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ABSTRACT OF THE DISSERTATION

Improved Inference for spatial and panel models

by

Min Seong Kim

Doctor of Philosophy in Economics

University of California, San Diego, 2011

Professor Yixiao Sun, Chair

Chapter 1 is “Heteroskedasticity and Spatiotemporal Dependence Robust

Inference for Linear Panel Models with Fixed Effects.” This chapter studies robust

inference for linear panel models with fixed effects in the presence of heteroskedas-

ticity and spatiotemporal dependence of unknown forms. We propose a bivariate

kernel covariance estimator, which is flexible to nest existing estimators as special

cases with certain choices of bandwidths. For distributional approximations, we

consider two different types of asymptotics. When the level of smoothing is as-

sumed to increase with the sample size, the proposed estimator is consistent and

the associated Wald statistic converges to a χ2 distribution. We show that our

covariance estimator improves upon existing estimators in terms of robustness and

efficiency. When we assume the level of smoothing to be held fixed, the covariance

xi



estimator has a random limit and we show by asymptotic expansion that the lim-

iting distribution of the test statistic depends on the bandwidth parameters, the

kernel function, and the number of restrictions being tested. As this distribution is

nonstandard, we establish the validity of an F -approximation to this distribution,

which greatly facilitates the test. For optimal bandwidth selection, we propose a

procedure based on the upper bound of asymptotic mean square error criterion.

The flexibility of our estimator and proposed bandwidth selection procedure make

our estimator adaptive to the dependence structure in data. This adaptiveness

automates the selection of covariance estimator. That is, our estimator reduces to

the existing estimators which are designed to cope with the particular dependence

structures. Simulation results show that the F -approximation and the adaptive-

ness work reasonably well.

Chapter 2 is “Spatial Heteroskedasticity and Autocorrelation Consistent Es-

timation of Covariance Matrix.”. This chpater considers spatial heteroskedasticity

and autocorrelation consistent (spatial HAC) estimation of covariance matrices of

parameter estimators. We generalize the spatial HAC estimators introduced by

Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with

moment conditions. We establish its consistency, rate of convergence and asymp-

totic truncated mean squared error (MSE). Based on the asymptotic truncated

MSE criterion, we derive the optimal bandwidth parameter and suggest its data

dependent estimation procedure using a parametric plug-in method. The finite

sample performances of the spatial HAC estimator are evaluated via Monte Carlo

simulation.

Chapter 3 is “k-step Bootstrap Bias Correction for Fixed Effects Estimator

in Nonlinear Panel Models.” Fixed effects estimators in nonlinear panel models

with fixed T usually suffer from inconsistency because of the incidental parameters

problem first noted by Neyman and Scott (1948). Moreover, even though T grows

at the same rate as n, they are asymptotically biased and therefore the associated

confidence interval has a large coverage error. This chapter proposes a k-step

parametric bootstrap bias corrected estimator. We prove that our estimator is

asymptotically normal and is centered at the true parameter if T grows faster

xii



than 3
√
n. In addition to bias correction, we construct a confidence interval with a

double bootstrap procedure, and Monte Carlo experiments confirm that the error

in coverage probability of our CI’s is smaller than those of the alternatives. We

also propose bias correction for average marginal effects.

xiii



Chapter 1

Heteroskedasticity and

Spatiotemporal Dependence

Robust Inference for Linear Panel

Models with Fixed Effects

1.1 Introduction

This paper studies robust inference for linear panel models with fixed effects

in the presence of heteroskedasticity and spatiotemporal dependence of unknown

forms. As economic data is potentially heterogeneous and correlated in unknown

ways across individuals and time, the robust inference in the panel setting is an

important issue. See, for example, Betrand, Duflo and Mullainathan (2004) and

Petersen (2009). The main interest in this problem lies in (i) how to construct

covariance estimators that take the correlation structure into account; (ii) how to

approximate the sampling distribution of the associated test statistic; and (iii) how

to select smoothing parameters in finite samples.

Regarding covariance estimation, we propose a bivariate kernel estimator.

1
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In order to utilize the kernel in the spatial dimension, we need some a priori

knowledge about the dependence structure. It is often assumed that the covariance

of two random variables at locations i and j is a decreasing function of an observable

distance measure dij between them. An example of dij is the economic distance.

The idea of using a distance measure to characterize spatial dependence is common

in the spatial econometrics literature. See, for example, Conley (1999), Kelejian

and Prucha (2007), Bester, Conley, Hansen and Vogelsang (2009, BCHV hereafter)

and Kim and Sun (2010, KS hearafter).

There are several robust covariance estimators with correlated panel data.

Liang and Zeger (1986) and Arellano (1987) propose the clustered covariance es-

timator (CCE) by extending White standard error (White, 1980) to account for

serial correlation. Wooldridge (2003) provides a concise review on the CCE and

Kèzdi (2003) explores its properties in panel models with fixed effects. Driscoll and

Kraay (1998, DK hereafter) suggest a different approach that uses a time series

HAC estimator (Domowitz and White, 1982; and Newey and West, 1987) with

the cross-sectional averages of moment conditions. Gonçlaves (2008) examines the

properties of this estimator in linear panel models with fixed effects. Another ap-

proach considered in this paper is the extension of the spatial HAC estimator with

serial averages of moment conditions, which we name the KS estimator. This is

symmetric to the DK estimator. The spatial HAC estimator is firstly proposed by

Conley (1999), and Kelejian and Prucha (2007) argue that it can be extended to

the panel setting with fixed T .

As our estimator is based on the bivariate kernel, it nests these existing

estimators as special cases, reducing to each of them with certain bandwidth selec-

tion. We refer to this as flexibility. If the sequence of the bandwidth in the spatial

dimension, dn, is assumed to increase fast to satisfy certain condition, then our

estimator with the rectangular kernel converges to the DK estimator. Similarly, if

we assume the sequence of the bandwidth in the time dimension, dT , to increase

fast enough, then our estimator with the rectangular kernel converges to the KS
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estimator. On the other hand, if dn is assumed to approach to zero, our estimator

reduces to the generalized CCE.

For distributional approximations, we consider both the increasing smooth-

ing asymptotics and fixed smoothing asymptotics. Let `i,n denote the number of

individuals whose distance from individual i is less than or equal to dn and `n

be the average of `i,n across i. If dn, dT → ∞ as n, T → ∞ but slowly so that

`n`T/nT → 0, then the level of smoothing increases with the sample size. As a

result, our covariance estimator is consistent and the limiting distribution of the

associated Wald statistic is the χ2 distribution.

The alternative estimators are also consistent under some regularity condi-

tions, but each approach has an important limitation in practice. The properties

of the CCE heavily depend on spatial correlation. While this estimator is quite

efficient with zero correlation in the spatial dimension, even moderate spatial cor-

relation may lead to the substantial bias of the estimator and hence size distortion

in statistical inference. Though zero correlation between individuals is sometimes

assumed for convenience, they are generally not independent due to, for example,

spill-over effects, competition and so on.1 For the DK estimator, collapsing spatial

dependence by the cross-sectional averaging, it is robust to arbitrary form of spa-

tial dependence. However, when spatial dependence decreases with some distance

measure, this estimator is not efficient because it does not downweigh or truncate

the covariance between spatially remote units. For the KS estimator, in contrast,

it does not employ downweighing or truncation in the time domain.

The proposed estimator improves upon the above estimators by employing

a bivariate kernel. It does not require zero spatial correlation for consistency in

1Recently, Bester, Conley and Hansen (2010) present consistency results for the CCE with
spatially dependent data by constructing clusters to be asymptotically independent. In this
paper, we consider a rather traditional panel CCE for which the cluster is defined based on
each individual so that the asymptotic independence condition is not valid. Cameron, Gelbach,
and Miller (2006) and Thompson (2009) address this problem by clustering on the time and
spatial dimensions simultaneously. While this allows for both the serial and spatial correlations,
observations on different individuals in different time are assumed to be uncorrelated.
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contrast to the CCE and more efficient than the DK and KS estimators in general.

More specifically, if individuals are located on a 2-dimensional lattice and the

Bartlett kernel is used, our estimator is more efficient than the DK estimator if

T = o(n3/2) and than the KS estimator if n = o(T 4). The conditions are more

generous with the second order kernels, such as the Parzen kernel, i.e. T = o(n5/2)

and n = o(T 6).

If `n`T/nT is assumed to be held fixed, then the level of smoothing is fixed

with the sample size. Under fixed smoothing asymptotics, the covariance estimator

converges in distribution to a random matrix and the limiting distribution of Wald

statistic is nonstandard but pivotal. The fixed smoothing asymptotic approxima-

tion is firstly suggested by Kiefer, Vogelsang and Bunzel (2000) and Kiefer and

Vogelsang (2002a, 2002b, 2005) in the time series context. This is usually referred

to as ‘fixed-b’ asymptotics where b denotes the ratio of the bandwidth parameter

dT to the sample size T . They show by simulation that the fixed-b asymptotic ap-

proximation is more accurate in size than the χ2 approximation. Jansson (2004),

Sun, Phillips and Jin (2008), and Sun and Phillips (2009) provide its theoretical

analyses.

We adopt the fixed smoothing asymptotics in the panel setting with our

covariance estimator. Using asymptotic expansion we show that the deviation of

this limiting distribution from the χ2 distribution depends on the smoothing pa-

rameters, kernel function and the number of restrictions being tested. We can

accommodate the estimation uncertainty of the parameter estimator and the ran-

domness of the covariance estimator under fixed smoothing asymptotics. As the

limiting distribution is nonstandard, we extend Sun (2010) to establish the validity

of an F -approximation to this distribution. Under fixed smoothing asymptotics,

the covariance estimator converges in distribution to an infinite weighted sum of

independent Wishart distributions. We approximate this with a single Wishart

distribution with an ‘equivalent degree of freedom.’ With this result, the fixed

smoothing limiting distribution of the scaled Wald statistic with some correction
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factor becomes approximately F distributed. This F -approximation greatly fa-

cilitates the testing procedure because we can obtain the critical values without

simulation.

Several testing methods using the fixed smoothing asymptotics are recently

proposed in the spatial or panel setting. BCHV extend the fixed-b asymptotics to

the spatial context where dependence is indexed in more than one dimension, and

propose an i.i.d. bootstrap method to obtain the critical values. Vogelsang (2008)

develops a fixed-b asymptotic theory for statistics based on the generalized CCE

and the DK estimator. Besides the kernel methods, Hansen (2007) and Bester,

Conley and Hansen (2009) apply the fixed smoothing asymptotics to the testing

procedure with the CCE. They assume the number of clusters to be fixed and the

number of observations per cluster to increase with the sample size. Ibragimov

and Müller (2010) consider fixed smoothing asymptotics for the Fama and Mac-

Beth (1973) type procedure by fixing the number of groups. Sun and Kim (2010)

considers a testing procedure using the series covariance estimator in the spatial

setting. They show that, when the number of basis functions is assumed to be

held fixed, the series estimator converges in distribution to a Wishart distribution,

and that the scaled Wald statistic converges to F distribution. The motivation

of our F -approximation arises from the series method. All the kernel covariance

estimators with positive semi-definite kernels can be written as series covariance

estimators (Percival and Walden, 1993, p. 353). Actually, the other two ‘non-

kernel’ methods also use the t or F distribution as the reference distribution while

the kernel methods by BCHV and Vogelsang (2008) have to simulate the critical

values. From this point of view, this paper fills the gap in the literature, providing

F -approximation for the kernel method in the panel setting.

We propose an optimal bandwidth selection procedure based on the upper

bound of the asymptotic mean square error (AMSE∗) criterion. Though it is

standard practice to use the asymptotic mean square error (AMSE) criterion in

the HAC estimation literature (e.g. Andrews, 1991 and Newey and West, 1994),
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it is not tractable for the proposed estimator. Our minimax criterion is simple to

implement and makes the bias and variance tradeoff transparent. It is interesting

to note that the level of persistence in each dimension affects both d?T and d?n, the

optimal bandwidth parameters in the time and spatial dimensions respectively, but

in the opposite direction. We suggest a parametric plug-in procedure for practical

implementation using the spatiotemporal models in Anselin (2001).

Our bandwidth selection procedure does not apply directly to the rectan-

gular and, more broadly, flat-top kernel estimators. However, it is interesting to

consider flat-top kernel estimators because they are higher order accurate (Politis,

2010). This is particularly more important in our setting because the flexibility is

the main ingredient of the adaptiveness of our estimator which is explained below.

We modify our bandwidth selection procedure to be applicable to the rectangular

kernel. This modified procedure leads the rectangular kernel based estimator to

better asymptotic properties than the one with any finite order kernel we target.

The flexibility and proposed data-driven bandwidth selection procedure

make our estimator adaptive to the dependence structure in data. That is, our

estimator reduces to the estimators that are designed to cope with the particular

dependence structures. This adaptiveness is the salient feature of our method. As

it practically automates the selection of covariance estimator, our estimation pro-

cedure can be safely used in the presence of very general forms of spatiotemporal

dependences. This is confirmed by our Monte Carlo study.

The remainder of the paper is as follows. Section 2 introduces the panel

model, covariance estimator and hypothesis testing we consider. In section 3, we

examine the properties of our estimator and the associated test statistic under

increasing smoothing asymptotics. Section 4 develops an optimal bandwidth se-

lection procedure. Section 5 examines the properties of the existing estimators.

The flexibility and adaptiveness of our estimator are illustrated in section 6. In

section 7, we study the limit theory for our covariance estimator and the associ-

ated test statistic under fixed smoothing asymptotics. We also establish its F -
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approximation. Section 8 reports simulation evidence. The last section concludes.

1.2 Panel model, covariance estimator and hy-

pothesis testing

In this paper, we consider a static linear panel regression model with fixed

effects2:

Yit = X ′itβ0 + αi + ft + uit, (1.1)

where Xit and β are p-vectors and αi and ft denote scalar individual and time

effects respectively. When Xit is correlated with αi and ft, we may use a fixed

effects estimation approach. Let Z̄i = T−1
∑T

t=1 Zit, Z̄t = n−1
∑n

i=1 Zit and Z̄ =

(nT )−1∑n
i=1

∑T
t=1 Zit. We also define Z̃it = Zit − Z̄i − Z̄t + Z̄. Then, the fixed

effects estimator, β̂, is defined as

β̂ =

(
n∑
i=1

T∑
t=1

X̃itX̃
′
it

)−1 n∑
i=1

T∑
t=1

X̃itỸit. (1.2)

Under some regularity conditions, the asymptotic distribution of β̂ is

(QnTJnTQ
′
nT )
− 1

2

√
nT
(
β̂ − β0

)
d→ N (0, Ip) as n, T →∞,

where

QnT =

(
(nT )−1

n∑
i=1

T∑
t=1

E
[
X̃itX̃

′
it

])−1

and JnT = var

(
(nT )−1/2

n∑
i=1

T∑
t=1

X̃ituit

)
.

To make inference on β0, we have to estimate unknown quantities in the asymptotic

variance of β̂. Since QnT is consistently estimated with its sample analog, our

central interest is on JnT . Letting V(i,t) = X̃ituit, JnT can be rewritten as

JnT =
1

nT

n∑
i,j=1

T∑
t,s=1

E
[
V(i,t)V

′
(j,s)

]
:=

1

nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js). (1.3)

2Our analysis can potentially be generalized to the GMM setting. We focus on a static linear
panel model to be free from the incidental parameters problem (Neyman and Scott, 1948) which
the fixed effects estimators of nonlinear and dynamic panel models usually suffer from. See
Arellano and Hahn (2006) for detail.
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We propose a bivariate kernel covariance estimator which is given as

ĴnT =
1

nT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
V̂(i,t)V̂

′
(j,s), (1.4)

where V̂(i,t) = X̃it(Ỹit − X̃ ′itβ̂) and K(·) is a real-valued kernel function.3 dij and

dts denote the distance measures in the spatial and time dimensions and dn and

dT are the corresponding bandwidth parameters. Whereas it is natural to define

dts = |t− s|, what is used to measure dij differs with applications. Geographic

distance is one of the most common measures, but other measures can also be

considered, e.g. transportation cost (Conley and Ligon, 2000) and similarity of

input and output structure (Chen and Conley, 2001; and Conley and Dupor, 2003).

Consider the null hypothesis H0 : Rβ = r0 and alternative hypothesis

H1 : Rβ 6= r0 where R is a g × p matrix and r0 is a g-vector. For hypothesis

testing, we use the Wald statistic

WnT =
√
nT
(
Rβ̂ − r0

)′ (
RQ̂nT ĴnT Q̂

′
nTR

′
)−1√

nT
(
Rβ̂ − r0

)
where Q̂nT =

(
(nT )−1

∑n
i=1

∑T
t=1 X̃itX̃

′
it

)−1

, and its F -test version

FnT = WnT/g.

1.3 Increasing smoothing asymptotics

1.3.1 Basic setting

We employ the linear transformation of nTp common innovations to repre-

sent the process of V(i,t) as follows:

V(i,t) = R̃(i,t)ε̃, (1.5)

3For simplicity of our analysis, we employ a product kernel with the same kernel function in
each dimension.
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where

R̃(i,t) =


(
r̃

(1)
(it,1,1), r̃

(1)
(it,2,1), . . . , r̃

(1)
(it,n,T )

)
. . . 0

...
. . .

...

0 . . .
(
r̃

(p)
(it,1,1), r̃

(p)
(it,2,1), . . . , r̃

(p)
(it,n,T )

)


is a p× nTp block diagonal matrix with unknown elements and

ε̃ =
((
ε̃(1)
)′
, . . . ,

(
ε̃(p)
)′)′

in which ε̃(c) =
(
ε̃

(c)
(1,1), . . . , ε̃

(c)
(n,1), ε̃

(c)
(1,2), . . . , ε̃

(c)
(n,T )

)′
. As in

KS, we assume that

var
(
ε̃(c)
)

= σccInT , cov
(
ε̃(c), ε̃(d)

)
= σcdInT

and

var (ε̃) = Σ⊗ InT with Σ = (σcd) ,

where c, d = 1, . . . , p and ⊗ denotes the Kronecker product. This type of linear

array processes allows for nonstationarity and unconditional heteroskedasticity of

V(i,t) and includes many spatiotemporal parametric models such as spatial dynamic

models (Anselin, 2001) as special cases. It also treats the temporal and spatial

dependence in a symmetric way.

Let R(i,t) := R̃(i,t)

(
Σ1/2 ⊗ InT

)
and ε := (ε1, . . . , εnTp)

′ =
(
Σ−1/2 ⊗ InT

)
ε̃.

Then,

V(i,t) = R(i,t)ε and var (ε) = InTp. (1.6)

The matrix R(i,t) can be written more explicitly as

R(i,t) :=


(
r

(1)
(i,t),1 . . . r

(1)
(i,t),nTp

)
...(

r
(p)
(i,t),1 . . . r

(p)
(i,t),nTp

)


=


σ11
(
r̃

(1)
(it,1,1) . . . r̃

(1)
(it,n,T )

)
... σ1p

(
r̃

(1)
(it,1,1) . . . r̃

(1)
(it,n,T )

)
...

. . .
...

σp1
(
r̃

(p)
(it,1,1) . . . r̃

(p)
(it,n,T )

)
. . . σpp

(
r̃

(p)
(it,1,1) . . . r̃

(p)
(it,n,T )

)

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where σcd denotes the (c, d)-th element of Σ1/2. We make the following assumption

on εl.

Assumption I1. For all l = 1, . . . , nTp, εl
i.i.d.∼ (0, 1) with E [ε4

l ] ≤ cE for some

constant cE <∞.

For simplicity, we assume that εl is independent of εk for l 6= k. We can relax

independence assumption to zero correlation but with more tedious calculations.

Under Assumption F5, the covariance matrix of V(i,t) and V(j,s) is given by

Γ(it,js) :=
(
γ

(cd)
(it,js)

)
= E

[
V(i,t)V

′
(j,s)

]
= R(i,t)R

′
(j,s), (1.7)

where the (c, d)-th element of Γ(it,js) is denoted by γ
(cd)
(it,js). Accordingly, the covari-

ance matrix can be restated as

JnT =
1

nT

n∑
i,j=1

T∑
t,s=1

R(i,t)R
′
(j,s), (1.8)

and the (c, d)-th element of JnT is

JnT (c, d) =
1

nT

n∑
i,j=1

T∑
t,s=1

(
nTp∑
l=1

r
(c)
(i,t),lr

(d)
(j,s),l

)
. (1.9)

Assumption I2. For all l = 1, ..., nTp, c = 1, ..., p, n and T ,
∑n

i=1

∑T
t=1

∣∣∣r(c)
(i,t),l

∣∣∣ <
cR for some constant cR, 0 < cR <∞.

Assumption I3. There exist q1, q2 > 0 such that

1

nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dq1ij <∞ and
1

nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dq2ts <∞
for all n and T , where ‖A‖ denotes the Euclidean norm of matrix A.

Assumptions F6 and F7 impose the conditions on the persistence of the

process. If |σcd| ≤ C for a constant C > 0, then Assumption F6 holds if∑n
i=1

∑T
t=1 |r̃

(d)
(it,j,s)| < cR/C. Since |r̃(d)

(it,j,s)| can be regarded as the (absolute) change

of V
(d)

(i,t) in response to one unit change in ε̃
(d)
(j,s), the summability condition requires
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that the aggregate response to an innovation be finite. Assumption F7 implies

that Γ(it,js) decays to zero fast as dij and dts increase so that the two summability

conditions holds. These conditions hold if

1

nT

n∑
i,j=1

T∑
t,s=1

∣∣∣∣∣
n∑
a=1

T∑
b=1

r̃
(c)
(it,a,b)r̃

(d)
(js,a,b)

∣∣∣∣∣ dq1ij <∞, (1.10)

1

nT

n∑
i,j=1

T∑
t,s=1

∣∣∣∣∣
n∑
a=1

T∑
b=1

r̃
(c)
(it,a,b)r̃

(d)
(js,a,b)

∣∣∣∣∣ dq2ts <∞ (1.11)

for all c and d. (1.10) and (1.11) imply that as dij or dts increases, the corresponding

two row vectors in R̃(i,t) and R̃(j,s), (r̃
(c)
(it,1,1), . . . , r̃

(c)
(it,n,T )) and (r̃

(d)
(js,1,1), . . . , r̃

(d)
(js,n,T ))

become nearly orthogonal. As the row vector represents the aggregate response of

a unit to all the innovations, this assumption implies the responses of two units

become independent as they become spatially or serially distant. Assumption F7

enables us to truncate the sum of Γ(it,js) and downweigh the summand without

incurring much bias.

As Assumption F7 implies, the key property of dij is to characterize the

decaying pattern of the spatial dependence. In addition, we assume that dij satisfies

the properties of distance in a metric space: (i) dij ≥ 0, (ii) dii = 0, (iii) dij = dji,

and (iv) dij ≤ dik + dkj. In practice, nonetheless, the symmetry condition (iii) may

not hold for some candidates of economic distance. Conley and Ligon (2000), for

example, notice that transportation costs among countries violate this condition

if tariff barriers are asymmetric. In such a case adjustment should be made.4

This adjustment does not affect the asymptotic properties of our estimator from a

perspective of the measurement error problem as explained below.

Observed distance data available to empirical researchers usually contain

measurement errors, and the results in this paper can be generalized to the case

when dij is error contaminated. Following KS, we can show that our asymptotic

results are still valid under the following conditions: (i) the measurement error

4In Conley and Ligon (2000), the asymmetry of transportation costs are adjusted by using
the minimum cost between two countries.
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is independent of εl; (ii) it is of order o(dn) as dn increases; and (iii) the first

summability condition in Assumption F7 holds with an error contaminated dis-

tance measure. In this paper, however, we do not consider measurement errors for

simplicity.

Let

`i,n =
n∑
j=1

1{dij ≤ dn} and `n = n−1

n∑
i=1

`i,n.

`i,n is the number of pseudo-neighbors that unit i has and `n is the average number

of pseudo-neighbors. Here we use the terminology “pseudo-neighbor” in order to

differentiate it from the common usage of “neighbor” in spatial modeling. We

maintain the following assumption on the number of pseudo-neighbors.

Assumption I4. For all i = 1, . . . , n, `i,n ≤ C`n for some constant C.

Assumption F9 allows the units to be irregularly located but rules out the

case that they are concentrated only in some limited area while other area is scarce.

To be symmetric, we also define

`t,T =
T∑
s=1

1{dts ≤ dT} and `T = T−1

T∑
t=1

`t,T = 2dT + 1− dT (dT + 1)

T
,

where −dT (dT +1)/T is an adjustment coming from the points near the boundary.

In order to obtain the properties of the estimator in Theorem 7 below, it

is important to control for the boundary effects. That is, the effects of the units

near the boundary should become negligible as the sample size increases, so that

the asymptotic properties depend only on the behavior of the units in the interior.

We define

En := {i : `i,n = `n + o(`n)}, n1 =
n∑
i=1

1 {i ∈ En} , n2 = n− n1

ET := {t : `t,T = `T + o(`T )}, T1 =
n∑
t=1

1 {t ∈ ET} and T2 = T − T1.
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En and ET represent the nonboundary sets in the spatial and time dimensions.

n1 and T1 denote the sizes of En and ET and n2 and T2 denote the sizes of the

boundary sets. These definitions imply that the size of a boundary set relies on

choice of the corresponding bandwidth. We can mitigate the boundary effects by

raising dn and dT slowly as n and T increase to make the interior large enough.

Provided that n2/n and T2/T are o(1), the boundary effects are asymptotically

negligible. When units are regularly spaced on a lattice in R2, n2/n = o(1) if

`n/n = o (1). T2/T = o(1) holds if `T/T = o(1).

1.3.2 Properties of ĴnT and limiting distribution of Wald

statistic under increasing smoothing asymptotics

We present the consistency, the rate of convergence, and the AMSE of

the estimator and the limiting distribution of the associated test statistic under

increasing smoothing asymptotics. We begin by introducing the assumption on

the kernel used in the estimator.

Assumption I5. (i) The kernel K : R → [0, 1] satisfies K(0) = 1, K(x) =

K(−x), K(x) = 0 for |x| ≥ 1. (ii) For all x1, x2 ∈ R there is a constant, cL < 0,

such that

|K(x1)−K(x2)| ≤ cL |x1 − x2| .

(iii) `−1
n

∑n
j=1K

2
(
dij
dn

)
→ K̄1 for all i ∈ En.

Examples of kernels which satisfy Assumptions F11(i) and (ii) are the

Bartlett, Tukey-Hanning and Parzen kernels. The quadratic spectral (QS) kernel

does not satisfy Assumption F11(i) because it does not truncate. We may gener-

alized our results to include the QS kernel but this requires considerable amount

of work. Assumption F11(iii) is more of an assumption on the distribution of the

units. When the observations are located on a 2-dimensional integer lattice and
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dij is the Euclidian distance, we have

K̄1 =
1

π

∫ 1

−1

∫ √1−x2

−
√

1−x2

K2
(√

x2 + y2
)
dydx = 2

∫ 1

0

rK2(r)dr.

In finite samples, we may use

K̄n = (n`n)−1
n∑

i,j=1

K2

(
dij
dn

)
for K̄1. For the kernel in time dimension, we define

`−1
T

T∑
s=1

K2

(
dts
dT

)
→
∫ 1

0

K2(r)dr := K̄2.

The asymptotic variance of ĴnT depends on J which is the limit value of

JnT .

J := lim
n,T→∞

JnT = lim
n,T→∞

1

nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js).

Assumption I6. For i ∈ En and t ∈ ET ,

lim
n,T→∞

var

 1√
`n`T

∑
j:dij≤dn

∑
s:dts≤dT

V(j,s)

 = J.

Assumption F10 states that the covariance matrix defined locally for each

nonboundary unit converges to the same limiting value of JnT . This assumption is

related to covariance stationarity but weaker. It is implied by covariance station-

arity but it can hold even though covariance stationarity is violated. Stationarity

seems to be a very strong assumption especially in the spatial dimension because

a spatial process is nonstationary simply if each unit has different numbers of

neighbors. This assumption is similar to the homogeneity assumption in Bester,

Hansen and Conley (2009). They assume that the covariance matrix in each cluster

converges to the same limit.

The asymptotic bias of ĴnT is determined by the smoothness of the kernel

at zero and the decaying rates of the spatial and temporal dependence in terms of

dij and dts. Define

Kq0 = lim
x→0

1−K(x)

|x|q0
, for q0 ∈ [0,∞).
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and let q = max{q0 : Kq0 < ∞} be the Parzen characteristic exponent of K(x).

The magnitude of q reflects the smoothness of K(x) at x = 0. Under the assump-

tion that q ≤ qi with i = 1, 2, we define

b
(q)
1 = lim

n,T→∞
b(q)
n , where b(q)

n =
1

nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js)d
q
ij,

b
(q)
2 = lim

n,T→∞
b

(q)
T , where b

(q)
T =

1

nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js)d
q
ts.

Next we introduce additional assumptions required to obtain the asymptotic prop-

erties of ĴnT .

Assumption I7. (i)
√
nT
(
β̂ − β0

)
= Op(1). (ii) (nT )−

1
2
∑n

i=1

∑T
t=1 uit = Op (1).

(iii) (nT )−
1
2
∑n

i=1

∑T
t=1 X̃ituit = Op (1) . (iv) supi,tEX̃

2
it <∞.

Assumption F12 is rather standard. It excludes the case of strong spatial

dependence, which is considered in Gonçalves (2010).

We define the MSE as

MSE

(
nT

`n`T
, ĴnT , SnT

)
=

nT

`n`T
E
[
vec(ĴnT − JnT )′SnTvec(ĴnT − JnT )

]
,

where SnT is some p2 × p2 weighting matrix and vec(·) is the column by column

vectorization function. We also define J̃nT as the pseudo-estimator that is identical

to ĴnT but is based on the true parameter, β0, in place of β̂. That is,

J̃nT =
1

nT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
V(i,t)V

′
(j,s).

Under the assumptions above, the effect of using β̂ instead of β0 on the asymptotic

property is op(1) as Theorem 7(c) states below. Therefore, we use J̃nT to analyze

the asymptotic properties of ĴnT .

Assumption I8. For i = 1, . . . , p E|β̂i|2 <∞, where β̂i is the ith element of β̂.
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Assumption I8 rules out the case when β̂ has an infinite second moment

(Mariano, 1972; and Kinal, 1980) which causes the underlying estimation error to

dominate the MSE.5

Assumption I9. SnT is positive semidefinite and SnT
p→ S for a positive definite

matrix S.

Let tr denote the trace function and Kpp the p2 × p2 commutation matrix.

Under the assumptions above, we have the following theorem.

Theorem 1. Suppose that Assumptions F5-F10 hold, dn, dT →∞, n2 (dn) = o(n),

T2(dT ) = o(T ), `n = o(n) and `T = o(T ).

(a) limn,T→∞
nT
`n`T

var
(
vecJ̃nT

)
= K̄1K̄2(Ipp + Kpp) (J ⊗ J).

(b) Let knT = dT/dn and knT → k > 0 as n, T →∞. Then, limn,T→∞ d
q
n(EJ̃nT −

JnT ) = −Kq

(
b

(q)
1 + 1

kq
b

(q)
2

)
(c) If Assumption F12 holds and d2q

n `n`T/nT → τ ∈ (0,∞), then√
nT
`n`T

(
ĴnT − JnT

)
= Op(1) and

√
nT
`n`T

(
ĴnT − J̃nT

)
= op(1).

(d) Under the conditions of part (c), Assumptions I8 and A.17,

lim
n,T→∞

MSE

(
nT

`n`T
, ĴnT , SnT

)
= lim

n,T→∞
MSE

(
nT

`n`T
, J̃nT , S

)
=

1

τ
K2
q vec

(
b

(q)
1 +

1

kq
b

(q)
2

)′
Svec

(
b

(q)
1 +

1

kq
b

(q)
2

)
+ K̄1K̄2tr (S(I + Kpp)(J ⊗ J)) .

5Instead of Assumption I8, we can consider asymptotic truncated MSE as Andrews (1991)
and Kim and Sun (2009).
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Proofs are given in the appendix. For each element of J̃nT , the asymptotic

variance in Theorem 7(a) is rewritten as

lim
n,T→∞

nT

`n`T
cov
(
J̃nT (c1, d1) , J̃nT (c2, d2)

)
= K̄1K̄2 [J (c1, c2) J (d1, d2) + J (c1, d2) J (d1, c2)] ,

Theorem 7(a) and (b) show that the asymptotic variance and bias of J̃nT depend

on the choice of dn and dT . When we enlarge dn and/or dT , the bias decreases

while the variance increases and vice versa. The second part of Theorem 7(c)

states that, in comparison with the variance term in part (a), the effect of using

V̂(i,t) instead of V(i,t) in the construction of ĴnT is of smaller order. Therefore, the

convergence rate of ĴnT is obtained by balancing the variance and the squared

bias of J̃nT . Accordingly, `n`T = o(nT ) is the condition for the consistency and

its rate of convergence is
√
nT/`n`T . It is also required that T2(dT ) = o (T ) and

n2 (dn) = o (n) to control the boundary effects. Let ηT = 1. If we set `n = O(dηnn )

and `T = O(dηTn ) for some ηn > 0, then the rate of convergence under the rate

condition d2q
n `n`T/nT → τ ∈ (0,∞) is (nT )q/(2q+ηn+ηT ).

As ĴnT is consistent, the limiting distribution of the Wald statistic is a χ2
g

distribution. This is rather standard. Under H0

WnT
d→ χ2

g and FnT
d→ χ2

g/g.

1.4 Optimal bandwidth selection procedure

This section presents optimal bandwidth choice in the sense of minimizing

the upper bound of AMSE of ĴnT and proposes a parametric plug-in procedure for

practical implementation. Let

B11 = vec
(
b

(q)
1

)′
SnTvec

(
b

(q)
1

)
,

B22 = vec
(
b

(q)
2

)′
SnTvec

(
b

(q)
2

)
,

B12 = vec
(
b

(q)
1

)′
SnTvec

(
b

(q)
2

)
.
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Then, up to smaller order terms

AMSE = K2
q

(
B11

d2q
n

+ 2
B12

dqnd
q
T

+
B22

d2q
T

)
+
`n`T
nT
K̄1K̄2tr [SnT (Ipp + Kpp) (J ⊗ J)]

≤ 2K2
q

(
B11

d2q
n

+
B22

d2q
T

)
+
`n`T
nT
K̄1K̄2tr [SnT (Ipp + Kpp) (J ⊗ J)]

:= AMSE∗,

where the inequality holds by the Cauchy inequality. AMSE∗ can be regarded as

AMSE in the worst case:

AMSE∗ = max
(b1,b2)∈B

AMSE,

where

B =

{
(b1, b2) : vec

(
b

(q)
1

)′
SnTvec

(
b

(q)
1

)
= B11, vec

(
b

(q)
2

)′
SnTvec

(
b

(q)
2

)
= B22

}
.

We select (d?n, d
?
T ) to minimize the AMSE∗:

(d?n, d
?
T ) = arg min

dn,dT

2K2
q

(
B11

d2q
n

+
B22

d2q
T

)
+
`n`T
nT
K̄1K̄2C, (1.12)

where C = tr [SnT (Ipp + Kpp)(J ⊗ J)] . Here, we use the AMSE∗ instead of the

AMSE as the criterion. In the HAC estimation literature, it is standard practice

to use the AMSE criterion , e.g. Andrews (1991) and Newey and West (1994).

In our setting, though, it is intractable. Suppose B12 = −
√
B11B22. This may

occur when we are interested in a single component of β. In this case, bandwidth

choices satisfying dqn/d
q
T =

√
B11/B22 make the first order bias terms cancel out

with each other. Therefore, in theory, the trade-off becomes between the second

order bias and the variance term. However, this choice is infeasible in practice. As

B11/B22 is unknown, we have to estimate this ratio and the estimation error is of

the same order as the first order bias, bandwidth selection based on the trade-off

between the second order bias and variance give too much weight on the variance.

In contrast, our minimax criterion is simple to implement, as d?n and d?T depend

only on two bias terms but not on their interaction. It also effectively controls for

the MSE in terms of the upper bound.
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Figure 1.1: Level curves of d?n and d?T with respect to spatio-temporal dependences

Under the boundary condition in the time dimension, `T/T → 0, `T = 2dT+

o(dT ). In some cases, it is also possible to approximate `n as a function of dn. For

example, if individuals are on a 2-dimensional lattice and the Euclidean distance

is used, `n = πd2
n would be a reasonable approximation. With the specification of

`n = αnd
ηn
n and `T = αTd

ηT
T , we obtain explicit formulas of d?n and d?T as follows:

d?n =

(
4qK2

qB11

ηnαnαT K̄1K̄2C
nT

)1/(2q+ηn+ηT )(
ηTB11

ηnB22

)ηT /[2q(2q+ηn+ηT )]

, (1.13)

d?T =

(
4qK2

qB22

ηTαnαT K̄1K̄2C
nT

)1/(2q+ηn+ηT )(
ηnB22

ηTB11

)ηn/[2q(2q+ηn+ηT )]

. (1.14)

(1.13) and (1.14) show that the degree of persistence in one dimension affects

both d?n and d?T but in the opposite direction. For example, if a process becomes

spatially persistent, d?n is increased to address the increasing bias, which comes

from the usage of kernel in the spatial domain. But, the increase of d?n, at the

same time, magnifies the variance term. Therefore, in order to minimize AMSE∗,

d?T is decreased to moderate the inflation of the asymptotic variance. Figure 1

illustrates this relation of d?n and d?T with different dependence structure. The two

graphs are the level curves of d?n and d?T as functions of λ and ρ, which determine



20

the spatial and temporal persistence respectively in the following DGP:

Vt = λVt−1 + ut, ut = ρWnut + εt and εt ∼ (0, In),

where Vt, ut and εt are n-vectors such as Vt =
(
V(1,t), V(2,t), . . . , V(n,t)

)′
and Wn is

a spatial weight matrix. These two graphs indicate that d?n increases as spatial

dependence increases or temporal dependence decreases and that d?T increases as

temporal dependence grows or spatial dependence is reduced.

