) ( )Z [blbgbgcl + (g — 1) blbgb;gCQ] + G/g/ (Z) ZzblbgbgCQ +o0 (blbgbg)
)+ Gy

) A ( ) b1b2b3 “+ o0 (blbgbg)

Proof of Theorem 6

It follows from Theorem 5 that

P{F, (9,0) < 2}

= P{gFx(9,0) < gz [1+ bibsbs (c1 + (9 — 1) e2)]}

=Gy (921 + bibobs (c1 + (9 — 1) c2)])

+ A(gz[1 4 bibobs (c1 + (g — 1) c2)]) bibabs + 0 (b1b2bs)

=Gy (92) + G, (92) gz [c1 + (g — 1) o] bibabs + A (g2) bibabs + 0 (b1babs)
=G,y (92) + Gi (92) §° 2 cabibabs + 0 (b1bsbs) .

By definition,

P{FQ,K <z}

X X
=P {Xg < ngK} = FG, (gz%)

2
! XK 1 " gz 2 2 1

= Gy (92) + G, (92)92E (7 - ) +5G4(92) (f> E(x}—K) +o (?>
1, 1

=Gy (92) + 1o Gilo)g" o ()

=Gy (92) + GZ (92) g°2*cabibabs + 0 (b1babs) .

Hence

P{F;o (ga b) < Z} - P{ng{ < Z} +O(b1b2b3) .

70
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Chapter 2

Spatial Heteroskedasticity and
Autocorrelation Consistent

Estimation of Covariance Matrix

This paper studies spatial heteroskedasticity and autocorrelation consis-
tent (HAC) estimation of covariance matrices of parameter estimators. As het-
eroskedasticity is a well known feature of cross sectional data (e.g. White (1980)),
spatial dependence is also a common property due to interactions among economic
agents. Therefore, robust inference in the presence of heteroskedasticity and spatial
dependence is an important problem in spatial data analysis.

The first discussion of spatial HAC estimation is Conley (1996, 1999). He
proposes a spatial HAC estimator based on the assumption that each observation
is a realization of a random process, which is stationary and mixing, at a point
in a two-dimensional Euclidean space. Conley and Molinari (2007) examine the
performance of this estimator using Monte Carlo simulation. Their results show
that inference is robust to the measurement error in locations. Robinson (2005)
considers nonparametric kernel spectral density estimation for weakly stationary

processes on a d-dimensional lattice.
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Kelejian and Prucha (2007, hereafter KP) also develop a spatial HAC es-
timator. As in many empirical studies, they model spatial dependence in terms
of a spatial weighting matrix. The difference is that the weighting matrix is not
assumed to be known and is not parametrized. Typical examples of this type of
processes include the spatial autoregressive processes and spatial moving average
processes. Local nonstationarity and heteroskedasticity are built-in features of
these type of processes. This is in sharp contrast with Conley (1996, 1999) and
Robinson (2005) in which the process is assumed to be stationary.

In spatial HAC estimation literature, an economic distance is commonly
employed to characterize the decaying pattern of the spatial dependence. The
covariance of random variables at locations ¢ and j is a function of d;; ., the eco-
nomic distance between them. As the economic distance increases, the covariance
decreases in absolute value and vice versa. A variety of distance measures can
be considered depending on applications. For example, Pinkse, Slade and Brett
(2002) use geographic distance and Conley (1999) uses transportation cost. The
existence of such an economic distance enables us to use the kernel method for
the standard error estimation. The estimator is a weighted sum of sample covari-
ances with weights depending on the relative distances, that is, d;;,/d, for some
bandwidth parameter d,,.

We generalize the spatial HAC estimator proposed by KP to be applicable to
general linear and nonlinear spatial models and establish its asymptotic properties.
We provide the conditions for consistency and the rate of convergence. Let EY,
denote the mean of the average number of pseudo-neighbors. By definition, two
units are pseudo-neighbors if their distance is less than d,. We show that the
spatial HAC estimator is consistent if F¢,, = o(n) and d,, — oo as n — oo. This
result implies that the rate of convergence of the estimator is £/, /n. Comparing
our results with Andrews (1991), we find that the properties of the spatial HAC
estimator we consider are interestingly parallel to those of the time series HAC

estimator, even though they assume different DGPs and have different dependence
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structures.

We decompose the difference of the spatial HAC estimator from the true
covariance matrix into three parts. The first part is due to the estimation error of
model parameters and the second and third parts are bias and variance terms even
if the model parameters are known. We derive the asymptotic bias and variance
and show that the estimation error vanishes faster than the other two terms under
some regularity conditions. As a result, the truncated Mean Squared Error (MSE)
of the spatial HAC estimator is dominated by the bias and variance terms. This key
result provides us the opportunity to select the bandwidth parameter to balance
the asymptotic squared bias with variance. We find that the optimal bandwidth
choice depends on the weighting matrix .S,, used in the MSE criterion. Depending
on which model parameter is the focus of interest, we suggest different choices of
the weighting matrix. This scheme coincides with that suggested by Politis (2007).

We provide a data-driven implementation of the optimal bandwidth param-
eter and examine the finite sample properties of our spatial HAC estimator and
the associated test via Monte Carlo simulation. We compare the performance of
competing estimators using different choices of d,, and 5,,. In addition, the effects
of location errors and the performance of the plug-in procedure with mis-specified
parametric model are examined. We also consider the case when the observa-
tions are located irregularly and compare the performance of the standard normal
approximation with two naive bootstrap approximations for hypothesis testing.

In addition to KP, the paper that is most closely related to ours is Andrews
(1991) who employs the asymptotic truncated MSE criterion to select the band-
width parameter for time series HAC estimation. His paper in turn can be traced
back to the literature on spectral density estimation. We extend Andrews (1991)
to the spatial setting. The extension is nontrivial as spatial processes are more
difficult to deal with, especially when they are not weakly stationary.

The remainder of the paper is as follows. Section 2 describes the estimation

problem and the underlying spatial process we consider and introduces our spatial
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HAC estimator. Section 3 establishes the consistency, the rate of convergence, and
the asymptotic truncated MSE of the spatial HAC estimator. Section 4 derives
asymptotically optimal sequences of fixed bandwidth parameters and proposes a
data-dependent implementation. Section 5 studies the consistency, the rate of
convergence, and the asymptotic truncated MSE of the spatial HAC estimator
with the estimated optimal bandwidth parameter. Section 6 presents Monte Carlo

simulation results. Section 7 concludes.

2.1 Spatial Processes and HAC Estimators

In a general spatial model with moment restrictions, the asymptotic distri-

bution of a parameter estimator often satisfies
(BuJuBL)"2v/n(f — 60) > N(0,1,), as n — oo,

where n is the sample size, B,, is a nonstochastic r X p matrix and

) = var (% > vmwo)) =2 > EWin@inl0). (A1)
Vin(0) is a random p-vector for each # € ©® C R”". For IV estimation of a linear
regression model, Vi, (0) = Z; (Yin—X] ,0) where Z; ,, is the vector of instruments.
For pseudo-ML estimation, V;,,(6) is the score function of the i observation. For

GMM estimation, V;,(6) is the moment vector. A prime example of this setting

is the spatial linear regression:
/
}/i,n = Xmgo + WUijm,

where E(u;,|X;,) = 0. The OLS estimator of 6 is

) = (% zil;Xz,anlyn> < ZXz nYi n)

Under some regularity conditions, (BanB,’l)’%\/_ (9 0p) — N 0, I,) where

n -1
ZZE X;nttin) (Xjntij,) and B, = <%;an'n) .

11]1
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We are interested in estimating the asymptotic variance of \/n(f — ;). As
B, is often easy to estimate by replacing 6, with é, our focus is on consistent
estimation of J,. By extending the spatial HAC estimator proposed in KP, we can
construct a spatial HAC estimator of J,, as follows

—Zvav’ < Jn”) (A.2)

=1 j=1

where f/i,n = V;n(é) and K(-) is a real-valued kernel function. d,;, is the economic
distance between units ¢ and j and d,, is a bandwidth or truncation parameter. We
assume that the degree of spatial dependence is a function of d;; ,,. More specifically,
if d;;,, is small, V;,, and V},, are highly dependent. Whereas, if it is large, the two
units are rather close to being independent.

We assume that V;,,(= V;,(0y)) for i = 1,...,n are generated from the

linear transformation of np common innovations:

where
A1 A1
R, = : - :
/
is a p x np block diagonal matrix with unknown elements, &\ = (éﬁ), ,éﬁf%)

and &, = ((57(11))’, o (é’%p))’)’ is a np x 1 vector of innovations. We assume that
var (égf)) = O¢cly, cOV (énc), ~nd)) = 0pqln
so that the variance matrix of &, is of the form

var(g,) = ¥ ® I, with ¥ = (oy5)

where ® denotes the Kronecker product. The process V;,(6p) may be nonlinear

in parameter 6, but we assume that V;,(6y) follows a linear array process as in
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(A.3). This type of processes allows for nonstationarity and unconditional het-
eroskedasticity. It also includes typical spatial parametric models such as spatial

autoregressive processes and spatial moving average processes.

Let R, = Rm (21/2 ® In) and €, = (€1, vy €np’n)/ = (2_1/2 ® In) €n, then
Vin = Rinen, and var(e,,) = .

The matrix R;, can be written more explicitly as

(v o)
()
(A i) e ()

where ¢% is the (i, j)-th element of X'/2.

We make the following assumption on ¢,.

Assumption F5. For each n > 1, {eg,} are i.i.d.(0,1) with Eej, < cg for a

constant cg < 00.

For simplicity, we assume that ¢;, is independent of ¢, for 7 # j. Our
results can be generalized but with more tedious calculations. Under Assumption

F'5, the covariance matrix between V;,, and V}, is given by
Lijn = (%SC‘,?) = EVi,V},] = R}, (A.4)

where the (¢, d)-th element of I';;,, is denoted by %(Jci) Accordingly, equation (A.1)

can be restated as

n n n n
1

Jp = % YD Tijm = - > ) RuR), (A.5)

i=1 j=1 i=1 j=1
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and the (c, d)-th element of J,, is

np np
e =13 z ) EREEEN

Z].j]. =1 /=1

i=1 j=1 m=1

(s)

Assumption F6. For all j = 1,2,....,np, and s = 1,2,...,p, Y 1 |74

r < cg for

some constant cg, 0 < cp < 00.

Assumption F7. There exists gz > 0 such that n=' 37" 370 [[Tyjall dff,, < oo

for all n, where ||A|| denotes the Euclidean norm of matriz A.

Assumptions F6 and F7 impose conditions on the persistence of the spa-
tial process. If [0"| < C for some constant C' > 0, then Assumption F6 holds
if S ~(s) (s)

rkj n kjn
of an in response to one unit change in £

can be regarded as the (absolute) change
~(s)

Jno

< ¢gr/C. Since ‘f

the summability condition requires
that the aggregate response be finite. The condition holds trivially if the set

{ k]n, k =1,2,...,n} has only a finite number of nonzero elements. In this case,

(s)

the dependence induced by the innovation &, are limited to a finite number

of units. Assumption F7 states that I';;, decays to zero fast enough such that
=ty > Tl i, is finite for all n. This excludes the case in which the
sample size increases because of more intensive sampling within a given distance.
This condition enables us to truncate the sum ) 7, ||['; .|l and downweigh the
summand without incurring a large error. As in the time series literature, this
assumption helps us control the asymptotic bias of the spatial HAC estimator. By
(A.6), Assumption 3 holds if n=' 377 370 |57 rz(f,zn Timn| dig < 00 for all c,

d, and n. This implies that if units ¢ and j are far away from each other, then

one of sz and rjm must be small for any given m. In other words, given an

n n

innovation at any location m, the responses at locations ¢ and j cannot be both

large if 7 and j are far away from each other.
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The spatial HAC estimator we consider is based on (A.2) but it also allows
for measurement errors in the economic distances as follows
d*
SIS (), (A7)
=1 j=1 n
where dj; , = dijn + Vijn and v, denotes the measurement error. Data on eco-
nomic distances available to econometricians usually contain measurement errors.
For example, the economic distance between two countries may be measured by
transportation cost in international trade and this inevitably involves some mea-
surement error. Sometimes the economic distance may be estimated from another
related model. The underlying estimation error is a special case of measurement

errors.

Assumption F8. (i) {v;;,} are independent of {cs,,}. (it) vijn = o(dy) as d,, —
00.

(iid) ™ Y S0 [Tl B |14yl < 00 for all m,

We allow a measurement error to increase as the distance of two units
becomes farther as long as Assumptions F8 (ii) and (iii) hold. Under this as-

sumption, it is straightforward that n=' 3 Y7 | [Tyl E(dj;,,)% < oo for all

ij,n

n. Essentially, measurement errors in location can not be so large as to change the
summability of n=1 Y% | Z] Tl E(d; )0
Let by = Y5 H{dj;,, < dn} and €, = n~' 370 £, If we call unit j a

pseudo-neighbor of unit ¢ if d;; , < d,, then {;,, is the number of pseudo-neighbors
that unit ¢ has and ¢, is the average number of pseudo-neighbors. Here we use the
terminology “pseudo-neighbor” in order to differentiate it from the common usage
of “neighbor” in spatial modeling.

In order to obtain the properties of the estimator in Theorem 7 below, it
is important to control the boundary effects. That is, the effects of the units on
the boundary should become negligible as the sample size increases so that the

asymptotic properties of the estimator depend only on the behavior of the interior
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units. We define the boundary in terms of the number of pseudo-neighbors. If
Et;,, — El,| = o(E{,), then we say that i is not on the boundary, otherwise it is
on the boundary. Let

E,={i: Ell;, — El,| =0(El,)}, ny = Zl {i € E,,} and ny =n — n,.

i=1
Then FE, represents the set of nonboundary locations and n; and ny are the sizes
of nonboundary set and boundary set respectively. A unit ¢ is in the nonboundary
set I, as long as the difference between ¢;,, and E/,, does not grow too fast as n
increases. The size of boundary depends on the choice of the bandwidth. We can
mitigate the boundary effects by raising d,, slowly as n increases. If ny/n is o (1),
the boundary effect is asymptotically negligible. When the units are regularly
spaced on a lattice in R?, this condition is satisfied if E¢,/n = o (1).

We maintain the following assumption on the number of pseudo-neighbors.
Assumption F9. Foric E,, {;, < CEl, for some constant C.

Assumption F9 is very weak as C' can be a large constant. This assumption
rules out the case that the units are concentrated only in some limited area while

other area is scarce.

Assumption F10. Fori € E,,

1
lim var | — Vi | =g,
Jim \/_Efnj,d;d A

17,m—

S . -1 n n
where g = lim,_,oo J, = lim,,oon™" Y 1, ijl Lijn.

In this assumption, 1/v/E?, > judz, < Vjn can be regarded as a local ver-
sion of the (scaled) global average: 1/y/n} 7, Vj,. Assumption F10 states that
the asymptotic variance of each local average (around an interior point) is the
same as that of the global average. There are many copies of local averages. As-

sumption F10 amounts to stating that there are multiple (noisy) observations of
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the quantity that we want to estimate. From this perspective, Assumption F10
is likely to be the weakest possible assumption we have to maintain. It is similar
to the homogeneity assumption in Bester, Conley, Hansen and Vogelsang (2009),
which assumes that the covariance matrix of each group converges to the same
limit.

Assumption F10 is related to but weaker than covariance stationarity. It
is implied by covariance stationarity but it can hold even though covariance sta-
tionarity is violated. As an example, consider a nonstationary spatial process on

a regular lattice in R? represented by

27 27
S (1, x9) = / / exp (w121 + 1waa) flar,20) (W1, w2)dZ (w1, w2)
o Jo

where f(z, 4,)(w1,ws) is the local spectral density function at location (x1, ), and
Z (w1, ws) is a stochastic process with independent increments. The dependence of
f(@1,20) (W1, w2) on (1, 22) induces nonstationarity. For this type of nonstationary
processes, Assumption F10 amounts to assuming that f(,, .,)(0,0) does not depend
on (x1,22), which is much weaker than assuming that f(;, 4,)(w1,ws) does not
depend on (1, z5) for all (wy,ws).

In Assumptions F7-F10, we consider the case of a single distance measure.
Our framework can be easily extended to allow for multiple distance measures. As
in KP, suppose we have M distance measures d;; ,, ,, for m = 1,2,..., M, each of
which is possibly error-ridden. If one of the distance measures, say d;; 1, and its

associated measurement error satisfy Assumptions F7-F10, then

n

nT Y N Tl B (d1)" < oo

i=1 j=1
Let
dz(j,min = H}}Ln d:j,m,n
then

n n

nil Z Z ”F’L]JLH E (d;'kj,min)qd < Q.

i=1 j=1
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Hence we can use the dj; ., as the “aggregate distance measure” and construct

the HAC estimator based on d}; More specifically, our HAC estimator is

4j,min "
/ d;k] min
Z Z ViV K L) (A.8)
=1 j=1 n
All our results remain valid as d; ., is a single distance measure and it is not hard

to show that Assumptions F7-F10 hold with d};

17, min"

2.2 Asymptotic Properties of Spatial HAC Esti-
mators

This section presents the consistency conditions, the rate of convergence,
and the asymptotic truncated MSE of the fixed bandwidth kernel spatial HAC
estimator. We begin by introducing the assumption on the kernel used in the

spatial HAC estimator.

Assumption F11. (i) The kernel K : R — [—1,1] satisfies K(0) = 1, K(z) =
K(—x), K(x) =0 for |z| > 1. (ii) For all 1,29 € R there is a constant, c;, < 0,
such that

[K(21) = K(2)] < cp |21 — 22

(iii) (E,) " EY 1K2< ) — K for all .

Examples of kernels which satisfy Assumptions F11 (i) and (ii) are the
Bartlett, Tukey-Hanning and Parzen kernels. The quadratic spectral (QS) kernel
does not satisfy Assumption F11(i) because it does not truncate. We may gener-
alize our results to include the QS kernel but this requires a considerable amount

of work. Assumption F11 (iii) is more of an assumption on the distribution of the

units. In the case of a 2-dimensional lattice structure and d;; , is the Euclidean

1— $2 1
/ / xQ—I—y)dydx—/ rK*(r)dr.
0

distance, we have
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In finite samples, we may use

i g (4

_ tin
sty ()
for K.

As positive semi-definiteness is a desirable property of jn, it is important
to examine the class of kernel functions that yields a psd covariance estimator.
If we map a set of observations into a lattice and assign zero at a grid where an
observation is missing, then J, is numerically equivalent to the weighted average of
periodogram. Therefore, even though the spatial process of V;,, is not covariance
stationary, a kernel with a positive Fourier transformation guarantees the positive
semi-definiteness of .J, as the case of spectral density estimation.

The asymptotic variance of J, depends on g, the limit value of J, and the
asymptotic bias of J,, is determined by the smoothness of the kernel at zero and
the rate of decaying of the spatial dependence as a function of the distance. Define

1-K
= lim —(x)

b ol

K

w , for gy € [0, 00).

and let ¢ = max{qo : K,y < oo} be the Parzen characteristic exponent of K(x).
The magnitude of ¢ reflects the smoothness of K(x) at x = 0. We assume g < ¢4

throughout the paper. Let
ZZFU”E )% g = lim gfP nlgrolonZZFmE )
=1 j=1 =1 j=1
Next we introduce additional assumptions required to obtain the asymptotic

properties of J,..