Corollary 1. Suppose Assumptions F5-A.17 hold. Assume that `n = αnd
ηn
n and

`T = αTd
ηT
T for some ηn, ηT > 0, αn = α1 +o(1) and αT = α2 +o(1). Then, for any

sequence of bandwidth parameters {dn, dT} such that d2q
n `n`T/nT → τ ∈ (0,∞),

{d?n, d?T} is preferred in the sense that

lim
n,T→∞

[
max

(b1,b2)∈B
MSE

(
(nT )2q/(2q+ηn+ηT ) , ĴnT (dn, dT ), SnT

)
− max

(b1,b2)∈B
MSE

(
(nT )2q/(2q+ηn+ηT ) , ĴnT (d?n, d

?
T ), SnT

)]
≥ 0.

The inequality is strict unless dn = d?n + o
(

(nT )1/(2q+ηn+ηT )
)

and dT = d?T +

o
(

(nT )1/(2q+ηn+ηT )
)
.

Our bandwidth selection procedure does not apply directly to the rectan-

gular kernel estimator, and more broadly, flat-top kernel estimators because their

asymptotic bias is of smaller order than the one in Theorem 1(b). However, it is

interesting to consider flat-top kernel estimators because they are higher order ac-

curate. This is particularly important in our setting because the rectangular kernel

is completely compatible with the adaptiveness of our estimator as explained below

while finite order kernels yield some discrepancy. In time series HAC estimation,

Andrews (1991, footnote on p. 834) and Lin and Shinichi (2009) suggest a practical

rule for the rectangular kernel estimator based on the AMSE criterion. Sun and

Kaplan (2010) explore this problem rigorously and provide a bandwidth selection

procedure that is testing optimal. By extending these preceding methods, we ob-

tain the optimal bandwidth parameters for the rectangular kernel, (d?rec,n, d
?
rec,T )
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which lead the rectangular kernel estimator to smaller AMSE∗ than any finite

order kernel estimator we target.

Let Ktar(·) be the target kernel and (d?tar,n, d
?
tar,T ) be its optimal bandwidth

parameters. Given `n = αnd
ηn
n and `T = αTd

ηT
T , if we set

d?rec,n = d?tar,n

(
K̄tar,1
K̄rec,1

)1/ηn

and d?rec,T = d?tar,T

(
K̄tar,2
K̄rec,2

)1/ηT

, (1.15)

then the asymptotic variance of the rectangular-kernel estimator is the same as that

of the estimator based on the target kernel. However, under some smootherness

conditions, the asymptotic bias of the rectangular-kernel estimator is of smaller

order. As a result, the rectangular kernel estimator has smaller AMSE∗ than the

one based on the target kernel.

As (A.9) is the function of unknown values such asB11, B22 and C, they need

to be estimated for implementation with given data in a parametric (e.g. Andrews,

1991; and Kim and Sun, 2010) or nonparametric way (e.g. Newey and West, 1994).

In this paper, we suggest a parametric plug-in method. We consider the following

four different spatiotemporal parametric models, which are introduced in Anselin

(2001).

V
(c)

(i,t) = ρc

[
W (c)
n V

(c)
t−1

]
i
+ ε̃

(c)
(i,t), (1.16)

V
(c)

(i,t) = λcV
(c)

(i,t−1) + ρc

[
W (c)
n V

(c)
t−1

]
i
+ ε̃

(c)
(i,t) (1.17)

V
(c)

(i,t) = λcV
(c)

(i,t−1) + φc

[
W (c)
n V

(c)
t

]
i
+ ε̃

(c)
(i,t) (1.18)

V
(c)

(i,t) = λcV
(c)

(i,t−1) + φc

[
W (c)
n V

(c)
t

]
i
+ ρc

[
W (c)
n V

(c)
t−1

]
i
+ ε̃

(c)
(i,t) (1.19)

where ε̃
(c)
(i,t)

i.i.d∼ (0, σcc) and [W
(c)
n V

(c)
t ]i is the ith element of vector W

(c)
n V

(c)
t . The

spatial weight matrix W
(c)
n is determined a priori and by convention it is row-

standardized and its diagonal elements are zeros. For an illustrative purpose, let’s
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consider the model in (1.16). It can be rewritten in a recursive way as follows:

V
(c)

1 = ρcW
(c)
n V

(c)
0 + Inε̃

(c)
1

V
(c)

2 = ρ2
c

(
W (c)
n

)2
V

(c)
0 + ρcW

(c)
n ε̃

(c)
1 + Inε̃

(c)
2

...

V
(c)
T = ρTc

(
W (c)
n

)T
V

(c)
0 + ρT−1

c

(
W (c)
n

)T−1
ε̃

(c)
1 + ρT−2

c

(
W (c)
n

)T−2
ε̃

(c)
2 + . . .+ Inε̃

(c)
T

Imposing the initial condition of V0 = 0, we can estimator ρc by OLS with V̂
(c)
t =

(V̂
(c)

(1,t), . . . , V̂
(c)

(n,t))
′. We define

ˆ̃R
(c)
ts =


In, if t− s = 0(
ρ̂cW

(c)
n

)t−s
, if t− s > 0

0, otherwise,

and

ˆ̃R
(c)
(i,t) =

[
ˆ̃R

(c)
t1,i,

ˆ̃R
(c)
t2,i, . . . ,

ˆ̃R
(c)
tT,i

]
,

where ˆ̃R
(c)
ts,i denotes the i-th row of ˆ̃R

(c)
ts . Consequently, we approximate J , b

(q)
1 and

b
(q)
2 by

Ĵ (c, d) =
σ̂cd
nT

n∑
i=1

n∑
j=1

T∑
t=1

T∑
s=1

(
ˆ̃R

(c)
(i,t)

)(
ˆ̃R

(d)
(j,s)

)′
, (1.20)

b̂
(q)
1 (c, d) =

σ̂cd
nT

n∑
i=1

n∑
j=1

T∑
t=1

T∑
s=1

(
ˆ̃R

(c)
(i,t)

)(
ˆ̃R

(d)
(j,s)

)′
dqij, (1.21)

b̂
(q)
2 (c, d) =

σ̂cd
nT

n∑
i=1

n∑
j=1

T∑
t=1

T∑
s=1

(
ˆ̃R

(c)
(i,t)

)(
ˆ̃R

(d)
(j,s)

)′
dqts, (1.22)

where

σ̂cd =
1

n(T − 1)− 1

(
ε̂(c)
)′ (

ε̂(d)
)
,

ε̂(c) = ((ε̂
(c)
1 )′, ..., (ε̂

(c)
T )′)′, ε̂

(c)
1 = V̂

(c)
1 and ε̂

(c)
t = V̂

(c)
t − ρ̂cW

(c)
n V̂

(c)
t−1. for t ≥ 2.

Substituting these estimators into (A.9) for the true parameters, we obtain the

data-driven bandwidth parameters, (d̂n, d̂T ) as follows:(
d̂n, d̂T

)
= arg min

dn,dT

2K2
q

(
B̂11

d2q
n

+
B̂22

d2q
T

)
+
`n`T
nT

Ĉ. (1.23)
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where

B̂11 = vec
(
b̂

(q)
1

)′
SnTvec

(
b̂

(q)
1

)
,

B̂22 = vec
(
b̂

(q)
2

)′
SnTvec

(
b̂

(q)
2

)
,

Ĉ = tr
[
SnT (I + Kpp)(Ĵ ⊗ Ĵ)

]
.

Correspondingly, using the specification of `n = αnd
η
n we obtain

d̂n =

(
4qK2

q B̂11

ηnαnαT K̄1K̄2Ĉ
nT

)1/(2q+ηn+ηT )(
ηT B̂11

ηnB̂22

)ηT /[2q(2q+ηn+ηT )]

, (1.24)

d̂T =

(
4qK2

q B̂22

ηTαnαT K̄1K̄2Ĉ
nT

)1/(2q+ηn+ηT )(
ηnB̂22

ηT B̂11

)ηn/[2q(2q+ηn+ηT )]

. (1.25)

It also follows

d̂rec,n = d̂tar,n

(
K̄tar,1
K̄rec,1

)1/ηn

and d̂rec,T = d̂tar,T

(
K̄tar,2
K̄rec,2

)1/ηT

. (1.26)

Since the models in (1.17), (1.18) and (1.19) can be rewritten as

V
(c)

(i,t) =
[(
λcIn + ρcW

(c)
n

)
V

(c)
t−1

]
i
+ ε̃

(c)
it ,

V
(c)

(i,t) =
[
λc
(
In − φcW (c)

n

)−1
V

(c)
t−1

]
i
+
[(
In − φcW (c)

n

)−1
ε̃

(c)
t

]
i
,

V
(c)

(i,t) =
[(
In − φcW (c)

n

)−1 (
λcIn + ρcW

(c)
n

)
V

(c)
t−1

]
i
+
[(
In − φcW (c)

n

)−1
ε̃

(c)
t

]
i
,

we can derive the data dependent bandwidth parameters with these models using

the same procedures as (1.16). While the OLS estimator is consistent for (1.17),

it is not for (1.18) and (1.19) due to endogeneity of [W
(c)
n V

(c)
t ]i. For these models,

we can have consistent estimators using QMLE as follows:(
λ̂c, φ̂c, ρ̂c, σ̂cc

)
= arg min

λc,φc,ρc,σcc

1

2
lnσcc−

1

n
ln
∣∣In − φcW (c)

n

∣∣+ 1

2σcc

1

nT

T∑
t=1

(
ε̂

(c)
t

)′ (
ε̂

(c)
t

)
.

See Yu, de Jong and Lee (2008) for detail. In fact, however, the simple OLS can

still be used for (1.18) and (1.19). Since the parametric models are most likely

to be mis-specified, the QML estimator is not necessarily preferred. In addition,

as argued by Andrews (1991), good performance of the estimator only requires

(d̂n, d̂T ) to be near the optimal bandwidth values and not to be precisely equal to

them. Furthermore, OLS estimation is computationally much less demanding.
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1.5 Comparison with CCE, DK and KS estima-

tors

For comparison, we examine the asymptotic properties of the CCE, DK

and KS estimators based on our data representation in (1.5) and (1.6) under the

increasing smoothing asymptotics. We also derive the optimal bandwidth param-

eters for DK and KS estimators using the AMSE criterion.

1.5.1 CCE

The CCE is defined as

ĴAnT =
1

nT

n∑
i=1

T∑
t,s=1

V̂(i,t)V̂
′

(i,s).

The critical condition for this estimator to be consistent is that each variable

from two different individuals (or clusters) is uncorrelated, i.e. EV(i,t)V
′

(j,s) = 0 if

i 6= j. Under this condition, ĴAnT is robust to heteroskedasticity and arbitrary forms

of serial correlation. Our spatiotemporal representation accommodates spatial

independence by imposing the following restriction.

Assumption I10. r̃(it,j,s) = 0 if i 6= j.

Under Assumption I10,

JnT =
1

nT

n∑
i=1

T∑
t,s=1

E
[
V(i,t)V

′
(i,s)

]
:= JAnT .

Assumption I11. For all i,

lim
T→∞

var

(
1√
T

T∑
s=1

V(i,s)

)
= J.

Assumption I11 implies the homogeneity of var(T−1/2
∑T

s=1 V(i,s)), under

which we can derive the asymptotic variance of J̃AnT in Theorem 2(a) below.

Theorem 2. Suppose that Assumptions F5, F6, I10 and I11 hold.
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(a) limn,T→∞ n · var
(
vec(J̃AnT )

)
= (Ipp + Kpp) (J ⊗ J).

(b) If Assumption F12 holds, then
√
n
(
ĴAnT − JAnT

)
= Op(1) and

√
n
(
ĴAnT − J̃AnT

)
= op(1).

Proofs are given in the appendix. Theorem 2 implies
√
n-convergence of

ĴAnT as n, T →∞, which is consistent with Hansen (2007).

1.5.2 DK estimator

The DK estimator is based on the time series HAC estimation method with

cross-sectional averages. The estimator is defined as

ĴDKnT =
1

nT

n∑
i,j=1

T∑
t,s=1

K

(
dts
dT

)
V̂(i,t)V̂

′
(j,s), (1.27)

For the asymptotic properties, we introduce the following assumptions in place of

Assumptions F7 and F10.

Assumption I12. There exists qd > 0 such that

1

nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dqdts <∞
for all n, T .

Assumption I13. For t ∈ ET ,

lim
n,T→∞

var

(
1√
n`T

n∑
j=1

∑
s:dts≤dT

V(j,s)

)
= J.

Compared with Assumption F7, Assumption I12 is sufficient for ĴDKnT be-

cause ĴDKnT is not involved with the bias that arises from a kernel in the spatial

dimension. Theorem 3 below states the asymptotic properties of ĴDKT .

Theorem 3. Suppose that Assumptions F5, F6, F11(i) and (ii), I12 and I13 hold,

and dT →∞, `T = o(T ).
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(a) limn,T→∞
T
`T
var

(
vecJ̃DKnT

)
= K̄2(Ipp + Kpp) (J ⊗ J).

(b) limn,T→∞ d
q
T (EJ̃DKnT − JnT ) = −Kqb

(q)
2

(c) If Assumption F12 holds and d2q
T `T/T → τ ∈ (0,∞), then√

T
`T

(
ĴDKnT − JnT

)
= Op(1) and

√
T
`T

(
ĴDKnT − J̃DKnT

)
= op(1).

(d) Under the conditions of part (c) and Assumption A.17,

lim
n,T→∞

MSE

(
T

`T
, ĴDKnT , SnT

)
= lim

n,T→∞
MSE

(
T

`T
, J̃DKnT , S

)
=

1

τ
K2
q

(
vec b

(q)
2

)′
S
(
vec b

(q)
2

)
+ K̄2tr [S(Ipp + Kpp)(J ⊗ J)] .

Proofs are given in the appendix. Theorem 3(a) and (b) imply that ĴDKnT

is consistent if dT → ∞ and `T = o(T ). The rate of convergence obtained by

balancing the variance and the squared bias is T q/(2q+ηT ). Therefore, the rate of

convergence of ĴnT is faster than that of ĴDKnT if T = o(n(2q+ηT )/ηn).

The optimal bandwidth parameter of ĴDKnT based on the AMSE criterion is

dDKT =

(
2qK2

qB22

ηT αT K̄2C
T

)1/(2q+ηT )

, (1.28)

where C = tr [SnT (Ipp + Kpp)(J ⊗ J)] . Following Andrews (1991) and Newey and

West (1994), we can obtain the data-driven bandwidth parameter.

1.5.3 KS estimator

Analogous to the DK estimator, we can also consider the usage of spatial

HAC estimation with the averages across time especially when n is large. The KS

estimator with the serial averages is

ĴKSnT =
1

nT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
V̂(i,t)V̂

′
(j,s).
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Assumption I14. There exists q1 > 0 such that

1

nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dq1ij <∞
for all n, T .

Assumption I15. For i ∈ En,

lim
n,T→∞

var

 1√
`nT

∑
j:dij≤dn

T∑
s=1

V(j,s)

 = J.

Theorem 4 below states the asymptotic properties of ĴKSnT .

Theorem 4. Suppose that Assumptions F5, F6, F9, F11, I14 and I15 hold,

n2/n→ 0, `n, dn →∞ and `n/n→ 0.

(a) limn,T→∞
n
`n
var

(
vecJ̃KSnT

)
= K̄1(Ipp + Kpp) (J ⊗ J).

(b) limn,T→∞ d
q
n(EJ̃KSnT − JnT ) = −Kqb

(q)
1

(c) If Assumption F12 holds and d2q
n `n/n→ τ ∈ (0,∞), then

√
n
`n

(
ĴKSnT − JnT

)
=

Op(1) and
√

n
`n

(
ĴKSnT − J̃KSnT

)
= op(1).

(d) Under the conditions of part (c) and Assumption A.17,

lim
n,T→∞

MSE

(
n

`n
, ĴKSnT , SnT

)
= lim

n,T→∞
MSE

(
n

`n
, J̃KSnT , S

)
=

1

τ
K2
q vec

(
b

(1)
1

)′
Svec

(
b

(q)
1

)
+ K̄1tr [S(Ipp + Kpp)(J ⊗ J)] .

Proofs are given in the appendix. If we can characterize `n = αnd
ηn
n , ĴnT

achieves the faster convergence rate than ĴKSnT if n = o(T (2q+ηn)/ηT ). The optimal

bandwidth based on the AMSE criterion is

d?KSn =

(
2qK2

qB11

ηnαnK̄1C
n

)1/(2q+ηn)

. (1.29)

We can obtain the data-driven bandwidth parameter following KS.
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1.6 Adaptiveness of ĴnT

1.6.1 Flexibility

ĴnT is flexible in the sense that it includes the estimators in the previous

section as special cases, reducing to each of them with certain choice of the band-

widths and kernel function. In order to illustrate the flexibility, we first introduce

the generalized CCE, ĴGAnT :

ĴGAnT =
1

nT

n∑
i=1

T∑
t,s=1

KRE

(
dts
dT

)
V̂(i,t)V̂

′
(i,s),

where KRE(x) = 1{|x| ≤ 1} is the rectangular kernel function.

The following proposition shows the asymptotic equivalence of ĴnT to the

existing estimators with certain sequences of dn and dT .

Proposition 1. For ĴnT with the rectangular kernel,

(a) If dn → 0 as n→∞, then ĴnT − ĴGAnT = op(1).

(b) If `n/n→ 1 as n→∞, then ĴnT − ĴDKnT = op(1).

(c) If `T/T → 1 as T →∞, then ĴnT − ĴKSnT = op(1).

Proofs are given in the appendix. The flexibility of our estimator relies

on the property that the rectangular kernel does not downweigh the covariances

between spatially or serially remote units. In contrast, ĴnT with finite order kernels

does not completely reduce to ĴDKnT and ĴKSnT with large dn and dT , getting close

to them though.

1.6.2 Adaptiveness

While ĴnT has advantages in terms of robustness over ĴAnT and in terms of

efficiency over ĴKSnT and ĴDKnT , for certain dependence structure, one of the existing

estimators is expected to out-perform the other estimators. If a process is spatially



29

highly persistent, ĴDKnT is expected to out-perform the other estimators in that it

is robust to arbitrary form of spatial correlation. For the same reason, ĴKSnT tends

to perform better than the others, if a process is serially highly persistent. ĴAnT is

more efficient than the other estimators in the absence of spatial correlation.

The attractiveness of our estimator ĴnT is that, with the data-driven band-

width choice, it becomes close to the estimator that is expected to perform the

best. This adaptiveness is the novel feature of our estimation method. It practi-

cally automates the selection of covariance estimator. As illustrated in Figure 2,

adaptiveness arises from the flexibility and automatic bandwidth selection proce-

dure. In case that a process is spatially highly persistent, the automatic bandwidth

selection procedure yields large d̂n so that ĴnT gets close to ĴDKnT . Analogously, ĴnT

becomes close to ĴKSnT if a process is very persistent in the time dimension. In the

absence of spatial dependence, ĴnT becomes close to ĴGAnT with small d̂n.

It should be pointed out that finite order kernels do not achieve complete

adaptiveness because downweighing restricts its flexibility in bridging the existing

estimators. We can fix this by employing the rectangular kernel. In this case,

with appropriate bandwidth choices, ĴnT is asymptotically equivalent to the best

estimator. The bandwidth selection rule in (1.15) meets the requirement, as the

selected bandwidths from (1.15) are the proportional to those from (A.9).6

6Another issue with flat-top kernel estimators is that they are not positive semi-definite.
Politis (2010) and Lin and Sakata (2009) propose simple modification to the estimator to enforce
the positive (semi) definiteness without sacrificing efficiency. In our simulation, we use the
method suggested by Politis (2010).
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Figure 1.2: Adaptiveness of ĴnT

1.7 Fixed smoothing asymptotics

1.7.1 Limiting theory for ĴnT under fixed smoothing asymp-

totics

Following Conley (1999), we assume that, given a distance measure, it is

possible to map the individuals onto a 2-dimensional integer lattice so that dij can

be expressed in terms of the lattice indices. Suppose that the locations are indexed

by (i1, i2) = [1, 2, . . . , Ln]⊗ [1, 2, . . . ,Mn]. We can then rewrite the sample moment

condition that defines β̂ as

1

LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

1i1,i2V̂(i1,i2,t) = 0,

where V̂(i1,i2,t) is associated with an observation located at (i1, i2) and time t. While

our analysis relies on the rectangular lattice structure, it can be potentially gen-

eralized to non-lattice case. See BCHV. As we do not assume the presence of an

observation at every lattice point, we introduce the indicator function 1i1,i2 to de-

note the presence of an observation at a particular lattice point (i1, i2). Using this
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indicator function, we define

V ∗(i1,i2,t) = 1i1,i2V(i1,i2,t), V̂
∗

(i1,i2,t)
= 1i1,i2V̂(i1,i2,t) and X̃∗(i1,i2,t) = 1i1,i2X̃(i1,i2,t).

We maintain the following high level assumptions.

Assumption F1. The functional central limit theorem

Let ΛΛ′ = J and Wp (r1, r2, τ) =
(
W (1) (r1, r2, τ) , . . . ,W (p) (r1, r2, τ)

)′
be a p-

dimensional independent Wiener process with covariance given by

cov
(
W (i) (r1, r2, τ) ,W (j) (v1, v2, κ)

)
= δij min (r1, v1) min (r2, v2) min (τ, κ)

with δij being a Kronecker delta.

1√
LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

V ∗(i1,i2,t)
d→ ΛWp (r1, r2, τ)

holds for all (r1, r2, τ) ∈ [0, 1]3 .

Assumption F2. For all (r1, r2, τ) ∈ [0, 1]3 , 1

LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

X̃∗(i1,i2,t)X̃
∗′
(i1,i2,t)

−1

p→ r1r2τQ.

Assumptions F1 and F2 follow BCHV and Sun and Kim (2010). Under the

above assumptions, it is easy to see that

√
nT
(
β̂ − β

)
=

(
1

LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

X̃∗(i1,i2,t)X̃
∗′
(i1,i2,t)

)−1

(1.30)

× 1√
LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

V ∗(i1,i2,t)

d→ QΛWp (1, 1, 1) := Λ∗Wp (1, 1, 1) . (1.31)
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Therefore,

1√
LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

V̂ ∗(i1,i2,t)

=
1√

LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

V ∗(i1,i2,t) −
1

LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

X̃∗(i1,i2,t)X̃
∗′
(i1,i2,t)

×
√
LnMnT

(
β̂ − β

)
d→ Λ [Wp (r1, r2, τ)− r1r2τWp (1, 1, 1)]

:= ΛBp (r1, r2, τ) ,

where Bp (r1, r2, τ) is a p-dimensional tied-down Brownian sheet. The second term

in the equality reflects the estimation uncertainty in β̂. We introduce the following

assumption on the distance measure in the spatial dimension.

Assumption F3. Let d(i1,i2),(j1,j2) denote dij between two observations at (i1, i2)

and (j1, j2). Then,

d(i1,i2),(j1,j2)

dn
= d

(
i1 − j1

dn
,
i2 − j2

dn

)
.

Assumption F3 implies that d(i1,i2),(j1,j2) is the function of i1− j1 and i2− j2

and is homogeneous. This is not overly restrictive. p-norm distances that are

usually employed in practice satisfy this assumption.

Suppose the level of smoothing is held fixed: b1 = dn/Ln, b2 = dn/Mn and

b3 = dT/T where b2 = b1ς and Ln/Mn = ς. Under Assumption F3, we have

ĴnT :=
1

LnMnT

Ln∑
i1,j1=1

Mn∑
i2,j2=1

T∑
t,s=1

Kb

(
i1 − j1

Ln
,
i2 − j2

Mn

,
t− s
T

)
V̂ ∗(i1,i2,t)V̂

∗
(j1,j2,s)

(1.32)

where

Kb (x, y, z) = K
(
x

b1

,
y

b2

,
z

b3

)
and K (x, y, z) = K(d(x, y))K(z).

We also define Kn(x, y) = K(d(x, y)) and Knb(x, y) = K(d(x/b1, y/b2)) where the

subscript ‘n’ is used to differentiate Kn, a function of two variables, from K, a

function of a single variable. Note that Kn does not depend on the sample size n.
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Assumption F4. (i) Kn(x, y) : R2 → [0, 1] and K(z) : R → [0, 1] are symmet-

ric with K(0) = 1. (ii)
∫∞

0

∫∞
0
Kn(x, y)xdxdy < ∞,

∫∞
0

∫∞
0
Kn(x, y)ydxdy < ∞,∫∞

0

∫∞
0
Kn(x, y)xydxdy < ∞ and

∫∞
0
K(z)zdz < ∞. (iii) The Parzen character-

istic exponent is greater than or equal to 1.

All the commonly used kernels satisfy this assumption. Assumption F4(ii)

enables us to use the Riemann-Lebesgue lemma.

Since Kb (·, ·, ·) is square integrable, it has a Fourier series representation:

Kb

(
i1 − j1

Ln
,
i2 − j2

Mn

,
t− s
T

)
=

∞∑
k,`,m=1

λk,`,mϕb1,k

(
i1 − j1

Ln

)
ϕb2,`

(
i2 − j2

Mn

)
ϕb3,m

(
t− s
Tn

)

:=
∞∑

k,`,m=1

λk,`,mΦb,k`m

(
i1
Ln
,
i2
Mn

,
t

Tn

)
Φb,k`m

(
− j1

Ln
,− j2

Mn

,− s

Tn

)
.

ϕb,k (x) = exp
(
ix
b
π(k − 1)

)
and

{
Φb,k`m

(
i1
Ln
, i2
Mn
, t
Tn

)
Φb,k`m

(
− j1
Ln
,− j2

Mn
,− s

Tn

)}
is

an orthonormal basis for L2([0, 1]3× [0, 1]3) and the convergence is in the L2 space.

It follows from Assumption F4(i) that

∞∑
k,`,m=1

λk,`,m = 1.

Using the representation, we can obtain the following results.

Proposition 2. Under Assumptions F1 - F3, 7

ĴnT
d→ Λ

[∫ 1

0

Kb (r1 − v1, r2 − v2, τ − κ) dBp (r1, r2, τ) dB′p (v1, v2, κ)

]
Λ′.

(1.33)

Proofs are given in the appendix. It is interesting to note that the limiting

distribution of ĴnT is exactly analogous to the one in the time series setting. See

Sun, Phillips and Jin (2008). Boundary effects do not exist at least under regular

lattice structures.

7Let
∫

=
∫
· · ·
∫

for simplification.
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Define the centered version of the kernel function K∗b (·, ·) as

K∗b ((r1, r2, τ) , (v1, v2, κ))

= Kb (r1 − v1, r2 − v2, τ − κ)−
∫ 1

0

Kb (x1 − v1, y1 − v2, z1 − κ) dx1dy1dz1

−
∫ 1

0

Kb (r1 − x2, r2 − y2, τ − z2) dx2dy2dz2

+

∫ 1

0

Kb (x1 − x2, y1 − y2, z1 − z2) dx1dy1dz1dx2dy2dz2.

Using K∗b (·, ·), (1.33) is equivalent to

Λ

[∫ 1

0

K∗b ((r1, r2, τ) , (v1, v2, κ)) dWg (r1, r2, τ) dW ′
p (v1, v2, κ)

]
Λ′. (1.34)

In (1.34), the integration is with respect to the standard Wiener process because

the centered kernel function captures the estimation uncertainty in β̂. With (1.31)

and (1.34), we can show that under H0,

FnT =
√
nT
[
R
(
β̂ − β0

)]′ (
RQ̂nT ĴnT Q̂

′
nTR

′
)−1√

nT
[
R
(
β̂ − β0

)]
/g

d→ (RΛ∗Wp (1, 1, 1))′

×
(
RΛ∗

[∫ 1

0

K∗b ((r1, r2, τ) , (v1, v2, κ)) dWp (r1, r2, τ) dW ′
p (v1, v2, κ)

]
Λ∗′R′

)−1

× (RΛ∗Wp (1, 1, 1)) /g

d
= W ′

g (1, 1, 1)

[∫ 1

0

K∗b ((r1, r2, τ) , (v1, v2, κ)) dWg (r1, r2, τ) dW ′
g (v1, v2, κ)

]−1

×Wg (1, 1, 1) /g

:= F∞(g, b), (1.35)

where the equality in distribution holds because RΛ∗Wp(x, y, z)
d
= DWg(x, y, z) for

a Wiener process Wg(x, y, z) and some g×g matrix D such that DD′ = RQJQ′R′.

1.7.2 Expansion of the distribution and F -approximation

We present the asymptotic expansion of the distribution of F∞(g, b) in (1.35)

and establish the validity of a standard F -approximation. The distribution of
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F∞(g, b) is nonstandard because of the random limit of ĴnT with fixed b1, b2 and

b3 as n, T → ∞. As b1, b2 and b3 → 0, however, the effect of this randomness di-

minishes and gF∞(g, b) converges in distribution to the χ2
g distribution. Therefore,

we can develop an asymptotic expansion of the distribution of gF∞(g, b) as b1, b2

and b3 → 0 to examine its difference from the χ2
g distribution.

Let∫ 1

0

K∗b ((r1, r2, τ) , (v1, v2, κ)) dWg (r1, r2, τ) dW ′
g (v1, v2, κ) =

 v11 v12

v21 v22

,


where v11 is a scalar. Following Sun (2010), we can show that

P {gF∞ (g, b) ≤ z} = EGg

(
z
(
v11 − v12v

−1
22 v21

))
= EGg (zv11.2) ,

where Gg(·) is the cdf of a central χ2
g variate and v11.2 = v11 − v12v

−1
22 v21. As b1, b2

and b3 → 0, we expect v11.2 to be concentrated around 1. By taking a Taylor

expansion Gg (zv11.2) around Gg (z) and computing the moments of v11.2, we can

prove the following theorem.

Theorem 5. Suppose Assumptions F1 - F4 hold and Ln/Mn → ς. As b1, b2 and

b3 → 0, we have

P {gF∞ (g, b) ≤ z} = Gg (z) + A (z) b1b2b3 + o (b1b2b3)

where

A (z) = G′′g (z) z2c2 −G′g (z) z [c1 + (g − 1) c2] ,

c1 =

∫ ∞
−∞

K (x, y, z) dxdydz and c2 =

∫ ∞
−∞

K2 (x, y, z) dxdydz.

Proof is given in the appendix. Theorem 5 implies that the deviation of

the fixed smoothing limiting distribution of the Wald statistic from the χ2
g distri-

bution depends on the smoothing parameters, kernel function and the number of

restrictions being tested.
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Since K∗b ((r1, r2, τ) , (v1, v2, κ)) ∈ L2([0, 1]6), it has a Fourier series repre-

sentation:

K∗b ((r1, r2, τ) , (v1, v2, κ))

=
∞∑

k,`,m,k′,`′,m′=1

λk`mk′`′m′ψb1,k(r1)ψb2,`(r2)ψb3,m(τ)ψb1,k′(v1)ψb2,`′(v2)ψb3,m′(κ)

:=
∞∑

k,`,m,k′,`′,m′=1

λk`mk′`′m′gb,k`m(r1, r2, τ)gb,k′`′m′(v1, v2, κ),

where {gb,k`m(r1, r2, τ)gb,k′`′m′(v1, v2, κ)} is an orthonormal basis for L2([0, 1]3 ×

[0, 1]3). As∫ 1

0
K∗b ((x, y, z) (v1, v2, κ)) dxdydz = 0 by definition, gb,k`m(x, y, z) has the zero mean

property, i.e. ∫ 1

0

gb,k`m(x, y, z)dxdydz = 0.

Using this representation, we have∫ 1

0

K∗b ((r1, r2, τ) , (v1, v2, κ)) dWg (r1, r2, τ) dW ′
g (v1, v2, κ)

=
∞∑

k,`,m,k′,`′,m′=1

λk`mk′`′m′ξb,k`mξ
′
b,k′`′m′ , (1.36)

where ξb,k`m =
∫ 1

0
gb,k`m(x, y, z)dWg (x, y, z)

i.i.d.∼ N(0, Ig).

We can simplify the above representation. First, using the Cantor tuple

function we can encode (h1, h2, h3) into a single natural number h. That is,

h = π(3)(h1, h2, h3) := π(2)(π(2)(h1, h2), h3),

where

π(2)(h1, h2) =
1

2
(h1 + h2)(h1 + h2 + 1) + h2.

The map between (h1, h2, h3) and h is one-to-one and onto. With this definition,

we abuse the notation a little and write

λh1h2h3h′1h
′
2h
′
3

= λhh′ and ξb,h1h2h3 = ξb,h.
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With this result, we follow Sun and Kaplan (2010) to obtain

∞∑
k,`,m,k′,`′,m′=1

λk`mk′`′m′ξb,k`mξ
′
b,k′`′m′ =

∞∑
k=1

λkζkζ
′
k,

where ζk
i.i.d.∼ N(0, Ig). By definition, ζkζ

′
k is a Wishart distribution Wg(Ig, 1), so∑∞

k=1 λkζkζ
′
k is an infinite weighted sum of independent Wishart distributions.

Let φ = Wg(1, 1, 1). Then, we have

gF∞ (g, b) = φ′

[
∞∑
k=1

λkζkζ
′
k

]−1

φ, (1.37)

where ζk is independent of φ for all k.

Motivated from the spectral density estimation literature (e.g. Priestley,

1981, p. 467), Sun (2010) shows that the infinite weighted sum of Wishart distri-

butions can be approximated with a scaled single Wishart distribution by matching

the first two moments. We adopt this in the panel setting. Let

Φ = µ−1
1

∞∑
k=1

λkζkζ
′
k.

where

µ1 =
∞∑
k=1

λk =

∫ 1

0

K∗b ((r1, r2, τ) , (r1, r2, τ)) dr1dr2dτ.

We approximate the distribution of Φ by Ψ ∼ Wg (Ig, K) /K for some integer

K > 0. By the properties of the Wishart distribution, we have

EΨ = Ig (1.38)

EΨDΨ =
1

K
tr (D) Ig +

(
1 +

1

K

)
D (1.39)

for any symmetric matrix D. By construction, EΦ = EΨ. Following Example 7.1

in Bilodeau and Brenner (1999), we can show that

EΦDΦ =
µ2

µ2
1

tr (D) Ig +

(
1 +

µ2

µ2
1

)
D (1.40)
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where

µ2 =
∞∑
k=1

λ2
k =

∫ 1

0

[
K∗b ((r1, r2, τ) , (v1, v2, κ))

]2
dr1dr2dτdv1dv2dκ.

From (1.39) and (1.40), it is reasonable to approximate the distribution of Φ by

Wg (Ig, K) /K with

K =
µ2

1

µ2

.

K is called equivalent degree of freedom (EDF) of ĴnT . Combining this results

with (1.37), we have

µ1gF∞ (g, b)
d
≈ φ′Ψ−1φ.

By definition, φ′Ψ−1φ follows Hotelling’s T 2 (g,K) distribution. As

K − g + 1

gK
T 2 (g,K) ∼ Fg,K−g+1,

we can use an F distribution as the reference distribution based on the following

approximation:
µ1 (K − g + 1)

K
F∞ (g, b)

d
≈ Fg,K−g+1. (1.41)

Lemma 1. As b1, b2 and b3 → 0, we have

(a) µ1 = 1− b1b2b3c1 + o (b1b2b3) ; (b) µ2 = b1b2b3c2 + o (b1b2b3) .

Proofs are given in the supplementary appendix.8 Lemma 1 implies

µ1 (K − g + 1)

K
=

1

1 + b1b2b3 (c1 + (g − 1) c2)
+ o (b1b2b3) . (1.42)

Hence, we can use 1/ (1 + b1b2b3 (c1 + (g − 1) c2)) as the correction factor. This is

always between zero and one.

The following theorem summarizes the F -approximation.

Theorem 6. Suppose Assumptions F1 - F4 hold and F ∗∞ (g, b) is defined by

F ∗∞ (g, b) = F∞ (g, b) /ν

8The supplementary appendix is available at the author’s homepage.
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where

ν = 1 + (c1 + (g − 1) c2) b1b2b3.

As b1, b2 and b3 → 0, we have

P {F ∗∞ (g, b) ≤ z} = P {Fg,K∗ ≤ z}+ o (b1b2b3)

where K∗ = max(5, d1/ (b1b2b3c2)e) and d·e denotes the integer part.

Proof is given in the appendix. Some comments on Theorem 6 are in order.

We use K∗ in place of K − g + 1 for the second degree of freedom in the F -

approximation. This modification ensures that the variance of the F distribution

exists. Let Fα
∞(g, b) and Fα

g,K∗ denote the 1 − α quantiles of the distribution of

F∞(g, b) and the F distribution with the degrees of freedom g and K∗. Theorem

6 suggests that for the F -test version of Wald statistic, FnT , we use

Fαg,b := νFα
g,K∗

as the critical value for the test with nominal size α.

As the EDF is proportional to 1/(b1b2b3), we may want to choose the large

EDF by increasing the degree of smoothing for more powerful inference. However,

for a given sample size, small b1b2b3 introduces a large bias of ĴnT , which will cause

FnT/ν to deviate substantially from Fg,K∗ distribution. At the same time, there

can be a significant loss in power if we choose too large bandwidths.

1.8 Monte Carlo simulation

In this section, we provide some simulation evidence on the finite sample

performance of our estimator and the associated testing procedures. We choose

the bandwidths based on the AMSE∗ criterion and consider the rectangular kernel

as well as the Parzen kernel to construct ĴnT . We compare the performance of ĴnT

with ĴDKnT , ĴAnT and ĴKSnT . We evaluate the estimators using the RMSE criterion and
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the coverage accuracy of the confidence intervals (CIs). We examine the robustness

to the measurement errors in economic distance. It is also investigated how the

number of restrictions being tested affects the performance of the Wald tests under

the two different smoothing asymptotics.

We assume a lattice structure, in which each individual is located on a

square grid of integers over time. We use the Euclidean distance for dij. The data

generating processes we consider here are:

DGP1: Yit = β0 + uit β0 = 0;

ut = λut−1 + εt, εt = θ(I − W̃n)−1vt, vt
i.i.d.∼ N(0, In);

DGP2: Yit = X
(1)
it β10 + . . .+X

(p)
it βp0 + αi + ft + uit,

β10 = . . . = βp0 = 0, αi = ft = 0;

Xt = λXt−1 + νt, νt = θ(I − W̃n)−1ηt, ηt
i.i.d.∼ N(0, In);

ut = λut−1 + εt, εt = θ(I − W̃n)−1vt, vt
i.i.d.∼ N(0, In),

where Xit is a p-vector, Xt = (X1t, . . . , Xnt)
′ and ut = (u1t, . . . , unt)

′. The param-

eter λ determines the strength of the temporal correlation of data. Xt and ut are

also spatially dependent as εt = (ε1t, . . . , εnt)
′ and νt = (ν1t, . . . , νnt)

′ follow spatial

AR(1) processes with parameter θ. The values considered for the model parame-

ters λ and θ are 0, 0.3, 0.6 and 0.9. W̃n is a contiguity matrix and individuals i

and j are neighbors if dij = 1. Following convention, it is row-standardized and

its diagonal elements are zero.