Assumption F12. (i) /1 (é . 90) — 0,(1). (ii) sup; Esupgeo, |[Vin () ||? < 00
where ©,, is a small neighborhood around 6y. (iii) sup; E supgee, || 55 Vin ()| < oo.
(iv) Forr = 1,. ,p, sup; E supgee,, ||8989,V( O)|*> < 0. (v) Forr,s =1,...,p

(r) 8 1/(s) 8
Supzang 1HE bn 89"/;71 69V < o0
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Assumption F12(i) usually holds by the asymptotic normality of parameter
estimators. Assumption F12 (ii) is implied by Assumptions F5 and F6. Assump-
tions F12 (iii), (iv) and (v) are trivial in a linear regression case.

We define the MSE criterion as

n A , s
MSE (EE Jn,S) B [vec(Jn—Jn) Svec(J, — J)] |

where S is some p? x p* weighting matrix and vec(-) is the column by column
vectorization function. We also define .J,, as the pseudo-estimator that is identical
to J, but is based on the true parameter, 6y, instead of d. That is,

D S) SIS (%),

i=1 j=1 dn
Under the assumptions above, the effect of using 6 instead of A on the asymptotic
property is 0,(1) as Theorem 7(c) states below. Therefore, we use .J, to analyze the
asymptotic properties of J,.. Notwithstanding, if 0 has an infinite second moment,
the underlying estimation error can dominate the MSE criterion. To circumvent
the undue influence of § on the criterion of performance, we follow Andrews (1991)

and replace the MSE criterion with a truncated MSE criterion. We define

MSE), (% g, sn) —E [min{ hH

where S, is a p? x p? weighting matrix that may be random. The criterion which

n . , -
o (Jn — Jpn) Spvec(J, — Jp)

we base on for the optimality result is the asymptotic truncated MSE, which is

This criterion yields the same value as the asymptotic MSE when 0 has well defined

moments, but does not diverge to infinity when 6 has infinite second moments.
Assumption F13. (i) Eslg’n < 0. (ii) S, 2 S for a positive definite matriz S.

Let tr denote the trace function and K, the p* X p* commutation matrix.

Under the assumptions above, we have the following theorem.



38

Theorem 7. Suppose that Assumptions F5-F11 hold, na/n — 0, E{,, and d,, — o0
and El,/n — 0.

(a) lim, o -var <vecjn> =K+ K,,) (g®g).
(b) lim, .o d2(EJ, — J,) = —K,g9.

(¢) If Assumption F12 holds and dgﬂ% — 7 € (0,00), then /7 (jn — Jn> =
0,(1) and /7= (jn - jn> = 0,(1).

(d) Under the conditions of part (c) and Assumption A.17,
lim lim MSE), ( ——, Ju, S
By oo o0 h Efna ny Pn

lim lim MSE, (L J. Sn)

- h—o00 n—0o0 Efn

n ~
= lim MSE | ——
i M (EganmS)

1 / _
= ;qu (vecg(‘”) S (Uecg@) + Ktr (S(I + K,p)(g®9)).

Proofs are given in the appendix. For each element,
limy, . gcov (jn jcd,n) = K (reGsa + Gragse) and limy, oo d4(EJpgn — Jysn) =
_quﬁg). Theorem 7(a) and (b) show that the asymptotic variance and bias of
J,, depend on the choice of the bandwidth. When we increase the bandwidth, the
bias decreases and the variance increases because EY,, increases with d,,.

The second part of Theorem 7(c) shows that, compared with the variance
term in part (a) , the effect of using V;,,(f) instead of V;, (6y) in the construction of
the spatial HAC estimator is of a smaller order. Therefore, the rate of convergence
is obtained by balancing the variance and the squared bias. Accordingly, FE/¢, =
o(n) is the condition for the consistency of J,, and its rate of convergence is m
(= 0O(d,9)). If we assume that E¢, = O(d}) for some n > 0, then the rate

of convergence can be rewritten as n%/ (129 The results here are different from

those provided by KP. In their paper, the condition for consistency is E¥,, = o(n")
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where 7 < 1 and the rate of convergence is n? (49 They obtain this slower

2
rate of convergence by balancing the terms from the estimation error in 6 and the
asymptotic bias. Their rate is not the best obtainable because their bound for the
estimation error term is too loose.

It is also interesting that the asymptotic properties of the spatial HAC
estimator are very similar to those of the time series HAC estimator even though
their DGPs and dependence structures are different from each other. Instead of
using d, as the bandwidth parameter, we can also use EY, as the bandwidth
parameter. In the time series case, d,, = E/,. Substituting this relationship into

Theorem 7, we obtain the same results as given in Parzen (1957), Hannan (1970)

and Andrews (1991).

2.3 Optimal Bandwidth Parameter and Data
Dependent Bandwidth Selection

This section presents a sequence of optimal bandwidth parameters which
minimize the asymptotic truncated MSE of J,, and gives a data-driven implemen-
tation. We also consider the choice of the weighting matrix .S,,.

We obtain the optimal bandwidth parameter directly as a corollary to The-
orem 7 (d). Let df be the optimal bandwidth parameter. Then

B et (S + Kop) (g @ 9)) (A9)

d; = arg mimdqu2 (vec g(‘I)),Sn (vec g(‘”) + -

2q
dn n

If the relation between EY,, and d, is specified, (A.9) can be restated in an explicit
form. For example, we may assume that El, = a,d! and «, = O(1) for some
n > 0. Then (A.9) is reduced to:

U

1 d’
dy = arg min—_ K (vec g(q))/ Sy (vec g(q)) + %Ktr (Sn(I+ Kp)(g®9))

2q
dn n

G 2k(g)n 7
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where .
2 (vec g(‘J)) Sh (vec g(‘J))

tr (S (1 + Kpp)(9 ® g)) '
Corollary 2. Suppose Assumptions F5-A.17 hold. Assume that EY,, = a,d]

k(q) =

for somen >0, a,, = a+ o(1). Then, for any sequence of bandwidth parameters
{d,} such that d%qTEZ" — 7 € (0,00) asn — oo, {d:} is preferred in the sense that

lim lim (MSEh (n2q/<2q+n>, jn(dn),5n> — MSE, <n2q/<2q+n>, jn(d;),sn)) > 0.

h—o00 n—00

The inequality is strict unless d,, = d¥ + o(n'/(2atm).

In general, 7 is equal to the dimension of the space. In the time series case,
7 = 1 while in the two dimensional regular lattice case, n = 2. As a result, the
optimal bandwidth d} depends on the dimension of space. Given the nonparamet-
ric nature of our estimator, this is not surprising. In contrast, KP suggest using
d, = C[n'/*], which is rate optimal only if ¢ = 1 and i = 2. In general, both the
rate and constant are suboptimal.

d* is a function of g and ¢? which are unknown in finite samples. Therefore,
the optimal bandwidth d; is not feasible in practice. For this reason, a data
dependent estimation procedure is needed for implementation. Among several
data dependent bandwidth selection methods, plug-in methods are appropriate in
this case because we consider the estimation of J, at given data. In the plug-in
methods, unknown parameters are estimated using a parametric or nonparametric
method (e.g. Andrews (1991). Newey and West (1987, 1994)). The former yields
a less variable bandwidth parameter but may introduce an asymptotic bias due
to the mis-specification of the parametric model. In contrast, the latter does not
require the knowledge of the DGP, but it converges more slowly than the former,
which causes bandwidth selection to be less reliable. Since the optimal bandwidth
involves ¢\?, a quantity that is very hard to estimate, we focus on the parametric
plug-in method in this paper. In fact, the rate of convergence for a nonparametric

estimator of ¢(@ is generally slower than that for g itself. Figure 1 presents the



91

20

100

90
o
s 80
€
g 70 - #- rho=0.95
£ 4 tho=0.9
= 60
§ —#— rho=0.7
W 50 '=¢--rho=0.5
%)
= - ©- rho=0.3
c 40
© % rho=0.0
& 30
[0
S
£
L

101

0%

Bandwidth

Figure 2.1: Spatial AR(1) Process : V,, = pW,,)V,, + &,,, n = 400

percentage increase in MSE relative to the minimum MSE as a function of the
bandwidth. The graph is based on the spatial AR(1) process V,, = pW,,V,, + &,
on a square grid of integers, where W), is a contiguity matrix whose threshold is
V2 and Ein N (0,1). The sample size is n = 400. As a standard practice, W),
is row-standardized and its diagonal elements are zero. The curve is U-shaped for
each p and therefore our goal is to choose the bandwidth which is reasonably close
to df. As argued by Andrews (1991), good performance of a HAC estimator only
requires the automatic bandwidth parameter to be near the optimal bandwidth
value and not precisely equal to it. The simplest and most popular approximating
parametric model is the spatial AR(1) model for Véc), c=1,...,p. Depending on
the correlation structure, spatial MA(q) or spatial ARMA (p,q) models can also be
used. As an example, consider the case that VTSC) follows a spatial AR(1) process
of the form:

Vn(C) = pcwéc)vn(c) + 57(10) — (]n _ pcwéc))—lg(c)

n
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where 5( (() o?) and Wi is a spatial weight matrix. Wi is determined a
priori and by convention it is row-standardized and its diagonal elements are zero.
See Anselin (1988). We can estimate p. by quasi-maximum likelihood (QML) or
spatial two stage least squares (2SLS) estimators (e.g. Kelejian and Prucha (1998)).
In fact, a simple OLS estimator can be used. If the spatial AR(1) model is the true
data generating process, then the OLS estimator is inconsistent while the QML
and 2SLS estimators are consistent. Since the spatial AR(1) model is likely to be
mis-specified, the QML and 2SLS estimators are not necessarily preferred.

Let &) — <[n _ ﬁCW}EC)) Vi g — (59), gﬁf’)) and $ = n'¢ ¢, Define

~

1 R A~
Acd - [_VJC)/(In - ﬁcW(C))/(‘[n - [)dWTS,d))VTSd)]
n

!/

X (Lo = W) ] (1 = paWi?) 7]
where its (z j)-th element is denoted by a a D for i ,7=1,...,n. Then, we estimate
gea and g3 by

gcd_ ZZ (thgcd - %ZZ ]Cd zyn)q' (All)

11]1 =1 j=1

Consequently, the data dependent bandwidth parameter estimator, d,,, based on

the spatial AR(1) model is

A~

1 = L .
d, = arg minﬁ[(g (vec §@)' S, (vec g(q))+thr (Su(I +K,))(d®3)). (A.12)
dn n

For spatial MA(1) and spatial ARMA(1,1) models, (A.11) is restated as
1 - A .
Awt = [—v@’ (£ + Achle ) (I + AdM,gd))‘IVde)} (£ + Achtf)
n
X (I, + AaMP")

1 3 - 5 ;
A = {‘vn@’un = W) (B AMLY) (1 + AaM0) (T ﬁdw,g@)v;d)}
n

X (I, — peW YL, + A MY, + Mg M) (I, — paW D)



93

respectively. A, and M are the coefficient and the (n x n) weighting matrix for
the spatial MA component. Extension to spatial AR(p), spatial MA(q), spatial
ARMA (p, ¢) models for p,q > 2 is straightforward.

The choice of the weighting matrix .S,, is another important problem. A

traditional choice suggested by Andrews (1991) is

S, = (B, ® B,)S(B,® B,),
where S is a 72 x 72 diagonal weighting matrix. For this choice of S,., the asymptotic
truncated MSE criterion reduces to the asymptotic truncated MSE of En jnf?; with
weighting matrix S provided that B, — B, = op(El,/n). When S is an identity
matrix, we obtain the MSE of the sum of the elements in l%njné;

While S,, is consistent for the objective we are interested in, as Politis (2007)
points out, it yields a single optimal bandwidth for estimating all elements of a
covariance matrix but each element has its own individual optimal bandwidth. In
particular, the cost of using a single optimal bandwidth increases when the process
V) s significantly different for different s. This is typical in a spatial context.
Considering this, we propose using different weighting matrices for different ele-
ments of the covariance matrix when V,, has a heterogenous dependence structure.
Let S, denote the weighting matrix for estimating jrs’n. Then, a natural choice
of S,s, is the diagonal matrix in which the element corresponding to jrs,n is 1 and
others are zero. We can also choose the weighting matrix such that the asymptotic
truncated MSE criterion reduces to the asymptotic truncated MSE of a subvector
of the parameter estimator 0.

One concern of this method is that it does not guarantee J,, to be psd,
which is often regarded as a desirable property of J,.. However, we can attain
positive semi-definiteness with a simple modification suggested by Politis (2007).
As J, is symmetric, jn(cin) = UAU’, where U is an orthogonal matrix and A =
diag(j\l, . ,;\p) is a diagonal matrix whose diagonal elements are the eigenvalues

of J,. Let AT = diag(\f,... ,5\;) where A} = max(),,0). Then, we define our
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modified estimator as

A

Jo(d,)t = UAYT".
As each eigenvalue of J,(d,)" is nonnegative, it is psd. Theorem 4.1 in Politis

(2007) shows that J,(d,)* converges .J, at the same rate as J,(d,). In fact, it is
not hard to show that the truncated AMSE of Jn(aZn)Jr is smaller than that of jn

2.4 Properties of Data Dependent Bandwidth
Parameter Estimators

In this section, we consider the consistency condition, rate of convergence,
and asymptotic truncated MSE of spatial HAC estimators with the data dependent
bandwidth parameter estimator. Let

.. cd) *
o= Pl =3, = Pt 3347 (0,
=1 j5=1 ? Jj=1

be the probability limits of §.; and gﬁg) respectively. Define

! Kg (Vec g@)' Sh (Vec g@)

d

d, = arg min—-
dn

tr (S (I + Kpp) (§ @ §)) -
(A.13)

We study the properties of J,(d,) by investigating .J,(d,,) because the asymptotic
properties of J,(d,,) are equivalent to those of .J,(d,) as stated in Theorem 8 below.

For Theorem 8, we introduce the following assumption.
Assumption F14. \/n (g—: — 1) = 0,(1).

Since d, is defined by replacing ¢, j.q and gﬁg’ with EY,,, the probability
limits of §.q and QEZ) in the definition of a?n, the assumption holds if ¢,,, g.q and géf}

(9)

converge to E/,, geq and g,; respectively at the parametric rate. This is a rather

weak assumption.
Let fin = 327, (dl}n < Ci")’ lin =25 Udijn < dn}, by =0 0 by
and £, = n~? Z?Zl im- The next theorem summarizes the properties of the spatial

HAC estimator with cin
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Theorem 8. Suppose Assumptions 1-F1/ hold.

(@) /5 (Juldn) = ) = 0,(1) and [ (u(da) = Ju(dn) ) = 0,(1).
(b) Let 7 =lim,,_. %. Then,

lim lim MSEh( n jn(czn),Sn>
Eﬁn

h—o00 n—00

hm lim MSEh( " jn(dn),Sn)
Efn

h—o00 n—0o00

1 / _
= ;Kg (vecg(q)) S (Uecg(q)) + Ktr (S(I + Kpp) (9® g)) -

Proofs are given in the appendix. Theorem 2(a) implies that J,(d,) 2 Jy
as long as EZ, = o(n) and J,(d,) and J,(d,,) have the same asymptotic properties.
If the approximating parametric model is correct, that is, § — ¢ and §\0 2 ¢@,

{cin} has some optimality properties as a result of Theorem 1(d) and Corollary 1.

Corollary 3. Suppose Assumptions 1-F14 hold. Assume that EY, = a,d! for
some n > 0 and o, = a+ o(1). Then for any sequence of data dependent band-
width estimators {d,} such that for some fized sequence, {d,}, which satisfies

er

lim,,_o B2 — 7 € (0,00) we have

lim lim <MSEh (n2q/<2q+">, Jo(dy), sn) — MSE, (an/(z‘H"), Ju(dy), Sn>> —0,

h—o00 n—0o0

~

d, 1is preferred in the sense that

~

lim lim (MSEh <n2q/<2q+n>,jn(dn),sn> —MSEh< 20/ 2atn) ] (cZn),Sn)) > 0.

h—o00 n—00

The inequality is strict unless d,, = d% + o(n'/(24tm),

2.5 Monte Carlo Simulation

In this section, we study the properties of the spatial HAC estimator with

Monte Carlo simulation. First, we compare the performance of the spatial HAC
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estimator based on d, with other bandwidth selection procedures and the het-
eroskedasticity robust covariance estimator of White (1980). We evaluate them
using the MSE criterion and the coverage accuracy of the associated Cls. Sec-
ond, we examine the robustness of our bandwidth choice procedure to the mis-
specification in the spatial weighting matrices and the approximating parametric
model. We also examine its robustness to the presence of measurement errors
in distance. Third, for studentized tests, we compare the normal approximation
with some naive bootstrap approximations. Fourth, we evaluate the performance
of the spatial HAC estimator with bandwidth parameter cZn when the units are
distributed irregularly on the lattice. Finally, we use different weighting matrices
in the MSE criterion and evaluate the effect of the resulting bandwidth choice on
the MSE of a standard error estimator.

The data generating process we consider here is

Up = pOWOTLun + €n, |,00| <1, (A15)

with €, "N (0,1). We assume a lattice structure, in which each unit is located

on a square grid of integers. Wy, is a contiguity matrix and units ¢ and j are neigh-
bors if d;;, < V2. Following convention, it is row-standardized and its diagonal
elements are zero.
We consider three different sizes of lattices, 20 x 20 (n = 300, 400), 25 x 25
(n = 400) and 32 x 32 (n = 1024). The ranges of d,, we consider are from 1 to
27 for the 20 x 20 lattice, from 1 to 34 for the 25 x 25 lattice and from 1 to 44
for the 32 x 32 lattice. We use a location model in the first part and a univariate
regression model in the second part. The estimand of interest is the covariance
matrix of \/n(f — ). We use the Parzen kernel, which is defined as follows:
1 — 622 + 6|z|?, for 0 <|z| < 1/2,
K(z) =19 2(1 —|z|)?, for 1/2 < |z| < 1,

0, otherwise.
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2.5.1 Location Model

For the location model, model (A.14) reduces to
Yim = 00 + Ui p.

Without loss of generality, we set 6, = 1. A natural estimator of 6, is 6 =
nt Y Y and G, =y, — 6.
We use the spatial AR(1) as the approximating parametric model. The

concentrated log-likelihood function for the spatial AR(1) process is
log L(t,|p) = —g log (i, — pWyiln)' (ti, — pWil,) + log |1, — pW,| + const.

See Lee (2004). For a given spatial weighting matrix W,,, we estimate p by the
QML method, that is

p = p(Wy,) = argmaxlog L(iin|p).
p

Depending on the choice of W,,, we obtain a different p and hence a differ-
ent bandwidth parameter d,,(W,) from equation (A.12). To find d,,, we search the
minimizer numerically instead of using the plug-in version of (A.10). In our sim-
ulation experiment, we take W, to be the contiguity matrix in which units ¢ and
J are neighbors if d;;,, < D, a threshold parameter. We consider three values for
the threshold: D = 1,v/2,2, leading to three bandwidth choices c@(f ), d, and c@(lh).
Note that when D = /2, the spatial weighting matrix is equal to the true spatial
weighting matrix W,,. We also consider the case with measure errors in distance.
When d;;,, > 1, we take P(v;;, = —1) = P(v;,, = 0) = P(vij, = 1) = 1/3. We
use the contiguity matrix as the weighting matrix and take the threshold parameter
to be v/2. This gives us the data driven bandwidth estimator de).

KP suggest taking d,, = c[ni], where ¢ is a constant and [z] denotes the
largest integer that is less than or equal to z and they use [ni] in their simulation.

We compare the performances of df ), d,, d and d© with that of dl = [ni]l We

IF denotes “fixed.”
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also include the heteroskedasticity consistent estimator of White (1980, 1984) in

our comparison. The estimator is defined to be

n

oS,

=1

which can be regarded as the SHAC estimator with bandwidth set to be 0.

INID =

Table 1 presents the ratio of the MSE of the spatial HAC estimator with
different bandwidth choices to the spatial HAC estimator with the infeasible finite
sample optimal bandwidth d,,. It also reports the average bandwidth choice in each
scenario. When p is high, the ratio is usually less than 1.20 even with incorrect W,
and measurement errors. When p is negative, the ratio with d¥ is larger than 2.0.
Table 1 also illustrates how mis-specification in the spatial weighting matrix affects
our choice of bandwidth. If W,, includes fewer units as neighbors, the bandwidth
estimator tends to be smaller than the one with correct W,. In contrast, if W,
includes more units as neighbors, the bandwidth estimator tends to be larger. This
coincides with our intuition. If we think we have a larger neighborhood, we need
to choose a larger bandwidth to reflect the dependence structure.

Table 1 also presents the performance of the spatial HAC estimator with
measurement errors. The effects of measurement errors are related to the mis-
specification of W,,. For a given bandwidth parameter, positive measurement er-
rors lead to a smaller number of neighbors and vice versa. Whereas, in contrast
to the mis-specification of W,,, measurement errors are different across different
individuals. Table 1 shows that the estimator contaminated by measurement er-
rors performs very poorly compared to other estimators when p = —0.5, while it
performs reasonably well when p is positive.

Table 1 also compares d, with df. As df depends only on the sample size,
it is invariant to the spatial dependence. Thus, it performs relatively well when it
is close to d,, (e.g. p=—0.3 and 0.3) but it is inferior to d,, in most senarios.

Table 2 provides the bias, variance and MSE of the spatial HAC estimators
with different bandwidth selection and those of INID. We use SHAC,, SHAC,,
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SHAC,,, SHAC, and SHACF to denote the spatial HAC estimators with czn, CZS),
(f%h), d%¥ and d¥" respectively. We can see that SHAC is reasonably accurate in
general but that it suffers from severe underestimation when p is extremely high.
Spatial HAC estimators do not capture high dependence well even if we choose a
large bandwidth since spatial HAC estimators are constructed with the estimated
residuals not the true disturbances. Our asymptotic theory does not capture the
effect of demeaning on the SHAC estimator. This is analogous to the time series
case, see for example, Sun, Phillips and Jin (2008) and Sun and Phillips (2008).

When there is no spatial dependence (p = 0), SHACy is quite reliable in that
the RMSE is only 15% of the true value even though INID is slightly more accurate.
When there exists some spatial dependence, SHAC, is much more accurate than
INID. Furthermore, INID is rarely improved with an increasing sample size, which
is in sharp contrast to SHAC,. For example, when p = 0.3 and n = 400, the
MSE of SHAC is less than a third of that of INID. When n = 1024, the difference
increases with the former less than a fifth of the latter. Therefore, when there is no
spatial dependence, the loss of efficiency from using a spatial HAC estimator with
data dependent bandwidth is small. Whereas, there is a remarkable reduction in
RMSE by using a spatial HAC estimator when there exists spatial dependence.

Table 2 also shows how mis-specification in W,, and measurement errors
affect the performance of the spatial HAC estimator using the bandwidth choice
we suggest. Comparing SHAC, with SHAC,, we find that measurement errors
lead to higher MSE. However, the difference in MSE is not very large, reflecting
the robustness of the SHAC to the presence of measurement errors. Similarly,
mis-specification in W, is not critical in our simulation design. Among the three
bandwidth choices dEf), d , d,(f), none of them performs consistently better than
others and the difference gets smaller when n = 1024. Compared to SHACp, all
of them tend to yield smaller MSEs especially when n = 400 and p is high.

Table 3 reports the empirical coverage probabilities of Cls associated with

different spatial HAC estimators. The results in this table are similar to the ones
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in Table 2. All of the estimators yield very accurate Cls when there is no spatial
dependence. In contrast, when there is spatial dependence, INID is clearly inferior
to spatial HAC estimators. As the sample size increases, the coverage accuracy
improves for all of the estimators except INID. Compared to SHACE, spatial HAC
estimators using our data dependent bandwidth choice are more reliable as the de-
pendence increases even in the presence of measurement errors or mis-specification
in the spatial weighting matrix.

Table 3 shows that, when p = 0.9 or 0.95, the error in coverage probability
(ECP) is substantial. For example, when p = 0.95, the ECP for the 95% CI with
SHAC, is 14.6% even when n = 1024. As seen in Table 2, the downward bias of
spatial HAC estimators becomes very large when spatial dependence is very high.
For this reason, the ClIs tend to be very tight. The ECP comes from two sources.
First, the spatial HAC estimator is biased downward. Second, the Cls are based
on the asymptotic normal approximation. In order to alleviate this problem, we
investigate the performance of some bootstrap procedures in Table 5.

Table 4 shows the performance of d, with mis-specified parametric models.
As the parametric plug-in method is likely to be biased, robustness of the spatial
HAC estimator to the mis-specification of the approximating parametric model is
a highly desirable property. Consider the case that w, follows a spatial AR(p)
process:

Up = anlun + pQWnQUn + e+ panpun + €n.

The thresholds for Wi, Wa,, Ws, and Wy, are d;j, < V2, V2 < dijn < 2,
2 <djn < V5 and V5 < dijn < 2v/2 respectively. Regardless of the number of
lags the true process has, we use spatial AR(1) as the approximating parametric
model. Table 4 illustrates that as the number of lags increases, the accuracy of the
spatial HAC estimator using the spatial AR(1) model becomes lower. However,
comparison with dZ clearly shows that the plug-in method using spatial AR(1)

model performs reasonably well. For example, when p = 0.4 and the DGP is
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spatial AR(4) the empirical coverage probability of the 99% CI with SHAC, is
93.5% and that with SHACy is 86.5%.

Table 5 examines bootstrap approximation as an alternative to the normal
approximation. Both i.i.d. naive bootstrap and wild bootstrap are considered.

The procedure for the i.i.d. naive bootstrap we use here is as follows:

(S.1) At each location i, draw y;,, randomly from {y;,,7 = 1,...,n} with replace-

ment.
(S.2) Estimate the model parameter 6 by 6* = n~! > Yin

(S.3) Construct the spatial HAC estimator based on the bootstrap sample but use
the bandwidth parameter d,.

(S.4) Compute the t-stat in the bootstrap world.

(S.5) Repeat S.1-S.4 to obtain the empirical distribution of the bootstrapped t-
stat.

(S.6) Use critical values from the empirical distribution in (S.5) to construct Cls.

We also implement the wild bootstrap, which is proposed by Liu (1988) to
account for unknown form of heteroskedasticity. The procedure is the same as that

for the iid bootstrap except that (S.1) is replaced by (W.1)

(W.1) At each location, compute the residual @;,, = v, — 6 and generate the

bootstrap observation y;, :

. 0+ ii;,, with probability 0.5,
yz’,n = ~

0 — u;, with probability 0.5.

See Davidson and Flachaire (2001) for more details.

(S.1) and (W.1) eliminate spatial dependence of the bootstrap sample.
Gongalves and Vogelsang (2008) show that the i.i.d. naive bootstrap provides
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a valid approximation to the “fixed-b” asymptotic distribution in time series re-
gressions. Under the “fixed-b” specification, the bandwidth is set proportional
to the sample size and the associated test statistic converges to a non-standard
limiting distribution (e.g. Kiefer and Vogelsang (2002, 2005)). Gongalves and
Vogelsang (2008) introduce a naive bootstrap procedure to obtain the critical val-
ues from the non-standard distribution. Bester, Conley, Hansen and Vogelsang
(2008) have extended the “fixed-b” asymptotics and the naive bootstrap proce-
dure to spatial HAC estimation. Their results are not applicable to our setting
for two reasons. First, we adopt the traditional asymptotics framework in which
the bandwidth or the number of pseudo-neighbors grows at a slower rate than the
sample size. Second, the spatial processes we consider allow for nonstationarity
and heteroskedasticity which are ruled out in Bester, Conley, Hansen and Vogel-
sang (2008). However, the idea of using bootstrap to capture the randomness of
the HAC estimator is still applicable. When the bandwidth is large, the bias of the
HAC estimator is small and the main task is to capture the finite sample variation
of the HAC estimator. By ignoring the spatial dependence hence the bias of the
HAC estimator, the iid bootstrap and wild bootstrap do exactly this.

The bootstrap method can be justified in the traditional framework. Un-
der some regularity assumptions and EY, = o(n), the t-statistic or Wald statistic
converges in distribution to the standard normal distribution or a chi-square distri-
bution. In the bootstrap world, the corresponding test statistic obviously converges
to the same distribution. Therefore, the iid bootstrap and wild bootstrap can be
viewed as a valid method to obtain critical values from the standard normal or Chi-
square distribution. Whether the critical values are second order correct, however,
is beyond the scope of this paper.

Table 5 shows that the bootstrap methods implemented here improve the
accuracy of the Cls compared to the standard normal approximation, especially
when the dependence is extremely high. As we have seen in previous tables, the

standard normal approximation yields a large size distortion when spatial depen-
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dence is very high. However, we don’t find this problem from the bootstrap pro-
cedures. Between the i.i.d. naive bootstrap and the wild bootstrap, there is no
significant difference. For example, when p = 0.95, the empirical coverage prob-
abilities of the 95% CI by the i.i.d. naive bootstrap and the wild bootstrap are
85.8% and 83.2% respectively, while that of CLT is 69.2%.

Table 6 illustrates the performance of the spatial HAC estimator with d,
when the units are located irregularly on the lattice. We generate u,, using the
spatial AR(1) process on 20 x 20 and 25 x 25 lattices and randomly sample 300
and 400 locations from the lattices respectively without replacement. We estimate
the location model with the observations on those 300 and 400 locations. We
condition on the same set of locations we sample in each simulation. Table 6
shows that irregularity in location does not adversely affect the performance of the
spatial HAC estimators with d,. The result is confirmed by comparing Table 6 with
Tables 2 and 3 in which the observations are regularly spaced. This corroborates

our asymptotic results as they do not require a regular lattice structure.

2.5.2 Univariate Model

In the second part, the regression model we consider is
Yin = & + ﬁxi,n + Ujn

where o = 1, f =5, x, = (2;,,) is the standardized version of Z,, which follows a

spatial process of the form:

i‘n = wWOnj'n + Cn:

with iy [0, 1]. Here we assume the spatial process of &, and w,, have the same

weighting matrix Wy,. Let X, be the design matrix with i-th row X;,, = [1,2;,].

In view of the standardization, n~' X! X,, is the 2 x 2 identity matrix.



104

We consider two different weighting matrices: S,, = S, or S’n where

1 000 0000
. 0100 . 0000
S, = and S, =

0010 0000

0001 0001

The first choice S, is suggested by Andrews (1991) in time series HAC estimation.
For this choice, the MSE criterion reduces to the MSE of jn,n + j227n + 2j127n. The
second choice is designed to select the variance of B and the corresponding MSE
is the MSE of j227n.

Table 7 reports the bias and MSE of the SHAC estimator j227n for the above
two weighting matrices. The coverage probability of the associated 95% CI is also
reported. When ¢ = 0.3, S, always yields more accurate jggm if p > 0. In the case
that p is very high, the reduction in MSE and improvement in coverage accuracy
by using S, over S, are remarkable. For example, when p = 0.95 and n = 400,
the MSE of j22,n with weighting matrix Sn is 27.43 while that with S, is 42.93.
The empirical coverage probability of the CI with S, is 91.4% and that with S, is
82.6%. When n = 1024, the difference is still very large but become less dramatic.
When ¢ = 0.9, S, performs better than S, in most cases although the margin of

improvement is small.

2.6 Conclusion

In this paper, we study the asymptotic properties of the spatial HAC es-
timator. We establish the consistency conditions, the rate of convergence and
the asymptotic truncated MSE of the estimator. We also determine the optimal
bandwidth parameter which minimizes the asymptotic truncated MSE. As this op-
timal bandwidth parameter is not feasible in practice, we suggest a data dependent

bandwidth parameter estimator using a parametric plug-in method. Monte Carlo
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simulation results show that the data dependent bandwidth choice we suggest per-
forms reasonably well compared to other bandwidth selection procedures in terms
of both the MSE criterion and the coverage accuracy of Cls. They also confirm the
robustness of our bandwidth choice procedure to the mis-specification in the spa-
tial weighting matrix and the approximating parametric model, irregularity and
sparsity in spatial locations, and the presence of measurement errors.

In this paper, we focus on the asymptotic truncated MSE criterion, which
may not be most suitable for hypothesis testing or CI construction. It is interesting
to extend the methods by Sun, Phillips and Jin (2008) and Sun and Phillips (2008)

on time series HAC estimation to the spatial setting.
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Table 2.1: Ratio of the MSE of Spatial HAC Estimators with Different Band-
widths to the MSE of the Spatial HAC Estimator with Optimal Bandwidth, d,,

p
05 03 0 03 05 07 09 0.95
d, 108 1.16 502 118 1.14 112 107 1.06
(6.2) (5.4) (35) (6.5) (8.8) (11.7) (17.9) (22.2)
dV 222 208 293 117 109 105 1.02 1.01
(4.3) (3.8) (2.8) (46) (62) (82) (12.5) (15.5)
d™ 114 127 746 137 134 130 1.21 1.13
(7.1) (6.2) (4.4) (7.6) (10.5) (14.4) (23.1) (26.5)
A€ 492 149 740 147 142 134 121 1.13
(4.1) (4.5) (4.0) (7.8) (10.8) (14.7) (23.1) (26.4)
dF 241 140 443 120 168 207 1.99 1.73
d* 100 100 100 110 1.10 1.09 1.07 1.07
(6.2) (5.5) (1.0) (6.7) (8.9) (11.8) (18.4) (23.2)
d, (63) (53) (L3) (5.4) (7.1) (92) (13.7) (16.6)
(1) sample size n = 400.
(2) d¥" = 4 when n = 400.
(3) number in parenthesis represents the average value of bandwidth choice.
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Table 2.2: Bias, Variance, and MSE in Location Model with Spatial AR(1) Error

Bias Variance MSE (RMSE/True Value)
n=400 n=1024 n=400 n=1024 n=400 n=1200
p=20
SHAC, -0.014 -0.007 0.023 0011 0023 (0.15) 0.011 (0.10)
SHAC;, -0.010 -0.004 0.013 0.006 0.013 (0.12) 0.006 (0.08)
SHAC, -0.025 -0.012  0.033 0.016 0.034 (0.18) 0.016 (0.13)
SHAC. -0.021  -0.009  0.034 0.016 0.034 (0.19) 0.016 (0.13)
SHACr -0.018 -0.020 0.020  0.019 0.020 (0.14) 0.020 (0.14)
INID -0.001 0.001  0.005 0.002 0.005 (0.07) 0.002 (0.04)

p=20.3

SHAC, -0.337  -0.255  0.211 0.123 0.324 (0.28) 0.183 (0.21)

SHAC, -0.444  -0.354 0.124 0.071  0.321 (0.28) 0.196 (0.22)

SHAC, -0.319 -0.235 0.275 0.164 0.377 (0.30) 0.219 (0.23)

SHAC, -0.340  -0.251  0.287 0.172  0.402 (0.31) 0.235 (0.24)

SHACr -0.519  -0.322  0.060 0.068 0.329 (0.28) 0.172 (0.20)

INID -1.001  -1.000  0.005 0.002 1.006 (0.49) 1.000 (0.49)
p=0.5

SHAC, -0.949 -0.703  1.192 0.714 2.093 (0.36) 1.209 (0.27)

SHAC;, -1.156  -0.927  0.664 0.389  2.000 (0.35) 1.248 (0.28)

SHAC, -0.947  -0.670  1.553 0.968 2.450 (0.39) 1.417 (0.30)

(0.40) (0.30)

(0.44) (0.30)

(0.71) (0.71)

SHAC, -0.994  -0.698  1.598 1.007  2.586 1.495
SHACr -1.703  -1.128 0.174 0.217  3.074 1.490
INID -2.859  -2.855  0.008 0.004 8.182 8.153
p=0.7
SHAC, -3.701 -2.690 12.325 7.937 26.02 (0.45) 15.18 (0.35)
SHAC, -4.166 -3.337 7.166  4.313 24.52 (0.44) 1545 (0.35)
SHAC, -3.860 -2.673 15234 10.715 30.13 (0.49) 17.86 (0.38)
(0.50) (0.38)
(0.62) (0.46)
(0.87) (0.87)

SHAC, -3.985  -2.743 15.325 10.983 31.21 18.51
SHACr -6.876  -5.054 0.871 1.219  48.15 26.76
INID -9.731  -9.705  0.024 0.010 94.71 94.20
p=209
SHAC, -54.32 -39.60 1010.1 899.0 3960.9 (0.62) 2467.1 (0.49)
SHAC, -54.86 -43.78 781.5 541.4 3791.1 (0.61) 2457.7 (0.49)
SHAC, -59.31 -42.76 956.6 1077.9 4474.0 (0.66) 2906.4 (0.53)
(0.66) (0.53)
(0.84) (0.73)
(0.97) (0.97)

SHAC, -59.80 -4290 9384 1071.9 4514.9 2912.1
SHACr -85.73  -73.70 26.7 42.7 7376.6 5474.0
INID -98.49  -97.92 0.5 0.2 9700.0 9587.7
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Table 2.3: ECPs in Location Model with Spatial AR(1) Error