DGP1 is used for the RMSE criterion and the DGP2 is for the coverage

accuracy of the associated CIs. DGP2 includes the individual and time effects

and β0 is estimated with the fixed effects estimator. In contrast, these effects are

absent in DGP1 for easy calculation of the RMSE. We estimate β0 in DGP1 with

the sample average (= (nT )−1
∑n

i=1

∑T
t=1 yit).

For bandwidth selection, the formulas in (1.28) and (1.29) are considered

with the AR(1) and spatial AR(1) models for ĴDKnT and ĴKSnT respectively. For ĴnT
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with the Parzen kernel, we choose the bandwidths based on (1.13) and (1.14) using

the spatiotemporal parametric model in (1.18). We use the Parzen kernel as the

target kernel to obtain the bandwidths for ĴnT with the rectangular kernel. One

concern of the rectangular kernel estimator is that it is not positive semi-definite.

However, we can attain positive semi-definiteness with a simple modification sug-

gested by Politis (2010). As ĴnT is symmetry, ĴnT = Û Λ̂Û ′, where Û is an orthogo-

nal matrix and Λ̂ = diag(λ̂1, . . . , λ̂p) is a diagonal matrix whose diagonal elements

are the eigenvalues of ĴnT . Let Λ̂+ = diag(λ̂+
1 , . . . , λ̂

+
p ) where λ̂+

s = max(λ̂s, 0).

Then, we define our modified estimator as Ĵ+
nT = Û Λ̂+Û ′. As each eigenvalue of

ĴnT is nonnegative, it is positive semi-definite.

Wn is the contiguity matrix in which individuals i and j are neighbors if

dij = 1. We set η = 2 and `n = πd2
n. Note that the approximating parametric

models for ĴKSnT and ĴnT are mis-specified whereas the AR(1) model for ĴDKnT is

correctly specified. We estimate parameters in (1.18) and (1.29) with the QMLE.

We consider three different sample sizes; (i) small T and n; T = 15, n = 49

(7 × 7), (ii) large T and small n; T = 50, n = 49, and (iii) small T and large n;

T = 15, n = 196 (14× 14).

We also allow for the case with measurement errors in the distance measure.

The error contaminated distance, d∗ij is generated as follows. If dij < 2, then dij is

observed without a measurement error. But if dij ≥ 2, then we observe d∗ij which

is generated from the following process:

d∗ij = dij + eij, eij =


−1 w.p. 1/3

0 w.p. 1/3

1 w.p. 1/3.

PHAC, CCE, DK and KS denote the test statistics based on ĴnT , ĴAnT , ĴDKnT , and

ĴKSnT respectively. We use the F -approximation for fixed smoothing asymptotics.

Table 1 presents the ratios of the RMSE to JnT for ĴnT and ĴDKnT evaluated

at the data dependent bandwidth parameters and at infeasible optimal bandwidth
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parameters. First, we find that ĴnT performs better than ĴDKnT in almost all the

cases. When spatial dependence is absent or weak, ĴnT has substantially smaller

ratio than ĴDKnT . This is because the DK estimator loses information in the spatial

dimension with the cross-sectional averaging. When θ = 0.9, both the estimators

are not much different. Especially ĴnT with the rectangular kernel is as accurate as

and sometimes better than ĴDKnT . This implies that adaptiveness works well in this

setting. Second, the increase of n reduces only the ratio of ĴnT while increasing

T improves the performance of both the estimators. Finally, the AMSE∗ criterion

tends to effectively controls the RMSE of ĴnT .

Table 2 reports the empirical coverage probabilities (ECPs) of 95% CIs

associated with the different covariance estimators; ĴnT , ĴDKnT , ĴAnT , and ĴKSnT . The

null hypothesis we consider is

H0 : β1 = 0.

The DGP2 is used with a univariate regressor (p = 1). For the testing with ĴnT ,

we use both the fixed smoothing asymptotics and increasing smoothing asymp-

totics. The simulation results verify our theoretical results. First, we compare

ĴnT with the other estimators under increasing smoothing asymptotics. PHAC

performs as well as CCE when θ = 0 and is significantly more accurate when there

exists spatial dependence. Compared with the KS, the CIs associated with PHAC

is more precise unless the process is temporally highly persistent. Even under

strong temporal persistence (λ = 0.9) PHAC is almost as good as KS especially

if n is small. Both the PHAC and KS become more accurate with large n, but

only the performance of PHAC improves when T increases. Comparison with DK

is quite similar to the RMSE criterion case. The PHAC tends to perform better

than DK except in some cases with θ = 0.9. Even when θ = 0.9, the ECP of

PHAC especially with the rectangular kernel is very close to that of DK. Second,

Table 2 compares the performance of PHAC using increasing smoothing asymp-

totics and fixed smoothing asymptotics. The results indicate that fixed smoothing
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asymptotic approximation is substantially more accurate than increasing smooth-

ing asymptotics. The difference increases as the process becomes more persistent.

When θ = 0.9, λ = 0.9 and T = 15, n = 49, the ECP of the PHAC with the Parzen

kernel under fixed smoothing asymptotics is 79.6% but it is 64.4% under increas-

ing smoothing asymptotics. This result shows that fixed smoothing asymptotics

captures the demeaning bias arising from the estimation errors of β̂ while it is

ignored under increasing smoothing asymptotics. Third, Table 2 provides a strong

evidence that the rectangular kernel performs better than the finite order kernel

under fixed smoothing asymptotics. Especially in our simulation, PHAC with the

rectangular kernel is very robust to spatial dependence so that size distortion does

not increase with the spatial dependence. This size advantage of the rectangular

kernel may arise from its bias reducing property and adaptiveness. Finally, Table

2 shows that our testing procedure based on fixed smoothing asymptotics is rea-

sonably robust to measurement errors. As economic distance data is likely to be

error contaminated in practice, the robustness to measurement errors is a highly

desirable property. Comparing PHAC with PHACe, we see that the performance

of PHACe is quite close to that of PHAC in most cases.

Table 3 compares the two different asymptotics with the different number

of restrictions being tested. The DGP2 is used with p = 3. We consider a single

restriction (g = 1) and joint restrictions (g = 3)

H0 : β1 = 0, H0 : β1 = β2 = β3 = 0

respectively. The table evidently indicates that under increasing smoothing asymp-

totics the size distortion increases with the number of restrictions being tested.

This is especially severe when the process is highly persistent. When g = 3 and

θ = λ = 0.9, the ECP of PHAC with the Parzen kernel is only 27.1% under in-

creasing smoothing asymptotics. The size distortion of PHAC also increases under

fixed smoothing asymptotics with the number of restrictions being tested but much

lesser. This is consistent with our asymptotic expansion in Theorem 5. The theo-
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rem shows that fixed smoothing asymptotics allows for the number of restrictions

being tested and that the critical value of PHACF is the increasing function of g.

1.9 Conclusion

In this paper we study robust inference for linear panel models with fixed

effects in the presence of heteroskedasticity and spatiotemporal dependence of un-

known forms. We consider a bivariate kernel covariance matrix estimator and

examine the properties of the covariance estimator and the associated test statis-

tics under both the increasing smoothing asymptotics and fixed smoothing asymp-

totics. We also derive the optimal selection procedures based on the upper bound

of AMSE. For the fixed smoothing asymptotic distribution, we establish the valid-

ity of F -approximation. The adaptiveness of our estimator enables our method to

be safely used without the knowledge of dependence structure.

Instead of using the upper bound of asymptotic MSE criterion, we can study

the optimal bandwidth selection based on a criterion which is most suitable for

hypothesis testing and CI construction. It is interesting to extend the bandwidth

selection methods by Sun, Phillips and Jin (2008), Sun (2010) and Sun and Kaplan

(2010) on time series HAC estimation to the panel setting.
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Table 1.1: RMSE/Estimand with ĴnT and ĴDKnT

λ θ
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

T=15, n=49
0.0 0.09 0.20 0.27 0.46 0.42 0.21 0.25 0.43

0.3 ĴnT 0.16 0.34 0.45 0.65 ĴnT 0.13 0.33 0.43 0.60

0.6 (d̂n, d̂T ) 0.22 0.41 0.55 0.72 (d?n, d
?
T ) 0.17 0.40 0.53 0.71

0.9 (PA) 0.35 0.53 0.67 0.84 (PA) 0.31 0.52 0.65 0.83
0.0 0.13 0.23 0.29 0.38 1.00 0.36 0.38 0.36

0.3 ĴnT 0.21 0.36 0.51 0.62 ĴnT 0.19 0.31 0.41 0.50

0.6 (d̂n, d̂T ) 0.29 0.47 0.62 0.68 (d?n, d
?
T ) 0.20 0.42 0.49 0.64

0.9 (RE) 0.38 0.56 0.70 0.83 (RE) 0.19 0.48 0.63 0.79
0.0 0.48 0.46 0.48 0.47 0.36 0.36 0.38 0.36

0.3 ĴDKnT 0.54 0.56 0.57 0.54 ĴDKnT 0.56 0.56 0.58 0.54

0.6 (d̂DKT ) 0.68 0.70 0.69 0.70 (dDKT ) 0.70 0.71 0.71 0.72
0.9 0.89 0.88 0.88 0.88 0.89 0.89 0.88 0.88

T=50, n=49
0.0 0.05 0.13 0.18 0.40 0.42 0.12 0.17 0.39

0.3 ĴnT 0.10 0.24 0.34 0.55 ĴnT 0.14 0.24 0.33 0.50

0.6 (d̂n, d̂T ) 0.14 0.33 0.50 0.64 (d?n, d
?
T ) 0.13 0.31 0.42 0.58

0.9 (PA) 0.26 0.48 0.60 0.83 (PA) 0.21 0.43 0.57 0.76
0.0 0.08 0.14 0.18 0.21 1.00 0.20 0.19 0.20

0.3 ĴnT 0.13 0.26 0.37 0.57 ĴnT 0.21 0.22 0.29 0.32

0.6 (d̂n, d̂T ) 0.19 0.41 0.67 0.58 (d?n, d
?
T ) 0.20 0.28 0.36 0.46

0.9 (RE) 0.34 0.56 0.68 0.81 (RE) 0.20 0.40 0.54 0.70
0.0 0.28 0.29 0.27 0.28 0.21 0.20 0.19 0.20

0.3 ĴDKnT 0.40 0.41 0.40 0.40 ĴDKnT 0.38 0.38 0.38 0.37

0.6 (d̂DKT ) 0.53 0.54 0.55 0.56 (dDKT ) 0.52 0.52 0.53 0.52
0.9 0.77 0.76 0.77 0.78 0.77 0.76 0.77 0.78
The subscripts ‘PA’ and ‘RE’ denote the Parzen and rectangular kernels
respectively.
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Table 1.2: RMSE/Estimand with ĴnT and ĴDKnT - Cont.

λ θ
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

T=15, n=196
0.0 0.05 0.13 0.18 0.29 0.43 0.20 0.21 0.27

0.3 ĴnT 0.09 0.24 0.33 0.54 ĴnT 0.07 0.24 0.32 0.47

0.6 (d̂n, d̂T ) 0.13 0.30 0.42 0.57 (d?n, d
?
T ) 0.12 0.29 0.39 0.56

0.9 (PA) 0.29 0.43 0.52 0.72 (PA) 0.28 0.43 0.51 0.69
0.0 0.07 0.15 0.21 0.30 1.00 0.34 0.36 0.35

0.3 ĴnT 0.11 0.27 0.37 0.62 ĴnT 0.09 0.23 0.28 0.41

0.6 (d̂n, d̂T ) 0.15 0.36 0.51 0.62 (d?n, d
?
T ) 0.10 0.26 0.37 0.50

0.9 (RE) 0.22 0.43 0.55 0.74 (RE) 0.10 0.35 0.45 0.66
0.0 0.47 0.43 0.48 0.47 0.37 0.34 0.36 0.35

0.3 ĴDKnT 0.53 0.56 0.55 0.55 ĴDKnT 0.54 0.56 0.56 0.55

0.6 (d̂DKT ) 0.68 0.70 0.69 0.69 (dDKT ) 0.70 0.72 0.71 0.70
0.9 0.88 0.87 0.88 0.88 0.89 0.88 0.89 0.89
The subscripts ‘PA’ and ‘RE’ denote the Parzen and rectangular kernels
respectively.
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Table 1.6: ECPs of Nominal 95% CIs with Different Number of Restrictions

g=1 g=3
λ θ θ

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9
0.0 93.3 91.9 92.2 85.7 92.6 91.2 88.1 77.8

PHAC 0.3 92.3 91.0 90.2 82.6 91.9 88.0 83.9 72.2
(PA,F) 0.6 89.8 88.1 85.3 78.6 82.4 82.1 78.4 69.0

0.9 86.9 84.1 81.4 80.2 81.2 77.1 73.3 68.7
0.0 93.1 91.5 91.5 84.8 92.4 90.3 85.9 72.2

PHAC 0.3 92.1 90.6 89.5 80.9 91.4 86.9 81.5 65.5
(PA,I) 0.6 89.0 87.1 83.2 70.6 80.7 79.7 70.6 46.8

0.9 84.7 82.5 75.8 62.5 77.4 70.8 55.4 27.1
0.0 93.7 92.2 93.3 92.7 93.0 92.5 91.4 93.0

PHAC 0.3 92.4 90.8 92.2 91.7 91.6 89.2 88.9 92.7
(RE,F) 0.6 89.7 89.6 89.6 88.2 84.9 85.1 87.9 87.8

0.9 85.8 85.1 85.8 83.0 82.0 78.5 83.4 83.8
0.0 93.5 91.7 92.5 86.9 92.0 91.1 87.1 76.5

PHAC 0.3 91.7 90.5 89.7 83.8 89.9 86.6 82.2 68.1
(RE,I) 0.6 88.7 88.3 84.9 72.6 80.1 79.5 72.3 47.9

0.9 82.5 81.6 74.2 62.5 71.2 66.2 49.2 44.1
See note to Table 2.
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1.11 Appendix

Proof of Theorem 1

For notational simplicity, we re-order the individuals and time and make

new indices. For i(j) = 1, ..., `j,n, di(j)j ≤ dn, and for i(j) = `j+1,n, . . . , n, di(j)j > dn.

For t(s) = 1, ..., `s,T , dt(s)s ≤ dT , and for t(s) = `s,T + 1, . . . , T , dt(s)s > dT .

(a) Asymptotic Variance

We have

nT

`n`T
cov
(
J̃nT (c1, d1) , J̃nT (c2, d2)

)
:= C1nT + C2nT + C3nT ,

where

C1nT =
1

nT`n`T

nTp∑
l=1

(
Eε4

l − 3
) n∑
i,j,a,b=1

T∑
t,s,u,v=1

K

(
dij
dn

)
K

(
dts
dT

)
K

(
dab
dn

)
×K

(
duv
dT

)
r

(c1)
(i,t),lr

(d1)
(j,s),lr

(c2)
(a,u),lr

(d2)
(b,v),l,

C2nT =
1

nT`n`T

nTp∑
l,k=1

n∑
i,j,a,b=1

T∑
t,s.u,v=1

K

(
dij
dn

)
K

(
dts
dT

)
K

(
dab
dn

)
K

(
duv
dT

)
× r(c1)

(i,t),lr
(d1)
(j,s),kr

(c2)
(a,u),lr

(d2)
(b,v),k,

C3nT =
1

nT`n`T

nTp∑
l,k=1

n∑
i,j,a,b=1

T∑
t,s,u,v=1

K

(
dij
dn

)
K

(
dts
dT

)
K

(
dab
dn

)
K

(
duv
dT

)
× r(c1)

(i,t),lr
(d1)
(j,s),kr

(c2)
(a,u),kr

(d2)
(b,v),l.

For C1nT , under Assumptions F5 and F6

|C1nT | ≤
c4
R

`n`T

1

nT

nTp∑
l=1

∣∣Eε4
l − 3

∣∣ ≤ c4
RcEp

`n`T
= o(1) (A.1)

For C2nT , we can decompose as follows to consider boundary effects:

C2nT := D1nT +D2nT +D3nT +D4nT +D5,nT (A.2)
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where

D1nT =
1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K

(
dij(i)
dn

)
K

(
dab(a)
dn

)

×K
(
dts(t)
dT

)
K

(
duv(u)

dT

)
γ

(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

D2nT =
1

nT`n`T

n∑
i,a=1

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t/∈ET

T∑
u=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K

(
dij(i)
dn

)
K

(
dab(a)
dn

)

×K
(
dts(t)
dT

)
K

(
duv(u)

dT

)
γ

(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

D3nT =
1

nT`n`T

n∑
i,a=1

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t∈ET

∑
u/∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K

(
dij(i)
dn

)
K

(
dab(a)
dn

)

×K
(
dts(t)
dT

)
K

(
dts(t)
dT

)
K

(
duv(u)

dT

)
γ

(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

D4nT =
1

nT`n`T

∑
i/∈En

n∑
a=1

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K

(
dij(i)
dn

)
K

(
dab(a)
dn

)

×K
(
dts(t)
dT

)
K

(
duv(u)

dT

)
γ

(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

D5nT =
1

nT`n`T

∑
i∈En

∑
a/∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K

(
dij(i)
dn

)
K

(
dab(a)
dn

)

×K
(
dts(t)
dT

)
K

(
duv(u)

dT

)
γ

(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

D1nT is based on nonboundary units whereas the others are on boundary ones.

In the following, we show that D1nT converges to K̄1K̄2J (c1, c2) J (d1, d2) and the

other terms become negligible as n and T increase.

For D1nT , the first step is to show that

lim
n,T→∞

1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K2

(
dij(i)
dn

)
K2

(
dts(t)
dT

)
× γ(c1c2)

(it,au)γ
(d1d2)
(j(i)s(t),b(a)v(u))

= K̄1K̄2J (c1, c2) J (d1, d2) , (A.3)
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and the next step is to prove that

lim
n,T→∞

D1nT

= lim
n,T→∞

1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K2

(
dij(i)
dn

)
K2

(
dts(t)
dT

)
× γ(c1c2)

(it,au)γ
(d1d2)
(j(i)s(t),b(a)v(u))

(A.4)

For (A.2), let γ
(d1d2)
(ı̄t̄,b(a)v(u))

= (`n`T )−1∑`i,n
h(i)=1

∑`t,T
w(t)=1 γ

(d1d2)
(h(i)w(t),b(a)v(u))

. Then,

1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K2

(
dij(i)
dn

)
K2

(
dts(t)
dT

)
× γ(c1c2)

(it,au)γ
(d1d2)
(j(i)s(t),b(a)v(u))

(A.5)

=
1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K2

(
dij(i)
dn

)
K2

(
dts(t)
dT

)
× γ(c1c2)

(it,au)γ
(d1d2)

(ı̄t̄,b(a)v(u))

+
1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K2

(
dij(i)
dn

)
K2

(
dts(t)
dT

)
γ

(c1c2)
(it,au)

×
(
γ

(d1d2)
(j(i)s(t),b(a)v(u))

− γ(d1d2)

(ı̄t̄,b(a)v(u))

)
:= L1nT + L2nT . (A.6)

L1nT can be decomposed as

L1nT := G1nT +G2nT

where

G1nT =
1

nT

∑
i,a∈En

∑
t,u∈ET

γ
(c1c2)
(it,au)1 {dia ≤ cn,dut ≤ cT}

×

 1

`n`T
cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

b:dab≤dn

∑
v:duv≤dT

V
(d2)

(b,v)


×

(
1

`n

n∑
j=1

K2

(
dij
dn

))(
1

`T

T∑
s=1

K2

(
dts
dT

))
,
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G2nT =
1

nT

∑
i,a∈En

∑
t,u∈ET

γ
(c1c2)
(it,au)

[
1 {dia > cn, dut > cT}+ 1 {dia > cn, dut ≤ cT}

+ 1 {dia ≤ cn, dut > cT}
] 1

`n`n
cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

b:dab≤dn

∑
v:duv≤dT

V
(d2)

(b,v)


×

(
1

`n

n∑
j=1

K2

(
dij
dn

))(
1

`T

T∑
s=1

K2

(
dts
dT

))

= o(1)

as cn,cT →∞. Thus, it suffices to consider G1nT . When dia ≤ cn and dtu ≤ cT , we

have

cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

b:dab≤dn

∑
v:duv≤dT

V
(d2)

(b,v)


= cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

j:dij≤dn

∑
s:dts≤dT

V
(d2)

(j,s)


+ cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

b:dab≤dn

∑
v:duv≤dT

V
(d2)

(b,v) −
∑

b:dib≤dn

∑
v:dtv≤dT

V
(d2)

(b,v)


but ∑

b:dab≤dn

∑
v:duv≤dT

V
(d2)

(b,v) −
∑

b:dib≤dn

∑
v:dtv≤dT

V
(d2)

(b,v)

=
∑

b:dab≤dn

∑
v:duv≤dT ,dtv>dT

V
(d2)

(b,v) +
∑

b:dab≤dn,dib>dn

∑
v:dtv≤dT

V
(d2)

(b,v) .

Now dab ≤ dn and dia ≤ cn implies that dbi ≤ dn + cn. As the result,

1

`n`T

∣∣∣∣∣∣cov
 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

b:dab≤dn,dib>dn

∑
v:dtv≤dT

V
(d2)

(b,v)

∣∣∣∣∣∣
≤ 1

`n`T

∑
j:dij≤dn

∑
b:dn<dib≤dn+cn

∑
s:dts≤dT

∑
v:dtv≤dT

∣∣∣EV (d1)
(j,s)V

(d2)
(b,v)

∣∣∣ = o(1),

by choosing cn such that
∑n

b=1 1{dn < dib ≤ dn + cn} = o(`n) for all i. Similarly,

1

`n`T

∣∣∣∣∣∣cov
 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

b:dab≤dn

∑
v:duv≤dT ,dtv>dT

V
(d2)

(b,v)

∣∣∣∣∣∣ = o(1).
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Hence

1

`n`T
cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

b:dab≤dn

∑
v:duv≤dT

V
(d2)

(b,v)


=

1

`n`T
cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

j:dij≤dn

∑
s:dts≤dT

V
(d2)

(j,s)

+ o (1) (A.7)

where o(1) term holds uniformly over i and t.

Now under Assumption F10, we have

G1nT =
1

nT

∑
i,a∈En

∑
t,u∈ET

γ
(c1c2)
(it,au)

1

`n`T
cov

 ∑
j:dij≤dn

∑
s:dts≤dT

V
(d1)

(j,s) ,
∑

j:dij≤dn

∑
s:dts≤dT

V
(d2)

(j,s)


×

(
1

`n

n∑
j=1

K2

(
dij
dn

)) 1

`T

T∑
s(t)=1

K2

(
dts
dT

) (1 + o(1))

→ K̄1K̄2J (c1, c2) J(d1, d2).

by choosing dn and dT such that n1/n→ 1 and T1/T → 1.

For L2nT in (A.4), the first step is to show

1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

(
K2

(
dij(i)
dn

)
K2

(
dts(t)
dT

)

−K2

(
dia
dn

)
K2

(
dtu
dT

))
γ

(c1c2)
(it,au)

(
γ

(d1d2)
(j(i)s(t),b(a)v(u))

− γ(d1d2)

(ı̄t̄,b(a)v(u))

)
= o(1), (A.8)

and the second step is to prove

1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

K2

(
dia
dn

)
K2

(
dtu
dT

)

× γ(c1c2)
(it,au)

(
γ

(d1d2)
(j(i)s(t),b(a)v(u))

− γ(d1d2)

(ı̄t̄,b(a)v(u))

)
= o(1). (A.9)

For (A.8),

1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

(
K2

(
dij(i)
dn

)
K2

(
dts(t)
dT

)

−K2

(
dia
dn

)
K2

(
dtu
dT

))
γ

(c1c2)
(it,au)

(
γ

(d1d2)
(j(i)s(t),b(a)v(u))

− γ(d1d2)

(ı̄t̄,b(a)v(u))

)
≤M1nT +M2nT +M3nT +M4nT
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where

M1nT :=
1

nT

∑
(i,a)∈F1

∑
(t,u)∈G1

∣∣∣γ(c1c2)
(it,au)

∣∣∣
 1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

∣∣∣γ(d1d2)
(j(i)s(t),b(a)v(u))

−γ(d1d2)

(ı̄t̄,b(a)v(u))

∣∣∣∣) ,
M2nT :=

1

nT

∑
(i,a)∈F2

∑
(t,u)∈G1

∣∣∣γ(c1c2)
(it,au)

∣∣∣
 1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

∣∣∣γ(d1d2)
(j(i)s(t),b(a)v(u))

−γ(d1d2)

(ı̄t̄,b(a)v(u))

∣∣∣∣) ,
M3nT :=

1

nT

∑
(i,a)∈F1

∑
(t,u)∈G2

∣∣∣γ(c1c2)
(it,au)

∣∣∣
 1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

∣∣∣γ(d1d2)
(j(i)s(t),b(a)v(u))

−γ(d1d2)

(ı̄t̄,b(a)v(u))

∣∣∣∣) ,
M4nT :=

1

nT

∑
(i,a)∈F2

∑
(t,u)∈G2

∣∣∣γ(c1c2)
(it,au)

∣∣∣
 1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

∣∣∣γ(d1d2)
(j(i)s(t),b(a)v(u))

−γ(d1d2)

(ı̄t̄,b(a)v(u))

∣∣∣∣) ,
and

F1 = {(i, a) : dia ≤ fn & i, a ∈ En} , F2 = {(i, a) : dia > fn & i, a ∈ En} ,

G1 = {(t, u) : dtu ≤ gT & t, u ∈ ET} , G2 = {(t, u) : dtu > gT & t, u ∈ ET} ,

in which fn/dn = O(1) and gT/dT = O(1). It is straightforward to show

M1nT = O

(
`n`T
nT

)
, M2nT = O

(
`T
T

)
and M3nT = O

(
`n
n

)
.

For M4nT ,

M4nT

≤ 1

f qn

1

nT

∑
(i,a)∈F2

∑
(t,u)∈G2

∣∣∣γ(c1c2)
(it,au)

∣∣∣ dqia
 1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

∣∣∣γ(d1d2)
(j(i)s(t),b(a)v(u))

∣∣∣
+

1

`2
n`

2
T

`i,n∑
j(i)=1

`t,T∑
s(t)=1

`i,n∑
h(i)=1

`a,n∑
b(a)=1

`t,T∑
w(t)=1

`u,T∑
v(u)=1

∣∣∣γ(d1d2)
(h(i)w(t),b(a)v(u))

∣∣∣
 = O

(
f−qn
)
.
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Therefore, (A.8) holds.

We also obtain (A.9) because

1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

(
γ

(d1d2)
(j(i)s(t),b(a)v(u))

− γ(d1d2)

(ı̄t̄,b(a)v(u))

)

=

 1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

γ
(d1d2)
(j(i)s(t),b(a)v(u))

−
(

1

`n`T

)2 `i,n∑
j(i)=1

`t,T∑
s(t)=1

 `i,n∑
h(i)=1

`t,T∑
w(t)=1

`a,n∑
b(a)=1

`u,T∑
v(u)=1

γ
(d1d2)
(h(i)w(t),b(a)v(u))


=

 1

`n`T

∑
j:dij≤dn

∑
b:dib≤dn

∑
s:dts≤dT

∑
v:dtv≤dT

γ
(d1d2)
(js,bv)

− −
(

1

`n`T
+ o (1)

) ∑
h:dih≤dn

∑
b:dib≤dn

∑
w:dtw≤dT

∑
v:dtv≤dT

γ
(d1d2)
(hw,bv) + o (1)

]

= o(1).

Therefore, L1nT = o (1) and L2nT = (1), which completes the proof of (A.2). The

next step is to prove (A.3). In view of previous derivations, it suffices to show that

lim
n,T→∞

1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

[
K

(
dij(i)
dn

)
K

(
dts(t)
dT

)

−K
(
dab(a)
dn

)
K

(
duv(u)

dT

)]2

γ
(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

= 0.
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1

nT`n`T

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∑
t,u∈ET

`t,T∑
s(t)=1

`u,T∑
v(u)=1

[
K

(
dij(i)
dn

)
K

(
dts(t)
dT

)

−K
(
dab(a)
dn

)
K

(
duv(u)

dT

)]2

γ
(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

=
1

nT`n`T

∑
(i,j,a,b)∈I1

∑
(t,s,u,v)∈J1

[
K

(
dij(i)
dn

)
K

(
dts(t)
dT

)
−K

(
dab(a)
dn

)
K

(
duv(u)

dT

)]2

× γ(c1c2)
(it,au)γ

(d1d2)

(j(i)s(t),b(a)v(u))

+
1

nT`n`T

∑
(i,j,a,b)∈I2

∑
(t,s,u,v)∈J1

[
K

(
dij(i)
dn

)
K

(
dts(t)
dT

)
−K

(
dab(a)
dn

)
K

(
duv(u)

dT

)]2

× γ(c1c2)
(it,au)γ

(d1d2)

(j(i)s(t),b(a)v(u))

+
1

nT`n`T

∑
(i,j,a,b)∈I1

∑
(t,s,u,v)∈J2

[
K

(
dij(i)
dn

)
K

(
dts(t)
dT

)
−K

(
dab(a)
dn

)
K

(
duv(u)

dT

)]2

× γ(c1c2)
(it,au)γ

(d1d2)

(j(i)s(t),b(a)v(u))

+
1

nT`n`T

∑
(i,j,a,b)∈I2

∑
(t,s,u,v)∈J2

[
K

(
dij(i)
dn

)
K

(
dts(t)
dT

)
−K

(
dab(a)
dn

)
K

(
duv(u)

dT

)]2

× γ(c1c2)
(it,au)γ

(d1d2)

(j(i)s(t),b(a)v(u))

:= F1nT + F2nT + F3nT + F4nT ,

where

I1 =
{

(i, j, a, b) :
∣∣∣dij(i) − dab(a)∣∣∣ ≤ 2cn & i, a ∈ En

}
I2 =

{
(i, j, a, b) :

∣∣∣dij(i) − dab(a)∣∣∣ > 2cn & i, a ∈ En
}
,

J1 =
{

(t, s, u, v) :
∣∣∣dts(t) − duv(u)

∣∣∣ ≤ 2cT & t, u ∈ ET
}

J2 =
{

(t, s, u, v) :
∣∣∣dts(t) − duv(u)

∣∣∣ > 2cT & t, u ∈ ET
}
.
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For F1nT , we have

F1nT ≤

∣∣∣∣∣∣ 2

nT`n`T

∑
(i,j,a,b)∈I1

∑
(t,s,u,v)∈J1

[
K2

(
dij(i)
dn

)(
K

(
dts(t)
dT

)
−K

(
duv(u)

dT

))2

+K2

(
duv(u)

dT

)(
K

(
dij(i)
dn

)
−K

(
dab(a)
dn

))2
]
γ

(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

∣∣∣∣∣
≤ 2c2

L

nT`n`T

∑
(i,j,a,b)∈I1

∑
(t,s,u,v)∈J1

[(
dts(t)
dT
−
duv(u)

dT

)2

+

(
dij(i)
dn
−
dab(a)
dn

)2
]

×
∣∣∣γ(c1c2)

(it,au)γ
(c1d2)
(j(i)s(t),b(a)v(u))

∣∣∣
≤ 8c2

L

(
c2
T

d2
T

+
c2
n

d2
n

)(
1

nT

∑
i,a∈En

∑
t,u∈ET

∣∣∣γ(c1c2)
(it,au)

∣∣∣)

×

 1

`n`T

`i,n∑
j(i)=1

`a,n∑
b(a)=1

`t,T∑
s(t)=1

`u,T∑
v(u)=1

∣∣∣γ(d1d2)
(j(i)s(t),b(a)v(u))

∣∣∣


= O

(
c2
T

d2
T

)
+O

(
c2
n

d2
n

)
. (A.10)

For F2nT , we note that if
∣∣∣dij(i) − dab(a)∣∣∣ > 2cn, then either dia > cn or

dj(i)b(a) > cn. Without the loss of generality, we assume that dia > cn for(
i, j(i), a, b(a)

)
∈ I2. In this case

F2nT ≤
8c2
L

nT`n`T

∑
(i,j,a,b)∈I2

∑
(t,s,u,v)∈J1

(
cT
dT

)2 ∣∣∣γ(c1c2)
(it,au)γ

(d1d2)
(j(i)s(t),b(a)v(u))

∣∣∣
+

8

nT`n`T

∑
(i,j,a,b)∈I2

∑
(t,s,u,v)∈J1

(dia)
q
∣∣∣γ(c1c2)

(it,au)γ
(d1d2)
(j(i)s(t),b(a)v(u))

∣∣∣ (dia)−q
= O

(
1

cqn

)
+O

(
c2
T

d2
T

)
.

With the similar procedure, we can show that F3nT = O
(
c−qT
)

+ O (c2
n/d

2
n) and

F4nT = O (1/cqn).

By choosing cn and cT such that cn, cT →∞ but cn/dn, cT/dT → 0, we have

F1nT = o (1) , F2nT = o(1), F3nT = o(1) and F4nT = o(1)
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and (A.3) is proved.

It is easy to show D2nT = o(1), D3nT = o(1), D4nT = o(1) and D5nT = o(1)

given T2/T → 0 and n2/n→ 0.

By symmetry,

lim
n,T→∞

C3nT = K̄1K̄2J (c1, d2) J (c2, d1) .

Therefore,

lim
n,T→∞

nT

`n`T
cov
(
J̃nT (c1, d1) , J̃nT (c2, d2)

)
= K̄1K̄2(J (c1, c2) J (d1, d2) + J (c1, d2) J (c2, d1)).

In terms of matrix form,

lim
n,T→∞

nT

`n`T
var
(

vec
(
J̃nT

))
= K̄1K̄2(Ipp + Kpp) (J ⊗ J) .

(b) Asymptotic Bias

Let dT = knTdn and knT = k + o(1) where k > 0. We have

dqn

(
EJ̃nT − JnT

)
=

1

nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js)

(dij)
q
K
(
dij
dn

)
− 1(

dij
dn

)q +

(
dts
knT

)q K (dts
dT

)
− 1(

dts
dT

)q
+ (dij)

q

(
dts
dT

)q (K (dij
dn

)
− 1
)(

K
(
dts
dT

)
− 1
)

(
dij
dn

)q (
dts
dT

)q


= −Kqb
(q)
1 −

1

kq
Kqb

(q)
2 + o(1).

Therefore, limn,T→∞ d
q
n(J̃nT − JnT ) = −Kqb

(q)
1 − 1

kq
Kqb

(q)
2 .

(c)
√

nT
`n`T

(
ĴnT − JnT

)
= Op(1) and

√
nT
`n`T

(
ĴnT − J̃nT

)
= op(1)

By (a) and (b), it suffices to show that
√

nT
`n`T

(
ĴnT − J̃nT

)
= op(1). This

holds if and only if
√

nT
`n`T

(
b′ĴnT b− b′J̃nT b

)
= op(1) for any b ∈ Rp. In conse-
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quence, we can consider the case that JnT is a scalar without loss of generality.√
nT

`n`T

(
ĴnT − J̃nT

)
=
(√

nT
(
β̂ − β0

))2
√
`n`T
nT

1

`n`TnT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
X̃2
itX̃

2
js

− 2
√
nT
(
β̂ − β0

)√`n`T
nT

1

`n`T
√
nT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
X̃2
jsX̃itũit

− 2√
`n`TnT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
X̃itX̃jsuit (ūj + ūs − ū)

+
1√

`n`TnT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
X̃itX̃js (ūi + ūt − ū) (ūj + ūs − ū)

:= H1nT +H2nT +H3nT +H4nT .

It is easy to show that H1nT = op(1) and H2nT = op(1) under Assumptions

F9 and F12. For H3nT, we need to show that for all i and t

1√
`n`T

n∑
j=1

T∑
s=1

K

(
dij
dn

)
K

(
dts
dT

)
X̃js (ūj + ūs − ū) = op (1) . (A.11)

First, ūj + ūs − ū = op (1) uniformly. Second, by Assumption F12(iv)

P

(∣∣∣∣∣ 1√
`n`T

n∑
j=1

T∑
s=1

K

(
dij
dn

)
K

(
dts
dT

)
X̃js

∣∣∣∣∣ > ∆

)

≤ 1

∆2

2

`n`T

`i,n∑
j(i)=1

`t,T∑
s(t)=1

E
[
X̃j(i)s(t)

]2

→ 0,

as ∆ → ∞. Therefore, H3nT = op(1). With the similar procedures, we can show

that H4nT is op(1).

As a result, √
nT

`n`T

(
ĴnT − J̃nT

)
= op(1).
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(d) AMSE

The first equality holds by Theorem 1(c). For the second equality of The-

orem 1(d), since
nT

`n`T
=

d2q
n

d2q
n `n`T/nT

=
d2q
n

τ + o(1)
,

we have

lim
n,T→∞

MSE

(
nT

`n`T
, J̃nT , SnT

)
= lim

n,T→∞

nT

`n`T
vec

(
EJ̃nT − JnT

)′
SnT vec

(
EJ̃nT − JnT

)
+ lim

n,T→∞

nT

`n`T
K̄1K̄2tr

(
SnTvar(vec J̃nT )

)
=

1

τ
K2
q vec

(
b

(q)
1 +

1

kq
b

(q)
2

)′
S vec

(
b

(q)
1 +

1

kq
b

(q)
2

)
+ K̄1K̄2tr [S(Ipp +Kpp)(J ⊗ J)] ,

where the last equality holds by Theorem 1(a) and (b).

Proof of Corollary 1

Letting knT = dT/dn and knT → k as n, T → ∞. By Theorem 1(d), we

obtain

lim
n,T→∞

max
(b1,b2)∈B

MSE
(

(nT )2q/(2q+ηn+ηT ) , ĴnT (dn, dT ), SnT

)
= lim

n,T→∞
(αnαTk

ηT
nT )2q/(2q+ηn+ηT )

(
d2q
n `n`T
nT

)(ηn+ηT )/(2q+ηn+ηT )

×
(

2K2
q

d2q
n `n`T/nT

(
B11 +

B22

k2q
nT

)
+ K̄1K̄2C

)
= (α1α2k

ηT )2q/(2q+ηn+ηT ) τ (ηn+ηT )/(2q+ηn+ηT )

(
2K2

q

τ

(
B11 +

B22

k2q

)
+ K̄1K̄2C

)
,

It is straightforward to show that this is uniquely minimized over τ ∈ (0,∞) by

τ ? =
4qK2

q

(
B11 + B22

(k?)2q

)
(ηn + ηT ) K̄1K̄2C

and k? =

(
2 (2q + ηn)K2

qB22

ηT
(
2K2

qB11 + K̄1K̄2Cτ ?
))1/(2q)

,
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since S is pd. Therefore,

τ ? =
4qK2

qB11

ηnK̄1K̄2C
and k? =

(
ηnB22

ηTB11

) 1
2q

and the sequence {(dn, dT )} satisfies d2q
n `n`T/nT → τ ? if and only if

dn = d?n + o
(
(nT )1/(2q+η+1)

)
and dT = d?T + o

(
(nT )1/(2q+η+1)

)
.

Proof of Theorem 2

The proofs of (a) and (b) are analogous to the proofs of Theorem 1(a) and

(c) respectively.

Proof of Theorem 3

(a) Asymptotic Variance

The proofs of (a), (b), (c) and (d) are analogous to the proofs of Theorem

1(a), (b), (c) and (d) respectively.

Proof of Theorem 4

The proofs of (a), (b), (c) and (d) are analogous to the proofs of Theorem

1(a), (b), (c) and (d) respectively.

Proof of Proposition 1

(a) ĴnT − ĴGAnT = op(1) if dn → 0 as n→∞.

From Theorem 1(c), ĴnT − J̃nT = op(1) and similarly ĴGAnT − J̃GAnT = op(1).

Therefore, it is enough to show that

J̃nT (c, d)− J̃GAnT (c, d) = op(1), (A.12)
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if dn → 0 as n→∞. By Chebyshev’s inequality, for any ∆ > 0,

P
(∣∣∣J̃nT (c, d)− J̃GAnT (c, d)

∣∣∣ > ∆
)

≤ 1

∆2

1

n2T 2

∑
i 6=j

T∑
t,s=1

∑
a6=b

T∑
u,v=1

K

(
dij
dn

)
K

(
dab
dn

)
K

(
dts
dT

)
K

(
duv
dT

)
× E

[
V

(c)
(i,t)V

(d)
(j,s)V

(c)
(a,u)V

(d)
(b,v)

]
:= C̃1nT + C̃2nT + C̃3nT + C̃4nT ,

where

C̃1nT =
1

∆2

1

n2T 2

T∑
t,s,u,v=1

nTp∑
l=1

∑
i 6=j

∑
a6=b

K

(
dij
dn

)
K

(
dab
dn

)
K

(
dts
dT

)
K

(
duv
dT

)
× r(c)

(i,t),lr
(d)
(j,s),lr

(c)
(a,u),lr

(d)
(b,v),l

(
Eε4

l − 3
)

C̃2nT =
1

∆2

1

n2T 2

T∑
t,s,u,v=1

nTp∑
l,k=1

∑
i 6=j

∑
a6=b

K

(
dij
dn

)
K

(
dab
dn

)
K

(
dts
dT

)
K

(
duv
dT

)
× r(c)

(i,t),lr
(d)
(j,s),lr

(c)
(a,u),kr

(d)
(b,v),k

C̃3nT =
1

∆2

1

n2T 2

T∑
t,s,u,v=1

nTp∑
l,k=1

∑
i 6=j

∑
a6=b

K

(
dij
dn

)
K

(
dab
dn

)
K

(
dts
dT

)
K

(
duv
dT

)
× r(c)

(i,t),lr
(d)
(j,s),kr

(c)
(a,u),lr

(d)
(b,v),k

C̃4nT =
1

∆2

1

n2T 2

T∑
t,s,u,v=1

nTp∑
l,k=1

∑
i 6=j

∑
a6=b

K

(
dij
dn

)
K

(
dab
dn

)
K

(
dts
dT

)
K

(
duv
dT

)
× r(c)

(i,t),lr
(d)
(j,s),kr

(c)
(a,u),kr

(d)
(b,v),l.

Following (A.1), we can show C̃1nT = o(1). For C̃2nT ,

C̃2nT ≤
1

∆2

(
1

nT

T∑
t,s=1

∑
i 6=j

K

(
dij
dn

) ∣∣∣γ(cd)
(it,js)

∣∣∣)2

→ 0

as dn → 0 because K (dij/dn) = 0 for all i 6= j provided dn < mini,j dij. With the

similar procedures, we can show that C̃3nT → 0 and C̃4nT → 0. Therefore, (A.12)

holds.
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(b) ĴnT − ĴDKnT = op(1) if `
(c)
n /n→ 1 as n→∞.

From Theorem 3(c), ĴDKnT − J̃DKnT = op(1). Therefore, it is enough to show

that

J̃nT (c, d)− J̃DKnT (c, d) = op(1), (A.13)

if `
(c)
n /n→ 1 as n→∞.

By Chebyshev’s inequality, we have

P
(∣∣∣J̃nT (c, d)− J̃DKnT (c, d)

∣∣∣ > ∆
)
≤ 1

∆2
E
(
J̃nT (c, d)− J̃DKnT (c, d)

)2

:= Č1nT + Č2nT + Č3nT + Č4nT ,

for any ∆, where

Č1nT =
1

∆2

1

n2T 2

n∑
i,j,a,b=1

T∑
t,s,u,v=1

nTp∑
l=1

(
K

(
dij
dn

)
− 1

)(
K

(
dab
dn

)
− 1

)
K

(
dts
dT

)
×K

(
duv
dT

)
r

(c)
(i,t),lr

(d)
(j,s),lr

(c)
(a,u),lr

(d)
(b,v),l

(
Eε4

l − 3
)

Č2nT =
1

∆2

1

n2T 2

n∑
i,j,a,b=1

T∑
t,s,u,v=1

nTp∑
l,k=1

(
K

(
dij
dn

)
− 1

)(
K

(
dab
dn

)
− 1

)
K

(
dts
dT

)
×K

(
duv
dT

)
r

(c)
(i,t),lr

(d)
(j,s),lr

(c)
(a,u),kr

(d)
(b,v),k

Č3nT =
1

∆2

1

n2T 2

n∑
i,j,a,b=1

T∑
t,s,u,v=1

nTp∑
l,k=1

(
K

(
dij
dn

)
− 1

)(
K

(
dab
dn

)
− 1

)
K

(
dts
dT

)
×K

(
duv
dT

)
r

(c)
(i,t),lr

(d)
(j,s),kr

(c)
(a,u),lr

(d)
(b,v),k

Č4nT =
1

∆2

1

n2T 2

n∑
i,j,a,b=1

T∑
t,s,u,v=1

nTp∑
l,k=1

(
K

(
dij
dn

)
− 1

)(
K

(
dab
dn

)
− 1

)
K

(
dts
dT

)
×K

(
duv
dT

)
r

(c)
(i,t),lr

(d)
(j,s),kr

(c)
(a,u),kr

(d)
(b,v),l.

We can show that Č1nT = o (1) using the procedure in (A.1).
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For Č2nT ,

Č2nT

=
1

∆2

1

n2T 2

n∑
i,j,a,b=1

T∑
t,s,u,v=1

1

{
dij
dn

> c

}
1

{
dab
dn

> c

}
K

(
dts
dT

)
K

(
duv
dT

)
× γ(cd)

(it,js)γ
(cd)
(au,bv)

≤ 1

∆2

(
1

nT

n∑
i,j=1

T∑
t,s=1

1

{
dij
dn

> c

}
d−qij

∣∣∣γ(cd)
(it,js)

∣∣∣ dqij
)2

≤
(

1

c · dn

)2q
1

∆2

(
1

nT

n∑
i,j=1

T∑
t,s=1

∣∣∣γ(cd)
(it,js)

∣∣∣ dqij
)2

→ 0,

as dn →∞.

For Č3nT ,

Č3nT

≤ 1

∆2

1

n2T 2

n∑
i,j,a,b=1

T∑
t,s,u,v=1

1

{
dij
dn

> c

}
1

{
dab
dn

> c

}
1

{
dia
dn
≤ c

}
1

{
djb
dn
≤ c

}
×
∣∣∣γ(cc)

(it,au)γ
(dd)
(js,bv)

∣∣∣
+

1

∆2

1

n2T 2

n∑
i,j,a,b=1

T∑
t,s,u,v=1

1

{
dij
dn

> c

}
1

{
dab
dn

> c

}
1

{
dia
dn

> c or
djb
dn

> c

}
×
∣∣∣γ(cc)

(it,au)γ
(dd)
(js,bv)

∣∣∣
=

1

∆2

1

nT

n∑
i=1

∑
{a:dia/dn≤c}

T∑
t,u=1

∣∣∣γ(cc)
(it,au)

∣∣∣
×

 1

nT

∑
{j:dij/dn>c}

∑
{b:djb/dn≤c, dab/dn>c}

T∑
s,v=1

∣∣∣γ(dd)
(js,bv)

∣∣∣
+ o (1) .
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As `
(c)
i,n ≤ C`

(c)
n with some constant C, if `

(c)
n /n→ 1, then

1

nT

∑
{j:dij/dn>c}

∑
{b:djb/dn≤c, dab/dn>c}

T∑
s,v=1

∣∣∣γ(dd)
(js,bv)

∣∣∣
=
n− `(c)

n

n

1(
n− `(c)

n

)
T

∑
{j:dij/dn>c}

∑
{b:djb/dn≤c, dab/dn>c}

T∑
s,v=1

∣∣∣γ(dd)
(js,bv)

∣∣∣
→ 0,

which implies Č3nT → 0 as n, T →∞. With the same procedure, we can show that

Č4nT = o (1) . Therefore, (A.13) holds.

(c) ĴnT − ĴKSnT = op(1) if `
(c)
T /T → 1 as T →∞.

The proof is analogous to the proof of (b).

Lemma 2. Let

X =
1√

LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

Φb,k`m

(
i1
Ln
,
i2
Mn

,
t

T

)
V̂ ∗(i1,i2,t).

Then, under F1 - F2

X
d→ Λ

∫ 1

0

∫ 1

0

∫ 1

0

Φb,k`m (r1, r2, τ) dBp (r1, r2, τ) .

Proof of Lemma 2

Proofs are in the supplementary appendix.

Proof of Proposition 2

To simplify the notation, we use
∫∞
−∞ to stand for

∫∞
−∞

∫∞
−∞ ...

∫∞
−∞ and

∫ 1

0

to stand for
∫ 1

0

∫ 1

0
...
∫ 1

0
when there is no confusion. Let

J̌nT =
1

LnMnT

Ln∑
i1,j1=1

Mn∑
i2,j2=1

T∑
t,s=1

∞∑
k,`,m=1

λk,`,mΦb,k`m

(
i1
Ln
,
i2
Mn

,
t

T

)
× Φb,k`m

(
− j1

Ln
,− j2

Mn

,− s
T

)
V̂ ∗(i1,i2,t)V̂

∗′
(j1,j2,s)

.
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Then, for any given ∆ > 0

P (‖ĴnT − J̌nT‖ ≥ ∆) ≤ 1

∆
E‖ĴnT − J̌nT‖ → 0, n, T →∞

because by Assumption I8

E‖V̂ ∗(i1,i2,t)V̂
∗′

(j1,j2,s)
‖ <∞

and

|Kb(x1 − x2, y1 − y2, z1 − z2)

−
∞∑

k,`,m=1

λk,`,mΦb,k`m (x1, y1, z1) Φb,k`m (−x2,−y2,−z2)

∣∣∣∣∣ = 0

by the Fourier series representation. This implies

ĴnT − J̌nT = op(1). (A.14)

Hence, we can derive the limiting random matrix of J̌nT for that of ĴnT .

J̌nT =
∞∑

k,`,m=1

λk,`,m
1√

LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

Φb,k`m

(
i1
Ln
,
i2
Mn

,
t

T

)
V̂ ∗(i1,i2,t)

× 1√
LnMnT

Ln∑
j1=1

Mn∑
j2=1

T∑
s=1

(
Φb,k`m

(
j1

Ln
,
j2

Mn

,
s

T

)
V̂ ∗(j1,j2,s)

)H
:=

∞∑
k,`,m=1

λk,`,mXX
H ,

where superscript ‘H’ denotes the conjugate transpose.

From Lemma 2 and (A.14), we have

ĴnT
d→ Λ

∫ 1

0

∞∑
k,`,m=1

λk,`,mΦb,k`m (r1, r2, τ) Φb,k`m (−v1,−v2,−κ) dBp (r1, r2, τ)

× dB′p (v1, v2, κ) Λ′

d
= Λ

∫ 1

0

Kb (r1 − v1, r2 − v2, τ − κ) dBp (r1, r2, τ) dB′p (v1, v2, κ) Λ′,
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where the equality in distribution holds because

P

(∥∥∥∥∫ 1

0

( ∞∑
k,`,m=1

λk,`,mΦb,k`m (r1, r2, τ) Φb,k`m (−v1,−v2,−κ)

−Kb (r1 − v1, r2 − v2, τ − κ)

)
dBp (r1, r2, τ) dB′p (v1, v2, κ)

∥∥∥∥ ≥ ∆

)
≤
∫ 1

0

( ∞∑
k,`,m=1

λk,`,mΦb,k`m (r1, r2, τ) Φb,k`m (r1, r2, τ)− 1

)
Ipdr1dr2dτ

= 0.

Lemma 3. As b1, b2 and b3 → 0, we have

(a) E
(
v11 − v12v

−1
22 v21

)
= 1− b1b2b3c1 − (g − 1) b1b2b3c2 + o (b1b2b3) ,

(b) E
(
v11 − v12v

−1
22 v21

)2
= 1− 2b1b2b3 (c1 + (g − 2) c2) + o (b1b2b3) ,

(c) E
[(
v11 − v12v

−1
22 v21

)
− 1
]2

= 2b1b2b3c2 + o (b1b2b3) .

Proof of Lemma 3

This is a direct application of Lemma 3 in Sun (2010).

Proof of Theorem 5

Taking a Taylor expansion, we have

P {gF∞ (g, b) ≤ z}

= EGg

(
z
(
v11 − v12v

−1
22 v21

))
= Gg (z) +G′g (z) zE

[(
v11 − v12v

−1
22 v21

)
− 1
]

+
1

2
G′′g (z) z2E

[(
v11 − v12v

−1
22 v21

)
− 1
]2

+
1

2
E
[
G′′g (z̃)−G′′g (z)

]
z2
[(
v11 − v12v

−1
22 v21

)
− 1
]2
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where z̃ is between z and z
(
v11 − v12v

−1
22 v21

)
. Using Lemma 3, we have

P {gF∞ (g, b) ≤ z}

= Gg (z)−G′g (z) z [b1b2b3c1 + (g − 1) b1b2b3c2] +G′′g (z) z2b1b2b3c2 + o (b1b2b3)

= Gg (z) +
[
G′′g (z) z2c2 −G′g (z) z (c1 + (g − 1) c2)

]
b1b2b3 + o (b1b2b3)

= Gg (z) + A (z) b1b2b3 + o (b1b2b3) .

Proof of Theorem 6

It follows from Theorem 5 that

P {F ∗∞ (g, b) ≤ z}

= P {gF∞ (g, b) ≤ gz [1 + b1b2b3 (c1 + (g − 1) c2)]}

= Gg (gz [1 + b1b2b3 (c1 + (g − 1) c2)])

+ A (gz [1 + b1b2b3 (c1 + (g − 1) c2)]) b1b2b3 + o (b1b2b3)

= Gg (gz) +G′g (gz) gz [c1 + (g − 1) c2] b1b2b3 + A (gz) b1b2b3 + o (b1b2b3)

= Gg (gz) +G′′g (gz) g2z2c2b1b2b3 + o (b1b2b3) .

By definition,

P {Fg,K ≤ z}

= P

{
χ2
g ≤ gz

χ2
K

K

}
= EGg

(
gz
χ2
K

K

)
= Gg (gz) +G′g(gz)gzE

(
χ2
K

K
− 1

)
+

1

2
G′′g(gz)

(gz
K

)2

E
(
χ2
K −K

)2
+ o

(
1

K

)
= Gg (gz) +

1

K
G′′g(gz)g2z2 + o

(
1

K

)
= Gg (gz) +G′′g (gz) g2z2c2b1b2b3 + o (b1b2b3) .

Hence

P {F ∗∞ (g, b) ≤ z} = P {Fg,K ≤ z}+ o (b1b2b3) .
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Chapter 2

Spatial Heteroskedasticity and

Autocorrelation Consistent

Estimation of Covariance Matrix

This paper studies spatial heteroskedasticity and autocorrelation consis-

tent (HAC) estimation of covariance matrices of parameter estimators. As het-

eroskedasticity is a well known feature of cross sectional data (e.g. White (1980)),

spatial dependence is also a common property due to interactions among economic

agents. Therefore, robust inference in the presence of heteroskedasticity and spatial

dependence is an important problem in spatial data analysis.

The first discussion of spatial HAC estimation is Conley (1996, 1999). He

proposes a spatial HAC estimator based on the assumption that each observation

is a realization of a random process, which is stationary and mixing, at a point

in a two-dimensional Euclidean space. Conley and Molinari (2007) examine the

performance of this estimator using Monte Carlo simulation. Their results show

that inference is robust to the measurement error in locations. Robinson (2005)

considers nonparametric kernel spectral density estimation for weakly stationary

processes on a d-dimensional lattice.

75



76

Kelejian and Prucha (2007, hereafter KP) also develop a spatial HAC es-

timator. As in many empirical studies, they model spatial dependence in terms

of a spatial weighting matrix. The difference is that the weighting matrix is not

assumed to be known and is not parametrized. Typical examples of this type of

processes include the spatial autoregressive processes and spatial moving average

processes. Local nonstationarity and heteroskedasticity are built-in features of

these type of processes. This is in sharp contrast with Conley (1996, 1999) and

Robinson (2005) in which the process is assumed to be stationary.

In spatial HAC estimation literature, an economic distance is commonly

employed to characterize the decaying pattern of the spatial dependence. The

covariance of random variables at locations i and j is a function of dij,n, the eco-

nomic distance between them. As the economic distance increases, the covariance

decreases in absolute value and vice versa. A variety of distance measures can

be considered depending on applications. For example, Pinkse, Slade and Brett

(2002) use geographic distance and Conley (1999) uses transportation cost. The

existence of such an economic distance enables us to use the kernel method for

the standard error estimation. The estimator is a weighted sum of sample covari-

ances with weights depending on the relative distances, that is, dij,n/dn for some

bandwidth parameter dn.

We generalize the spatial HAC estimator proposed by KP to be applicable to

general linear and nonlinear spatial models and establish its asymptotic properties.

We provide the conditions for consistency and the rate of convergence. Let E`n

denote the mean of the average number of pseudo-neighbors. By definition, two

units are pseudo-neighbors if their distance is less than dn. We show that the

spatial HAC estimator is consistent if E`n = o(n) and dn → ∞ as n → ∞. This

result implies that the rate of convergence of the estimator is E`n/n. Comparing

our results with Andrews (1991), we find that the properties of the spatial HAC

estimator we consider are interestingly parallel to those of the time series HAC

estimator, even though they assume different DGPs and have different dependence
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structures.

We decompose the difference of the spatial HAC estimator from the true

covariance matrix into three parts. The first part is due to the estimation error of

model parameters and the second and third parts are bias and variance terms even

if the model parameters are known. We derive the asymptotic bias and variance

and show that the estimation error vanishes faster than the other two terms under

some regularity conditions. As a result, the truncated Mean Squared Error (MSE)

of the spatial HAC estimator is dominated by the bias and variance terms. This key

result provides us the opportunity to select the bandwidth parameter to balance

the asymptotic squared bias with variance. We find that the optimal bandwidth

choice depends on the weighting matrix Sn used in the MSE criterion. Depending

on which model parameter is the focus of interest, we suggest different choices of

the weighting matrix. This scheme coincides with that suggested by Politis (2007).

We provide a data-driven implementation of the optimal bandwidth param-

eter and examine the finite sample properties of our spatial HAC estimator and

the associated test via Monte Carlo simulation. We compare the performance of

competing estimators using different choices of dn and Sn. In addition, the effects

of location errors and the performance of the plug-in procedure with mis-specified

parametric model are examined. We also consider the case when the observa-

tions are located irregularly and compare the performance of the standard normal

approximation with two naive bootstrap approximations for hypothesis testing.

In addition to KP, the paper that is most closely related to ours is Andrews

(1991) who employs the asymptotic truncated MSE criterion to select the band-

width parameter for time series HAC estimation. His paper in turn can be traced

back to the literature on spectral density estimation. We extend Andrews (1991)

to the spatial setting. The extension is nontrivial as spatial processes are more

difficult to deal with, especially when they are not weakly stationary.

The remainder of the paper is as follows. Section 2 describes the estimation

problem and the underlying spatial process we consider and introduces our spatial
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HAC estimator. Section 3 establishes the consistency, the rate of convergence, and

the asymptotic truncated MSE of the spatial HAC estimator. Section 4 derives

asymptotically optimal sequences of fixed bandwidth parameters and proposes a

data-dependent implementation. Section 5 studies the consistency, the rate of

convergence, and the asymptotic truncated MSE of the spatial HAC estimator

with the estimated optimal bandwidth parameter. Section 6 presents Monte Carlo

simulation results. Section 7 concludes.

2.1 Spatial Processes and HAC Estimators

In a general spatial model with moment restrictions, the asymptotic distri-

bution of a parameter estimator often satisfies

(BnJnB
′
n)−

1
2
√
n(θ̂ − θ0)

d→ N(0, Ir), as n→∞,

where n is the sample size, Bn is a nonstochastic r × p matrix and

Jn = var

(
1√
n

n∑
i=1

Vi,n(θ0)

)
=

1

n

n∑
i=1

n∑
j=1

E [Vi,n(θ0)Vj,n(θ0)′] , (A.1)

Vi,n(θ) is a random p-vector for each θ ∈ Θ ⊂ Rr. For IV estimation of a linear

regression model, Vi,n(θ) = Zi,n(Yi,n−X ′i,nθ) where Zi,n is the vector of instruments.

For pseudo-ML estimation, Vi,n(θ) is the score function of the ith observation. For

GMM estimation, Vi,n(θ) is the moment vector. A prime example of this setting

is the spatial linear regression:

Yi,n = X ′i,nθ0 + ui,n,

where E(ui,n|Xi,n) = 0. The OLS estimator of θ0 is

θ̂ =

(
1

n

n∑
i=1

Xi,nX
′
i,n

)−1(
1

n

n∑
i=1

Xi,nYi,n

)
.

Under some regularity conditions, (BnJnB
′
n)−

1
2
√
n(θ̂ − θ0)

d→ N(0, Ir) where

Jn =
1

n

n∑
i=1

n∑
j=1

E (Xi,nui,n) (Xj,nuj,n)′ and Bn =

(
1

n

n∑
i=1

Xi,nX
′
i,n

)−1

.
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We are interested in estimating the asymptotic variance of
√
n(θ̂ − θ0). As

Bn is often easy to estimate by replacing θ0 with θ̂, our focus is on consistent

estimation of Jn. By extending the spatial HAC estimator proposed in KP, we can

construct a spatial HAC estimator of Jn as follows

1

n

n∑
i=1

n∑
j=1

V̂i,nV̂
′
j,nK

(
dij,n
dn

)
, (A.2)

where V̂i,n = Vi,n(θ̂) and K(·) is a real-valued kernel function. dij,n is the economic

distance between units i and j and dn is a bandwidth or truncation parameter. We

assume that the degree of spatial dependence is a function of dij,n. More specifically,

if dij,n is small, Vi,n and Vj,n are highly dependent. Whereas, if it is large, the two

units are rather close to being independent.

We assume that Vi,n(= Vi,n(θ0)) for i = 1, . . . , n are generated from the

linear transformation of np common innovations:

Vi,n = R̃inε̃n (A.3)

where

R̃in =


(
r̃

(1)
i1,n . . . r̃

(1)
in,n

)
. . . 0

...
. . .

...

0 . . .
(
r̃

(p)
i1,n . . . r̃

(p)
in,n

)


is a p × np block diagonal matrix with unknown elements, ε̃
(c)
n =

(
ε̃

(c)
1n , ..., ε̃

(c)
n,n

)′
and ε̃n = ((ε̃

(1)
n )′, ..., (ε̃

(p)
n )′)′ is a np× 1 vector of innovations. We assume that

var
(
ε̃(c)
n

)
= σccIn, cov

(
ε̃(c)
n , ε̃

(d)
n

)
= σcdIn

so that the variance matrix of ε̃n is of the form

var(ε̃n) = Σ⊗ In with Σ = (σij) ,

where ⊗ denotes the Kronecker product. The process Vi,n(θ0) may be nonlinear

in parameter θ0 but we assume that Vi,n(θ0) follows a linear array process as in
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(A.3). This type of processes allows for nonstationarity and unconditional het-

eroskedasticity. It also includes typical spatial parametric models such as spatial

autoregressive processes and spatial moving average processes.

Let Rin ≡ R̃in

(
Σ1/2 ⊗ In

)
and εn ≡ (ε1,n, ...., εnp,n)′ =

(
Σ−1/2 ⊗ In

)
ε̃n, then

Vi,n = Rinεn and var(εn) = Inp.

The matrix Rin can be written more explicitly as

Rin ≡


(
r

(1)
i1,n . . . r

(1)
i,np,n

)
...(

r
(p)
i1,n . . . r

(p)
i,np,n

)


=


σ11
(
r̃

(1)
i1,n . . . r̃

(1)
in,n

)
... σ1p

(
r̃

(p)
i1,n . . . r̃

(p)
in,n

)
...

. . .
...

σp1
(
r̃

(p)
i1,n . . . r̃

(p)
in,n

)
. . . σpp

(
r̃

(p)
i1,n . . . r̃

(p)
in,n

)


where σij is the (i, j)-th element of Σ1/2.

We make the following assumption on εn.

Assumption F5. For each n ≥ 1, {ε`,n} are i.i.d.(0, 1) with Eε4
`,n ≤ cE for a

constant cE <∞.

For simplicity, we assume that εi,n is independent of εj,n for i 6= j. Our

results can be generalized but with more tedious calculations. Under Assumption

F5, the covariance matrix between Vi,n and Vj,n is given by

Γij,n ≡
(
γ

(cd)
ij,n

)
= E[Vi,nV

′
j,n] = RinR

′
jn (A.4)

where the (c, d)-th element of Γij,n is denoted by γ
(cd)
ij,n . Accordingly, equation (A.1)

can be restated as

Jn =
1

n

n∑
i=1

n∑
j=1

Γij,n =
1

n

n∑
i=1

n∑
j=1

RinR
′
jn (A.5)
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and the (c, d)-th element of Jn is

Jn(c, d) =
1

n

n∑
i=1

n∑
j=1

E

[
np∑
m=1

np∑
`=1

r
(c)
im,nr

(d)
j`,nεm,nε`,n

]

=
1

n

n∑
i=1

n∑
j=1

np∑
m=1

r
(c)
im,nr

(d)
jm,n. (A.6)

Assumption F6. For all j = 1, 2, ..., np, and s = 1, 2, ..., p,
∑n

k=1

∣∣∣r(s)
kj,n

∣∣∣ < cR for

some constant cR, 0 < cR <∞.

Assumption F7. There exists qd > 0 such that n−1
∑n

i=1

∑n
j=1 ‖Γij,n‖ d

qd
ij,n < ∞

for all n, where ‖A‖ denotes the Euclidean norm of matrix A.

Assumptions F6 and F7 impose conditions on the persistence of the spa-

tial process. If |σij| ≤ C for some constant C > 0, then Assumption F6 holds

if
∑n

k=1

∣∣∣r̃(s)
kj,n

∣∣∣ < cR/C. Since
∣∣∣r̃(s)
kj,n

∣∣∣ can be regarded as the (absolute) change

of V
(s)
k,n in response to one unit change in ε̃

(s)
jn , the summability condition requires

that the aggregate response be finite. The condition holds trivially if the set

{r̃(s)
kj,n, k = 1, 2, ..., n} has only a finite number of nonzero elements. In this case,

the dependence induced by the innovation ε̃
(s)
jn are limited to a finite number

of units. Assumption F7 states that Γij,n decays to zero fast enough such that

n−1
∑n

i=1

∑n
j=1 ‖Γij,n‖ d

qd
ij,n is finite for all n. This excludes the case in which the

sample size increases because of more intensive sampling within a given distance.

This condition enables us to truncate the sum
∑n

j=1 ‖Γij,n‖ and downweigh the

summand without incurring a large error. As in the time series literature, this

assumption helps us control the asymptotic bias of the spatial HAC estimator. By

(A.6), Assumption 3 holds if n−1
∑n

i=1

∑n
j=1

∣∣∣∑np
m=1 r

(c)
im,nr

(d)
jm,n

∣∣∣ dqdij,n < ∞ for all c,

d, and n. This implies that if units i and j are far away from each other, then

one of r
(c)
im,n and r

(c)
jm,n must be small for any given m. In other words, given an

innovation at any location m, the responses at locations i and j cannot be both

large if i and j are far away from each other.



82

The spatial HAC estimator we consider is based on (A.2) but it also allows

for measurement errors in the economic distances as follows

Ĵn =
1

n

n∑
i=1

n∑
j=1

V̂i,nV̂
′
j,nK

(
d∗ij,n
dn

)
, (A.7)

where d∗ij,n = dij,n + νij,n and νij,n denotes the measurement error. Data on eco-

nomic distances available to econometricians usually contain measurement errors.

For example, the economic distance between two countries may be measured by

transportation cost in international trade and this inevitably involves some mea-

surement error. Sometimes the economic distance may be estimated from another

related model. The underlying estimation error is a special case of measurement

errors.

Assumption F8. (i) {νij,n} are independent of {ε`,n}. (ii) νij,n = o(dn) as dn →

∞.

(iii) n−1
∑n

i=1

∑n
j=1 ‖Γij,n‖E |νij,n|

qd <∞ for all n.

We allow a measurement error to increase as the distance of two units

becomes farther as long as Assumptions F8 (ii) and (iii) hold. Under this as-

sumption, it is straightforward that n−1
∑n

i=1

∑n
j=1 ‖Γij,n‖E(d∗ij,n)qd < ∞ for all

n. Essentially, measurement errors in location can not be so large as to change the

summability of n−1
∑n

i=1

∑n
j=1 ‖Γij,n‖E(d∗ij,n)q.

Let `i,n =
∑n

j=1 1{d∗ij,n ≤ dn} and `n = n−1
∑n

i=1 `i,n. If we call unit j a

pseudo-neighbor of unit i if d∗ij,n ≤ dn, then `i,n is the number of pseudo-neighbors

that unit i has and `n is the average number of pseudo-neighbors. Here we use the

terminology “pseudo-neighbor” in order to differentiate it from the common usage

of “neighbor” in spatial modeling.

In order to obtain the properties of the estimator in Theorem 7 below, it

is important to control the boundary effects. That is, the effects of the units on

the boundary should become negligible as the sample size increases so that the

asymptotic properties of the estimator depend only on the behavior of the interior
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units. We define the boundary in terms of the number of pseudo-neighbors. If

E |`i,n − E`n| = o(E`n), then we say that i is not on the boundary, otherwise it is

on the boundary. Let

En ≡ {i : E |`i,n − E`n| = o(E`n)} , n1 =
n∑
i=1

1 {i ∈ En} and n2 = n− n1.

Then En represents the set of nonboundary locations and n1 and n2 are the sizes

of nonboundary set and boundary set respectively. A unit i is in the nonboundary

set En as long as the difference between `i,n and E`n does not grow too fast as n

increases. The size of boundary depends on the choice of the bandwidth. We can

mitigate the boundary effects by raising dn slowly as n increases. If n2/n is o (1) ,

the boundary effect is asymptotically negligible. When the units are regularly

spaced on a lattice in R2, this condition is satisfied if E`n/n = o (1) .

We maintain the following assumption on the number of pseudo-neighbors.

Assumption F9. For i ∈ En, `i,n ≤ CE`n for some constant C.

Assumption F9 is very weak as C can be a large constant. This assumption

rules out the case that the units are concentrated only in some limited area while

other area is scarce.

Assumption F10. For i ∈ En,

lim
n→∞

var

 1√
E`n

∑
j:d∗ij,n≤dn

Vj,n

 = g,

where g ≡ limn→∞ Jn = limn→∞ n
−1
∑n

i=1

∑n
j=1 Γij,n.

In this assumption, 1/
√
E`n

∑
j:d∗ij,n≤dn

Vj,n can be regarded as a local ver-

sion of the (scaled) global average: 1/
√
n
∑n

j=1 Vj,n. Assumption F10 states that

the asymptotic variance of each local average (around an interior point) is the

same as that of the global average. There are many copies of local averages. As-

sumption F10 amounts to stating that there are multiple (noisy) observations of
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the quantity that we want to estimate. From this perspective, Assumption F10

is likely to be the weakest possible assumption we have to maintain. It is similar

to the homogeneity assumption in Bester, Conley, Hansen and Vogelsang (2009),

which assumes that the covariance matrix of each group converges to the same

limit.

Assumption F10 is related to but weaker than covariance stationarity. It

is implied by covariance stationarity but it can hold even though covariance sta-

tionarity is violated. As an example, consider a nonstationary spatial process on

a regular lattice in R2 represented by

S (x1, x2) =

∫ 2π

0

∫ 2π

0

exp (iω1x1 + iω2x2) f(x1,x2)(ω1, ω2)dZ (ω1, ω2)

where f(x1,x2)(ω1, ω2) is the local spectral density function at location (x1, x2), and

Z (ω1, ω2) is a stochastic process with independent increments. The dependence of

f(x1,x2)(ω1, ω2) on (x1, x2) induces nonstationarity. For this type of nonstationary

processes, Assumption F10 amounts to assuming that f(x1,x2)(0, 0) does not depend

on (x1, x2) , which is much weaker than assuming that f(x1,x2)(ω1, ω2) does not

depend on (x1, x2) for all (ω1, ω2) .

In Assumptions F7-F10, we consider the case of a single distance measure.

Our framework can be easily extended to allow for multiple distance measures. As

in KP, suppose we have M distance measures d∗ij,m,n for m = 1, 2, ...,M, each of

which is possibly error-ridden. If one of the distance measures, say dij,1,n and its

associated measurement error satisfy Assumptions F7-F10, then

n−1

n∑
i=1

n∑
j=1

‖Γij,n‖E
(
d∗ij,1,n

)qd <∞.
Let

d∗ij,min = min
m

d∗ij,m,n

then

n−1

n∑
i=1

n∑
j=1

‖Γij,n‖E
(
d∗ij,min

)qd <∞.
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Hence we can use the d∗ij,min as the “aggregate distance measure” and construct

the HAC estimator based on d∗ij,min. More specifically, our HAC estimator is

Ĵn =
1

n

n∑
i=1

n∑
j=1

V̂i,nV̂
′
j,nK

(
d∗ij,min

dn

)
. (A.8)

All our results remain valid as d∗ij,min is a single distance measure and it is not hard

to show that Assumptions F7-F10 hold with d∗ij,min.

2.2 Asymptotic Properties of Spatial HAC Esti-

mators

This section presents the consistency conditions, the rate of convergence,

and the asymptotic truncated MSE of the fixed bandwidth kernel spatial HAC

estimator. We begin by introducing the assumption on the kernel used in the

spatial HAC estimator.

Assumption F11. (i) The kernel K : R → [−1, 1] satisfies K(0) = 1, K(x) =

K(−x), K(x) = 0 for |x| ≥ 1. (ii) For all x1, x2 ∈ R there is a constant, cL < 0,

such that

|K(x1)−K(x2)| ≤ cL |x1 − x2| .

(iii) (E`n)−1E
∑n

j=1 K
2
(
d∗ij,n
dn

)
→ K̄ for all i.

Examples of kernels which satisfy Assumptions F11 (i) and (ii) are the

Bartlett, Tukey-Hanning and Parzen kernels. The quadratic spectral (QS) kernel

does not satisfy Assumption F11(i) because it does not truncate. We may gener-

alize our results to include the QS kernel but this requires a considerable amount

of work. Assumption F11 (iii) is more of an assumption on the distribution of the

units. In the case of a 2-dimensional lattice structure and d∗ij,n is the Euclidean

distance, we have

K̄ =
1

π

∫ 1

−1

∫ √1−x2

−
√

1−x2

K2(
√
x2 + y2)dydx =

∫ 1

0

rK2(r)dr.
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In finite samples, we may use

K̄n = (n`n)−1
n∑
i=1

n∑
j=1

K2

(
d∗ij,n
dn

)

for K̄.

As positive semi-definiteness is a desirable property of Ĵn, it is important

to examine the class of kernel functions that yields a psd covariance estimator.

If we map a set of observations into a lattice and assign zero at a grid where an

observation is missing, then Ĵn is numerically equivalent to the weighted average of

periodogram. Therefore, even though the spatial process of Vi,n is not covariance

stationary, a kernel with a positive Fourier transformation guarantees the positive

semi-definiteness of Ĵn as the case of spectral density estimation.

The asymptotic variance of Ĵn depends on g, the limit value of Jn and the

asymptotic bias of Ĵn is determined by the smoothness of the kernel at zero and

the rate of decaying of the spatial dependence as a function of the distance. Define

Kq0 = lim
x→0

1−K(x)

|x|q0
, for q0 ∈ [0,∞).

and let q = max{q0 : Kq0 < ∞} be the Parzen characteristic exponent of K(x).

The magnitude of q reflects the smoothness of K(x) at x = 0. We assume q ≤ qd

throughout the paper. Let

g(q)
n =

1

n

n∑
i=1

n∑
j=1

Γij,nE(d∗ij,n)q, g(q) = lim
n→∞

g(q)
n ≡ lim

n→∞

1

n

n∑
i=1

n∑
j=1

Γij,nE(d∗ij,n)q.

Next we introduce additional assumptions required to obtain the asymptotic

properties of Ĵn.

Assumption F12. (i)
√
n
(
θ̂ − θ0

)
= Op(1). (ii) supiE supθ∈Θn ‖Vi,n (θ) ‖2 <∞

where Θn is a small neighborhood around θ0. (iii) supiE supθ∈Θn ‖
∂
∂θ′
Vi,n(θ)‖2 <∞.