99% 95% 90%
n=400 n=1024 n=400 n=1024 n=400 n=1024
p=20

SHAC, 98.8 99.0 95.0 95.0 90.4 90.3
SHAC,; 98.7 99.1 95.1 95.1 90.9 90.7
SHAC, 98.8 99.0 94.8 95.2 90.1 90.1
SHAC, 98.7 98.9 95.0 95.0 89.9 90.0
SHACp 98.9 98.9 95.4 94.9 90.5 90.0
INID 98.9 99.0 95.8 95.7 91.3 91.3

p=20.3
SHAC, 97.8 98.4 92.2 93.4 87.1 87.4
SHAC,; 97.5 98.2 92.0 92.9 86.2 86.5
SHAC, 97.7 98.4 92.1 93.5 86.8 87.5
SHAC, 97.4 98.1 91.9 93.0 87.0 87.0
SHACp 97.2 98.2 914 93.2 85.7 86.8
INID 94.0 94.0 84.6 84.0 76.4 77.6

p =205
SHAC, 96.7 97.6 90.2 91.9 83.3 86.1
SHAC,; 96.7 97.5 90.4 91.6 82.9 85.2
SHAC, 96.5 97.7 90.3 91.6 82.8 85.8
SHAC, 96.3 97.7 89.6 91.5 82.2 85.7
SHACp 95.0 96.9 87.4 90.7 79.1 83.6
INID 84.3 83.8 70.8 72.3 63.9 64.6

p=0.7
SHAC, 95.5 96.9 86.6 89.7 80.0 83.3
SHAC, 95.0 96.5 87.0 89.1 79.6 82.9
SHAC, 94.2 96.7 85.3 89.1 78.7 83.6
SHAC, 93.4 96.6 84.7 88.9 78.1 83.2
SHACp 89.6 94.2 77.8 85.3 69.2 78.1
INID 66.5 66.7 53.3 54.2 46.2 47.7

p=209
SHAC, 86.7 93.5 77.3 84.9 69.1 78.5
SHAC,; 87.6 93.4 78.0 84.4 70.4 78.1
SHAC, 84.2 914 73.9 83.8 66.7 76.9
SHAC, 83.9 914 73.7 83.6 66.4 76.5
SHACp 68.8 82.1 56.8 70.4 48.9 62.5
INID 35.2 37.4 27.2 28.8 23.2 24.8
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Table 2.4: Performance under Misspecified Approximating Parametric Model

SAR(2) SAR(3) SAR(4)

SHACy, SHACrp SHAC, SHACrp SHAC, SHACg
p=0.2

Bias  -0.293  -0.400 -0.316 -0.431 -0.322  -0.437

MSE 0.206 0.204 0.226 0.231 0.230 0.237

(0.26) (0.26)  (0.27) (0.27)  (0.27) (0.27)

99% 97.7 97.5 97.7 97.3 97.7 97.3

95% 92.4 91.6 92.3 91.5 91.9 91.5

90% 87.5 86.3 87.1 85.9 87.1 85.8
p=0.3

Bias  -0.656  -1.020 -0.796  -1.231 -0.852  -1.307

MSE 0.809 1.123 1.091 1.607 1.207 1.802

(0.33) (0.39)  (0.35) (0.43)  (0.36) (0.44)

99% 97.0 95.9 96.5 95.1 96.4 94.7

95% 90.7 88.0 90.5 87.5 90.3 87.1

90% 84.2 80.6 83.0 79.3 82.8 78.6
p=04

Bias  -1.707  -2.850 -2.760  -4.495 -3.448  -5.480

MSE 4.634 8.335 10.88 20.52 16.16 30.41

(0.41) (0.56)  (0.46) (0.64)  (0.49) (0.67)

99% 95.7 91.9 94.3 88.6 93.5 86.5

95% 88.6 81.4 86.2 77.0 84.2 73.6

90% 81.2 73.4 78.9 68.6 78.0 66.9
p=0.5

Bias  -7.253  -11.95 -39.50  -57.33 -197.7  -249.9

MSE 72.33 144.0 18459  3294.3 41887 62499

(0.53) (0.74)  (0.66) (0.88)  (0.77) (0.95)

99% 91.7 81.1 84.7 63.6 74.3 43.8

95% 82.5 68.3 74.5 50.2 64.3 34.5

90% 76.0 60.7 67.4 42.8 55.7 28.1

(1) Number in parenthesis represents the ratio of the RMSE

to the true value.
(2) df =4.
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Table 2.5: ECPs with the Bootstrap and Standard Normal Approximations

Normal i.i.d. Bootstrap Wild Bootstrap

p=0.0

99% 98.8 99.2 99.0

95% 95.0 95.7 95.2

90% 90.4 90.9 90.7
p=0.3

99% 97.8 98.5 98.5

95% 92.2 93.4 93.7

90% 87.1 88.9 89.2
p=0.5

99% 96.7 98.5 98.4

95% 90.2 92.8 93.0

90% 83.3 87.3 87.1
p=0.7

99% 95.5 97.6 98.0

95% 86.6 92.2 91.9

90% 80.0 84.8 85.4
p=0.9

99% 86.7 97.0 96.7

95% 77.3 88.3 87.4

90% 69.1 81.6 81.0
p=10.95

99% 79.5 94.0 93.5

95% 69.2 85.8 83.2

90% 62.1 78.8 75.9




Table 2.6: Performance in the Presence of Irregulairty and Sparsity

n = 300, (20 x 20)

n = 400, (25 x 25)

SHAC, SHACr SHAC, SHACpg
p=0
Bias  -0.016 -0.021  -0.012 -0.027
MSE 0.023 0.021 0.015 0.023
(0.15) (0.15)  (0.12) (0.15)
99% 99.1 98.8 99.1 99.1
95% 95.1 95.0 96.2 96.0
90% 89.7 89.5 92.0 92.0
p=0.3
Bias  -0.256 -0.364  -0.207 -0.229
MSE 0.198 0.186 0.119 0.108
(0.25) (0.24)  (0.21) (0.20)
99% 97.7 97.5 98.9 98.8
95% 92.6 91.7 94.8 94.5
90% 87.1 86.2 89.6 89.2
p=0.5
Bias  -0.611 -1.107  -0.446 -0.667
MSE 1.008 1.364 0.531 0.588
(0.32) (0.37)  (0.27) (0.28)
99% 96.9 95.7 98.2 97.9
95% 90.7 88.5 93.3 92.3
90% 86.0 80.8 86.9 85.0
p=0.7
Bias  -1.989 -4.204  -1.251 -2.564
MSE 9.794 18.293 4.387 7.222
(0.40) (0.55)  (0.33) (0.42)
99% 94.6 89.9 96.9 94.9
95% 87.9 80.4 90.2 84.6
90% 81.5 70.8 82.6 77.1
p=209
Bias  -25.81 -49.63  -14.55 -32.66
MSE  1180.9 2480.2 457.9 1084.5
(0.55) (0.80)  (0.45) (0.70)
99% 88.0 69.6 92.1 78.3
95% 78.8 o7.1 83.1 63.8
90% 70.8 50.4 74.2 05.4

111
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Table 2.7: Bias and MSE of j22,n and ECPs with Different Weighting Matrices

p
n Y 0 0.3 0.5 0.7 0.9 0.95

Bias -0.023 -0.054 -0.096 -0.200 -0.813 -1.845
S, MSE 0.029 0.041 0.075 0234 4.076 27.43
0.3 95% 93.8 93.4 92.8 92.7 91.7 91.4
Bias -0.019 -0.075 -0.147 -0.336 -1.706 -4.451
S, MSE 0.024 0.062 0.151 0.535 7.850 42.93
95% 93.9 92.6 91.5 89.8 85.9 82.6

400 Bias -0.049 -0.286 -0.679 -1.968 -14.00 -40.78
S, MSE 0.047 0.245 1.051 7.440 333.8 2893.6
0.9 95% 92.7 90.9 89.5 86.8 81.9 79.3

Bias -0.039 -0.295 -0.686 -1.991 -14.62 -44.04
S, MSE 0.039 0245 1.049 7.584 357.3 3173.0
95% 929 90.8 89.6 86.6 80.6  76.4
Bias -0.009 -0.037 -0.071 -0.152 -0.620 -1.444
S, MSE 0.012 0018 0.035 0.111 1.771 11.90

0.3 95% 95.1 95.1 94.9 94.8 94.4 93.6
Bias -0.007 -0.043 -0.087 -0.204 -1.068 -2.891
1024 S, MSE 0.010 0.034 0.086 0.300 4.361 24.89

95% 95.2 94.6 94.0 93.8 90.9 89.5
Bias -0.025 -0.210 -0.481 -1.363 -9.706 -29.49
S, MSE 0.019 0.133 0.580 4.195 197.1 1829.4
0.9 95% 95.8 94.4 93.3 91.6 89.1 87.0
Bias -0.020 -0.211 -0.477 -1.346 -9.850 -31.41
S, MSE 0.016 0.132 0.580 4.289 215.6 2101.9
95% 96.0 94.3 93.2 91.8 88.7 84.5
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2.8 Appendix

Proof of Theorem 7

For notational simplicity, we re-order the individuals and make new indices.

For Z(]) = ]., "'76]'7”7 d;

i(5)J:m

< dn7 and for Z(]) =Ljtiny -5 My dr > d,,.

i(5)Jsm

(a) Asymptotic Variance

Let Qigrsn = 2o ) g <d”—"> and N, = {vijnli,7 = 1,...,n} be

i,j=1"in" jkn dn

the set of measurement errors in distance. By Assumption F8(i), we have

n ~ ~
cov (Jrs,ny ch,n)

E7,

1 P
— nEgnE E ((l%::]- (;le’/‘87n(€l7n€k7n - E€l7n€k7n))

np

X ( Z e fedn(Eent fn — Ese,ngﬁn)) ‘Nn>]

e7f:1

1 "D
= E Z @lkrs,n‘;pefcd,n(El,nEk,nge,ngf,n - glﬂgk,nEEe,ngﬁn

nkl, o
)€, ] =

- 8e,ngf,n-E51,77,8k,7’b + Eél,ngk,nEge,nef,n)

)

n 1 (& =
= ﬁE ) (Z Plirs,;nPlicd,n (Egin - 3) + Z PlkrsnPlkcdn
n n =1 1,k=1
np
+ Z Solkrs,ncpklcd,n)]
k=1

= Ol,n + 02,71 + CS,’m



114

where
Cl,n
1 2 L dz n O d d:;bn
= nEl ZE < Zrzln]ln ( - >>( T(Sl)nrlgl)nK (T))]
=1 i=1 j=1 dy, a=1 b=1 n
x (Ee}, —3),
O2,n
_ LSS, mn ahy Do
- nEf Z ZZ zln jkn alnrbkn d )
" k=1 i=1 j=1 a=1 b=1 n
03,71
n n n d*
(r) (s) ij,n abn
nEé ZE (Z zlnrjkn < ))(Z ak:nrbln ( dn ))]
l,k=1 i=1 j=1 a=1 b=1

(', can be restated as

1 - d: ,n d:;bn 1 - S ¢ d
i 3 2l () (%) (3 rrtints -0).

,j,a,b=1 =1
Therefore,
’Cl,n‘

1 np \ n d”n “
S?’LEgnZ’Egl’n_ Z];1E|:K( > ( d ):| zln ]ln alnrbln
STLEE Z’Egln 3’( zln (Z ]ln) ( aln) <b 1 Té?;)
< i li Bt 3] < SRR _
= Fl,n b El,

=1

using Assumptions F5 and F6.
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Cy,, can be restated as

d}. d*
d ij,m ab,n
Z Z zln ]kn Tal nrlgk)nK (d_jn) K( dn >]

nEE
l,k=11,j,a,b=1
1 [ a d;kjn d:b,n s
:nEE E Z K(d )K(d > Z zln aln Z jkn bkn
n ',j,ab 1 n n l 1 k

_ 1 1](1)71 d:b<a),n (T’C) (sd)
St Dob b oY - Y e B O P

Z(l 1](2) lb(a) 1
In order to consider the boundary effects, we decompose Cs,, as follows:

lin

Lla,
d*
z : : : z : Z]( )T ab(a)an (TC) (Sd)
’IIEK K ( > K < d > Yia nryj(i)b(a),n

laEEn](z) lb(a) 1
ab(a)7 (re) _ (sd)
fyiaﬂq‘,yj(i)b(a)vn

1 Lin Lan
+ 5 E Z Z Y K (
_ngEn J(iy=1a€En b,)=1

1 - & dz re s
E [T T 3 k(e ) (e )

| i€En J'm—l ag Bn ba)=1

1 e b\ o) ()
| 55 S (e ()

| $:a@En J(i)=1b)=1

= D1y + Doy + D3n + Dyp.

In the following, we show that D;, converges to K g,.gsq and the other terms
become negligible as n increases.
In order to prove that D;, converges to K gy.gsq, it suffices to first show

that

lan d*
g 3 5 5 e ()it

1,a€En j(i)=1b(q)=1

= Jm nEE > Z Z K <&> Yaain Vg

1,a€En j;=1 b(

- Kgrcgsd’ (AQ)
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and then show that

i hep | X5 S ()

1,a€EER j(1)=1b(q)=1

d*
_ (i) ,n ab),m | _(re)_ (sd)
7111—>11;>lo nEE Z Z Z K ( ) K ( dn ) Via,nfyj(i)bw),n : (A?))

i,a€Ey ](1) =1 b(a) 1

(sd) _ 1 \Min (sd)
Let ,y{’b(a)’n o EZn Z](z)zl ’yj(l)b(a),n Then7

P> 2p ol L A

lim
(RIS ](z) 1 b(a) 1

S ger| £ 35w (M),

i,a€En ](1) 1 b(a) 1

27(3)M rc sd sd
i | T2 5w () ()| oo

7 aEEn ](1) 1 b(a,) 1

For the first term in (A.4), under the Assumption F11 (i),

e Y S e (—) i

i,a€Ey ](1) 1 b(a) 1

) 1 rc ;k
:JE&E n Z ”Vz(an Z %bm)”Eﬁ Z o <]—>

i,a€EFn, b(a) 1 j(z) 1
n *
1 S K ijn
EY, 4 d,
Jj=1

: ]' rc
~im (25 ) e (g 3 Sk

ivaeEn b(a) 1j() 1
(A.5)
Note that
Zan
(Sd sd)
Ef Z Z (0)b(a)m Z Z Viciybeaym
bay=1Je) " by =14 =1
Et, E¢, Ety, Ely
S D YD R AR TS DS
~|EY, 2 Titybaym g 79
b(a):&z,n'f'lj(i):l b(a> 1j(> =l n+1
1 El, Eb,
— (e A6
T EY, Z A Z 7j<¢)b(a)7n ) ( : )
biay=La,n+1 jiy=Ctin+1
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We proceed to show that the expected value of each term is o (1) . We consider the

first term only as the proofs for the other two terms are similar. As a € E,, by

Ca — Bl 1
Pl——>¢] <
( El, =

That is, for any € > 0, there exists a Ny > 0 such that for n > N,

Markov inequality

EY

gan—l'—ﬂ)

P(lan & B(Ely,€)) <,

where B(E{,,e) = ([(1 —¢) El,|, [(1+¢)El,]). Now

El, El,
o 1 (sd) 1 (sd)
E¢, Z Z %mb(a)n = Eén Z 4 ) 0(a),m
b(ay=fa,nt1j@)=1 bay=fa,nt1 \J@)=1

E¢, El,

1 s
=Bl 2 | 2 P

bay=tantl \J@=1

lon € B(El,,€) | P oy € B(El,, <))

El, E¢

+ FE Elf Z i ’y(Sd)

A J@)b(aym
bay=tan+l \Ju=1

1 [(1+e)Eln] Bl

2¢ B4, Z Z

bay=L(1=e)Eln] \J)=1

lon & B(Ely,€) | P(lon ¢ B(El,, <))

(sd)
Vjciybiayom

< 2¢

+O()P (o ¢ B(El,,¢)),

which can be made arbitrarily small when n — oco. So the first term in (A.6) is

indeed o, (1) . Hence

El, FEfl,
Eé Z Z ]( )b(a) n Eg Z Z J(z)b(u) n| <1> N (A7>
ba)=1J(=1 bay=1 (=1

Since (E(,)” Z] VK2 (3 dn) = (G /ECy) €, Y00 K2 (df;,,/dn) is bounded,

we also have

Et, FEtl, . 1 n
D S RTINS 3B S b 25 27 (3)

bay=17@=1 " by =14 =1

=o(1).
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As a result

mgE | T Y Y (—) A

i,a€EF,, ](1) 1 b(a) 1

1 e El, FEl, 1 n d

*
. ; n
i,ackn, b(a) 1j@=1 j=1

Et, El,
- nh—>Holo <_ Z Z 7’(‘:2> nhjgo E£ Z Z me(a) n

i€E, a€b, b(a) lj( y= =1

R~ d;.
lim F K? (|22
T | B, Z ( d, )]
Jj=1
= [_(grcgsw

using Assumption F11(ii).
For the second term in (A.4), the first step is to show

et |5 2.5 (< () ()

5,a€ER j(1y=1b(q)=1

(re) (,(sd) (sd) —
Pym n <ij(1)b(a) n VT,b(a),n>] =0 (1) ) (A8)

and the second step is to prove

éan

2 ia,n (re) (sd) (sd) .
2| Y 3 3w () () | —o) )

1,a€E, ]( )= =1 b(a) 1
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For (A.8)
4 d*
. z dun
Eé ZZZ( (am,)_}(?(d))
" 1,a€En, 1@ )—1 b(a) 1 mn
(re) [ 4, (sd) (sd)
X’Vza n (7]( )b(a),m - " b(a)ﬂ)]
(re) (sd)
< nm ) Z Z Yo | Voo~ Yohonn
i,aEEy, j(z) 1b(a) =1
1 1 E ean
—— (re) L _(sd)
o Z Tia,n El, Z Z ‘73()1’(11)7 ’ylb(a),
(t) 3@ =1b(=1
1 é Zan
rc) L __(sd)
Z Tian El, Z Z ’7]()”(11)» 1b(a)n
( a)eF: J)y= lb(u> =1
= Mln + MQna
where
Fi=1{(i,a) : dign < dp & i,a € E,}
and

Fo=A(iya) : dig, > d, &i,a € E,}.

For M;,,, we obtain

Can
M1n§< - ) z): 122 Eﬁ Z Z 7J(z)b<a>"

J@)y=Llb@y=1
zn Zan

(sd)

h b n

O]
E ()= lh —1b(a> 1

7,(177, b

( ) (E€ Z Z (@)™

Za)E}—l ]() 1b(> 1

7 Z Zn Z ‘%()b(aw <1)>

]() 1h() lb(a) 1
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where the first equality holds with the same procedure as (A.7). For M,,,

1 1 Et, Ely
M2n_dq ﬁ Z ia <E€ Z Z %()b(w”

(i,a)eF2 J@iy=lb@y=1

B¢, E¢, FEfn
—i—o(l))

o g

ia,m

(sd)
Thiybaym

zZZZ

tn) J@y=1hp=1bg)=1

= 0/(t")

n

Therefore, we obtain

M, =o(1) and Ms, =o0(1).

The next step is to show (A.9).

Lan
S|y Y () ()

i,a€Fn ]( )= =1 b(a) 1

Lan
(gy%@ﬁ)mzz@w,mﬁ

1,a€E, j(z) 1b(a) 1

=o(1).

For some generic constant C'

Ea’n

Eﬁ Z > (W =50 )

J(z) 1 b(a =1

< = Z Z (S>bn1 {dabn < dn}

j(z) 1 b=1

+ 2 Z Z hbnl{dabn<dn7 zhn<dn}

<o 3 S g S S <)
J@y=1b=1 J@y=1
Zin n
1 : (sd g n a,n gi,n gi,ngam
< 5 S« (S]] e < e <l
(i)y=+ 0=
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. . lin . Elin
By Assumption F9, E'lim,, e = lim,, oo =22 T < C.

As ‘n_l > iacr, K ( “”) %(;2 < oo for all n, invoking the dominated
convergence theorem and Assumption F10 yields

éan
. 1 2 dzan (rc (sd) (sd)
o B (E > K (dn ) ”) El, Z 2 <7J<Z>b<a>” %b@’)
i,aEEn (1)=1ba)=1
1 d;
Pl < KQ ia,n (rc)
ngrolo (n i; ( d, > Yian
(sd) (Sd)
Eg Z Z (%( b~ Tib, )

Jy=Lby=1

=F

=0

The last equality holds because

>3 (Wi vé,zf;,n)

lin

1
Eg 21 bzl 7J<>b(a>n N <E€n +op(1 ) Z Z %m b(a),m
J)=1bea)

hy=1bq)=1

p

— 0.

Hence the second term in (A.4) is o, (1) .

By a symmetric argument, we obtain the result that

Zan

Jim nEe > Z > K (—) AN — R gega

1,a€En j;y=1bg)=1

The next step is to prove (A.3). In view of previous derivations, it suffices to show
that

¢ 2
a,n d*
. Zj(z)) ab(a)vn (TC) (Sd) o
nlLIEOE nEE E E E [ ( ) - K (d—n>] Yian Vb | = 0.
,a€Ey j(z) 1 b(a) =1

(A.10)
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But
5 305 (o) e () | g
nEE dn dn ’Yia,nfyjb,n
zaeE‘nj(,) lb(a) 1L ] |
_ =2 T
= F K OF K (a)s (re) . (sd)
nkl, Z ( d, ) ( d, Yia,nVjbn
(7'7.7(7’)70'7b(a))€1—1 L u ]
2
1 d;k] de n d
K ") _ (a)> (re),, (sd)
+ TLEETL o Z [ dn ( dn ’Yw,n,yjbm
(4,4 (2),a,b(a))EZ
= Fln + F2n7
where
T = {0,500, 0,0(0)) : |diy, 0 = i, | < 260 & i € By},
and
I, = {(z’,j(i),a,b(a)) din — B | > 200 & iia € En} .

For F},, we have

2
F,<FE K Ok _K _3(a),m (rc) (s )
= nEﬁn o Z [ ( d, ) ( d, ’yza,nfyjb,n
(4,5 (1),a,b(a)) ET1

* * 2
< ‘i E : dij(i)v" _ dab(aw (re) ., (sd)
> TLEEH o dn dn ia,n jbn
(17](1)70‘717(@))61-1

< 46%631 1 (re) o (re) C%L
= @2 \n Z Tian Eg Z Z Tial | =Y\ 2
n i,a€FEy ]( )= =1 b(a) 1 n

using equation (A.7). For Fy, we note that if |df;, , —d*

> 2¢,, then either

1j(4),M ab(q),n
d}, > Cn OT dj( by > Cn Otherwise, if both djan < ¢, and dj( by < ¢,, then
* * * *
dzy( ) ab( dza M + dab( yom + db(a)j(i),n — Pab(gy,n < 26717
and
* * * * *
ijym ab( yn = dlj( i) 5T dzan - dz]< L dj@)b(a),n > =20y,
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s, . —d:

Hiwym — Qabyn| < 20, a contradiction. With-

These two inequalities imply that

out the loss of generality, we assume that d;, ,, > ¢, for (i, Ja), @, b(a)) € Z,. In this

case

y 2
1 d;'kj@,n dab(awn (re), (sd)
Fn S B\ g 2 [K( 4. )M\ )| e
(4,5(2),a,b(a))EZ2

4 * (re) _ (sd) - —
S EnEgn o Z ‘(dza n) Yia nﬂyj(z)b(a)’ (dia,n) 1
(4,4 (3),a,b(a))EZ2

a Ef Z Z (d;kan Yia,n Z Z 73(1)” (a) i ”) b
& i€En a:d,  Elcn,dn] Jiy=1b@)=1
) G la
S 4E <ﬁ Z (d;ka n) u:iz ) Z Z b(a ;q
i,aceEy

=o(c,?).

By choosing ¢, such that ¢, — oo but ¢, /d, — 0, we have
Fi, =0(1) and F,, = o(1)

and (A.3) is proved.
Next, we show that Ds, is 0(1). For Dy,

lan d*
A [T X % () ()i

Z¢En ] =1lackE, b(@—l

(s (s 2k
=($zz

E, acb,

(sd)
Vjciybiayom

rc)
Yia,n

(re)
Za ,n

6, El,
) El, Z Z 7J(Sdb(a o(1)

bay=1J5)=1

=o(1),

by choosing the sequence of d,, in a way that ny/n — 0 as n — oo. We can show

Ds,, and Dy, are o (1) in the similar way.
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With the symmetric procedure, it is straightforward that
lim,, oo Cs., = K grq9se. Therefore,

n ~ ~ _
cov <J7‘s,n7 ch,n) - K(grcgsd + grdgsc)‘

n

lim

n—oo

In terms of matrix form,

lim ——var <Vec <J~n>> =K(I+K,)(g®g),

n— o0 En

where g = [g,s], 7,5 =1,...,n.

(b) Asymptotic Bias

By Assumption F8(ii) and the dominated convergence theorem, we have

. 1< -k (dd>
d? (EJn - Jn) =—E =) T ()" | —7m 7"
ig=1 ( Zijrln>

1 n
— _Kqﬁ Z Fz‘j,nE (d;}’n)q + O(].)

1,7=1

Therefore,

| ; R :
Jim A = ) = I fim 3 o (8)" = —Fag'
1,)=

where ¢\? is (r, 5)-th element of ¢(?.

(©) 2= (o= Jn) = 0,(1) and \/Z= (= Ju) = 0,(1)

By (a) and (b) the first part of (c¢) is implied by the second part. There-
fore, it suffices to show that /77~ <jn — jn> = 0,(1). This holds if and only if
VEC (b’ Jub—V jnb> = 0,(1) for any b € RP. In consequence, we can consider the

case that .J, is a scalar random variable without loss of generality. Using a Taylor



expansion, we have

n
EE Eﬁ n.

— 2L, V0 (9 _ 90) +/n (e
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( ”") ViV = VinV7|

—eo) Lo/ (0= 65)

I (é _ 90>/ Lanv/n (é _ 90) (A.11)
where
W 3t (i (%) )
L= ot Z K (d) ( ajge,m@) Vinl0),

i,7=1

Therefore, under Assumption F12(i) it suffices to show that L;,, = 0,(1), La, =

0p(1) and L3, = 0, (1).

For L, ,, we have, using the Cauchy inequality,

ILaal = ‘ mlTe%ZK( ) (Ve ® ) Vi@ 2
. mz ST 1 e [N Hr
< | Eely 22 | oo ) (ﬁz <d;n<dn>HVj7n<@>H)r
—Ej (ﬁz_: ‘agazef Vinl6) 2)
%Z@ 21 Ws%)\\vjm(é)II)Q

n n*<
i=

2
1
(E—&}l dijn < dn) [[Vin )H) O
1 j=1

(A.12)
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where the last equality follows from Assumption F12(iv). By Assumption F12(ii),

we have

1 & =
P (i 22100 =) 15,0 > A)
1 .
1 gin 1 < |17 %
<3P\ B, 2= (E‘ o Q)H)
O
1
]_ Egi,n : 2 2
<L ( it ) (sngsgp 1V, (6] ) 0,

as A — oo. This implies that

1 n
o > Udy, < dn) ||[Vin(®)]] = 0, (1)
nj:1

uniformly over i. Hence Ly,, = 0, (1) . Using the same procedure, we can show that
L3, = 0, (1) under Assumption F12(iii).
The next step is to show Ly, = 0,(1). By Markov inequality and Assump-
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tion F12(v):

( Zv

9

3 7 N
EQH
3

3

P > () %V>
ol 2 A
S 51 7, Z o (e (e e () (bt )|
sgn;&% > B0 < b < o)) [B (Vg Vinggtis |

,5,a,b=1

Ebn

1 0l 1 Gn 5, s,
b Lo 0 E an n_‘/z n_v; n
1 (Bl lyn -
- ﬁ( B )?EEZ

0 0
E (V},n%,n_v _V;z,n)
j=1

PTALET, (A.13)

_c(ee) me)” o
= 52 Ee2 =52

where the last inequality follows from Assumption F9. Combining this with the
definition of Lj,, we obtain L;, = O, (\ / E%") =o0,(1).

(d) Asymptotic Truncated MSE

To establish the first and second equalities of Theorem 1(d), we introduce
two lemmas from Andrews (1991). For proofs, see Lemmas Al and A2 in Andrews

(1991).

Lemma A4. If {{,} is bounded sequence of random variables such that &, 20,

then E¢, — 0.

Lemma A5. Let {X,,} be a sequence of nonnegative rv’s for which sup,,>, EXIt <

oo for some § > 0. Then, limj, .., lim, o (Fmin{X,,h} — EX,) =0.
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In our setting,

En = mm{Egn vec(J, — J,)' Spvec(Jy, — Jy) ,h}
[ n , .
— min {Eén vec(J, — Jn) Spvee(J, — Jn) ,h}
_ min { 2 |vec(d, = Jy + Jo = Iy Syveeld, — Ju+ Jy = 1) ,h}
. n / _
— min {Eén vec(J, — Jp) Spvee(J, — Jp) ,h}
= min { EZ vec(J, — Jp,) Spvec(J, — Jn)| + 0,(1), h}
n

vec(J, — Jp) Spvec(J, — Jy)

w}i&

as n — o0o. Here the o, (1) term follows from Theorem 1(c). Also |&,| < h. By

Lemma A4 , E§, — 0. Since this holds for all h, the first equality of Theorem 1(d)
holds.
The second equality of Theorem 1(d) is obtained by showing that

l};rgogirgo <MSEh (EE Jo, Sn ) — MSE), (E€ Jn,5)> (A.14)
}LILIEOJLHC}OMSE;L <E€ Jn,S) = JI_{EOMSE <E€ Jn,S) (A.15)

Under Assumption F12(ii), (A.14) holds by applying Lemma A4. Equation (A.15)
holds by applying Lemma A5 with

X, =

E?,
It is easy to see that sup,,~; EX? < 00, as required by Lemma A5, if Vr,s < p

E [, /Eign(jmn — Jm,n)}4 = O(1). Note that

4
n -
E {1 | Cren - Jrs,n>1 — E[(L+1)Y.
/ ij,n (7") (s) (rs)
Il Eg TLZ < ) zn‘/]n _Vij,n)

l]_

ij,n (rs)
B () )

where
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Therefore, it suffices to show that the following terms are all O(1) :

By Theorem 1(a) and (b), it is straightforward to show that Ds,, Dy, and Ds, are
O(1) under Assumption A.17(ii). The proofs for Dy,, and Do, are similar and we fo-
cus only on Dy, here. As denoted before, let @ippsn = > 1y D7) K (- 4, —gam ) Z(ITZL j(}?n

7L

Then,
n 1 A & !
Dln =F Eg Zzgplkrsn 6l n€kn — Egl nEk n)
=1 k=1
4
n

S 8K Eg ( Z(pllrsn Eln Egl n))

np np 4
+8E Q/ ( Zzgplkrsn Elnskn_Eglngkn)>]

=1 k#l
= 8G1n + 8G2n

Let &, =€, — Eei,. For Gy, we have:

1
. 2 2 22 2
Cn = WE E Sollllrs,ngoblw“sm9013137“37719014147“57"E€h7n€lz7n€137n€l47”
n l1,l2,l3,l4
1
= D) Sollrs n + 3K Spllllrs ngolglzrs n
2(RY
n ( "> Li#l2

c . N T 1]
<@y’ (Z “0> =0 G] =0

using the fact that

2
zsoam,nzz(zzK by, ) ;fa)
l

) o

> (Ehal) (Ehe

IN

'Lln

by Assumption F6.
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For (G5, we have:

G2n = |: § E § E Plilars,nPlslyrs, n(pl5l6rs n(pl7lgrs n

l1#l2 I3F#£ly IsF#£le l7#£lg

X (E:ll,nglg,n - Egll,nglg,n)<€l3,n€l4,n - E5l3,n€l4,n>

(5l5,n€l6,n - E€l5,n€l6,n)(€l7,nglg,n - E€l7,n€l8,n>:|

Z Z Z Z E Splll27“5 nPlzlarsnPlslers,nPlrlsrs, n]

l1F#l2 I3#l4 Is#ls l17#1s

X E[(Sll,nelg,n - Egll,nglg,n)<€l3,n€l4,n - Eslg,n€l4,n)

(5l5,n5l6,n - Eels,nel(g,n)<5l7,n5ls,n - E5l7,n€ls,n)]

where the last equality holds by the independence of {e;,} from {v;;,}. Since
{ein} is independent and Ee}, < oo, it suffices to show that

np np

(E€ ) Z Z SOl1lzrsn 00, <A16)

l1=112#l
np np mnp np

Ef E Z Z Z Z Plilors,nPlilarsnPlslarsnPlglars,n < 00, <A17)

I1=11l2=113=114=1
np np mnp np

Z Z Z Z PlylorsnPlolyrsnPlylzrs nPlslirs,n . (A18)

l1=11la=113=114=1

Equation (A.16) is true because

np np np np n o n d*. 4
DI SENNEE RS 3 9l 0 9) L SERTN

(EE ) l1=112#l l1=112#l i=1 j=1
< zz(z 2l) (S ]
li=11l#l; \i=1

sdiewd

where the last equality follows from Assumption F6.
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For equation (A.17), we have

np np mnp np

2E€2 Z Z Z Z gplll27‘3 ngpl]_IQT'S n(plgl4rs n@lghﬂ's n

l1=11ls=113=114=1

np np 2
(TLEE Z Z Plilors,nPlilors n>

l1=112=1
and
np np
nEE Z Z PlilarsnPlilars,n
l1=112=1
d*b np ( ) ( ) np ( ) ( )
ij,n ab,n r r s .
nE€ Z K ( > (_d ) Tty nTalin Z TilynTblam
%,5,a,b=1 n =1 =
1 n da:. ., i, o
- B Y K (_d], ) K (_d’ )%&, 2,69 _ o(1)
" dab=1 n n

using equations (A.2) and (A.3). Hence (A.17) holds.
Finally, for equation (A.18), we note that

np np np np

n2E€2 Z Z Z : : Plilars,nPlolars,nPlalsrsnPlslirs,n

l1=11=113=114=1

S 3w () () a () ()
,j,a,b 0,p,g,m

X Vo VoV

4 . , )
1 7, dl](l)vn (sr) a,n dab(a),n (Sr)
) HQEK%EZZ Z_ " ( d, ) Vwan DK “a ) Teawon
on eqyn d*
PO | e Bgmegm \ _(sn
X Z K( )%@)q,n 1K< 4. )Vm(qﬂ,n

P(o)=1
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and

{iedsy <dn}

dr. dr.
> ow(B)me X k(%)

{] dy; , <dn,d5,  <dn} {5:d}; , <dn,d5, , >dn }

_ Z K( z](a)n) ]((ST)an—l—O ( )

J@)=1
Lo K (dy ,/dy) 1

- Z 73(a>a" (d’:q) + Z <d* B /67; )‘1 Pngf:))am (de(@’")q (d;q)

](a) 1 j(a)zl a](a) n

Zan

- Z 7]( )an (d q)

J(a)=1

where the O(-) term also satisfies £O, (d,?) = O (d,9) . So

np mp np np

nQEEQ E E E E PlilarsnPlalarsnPlylsrsnPlslirs,n

11=11l2=113=114=1

‘ean Zon 1 n
1 , (s7) ’ (s7) S (sr) (s7)
T n2ER ZZ Z Vj(ayam Z To(oyom Z Tp(gyan Z Tm i
"obe 0q \Jw=1 bo)=1 P(g)=1 m()=1
X (14+0(1))

2

Zan

B nEé 2 Z Z P e | (0 (1) =0(1)

L,a Jo)=1m=1

using equations (A.2) and (A.3).
Combining the above proof, we obtain Gy, = O(1). Hence Dy, = O (1).

For the last equality of Theorem 1(d), since

2q 2q
n d d

B0, dXFEl,/n  T+o0(1)
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we have

~ / ~
— lim T; vec (EJn - Jn> S, vec (EJn - Jn>
N 5 7
+ nhjgo Bl Ktr <Snvar(vec Jn)>
1 , )
= K (vee g W) S (vee g0) + Kt (S( + Kpp) (9@ 9))

where the last equality holds by Theorem 1(a) and (b).

Proof of Corollary 1

The proof is very close to the proof of Corollary 1 in Andrews (1991). As

n
2/ PAEY,\ T 29
29 n n n
n2atn = aﬁq-‘-”] n 7R = OZ'ZQ“"’I <7-2q+77 + 0(1)) s
n E¢, E¢,

by Theorem 1(d), we obtain

lim lim MSE), <n2q/ @a+n) 7 (d,), Sn)

h—o0 n—o00

9 n ]. —
T (;Kq2 (vec g(q))/ S (vec g(q)) + Ktr (S(I + Kpp)(g® 9))) ,

It is straightforward to show that this is uniquely minimized over 7 € (0, 00) by
™ = qK?r(q)/n (provided 0 < £ < oo and S is psd) and that a sequence {d,}

satisfies @ — 7* if and only if d,, = d* + o(n!/a+M),

Proof of Theorem 2

(a) \/g (L(d}) . Jn> — 0,(1) and g (jn(dn) - jn(d'n)) = 0,(1)

By Theorem 1(c), , /25 (Jn(dn) - Jn> = Op(1). Therefore, it suffices to show the

second part of Theorem 2(a). Without loss of generality, we assume J, is a scalar
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random variable. Note that

\/g (Jren(dn) = Jranld)
Vo (EE () - x (%)) o)

= Mln + MQn + M3n

<

where

J I~ K EZ% - K —.{1)7 <‘/Z nvl n ‘/; nV/ n) )
B, |1 i=1 jon=1 d, d, VIOY 3y
n ez n % %
~J= |3 > K i [ Baon ) g (e ViV
Eﬁn n =1 =1 dn dn Jaym |

1 & iam \ o
- Elgn EZ Z (J() )‘/;”Vﬂlm

The third term Ms, is zero when czn < dn We assume that cZn > dn below.
Therefore, it suffices to show M, = 0,(1), M, = 0,(1) and M;, = o0, (1). We

consider the case that V; ,, is a scalar here as the proof for the vector case is similar.
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Note that

n

| M|
S (%

/EE

+Vin(0) —ng};(e)> (0-0)

() (M

El d; d; 0 _ _
S ’VL l]n Zjn (H ‘/;’n(e>v . ml(e)H

n Eﬁ \/_ZZU;1 d, 00 I

_ a _
[
d | b )
< -1 (0 .
<oV -1 DS (|55v: @700 (A19
+\V el
i

) )
Vinl®) Vi@ )

(A.20)

L  ha )
pu— 0
E£ G Zl(Hae Vil )H+‘

=1 ](”

where the first inequality uses Assumption F11(ii) and the O, (1) and o, (1) terms

hold as /1 (é - 9) = 0,(1), v (d’n/dn - 1) = 0,(1). Since I ,/El, = 0,(1), it

now suffices to show that
9 _
Vinl®) Vi) ) =

5 3 (o]«

Z?" i=1 ju)=1
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ei,n

Pl iZ(

Using Assumption F12(ii) and (iii), we have
Ei,nn .

n Zin
1 1 : 0 f A
< EZ > (EH%VM(G)%W(@H +E‘

—%A@ww@w+

g Vinl®) g Vinl®)) > &

’ 0

9 B
Vinl®) Vi)

as n and A grows. Thus, My, = o0,(1).