(iv) For r = 1, ..., p, supiE supθ∈Θn ‖
∂2

∂θ∂θ′
V

(r)
i,n (θ)‖2 < ∞. (v) For r, s = 1, . . . , p

supi,a,b
∑∞

j=1

∥∥∥EV (r)
j,n V

(r)
b,n

∂
∂θ′
V

(s)
i,n

∂
∂θ
V

(s)
a,n

∥∥∥ <∞.
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Assumption F12(i) usually holds by the asymptotic normality of parameter

estimators. Assumption F12 (ii) is implied by Assumptions F5 and F6. Assump-

tions F12 (iii), (iv) and (v) are trivial in a linear regression case.

We define the MSE criterion as

MSE

(
n

E`n
, Ĵn, S

)
=

n

E`n
E
[
vec(Ĵn − Jn)′Svec(Ĵn − Jn)

]
,

where S is some p2 × p2 weighting matrix and vec(·) is the column by column

vectorization function. We also define J̃n as the pseudo-estimator that is identical

to Ĵn but is based on the true parameter, θ0, instead of θ̂. That is,

J̃n =
1

n

n∑
i=1

n∑
j=1

Vi,nV
′
j,nK

(
d∗ij,n
dn

)
.

Under the assumptions above, the effect of using θ̂ instead of θ0 on the asymptotic

property is op(1) as Theorem 7(c) states below. Therefore, we use J̃n to analyze the

asymptotic properties of Ĵn. Notwithstanding, if θ̂ has an infinite second moment,

the underlying estimation error can dominate the MSE criterion. To circumvent

the undue influence of θ̂ on the criterion of performance, we follow Andrews (1991)

and replace the MSE criterion with a truncated MSE criterion. We define

MSEh

(
n

E`n
, Ĵn, Sn

)
= E

[
min

{∣∣∣∣ nE`nvec(Ĵn − Jn)′Snvec(Ĵn − Jn)

∣∣∣∣ , h}]
where Sn is a p2 × p2 weighting matrix that may be random. The criterion which

we base on for the optimality result is the asymptotic truncated MSE, which is

defined as

lim
h→∞

lim
n→∞

MSEh

(
n

E`n
, Ĵn, Sn

)
.

This criterion yields the same value as the asymptotic MSE when θ̂ has well defined

moments, but does not diverge to infinity when θ̂ has infinite second moments.

Assumption F13. (i) Eε8
l,n <∞. (ii) Sn

p→ S for a positive definite matrix S.

Let tr denote the trace function and Kpp the p2 × p2 commutation matrix.

Under the assumptions above, we have the following theorem.
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Theorem 7. Suppose that Assumptions F5-F11 hold, n2/n→ 0, E`n and dn →∞

and E`n/n→ 0.

(a) limn→∞
n
E`n

var
(
vecJ̃n

)
= K̄(I +Kpp) (g ⊗ g).

(b) limn→∞ d
q
n(EJ̃n − Jn) = −Kqg

(q).

(c) If Assumption F12 holds and d2qn E`n
n
→ τ ∈ (0,∞), then

√
n
E`n

(
Ĵn − Jn

)
=

Op(1) and
√

n
E`n

(
Ĵn − J̃n

)
= op(1).

(d) Under the conditions of part (c) and Assumption A.17,

lim
h→∞

lim
n→∞

MSEh

(
n

E`n
, Ĵn, Sn

)
= lim

h→∞
lim
n→∞

MSEh

(
n

E`n
, J̃n, Sn

)
= lim

n→∞
MSE

(
n

E`n
, J̃n, S

)
=

1

τ
K2
q

(
vecg(q)

)′
S
(
vecg(q)

)
+ K̄tr (S(I +Kpp)(g ⊗ g)) .

Proofs are given in the appendix. For each element,

limn→∞
n
E`n

cov
(
J̃rs,n, J̃cd,n

)
= K̄ (grcgsd + grdgsc) and limn→∞ d

q
n(EJ̃rs,n−Jrs,n) =

−Kqg
(q)
rs . Theorem 7(a) and (b) show that the asymptotic variance and bias of

J̃n depend on the choice of the bandwidth. When we increase the bandwidth, the

bias decreases and the variance increases because E`n increases with dn.

The second part of Theorem 7(c) shows that, compared with the variance

term in part (a) , the effect of using Vi,n(θ̂) instead of Vi,n (θ0) in the construction of

the spatial HAC estimator is of a smaller order. Therefore, the rate of convergence

is obtained by balancing the variance and the squared bias. Accordingly, E`n =

o(n) is the condition for the consistency of Ĵn and its rate of convergence is
√
E`n/n

(= O(d−qn )). If we assume that E`n = O(dηn) for some η > 0, then the rate

of convergence can be rewritten as nq/(η+2q). The results here are different from

those provided by KP. In their paper, the condition for consistency is E`n = o(nτ )
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where τ ≤ 1
2

and the rate of convergence is nq/(η+4q). They obtain this slower

rate of convergence by balancing the terms from the estimation error in θ̂ and the

asymptotic bias. Their rate is not the best obtainable because their bound for the

estimation error term is too loose.

It is also interesting that the asymptotic properties of the spatial HAC

estimator are very similar to those of the time series HAC estimator even though

their DGPs and dependence structures are different from each other. Instead of

using dn as the bandwidth parameter, we can also use E`n as the bandwidth

parameter. In the time series case, dn = E`n. Substituting this relationship into

Theorem 7, we obtain the same results as given in Parzen (1957), Hannan (1970)

and Andrews (1991).

2.3 Optimal Bandwidth Parameter and Data

Dependent Bandwidth Selection

This section presents a sequence of optimal bandwidth parameters which

minimize the asymptotic truncated MSE of Ĵn and gives a data-driven implemen-

tation. We also consider the choice of the weighting matrix Sn.

We obtain the optimal bandwidth parameter directly as a corollary to The-

orem 7 (d). Let d?n be the optimal bandwidth parameter. Then

d?n = arg min
dn

1

d2q
n

K2
q

(
vec g(q)

)′
Sn
(
vec g(q)

)
+
E`n
n
K̄tr (Sn(I +Kpp)(g ⊗ g)) (A.9)

If the relation between E`n and dn is specified, (A.9) can be restated in an explicit

form. For example, we may assume that E`n = αnd
η
n and αn = O(1) for some

η > 0. Then (A.9) is reduced to:

d?n = arg min
dn

1

d2q
n

K2
q

(
vec g(q)

)′
Sn
(
vec g(q)

)
+
αnd

η
n

n
K̄tr (Sn(I +Kpp)(g ⊗ g))

=

(
qK2

qκ(q)n

αnηK̄

) 1
2q+η

(A.10)
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where

κ(q) =
2
(
vec g(q)

)′
Sn
(
vec g(q)

)
tr (Sn(I +Kpp)(g ⊗ g))

.

Corollary 2. Suppose Assumptions F5-A.17 hold. Assume that E`n = αnd
η
n

for some η > 0, αn = α + o(1). Then, for any sequence of bandwidth parameters

{dn} such that d2qn E`n
n
→ τ ∈ (0,∞) as n→∞, {d?n} is preferred in the sense that

lim
h→∞

lim
n→∞

(
MSEh

(
n2q/(2q+η), Ĵn(dn), Sn

)
−MSEh

(
n2q/(2q+η), Ĵn(d?n), Sn

))
≥ 0.

The inequality is strict unless dn = d?n + o(n1/(2q+η)).

In general, η is equal to the dimension of the space. In the time series case,

η = 1 while in the two dimensional regular lattice case, η = 2. As a result, the

optimal bandwidth d?n depends on the dimension of space. Given the nonparamet-

ric nature of our estimator, this is not surprising. In contrast, KP suggest using

dn = C[n1/4], which is rate optimal only if q = 1 and η = 2. In general, both the

rate and constant are suboptimal.

d?n is a function of g and g(q) which are unknown in finite samples. Therefore,

the optimal bandwidth d?n is not feasible in practice. For this reason, a data

dependent estimation procedure is needed for implementation. Among several

data dependent bandwidth selection methods, plug-in methods are appropriate in

this case because we consider the estimation of Jn at given data. In the plug-in

methods, unknown parameters are estimated using a parametric or nonparametric

method (e.g. Andrews (1991). Newey and West (1987, 1994)). The former yields

a less variable bandwidth parameter but may introduce an asymptotic bias due

to the mis-specification of the parametric model. In contrast, the latter does not

require the knowledge of the DGP, but it converges more slowly than the former,

which causes bandwidth selection to be less reliable. Since the optimal bandwidth

involves g(q), a quantity that is very hard to estimate, we focus on the parametric

plug-in method in this paper. In fact, the rate of convergence for a nonparametric

estimator of g(q) is generally slower than that for g itself. Figure 1 presents the
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Figure 2.1: Spatial AR(1) Process : Vn = ρWnVn + εn, n = 400

percentage increase in MSE relative to the minimum MSE as a function of the

bandwidth. The graph is based on the spatial AR(1) process Vn = ρWnVn + εn

on a square grid of integers, where Wn is a contiguity matrix whose threshold is
√

2 and εi,n
i.i.d∼ N(0, 1). The sample size is n = 400. As a standard practice, Wn

is row-standardized and its diagonal elements are zero. The curve is U-shaped for

each ρ and therefore our goal is to choose the bandwidth which is reasonably close

to d?n. As argued by Andrews (1991), good performance of a HAC estimator only

requires the automatic bandwidth parameter to be near the optimal bandwidth

value and not precisely equal to it. The simplest and most popular approximating

parametric model is the spatial AR(1) model for V
(c)
n , c = 1, . . . , p. Depending on

the correlation structure, spatial MA(q) or spatial ARMA(p,q) models can also be

used. As an example, consider the case that V
(c)
n follows a spatial AR(1) process

of the form:

V (c)
n = ρcW

(c)
n V (c)

n + ε̃(c)
n = (In − ρcW (c)

n )−1ε̃(c)
n ,
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where ε̃
(c)
i,n

i.i.d∼ (0, σ2
ε) and W

(c)
n is a spatial weight matrix. W

(c)
n is determined a

priori and by convention it is row-standardized and its diagonal elements are zero.

See Anselin (1988). We can estimate ρc by quasi-maximum likelihood (QML) or

spatial two stage least squares (2SLS) estimators (e.g. Kelejian and Prucha (1998)).

In fact, a simple OLS estimator can be used. If the spatial AR(1) model is the true

data generating process, then the OLS estimator is inconsistent while the QML

and 2SLS estimators are consistent. Since the spatial AR(1) model is likely to be

mis-specified, the QML and 2SLS estimators are not necessarily preferred.

Let ε̌
(c)
n =

(
In − ρ̂cW (c)

n

)
V

(c)
n , ε̌n =

(
ε̌

(1)
n , ..., ε̌

(p)
n

)
and Σ̂ = n−1ε̌′nε̌n. Define

Âcd =

[
1

n
V̂ (c)′
n (In − ρ̂cW (c))′(In − ρ̂dW (d)

n )V̂ (d)
n

]
×

[
(In − ρ̂cW (c)

n )−1
] [

(In − ρ̂dW (d)
n )−1

]′
where its (i, j)-th element is denoted by â

(cd)
ij for i, j = 1, . . . , n. Then, we estimate

gcd and g
(q)
cd by

ĝcd =
1

n

n∑
i=1

n∑
j=1

â
(cd)
ij , ĝ

(q)
cd =

1

n

n∑
i=1

n∑
j=1

â
(cd)
ij

(
d∗ij,n

)q
. (A.11)

Consequently, the data dependent bandwidth parameter estimator, d̂n, based on

the spatial AR(1) model is

d̂n = arg min
dn

1

d2q
n

K2
q

(
vec ĝ(q)

)′
Sn
(
vec ĝ(q)

)
+K̄

`n
n

tr (Sn(I +Kpp)(ĝ ⊗ ĝ)) . (A.12)

For spatial MA(1) and spatial ARMA(1,1) models, (A.11) is restated as

Âcd =

[
1

n
V̂ (c)′
n

(
In + λ̂cM

(c)′
n

)−1

(In + λ̂dM
(d)
n )−1V̂ (d)

n

](
In + λ̂cM

(c)
n

)
× (In + λ̂dM

(d)′
n )

Âcd =

[
1

n
V̂ (c)′
n (In − ρ̂cW (c)′

n )
(
In + λ̂dM

(c)′
n

)−1

(In + λ̂dM
(d)
n )−1(I − ρ̂dW (d)

n )V̂ (d)
n

]
× (In − ρ̂cW (c)

n )−1(In + λ̂cM
(c)
n )(In + λ̂dM

(d)′
n )(In − ρ̂dW (d)′

n )−1
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respectively. λc and M
(c)
n are the coefficient and the (n× n) weighting matrix for

the spatial MA component. Extension to spatial AR(p), spatial MA(q), spatial

ARMA(p, q) models for p, q ≥ 2 is straightforward.

The choice of the weighting matrix Sn is another important problem. A

traditional choice suggested by Andrews (1991) is

Ŝn = (B̂n ⊗ B̂n)′S̃(B̂n ⊗ B̂n)′,

where S̃ is a r2×r2 diagonal weighting matrix. For this choice of Ŝn, the asymptotic

truncated MSE criterion reduces to the asymptotic truncated MSE of B̂nĴnB̂
′
n with

weighting matrix S̃ provided that B̂n − Bn = op(E`n/n). When S̃ is an identity

matrix, we obtain the MSE of the sum of the elements in B̂nĴnB̂
′
n.

While Ŝn is consistent for the objective we are interested in, as Politis (2007)

points out, it yields a single optimal bandwidth for estimating all elements of a

covariance matrix but each element has its own individual optimal bandwidth. In

particular, the cost of using a single optimal bandwidth increases when the process

V
(s)
n is significantly different for different s. This is typical in a spatial context.

Considering this, we propose using different weighting matrices for different ele-

ments of the covariance matrix when Vn has a heterogenous dependence structure.

Let Srs,n denote the weighting matrix for estimating Ĵrs,n. Then, a natural choice

of Srs,n is the diagonal matrix in which the element corresponding to Ĵrs,n is 1 and

others are zero. We can also choose the weighting matrix such that the asymptotic

truncated MSE criterion reduces to the asymptotic truncated MSE of a subvector

of the parameter estimator θ̂.

One concern of this method is that it does not guarantee Ĵn to be psd,

which is often regarded as a desirable property of Ĵn. However, we can attain

positive semi-definiteness with a simple modification suggested by Politis (2007).

As Ĵn is symmetric, Ĵn(d̂n) = Û Λ̂Û ′, where Û is an orthogonal matrix and Λ̂ =

diag(λ̂1, . . . , λ̂p) is a diagonal matrix whose diagonal elements are the eigenvalues

of Ĵn. Let Λ̂+ = diag(λ̂+
1 , . . . , λ̂

+
p ) where λ̂+

s = max(λ̂s, 0). Then, we define our
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modified estimator as

Ĵn(d̂n)+ = Û Λ̂+Û ′.

As each eigenvalue of Ĵn(d̂n)+ is nonnegative, it is psd. Theorem 4.1 in Politis

(2007) shows that Ĵn(d̂n)+ converges Jn at the same rate as Ĵn(d̂n). In fact, it is

not hard to show that the truncated AMSE of Ĵn(d̂n)+ is smaller than that of Ĵn.

2.4 Properties of Data Dependent Bandwidth

Parameter Estimators

In this section, we consider the consistency condition, rate of convergence,

and asymptotic truncated MSE of spatial HAC estimators with the data dependent

bandwidth parameter estimator. Let

g̈cd = P lim
n→∞

1

n

n∑
i=1

n∑
j=1

â
(cd)
ij , g̈

(q)
cd = P lim

n→∞

1

n

n∑
i=1

n∑
j=1

â
(cd)
ij E

(
d∗ij,n

)q
.

be the probability limits of ĝcd and ĝ
(q)
cd respectively. Define

d̈n = arg min
dn

1

d2q
n

K2
q

(
vec g̈(q)

)′
Sn
(
vec g̈(q)

)
+ K̄

E`n
n

tr (Sn(I +Kpp) (g̈ ⊗ g̈)) .

(A.13)

We study the properties of Ĵn(d̂n) by investigating Ĵn(d̈n) because the asymptotic

properties of Ĵn(d̂n) are equivalent to those of Ĵn(d̈n) as stated in Theorem 8 below.

For Theorem 8, we introduce the following assumption.

Assumption F14.
√
n
(
d̈n
d̂n
− 1
)

= Op(1).

Since d̈n is defined by replacing `n, ĝcd and ĝ
(q)
cd with E`n, the probability

limits of ĝcd and ĝ
(q)
cd in the definition of d̂n, the assumption holds if `n, ĝcd and ĝ

(q)
cd

converge to E`n, g̈cd and g̈
(q)
cd respectively at the parametric rate. This is a rather

weak assumption.

Let ˆ̀
i,n =

∑n
j=1 1

(
d∗ij,n ≤ d̂n

)
, ῭
i,n =

∑n
j=1 1{dij,n ≤ d̈n}, ˆ̀

n = n−1
∑n

i=1
ˆ̀
i,n

and ῭
n = n−1

∑n
i=1

῭
i,n. The next theorem summarizes the properties of the spatial

HAC estimator with d̂n.
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Theorem 8. Suppose Assumptions 1-F14 hold.

(a)
√

n
E ῭

n

(
Ĵn(d̂n)− Jn

)
= Op(1) and

√
n
E ῭

n

(
Ĵn(d̂n)− Ĵn(d̈n)

)
= op(1).

(b) Let τ̈ = limn→∞
d̈2qn E ῭

n

n
. Then,

lim
h→∞

lim
n→∞

MSEh

(
n

E ῭
n

, Ĵn(d̂n), Sn

)
= lim

h→∞
lim
n→∞

MSEh

(
n

E ῭
n

, Ĵn(d̈n), Sn

)
=

1

τ̈
K2
q

(
vecg(q)

)′
S
(
vecg(q)

)
+ K̄tr (S(I +Kpp) (g ⊗ g)) .

Proofs are given in the appendix. Theorem 2(a) implies that Ĵn(d̂n)
p→ Jn

as long as E ῭
n = o(n) and Ĵn(d̂n) and Ĵn(d̈n) have the same asymptotic properties.

If the approximating parametric model is correct, that is, ĝ
p→ g and ĝ(q) p→ g(q),

{d̂n} has some optimality properties as a result of Theorem 1(d) and Corollary 1.

Corollary 3. Suppose Assumptions 1-F14 hold. Assume that E`n = αnd
η
n for

some η > 0 and αn = α + o(1). Then for any sequence of data dependent band-

width estimators {ḋn} such that for some fixed sequence, {dn}, which satisfies

limn→∞
d2qn E`n

n
→ τ ∈ (0,∞) we have

lim
h→∞

lim
n→∞

(
MSEh

(
n2q/(2q+η), Ĵn(ḋn), Sn

)
−MSEh

(
n2q/(2q+η), Ĵn(dn), Sn

))
= 0,

d̂n is preferred in the sense that

lim
h→∞

lim
n→∞

(
MSEh

(
n2q/(2q+η), Ĵn(ḋn), Sn

)
−MSEh

(
n2q/(2q+η), Ĵn(d̂n), Sn

))
≥ 0.

The inequality is strict unless dn = d?n + o(n1/(2q+η)).

2.5 Monte Carlo Simulation

In this section, we study the properties of the spatial HAC estimator with

Monte Carlo simulation. First, we compare the performance of the spatial HAC
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estimator based on d̂n with other bandwidth selection procedures and the het-

eroskedasticity robust covariance estimator of White (1980). We evaluate them

using the MSE criterion and the coverage accuracy of the associated CIs. Sec-

ond, we examine the robustness of our bandwidth choice procedure to the mis-

specification in the spatial weighting matrices and the approximating parametric

model. We also examine its robustness to the presence of measurement errors

in distance. Third, for studentized tests, we compare the normal approximation

with some naive bootstrap approximations. Fourth, we evaluate the performance

of the spatial HAC estimator with bandwidth parameter d̂n when the units are

distributed irregularly on the lattice. Finally, we use different weighting matrices

in the MSE criterion and evaluate the effect of the resulting bandwidth choice on

the MSE of a standard error estimator.

The data generating process we consider here is

yn = Xnθ0 + un (A.14)

un = ρ0W0nun + εn, |ρ0| < 1, (A.15)

with εi,n
i.i.d.∼ N(0, 1). We assume a lattice structure, in which each unit is located

on a square grid of integers. W0n is a contiguity matrix and units i and j are neigh-

bors if dij,n ≤
√

2. Following convention, it is row-standardized and its diagonal

elements are zero.

We consider three different sizes of lattices, 20× 20 (n = 300, 400), 25× 25

(n = 400) and 32 × 32 (n = 1024). The ranges of dn we consider are from 1 to

27 for the 20 × 20 lattice, from 1 to 34 for the 25 × 25 lattice and from 1 to 44

for the 32× 32 lattice. We use a location model in the first part and a univariate

regression model in the second part. The estimand of interest is the covariance

matrix of
√
n(θ̂ − θ0). We use the Parzen kernel, which is defined as follows:

K(x) =


1− 6x2 + 6|x|3, for 0 ≤ |x| ≤ 1/2,

2(1− |x|)3, for 1/2 ≤ |x| ≤ 1,

0, otherwise.
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2.5.1 Location Model

For the location model, model (A.14) reduces to

yi,n = θ0 + ui,n.

Without loss of generality, we set θ0 = 1. A natural estimator of θ0 is θ̂ =

n−1
∑n

i=1 yi,n and ûn = yn − θ̂.

We use the spatial AR(1) as the approximating parametric model. The

concentrated log-likelihood function for the spatial AR(1) process is

logL(ûn|ρ) = −n
2

log (ûn − ρWnûn)′ (ûn − ρWnûn) + log |In − ρWn|+ const.

See Lee (2004). For a given spatial weighting matrix Wn, we estimate ρ by the

QML method, that is

ρ̂ = ρ̂ (Wn) = arg max
ρ

logL(ûn|ρ).

Depending on the choice of Wn, we obtain a different ρ̂ and hence a differ-

ent bandwidth parameter d̂n(Wn) from equation (A.12). To find d̂n, we search the

minimizer numerically instead of using the plug-in version of (A.10). In our sim-

ulation experiment, we take Wn to be the contiguity matrix in which units i and

j are neighbors if dij,n ≤ D, a threshold parameter. We consider three values for

the threshold: D = 1,
√

2, 2, leading to three bandwidth choices d̂
(`)
n , d̂n and d̂

(h)
n .

Note that when D =
√

2, the spatial weighting matrix is equal to the true spatial

weighting matrix W0n. We also consider the case with measure errors in distance.

When dij,n > 1, we take P (νij,n = −1) = P (νij,n = 0) = P (νij,n = 1) = 1/3. We

use the contiguity matrix as the weighting matrix and take the threshold parameter

to be
√

2. This gives us the data driven bandwidth estimator d̂(e).

KP suggest taking dn = c[n
1
4 ], where c is a constant and [z] denotes the

largest integer that is less than or equal to z and they use [n
1
4 ] in their simulation.

We compare the performances of d̂
(`)
n , d̂n, d̂

(h)
n and d̂(e) with that of dFn = [n

1
4 ].1 We

1F denotes “fixed.”
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also include the heteroskedasticity consistent estimator of White (1980, 1984) in

our comparison. The estimator is defined to be

INID =
1

n− 1

n∑
i=1

û2
i,n,

which can be regarded as the SHAC estimator with bandwidth set to be 0.

Table 1 presents the ratio of the MSE of the spatial HAC estimator with

different bandwidth choices to the spatial HAC estimator with the infeasible finite

sample optimal bandwidth d̃n. It also reports the average bandwidth choice in each

scenario. When ρ is high, the ratio is usually less than 1.20 even with incorrect Wn

and measurement errors. When ρ is negative, the ratio with d̂
(`)
n is larger than 2.0.

Table 1 also illustrates how mis-specification in the spatial weighting matrix affects

our choice of bandwidth. If Wn includes fewer units as neighbors, the bandwidth

estimator tends to be smaller than the one with correct Wn. In contrast, if Wn

includes more units as neighbors, the bandwidth estimator tends to be larger. This

coincides with our intuition. If we think we have a larger neighborhood, we need

to choose a larger bandwidth to reflect the dependence structure.

Table 1 also presents the performance of the spatial HAC estimator with

measurement errors. The effects of measurement errors are related to the mis-

specification of Wn. For a given bandwidth parameter, positive measurement er-

rors lead to a smaller number of neighbors and vice versa. Whereas, in contrast

to the mis-specification of Wn, measurement errors are different across different

individuals. Table 1 shows that the estimator contaminated by measurement er-

rors performs very poorly compared to other estimators when ρ = −0.5, while it

performs reasonably well when ρ is positive.

Table 1 also compares d̂n with dFn . As dFn depends only on the sample size,

it is invariant to the spatial dependence. Thus, it performs relatively well when it

is close to d̃n (e.g. ρ = −0.3 and 0.3) but it is inferior to d̂n in most senarios.

Table 2 provides the bias, variance and MSE of the spatial HAC estimators

with different bandwidth selection and those of INID. We use SHAC0, SHACl,
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SHACh, SHACe and SHACF to denote the spatial HAC estimators with d̂n, d̂
(l)
n ,

d̂
(h)
n , d̂

(e)
n and dFn respectively. We can see that SHAC0 is reasonably accurate in

general but that it suffers from severe underestimation when ρ is extremely high.

Spatial HAC estimators do not capture high dependence well even if we choose a

large bandwidth since spatial HAC estimators are constructed with the estimated

residuals not the true disturbances. Our asymptotic theory does not capture the

effect of demeaning on the SHAC estimator. This is analogous to the time series

case, see for example, Sun, Phillips and Jin (2008) and Sun and Phillips (2008).

When there is no spatial dependence (ρ = 0), SHAC0 is quite reliable in that

the RMSE is only 15% of the true value even though INID is slightly more accurate.

When there exists some spatial dependence, SHAC0 is much more accurate than

INID. Furthermore, INID is rarely improved with an increasing sample size, which

is in sharp contrast to SHAC0. For example, when ρ = 0.3 and n = 400, the

MSE of SHAC0 is less than a third of that of INID. When n = 1024, the difference

increases with the former less than a fifth of the latter. Therefore, when there is no

spatial dependence, the loss of efficiency from using a spatial HAC estimator with

data dependent bandwidth is small. Whereas, there is a remarkable reduction in

RMSE by using a spatial HAC estimator when there exists spatial dependence.

Table 2 also shows how mis-specification in Wn and measurement errors

affect the performance of the spatial HAC estimator using the bandwidth choice

we suggest. Comparing SHACe with SHAC0, we find that measurement errors

lead to higher MSE. However, the difference in MSE is not very large, reflecting

the robustness of the SHAC to the presence of measurement errors. Similarly,

mis-specification in Wn is not critical in our simulation design. Among the three

bandwidth choices d̂
(l)
n , d̂

(h)
n , d̂

(e)
n , none of them performs consistently better than

others and the difference gets smaller when n = 1024. Compared to SHACF , all

of them tend to yield smaller MSEs especially when n = 400 and ρ is high.

Table 3 reports the empirical coverage probabilities of CIs associated with

different spatial HAC estimators. The results in this table are similar to the ones
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in Table 2. All of the estimators yield very accurate CIs when there is no spatial

dependence. In contrast, when there is spatial dependence, INID is clearly inferior

to spatial HAC estimators. As the sample size increases, the coverage accuracy

improves for all of the estimators except INID. Compared to SHACF , spatial HAC

estimators using our data dependent bandwidth choice are more reliable as the de-

pendence increases even in the presence of measurement errors or mis-specification

in the spatial weighting matrix.

Table 3 shows that, when ρ = 0.9 or 0.95, the error in coverage probability

(ECP) is substantial. For example, when ρ = 0.95, the ECP for the 95% CI with

SHAC0 is 14.6% even when n = 1024. As seen in Table 2, the downward bias of

spatial HAC estimators becomes very large when spatial dependence is very high.

For this reason, the CIs tend to be very tight. The ECP comes from two sources.

First, the spatial HAC estimator is biased downward. Second, the CIs are based

on the asymptotic normal approximation. In order to alleviate this problem, we

investigate the performance of some bootstrap procedures in Table 5.

Table 4 shows the performance of d̂n with mis-specified parametric models.

As the parametric plug-in method is likely to be biased, robustness of the spatial

HAC estimator to the mis-specification of the approximating parametric model is

a highly desirable property. Consider the case that un follows a spatial AR(p)

process:

un = ρWn1un + ρ2Wn2un + · · ·+ ρpWnpun + εn.

The thresholds for W1n, W2n, W3n and W4n are dij,n ≤
√

2,
√

2 < dij,n ≤ 2,

2 < dij,n <
√

5 and
√

5 < dij,n ≤ 2
√

2 respectively. Regardless of the number of

lags the true process has, we use spatial AR(1) as the approximating parametric

model. Table 4 illustrates that as the number of lags increases, the accuracy of the

spatial HAC estimator using the spatial AR(1) model becomes lower. However,

comparison with dFn clearly shows that the plug-in method using spatial AR(1)

model performs reasonably well. For example, when ρ = 0.4 and the DGP is



101

spatial AR(4) the empirical coverage probability of the 99% CI with SHAC0 is

93.5% and that with SHACF is 86.5%.

Table 5 examines bootstrap approximation as an alternative to the normal

approximation. Both i.i.d. naive bootstrap and wild bootstrap are considered.

The procedure for the i.i.d. naive bootstrap we use here is as follows:

(S.1) At each location i, draw y∗i,n randomly from {yi,n, i = 1, . . . , n} with replace-

ment.

(S.2) Estimate the model parameter θ by θ̂∗ = n−1
∑
y∗i,n.

(S.3) Construct the spatial HAC estimator based on the bootstrap sample but use

the bandwidth parameter d̂n.

(S.4) Compute the t-stat in the bootstrap world.

(S.5) Repeat S.1-S.4 to obtain the empirical distribution of the bootstrapped t-

stat.

(S.6) Use critical values from the empirical distribution in (S.5) to construct CIs.

We also implement the wild bootstrap, which is proposed by Liu (1988) to

account for unknown form of heteroskedasticity. The procedure is the same as that

for the iid bootstrap except that (S.1) is replaced by (W.1)

(W.1) At each location, compute the residual ûi,n = yi,n − θ̂ and generate the

bootstrap observation y∗i,n :

y∗i,n =

 θ̂ + ûi,n with probability 0.5,

θ̂ − ûi,n with probability 0.5.

See Davidson and Flachaire (2001) for more details.

(S.1) and (W.1) eliminate spatial dependence of the bootstrap sample.

Gonçalves and Vogelsang (2008) show that the i.i.d. naive bootstrap provides
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a valid approximation to the “fixed-b” asymptotic distribution in time series re-

gressions. Under the “fixed-b” specification, the bandwidth is set proportional

to the sample size and the associated test statistic converges to a non-standard

limiting distribution (e.g. Kiefer and Vogelsang (2002, 2005)). Gonçalves and

Vogelsang (2008) introduce a naive bootstrap procedure to obtain the critical val-

ues from the non-standard distribution. Bester, Conley, Hansen and Vogelsang

(2008) have extended the “fixed-b” asymptotics and the naive bootstrap proce-

dure to spatial HAC estimation. Their results are not applicable to our setting

for two reasons. First, we adopt the traditional asymptotics framework in which

the bandwidth or the number of pseudo-neighbors grows at a slower rate than the

sample size. Second, the spatial processes we consider allow for nonstationarity

and heteroskedasticity which are ruled out in Bester, Conley, Hansen and Vogel-

sang (2008). However, the idea of using bootstrap to capture the randomness of

the HAC estimator is still applicable. When the bandwidth is large, the bias of the

HAC estimator is small and the main task is to capture the finite sample variation

of the HAC estimator. By ignoring the spatial dependence hence the bias of the

HAC estimator, the iid bootstrap and wild bootstrap do exactly this.

The bootstrap method can be justified in the traditional framework. Un-

der some regularity assumptions and E`n = o(n), the t-statistic or Wald statistic

converges in distribution to the standard normal distribution or a chi-square distri-

bution. In the bootstrap world, the corresponding test statistic obviously converges

to the same distribution. Therefore, the iid bootstrap and wild bootstrap can be

viewed as a valid method to obtain critical values from the standard normal or Chi-

square distribution. Whether the critical values are second order correct, however,

is beyond the scope of this paper.

Table 5 shows that the bootstrap methods implemented here improve the

accuracy of the CIs compared to the standard normal approximation, especially

when the dependence is extremely high. As we have seen in previous tables, the

standard normal approximation yields a large size distortion when spatial depen-
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dence is very high. However, we don’t find this problem from the bootstrap pro-

cedures. Between the i.i.d. naive bootstrap and the wild bootstrap, there is no

significant difference. For example, when ρ = 0.95, the empirical coverage prob-

abilities of the 95% CI by the i.i.d. naive bootstrap and the wild bootstrap are

85.8% and 83.2% respectively, while that of CLT is 69.2%.

Table 6 illustrates the performance of the spatial HAC estimator with d̂n

when the units are located irregularly on the lattice. We generate un using the

spatial AR(1) process on 20 × 20 and 25 × 25 lattices and randomly sample 300

and 400 locations from the lattices respectively without replacement. We estimate

the location model with the observations on those 300 and 400 locations. We

condition on the same set of locations we sample in each simulation. Table 6

shows that irregularity in location does not adversely affect the performance of the

spatial HAC estimators with d̂n. The result is confirmed by comparing Table 6 with

Tables 2 and 3 in which the observations are regularly spaced. This corroborates

our asymptotic results as they do not require a regular lattice structure.

2.5.2 Univariate Model

In the second part, the regression model we consider is

yi,n = α + βxi,n + ui,n

where α = 1, β = 5, xn = (xi,n) is the standardized version of x̃n, which follows a

spatial process of the form:

x̃n = ψW0nx̃n + ζn,

with ζin
i.i.d∼ U [0, 1]. Here we assume the spatial process of x̃n and un have the same

weighting matrix W0n. Let Xn be the design matrix with i-th row Xi,n = [1, xi,n].

In view of the standardization, n−1X ′nXn is the 2× 2 identity matrix.
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We consider two different weighting matrices: Sn = Šn or Ŝn where

Šn =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and Ŝn =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 .

The first choice Šn is suggested by Andrews (1991) in time series HAC estimation.

For this choice, the MSE criterion reduces to the MSE of Ĵ11,n+ Ĵ22,n+ 2Ĵ12,n. The

second choice is designed to select the variance of β̂ and the corresponding MSE

is the MSE of Ĵ22,n.

Table 7 reports the bias and MSE of the SHAC estimator Ĵ22,n for the above

two weighting matrices. The coverage probability of the associated 95% CI is also

reported. When ψ = 0.3, Ŝn always yields more accurate Ĵ22,n if ρ > 0. In the case

that ρ is very high, the reduction in MSE and improvement in coverage accuracy

by using Ŝn over Šn are remarkable. For example, when ρ = 0.95 and n = 400,

the MSE of Ĵ22,n with weighting matrix Ŝn is 27.43 while that with Šn is 42.93.

The empirical coverage probability of the CI with Ŝn is 91.4% and that with Šn is

82.6%. When n = 1024, the difference is still very large but become less dramatic.

When ψ = 0.9, Ŝn performs better than Šn in most cases although the margin of

improvement is small.

2.6 Conclusion

In this paper, we study the asymptotic properties of the spatial HAC es-

timator. We establish the consistency conditions, the rate of convergence and

the asymptotic truncated MSE of the estimator. We also determine the optimal

bandwidth parameter which minimizes the asymptotic truncated MSE. As this op-

timal bandwidth parameter is not feasible in practice, we suggest a data dependent

bandwidth parameter estimator using a parametric plug-in method. Monte Carlo
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simulation results show that the data dependent bandwidth choice we suggest per-

forms reasonably well compared to other bandwidth selection procedures in terms

of both the MSE criterion and the coverage accuracy of CIs. They also confirm the

robustness of our bandwidth choice procedure to the mis-specification in the spa-

tial weighting matrix and the approximating parametric model, irregularity and

sparsity in spatial locations, and the presence of measurement errors.