We now consider M,,. Since y/n (dn/dn - 1) = 0,(1), we have
P <\/ﬁ dn/dn — 1’ > C’) — 0 as €' — oo. That is, for any € > 0, there exists a
constant C' > 0 such that P <\/ﬁ
Hence we can focus on the event that £ = {\/ﬁ

dy/d, — 1‘ > C’) < ¢ for sufficiently large n.
dn/czn — 1‘ < C’} and we do so in

the following derivation:
P ! Xn: KZ i [ Bon ) g (Gien ) gy 5
= = — = inVianl|l =
V nEﬁn i=1 j(i):1 dn dn 7o
22 3 v pll IR
n =1 =1 a=1 by =1
i (Do) g (Baon ) ) (g (Gorn) g (S
d, d, d, d,
2 ¢ " « . 2
C 1 “ S =7 dij i), dab n d
<2 _~ E HE(VinV-_nV;mV n>‘<—><—> G
SCLEY S 3 [ (atiathnti )| T e (&

i,ail ](Z>:1 b(a):l
> NE (ViaViaVanVin)ll- (A.21)

/L'J’a:b:l

ea,n

X

|Q

1 1

S5 2
lyn

(=)
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To compute the order of the above upper bound, we note that

n

1
— 2 1B VinVinVanVon)|

,j,a,b=1
1 n np np np
- Z E <Z ngfl> <Z Tjez,nf?m) (Z Tae3,n£eg)
n ,5,a,b=1 l1=1 lo=1 la=1
( T’beg,n€e4>
l4=1
1 i n
- _2 Z Z |r2€ nTjenTal nrbén’ Egg Z h/i,a| h/j,b’
i,7,a,b=1 =1 Zj,a,b:l
1 i 1 n
+ n? Z Yis] [Yapl + prl Z Vis| [Vial
i,5,a,b=1 i,j,a,b=1
n
<C (Z Iw,n|> =43 ( ZZ |%J|> (1), (A.22)
=1 i=1 j=1

so the upper bound in (A.21) is 0 (1), which implies that My, =0, (1) .

The next step is to show Ms, = 0,(1). As before, we can focus on the event

& ={vn|d

< C’} . For any given § > 0,

P (|| M, > 0)
S | VAN S ol oy e EER A | B
El, \ n d, N

=1 Gy =tint+1

I

N
@\3

S|
]

=

olS
3

S
<
Il
—
)
=
1
IS H
o
3
+
=

VinVigm (140, (1)) ||| 20

<PlIl/= =X 3 &[22 ViV |||20.€] +P(E)

2

4 *
1 n i,n dl n
<s2E |, ]2z K( ok )V,-nvj. 2| El +P(EY)
Efn n ‘ - ) (2)»
+1
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3

l; *
1 i,m d” L) n
/ o K( )V Viom | €
i=1 ;. +1 dy,
1

:ZZH
lim d*.
B K|29") K@
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using equation (A.22). Hence Mj, = 0,(1). Consequently

\/% (7u(da) = Ju(d)) = 0,(0).

The first equality of Theorem 2(b) holds by applying Lemma A4 in the same
way as in proof of the first equality of Theorem 1(d). Then the second equality of
Theorem 2(b) holds by Theorem 1(d).
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Proof of Corollary 2

By Corollary 3 and Theorem 2(b),

i (35 (5000, 5,00).52) < 555, (100, ).5.)

— Jim lim (MSEh< 20/a+n) J (d), S ) —MSEh< 20/ atn) J (d), Sn>>

h—o00 n—00

(A.23)

Since § = ¢ and §9 = ¢, d, = dr. Corollary 1 implies that the expression in
(A.23) is > 0 with the inequality being strict unless d,, = d* + o(n!/(2a+m),
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Chapter 3

k-step Bootstrap Bias Correction
for Fixed Effects Estimators in

Nonlinear Panel Models

Panel data consists of repeated observations from different individuals across
time. Omne virtue of this data structure is that we can control for unobserved
time-invariant individual heterogeneity in an econometric model. When individ-
ual effects are correlated with explanatory variables, we may use the fixed effects
estimator which treats each unobserved individual effect as a parameter to be es-
timated. However, this approach usually suffers from inconsistency when the time
series sample size (T') is short. This is known as the incidental parameters problem,
first noted by Neyman and Scott (1948). Furthermore, even though 7' grows at
the same rate as n, the fixed effects estimators are asymptotically biased so that
the inference drawn from them may give misleading results.

This paper proposes a k-step parametric bootstrap bias corrected maximum
likelihood (ML) estimator of nonlinear static panel models. In the k-step bootstrap
procedure, we approximate the standard bootstrap estimator by taking k-steps of

a Newton-Raphson (NR) iterative scheme. We employ the original estimate as
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the starting point for the NR steps. We estimate the asymptotic bias using the
k-step bootstrap method and subtract this from the original biased estimator.
We prove that the standard and k-step bootstrap bias corrected estimators are
asymptotically normal and centered at the true parameter if T' grows faster than
¥/n.  This condition is important in practice because many economic data sets
nowadays are composed of small T" and large n and therefore the usefulness of
the bias corrected estimation particularly depends on how much of the bias is
corrected in small 7. Our Monte Carlo experiments show that in finite samples,
the k-step bootstrap bias corrected estimators reduce the bias remarkably even
for small 7T". This bias correction does not increase the asymptotic variance and
thus bias correction substantially improves statistical inference. In addition to
bias correcting the parameter estimators, we also apply the k-step bootstrap bias
correction to the average marginal effect estimation.

The substantial advantage of our approach over alternatives is that our
method enables us not only to correct the asymptotic bias but also to improve the
coverage accuracy of the associated confidence intervals (CI). We construct the
CI’s using a double k-step bootstrap procedure. In Monte Carlo experiments we
find that in finite samples the error in coverage probability of our CI’s is smaller
than those of the other standard alternatives especially when T is small. This is
true for the estimators of the model parameters as well as the estimators of the
average marginal effects.

Another clear advantage is ease of computation. Standard bootstrap meth-
ods in nonlinear models are usually very time-intensive because it is required to
solve R nonlinear optimization problems to obtain R bootstrap estimates. R usu-
ally needs to be fairly large for the bootstrap method to be reliable. Unless the
optimization problem is simple, this would be a very time-intensive task. Particu-
larly, as the fixed effects approach treats the individual effects as parameters, there
are many parameters to be estimated and computational intensiveness can be par-

ticularly serious in this type of models. For example, in our empirical application
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(not reported here), there are 1461 individuals, which means there are more than
1461 parameters to be estimated. In addition, the double bootstrap procedure
which is used for constructing CI’s in this method also increases computational
intensiveness substantially. In order to overcome this problem, we introduce the
k-step bootstrap estimation which only involves computing the Hessian and the
score functions. We show that when n — oo the stochastic difference between
the standard and k-step bootstrap estimators is Op(T_Qk_l). When k > 2, this
difference is of smaller order than the bias term we intend to remove. As a result,
we can use the k-step bootstrap in place of the standard bootstrap to achieve bias
reduction.

Several papers have discussed the difficulties involved in controlling for this
incidental parameters problem in nonlinear panel models and have suggested bias
correction methods. Lancaster (2000) and Arellano and Hahn (2006) give an
overview on the subject. Anderson (1970) and Honoré and Kyriazidou (2000)
propose estimators which do not depend on individual effects in some specific
cases. However, their approaches are the exception rather than the rule and so
usually provide no guidance in general cases to eliminate the bias from nonlinear
panel models. More generally, Hahn and Newey(2004) (denoted HN hereinafter)
and Fernandez-Val (2009) propose jackknife and analytic procedures for nonlinear
static models, while Hahn and Kuersteiner (2004) propose analytic estimators in
nonlinear dynamic models. Both expand the estimator in orders of T" and esti-
mate the leading bias term using the sample analogue. Bester and Hansen (2008)
propose a penalized objective function approach to solve this problem.

There is also a large literature on bootstrap bias corrected estimation. Hall
(1992) introduces general bootstrap algorithms for bias correction and for the con-
struction of CI’s which we adapt in this paper. Hahn, Kuersteiner and Newey
(2004) analyze the asymptotic properties of a bootstrap bias corrected ML esti-
mator in cross sectional data and show that it is higher order efficient. Pace and

Salvan (2006) suggest a bootstrap bias corrected estimator when there are nui-
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sance parameters, but their algorithm is different from ours. While we estimate
the asymptotic bias of the fixed effects estimator directly by bootstrap, they use
the bootstrap procedure to adjust the profile likelihood function from which they
obtain their bias corrected estimator. The k-step bootstrap procedure first appears
in Davidson and Mackinnon (1999) and Andrews (2002, 2005), in which they prove
its higher-order equivalence to the standard bootstrap for extremum estimators.
The paper is organized as follows. Section 3.1 reviews the incidental param-
eters problem in nonlinear panel models and introduces the analytic form of the
bias term which is demonstrated in HN. Section 3.2 describes the bootstrap bias
correction procedure. Section 3.3 explains the k-step bootstrap bias correction.
Section 3.4 establishes the asymptotic properties of our estimators. Section 3.5
discusses bias correction for average marginal effects. The Monte Carlo simulation

results are reported in Section 3.6. The last section concludes.

3.1 Incidental Parameters Problem

In this section, we introduce the incidental parameters problem and present
the asymptotic bias of the fixed effects estimator in nonlinear panel models.

Consider a nonlinear panel data model:
zit ~ f(2;0, )

where 6 is (Lg x 1) vector of parameters of interest and «; is a scalar individual
heterogeneity and f is a probability density function with parameters # and «;. For
any given parameter value, {z;} are independently distributed acrossi = 1,2, ...,n
and t = 1,2,...,T. The model includes discrete choice models and censored and
truncation models as special cases.

Denote the true values of  and o = (v, ..., v,) by 0 and g = (10, -, o)
respectively and let (0, ;; z;1) = log f(zi; 0, ;). The objective function for the

fixed effects estimator, f,7, is the concentrated log-likelihood function based on
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@;. That is, we obtain énT by solving

0,7 = argmaXZZl (0, &;(0); zit), (A.1)

i=1 t=1

where

T
&;(0) = arg max Z 10, ag; zip) (A.2)

a(0) = (aq1(0), ..., a;(0), ..., an(0))
and the maximization is taken over a compact set.

Equation (A.2) implies that the estimation of «; uses only T time series
observations (z;1, . . ., z;). Therefore, given that T is fixed, &; does not converge to
;o even though n — oco. This estimation error of &; causes énT to be inconsistent,
which means Plim,,_ énT # 0p. This is known as the incidental parameters
problem first noted by Neyman and Scott (1948). From the asymptotic properties

of extremum estimators (e.g. Amemiya (1985)), as n — oo with T fixed

O, 2 Or, Or = arg meaXE

ZK&@'(@?%O] (A-3)

t=1
where

E

T
Zl(@,di(ﬁ);zn ] nlLIEo " ZE

t=1

Z (0 di(ﬁ);zit)] .

Since 6y maximizes E[Y ", thl 1(0, aio; zit)], usually O # 6. If the likelihood

function is smooth enough, we can show by stochastic expansion that

B 1
Or =0 O A4
T =00+ T + (TQ) (A4)
for some B. This implies that 87 — 6y as T" — oo. However, it is still asymp-

totically biased if T" grows at the same rate as n. That is, as n,T — oo and

n/T — p,

H A B
VT (Onr — 60) = VT (Onr — 1) + \/nTT + 0, ( %)

< N(0,9) + By/p < N(B/p, ), (A.5)
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for some variance matrix €. \/n_T(énT — Or) converges to a normal distribution
centered at zero, since fr is the probability limit of énT. However, the second
term, vVnT B /T, does not vanish but converges to B,/p. Hence, statistical inference
drawn from this will result in misleading conclusions even when 7' is as large as n.

HN establish the analytic form of the leading bias of Ot using stochastic
expansion. For notational convenience, we define

up (0, ;) = %l(@,ai; zi) and vy (0, q4) = %l(ﬁ,ai; Zit)

and let additional subscripts denote partial derivatives,
e vy (0, ;) = a%l(@, a;; zit). We suppress the arguments of the functions such as
u;, when they are evaluated at the true value (0, ;o). HN show that in equation

(A.5)

B = —H_l(eo, Oéo)b (00, Oéo) s (A6)
where
R
H<807 040) = 7}1_{{)10 n 21 E [UitUi/t] )
1. 1<&E [VairUit]
b0y, a0) = = lim — Y —L2 it
( 07040) 2 nl_{IOlo n 4 E [UZQt] )
=1
and
E Uit V;
Uit = uir — é[—;?t]t] Vi, Vo = U?t + Vita-

3.2 Bootstrap Bias Correction

In this section, we provide the bias corrected estimator using a parametric
bootstrap procedure. The parametric bootstrap is different from the nonpara-
metric bootstrap in that the former utilizes the parametric structure of the DGP
by replacing the original parameters with their estimators to generate bootstrap

samples, while the latter generates them from the empirical distribution function.
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Let F* = Fy _ , denote the distribution function of bootstrap samples. We
obtain F* from F' by replacing 6y and ag, with 0,7 and & = d(énT). Therefore,
in the bootstrap world, 6,7 and & are the true parameters. Let {z},} denote the
bootstrap sample drawn at random from F*. Based on {z};}, we can obtain the
bootstrap estimators, é*T and &; by ML estimation. That is,

0:, = arg maxz Zl )i 2h), (A7)

i=1 t=1

where .
&;(0) = arg maxz 10, ay; 25,), (A.8)
b=
and as before the maximization is taken over a compact set.
The intuition behind the bootstrap bias correction is that the bias of a

bootstrap estimator is a good approximation to that of a true parameter estimator.

Under some regularity conditions, as n — oo and T' — oo,
. ~ B 1
E*(0 ;) — Our O,
( nT) T + <T2)
where!

E*(AnT = lim —Z@nT,

R—x R
and E* is the expectation operator with respect to F™*. Therefore, the bootstrap

bias corrected estimator can be defined as
Orp = 20, — E* (é;zT> . (A.9)
The above estimator reduces the order of the magnitude of a bias from

O, (T™1) to O, (T?%). To show this, we employ the same definitions of HN in the

bootstrap world, i.e.

o & A 0,
%Z(H,LT,ai;zit),vit:a—all(QnT,az, z7) and v} :@l(QnT,ai;zit).

*
Uy =

'Note that E* (é:T) may not be finite, in which case we can introduce truncation to prevent
it from going to infinity. See equation (A.17) for such a modification. When the truncation
threshold goes to infinity at an appropriate rate, the introduction of truncation does not affect
the limiting distribution. For simiplicity of exposition, we do not explicitly incorporate truncation
here but do so for the k-step bootstrap estimator.
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Then,
* 1 N* 7 B* 1
and
A~ A -1 A N
B* = — [H*(gnTad(enT))} b* <0nT,d(0nT)>
where
H* (O, a0r)) = lim —>" B* (VU]
i=1
A 1. 1= E [ULVs)
b7 \Onrs &Or) | = 5 lim — »  ——— s
( 7, & T>) 2 oo 1 ; E* [(Uft)Q}
and

* E* [u;'ktv'zkt] *

U = o, — — Mitlil
=Y~ p [(v5)] o

%2 *
Vair = Vip + Vi

A~ ~

The conditional distribution of the bootstrap sample given the data or (6,7, &(0,1))
is the same as the distribution of the original sample except that the former uses

(01, &(0,7)) rather than (fy, ap) as true parameters?. Therefore, we have

H* (énT7 @(énT)> = H (0, a)‘(e,a):(énT,d(énT))

A

b (Qn% CAV(QnT)) = (0, a)|(9,a):(énT,@(énT))
By stochastic expansion, we show in Appendix I that

1
H(0, )\ (9,0)~(8,r.a(0.)) = H (B0 @0) {1 O (?)} ’

1
b<97 a)‘(e,a)Z(énT@(énT)) - b<907 aO) |:1 i Op <T>:| .

Combining the above two equations with the definition of B*, we obtain

B*=DB+0, <%> . (A.11)

As a final step, we show that under the assumptions given in Section 3.4

VnT (P* limd* . — E*(é;;T)) =0, (1). (A.12)

n—oo

2When (0,7, &(0,7)) is regarded as a vector, it is understood to be @ &(0,7)") . For nota-
tional simplicity, we omit the transpose notation if confusion is unlikely.
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From (A.10), (A.11) and (A.12), for T/{/n — oo,
VAT (B~ 80) = VT (B — 07) + VT (0 — 80) — (P* limfy — o)
+ VT | P limd — B nT)}
= VT O,z — 01) + 0, (1) = N(0,9). (A.13)

This implies that the bootstrap bias corrected estimator removes the dominant

bias and is asymptotically unbiased.

3.3 k-step Bootstrap Bias Correction

In this section, we define the k-step bootstrap bias corrected estimator and
demonstrate its higher order equivalence to the standard bootstrap estimator.

The k-step procedure approximates é;‘;T by the NR iterative procedure. Let
é:zT,k and &;, denote the k-step bootstrap estimator. We define HAZT’,C and &

recursively in the following way:

* é*
=T - B S (A.14)
A A1
where?
82 logl (0, a; 25;)
o= 3 Z a1
nT =1 t=1 0/ ) ezé:zT,k—l’a:dZ—l
Jlo l 0 ozz, ;
PRI (oL
=1 t=1 ezéZT,kfl’o‘:dltfl
and the start-up estimator 0:T70 = b1, o = Q.
In the appendix of proofs, we show that
1

3The Hessian matrix we used is called the observed Hessian. We note that some terms in
9% logl (0, c; 25) /0 (0',0') 9 (0, ) have zero expectation. Dropping these terms in equation
(A.15), we obtain the expected Hessian. Our asymptotic results remain valid for the expected
Hessian, as the dropped terms are of smaller order.
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This implies the quadratic convergence of é*T i to QA,*?JT as k increases. In particular,
when k£ > 2, P* llmQj;Tk = P* th*T—f—O (1/T?) . So in large samples, the approx-
imation error in using the k—step bootstrap instead of the standard bootstrap is of
smaller order than the bias term that we intend to remove. Therefore, condition
k > 2 is necessary for the k-step bootstrap to achieve effective bias reduction.

To implement the k-step bootstrap, we have to invert the Hessian matrix.
Depending on the observations we sample, H;_; may be close to be singular in

practice, in which case 6% goes to infinity. As a result, the mean of é;;Tk may

nT,j
not be finite. To circumvent the undue influence of the second derivative of the
objective function on our estimator, we introduce the truncated version, éflT’ x- The

truncated estimator is defined as

Tk = Our + (é;Tk nT> (\/_ ‘9 Tk — O

< MnT) (A.17)

é;T’ & vields the same value as QAZT » When the difference of é;‘LT , from 0,7 is bounded
by M,r/ VnT, but does not blow up when it has an infinite value. Similarly, we
define
Gh = i+ (65, — 6i) 1 (\/ﬁ 6%, — ] < MnT> . (A.18)
We can set M,r large enough that this truncation does not affect the asymptotic
properties. We show that when M, — oo such that \/n/_T = o(M,r), we have:
. A 1
P* hm@nTk = P’;légrlQZT,k + 0, (ﬁ) :

As a final step, we show that
VnT (P limfl - E*(:;TJC)) =0, (1). (A.19)

From (A.16) and (A.19) the limiting distribution of the bootstrap bias corrected
estimator, #,7, which is defined in (A.9), will be invariant even though we re-
place 6%, with HnT x- Hence, we can define our truncated k-step bootstrap biased

corrected estimator as

Ot = 20,7 — E* (05 - (A.20)
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Then for T'//n — oo and all k£ > 2,

VAT (B — 00) = VT (Bur = 07) + VAT | (07 = 69) = (P* i, — Do)
VT (B (i) = P limdir )

= VT (Bur = 07) + 0, (1) == N(0,9). (A.21)

3.4 Asymptotic Properties

In this section, we state the assumptions and rigorously establish the asymp-
totic properties of the standard bootstrap and k-step bootstrap estimators.
For ease of exposition, we write [(6, «; z;;) = 1(0, ay; 2i¢) so that [ (-, -; zi) is

regarded as a function of § and o. We maintain the following assumptions:
Assumption 1 n,T — oo such that n = o(7?) and T = O(n).

Assumption 2 (i) [(0, a; z;) is continuous in (0, a) € ©; (ii) the parameter space

© is compact; (iii) (fy, ap) is an interior point in O.

Assumption 3 For each n > 0, there exists § > 0 such that

inf | G; (0o, ap) — sup Gi(0,a)| >0 >0,
’ {(6,0()2|(0,Oé)—(907040)‘>’V]}
where
1 T
Gi(0,a) = ET ; 10, a; zi).

Assumption 4 (i) [(0, a; 2;;) is continuously differentiable to six orders; (ii) there

exists some M (z;;) such that

O™t «v; zy)
005" Do

< M(zi), 0<my+my<6

(iii) For some @ > 64, E [M(zzt)Q} < (C for a constant C' and all : = 1,2, ..., N.
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Assumption 5 (i) E[Z;] = lim,, oo n ' Y. | E[U;U},] exists and is positive def-

inite (ii) min; E[v3] > 0

Assumption 6 Let B, = (n=' 31 E[U,U,) ™" (n_l > i %) , then
B,=B+0(1/y/n).

Assumption 1 shows that our estimator is applicable as long as T' grows
faster than /n. This implies that our asymptotic theory is valid with relatively
small 7" and large n, which is often the case in micro panel data sets. Assumption
2 is a standard regularity assumption. Assumption 3 is the identification assump-
tion for extremum estimators. Assumption 4 is the same as Condition 4 in Newey
and Hahn (2004). It is stronger than the moment assumption for extremum es-
timators and under this assumption the asymptotic bias depends on the second
order expansion and higher order terms go to 0 under Assumption 1. Assumption
5 allows us to invoke the central limit theorem. Assumption 6 ensures that the
limiting bias term B is close to its finite sample analogue B,. This assumption

holds trivially if z;; are iid across i.
Theorem 9. Under Assumptions 1-0,
VT (6,7 — 0) —5 N(0, (E[Z:]) ).
For the proof see Appendix I.
Proposition 3. Under Assumptions 1-6, for all k > 1
P limfy, = P limfy + O, <%) -
For the proof see Appendix II.
Theorem 10. Under Assumptions 1-6, for all k > 2

VT (B i — 06) == N(0, (E[Z)) ™),

For the proof see Appendix III.
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3.5 Bias Correction for Average Marginal Effects

In this section, we suggest bias corrected estimators of the average marginal
effects using the k-step bootstrap procedure. In nonlinear models, the average
marginal effect may be as interesting as the model parameters because it summa-
rizes the effect over certain sub-population, which is often the quantity of interest
in empirical studies.

The first average marginal effect, which we refer to as “the fixed effect
average” or simply the average marginal effect, is the marginal effect averaged

over «;. It is defined as

1 n
— ﬁ Zl m(w, 90, C(io)

where w is the value of the covariate vector where the average effect is desired.
For example, in a probit model, m(w, 6y, co) = Oo(j)d (0o + o) where ;) and
¢(-) are the coefficient on the j-th regressor of interest and the standard normal
density function respectively.

The bias uncorrected estimator of p(w) is

(W ZZm w QnT,aZ (A.22)

zltl

As in the case for the estimation of model parameters, we can construct a k-step
bootstrap bias corrected estimator of the fixed effect average by estimating the
bias with the difference between fi,r(w) and its bootstrap estimator. Our k-step

bootstrap bias corrected estimator of the fixed effects average is

T

lanTk sz w 0%T7al TLTZ - TTI, ) nTk? ) : <A23>

i=1 t=1 =1 t=

The second average marginal effect, which we refer to as “the overall average
marginal effect”; is the marginal effect averaged over both «a; and the covariates.

It is defined as .

= % Z Z m(wit, 60, Oéig).

i=1 t=1
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See also Fernandez-Val (2009). Similarly to equations (A.22) and (A.23), the

original and bias corrected estimators of v are

n T
Unr = % Z Z m(wita énTa @i),

i=1 t=1

n T T

2
VnTk - nT E m wztu nTaaz TLT E E m wztu nTk? zk)

i=1 t=1 1=

3.6 Monte Carlo Study

In this section, we report our Monte Carlo experiment results, which show
that k-step bootstrap bias correction reduces the bias significantly in finite samples
and also improves the coverage accuracy of CI’s.

For our Monte Carlo experiment, we employ the design used in Heckman
(1981), Greene (2004), HN, and Fernandez-Val(2009). It is based on the following
probit model:

Yie = H{ X0 + a; — € > 0} €~N(0,1), a;~N(0,1),
Xit :t/l()—l—Xm_l/Q—&—um UZtNU(—1/2,1/2),
n=100: T = 4,8,12; 0 — 1.

As discussed in HN, this model does not fit completely within our framework.
First, X;; is correlated overtime. The correlation does not cause any problem as
we can use the conditional MLE approach and all the asymptotic results remain
valid. Second, there is no correlation between X;; and «;. This is different from
the usual condition under which the fixed effects estimator is used. However the
incidental parameters problem is still present as it has nothing to do with whether
there is a correlation between X;; and «;. The bias of the fixed effects estimator
can be severe for fixed effects models as well as for random effects models. The
effectiveness of different bias reduction methods can be well evaluated with our

data generating process. Another reason to use this design is that it is widely
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cited and used in other simulation studies, which helps us compare our estimator
with the alternatives.

The uncorrected estimator of model parameters is

~

(0nT> d)
1 n T

= argmax — Z Z Y log @(x:0 + o) + (1 — yir) log(1 — (240 + ;)]

i=1 t=1

and the estimators of the average marginal effects are

,unT Z enT(b menT + 051) VnT - T Z Z enT(b xlt‘gnT + az)

zltl

where ®(+) is the standard normal distribution function and z is the sample mean
of {xy,i=1,2,...N,t =1,...,T}.

For the k-step bootstrap, we generate bootstrap samples based on 6,7 and
{a;}7, and estimate 6%, 7 using (A.14) with the bootstrap samples. We repeat
this procedure 1000 times (R = 1000). Then, we obtain the bias corrected k-step
bootstrap estimator from (A.20). As discussed before, for each k value, we can
use either observed Hessian or expected Hessian in the NR step, leading to two
versions of the k-step procedure. Each simulation is repeated 1000 times.

We compare the performance of our bias-corrected estimator with four al-
ternative bias correction estimators: the jackknife and the analytic bias corrected
estimators by Hahn and Newey (2004) and the analytical bias-corrected estima-
tor by Fernandez-Val (2009). The jackknife bias-corrected estimator is denoted
‘Jackknife’. For HN analytic estimators, there are two versions: the analytic
bias-corrected estimator using Bartlett equalities, denoted ‘BC1’; the analytic
bias-corrected estimator based on general estimating equations, denoted ‘BC2’.
Fernandez-Val’s estimator is denoted as ‘BC3’.

For each estimator, we report its mean, median, standard deviation, root
mean squared errors, and the empirical sizes of two-sided nominal 5% and 10%

tests. The tests are based on symmetric CI’s, that is, we reject the null hypothesis
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if the parameter value under the null falls outside the CI’s. For the jackknife and
analytical bias correction procedures, the interval estimator or the testing method
are the same as that given in the respective papers. For the k-step procedure, the
CI’s are based the double bootstrap procedure.

To describe the double bootstrap procedure, we focus on an element of 6.
Hence, without loss of generality, we can consider the case that 6, is a scalar. By

iterating the bootstrap procedure, we define:

Tk = 29nTk E**(V:L?k)7

where E**(é;’}k) is defined on the double bootstrap, that is, the k-step bootstrap

using (é;T r» @i 1) as the true model parameters. Similarly

Oé;k‘ = 207: - B (a ;kk:)

Let .
vnT

O — 60|

SE (énm, a;)

t-stat =

be the t-statistic for 8y where

T

. —1
[SE <§nT,k, 5%)]2 = (_niT Z Z Uit (énT,kv di,k))) , Qi =205 — E(G],).

i=1 t=1

Let

VnT |0

QZTk: - énT
SE (em, ak>

be the corresponding t-statistic in the bootstrap world where

52 ()

(i)

=1 t=1

t*-stat =

Il
[\)
R

a1~ B (a3,
Then the bootstrap CI is :

SE(énT,ka dk)? énT,k + Tl*—

~ 1 1 ~
O — To e g SE(Orp, &
|: T,k 1 /QW /QW ( T,k k’)
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where 77, is the (1 — a/2) x 100% percentile of t*-stat. Our double bootstrap
two-sided test is based on the above CI. We can use the same procedure to construct
CIs for the average marginal effect and the overall average marginal effect. In our
simulation experiment, we set the number of double bootstrap samples to be 100.
We do so in order to reduce the computational burden. In empirical applications,
we should use a larger number.

Table 1 shows the performance of the k-step bootstrap for different values
of k. According to this result, the k-step bootstrap procedure reduces the bias
significantly when k& > 2. Results not reported here show that the one-step
procedure is not effective in bias reduction. This result is consistent with our
Theorem 2, which demonstrates the order of bias is reduced from O, (1/T) to
O, (1/T?) when k > 2. In terms of the MSE, the 2-step bootstrap with observed
Hessian, the 3-step bootstrap with observed Hessian and the 3-step bootstrap with
expected Hessian are efficient in general.

Table 2 compares different bias correction methods. We choose the 2-step
bootstrap with observed Hessian as our benchmark. First, we see that the estima-
tor without bias correction is severely biased when T is small. As T gets larger,
the bias gets smaller, but there is still no improvement in the coverage accuracy of
CI’s. When T = 4, the bias of the uncorrected estimator is 42%. When T = 12,
the bias is reduced to 13% . But the rejection probability is still 29% for the
5% two-sided test. Second, the k-step bootstrap performs better in finite samples
than the other methods regardless of the size of T. In particular when T = 4,
the outperforming of the k-step bootstrap procedure is remarkable, while as 7" in-
creases other estimators become as accurate as ours. When 7" = 4 the bias of our
estimator is 6% and RMSE is 0.249, while the bias of the jackknife method is 25%
and its RMSE is 0.373. The analytic method by Ferndndez-Val (2009) also has
the bias of 6% but its RMSE is 0.281 which implies that its variance is larger than
ours. The k-step procedure achieves the smallest RMSE among all bias correction

procedures. Third, in term of coverage accuracy, the CI’s based on the double
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k-step bootstrap outperform other Cls in an overall sense.

Table 3 shows the ratio of the estimator of the average marginal effect to
the true value. As HN and Fernandez-Val (2009) show, the bias of the uncorrected
estimator is negligible, even when 7" = 4. Its bias is less than 2% and in terms
of RMSE;, it performs as good as the bias corrected ones. However its CI’s are
not accurate especially when we have small 7. When 7" = 4, its error in coverage
probability for the 95% CI is about 5%. Inaccurate CI’s are not just the problem of
the bias uncorrected estimator. Jackknife and the analytic bias correction do not
reduce the coverage error either. When 7" = 4, the errors in coverage probability for
the 95% CI from jackknife and analytic estimators are 11% and 4-6% respectively.
In contrast, the coverage error of the 95% CI constructed from the k-step double
bootstrap is only 1.5%. We find that the our estimator improves the accuracy of
the CI's which is not the case in the other standard alternatives.

Table 4 gives the Monte Carlo results for the ratio of the estimator of the
overall average marginal effect to the true value. This is similar to the fixed effect
average in Table 3 except that the average is taken over both the fixed effects and
the covariate. As in the previous case, we find little evidence that bias correction is
necessary in terms of RMSE. Actually, the RMSE of the bias uncorrected estimator
is smaller than that of the jackknife estimator in general. It also shows that in
contrast to other estimators our double k-step bootstrap procedure improves the

coverage accuracy of the CI’s particularly when T is small.

3.7 Conclusion

In this paper, we propose the k-step bootstrap bias correction for the fixed
effects estimator in nonlinear static panel models and establish the asymptotic
properties of our bias corrected estimator. In simulation experiments, we show that
the k-step bias correction procedure is often more effective than the alternatives.

When T is small, the procedure achieves substantial bias reduction and has the
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smallest RMSE among the competing procedures. The confidence interval based
on the double k-step bootstrap has a smaller coverage error than other CI’s. This
is true for both model parameters and average marginal effects. The asymptotic
properties of our Cls and the possible higher order refinement are not studied here.

It is an interesting topic for future research.
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Table 3.1: k-step Bootstrap Estimators

Estimator Mean Median SD RMSE
T =4
k=2, O 0.94 0.94 0.242 0.249
k=3, O 0.84 0.84 0.192 0.253
k=3, E 0.83 0.84 0.194 0.256
k=2, E 1.02 1.01 0.270 0.271
T=238
k=2, O 0.98 0.98 0.114 0.115
k=3, E 0.97 0.97 0.113 0.117
k=2, E 1.02 1.02 0.122 0.123
k=3, O 0.96 0.96 0.118 0.124
T=12
k=3, E 0.99 0.99 0.078 0.078
k=3, O 0.97 0.97 0.077  0.080
k=2, O 0.99 0.99 0.081 0.082
k=2 E 1.01 1.00 0.087 0.087

Y
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Notes: Cross section sample size n = 100 and the true value 8y = 1. We use “E” to

indicate the use of the expected Hessian in the k-step bootstrap while we use “O”

to indicate the use of the observed Hessian in the k-step bootstrap. The estimators

are ordered according to their RMSE.
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Table 3.2: Bias Corrected Estimators of

Estimator Mean Median SD  p;.05 p;.10 RMSE

T=4
Probit 1.42 1.40 0.385 0.30 0.40 0.569
2-step Bootstrap  0.94 0.94 0.242 0.04 0.06 0.249
Jackknife 0.75 0.75 0277 0.11 0.19 0.373
BC1 1.11 1.10  0.304 0.04 0.11 0.323
BC2 1.20 1.19  0.333 0.09 0.16 0.388
BC3 1.06 1.06  0.275 0.02 0.06 0.281
T=28
Probit 1.18 1.18  0.132 0.28 0.39 0.238
2-step Bootstrap  0.98 0.98 0.114 0.04 0.10 0.115
Jackknife 0.95 096 0.118 0.06 0.11 0.128
BC1 1.05 1.05  0.134 0.05 0.11 0.143
BC2 1.05 1.05  0.132 0.05 0.10 0.141
BC3 1.02 1.02  0.124 0.03 0.07 0.126
T=12
Probit 1.13 1.12  0.090 0.29 0.40 0.161
2-step Bootstrap  0.99 0.99 0.081 0.05 0.11 0.082
Jackknife 0.98 0.98 0.080 0.056 0.10 0.083
BC1 1.04 1.04  0.087 0.07 0.13 0.096
BC2 1.03 1.03 0.085 0.06 0.11  0.090
BC3 1.01 1.01  0.082 0.04 0.09 0.083

Notes: Cross section sample size n = 100 and the true value 8y = 1. Jackknife
denotes HN Jackknife bias corrected estimator; BC1 denotes HN bias corrected
estimator based on Bartlett equalities; BC2 denotes HN bias corrected estimator
based on general estimating equations; BC3 denotes Fernandez-Val (2009) bias
corrected estimator which uses expected quantities in the estimation of the bias.

p denotes empirical rejection probability.
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Table 3.3: Bias Corrected Estimators of the Average Marginal Effect u

Estimator Mean Median SD  p;.05 p;.10 RMSE

T=4
Probit 0.98 0.98  0.256 0.097 0.157 0.256
2-step bootstrap  0.98 0.98 0.256 0.065 0.122 0.256
Jackknife 1.06 1.05  0.307 0.159 0.224 0.313
BC1 1.00 0.99 0.265 0.113 0.178 0.265
BC2 1.05 1.05 0.266 0.117 0.185 0.271
BC3 0.94 0.94  0.240 0.090 0.155 0.247
T=28
Probit 1.02 1.01  0.116 0.065 0.122 0.117
2-step bootstrap  1.00 1.00  0.113 0.043 0.096 0.117
Jackknife 1.00 0.99 0.130 0.086 0.1563 0.130
BC1 1.02 1.02  0.133 0.090 0.153 0.134
BC2 1.02 1.02  0.131 0.087 0.154 0.133
BC3 1.00 1.00  0.117 0.058 0.107 0.117
T =12
Probit 1.02 1.01  0.072 0.072 0.119 0.074
2-step bootstrap  1.00 1.00  0.070 0.052 0.094 0.070
Jackknife 1.00 1.00 0.074 0.05 0.093 0.074
BC1 1.02 1.02  0.075 0.061 0.122 0.078
BC2 1.02 1.02  0.074 0.059 0.112 0.077
BC3 1.01 1.01  0.074 0.049 0.096 0.075

Notes: Cross section sample size n = 100 and the true value g = 1.
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Table 3.4: Bias Corrected Estimators of the Overall Average Marginal Effect v

Estimator Mean Median SD  p;.05 p;.10 RMSE

T =4
Probit 0.99 1.00  0.248 0.11 0.17 0.249
2-step Bootstrap  0.99 0.98 0.248 0.04 0.09 0.248
Jackknife 1.02 1.02 0285 0.12 0.19 0.286
BC1 1.00 1.00 0.261 0.12 0.18 0.261
BC2 1.04 1.04  0.255 0.12 0.19 0.258
BC3 0.94 094  0.226 0.08 0.13 0.234
T =8
Probit 0.99 0.99 0.100 0.07 0.13 0.100
2-step Bootstrap  0.99 0.99 0.100 0.04 0.08 0.100
Jackknife 1.01 1.01  0.107 0.07 0.14 0.107
BC1 1.01 1.01  0.110 0.09 0.15 0.110
BC2 1.00 1.00  0.105 0.07 0.13 0.105
BC3 0.97 097 0.103 0.08 0.13 0.107
T=12
Probit 0.99 0.99 0.063 0.09 0.16 0.065
2-step Bootstrap  0.99 0.99 0.064 0.06 0.12 0.065
Jackknife 1.00 1.00  0.064 0.05 0.11 0.064
BC1 1.00 1.00  0.065 0.06 0.11 0.065
BC2 0.99 0.99 0.062 0.05 0.10 0.063
BC3 0.98 098 0.062 0.05 0.11 0.065

Notes: Cross section sample size n = 100 and the true value 1y = 1
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3.9 Appendix

I. Proof of Theorem 1

Throughout the proof, we assume that we have truncated é;;T so that éfLT —
énT is bounded in absolute value by M,/ v/nT. The technical details for showing
that truncation has a negligible effect on the asymptotic properties of vnT (énT —
0p) are the same as those for VnT (énTk —6y). We present the details for the latter
in Appendix IIT and omit them here. Truncation allows us to convert probability
orders into moment orders.