In this paper, we focus on the asymptotic truncated MSE criterion, which

may not be most suitable for hypothesis testing or CI construction. It is interesting

to extend the methods by Sun, Phillips and Jin (2008) and Sun and Phillips (2008)

on time series HAC estimation to the spatial setting.
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Table 2.1: Ratio of the MSE of Spatial HAC Estimators with Different Band-
widths to the MSE of the Spatial HAC Estimator with Optimal Bandwidth, d̃n

ρ
-0.5 -0.3 0 0.3 0.5 0.7 0.9 0.95

d̂n 1.08 1.16 5.02 1.18 1.14 1.12 1.07 1.06
(6.2) (5.4) (3.5) (6.5) (8.8) (11.7) (17.9) (22.2)

d̂
(l)
n 2.22 2.08 2.93 1.17 1.09 1.05 1.02 1.01

(4.3) (3.8) (2.8) (4.6) (6.2) (8.2) (12.5) (15.5)

d̂
(h)
n 1.14 1.27 7.46 1.37 1.34 1.30 1.21 1.13

(7.1) (6.2) (4.4) (7.6) (10.5) (14.4) (23.1) (26.5)

d̂
(e)
n 4.92 1.49 7.40 1.47 1.42 1.34 1.21 1.13

(4.1) (4.5) (4.0) (7.8) (10.8) (14.7) (23.1) (26.4)
dFn 2.41 1.40 4.43 1.20 1.68 2.07 1.99 1.73
d?n 1.00 1.00 1.00 1.10 1.10 1.09 1.07 1.07

(6.2) (5.5) (1.0) (6.7) (8.9) (11.8) (18.4) (23.2)

d̃n (6.3) (5.3) (1.3) (5.4) (7.1) (9.2) (13.7) (16.6)

(1) sample size n = 400.
(2) dFn = 4 when n = 400.
(3) number in parenthesis represents the average value of bandwidth choice.
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Table 2.2: Bias, Variance, and MSE in Location Model with Spatial AR(1) Error

Bias Variance MSE (RMSE/True Value)
n=400 n=1024 n=400 n=1024 n=400 n=1200

ρ = 0
SHAC0 -0.014 -0.007 0.023 0.011 0.023 (0.15) 0.011 (0.10)
SHACl -0.010 -0.004 0.013 0.006 0.013 (0.12) 0.006 (0.08)
SHACh -0.025 -0.012 0.033 0.016 0.034 (0.18) 0.016 (0.13)
SHACe -0.021 -0.009 0.034 0.016 0.034 (0.19) 0.016 (0.13)
SHACF -0.018 -0.020 0.020 0.019 0.020 (0.14) 0.020 (0.14)
INID -0.001 0.001 0.005 0.002 0.005 (0.07) 0.002 (0.04)

ρ = 0.3
SHAC0 -0.337 -0.255 0.211 0.123 0.324 (0.28) 0.188 (0.21)
SHACl -0.444 -0.354 0.124 0.071 0.321 (0.28) 0.196 (0.22)
SHACh -0.319 -0.235 0.275 0.164 0.377 (0.30) 0.219 (0.23)
SHACe -0.340 -0.251 0.287 0.172 0.402 (0.31) 0.235 (0.24)
SHACF -0.519 -0.322 0.060 0.068 0.329 (0.28) 0.172 (0.20)
INID -1.001 -1.000 0.005 0.002 1.006 (0.49) 1.000 (0.49)

ρ = 0.5
SHAC0 -0.949 -0.703 1.192 0.714 2.093 (0.36) 1.209 (0.27)
SHACl -1.156 -0.927 0.664 0.389 2.000 (0.35) 1.248 (0.28)
SHACh -0.947 -0.670 1.553 0.968 2.450 (0.39) 1.417 (0.30)
SHACe -0.994 -0.698 1.598 1.007 2.586 (0.40) 1.495 (0.30)
SHACF -1.703 -1.128 0.174 0.217 3.074 (0.44) 1.490 (0.30)
INID -2.859 -2.855 0.008 0.004 8.182 (0.71) 8.153 (0.71)

ρ = 0.7
SHAC0 -3.701 -2.690 12.325 7.937 26.02 (0.45) 15.18 (0.35)
SHACl -4.166 -3.337 7.166 4.313 24.52 (0.44) 15.45 (0.35)
SHACh -3.860 -2.673 15.234 10.715 30.13 (0.49) 17.86 (0.38)
SHACe -3.985 -2.743 15.325 10.983 31.21 (0.50) 18.51 (0.38)
SHACF -6.876 -5.054 0.871 1.219 48.15 (0.62) 26.76 (0.46)
INID -9.731 -9.705 0.024 0.010 94.71 (0.87) 94.20 (0.87)

ρ = 0.9
SHAC0 -54.32 -39.60 1010.1 899.0 3960.9 (0.62) 2467.1 (0.49)
SHACl -54.86 -43.78 781.5 541.4 3791.1 (0.61) 2457.7 (0.49)
SHACh -59.31 -42.76 956.6 1077.9 4474.0 (0.66) 2906.4 (0.53)
SHACe -59.80 -42.90 938.4 1071.9 4514.9 (0.66) 2912.1 (0.53)
SHACF -85.73 -73.70 26.7 42.7 7376.6 (0.84) 5474.0 (0.73)
INID -98.49 -97.92 0.5 0.2 9700.0 (0.97) 9587.7 (0.97)
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Table 2.3: ECPs in Location Model with Spatial AR(1) Error

99% 95% 90%
n=400 n=1024 n=400 n=1024 n=400 n=1024

ρ = 0
SHAC0 98.8 99.0 95.0 95.0 90.4 90.3
SHACl 98.7 99.1 95.1 95.1 90.9 90.7
SHACh 98.8 99.0 94.8 95.2 90.1 90.1
SHACe 98.7 98.9 95.0 95.0 89.9 90.0
SHACF 98.9 98.9 95.4 94.9 90.5 90.0
INID 98.9 99.0 95.8 95.7 91.3 91.3

ρ = 0.3
SHAC0 97.8 98.4 92.2 93.4 87.1 87.4
SHACl 97.5 98.2 92.0 92.9 86.2 86.5
SHACh 97.7 98.4 92.1 93.5 86.8 87.5
SHACe 97.4 98.1 91.9 93.0 87.0 87.0
SHACF 97.2 98.2 91.4 93.2 85.7 86.8
INID 94.0 94.0 84.6 84.0 76.4 77.6

ρ = 0.5
SHAC0 96.7 97.6 90.2 91.9 83.3 86.1
SHACl 96.7 97.5 90.4 91.6 82.9 85.2
SHACh 96.5 97.7 90.3 91.6 82.8 85.8
SHACe 96.3 97.7 89.6 91.5 82.2 85.7
SHACF 95.0 96.9 87.4 90.7 79.1 83.6
INID 84.3 83.8 70.8 72.3 63.9 64.6

ρ = 0.7
SHAC0 95.5 96.9 86.6 89.7 80.0 83.3
SHACl 95.0 96.5 87.0 89.1 79.6 82.9
SHACh 94.2 96.7 85.3 89.1 78.7 83.6
SHACe 93.4 96.6 84.7 88.9 78.1 83.2
SHACF 89.6 94.2 77.8 85.3 69.2 78.1
INID 66.5 66.7 53.3 54.2 46.2 47.7

ρ = 0.9
SHAC0 86.7 93.5 77.3 84.9 69.1 78.5
SHACl 87.6 93.4 78.0 84.4 70.4 78.1
SHACh 84.2 91.4 73.9 83.8 66.7 76.9
SHACe 83.9 91.4 73.7 83.6 66.4 76.5
SHACF 68.8 82.1 56.8 70.4 48.9 62.5
INID 35.2 37.4 27.2 28.8 23.2 24.8
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Table 2.4: Performance under Misspecified Approximating Parametric Model

SAR(2) SAR(3) SAR(4)
SHAC0 SHACF SHAC0 SHACF SHAC0 SHACF

ρ = 0.2
Bias -0.293 -0.400 -0.316 -0.431 -0.322 -0.437
MSE 0.206 0.204 0.226 0.231 0.230 0.237

(0.26) (0.26) (0.27) (0.27) (0.27) (0.27)
99% 97.7 97.5 97.7 97.3 97.7 97.3
95% 92.4 91.6 92.3 91.5 91.9 91.5
90% 87.5 86.3 87.1 85.9 87.1 85.8

ρ = 0.3
Bias -0.656 -1.020 -0.796 -1.231 -0.852 -1.307
MSE 0.809 1.123 1.091 1.607 1.207 1.802

(0.33) (0.39) (0.35) (0.43) (0.36) (0.44)
99% 97.0 95.9 96.5 95.1 96.4 94.7
95% 90.7 88.0 90.5 87.5 90.3 87.1
90% 84.2 80.6 83.0 79.3 82.8 78.6

ρ = 0.4
Bias -1.707 -2.850 -2.760 -4.495 -3.448 -5.480
MSE 4.634 8.335 10.88 20.52 16.16 30.41

(0.41) (0.56) (0.46) (0.64) (0.49) (0.67)
99% 95.7 91.9 94.3 88.6 93.5 86.5
95% 88.6 81.4 86.2 77.0 84.2 73.6
90% 81.2 73.4 78.9 68.6 78.0 66.9

ρ = 0.5
Bias -7.253 -11.95 -39.50 -57.33 -197.7 -249.9
MSE 72.33 144.0 1845.9 3294.3 41887 62499

(0.53) (0.74) (0.66) (0.88) (0.77) (0.95)
99% 91.7 81.1 84.7 63.6 74.3 43.8
95% 82.5 68.3 74.5 50.2 64.3 34.5
90% 76.0 60.7 67.4 42.8 55.7 28.1

(1) Number in parenthesis represents the ratio of the RMSE
to the true value.
(2) dFn = 4.
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Table 2.5: ECPs with the Bootstrap and Standard Normal Approximations

Normal i.i.d. Bootstrap Wild Bootstrap
ρ = 0.0

99% 98.8 99.2 99.0
95% 95.0 95.7 95.2
90% 90.4 90.9 90.7

ρ = 0.3
99% 97.8 98.5 98.5
95% 92.2 93.4 93.7
90% 87.1 88.9 89.2

ρ = 0.5
99% 96.7 98.5 98.4
95% 90.2 92.8 93.0
90% 83.3 87.3 87.1

ρ = 0.7
99% 95.5 97.6 98.0
95% 86.6 92.2 91.9
90% 80.0 84.8 85.4

ρ = 0.9
99% 86.7 97.0 96.7
95% 77.3 88.3 87.4
90% 69.1 81.6 81.0

ρ = 0.95
99% 79.5 94.0 93.5
95% 69.2 85.8 83.2
90% 62.1 78.8 75.9
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Table 2.6: Performance in the Presence of Irregulairty and Sparsity

n = 300, (20× 20) n = 400, (25× 25)
SHAC0 SHACF SHAC0 SHACF

ρ = 0
Bias -0.016 -0.021 -0.012 -0.027
MSE 0.023 0.021 0.015 0.023

(0.15) (0.15) (0.12) (0.15)
99% 99.1 98.8 99.1 99.1
95% 95.1 95.0 96.2 96.0
90% 89.7 89.5 92.0 92.0

ρ = 0.3
Bias -0.256 -0.364 -0.207 -0.229
MSE 0.198 0.186 0.119 0.108

(0.25) (0.24) (0.21) (0.20)
99% 97.7 97.5 98.9 98.8
95% 92.6 91.7 94.8 94.5
90% 87.1 86.2 89.6 89.2

ρ = 0.5
Bias -0.611 -1.107 -0.446 -0.667
MSE 1.008 1.364 0.531 0.588

(0.32) (0.37) (0.27) (0.28)
99% 96.9 95.7 98.2 97.9
95% 90.7 88.5 93.3 92.3
90% 86.0 80.8 86.9 85.0

ρ = 0.7
Bias -1.989 -4.204 -1.251 -2.564
MSE 9.794 18.293 4.387 7.222

(0.40) (0.55) (0.33) (0.42)
99% 94.6 89.9 96.9 94.9
95% 87.9 80.4 90.2 84.6
90% 81.5 70.8 82.6 77.1

ρ = 0.9
Bias -25.81 -49.63 -14.55 -32.66
MSE 1180.9 2480.2 457.9 1084.5

(0.55) (0.80) (0.45) (0.70)
99% 88.0 69.6 92.1 78.3
95% 78.8 57.1 83.1 63.8
90% 70.8 50.4 74.2 55.4
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Table 2.7: Bias and MSE of Ĵ22,n and ECPs with Different Weighting Matrices

ρ
n ψ 0 0.3 0.5 0.7 0.9 0.95

Bias -0.023 -0.054 -0.096 -0.200 -0.813 -1.845

Ŝn MSE 0.029 0.041 0.075 0.234 4.076 27.43
0.3 95% 93.8 93.4 92.8 92.7 91.7 91.4

Bias -0.019 -0.075 -0.147 -0.336 -1.706 -4.451
Šn MSE 0.024 0.062 0.151 0.535 7.850 42.93

95% 93.9 92.6 91.5 89.8 85.9 82.6
400 Bias -0.049 -0.286 -0.679 -1.968 -14.00 -40.78

Ŝn MSE 0.047 0.245 1.051 7.440 333.8 2893.6
0.9 95% 92.7 90.9 89.5 86.8 81.9 79.3

Bias -0.039 -0.295 -0.686 -1.991 -14.62 -44.04
Šn MSE 0.039 0.245 1.049 7.584 357.3 3173.0

95% 92.9 90.8 89.6 86.6 80.6 76.4
Bias -0.009 -0.037 -0.071 -0.152 -0.620 -1.444

Ŝn MSE 0.012 0.018 0.035 0.111 1.771 11.90
0.3 95% 95.1 95.1 94.9 94.8 94.4 93.6

Bias -0.007 -0.043 -0.087 -0.204 -1.068 -2.891
1024 Šn MSE 0.010 0.034 0.086 0.300 4.361 24.89

95% 95.2 94.6 94.0 93.8 90.9 89.5
Bias -0.025 -0.210 -0.481 -1.363 -9.706 -29.49

Ŝn MSE 0.019 0.133 0.580 4.195 197.1 1829.4
0.9 95% 95.8 94.4 93.3 91.6 89.1 87.0

Bias -0.020 -0.211 -0.477 -1.346 -9.850 -31.41
Šn MSE 0.016 0.132 0.580 4.289 215.6 2101.9

95% 96.0 94.3 93.2 91.8 88.7 84.5
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2.8 Appendix

Proof of Theorem 7

For notational simplicity, we re-order the individuals and make new indices.

For i(j) = 1, ..., `j,n, d∗i(j)j,n ≤ dn, and for i(j) = `j+1,n, . . . , n, d∗i(j)j,n > dn.

(a) Asymptotic Variance

Let ϕlkrs,n =
∑n

i,j=1 r
(r)
il,nr

(s)
jk,nK

(
d∗ij,n
dn

)
and Nn = {νij,n|i, j = 1, . . . , n} be

the set of measurement errors in distance. By Assumption F8(i), we have

n

E`n
cov
(
J̃rs,n, J̃cd,n

)
=

1

nE`n
E

[
E

(( np∑
l,k=1

ϕlkrs,n(εl,nεk,n − Eεl,nεk,n)

)

×
( np∑
e,f=1

ϕefcd,n(εe,nεf,n − Eεe,nεf,n)

)∣∣∣∣Nn

)]

=
1

nE`n
E

[(
np∑

l,k,e,f=1

ϕlkrs,nϕefcd,n(εl,nεk,nεe,nεf,n − εl,nεk,nEεe,nεf,n

− εe,nεf,nEεl,nεk,n + Eεl,nεk,nEεe,nεf,n)

∣∣∣∣Nn

)]

=
n

E`n
E

[
1

n2

(
np∑
l=1

ϕllrs,nϕllcd,n
(
Eε4

l,n − 3
)

+

np∑
l,k=1

ϕlkrs,nϕlkcd,n

+

np∑
l,k=1

ϕlkrs,nϕklcd,n

)]

≡ C1,n + C2,n + C3,n,
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where

C1,n

=
1

nE`n

np∑
l=1

E

[( n∑
i=1

n∑
j=1

r
(r)
il,nr

(s)
jl,nK

(
d∗ij,n
dn

))( n∑
a=1

n∑
b=1

r
(c)
al,nr

(d)
bl,nK

(
d∗ab,n
dn

))]

×
(
Eε4

l,n − 3
)
,

C2,n

=
1

nE`n

np∑
l,k=1

E

[( n∑
i=1

n∑
j=1

r
(r)
il,nr

(s)
jk,nK

(
d∗ij,n
dn

))( n∑
a=1

n∑
b=1

r
(c)
al,nr

(d)
bk,nK

(
d∗ab,n
dn

))]
,

C3,n

=
1

nE`n

np∑
l,k=1

E

[( n∑
i=1

n∑
j=1

r
(r)
il,nr

(s)
jk,nK

(
d∗ij,n
dn

))( n∑
a=1

n∑
b=1

r
(c)
ak,nr

(d)
bl,nK

(
d∗ab,n
dn

))]
.

C1,n can be restated as

1

E`n

n∑
i,j,a,b=1

E

[
K

(
d∗ij,n
dn

)
K

(
d∗ab,n
dn

)](
1

n

np∑
l=1

r
(r)
il,nr

(s)
jl,nr

(c)
al,nr

(d)
bl,n

(
Eε4

l,n − 3
))

.

Therefore,

|C1,n|

≤ 1

nE`n

np∑
l=1

∣∣Eε4
l,n − 3

∣∣ n∑
i,j,a,b=1

E

[
K

(
d∗ij,n
dn

)
K

(
d∗ab,n
dn

)] ∣∣∣r(r)
il,nr

(s)
jl,nr

(c)
al,nr

(d)
bl,n

∣∣∣
≤ 1

nE`n

np∑
l=1

∣∣Eε4
l,n − 3

∣∣( n∑
i=1

∣∣∣r(r)
il,n

∣∣∣)( n∑
j=1

∣∣∣r(s)
jl,n

∣∣∣)( n∑
a=1

∣∣∣r(c)
al,n

∣∣∣)( n∑
b=1

∣∣∣r(d)
bl,n

∣∣∣)

≤ c4
R

E`n

1

n

np∑
l=1

∣∣Eε4
l,n − 3

∣∣ ≤ c4
RcEp

E`n
= o(1)

using Assumptions F5 and F6.
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C2,n can be restated as

1

nE`n
E

[
np∑
l,k=1

n∑
i,j,a,b=1

r
(r)
il,nr

(s)
jk,nr

(c)
al,nr

(d)
bk,nK

(
d∗ij,n
dn

)
K

(
d∗ab,n
dn

)]

=
1

nE`n
E

[
n∑

i,j,a,b=1

K

(
d∗ij,n
dn

)
K

(
d∗ab,n
dn

)( np∑
l=1

r
(r)
il,nr

(c)
al,n

)(
np∑
k=1

r
(s)
jk,nr

(d)
bk,n

)]

=
1

nE`n
E

 n∑
i,a=1

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K

(
d∗ij(i),n

dn

)
K

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n

 . (A.1)

In order to consider the boundary effects, we decompose C2,n as follows:

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K

(
d∗ij(i),n

dn

)
K

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


+

1

nE`n
E

∑
i/∈En

`i,n∑
j(i)=1

∑
a∈En

`a,n∑
b(a)=1

K

(
d∗ij(i),n

dn

)
K

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


+

1

nE`n
E

∑
i∈En

`i,n∑
j(i)=1

∑
a/∈En

`a,n∑
b(a)=1

K

(
d∗ij(i),n

dn

)
K

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


+

1

nE`n
E

 ∑
i,a/∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K

(
d∗ij(i),n

dn

)
K

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


= D1n +D2n +D3n +D4n.

In the following, we show that D1n converges to K̄grcgsd and the other terms

become negligible as n increases.

In order to prove that D1n converges to K̄grcgsd, it suffices to first show

that

lim
n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ij(i),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


= lim

n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


= K̄grcgsd, (A.2)
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and then show that

lim
n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ij(i),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


= lim

n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K

(
d∗ij(i),n

dn

)
K

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n

 . (A.3)

Let γ
(sd)
ı̄,b(a),n

= 1
E`n

∑`i,n
j(i)=1 γ

(sd)
j(i)b(a),n

. Then,

lim
n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ij(i),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


= lim

n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ij(i),n

dn

)
γ

(rc)
ia,nγ

(sd)
ı̄,b(a),n


+ lim

n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ij(i),n

dn

)
γ

(rc)
ia,n

(
γ

(sd)
j(i)b,n

− γ(sd)
ı̄,b(a),n

) . (A.4)

For the first term in (A.4), under the Assumption F11 (i),

lim
n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ij(i),n

dn

)
γ

(rc)
ia,nγ

(sd)
ı̄,b(a),n


= lim

n→∞
E

 1

n

∑
i,a∈En

γ
(rc)
ia,n

`a,n∑
b(a)=1

γ
(sd)
ı̄,b(a),n

1

E`n

`i,n∑
j(i)=1

K2

(
d∗ij(i),n

dn

)
= lim

n→∞

(
1

n

∑
i,a∈En

γ
(rc)
ia,n

)
E

 1

E`n

`a,n∑
b(a)=1

`i,n∑
j(i)=1

γ
(sd)
j(i)b(a),n

[ 1

E`n

n∑
j=1

K2

(
d∗ij,n
dn

)]
.

(A.5)

Note that∣∣∣∣∣∣ 1

E`n

`a,n∑
b(a)=1

`i,n∑
j(i)=1

γ
(sd)
j(i)b(a),n

− 1

E`n

E`n∑
b(a)=1

E`n∑
j(i)=1

γ
(sd)
j(i)b(a),n

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

E`n

E`n∑
b(a)=`a,n+1

E`n∑
j(i)=1

γ
(sd)
j(i)b(a),n

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

E`n

E`n∑
b(a)=1

E`n∑
j(i)=`i,n+1

γ
(sd)
j(i)b(a),n

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

E`n

E`n∑
b(a)=`a,n+1

E`n∑
j(i)=`i,n+1

γ
(sd)
j(i)b(a),n

∣∣∣∣∣∣ . (A.6)
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We proceed to show that the expected value of each term is o (1) . We consider the

first term only as the proofs for the other two terms are similar. As a ∈ En, by

Markov inequality

P

(
|`a,n − E`n|

E`n
≥ ε

)
≤ 1

ε
E

∣∣∣∣ `a,nE`n
− 1

∣∣∣∣→ 0.

That is, for any ε > 0, there exists a N0 > 0 such that for n ≥ N0

P (`a,n /∈ B(E`n, ε)) ≤ ε,

where B(E`n, ε) = (b(1− ε)E`nc , d(1 + ε)E`ne) . Now

E

∣∣∣∣∣∣ 1

E`n

E`n∑
b(a)=`a,n+1

E`n∑
j(i)=1

γ
(sd)
j(i)b(a),n

∣∣∣∣∣∣ ≤ E
1

E`n

E`n∑
b(a)=`a,n+1

 E`n∑
j(i)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣


= E

 1

E`n

E`n∑
b(a)=`a,n+1

 E`n∑
j(i)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣
∣∣∣∣∣∣ `a,n ∈ B(E`n, ε)

P (`a,n ∈ B(E`n, ε))

+ E

 1

E`n

E`n∑
b(a)=`a,n+1

 E`n∑
j(i)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣
∣∣∣∣∣∣ `a,n /∈ B(E`n, ε)

P (`a,n /∈ B(E`n, ε))

≤ 2ε

 1

2εE`n

d(1+ε)E`ne∑
b(a)=b(1−ε)E`nc

 E`n∑
j(i)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣
+O(1)P (`a,n /∈ B(E`n, ε)) ,

which can be made arbitrarily small when n → ∞. So the first term in (A.6) is

indeed op (1) . Hence

E

∣∣∣∣∣∣ 1

E`n

`a,n∑
b(a)=1

`i,n∑
j(i)=1

γ
(sd)
j(i)b(a),n

− 1

E`n

E`n∑
b(a)=1

E`n∑
j(i)=1

γ
(sd)
j(i)b(a),n

∣∣∣∣∣∣ = o (1) . (A.7)

Since (E`n)−1∑n
j=1K

2
(
d∗ij,n/dn

)
= (`i,n/E`n) `−1

i,n

∑n
j=1K

2
(
d∗ij,n/dn

)
is bounded,

we also have

E

∣∣∣∣∣∣ 1

E`n

`a,n∑
b(a)=1

`i,n∑
j(i)=1

γ
(sd)
j(i)b(a),n

− 1

E`n

E`n∑
b(a)=1

E`n∑
j(i)=1

γ
(sd)
j(i)b(a),n

∣∣∣∣∣∣ 1

E`n

n∑
j=1

K2

(
d∗ij,n
dn

)
= o(1).
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As a result

lim
n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ij(i),n

dn

)
γ

(rc)
ia,nγ

(sd)
ı̄,b(a),n


= lim

n→∞

1

n

∑
i,a∈En

γ
(rc)
ia,nE

 1

E`n

E`n∑
b(a)=1

E`n∑
j(i)=1

γ
(sd)
j(i)b(a),n

( 1

E`n

n∑
j=1

K2

(
d∗ij,n
dn

))
= lim

n→∞

(
1

n

∑
i∈En

∑
a∈En

γ
(rc)
ia,n

)
lim
n→∞

 1

E`n

E`n∑
b(a)=1

E`n∑
j(i)=1

γ
(sd)
j(i)b(a),n


× lim

n→∞
E

[
1

E`n

n∑
j=1

K2

(
d∗ij,n
dn

)]

= K̄grcgsd,

using Assumption F11(ii).

For the second term in (A.4), the first step is to show

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

(
K2

(
d∗ij(i),n

dn

)
−K2

(
d∗ia,n
dn

))

γ
(rc)
ia,n

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)]
= o (1) , (A.8)

and the second step is to prove

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ia,n
dn

)
γ

(rc)
ia,n

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

) = o (1) . (A.9)
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For (A.8)

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

(
K2

(
d∗ij(i),n

dn

)
−K2

(
d∗ia,n
dn

))

×γ(rc)
ia,n

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)]
≤ 1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∣∣∣γ(rc)
ia,n

∣∣∣ ∣∣∣γ(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

∣∣∣


=
1

n

∑
(i,a)∈F1

∣∣∣γ(rc)
ia,n

∣∣∣E
 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∣∣∣γ(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

∣∣∣


+
1

n

∑
(i,a)∈F2

∣∣∣γ(rc)
ia,n

∣∣∣E
 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∣∣∣γ(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

∣∣∣


= M1n +M2n,

where

F1 = {(i, a) : dia,n ≤ dn & i, a ∈ En} ,

and

F2 = {(i, a) : dia,n > dn & i, a ∈ En} .

For M1n, we obtain

M1n ≤
(
E`n
n

)
1

E`n

∑
(i,a)∈F1

∣∣∣γ(rc)
ia,n

∣∣∣E
 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣
+

1

(E`n)2

`i,n∑
j(i)=1

`i,n∑
h(i)=1

`a,n∑
b(a)=1

∣∣∣γ(sd)
h(i)b(a),n

∣∣∣


=

(
E`n
n

)
1

E`n

∑
(i,a)∈F1

∣∣∣γ(rc)
ia,n

∣∣∣ ( 1

E`n

E`n∑
j(i)=1

E`n∑
b(a)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣
+

1

(E`n)2

E`n∑
j(i)=1

E`n∑
h(i)=1

E`n∑
b(a)=1

∣∣∣γ(sd)
h(i)b(a),n

∣∣∣+ o (1)

)

= O

(
E`n
n

)
,
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where the first equality holds with the same procedure as (A.7). For M2n,

M2n ≤
1

dqn

 1

n

∑
(i,a)∈F2

∣∣∣γ(rc)
ia,n

∣∣∣ dqia
( 1

E`n

E`n∑
j(i)=1

E`n∑
b(a)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣
+

1

(E`n)2

E`n∑
j(i)=1

E`n∑
h(i)=1

E`n∑
b(a)=1

∣∣∣γ(sd)
h(i)b(a),n

∣∣∣+ o (1)

)
= O

(
d−qn
)

Therefore, we obtain

M1n = o (1) and M2n = o (1) .

The next step is to show (A.9).

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ia,n
dn

)
γ

(rc)
ia,n

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)
= E

( 1

n

∑
i,a∈En

K2

(
d∗ia,n
dn

)
γ

(rc)
ia,n

) 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)
= o (1) .

For some generic constant C∣∣∣∣∣∣ 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

E`n

`i,n∑
j(i)=1

n∑
b=1

γ
(sd)
j(i)b,n

1
{
d∗ab,n < dn

}∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

(E`n)2

`i,n∑
j(i)=1

n∑
b,h=1

γ
(sd)
hb,n1

{
d∗ab,n < dn, d

∗
ih,n < dn

}∣∣∣∣∣∣
≤ 1

E`n

`i,n∑
j(i)=1

n∑
b=1

∣∣∣γ(sd)
j(i)b,n

∣∣∣+
1

E`n

`i,n∑
j(i)=1

sup
b

n∑
h=1

∣∣∣γ(sd)
hb,n

∣∣∣ 1

E`n

n∑
b=1

1
{
d∗ab,n < dn

}
≤ 1

E`n

`i,n∑
j(i)=1

n∑
b=1

∣∣∣γ(sd)
j(i)b,n

∣∣∣+

(
sup
b

n∑
h=1

∣∣∣γ(sd)
hb,n

∣∣∣) `i,n`a,n

(E`n)2 ≤ C
`i,n
E`n

+ C
`i,n`a,n

(E`n)2 .
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By Assumption F9, E limn→∞
`i,n
E`n

= limn→∞
E`i,n
E`n
≤ C.

As
∣∣∣n−1

∑
i,a∈En K

2
(
d∗ia,n
dn

)
γ

(rc)
ia,n

∣∣∣ < ∞ for all n, invoking the dominated

convergence theorem and Assumption F10 yields

lim
n→∞

E

( 1

n

∑
i,a∈En

K2

(
d∗ia,n
dn

)
γ

(rc)
ia,n

) 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)
= E

[
P lim

n→∞

(
1

n

∑
i,a∈En

K2

(
d∗ia,n
dn

)
γ

(rc)
ia,n

)

×

 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)
= 0

The last equality holds because

1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

(
γ

(sd)
j(i)b(a),n

− γ(sd)
ı̄,b(a),n

)

=
1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

γ
(sd)
j(i)b(a),n

− 1

(E`n)2

`i,n∑
h(i)=1

`i,n∑
j(i)=1

`a,n∑
b(a)=1

γ
(sd)
h(i),b(a),n

=
1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

γ
(sd)
j(i)b(a),n

−
(

1

E`n
+ op (1)

) `i,n∑
h(i)=1

`a,n∑
b(a)=1

γ
(sd)
h(i),b(a),n

p→ 0.

Hence the second term in (A.4) is op (1) .

By a symmetric argument, we obtain the result that

lim
n→∞

1

nE`n
E

 ∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

K2

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
jb,n

 = K̄grcgsd.

The next step is to prove (A.3). In view of previous derivations, it suffices to show

that

lim
n→∞

E

 1

nE`n

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

[
K

(
d∗ij(i),n

dn

)
−K

(
d∗ab(a),n

dn

)]2

γ
(rc)
ia,nγ

(sd)
jb,n

 = 0.

(A.10)
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But

E

 1

nE`n

∑
i,a∈En

`i,n∑
j(i)=1

`a,n∑
b(a)=1

[
K

(
d∗ij(i),n

dn

)
−K

(
d∗ab(a),n

dn

)]2

γ
(rc)
ia,nγ

(sd)
jb,n


= E

 1

nE`n

∑
(i,j(i),a,b(a))∈I1

[
K

(
d∗ij(i),n

dn

)
−K

(
d∗ab(a),n

dn

)]2

γ
(rc)
ia,nγ

(sd)
jb,n


+

1

nE`n

∑
(i,j(i),a,b(a))∈I2

[
K

(
d∗ij(i),n

dn

)
−K

(
d∗ab(a),n

dn

)]2

γ
(rc)
ia,nγ

(sd)
jb,n

≡ F1n + F2n,

where

I1 =
{

(i, j(i), a, b(a)) :
∣∣∣d∗ij(i),n − d∗ab(a),n∣∣∣ ≤ 2cn & i, a ∈ En

}
,

and

I2 =
{

(i, j(i), a, b(a)) :
∣∣∣d∗ij(i),n − d∗ab(a),n∣∣∣ > 2cn & i, a ∈ En

}
.

For F1n, we have

F1n ≤ E

∣∣∣∣∣∣ 1

nE`n

∑
(i,j(i),a,b(a))∈I1

[
K

(
d∗ij(i),n

dn

)
−K

(
d∗ab(a),n

dn

)]2

γ
(rc)
ia,nγ

(sd)
jb,n

∣∣∣∣∣∣
≤ c2

L

nE`n

∑
(i,j(i),a,b(a))∈I1

∣∣∣∣∣d
∗
ij(i),n

dn
−
d∗ab(a),n

dn

∣∣∣∣∣
2 ∣∣∣γ(rc)

ia,nγ
(sd)
jb,n

∣∣∣
≤ 4c2

Lc
2
n

d2
n

(
1

n

∑
i,a∈En

∣∣∣γ(rc)
ia,n

∣∣∣)
 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∣∣∣γ(rc)
jb,n

∣∣∣
 = O

(
c2
n

d2
n

)

using equation (A.7). For F2n we note that if
∣∣∣d∗ij(i),n − d∗ab(a),n∣∣∣ > 2cn, then either

d∗ia,n > cn or d∗j(i)b(a),n > cn. Otherwise, if both d∗ia,n ≤ cn and d∗j(i)b(a),n ≤ cn, then

d∗ij(i),n − d
∗
ab(a),n

≤ d∗ia,n + d∗ab(a),n + d∗b(a)j(i),n − d
∗
ab(a),n

≤ 2cn,

and

d∗ij(i),n − d
∗
ab(a),n

≥ d∗ij(i),n − d
∗
ia,n − d∗ij(i),n − d

∗
j(i)b(a),n

≥ −2cn.
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These two inequalities imply that
∣∣∣d∗ij(i),n − d∗ab(a),n∣∣∣ ≤ 2cn, a contradiction. With-

out the loss of generality, we assume that d∗ia,n > cn for
(
i, j(i), a, b(a)

)
∈ I2. In this

case

F2n ≤ E

∣∣∣∣∣∣ 1

nE`n

∑
(i,j(i),a,b(a))∈I2

[
K

(
d∗ij(i),n

dn

)
−K

(
d∗ab(a),n

dn

)]2

γ
(rc)
ia,nγ

(sd)
j(i)b(a),n

∣∣∣∣∣∣
≤ E

4

nE`n

∑
(i,j(i),a,b(a))∈I2

∣∣∣(d∗ia,n)q γ(rc)
ia,nγ

(sd)
j(i)b(a),n

(
d∗ia,n

)−q∣∣∣
= E

4

nE`n

∑
i∈En

∑
a:d∗ia,n∈[cn,dn]

(
d∗ia,n

)q ∣∣∣γ(rc)
ia,n

∣∣∣ `i,n∑
j(i)=1

`a,n∑
b(a)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣ (d∗ia,n)−q
≤ 4E

(
1

n

∑
i,a∈En

(
d∗ia,n

)q ∣∣∣γ(rc)
ia,n

∣∣∣)
 1

E`n

`i,n∑
j(i)=1

`a,n∑
b(a)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣
 c−qn

= o(c−qn ).

By choosing cn such that cn →∞ but cn/dn → 0, we have

F1n = o (1) and F2n = o(1)

and (A.3) is proved.

Next, we show that D2n is o (1) . For D2n,

1

nE`n
E

∑
i/∈En

`i,n∑
j(i)=1

∑
a∈En

`a,n∑
b(a)=1

K

(
d∗ij(i),n

dn

)
K

(
d∗ab(a),n

dn

)
γ

(rc)
ia,nγ

(sd)
j(i)b(a),n


≤ E

( 1

n

∑
i/∈En

∑
a∈En

∣∣∣γ(rc)
ia,n

∣∣∣)
 1

E`n

`a,n∑
b(a)=1

`i,n∑
j(i)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣


=

(
1

n

∑
i/∈En

∑
a∈En

∣∣∣γ(rc)
ia,n

∣∣∣)
 1

E`n

E`n∑
b(a)=1

E`n∑
j(i)=1

∣∣∣γ(sd)
j(i)b(a),n

∣∣∣+ o (1)


= o (1) ,

by choosing the sequence of dn in a way that n2/n → 0 as n → ∞. We can show

D3n and D4n are o (1) in the similar way.
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With the symmetric procedure, it is straightforward that

limn→∞C3,n = K̄grdgsc. Therefore,

lim
n→∞

n

E`n
cov
(
J̃rs,n, J̃cd,n

)
= K̄(grcgsd + grdgsc).

In terms of matrix form,

lim
n→∞

n

E`n
var
(

vec
(
J̃n

))
= K̄(I +Kpp) (g ⊗ g) ,

where g = [grs], r, s = 1, . . . , n.

(b) Asymptotic Bias

By Assumption F8(ii) and the dominated convergence theorem, we have

dqn

(
EJ̃n − Jn

)
= −E

 1

n

n∑
i,j=1

Γij,n
(
d∗ij,n

)q 1−K
(
d∗ij,n
dn

)
(
d∗ij,n
dn

)q


= −Kq
1

n

n∑
i,j=1

Γij,nE
(
d∗ij,n

)q
+ o(1).

Therefore,

lim
n→∞

dqn(EJ̃n − Jn) = −Kq lim
n→∞

1

n

n∑
i,j=1

Γij,nE
(
d∗ij,n

)q
= −Kqg

(q),

where g
(q)
rs is (r, s)-th element of g(q).

(c)
√

n
E`n

(
Ĵn − Jn

)
= Op(1) and

√
n
E`n

(
Ĵn − J̃n

)
= op(1)

By (a) and (b) the first part of (c) is implied by the second part. There-

fore, it suffices to show that
√

n
E`n

(
Ĵn − J̃n

)
= op(1). This holds if and only if√

n
E`n

(
b′Ĵnb− b′J̃nb

)
= op(1) for any b ∈ Rp. In consequence, we can consider the

case that Jn is a scalar random variable without loss of generality. Using a Taylor
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expansion, we have√
n

E`n

(
Ĵn − J̃n

)
=

√
n

E`n

1

n

n∑
i,j=1

K

(
d∗ij,n
dn

)[
V̂i,nV̂

′
j,n − Vi,nV ′j,n

]
≡ 2L1,n

√
n
(
θ̂ − θ0

)
+
√
n
(
θ̂ − θ0

)′
L2,n

√
n
(
θ̂ − θ0

)
+
√
n
(
θ̂ − θ0

)′
L3,n

√
n
(
θ̂ − θ0

)
(A.11)

where

L1,n =

√
E`n
n

1√
n

n∑
j=1

Vj,n

(
1

E`n

n∑
i=1

K

(
d∗ij,n
dn

)
∂

∂θ′
Vi,n

)
,

L2,n =
1√
nE`n

1

n

n∑
i,j=1

K

(
d∗ij,n
dn

)(
∂2

∂θ∂θ′
Vi,n(θ)

)
Vj,n(θ),

L3,n =
1√
nE`n

1

n

n∑
i,j=1

K

(
d∗ij,n
dn

)(
∂

∂θ
Vi,n(θ)

)(
∂

∂θ
Vj,n(θ)

)′
.

Therefore, under Assumption F12(i) it suffices to show that L1,n = op(1), L2,n =

op(1) and L3,n = op (1) .

For L2,n, we have, using the Cauchy inequality,

‖L2,n‖2 =

∥∥∥∥∥ 1√
nE`n

1

n

n∑
i,j=1

K

(
d∗ij,n
dn

)(
∂2

∂θ∂θ′
Vi,n(θ)

)
Vj,n(θ)

∥∥∥∥∥
2

≤

[
1√
nE`n

1

n

n∑
i,j=1

1(d∗ij,n ≤ dn)

∥∥∥∥ ∂2

∂θ∂θ′
Vi,n(θ)

∥∥∥∥∥∥Vj,n(θ)
∥∥]2

≤

[√
E`n
n

1

n

n∑
i=1

∥∥∥∥ ∂2

∂θ∂θ′
Vi,n(θ)

∥∥∥∥
(

1

E`n

n∑
j=1

1(d∗ij,n ≤ dn)
∥∥Vj,n(θ)

∥∥)]2

≤ E`n
n

(
1

n

n∑
i=1

sup
θ

∥∥∥∥ ∂2

∂θ∂θ′
Vi,n(θ)

∥∥∥∥2
)

× 1

n

n∑
i=1

(
1

E`n

n∑
j=1

1(d∗ij,n ≤ dn)
∥∥Vj,n(θ)

∥∥)2

=
E`n
n

1

n

n∑
i=1

(
1

E`n

n∑
j=1

1(d∗ij,n ≤ dn)
∥∥Vj,n(θ)

∥∥)2

Op (1) (A.12)
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where the last equality follows from Assumption F12(iv). By Assumption F12(ii),

we have

P

(
1

E`n

n∑
j=1

1
(
d∗ij,n ≤ dn

) ∥∥Vj,n(θ)
∥∥ > ∆

)

≤ 1

∆E`n

n∑
j=1

E1
(
d∗ij,n ≤ dn

)
E
(∥∥Vj,n(θ)

∥∥)
≤ 1

∆
E

 `i,n
E`n

1

`i,n

`i,n∑
j(i)=1

(
E
∥∥∥Vj(i),n(θ)

∥∥∥2
) 1

2


≤ 1

∆

(
E`i,n
E`n

)(
sup
j
E sup

θ
‖Vj,n(θ)‖2

) 1
2

→ 0,

as ∆→∞. This implies that

1

E`n

n∑
j=1

1(d∗ij,n ≤ dn)
∥∥Vj,n(θ)

∥∥ = Op (1)

uniformly over i. Hence L2,n = op (1) . Using the same procedure, we can show that

L3,n = op (1) under Assumption F12(iii).

The next step is to show L1,n = op(1). By Markov inequality and Assump-



127

tion F12(v):

P

(∥∥∥∥∥ 1√
n

n∑
j=1

Vj,n

(
1

E`n

n∑
i=1

K

(
d∗ij,n
dn

)
∂

∂θ′
Vi,n

)∥∥∥∥∥ > δ

)

≤ 1

δ2
E

[
1

nE`2
n

n∑
i,j,a,b=1

K

(
d∗ij,n
dn

)
K

(
d∗ab,n
dn

)
Vj,nVb,n

∂

∂θ′
Vi,n

∂

∂θ
Va,n

]

≤ 1

δ2

1

nE`2
n

n∑
i,j,a,b=1

∣∣∣∣E (K (d∗ij,ndn
)
K

(
d∗ab,n
dn

))∣∣∣∣ ∥∥∥∥E (Vj,nVb,n ∂

∂θ′
Vi,n

∂

∂θ
Va,n

)∥∥∥∥
≤ 1

δ2

1

nE`2
n

n∑
i,j,a,b=1

E
[
1(d∗ij,n ≤ dn)1(d∗ab,n ≤ dn)

] ∥∥∥∥E (Vj,nVb,n ∂

∂θ′
Vi,n

∂

∂θ
Va,n

)∥∥∥∥
≤ 1

δ2
E

`j,n`b,n
E`2

n

1

n`j,n`b,n

n∑
j,b=1

`j,n∑
i(j)=1

`b,n∑
a(b)=1

∥∥∥∥E (Vj,nVb,n ∂

∂θ′
Vi(j),n

∂

∂θ
Va(b),n

)∥∥∥∥


≤ 1

δ2

(
E`j,n`b,n
E`2

n

)
sup
i,a,b

n∑
j=1

∥∥∥∥E (Vj,nVb,n ∂

∂θ′
Vi,n

∂

∂θ
Va,n

)∥∥∥∥ (A.13)

≤ C

δ2

(
E`2

j,n

)1/2 (
E`2

b,n

)1/2

E`2
n

≤ C ′

δ2

where the last inequality follows from Assumption F9. Combining this with the

definition of L1n, we obtain L1,n = Op

(√
E`n
n

)
= op (1) .

(d) Asymptotic Truncated MSE

To establish the first and second equalities of Theorem 1(d), we introduce

two lemmas from Andrews (1991). For proofs, see Lemmas A1 and A2 in Andrews

(1991).

Lemma A4. If {ξn} is bounded sequence of random variables such that ξn
p→ 0,

then Eξn → 0.

Lemma A5. Let {Xn} be a sequence of nonnegative rv’s for which supn≥1EX
1+δ
n <

∞ for some δ > 0. Then, limh→∞ limn→∞(Emin{Xn, h} − EXn) = 0.
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In our setting,

ξn = min

{
n

E`n

∣∣∣vec(Ĵn − Jn)′Snvec(Ĵn − Jn)
∣∣∣ , h}

−min

{
n

E`n

∣∣∣vec(J̃n − Jn)′Snvec(J̃n − Jn)
∣∣∣ , h}

= min

{
n

E`n

∣∣∣vec(Ĵn − J̃n + J̃n − Jn)′Snvec(Ĵn − J̃n + J̃n − Jn)
∣∣∣ , h}

−min

{
n

E`n

∣∣∣vec(J̃n − Jn)′Snvec(J̃n − Jn)
∣∣∣ , h}

= min

{
n

E`n

∣∣∣vec(J̃n − Jn)′Snvec(J̃n − Jn)
∣∣∣+ op(1), h

}
−min

{
n

E`n

∣∣∣vec(J̃n − Jn)′Snvec(J̃n − Jn)
∣∣∣ , h} p→ 0,

as n → ∞. Here the op (1) term follows from Theorem 1(c). Also |ξn| ≤ h. By

Lemma A4 , Eξn → 0. Since this holds for all h, the first equality of Theorem 1(d)

holds.

The second equality of Theorem 1(d) is obtained by showing that

lim
h→∞

lim
n→∞

(
MSEh

(
n

E`n
, J̃n, Sn

)
−MSEh

(
n

E`n
, J̃n, S

))
= 0 (A.14)

lim
h→∞

lim
n→∞

MSEh

(
n

E`n
, J̃n, S

)
= lim

n→∞
MSE

(
n

E`n
, J̃n, S

)
. (A.15)

Under Assumption F12(ii), (A.14) holds by applying Lemma A4. Equation (A.15)

holds by applying Lemma A5 with

Xn =

∣∣∣∣ nE`nvec(J̃n − Jn)′S(J̃n − Jn)

∣∣∣∣ .
It is easy to see that supn≥1EX

2
n <∞, as required by Lemma A5, if ∀r, s ≤ p

E
[√

n
E`n

(J̃rs,n − Jrs,n)
]4

= O(1). Note that

E

[√
n

E`n
(J̃rs,n − Jrs,n)

]4

= E
[
(I1 + I2)4

]
.

where

I1 =

√
n

E`n

1

n

n∑
i,j=1

K

(
d∗ij,n
dn

)
(V

(r)
i,n V

(s)
j,n − γ

(rs)
ij,n )

I2 =

√
n

E`n

1

n

n∑
i,j=1

(
K

(
d∗ij,n
dn

)
− 1

)
γ

(rs)
ij,n
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Therefore, it suffices to show that the following terms are all O(1) :

D1n = E
[
I4

1

]
, D2n = E

[
I3

1I2

]
, D3n = E

[
I2

1I
2
2

]
, D4n = E

[
I1I

3
2

]
, D5n = E

[
I4

2

]
.

By Theorem 1(a) and (b), it is straightforward to show that D3n, D4n and D5n are

O(1) under Assumption A.17(ii). The proofs for D1n and D2n are similar and we fo-

cus only on D1n here. As denoted before, let ϕlkrs,n =
∑n

i=1

∑n
j=1K(

d∗ij,n
dn

)r
(r)
il,nr

(s)
jk,n.

Then,

D1n = E

[√
n

E`n

(
1

n

np∑
l=1

np∑
k=1

ϕlkrs,n(εl,nεk,n − Eεl,nεk,n)

)]4

≤ 8E

[√
n

E`n

(
1

n

np∑
l=1

ϕllrs,n(ε2
l,n − Eε2

l,n)

)]4

+ 8E

[√
n

E`n

(
1

n

np∑
l=1

np∑
k 6=l

ϕlkrs,n(εl,nεk,n − Eεl,nεk,n)

)]4

≡ 8G1n + 8G2n

Let ε̃2
l1,n

= ε2
l,n − Eε2

l,n. For G1n, we have:

G1n =
1

n2 (E`n)2E
∑

l1,l2,l3,l4

ϕl1l1rs,nϕl2l2rs,nϕl3l3rs,nϕl4l4rs,nEε̃
2
l1,n
ε̃2
l2,n
ε̃2
l3,n
ε̃2
l4,n

=
1

n2 (E`n)2

[
E

(∑
l

ϕ4
llrs,n

)
+ 3E

∑
l1 6=l2

ϕ2
l1l1rs,n

ϕ2
l2l2rs,n

]

≤ C

n2 (E`n)2E

(∑
l

ϕ2
llrs,n

)2

= O

[
1

(E`n)2

]
= o(1)

using the fact that

∑
l

ϕ2
llrs,n =

∑
l

(
n∑
i=1

n∑
j=1

K(
d∗ij,n
dn

)r
(r)
il,nr

(s)
jl,n

)2

≤
∑
l

(
n∑
i=1

∣∣∣r(r)
il,n

∣∣∣)2( n∑
j=1

∣∣∣r(r)
jl,n

∣∣∣)2

= O(n)

by Assumption F6.
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For G2n, we have:

G2n =
1

n2 (E`n)2E

[∑
l1 6=l2

∑
l3 6=l4

∑
l5 6=l6

∑
l7 6=l8

ϕl1l2rs,nϕl3l4rs,nϕl5l6rs,nϕl7l8rs,n

× (εl1,nεl2,n − Eεl1,nεl2,n)(εl3,nεl4,n − Eεl3,nεl4,n)

(εl5,nεl6,n − Eεl5,nεl6,n)(εl7,nεl8,n − Eεl7,nεl8,n)

]
=

1

n2 (E`n)2

∑
l1 6=l2

∑
l3 6=l4

∑
l5 6=l6

∑
l7 6=l8

E [ϕl1l2rs,nϕl3l4rs,nϕl5l6rs,nϕl7l8rs,n]

× E[(εl1,nεl2,n − Eεl1,nεl2,n)(εl3,nεl4,n − Eεl3,nεl4,n)

(εl5,nεl6,n − Eεl5,nεl6,n)(εl7,nεl8,n − Eεl7,nεl8,n)]

where the last equality holds by the independence of {ε`,n} from {νij,n}. Since

{εl,n} is independent and Eε8
l,n <∞, it suffices to show that

1

n2 (E`n)2E

np∑
l1=1

np∑
l2 6=l1

ϕ4
l1l2rs,n

<∞, (A.16)

1

n2 (E`n)2E

np∑
l1=1

np∑
l2=1

np∑
l3=1

np∑
l4=1

ϕl1l2rs,nϕl1l2rs,nϕl3l4rs,nϕl3l4rs,n <∞, (A.17)

1

n2 (E`n)2E

np∑
l1=1

np∑
l2=1

np∑
l3=1

np∑
l4=1

ϕl1l2rs,nϕl2l4rs,nϕl4l3rs,nϕl3l1rs,n <∞. (A.18)

Equation (A.16) is true because

1

n2 (E`n)2E

np∑
l1=1

np∑
l2 6=l1

ϕ4
l1l2rs,n

=
1

n2 (E`n)2

np∑
l1=1

np∑
l2 6=l1

(
n∑
i=1

n∑
j=1

K(
d∗ij,n
dn

)r
(r)
il1,n

r
(s)
jl2,n

)4

≤ 1

n2 (E`n)2

np∑
l1=1

np∑
l2 6=l1

(
n∑
i=1

∣∣∣r(r)
il1,n

∣∣∣)4( n∑
j=1

∣∣∣r(s)
jl2,n

∣∣∣)4

= O

[
1

(E`n)2

]
where the last equality follows from Assumption F6.
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For equation (A.17), we have

1

n2E`2
n

E

np∑
l1=1

np∑
l2=1

np∑
l3=1

np∑
l4=1

ϕl1l2rs,nϕl1l2rs,nϕl3l4rs,nϕl3l4rs,n

=

(
1

nE`n
E

np∑
l1=1

np∑
l2=1

ϕl1l2rs,nϕl1l2rs,n

)2

and

1

nE`n
E

np∑
l1=1

np∑
l2=1

ϕl1l2rs,nϕl1l2rs,n

=
1

nE`n
E

n∑
i,j,a,b=1

K

(
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)
K

(
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)( np∑
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r
(r)
il1,n

r
(r)
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)(
np∑
l2=1

r
(s)
jl2,n

r
(s)
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)

=
1

nE`n
E

n∑
i,j,a,b=1

K

(
d∗ij,n
dn

)
K

(
d∗ab,n
dn

)
γ

(rr)
ia,nγ

(ss)
jb,n = O(1)

using equations (A.2) and (A.3). Hence (A.17) holds.

Finally, for equation (A.18), we note that

1

n2E`2
n

E

np∑
l1=1

np∑
l2=1

np∑
l3=1

np∑
l4=1
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1

n2E`2
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K
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K

(
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K

(
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)
K

(
d∗qm,n
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)
× γ(sr)

ja,nγ
(sr)
bo,nγ

(sr)
pq,nγ

(sr)
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=
1

n2E`2
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E
∑
i,a

∑
o,q

 `i,n∑
j(i)=1

K

(
d∗ij(i),n
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γ
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j(i)a,n
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K

(
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γ
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×
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K

(
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γ(sr)
p(o)q,n

 `q,n∑
m(q)=1

K

(
d∗qm(q),n
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)
γ

(sr)
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
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and

`i,n∑
j(i)=1

K

(
d∗ij(i),n
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)
γ

(sr)
j(i)a,n

=
∑

{j:d∗ij,n<dn}
K

(
d∗ij,n
dn

)
γ

(s,r)
ja,n

=
∑

{j:d∗ij,n<dn,d∗ja,n<dn}
K

(
d∗ij,n
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)
γ

(sr)
ja,n +

∑
{j:d∗ij,n<dn,d∗ja,n≥dn}

K

(
d∗ij,n
dn

)
γ

(sr)
ja,n

=

`a,n∑
j(a)=1

K

(
d∗ij(a),n

dn

)
γ

(sr)
j(a)a,n

+Op

(
d−qn
)

=

`a,n∑
j(a)=1

γ
(sr)
j(a)a,n

+Op

(
d−qn
)

+

`a,n∑
j(a)=1

K(d∗ij(a),n/dn)− 1(
d∗aj(a),n/dn

)q γ
(sr)
j(a)a,n

(
d∗aj(a),n

)q (
d−qn
)

=

`a,n∑
j(a)=1

γ
(sr)
j(a)a,n

+Op

(
d−qn
)

where the O(·) term also satisfies EOp (d−qn ) = O (d−qn ) . So

1

n2E`2
n

E

np∑
l1=1

np∑
l2=1

np∑
l3=1

np∑
l4=1

ϕl1l2rs,nϕl2l4rs,nϕl4l3rs,nϕl3l1rs,n

=
1

n2E`2
n

∑
i,a

∑
o,q

 `a,n∑
j(a)=1

γ
(sr)
j(a)a,n

 `o,n∑
b(o)=1

γ
(sr)
b(o)o,n

 `q,n∑
p(q)=1

γ(sr)
p(q)q,n

 `i,n∑
m(i)=1

γ
(sr)
m(i)i


× (1 + o (1))

=

 1

nE`n

∑
i,a

`a,n∑
j(a)=1

`i,n∑
m(i)=1

γ
(sr)
j(a)a,n

γ
(sr)
m(i)i,n

2

(1 + o (1)) = O (1)

using equations (A.2) and (A.3).

Combining the above proof, we obtain G2n = O(1). Hence D1n = O (1) .

For the last equality of Theorem 1(d), since

n

E`n
=

d2q
n

d2q
n E`n/n

=
d2q
n

τ + o(1)
,
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we have

lim
n→∞

MSE

(
n

E`n
, J̃n, Sn

)
= lim

n→∞

n

E`n
vec

(
EJ̃n − Jn

)′
Snvec

(
EJ̃n − Jn

)
+ lim

n→∞

n

E`n
K̄tr

(
Snvar(vec J̃n)

)
=

1

τ
K2
q

(
vec g(q)

)′
S
(
vec g(q)

)
+ K̄tr (S(I +Kpp)(g ⊗ g)) ,

where the last equality holds by Theorem 1(a) and (b).

Proof of Corollary 1

The proof is very close to the proof of Corollary 1 in Andrews (1991). As

n
2q

2q+η = α
2q

2q+η
n

(
d2q
n E`n
n

) η
2q+η n

E`n
= α

2q
2q+η
n

(
τ

η
2q+η + o(1)

) n

E`n
,

by Theorem 1(d), we obtain

lim
h→∞

lim
n→∞

MSEh

(
n2q/(2q+η), Ĵn(dn), Sn

)
= α

2q
2q+η τ

η
2q+η

(
1

τ
K2
q

(
vec g(q)

)′
S
(
vec g(q)

)
+ K̄tr (S(I +Kpp)(g ⊗ g))

)
,

It is straightforward to show that this is uniquely minimized over τ ∈ (0,∞) by

τ ? = qK2
qκ(q)/η (provided 0 < κ < ∞ and S is psd) and that a sequence {dn}

satisfies d2qn E`n
n
→ τ ? if and only if dn = d?n + o(n1/(2q+η)).

Proof of Theorem 2

(a)
√

n
E ῭

n

(
Ĵn(d̂n)− Jn

)
= Op(1) and

√
n
E ῭

n

(
Ĵn(d̂n)− Ĵn(d̈n)

)
= op(1)

By Theorem 1(c),
√

n
E ῭

n

(
Ĵn(d̈n)− Jn

)
= Op(1). Therefore, it suffices to show the

second part of Theorem 2(a). Without loss of generality, we assume Jn is a scalar
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random variable. Note that√
n

E ῭
n

(
Ĵrs,n(d̂n)− Ĵrs,n(d̈n)

)
=

√
n

E ῭
n

(
1

n
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n∑
j=1

(
K

(
d∗ij,n

d̂n

)
−K

(
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d̈n

))
V̂i,nV̂j,n

)

≡M1n +M2n +M3n

where

M1n

=

√
n

E ῭
n

 1

n

n∑
i=1

῭
i,n∑

j(i)=1

(
K

(
d∗ij(i),n

d̂n

)
−K

(
d∗ij(i),n

d̈n

))(
V̂i,nV̂

′
j(i),n
− Vi,nV ′j(i),n

) ,
M2n

=

√
n

E ῭
n

 1

n

n∑
i=1

῭
i,n∑

j(i)=1

(
K

(
d∗ij(i),n

d̂n

)
−K

(
d∗ij(i),n

d̈n

))
Vi,nV

′
j(i),n

 ,

M3n

=

√
n

E ῭
n

 1

n

n∑
i=1

n∑
j(i)=῭

i,n+1

K

(
d∗ij(i),n

d̂n

)
V̂i,nV̂

′
j(i)

 .

The third term M3n is zero when d̂n ≤ d̈n. We assume that d̂n > d̈n below.

Therefore, it suffices to show M1n = op(1), M2n = op(1) and M3n = op (1) . We

consider the case that Vi,n is a scalar here as the proof for the vector case is similar.
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Note that

‖M1n‖

=

√
E ῭

n

n

∥∥∥∥∥∥ 1

E ῭
n

n∑
i=1

῭
i,n∑

j(i)=1

(
K

(
d∗ij,n

d̂n

)
−K

(
d∗ij,n

d̈n

))(
∂Vi,n(θ̄)

∂θ′
Vj(i),n(θ̄)

+Vi,n(θ̄)
∂Vj(i),n(θ̄)

∂θ′

)(
θ̂ − θ

)∥∥∥∥∥
≤

√
E ῭

n

n
Op (1)

1

E ῭
n

√
n

n∑
i=1

῭
i,n∑

j(i)=1

∣∣∣∣d∗ij,nd̂n − d∗ij,n

d̈n

∣∣∣∣ (∥∥∥∥ ∂∂θVi,n(θ̄)Vj(i),n(θ̄)

∥∥∥∥
+

∥∥∥∥Vi,n(θ̄)
∂

∂θ
Vj(i),n(θ̄)

∥∥∥∥)

≤ op (1)
√
n

∣∣∣∣∣ d̈nd̂n − 1

∣∣∣∣∣ 1

E ῭
nn

n∑
i=1

῭
i,n∑

j(i)=1

(∥∥∥∥ ∂∂θVi,n(θ̄)Vj(i),n(θ̄)

∥∥∥∥ (A.19)

+

∥∥∥∥Vi,n(θ̄)
∂

∂θ
Vj(i),n(θ̄)

∥∥∥∥)

= op (1)
῭
i,n

E ῭
n

1
῭
i,nn

n∑
i=1

῭
i,n∑

j(i)=1

(∥∥∥∥ ∂∂θVi,n(θ̄)Vj(i),n(θ̄)

∥∥∥∥+

∥∥∥∥Vi,n(θ̄)
∂

∂θ
Vj(i),n(θ̄)

∥∥∥∥) ,
(A.20)

where the first inequality uses Assumption F11(ii) and the Op (1) and op (1) terms

hold as
√
n
(
θ̂ − θ

)
= Op(1),

√
n
(
d̈n/d̂n − 1

)
= Op(1). Since ῭

i,n/E ῭
n = Op(1), it

now suffices to show that

1
῭
i,nn

n∑
i=1

῭
i,n∑

j(i)=1

(∥∥∥∥ ∂∂θVi,n(θ̄)Vj(i),n(θ̄)

∥∥∥∥+

∥∥∥∥Vi,n(θ̄)
∂

∂θ
Vj(i),n(θ̄)

∥∥∥∥) = Op(1).
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Using Assumption F12(ii) and (iii), we have

P

 1
῭
i,nn
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῭
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∥∥∥∥+
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∂
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Vj(i),n(θ̄)

∥∥∥∥) > ∆


≤ 1

∆

1
῭
i,nn

E

n∑
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῭
i,n∑

j(i)=1

(
E
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∥∥∥∥+ E

∥∥∥∥Vi,n(θ̄)
∂
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∥∥∥∥)

≤ 1

∆
E
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῭
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῭
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j(i)=1

[E ( ∂

∂θ
Vi,n(θ̄)

)2
] 1

2 [
E
(
Vj(i),n(θ̄)

)2
] 1

2


+

1

∆
E

1
῭
i,nn
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῭
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[E (Vi,n(θ̄)
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] 1

2

[
E

(
∂

∂θ
Vj(i),n(θ̄)
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] 1

2
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∆
sup
i

(
E

[
sup
θ

(
∂

∂θ
Vi,n(θ)

)2
]) 1

2
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j

(
E sup

θ
(Vj,n(θ))2

) 1
2

→ 0

as n and ∆ grows. Thus, M1n = op(1).

We now consider M2n. Since
√
n
(
d̈n/d̂n − 1

)
= Op(1), we have

P
(√

n
∣∣∣d̈n/d̂n − 1

∣∣∣ > C
)
→ 0 as C → ∞. That is, for any ε > 0, there exists a

constant C > 0 such that P
(√

n
∣∣∣d̈n/d̂n − 1

∣∣∣ > C
)
< ε for sufficiently large n.

Hence we can focus on the event that E =
{√

n
∣∣∣d̈n/d̂n − 1

∣∣∣ < C
}

and we do so in

the following derivation:
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E
n∑

i,a=1

῭
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῭
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1

E ῭
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To compute the order of the above upper bound, we note that

1
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np∑
`=1

|ri`,nrj`,nra`,nrb`,n|Eε4
` +

1

n2

n∑
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n∑
i=1

n∑
j=1

|γi,j|

)2

= O (1) , (A.22)

so the upper bound in (A.21) is o (1), which implies that M2n = op (1) .

The next step is to show M3n = op(1). As before, we can focus on the event
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But
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n

 1

n

n∑
i=1

ˆ̀
i,n∑

j(i)=῭
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n

E

 n∑
i,a=1

ˆ̀
i,n∑

j(i)=῭
i,n+1

ˆ̀
a,n∑

b(a)=῭
a,n+1

∣∣∣∣∣d
∗
ij(i),n

d̂n
− 1

∣∣∣∣∣
∣∣∣∣∣d
∗
ab(a),n

d̂n
− 1

∣∣∣∣∣
×
∣∣∣E (Vi,nVj(i),nVa,nVb(a),n)∣∣∣ E]
≤ c2

L

nE ῭
n

E

 n∑
i,a=1

ˆ̀
i,n∑

j(i)=῭
i,n+1

ˆ̀
a,n∑

b(a)=῭
a,n+1

∣∣∣∣∣ d̈nd̂n − 1

∣∣∣∣∣
∣∣∣∣∣ d̈nd̂n − 1

∣∣∣∣∣ ∣∣∣E (Vi,nVj(i),nVa,nVb(a),n)∣∣∣ E


≤ c2
L

E ῭
n

E

 1

n2

n∑
i,a=1

ˆ̀
i,n∑

j(i)=῭
i,n+1

ˆ̀
a,n∑

b(a)=῭
a,n+1

∣∣∣E (Vi,nVj(i),nVa,nVb(a),n)∣∣∣


≤ c2
L

E ῭
n

1

n2

n∑
i,j,a,b=1

|E (Vi,nVj,nVa,nVb,n)| = o(1),

using equation (A.22). Hence M3n = op(1). Consequently√
n

E ῭
n

(
Ĵn(d̂n)− Ĵn(d̈n)

)
= op(1).

The first equality of Theorem 2(b) holds by applying Lemma A4 in the same

way as in proof of the first equality of Theorem 1(d). Then the second equality of

Theorem 2(b) holds by Theorem 1(d).
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Proof of Corollary 2

By Corollary 3 and Theorem 2(b),

lim
h→∞

lim
n→∞

(
MSEh

(
n2q/(2q+η), Ĵn(ḋn), Sn

)
−MSEh

(
n2q/(2q+η), Ĵn(d̂n), Sn

))
= lim

h→∞
lim
n→∞

(
MSEh

(
n2q/(2q+η), Ĵn(dn), Sn

)
−MSEh

(
n2q/(2q+η), Ĵn(d̈n), Sn

))
(A.23)

Since g̈ = g and g̈(q) = g(q), d̈n = d?n. Corollary 1 implies that the expression in

(A.23) is ≥ 0 with the inequality being strict unless dn = d?n + o(n1/(2q+η)).
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Chapter 3

k-step Bootstrap Bias Correction

for Fixed Effects Estimators in

Nonlinear Panel Models

Panel data consists of repeated observations from different individuals across

time. One virtue of this data structure is that we can control for unobserved

time-invariant individual heterogeneity in an econometric model. When individ-

ual effects are correlated with explanatory variables, we may use the fixed effects

estimator which treats each unobserved individual effect as a parameter to be es-

timated. However, this approach usually suffers from inconsistency when the time

series sample size (T ) is short. This is known as the incidental parameters problem,

first noted by Neyman and Scott (1948). Furthermore, even though T grows at

the same rate as n, the fixed effects estimators are asymptotically biased so that

the inference drawn from them may give misleading results.

This paper proposes a k-step parametric bootstrap bias corrected maximum

likelihood (ML) estimator of nonlinear static panel models. In the k-step bootstrap

procedure, we approximate the standard bootstrap estimator by taking k-steps of

a Newton-Raphson (NR) iterative scheme. We employ the original estimate as

144



145

the starting point for the NR steps. We estimate the asymptotic bias using the

k-step bootstrap method and subtract this from the original biased estimator.

We prove that the standard and k-step bootstrap bias corrected estimators are

asymptotically normal and centered at the true parameter if T grows faster than

3
√
n. This condition is important in practice because many economic data sets

nowadays are composed of small T and large n and therefore the usefulness of

the bias corrected estimation particularly depends on how much of the bias is

corrected in small T . Our Monte Carlo experiments show that in finite samples,

the k-step bootstrap bias corrected estimators reduce the bias remarkably even

for small T . This bias correction does not increase the asymptotic variance and

thus bias correction substantially improves statistical inference. In addition to

bias correcting the parameter estimators, we also apply the k-step bootstrap bias

correction to the average marginal effect estimation.

The substantial advantage of our approach over alternatives is that our

method enables us not only to correct the asymptotic bias but also to improve the

coverage accuracy of the associated confidence intervals (CI). We construct the

CI’s using a double k-step bootstrap procedure. In Monte Carlo experiments we

find that in finite samples the error in coverage probability of our CI’s is smaller

than those of the other standard alternatives especially when T is small. This is

true for the estimators of the model parameters as well as the estimators of the

average marginal effects.

Another clear advantage is ease of computation. Standard bootstrap meth-

ods in nonlinear models are usually very time-intensive because it is required to

solve R nonlinear optimization problems to obtain R bootstrap estimates. R usu-

ally needs to be fairly large for the bootstrap method to be reliable. Unless the

optimization problem is simple, this would be a very time-intensive task. Particu-

larly, as the fixed effects approach treats the individual effects as parameters, there

are many parameters to be estimated and computational intensiveness can be par-

ticularly serious in this type of models. For example, in our empirical application



146

(not reported here), there are 1461 individuals, which means there are more than

1461 parameters to be estimated. In addition, the double bootstrap procedure

which is used for constructing CI’s in this method also increases computational

intensiveness substantially. In order to overcome this problem, we introduce the

k-step bootstrap estimation which only involves computing the Hessian and the

score functions. We show that when n → ∞ the stochastic difference between

the standard and k-step bootstrap estimators is Op(T
−2k−1

). When k ≥ 2, this

difference is of smaller order than the bias term we intend to remove. As a result,

we can use the k-step bootstrap in place of the standard bootstrap to achieve bias

reduction.

Several papers have discussed the difficulties involved in controlling for this

incidental parameters problem in nonlinear panel models and have suggested bias

correction methods. Lancaster (2000) and Arellano and Hahn (2006) give an

overview on the subject. Anderson (1970) and Honoré and Kyriazidou (2000)

propose estimators which do not depend on individual effects in some specific

cases. However, their approaches are the exception rather than the rule and so

usually provide no guidance in general cases to eliminate the bias from nonlinear

panel models. More generally, Hahn and Newey(2004) (denoted HN hereinafter)

and Fernández-Val (2009) propose jackknife and analytic procedures for nonlinear

static models, while Hahn and Kuersteiner (2004) propose analytic estimators in

nonlinear dynamic models. Both expand the estimator in orders of T and esti-

mate the leading bias term using the sample analogue. Bester and Hansen (2008)

propose a penalized objective function approach to solve this problem.

There is also a large literature on bootstrap bias corrected estimation. Hall

(1992) introduces general bootstrap algorithms for bias correction and for the con-

struction of CI’s which we adapt in this paper. Hahn, Kuersteiner and Newey

(2004) analyze the asymptotic properties of a bootstrap bias corrected ML esti-

mator in cross sectional data and show that it is higher order efficient. Pace and

Salvan (2006) suggest a bootstrap bias corrected estimator when there are nui-
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sance parameters, but their algorithm is different from ours. While we estimate

the asymptotic bias of the fixed effects estimator directly by bootstrap, they use

the bootstrap procedure to adjust the profile likelihood function from which they

obtain their bias corrected estimator. The k-step bootstrap procedure first appears

in Davidson and Mackinnon (1999) and Andrews (2002, 2005), in which they prove

its higher-order equivalence to the standard bootstrap for extremum estimators.

The paper is organized as follows. Section 3.1 reviews the incidental param-

eters problem in nonlinear panel models and introduces the analytic form of the

bias term which is demonstrated in HN. Section 3.2 describes the bootstrap bias

correction procedure. Section 3.3 explains the k-step bootstrap bias correction.

Section 3.4 establishes the asymptotic properties of our estimators. Section 3.5

discusses bias correction for average marginal effects. The Monte Carlo simulation

results are reported in Section 3.6. The last section concludes.

3.1 Incidental Parameters Problem

In this section, we introduce the incidental parameters problem and present

the asymptotic bias of the fixed effects estimator in nonlinear panel models.

Consider a nonlinear panel data model:

zit ∼ f(z; θ, αi)

where θ is (Lθ × 1) vector of parameters of interest and αi is a scalar individual

heterogeneity and f is a probability density function with parameters θ and αi. For

any given parameter value, {zit} are independently distributed across i = 1, 2, ..., n

and t = 1, 2, ..., T. The model includes discrete choice models and censored and

truncation models as special cases.

Denote the true values of θ and α ≡ (α1, ..., αn) by θ0 and α0 = (α10, ..., αn0)

respectively and let l(θ, αi; zit) ≡ log f(zit; θ, αi). The objective function for the

fixed effects estimator, θ̂nT , is the concentrated log-likelihood function based on
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α̂i. That is, we obtain θ̂nT by solving

θ̂nT = arg max
θ

n∑
i=1

T∑
t=1

l(θ, α̂i(θ); zit), (A.1)

where

α̂i(θ) = arg max
αi

T∑
t=1

l(θ, αi; zit) (A.2)

α̂ (θ) ≡ (α̂1(θ), ..., α̂i(θ), ..., α̂N(θ))

and the maximization is taken over a compact set.

Equation (A.2) implies that the estimation of αi uses only T time series

observations (zi1, . . . , ziT ). Therefore, given that T is fixed, α̂i does not converge to

αi0 even though n→∞. This estimation error of α̂i causes θ̂nT to be inconsistent,

which means Plimn→∞ θ̂nT 6= θ0. This is known as the incidental parameters

problem first noted by Neyman and Scott (1948). From the asymptotic properties

of extremum estimators (e.g. Amemiya (1985)), as n→∞ with T fixed

θ̂nT
p−→ θT , θT ≡ arg max

θ
E

[
T∑
t=1

l(θ, α̂i(θ); zit)

]
(A.3)

where

E

[
T∑
t=1

l(θ, α̂i(θ); zit)

]
≡ lim

n→∞

1

n

n∑
i=1

E

[
T∑
t=1

l(θ, α̂i(θ); zit)

]
.

Since θ0 maximizes E[
∑n

i=1

∑T
t=1 l(θ, αi0; zit)], usually θT 6= θ0. If the likelihood

function is smooth enough, we can show by stochastic expansion that

θT = θ0 +
B

T
+O

(
1

T 2

)
(A.4)

for some B. This implies that θT → θ0 as T → ∞. However, it is still asymp-

totically biased if T grows at the same rate as n. That is, as n, T → ∞ and

n/T → ρ,

√
nT (θ̂nT − θ0) =

√
nT (θ̂nT − θT ) +

√
nT

B

T
+Op

(√
n

T 3

)
d→ N(0,Ω) +B

√
ρ

d
= N(B

√
ρ,Ω), (A.5)
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for some variance matrix Ω.
√
nT (θ̂nT − θT ) converges to a normal distribution

centered at zero, since θT is the probability limit of θ̂nT . However, the second

term,
√
nTB/T , does not vanish but converges toB

√
ρ. Hence, statistical inference

drawn from this will result in misleading conclusions even when T is as large as n.

HN establish the analytic form of the leading bias of θ̂nT using stochastic

expansion. For notational convenience, we define

uit(θ, αi) ≡
∂

∂θ
l(θ, αi; zit) and vit(θ, αi) ≡

∂

∂αi
l(θ, αi; zit)

and let additional subscripts denote partial derivatives,

i.e. vitα(θ, αi) ≡ ∂2

∂α2
i
l(θ, αi; zit). We suppress the arguments of the functions such as

uit, when they are evaluated at the true value (θ0, αi0). HN show that in equation

(A.5)

B = −H−1(θ0, α0)b (θ0, α0) , (A.6)

where

H(θ0, α0) = lim
n→∞

1

n

n∑
i=1

E [UitU
′
it] ,

b (θ0, α0) =
1

2
lim
n→∞

1

n

n∑
i=1

E [V2itUit]

E [v2
it]

,

and

Uit ≡ uit −
E[uitvit]

E[v2
it]
· vit, V2it ≡ v2

it + vitα.

3.2 Bootstrap Bias Correction

In this section, we provide the bias corrected estimator using a parametric

bootstrap procedure. The parametric bootstrap is different from the nonpara-

metric bootstrap in that the former utilizes the parametric structure of the DGP

by replacing the original parameters with their estimators to generate bootstrap

samples, while the latter generates them from the empirical distribution function.
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Let F ∗ ≡ Fθ̂nT ,α̂ denote the distribution function of bootstrap samples. We

obtain F ∗ from F by replacing θ0 and α0, with θ̂nT and α̂ ≡ α̂(θ̂nT ). Therefore,

in the bootstrap world, θ̂nT and α̂ are the true parameters. Let {z∗it} denote the

bootstrap sample drawn at random from F ∗. Based on {z∗it}, we can obtain the

bootstrap estimators, θ̂∗nT and α̂∗i by ML estimation. That is,

θ̂∗nT = arg max
θ

n∑
i=1

T∑
t=1

l(θ, α̂∗i (θ); z
∗
it), (A.7)

where

α̂∗i (θ) = arg max
αi

T∑
t=1

l(θ, αi; z
∗
it), (A.8)

and as before the maximization is taken over a compact set.

The intuition behind the bootstrap bias correction is that the bias of a

bootstrap estimator is a good approximation to that of a true parameter estimator.

Under some regularity conditions, as n→∞ and T →∞,

E∗(θ̂∗nT )− θ̂nT =
B

T
+Op

(
1

T 2

)
where1

E∗(θ̂∗nT ) = lim
R→∞

1

R

R∑
r=1

θ̂
∗(r)
nT ,

and E∗ is the expectation operator with respect to F ∗. Therefore, the bootstrap

bias corrected estimator can be defined as

θ̃nT = 2θ̂nT − E∗
(
θ̂∗nT

)
. (A.9)

The above estimator reduces the order of the magnitude of a bias from

Op (T−1) to Op (T−2). To show this, we employ the same definitions of HN in the

bootstrap world, i.e.

u∗it ≡
∂

∂θ
l(θ̂nT , α̂i; z

∗
it), v

∗
it ≡

∂

∂αi
l(θ̂nT , α̂i; z

∗
it) and v∗itα ≡

∂2

∂α2
i

l(θ̂nT , α̂i; z
∗
it).

1Note that E∗(θ̂∗nT ) may not be finite, in which case we can introduce truncation to prevent
it from going to infinity. See equation (A.17) for such a modification. When the truncation
threshold goes to infinity at an appropriate rate, the introduction of truncation does not affect
the limiting distribution. For simiplicity of exposition, we do not explicitly incorporate truncation
here but do so for the k-step bootstrap estimator.
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Then,

P ∗ lim
n→∞

(
θ̂∗nT − θ̂nT −

B∗

T

)
= Op

(
1

T 2

)
, (A.10)

and

B∗ = −
[
H∗(θ̂nT , α̂(θ̂nT ))

]−1

b∗
(
θ̂nT , α̂(θ̂nT )

)
where

H∗
(
θ̂nT , α̂(θ̂nT )

)
= lim

n→∞

1

n

n∑
i=1

E∗ [U∗itU
∗′
it ] ,

b∗
(
θ̂nT , α̂(θ̂nT )

)
=

1

2
lim
n→∞

1

n

n∑
i=1

E∗ [U∗itV
∗

2it]

E∗
[
(v∗it)

2]
and

U∗it ≡ u∗it −
E∗[u∗itv

∗
it]

E∗
[
(v∗it)

2] · v∗it, V ∗2it ≡ v∗2it + v∗itα.