The bootstrap bias corrected estimator is defined as
Oy = 20,7 — E* (é;;T) .
Therefore,
%EW@FwQ:%ﬁ%%pwﬂ+¢ﬁW%—%—p%@Q—@4)
HN has shown that
VAT (fur = 0r) = N(O,E[T] ),
where
I, = E|UL U/
Therefore, in order to prove Theorem 1, it suffices to show
\/57*(97,—-90-[19*(é;T) —-énT}) =0, (1). (A.24)
The LHS of (A.24) can be decomposed into two parts :
T o0 [ () o)
= VT (01— o = [ lidi = b | )+ VT (1 i = B (9) )
Hence, it suffices to show

9T4W{wmﬁ%—@4—q(i), (A.25)

n—00 T2

R A 1
ﬁg@%—E%@ﬁ:%<zﬁ). (A.26)
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1. Prove 0r — 0y — [P* liméZT — énT] =0, (%)

Let F = (Fy,...,F,) and F = (Fy,...,F,), where F, := Fy,,, is the
distribution function of stratum i and F} is its empirical distribution function.
Define F(e) = F + /T (F— F) for € € [0,1/+/T). For each fixed 6 and e, let
a;(0, F;(€)) and 6(F'(¢)) be the solutions to the estimating equations

0= / Vi (6, 04(6, Fi(€))) dFi(e),
0= [ U 6(F©), (O (€)). F(@) dF(e)

A Taylor series expansion gives
1

; 1 1/ 1) . 1 Y s

O, — b6y = ﬁ@ (0) + 5 <ﬁ) 0 (O) + 6 <ﬁ) 0 (6) <A27)
where 0°(e) = dO(F(c))/de, 0°(e) = d?0(F(¢))/de*, ..., and € is between 0 and
1/+/T. HN show that

-1
1 1 &
VnT—60) SN o, im = 7, :
\/T n—oo 1, 4

() r-e(2)

Therefore,

1
br— =2 40 (—) , (A.28)

g E [VoirUs
—,}LH;OQ( ZI) (‘ﬁzﬁ)

it

where

Similarly, in the bootstrap world, for each fixed 6 and ¢, let «;(6, Fj(¢)) and

O(F*(e)) be the solutions to the estimating equations
0= [V (.06, F2 () dF; @)
0= [ Uz 0(F (). (P (). F () dF o),
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where Fi'(e) = Fy 5. +6\/_ (F* Fy 1 6:0, T)> Fy 646, 1S the distribution
function of stratum ¢ in the bootstrap sample and FZ* is the corresponding empirical
distribution. Note that F;* (0) is the same as F; = Fy, ,,, except that the true
parameter is (6,7, &;(0,7)) rather than (A, ay).

Similar to equation (A.27), in the bootstrap world, we have

é* é 1 ée(O)+ 1 ( 1 )2é66(0)+ 1 ( 1 )3éeee(~*)

— 0, _ — - — - €
VT 2 \VT 6 \VT
where 6%(¢) = dO(F*(€))/de, 6(¢) = d*0(F*(¢))/de%, ..., and & is between 0 and
1/\/T Also,

1 .
\/ﬁﬁm(()) 0, ( lim nZI*) : (A.29)

fo) (_ % 3 EE[V[QJQJ]J> + O (%) , (A.30)

=

1
(%)30*“(@*) = 0, (%) . (A.31)

Using the same argument as in HN and with some calculations, we have, under

Assumption 4(ii):

* 12 )% N B 1

where

*

2zt
T Z E* *2
We proceed to show that B* = B+ O, (1/T) . First, we have
1 < 1 o
- It —=—>» I,
n Z ‘omn Z

Z/ it nTa az nT)) Uzt <0nTa az(é )) dFénT@i(énT) - % Z E (UztUZ/t)

=1

< Aur + Byr (A.33)

11
B*=lm-=|[ — Tr
nl—{EoQ <nz Z)

=1
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where
1 & o
A = |~ Zl / (Hic (O 6B ) = H (B0, 0) ) dFy, 6,
1 n
Bnr = n ;/Hit (0o, cvio) ng i (Or) dFi)
and

H; (9, Oéz') = Uy (9, 041;) Uit (97 ai),~

To evaluate the stochastic order of A, and B, 7, we use the following result:

&i(Onr) — aig = @+TZ%+O (TQ)

uniformly over ¢ = 1,2, ...,n where

it = = (Bloal)™ v = = (o)™ { Blowatid + 3 Bl 103 |

This result is given in HN and follows from the standard higher order expansion.
For A,r, suppose that 8; is a parameter value between 6, and énT and a;;

is a value between «;g and &;. Then

aHzt 8170511
Z/ FenTvdi(énT)
I e, - OHj (6, i
—Z(ai(QnT) —aio)/%d%mm(ém
1 « )
—Z M (Z’it)dFG,ai
n 4
=1
I~ 0H;; (0, «
LS (@) - o) | [ e

=1
n

1
=0 (T) +
=1

x (L+o0(1)) (A.34)

AnT <

nT_e(]

ezénTaa:a(énT)

+

(1+0(1))

G:énT a:a(énT)
n

1 S (@(0nr) — o) U aHg—((j&)dFe al}

ezénT7a:a(énT)
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using Assumptions 1 and 4. Next

%Z( ngo |: 8H7,t 9 (8% dF9a2:|
1 ( Oél())
ﬁ;@- { P }

ezénT’a:a(énT)
1 S OHy (6o, cvio)
IO el | (1o (1))

co,()
“0,(5) vou() 0. (5) -0 (L) e

using LLN and CLT. We have thus proved

<

(1+0(1))

+

Apr =0, (%) . (A.36)

For B,r, suppose that 5 is between 6, and énT and that @, is between «;g

and &;. Then

= l Y Hj (907%‘0) f(Z; énT,@i(énT)) - f(Z; 907041‘0) dz
n
i=1

=L+ 1
where
=k [ o — o) / Hiy (8o, o) i (B, cin)dF, az}
=1
_ )(éﬂ, - 90)] < / Hi, (00, cvio) usnd F + o,,<1)>‘ (A.38)
< stz}pE [M(2)%] ‘(énT - 90)‘ =0, (%) ;
and
I, = % |:<dz(énT> — Qp) /Hit (6o, cvio) it (0, O_‘iQ)dF‘;%di?}
i=1

%Z(@i(gﬂ) — ayo) l/ Hit (6o, cvio) vit (0o, cvio)dE; + o, (1)} ‘ =0y (%)

(A.39)
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using the argument similar to (A.35). Therefore,

Bur = 0, (%) | (A.40)

Combining (A.36) and (A.40) yields:
1 1< 1
- T — = Z; — ). A4l
12T =13740,(g) (A1)
Using the same procedure, we can show that
E* V2t t 1 ¢ E[VQitUit] 1
— S = — —_— — . A.42

Therefore, from (A.41) and (A.42),

—1
* - E* ‘/2175 zt

1

n
gL 1~ B [Vairlie] 1
_nll_>ngo2< ) < TLXI: E Zt] >+Op (T) <A43)

1=

1
5 =5+0,(2)

completing the proof of (A.25).

That is

2. Prove vnT (P* limf*, — E* <éZT>) 250

n—oo
We write

VnT (P* limd*, — E* (é;;T>>

n—oo

= VT (B (P1imd ) = B (0) ) = Vol (lim B (03) = B* (8:1) )

n—o00 n—00

(o) - ()
£ (HOE* (%é%m)) _ B (%é“(O))) +o,(1).
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The second equality holds by the dominated convergence theorem and the last

equality follows from an argument similar to HN. Therefore, it suffices to show

that
T (e (o) - 2 (F0)) <0
T (e (0) - 78 (10) ) <o
Equation (A.44) holds because
AT (i e (r10)) = 2 (50))
i) e () 2

=0,

using E* (U}) = 0.
Equation (A.45) holds because

VnT (% lim E* <965(0)> - %E (é“(@)))

n—oo

where the O, (+) terms come from O, (+) in (A.30) and the leading term in (A.46)
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18
-1
n . - / = Ee,ai(vm‘t (97041‘) Ui (97042'))

\/; nh_)IIolo (; Ee,aiUzt (9, Oéz) Uit ((97 051)) (; Eﬁ,ai<vz‘2t (9, O%))

n -1
- (Z EG,OtiUit (97 ai) Uzlt (97 al))

i=1

- Ee,ai(‘/Zit (9, Oéi) Ui (9, 041'))

: (Z By, (07, (0, 01))

3o 5) -

using Assumption 6. In the above equation, we use the subscript 6, «; on Ey,,

(0,0)= (énTvd(énT) )

to emphasize that it is the expectation under Fjy,, This completes the proof of

Theorem 1.

II. Proof of Proposition 2

It is easy to show that

*7: Nk 2 2 1 1
P*lim (enT - enT> -0, (n—T) -0, (ﬁ) , (A.47)
and
1
P*lim (67 — &)° = 0, (T) : (A.48)
By the definition of the k-step bootstrap estimator:
0 0% i
)] s
Qg X1

~

For notational compactness, let 3 = (¢, ¢/, 3* = (0%, &), 3 = (0’7, &)". Then
% Dk D% * -1 Dk *
B = Bt — [H(ﬁk—ﬁ Zn)] S <5k—1§zit>

for Ba‘ = B . Using a Taylor expansion and the first order condition:

S (B*§Zit> =0,
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we have

>

*

X

T ¥

G = [ 8 () -

[ Bk 13 zt)] - [S <B*§Zit> =S (BZ—BZZ}) - (ﬂk 1 zt) (5 Bk 1)}
1

T2

[H( =] €

where ﬁA,i_l lies between B* and B;_l, &= (51, ey &, ...,fLﬂ) is a vector with u-th

element
§u = (B* —BZ_1> Hﬂu<5k 1 zt) (ﬁ @g 1>

and
n

- _ ~ 0 9log(B;25)
6. (0: 23) = ZZ 0308
=1 t=1

’LL

Hg@g ( t‘/) Heaﬁu (67 zt)

Haop, (85 2;) Haap, (B:27)

A more explicit expression for &, is
§u = (QZT,kA - QZT) Heeﬁu (ﬁk 13 zt> ( nT,k—1 92T>
+2 (QZT,k—l 0nT> Hpap, (ﬁk 1 zt) Gy — Q&

+ (dz—l - @*)/Hwﬁu (Biﬁqé Zit) ((ak—l - d*)) .

Hence

A A~ / A ~ ~

Hqu < H2 < ;T,k:—l - 9;:T> HGOﬁu (ﬁli—l;zgkt> ( ZT,k—l - 0;T>
~Ax\/ 2 * A% ~ %

+ H2 Qg — & ) Heaop, (511—13%5) (%—1 —Q ) ‘

N 2
<2, (3| \

2N 1«
" Z T Z ’Haiaiﬂu (ﬁli—l? ZZ&)
=1 t=1

N s
enT,k— 1 enT

2
A% A%
(ai,k—l - O‘z‘)
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where ||-|| is the Euclidean norm, that is, for a symmetric matrix A,
|A||> = trace(AA"). So

|6 -

s s
QnT,k—l - QnT

2
o G (A.49)

where

Cek 1= H (Be-1 zt HZHHGGﬁu ﬁk 15 %) ||

(61 —a2)".

;o By (ﬁk 17 Zt)

Coz,k—l = H( ﬁk’ 15 zt 7’LT

For k = 1, we have

n—oo

P (TP*hm

> 2(]1>

N s
enT,kf 1 enT

2
<p (T}.D*hmg;jk1 ‘ > (11) +P (TP"‘limggJH > Cl) (A.52)
The first probability in (A.52) satisfies

P (T}.D*limg;k_1

2
> Cl)

2
‘ > Cy, Plim(;,_, < 02)

s s
QnT,k—l - QnT

<P (TP*limg“é:k_l

A* A*
enT,k— 1 enT

+ P (Plim¢,_, > 02)

> ayca) v p (G = o)

N N
enT,k— 1 enT

imGp g > C'Q) +o(1) (A.53)
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using (A.47). We proceed to bound P (P*limC;,kfl > C’g) . By definition,

P (pipcr =)

N -1 LB A
= P (| P (51 22) ‘ Plim Y | Hans, (3200 | 2 Co
=1
Lg
< P | Pim > ||n Hons, (B]_y: 20)|| = V/Co
=1
. -1
+ P ( P*lim <n*1H (Br-1; zz“t) 02)
— A+ B (A.54)
where
Lg
A=P P*limz Hn_lHeeﬁu(ﬁALﬁZ;) > V0G|, (A.55)
=1
and

R -1
Prlim (nilH(ﬁk,l; z;)

n—oo

s-r(

Note that B,i_l is between B and [}* and

> C2>-

B =P3+0,(1). (A.56)

Using a uniform law of large numbers under the probability measure P* and the

dominated convergence theorem, we have

P* lim — ZHHG%" 5k 1 Zi)

n—oo M

T

o 0%log ﬁk 1 2)
nT Z Z 00, 0000’

Lg
1 1 9 92log(f3; %)
= lim =Y | lim B*— %
nH&n; o nT;;EMU 9000’
Lg

=N
= lim — > || F;

u=1

1
= lim — P* i
J Z li

0p, 0006 (A.57)

1 ET: 0 @2log(ﬁ;zit)]

B=5
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where the last equality follows because P* conditional on the data (i.e. énT, &;) is

the same as P but with different model parameters. Hence,

Lﬁ T
1 1 0 0%*log(B; =,

A=P | — & >
3 P ]H "

which can be made arbitrarily small if we choose a large Cj.
Using the same argument, we can show that, when C, is large enough,

B =0(1) as n and T go to oo. We have therefore proved

n—oo

P (P*hmg;;T > CQ) = o(1). (A.58)

when () is large enough.

To show that the second probability in (A.52) is 0 (1), it suffices to prove

P —ZP*JH{}M—ZZ‘ et (81372

=o0(1).

( Qg1 d;'k)2> Cs

But

_ZP*JI—E}O’]’L_ZZ‘HQZQZBH <6k 1 zt)

=1 t=1

2
) Bl
=—ZP ,}Eﬁon—;;\ﬂwﬁu (3Lsssi) <T+T;%>
(o)

— ZP* nh—{gon_zz ‘Halalﬂu (ﬁk 13 zt)

i=1 t=1

( ’Lk 1 &:()2

@2 11 &L\
T2 +? ﬁ;wit

x (140, (1))

— ZP* JE&FZZ ‘Halalﬁu <ﬁk 13 zt>

i=1 t=1

x (140, (1))

o}
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where the last equality follows from the ULLN.
Combining (A.53) with (A.58), we have, for k = 1.

P <TP*lim BB

n—o0

> 0) =0(1)
when C' is large enough. That is, when k =1

R N 1
P*limf; = P*limfs* + O, (?) . (A.59)

For k > 2, we note that

|

2

A

By -5 Bi — 5

SUZT)

where

[(H (2] Ha (B2

1
i = 5 max

Using the recursive relationship repeatedly, we have, for k > 2,

|

gl (A.60)

BZ - B* < (U;T)qﬁ

where ¢ = Z?:z 2071,
Using a similar argument, we can show that P*lim,,_,. 7y = O, (1) . Com-

bining this with (A.59) and (A.60), we have

. 1\
ceten-o ()

which implies that

1\
)0

as desired.

I11. Proof of Theorem 3

Define our truncated k-step bootstrap bias corrected estimator to be:

énT,k = QénT - B (é:LT,k) .
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Then
VT (Onr — 00)
= VnT (énT — 0T> +VnT <9T — 0o — [E* () — énTD
= VnT <énT — 9T> +VnT <9T — 0o — [If;léglé::r’ - énTD
VAT (Pl Pl ) 4 VAT (P i = Pt
+VnT (Pn*_}igné;T,k - E” (éZT,k)>
As HN has shown that
VAT (0 — br) <5 N(O.EIZ]™)
and we have shown that

i (07 =00 (1t ~0er]) = 0, (7:)

T2
and

1

P*limb} — P limb;, = O, (ﬁ

n—oo n—

Therefore, it suffices to show

< (A.62)

3= 3=

) (A61)
)

P Uim@y., — E* (0 ) = O,

1. Prove P* liméj;rﬂk — P hmé:zT,k =0y (%)

By definition (c.f. (A.17)) we have:

~

P limé: ., — P limf;y., = P* lim (énT - é;ﬂk) 1 (\/nT -

> MnT> .

As

n—0oo

<

P tim (.0 — 07 ) ‘ +

n—oo

i (5 ) | = 0, (7).



it suffices to show

P*liml <\/nT -

> Myr) =0, <%) .

For any given § > 0, we have

V

P (T . P*lim1 (\/nT é;;T,k .

> MnT>

)

= P (P2limt (VAT g~ dur| > M) = 1)

= P (1 (Bt (B =] > M) = 1)

= P (Bt [y nT)>MnT)

< P (P T | = | + P G = i) > M)
o [()+0(1)]>Mﬂ)

o (1)

using the condition that \/_ = o(M,r) and M,,7 — oo. Here we have used
=0, (%) and P*limvnT 0

Combining the above results yields

P*lim

n—oo

nT — enT nT = Op (1).

E3
QnT,k - enT

1
P hm9nT 1 P hmGnT r = Op (772)

as desired.

2. Prove v/nT (P* limf%y, — E* (é;;T,k)) = 0,(1)
We write v/nT <P* limf:,., — E* (9ZT,k)) as

VnT <P thZTk E* (éZTk))

n—o0

= \/n_T<P* lim [(éZT,k - énT) 1 (\/n_T ‘éZT,k — énT < MnT>]

[ ) (T ] < 0) )

. ~
enT,k - enT
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We consider only the case that k = 1 as the proof for other cases is similar. Let

Dor(6,a) = ( Zzuwea> (nLTZZUM,a)),

i=1 t=1 =1 t=1

then

VnT (P* limézﬂk —F (é*T k))
— P i [VAT D} (. a1 (VAT D3 (. (0u))| < M)

+ B [VaT Dy (b 6 (W_D b, 6(Bur))| < Mar )|
= B [VaT Dyr(6, )1 (wTT [Dur(6,0))] < Mar ) ||

ezénT :a:d<énT)

— P lim \/n_TDnT(H,a)l (\/n_T\DnT(G, a))| < MnTﬂ

n—oo GZénT,a:&(énT)

=0, (1)

where the last equality follows from the dominated convergence theorem.

Finally,

VAT (B — 00

= V/nT (énT - 9T) +VnT <9T - [E () — énT])

= VT (Our = ) + VT (07 — 0 — | P*limdy — Oy )

+VnT (P limf; — P hmem) + VT (P* limfy,,, — P* hmem)
+ VAT [Pl — B (0r1,)]

= VT (fur = 0r) + 0, (1) % N(0, E[Z] )

as n/T? — 0. Thus, Theorem 3 is proved. B
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