The conditional distribution of the bootstrap sample given the data or (θ̂nT , α̂(θ̂nT ))

is the same as the distribution of the original sample except that the former uses

(θ̂nT , α̂(θ̂nT )) rather than (θ0, α0) as true parameters2. Therefore, we have

H∗
(
θ̂nT , α̂(θ̂nT )

)
= H(θ, α)|(θ,α)=(θ̂nT ,α̂(θ̂nT ))

b∗
(
θ̂nT , α̂(θ̂nT )

)
= b(θ, α)|(θ,α)=(θ̂nT ,α̂(θ̂nT ))

By stochastic expansion, we show in Appendix I that

H(θ, α)|(θ,α)=(θ̂nT ,α̂(θ̂nT )) = H(θ0, α0)

[
1 +Op

(
1

T

)]
,

b(θ, α)|(θ,α)=(θ̂nT ,α̂(θ̂nT )) = b(θ0, α0)

[
1 +Op

(
1

T

)]
.

Combining the above two equations with the definition of B∗, we obtain

B∗ = B +Op

(
1

T

)
. (A.11)

As a final step, we show that under the assumptions given in Section 3.4

√
nT
(
P ∗ lim
n→∞

θ̂∗nT − E∗(θ̂∗nT )
)

= op (1) . (A.12)

2When (θ̂nT , α̂(θ̂nT )) is regarded as a vector, it is understood to be (θ̂′nT , α̂(θ̂nT )′)′. For nota-
tional simplicity, we omit the transpose notation if confusion is unlikely.
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From (A.10), (A.11) and (A.12), for T/ 3
√
n→∞,

√
nT (θ̃nT − θ0) =

√
nT (θ̂nT − θT ) +

√
nT
[
(θT − θ0)− (P ∗ lim

n→∞
θ̂∗nT − θ̂nT )

]
+
√
nT
[
P ∗ lim
n→∞

θ̂∗nT − E∗(θ̂∗nT )
]

=
√
nT (θ̂nT − θT ) + op (1)

d−→ N(0,Ω). (A.13)

This implies that the bootstrap bias corrected estimator removes the dominant

bias and is asymptotically unbiased.

3.3 k-step Bootstrap Bias Correction

In this section, we define the k-step bootstrap bias corrected estimator and

demonstrate its higher order equivalence to the standard bootstrap estimator.

The k-step procedure approximates θ̂∗nT by the NR iterative procedure. Let

θ̂∗nT,k and α̂∗i,k denote the k-step bootstrap estimator. We define θ̂∗nT,k and α̂∗k

recursively in the following way: θ̂∗nT,k

α̂∗k

 =

 θ̂∗nT,k−1

α̂∗k−1

−H−1
k−1Sk−1 (A.14)

where3

Hk−1 =
1

nT

n∑
i=1

T∑
t=1

∂2 log l (θ, αi; z
∗
it)

∂ (θ′, α′) ∂ (θ′, α′)′

∣∣∣∣
θ=θ̂∗nT,k−1,α=α̂∗k−1

(A.15)

Sk−1 =
1

nT

n∑
i=1

T∑
t=1

∂ log l (θ, αi; z
∗
it)

∂ (θ′, α′)′

∣∣∣∣
θ=θ̂∗nT,k−1,α=α̂∗k−1

and the start-up estimator θ̂∗nT,0 = θ̂nT , α̂
∗
0 = α̂.

In the appendix of proofs, we show that

P ∗ lim
n→∞

θ̂∗nT,k = P ∗ lim
n→∞

θ̂∗nT +Op

(
1

T 2k−1

)
. (A.16)

3The Hessian matrix we used is called the observed Hessian. We note that some terms in
∂2 log l (θ, αi; z∗it) /∂ (θ′, α′) ∂ (θ′, α′)′ have zero expectation. Dropping these terms in equation
(A.15), we obtain the expected Hessian. Our asymptotic results remain valid for the expected
Hessian, as the dropped terms are of smaller order.
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This implies the quadratic convergence of θ̂∗nT,k to θ̂∗nT as k increases. In particular,

when k ≥ 2, P ∗ lim
n→∞

θ̂∗nT,k = P ∗ lim
n→∞

θ̂∗nT +Op (1/T 2) . So in large samples, the approx-

imation error in using the k-step bootstrap instead of the standard bootstrap is of

smaller order than the bias term that we intend to remove. Therefore, condition

k ≥ 2 is necessary for the k-step bootstrap to achieve effective bias reduction.

To implement the k-step bootstrap, we have to invert the Hessian matrix.

Depending on the observations we sample, Hj−1 may be close to be singular in

practice, in which case θ̂∗nT,j goes to infinity. As a result, the mean of θ̂∗nT,k may

not be finite. To circumvent the undue influence of the second derivative of the

objective function on our estimator, we introduce the truncated version, θ̌∗nT,k. The

truncated estimator is defined as

θ̌∗nT,k ≡ θ̂nT +
(
θ̂∗nT,k − θ̂nT

)
1
(√

nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ ≤MnT

)
. (A.17)

θ̌∗nT,k yields the same value as θ̂∗nT,k when the difference of θ̂∗nT,k from θ̂nT is bounded

by MnT/
√
nT , but does not blow up when it has an infinite value. Similarly, we

define

α̌∗i,k ≡ α̂i +
(
α̂∗i,k − α̂i

)
1
(√

nT
∣∣α̂∗i,k − α̂i∣∣ ≤MnT

)
. (A.18)

We can set MnT large enough that this truncation does not affect the asymptotic

properties. We show that when MnT →∞ such that
√
n/T = o(MnT ), we have:

P ∗ lim
n→∞

θ̌∗nT,k = P ∗ lim
n→∞

θ̂∗nT,k +Op

(
1

T 2

)
.

As a final step, we show that

√
nT
(
P ∗ lim
n→∞

θ̌∗nT,k − E∗(θ̌∗nT,k)
)

= op (1) . (A.19)

From (A.16) and (A.19) the limiting distribution of the bootstrap bias corrected

estimator, θ̃nT , which is defined in (A.9), will be invariant even though we re-

place θ̂∗nT with θ̌∗nT,k. Hence, we can define our truncated k-step bootstrap biased

corrected estimator as

θ̃nT,k ≡ 2θ̂nT − E∗
(
θ̌∗nT,k

)
. (A.20)
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Then for T/ 3
√
n→∞ and all k ≥ 2,

√
nT (θ̃nT,k − θ0) =

√
nT (θ̂nT − θT ) +

√
nT
[
(θT − θ0)− (P ∗ lim

n→∞
θ̌∗nT,k − θ̂nT )

]
+
√
nT
(
E∗(θ̌∗nT,k)− P ∗ lim

n→∞
θ̌∗nT,k

)
=
√
nT (θ̂nT − θT ) + op (1)

d−→ N(0,Ω). (A.21)

3.4 Asymptotic Properties

In this section, we state the assumptions and rigorously establish the asymp-

totic properties of the standard bootstrap and k-step bootstrap estimators.

For ease of exposition, we write l(θ, α; zit) ≡ l(θ, αi; zit) so that l (·, ·; zit) is

regarded as a function of θ and α. We maintain the following assumptions:

Assumption 1 n, T →∞ such that n = o(T 3) and T = O(n).

Assumption 2 (i) l(θ, α; zit) is continuous in (θ, α) ∈ Θ; (ii) the parameter space

Θ is compact; (iii) (θ0, α0) is an interior point in Θ.

Assumption 3 For each η > 0, there exists δ > 0 such that

inf
i

[
Gi (θ0, α0)− sup

{(θ,α):|(θ,α)−(θ0,α0)|>η}
Gi(θ, α)

]
≥ δ > 0,

where

Gi(θ, α) ≡ E
1

T

T∑
t=1

l(θ, α; zit).

Assumption 4 (i) l(θ, α; zit) is continuously differentiable to six orders; (ii) there

exists some M(zit) such that∣∣∣∣∂m1+m2l(θ, α; zit)

∂θm1
j ∂αm2

i

∣∣∣∣ ≤M(zit), 0 ≤ m1 +m2 ≤ 6

(iii) For some Q > 64, E
[
M(zit)

Q
]
< C for a constant C and all i = 1, 2, ..., N.
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Assumption 5 (i) E[Ii] ≡ limn→∞ n
−1
∑n

i=1E[UitU
′
it] exists and is positive def-

inite (ii) miniE[v2
it] > 0.

Assumption 6 Let Bn = (n−1
∑n

i=1E[UitU
′
it])
−1

(
n−1

∑n
i=1

E[V2itUit]

E[v2it]

)
, then

Bn = B +O (1/
√
n) .

Assumption 1 shows that our estimator is applicable as long as T grows

faster than 3
√
n. This implies that our asymptotic theory is valid with relatively

small T and large n, which is often the case in micro panel data sets. Assumption

2 is a standard regularity assumption. Assumption 3 is the identification assump-

tion for extremum estimators. Assumption 4 is the same as Condition 4 in Newey

and Hahn (2004). It is stronger than the moment assumption for extremum es-

timators and under this assumption the asymptotic bias depends on the second

order expansion and higher order terms go to 0 under Assumption 1. Assumption

5 allows us to invoke the central limit theorem. Assumption 6 ensures that the

limiting bias term B is close to its finite sample analogue Bn. This assumption

holds trivially if zit are iid across i.

Theorem 9. Under Assumptions 1-6,

√
nT (θ̃nT − θ0)

d−→ N(0, (E[Ii])−1).

For the proof see Appendix I.

Proposition 3. Under Assumptions 1-6, for all k ≥ 1

P ∗ lim
n→∞

θ̂∗nT,k = P ∗ lim
n→∞

θ̂∗nT +Op

(
1

T 2k−1

)
.

For the proof see Appendix II.

Theorem 10. Under Assumptions 1-6, for all k ≥ 2

√
nT (θ̃nT,k − θ0)

d−→ N(0, (E[Ii])−1).

For the proof see Appendix III.
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3.5 Bias Correction for Average Marginal Effects

In this section, we suggest bias corrected estimators of the average marginal

effects using the k-step bootstrap procedure. In nonlinear models, the average

marginal effect may be as interesting as the model parameters because it summa-

rizes the effect over certain sub-population, which is often the quantity of interest

in empirical studies.

The first average marginal effect, which we refer to as “the fixed effect

average” or simply the average marginal effect, is the marginal effect averaged

over αi. It is defined as

µ(w) =
1

n

n∑
i=1

m(w, θ0, αi0)

where w is the value of the covariate vector where the average effect is desired.

For example, in a probit model, m(w, θ0, αi0) = θ0(j)φ(x′θ0 + αi0) where θ0(j) and

φ(·) are the coefficient on the j-th regressor of interest and the standard normal

density function respectively.

The bias uncorrected estimator of µ(w) is

µ̂nT (w) =
1

nT

n∑
i=1

T∑
t=1

m(w, θ̂nT , α̂i). (A.22)

As in the case for the estimation of model parameters, we can construct a k-step

bootstrap bias corrected estimator of the fixed effect average by estimating the

bias with the difference between µ̂nT (w) and its bootstrap estimator. Our k-step

bootstrap bias corrected estimator of the fixed effects average is

µ̃nT,k(w) =
2

nT

n∑
i=1

T∑
t=1

m(w, θ̂nT , α̂i)− E∗
[

1

nT

n∑
i=1

T∑
t=1

m(w, θ̌∗nT,k, α̌
∗
i,k)

]
. (A.23)

The second average marginal effect, which we refer to as “the overall average

marginal effect”, is the marginal effect averaged over both αi and the covariates.

It is defined as

ν =
1

nT

n∑
i=1

T∑
t=1

m(wit, θ0, αi0).
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See also Fernández-Val (2009). Similarly to equations (A.22) and (A.23), the

original and bias corrected estimators of ν are

ν̂nT =
1

nT

n∑
i=1

T∑
t=1

m(wit, θ̂nT , α̂i),

ν̃nT,k(w) =
2

nT

n∑
i=1

T∑
t=1

m(wit, θ̂nT , α̂i)− E∗
[

1

nT

n∑
i=1

T∑
t=1

m(wit, θ̌
∗
nT,k, α̌

∗
i,k)

]
.

3.6 Monte Carlo Study

In this section, we report our Monte Carlo experiment results, which show

that k-step bootstrap bias correction reduces the bias significantly in finite samples

and also improves the coverage accuracy of CI’s.

For our Monte Carlo experiment, we employ the design used in Heckman

(1981), Greene (2004), HN, and Fernández-Val(2009). It is based on the following

probit model:

Yit = 1{Xitθ0 + αi − εit ≥ 0}; εit∼N(0, 1), αi∼N(0, 1),

Xit = t/10 +Xi,t−1/2 + uit; uit∼U(−1/2, 1/2),

n = 100; T = 4, 8, 12; θ0 = 1.

As discussed in HN, this model does not fit completely within our framework.

First, Xit is correlated overtime. The correlation does not cause any problem as

we can use the conditional MLE approach and all the asymptotic results remain

valid. Second, there is no correlation between Xit and αi. This is different from

the usual condition under which the fixed effects estimator is used. However the

incidental parameters problem is still present as it has nothing to do with whether

there is a correlation between Xit and αi. The bias of the fixed effects estimator

can be severe for fixed effects models as well as for random effects models. The

effectiveness of different bias reduction methods can be well evaluated with our

data generating process. Another reason to use this design is that it is widely
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cited and used in other simulation studies, which helps us compare our estimator

with the alternatives.

The uncorrected estimator of model parameters is

(θ̂nT , α̂)

= arg max
θ,α

1

nT

n∑
i=1

T∑
t=1

[yit log Φ(xitθ + αi) + (1− yit) log(1− Φ(xitθ + αi)]

and the estimators of the average marginal effects are

µ̂nT (x̄) =
1

n

n∑
i=1

θ̂nTφ(x̄θ̂nT + α̂i), ν̂nT =
1

nT

n∑
i=1

T∑
t=1

θ̂nTφ(xitθ̂nT + α̂i).

where Φ(·) is the standard normal distribution function and x̄ is the sample mean

of {xit, i = 1, 2, ..., N, t = 1, ..., T}.

For the k-step bootstrap, we generate bootstrap samples based on θ̂nT and

{α̂i}ni=1 and estimate θ̂∗nT,k using (A.14) with the bootstrap samples. We repeat

this procedure 1000 times (R = 1000). Then, we obtain the bias corrected k-step

bootstrap estimator from (A.20). As discussed before, for each k value, we can

use either observed Hessian or expected Hessian in the NR step, leading to two

versions of the k-step procedure. Each simulation is repeated 1000 times.

We compare the performance of our bias-corrected estimator with four al-

ternative bias correction estimators: the jackknife and the analytic bias corrected

estimators by Hahn and Newey (2004) and the analytical bias-corrected estima-

tor by Fernández-Val (2009). The jackknife bias-corrected estimator is denoted

‘Jackknife’. For HN analytic estimators, there are two versions: the analytic

bias-corrected estimator using Bartlett equalities, denoted ‘BC1’; the analytic

bias-corrected estimator based on general estimating equations, denoted ‘BC2’.

Fernández-Val’s estimator is denoted as ‘BC3’.

For each estimator, we report its mean, median, standard deviation, root

mean squared errors, and the empirical sizes of two-sided nominal 5% and 10%

tests. The tests are based on symmetric CI’s, that is, we reject the null hypothesis
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if the parameter value under the null falls outside the CI’s. For the jackknife and

analytical bias correction procedures, the interval estimator or the testing method

are the same as that given in the respective papers. For the k-step procedure, the

CI’s are based the double bootstrap procedure.

To describe the double bootstrap procedure, we focus on an element of θ.

Hence, without loss of generality, we can consider the case that θ0 is a scalar. By

iterating the bootstrap procedure, we define:

θ̃∗nT,k ≡ 2θ̌∗nT,k − E∗∗(θ̌∗∗nT,k),

where E∗∗(θ̌∗∗nT,k) is defined on the double bootstrap, that is, the k-step bootstrap

using (θ̌∗nT,k, α̌
∗
i,k) as the true model parameters. Similarly

α̃∗i,k ≡ 2α̌∗i,k − E∗∗(α̌∗∗i,k).

Let

t-stat =

√
nT
∣∣∣θ̃nT,k − θ0

∣∣∣
SE

(
θ̃nT,k, α̃∗k

)
be the t-statistic for θ0 where

[
SE

(
θ̃nT,k, α̃k

)]2

=

(
− 1

nT

n∑
i=1

T∑
t=1

Uitθ

(
θ̃nT,k, α̃i,k)

))−1

, α̃i,k ≡ 2α̂i − E∗(α̌∗i,k).

Let

t∗-stat =

√
nT
∣∣∣θ̃∗nT,k − θ̂nT ∣∣∣

SE
(
θ̃∗nT,k, α̃

∗
k

)
be the corresponding t-statistic in the bootstrap world where[

SE
(
θ̃∗nT,k, α̃

∗
k

)]2

=

(
− 1

nT

n∑
i=1

T∑
t=1

U∗itθ

(
θ̃∗nT,k, α̃

∗
i,k

))−1

, α̃∗i,k ≡ 2α̌∗i,k − E∗∗(α̌∗∗i,k).

Then the bootstrap CI is :[
θ̃nT,k − T ∗1−α/2

1√
nT

SE(θ̃nT,k, α̃k), θ̃nT,k + T ∗1−α/2
1√
nT

SE(θ̃nT,k, α̃k)

]
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where T ∗1−α/2 is the (1− α/2)× 100% percentile of t∗-stat. Our double bootstrap

two-sided test is based on the above CI. We can use the same procedure to construct

CIs for the average marginal effect and the overall average marginal effect. In our

simulation experiment, we set the number of double bootstrap samples to be 100.

We do so in order to reduce the computational burden. In empirical applications,

we should use a larger number.

Table 1 shows the performance of the k-step bootstrap for different values

of k. According to this result, the k-step bootstrap procedure reduces the bias

significantly when k ≥ 2. Results not reported here show that the one-step

procedure is not effective in bias reduction. This result is consistent with our

Theorem 2, which demonstrates the order of bias is reduced from Op (1/T ) to

Op (1/T 2) when k ≥ 2. In terms of the MSE, the 2-step bootstrap with observed

Hessian, the 3-step bootstrap with observed Hessian and the 3-step bootstrap with

expected Hessian are efficient in general.

Table 2 compares different bias correction methods. We choose the 2-step

bootstrap with observed Hessian as our benchmark. First, we see that the estima-

tor without bias correction is severely biased when T is small. As T gets larger,

the bias gets smaller, but there is still no improvement in the coverage accuracy of

CI’s. When T = 4, the bias of the uncorrected estimator is 42%. When T = 12,

the bias is reduced to 13% . But the rejection probability is still 29% for the

5% two-sided test. Second, the k-step bootstrap performs better in finite samples

than the other methods regardless of the size of T . In particular when T = 4,

the outperforming of the k-step bootstrap procedure is remarkable, while as T in-

creases other estimators become as accurate as ours. When T = 4 the bias of our

estimator is 6% and RMSE is 0.249, while the bias of the jackknife method is 25%

and its RMSE is 0.373. The analytic method by Fernández-Val (2009) also has

the bias of 6% but its RMSE is 0.281 which implies that its variance is larger than

ours. The k-step procedure achieves the smallest RMSE among all bias correction

procedures. Third, in term of coverage accuracy, the CI’s based on the double
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k-step bootstrap outperform other CIs in an overall sense.

Table 3 shows the ratio of the estimator of the average marginal effect to

the true value. As HN and Fernández-Val (2009) show, the bias of the uncorrected

estimator is negligible, even when T = 4. Its bias is less than 2% and in terms

of RMSE, it performs as good as the bias corrected ones. However its CI’s are

not accurate especially when we have small T . When T = 4, its error in coverage

probability for the 95% CI is about 5%. Inaccurate CI’s are not just the problem of

the bias uncorrected estimator. Jackknife and the analytic bias correction do not

reduce the coverage error either. When T = 4, the errors in coverage probability for

the 95% CI from jackknife and analytic estimators are 11% and 4-6% respectively.

In contrast, the coverage error of the 95% CI constructed from the k-step double

bootstrap is only 1.5%. We find that the our estimator improves the accuracy of

the CI’s which is not the case in the other standard alternatives.

Table 4 gives the Monte Carlo results for the ratio of the estimator of the

overall average marginal effect to the true value. This is similar to the fixed effect

average in Table 3 except that the average is taken over both the fixed effects and

the covariate. As in the previous case, we find little evidence that bias correction is

necessary in terms of RMSE. Actually, the RMSE of the bias uncorrected estimator

is smaller than that of the jackknife estimator in general. It also shows that in

contrast to other estimators our double k-step bootstrap procedure improves the

coverage accuracy of the CI’s particularly when T is small.

3.7 Conclusion

In this paper, we propose the k-step bootstrap bias correction for the fixed

effects estimator in nonlinear static panel models and establish the asymptotic

properties of our bias corrected estimator. In simulation experiments, we show that

the k-step bias correction procedure is often more effective than the alternatives.

When T is small, the procedure achieves substantial bias reduction and has the
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smallest RMSE among the competing procedures. The confidence interval based

on the double k-step bootstrap has a smaller coverage error than other CI’s. This

is true for both model parameters and average marginal effects. The asymptotic

properties of our CIs and the possible higher order refinement are not studied here.

It is an interesting topic for future research.
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Table 3.1: k-step Bootstrap Estimators

Estimator Mean Median SD RMSE

T = 4
k=2, O 0.94 0.94 0.242 0.249
k=3, O 0.84 0.84 0.192 0.253
k=3, E 0.83 0.84 0.194 0.256
k=2, E 1.02 1.01 0.270 0.271

T = 8
k=2, O 0.98 0.98 0.114 0.115
k=3, E 0.97 0.97 0.113 0.117
k=2, E 1.02 1.02 0.122 0.123
k=3, O 0.96 0.96 0.118 0.124

T = 12
k=3, E 0.99 0.99 0.078 0.078
k=3, O 0.97 0.97 0.077 0.080
k=2, O 0.99 0.99 0.081 0.082
k=2, E 1.01 1.00 0.087 0.087

Notes: Cross section sample size n = 100 and the true value θ0 = 1. We use “E” to

indicate the use of the expected Hessian in the k-step bootstrap while we use “O”

to indicate the use of the observed Hessian in the k-step bootstrap. The estimators

are ordered according to their RMSE.
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Table 3.2: Bias Corrected Estimators of θ

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4
Probit 1.42 1.40 0.385 0.30 0.40 0.569

2-step Bootstrap 0.94 0.94 0.242 0.04 0.06 0.249
Jackknife 0.75 0.75 0.277 0.11 0.19 0.373

BC1 1.11 1.10 0.304 0.04 0.11 0.323
BC2 1.20 1.19 0.333 0.09 0.16 0.388
BC3 1.06 1.06 0.275 0.02 0.06 0.281

T = 8
Probit 1.18 1.18 0.132 0.28 0.39 0.238

2-step Bootstrap 0.98 0.98 0.114 0.04 0.10 0.115
Jackknife 0.95 0.96 0.118 0.05 0.11 0.128

BC1 1.05 1.05 0.134 0.05 0.11 0.143
BC2 1.05 1.05 0.132 0.05 0.10 0.141
BC3 1.02 1.02 0.124 0.03 0.07 0.126

T = 12
Probit 1.13 1.12 0.090 0.29 0.40 0.161

2-step Bootstrap 0.99 0.99 0.081 0.05 0.11 0.082
Jackknife 0.98 0.98 0.080 0.05 0.10 0.083

BC1 1.04 1.04 0.087 0.07 0.13 0.096
BC2 1.03 1.03 0.085 0.06 0.11 0.090
BC3 1.01 1.01 0.082 0.04 0.09 0.083

Notes: Cross section sample size n = 100 and the true value θ0 = 1. Jackknife

denotes HN Jackknife bias corrected estimator; BC1 denotes HN bias corrected

estimator based on Bartlett equalities; BC2 denotes HN bias corrected estimator

based on general estimating equations; BC3 denotes Fernández-Val (2009) bias

corrected estimator which uses expected quantities in the estimation of the bias.

p denotes empirical rejection probability.
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Table 3.3: Bias Corrected Estimators of the Average Marginal Effect µ

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4
Probit 0.98 0.98 0.256 0.097 0.157 0.256

2-step bootstrap 0.98 0.98 0.256 0.065 0.122 0.256
Jackknife 1.06 1.05 0.307 0.159 0.224 0.313

BC1 1.00 0.99 0.265 0.113 0.178 0.265
BC2 1.05 1.05 0.266 0.117 0.185 0.271
BC3 0.94 0.94 0.240 0.090 0.155 0.247

T = 8
Probit 1.02 1.01 0.116 0.065 0.122 0.117

2-step bootstrap 1.00 1.00 0.113 0.043 0.096 0.117
Jackknife 1.00 0.99 0.130 0.086 0.153 0.130

BC1 1.02 1.02 0.133 0.090 0.153 0.134
BC2 1.02 1.02 0.131 0.087 0.154 0.133
BC3 1.00 1.00 0.117 0.058 0.107 0.117

T = 12
Probit 1.02 1.01 0.072 0.072 0.119 0.074

2-step bootstrap 1.00 1.00 0.070 0.052 0.094 0.070
Jackknife 1.00 1.00 0.074 0.05 0.093 0.074

BC1 1.02 1.02 0.075 0.061 0.122 0.078
BC2 1.02 1.02 0.074 0.059 0.112 0.077
BC3 1.01 1.01 0.074 0.049 0.096 0.075

Notes: Cross section sample size n = 100 and the true value µ0 = 1.
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Table 3.4: Bias Corrected Estimators of the Overall Average Marginal Effect ν

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4
Probit 0.99 1.00 0.248 0.11 0.17 0.249

2-step Bootstrap 0.99 0.98 0.248 0.04 0.09 0.248
Jackknife 1.02 1.02 0.285 0.12 0.19 0.286

BC1 1.00 1.00 0.261 0.12 0.18 0.261
BC2 1.04 1.04 0.255 0.12 0.19 0.258
BC3 0.94 0.94 0.226 0.08 0.13 0.234

T = 8
Probit 0.99 0.99 0.100 0.07 0.13 0.100

2-step Bootstrap 0.99 0.99 0.100 0.04 0.08 0.100
Jackknife 1.01 1.01 0.107 0.07 0.14 0.107

BC1 1.01 1.01 0.110 0.09 0.15 0.110
BC2 1.00 1.00 0.105 0.07 0.13 0.105
BC3 0.97 0.97 0.103 0.08 0.13 0.107

T = 12
Probit 0.99 0.99 0.063 0.09 0.16 0.065

2-step Bootstrap 0.99 0.99 0.064 0.06 0.12 0.065
Jackknife 1.00 1.00 0.064 0.05 0.11 0.064

BC1 1.00 1.00 0.065 0.06 0.11 0.065
BC2 0.99 0.99 0.062 0.05 0.10 0.063
BC3 0.98 0.98 0.062 0.05 0.11 0.065

Notes: Cross section sample size n = 100 and the true value ν0 = 1
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3.9 Appendix

I. Proof of Theorem 1

Throughout the proof, we assume that we have truncated θ̂∗nT so that θ̂∗nT −

θ̂nT is bounded in absolute value by MnT/
√
nT . The technical details for showing

that truncation has a negligible effect on the asymptotic properties of
√
nT (θ̃nT −

θ0) are the same as those for
√
nT (θ̃nT,k− θ0). We present the details for the latter

in Appendix III and omit them here. Truncation allows us to convert probability

orders into moment orders.

The bootstrap bias corrected estimator is defined as

θ̃nT = 2θ̂nT − E∗
(
θ̂∗nT

)
.

Therefore,

√
nT
(
θ̃nT − θ0

)
=
√
nT
(
θ̂nT − θT

)
+
√
nT
(
θT − θ0 −

[
E∗
(
θ̂∗nT

)
− θ̂nT

])
.

HN has shown that

√
nT
(
θ̂nT − θT

)
d−→ N(0, E[Ii]−1),

where

Ii ≡ E[UitU
′
it].

Therefore, in order to prove Theorem 1, it suffices to show

√
nT
(
θT − θ0 −

[
E∗
(
θ̂∗nT

)
− θ̂nT

])
= op (1) . (A.24)

The LHS of (A.24) can be decomposed into two parts :

√
nT
(
θT − θ0 −

[
E∗
(
θ̂∗nT

)
− θ̂nT

])
=
√
nT
(
θT − θ0 −

[
P ∗ lim
n→∞

θ̂∗nT − θ̂nT
])

+
√
nT
(
P ∗ lim
n→∞

θ̂∗nT − E∗
(
θ̂∗nT

))
.

Hence, it suffices to show

θT − θ0 −
[
P ∗ lim
n→∞

θ̂∗nT − θ̂nT
]

= Op

(
1

T 2

)
, (A.25)

P ∗ lim
n→∞

θ̂∗nT − E∗
(
θ̂∗nT

)
= op

(
1√
nT

)
. (A.26)
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1. Prove θT − θ0 −
[
P ∗ lim
n→∞

θ̂∗nT − θ̂nT
]

= Op

(
1
T 2

)
Let F ≡ (F1, . . . , Fn) and F̂ ≡ (F̂1, . . . , F̂n), where Fi := Fθ0,αi0 is the

distribution function of stratum i and F̂i is its empirical distribution function.

Define F (ε) ≡ F + ε
√
T
(
F̂ − F

)
for ε ∈ [0, 1/

√
T ]. For each fixed θ and ε, let

αi(θ, Fi(ε)) and θ(F (ε)) be the solutions to the estimating equations

0 =

∫
Vi (θ, αi(θ, Fi(ε))) dFi(ε),

0 =
n∑
i=1

∫
Ui (θ(F (ε)), αi(θ(F (ε)), Fi(ε))) dFi(ε).

A Taylor series expansion gives

θ̂nT − θ0 =
1√
T
θε(0) +

1

2

(
1√
T

)2

θεε(0) +
1

6

(
1√
T

)3

θεεε(ε̃) (A.27)

where θε(ε) ≡ dθ(F (ε))/dε, θε(ε) ≡ d2θ(F (ε))/dε2, . . . , and ε̃ is between 0 and

1/
√
T . HN show that

√
nT

1√
T
θε(0)

d→ N

0,

(
lim
n→∞

1

n

n∑
i=1

Ii

)−1
 ,

(
1√
T

)2

θεε(0) =
1

T

(
1

n

n∑
i=1

Ii

)−1(
− 1

n

n∑
i=1

E [V2itUit]

E [v2
it]

)
+Op

(
1

T 2

)
,(

1√
T

)3

θεεε(ε̃) = op

(
1

T 2

)
.

Therefore,

θT − θ0 =
B

T
+O

(
1

T 2

)
, (A.28)

where

B = lim
n→∞

1

2

(
1

n

n∑
i=1

Ii

)−1(
− 1

n

n∑
i=1

E [V2itUit]

E [v2
it]

)
.

Similarly, in the bootstrap world, for each fixed θ and ε, let αi(θ, F
∗
i (ε)) and

θ(F ∗(ε)) be the solutions to the estimating equations

0 =

∫
V ∗i (θ, αi(θ, F

∗
i (ε))) dF ∗i (ε),

0 =
n∑
i=1

∫
U∗i (θ(F ∗(ε)), αi(θ(F

∗(ε)), F ∗i (ε))) dF ∗i (ε),
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where F ∗i (ε) = Fθ̂nT ,α̂i(θ̂nT )+ε
√
T
(
F̂ ∗i − Fθ̂nT ,α̂i(θ̂nT )

)
, Fθ̂nT ,α̂i(θ̂nT ) is the distribution

function of stratum i in the bootstrap sample and F̂ ∗i is the corresponding empirical

distribution. Note that F ∗i (0) is the same as Fi = Fθ0,αi0 except that the true

parameter is (θ̂nT , α̂i(θ̂nT )) rather than (θ0, αi0).

Similar to equation (A.27), in the bootstrap world, we have

θ̂∗nT − θ̂nT =
1√
T
θ̂ε(0) +

1

2

(
1√
T

)2

θ̂εε(0) +
1

6

(
1√
T

)3

θ̂εεε(ε̃∗)

where θ̂ε(ε) ≡ dθ(F ∗(ε))/dε, θ̂ε(ε) ≡ d2θ(F ∗(ε))/dε2, . . . , and ε̃∗ is between 0 and

1/
√
T . Also,

√
nT

1√
T
θ̂ε(0)

d→ N

0,

(
lim
n→∞

1

n

n∑
i=1

I∗i

)−1
 , (A.29)

(
1√
T

)2

θ̂εε(0) =
1

T

(
1

n

n∑
i=1

I∗i

)−1(
− 1

n

n∑
i=1

E∗ [V ∗2itU
∗
it]

E∗ [v∗2it ]

)
+Op∗

(
1

T 2

)
, (A.30)(

1√
T

)3

θ̂εεε(ε̃∗) = op∗

(
1

T 2

)
. (A.31)

Using the same argument as in HN and with some calculations, we have, under

Assumption 4(ii):

P ∗ lim
n→∞

θ̂∗nT − θ̂nT =
B∗

T
+Op

(
1

T 2

)
(A.32)

where

B∗ = lim
n→∞

1

2

(
1

n

n∑
i=1

I∗i

)−1 [
− 1

n

n∑
i=1

E∗ [V ∗2itU
∗
it]

E∗ [v∗2it ]

]
.

We proceed to show that B∗ = B +Op (1/T ) . First, we have∣∣∣∣∣ 1n
n∑
i=1

I∗i −
1

n

n∑
i=1

Ii

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

∫
Uit

(
θ̂nT , α̂i(θ̂nT )

)
Uit

(
θ̂nT , α̂i(θ̂nT )

)′
dFθ̂nT ,α̂i(θ̂nT ) −

1

n

n∑
i=1

E (UitU
′
it)

∣∣∣∣∣
≤ AnT +BnT (A.33)
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where

AnT =

∣∣∣∣∣ 1n
n∑
i=1

∫ (
Hit

(
θ̂nT , α̂i(θ̂nT )

)
−Hit (θ0, αi0)

)
dFθ̂nT ,α̂i(θ̂nT )

∣∣∣∣∣
BnT =

∣∣∣∣∣ 1n
n∑
i=1

∫
Hit (θ0, αi0)

(
dFθ̂nT ,α̂i(θ̂nT ) − dFi

)∣∣∣∣∣
and

Hit (θ, αi) = Uit (θ, αi)Uit (θ, αi)
′ .

To evaluate the stochastic order of AnT and BnT , we use the following result:

α̂i(θ̂nT )− αi0 =
βi
T

+
1

T

T∑
t=1

ψit +Op

(
1

T 2

)
uniformly over i = 1, 2, ..., n where

ψit = − (E[vitα])−1 vit, βi = − (E[vitα])−1

{
E[vitαψit] +

1

2
E[vitαα]E[ψ2

it]

}
.

This result is given in HN and follows from the standard higher order expansion.

For AnT , suppose that θ̄1 is a parameter value between θ0 and θ̂nT and ᾱi1

is a value between αi0 and α̂i. Then

AnT ≤
∣∣∣θ̂nT − θ0

∣∣∣ ∣∣∣∣∣ 1n
n∑
i=1

∫
∂Hit

(
θ̄1, ᾱi1

)
∂θ

dFθ̂nT ,α̂i(θ̂nT )

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(α̂i(θ̂nT )− αi0)

∫
∂Hit

(
θ̄1, ᾱi1

)
∂αi

dFθ̂nT ,α̂i(θ̂nT )

∣∣∣∣∣
≤
∣∣∣θ̂nT − θ0

∣∣∣ ∣∣∣∣∣ 1n
n∑
i=1

∫
M2(zit)dFθ,αi

∣∣∣∣∣
θ=θ̂nT ,α=α(θ̂nT )

+

∣∣∣∣∣ 1n
n∑
i=1

(α̂i(θ̂nT )− αi0)

[∫
∂Hit (θ, α)

∂αi
dFθ,αi

]
θ=θ̂nT ,α=α(θ̂nT )

∣∣∣∣∣ (1 + o (1))

= Op

(
1

T

)
+

∣∣∣∣∣ 1n
n∑
i=1

(α̂i(θ̂nT )− αi0)

[∫
∂Hit (θ, α)

∂αi
dFθ,αi

]
θ=θ̂nT ,α=α(θ̂nT )

∣∣∣∣∣
× (1 + o (1)) (A.34)
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using Assumptions 1 and 4. Next∣∣∣∣∣ 1n
n∑
i=1

(α̂i(θ̂nT )− αi0)

[∫
∂Hit (θ, α)

∂αi
dFθ,αi

]
θ=θ̂nT ,α=α(θ̂nT )

∣∣∣∣∣
≤

∣∣∣∣∣ 1

nT

n∑
i=1

βiE

[
∂Hit (θ0, αi0)

∂αi

]
(1 + o (1))

∣∣∣∣∣
+

∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

ψitE

[
∂Hit (θ0, αi0)

∂αi

]
(1 + o (1))

∣∣∣∣∣+Op

(
1

T 2

)
= Op

(
1

T

)
+Op

(
1√
nT

)
+Op

(
1

T 2

)
= Op

(
1

T

)
(A.35)

using LLN and CLT. We have thus proved

AnT = Op

(
1

T

)
. (A.36)

For BnT , suppose that θ̄2 is between θ0 and θ̂nT and that ᾱi2 is between αi0

and α̂i. Then

BnT (A.37)

=

∣∣∣∣∣ 1n
n∑
i=1

∫
Hit (θ0, αi0)

(
f(z; θ̂nT , α̂i(θ̂nT ))− f(z; θ0, αi0)

)
dz

∣∣∣∣∣
:= I1 + I2

where

I1 =

∣∣∣∣∣ 1n
n∑
i=1

[
(θ̂nT − θ0)

∫
Hit (θ0, αi0)uit(θ̄2, ᾱi2)dFθ̄2,ᾱi2

]∣∣∣∣∣
=
∣∣∣(θ̂nT − θ0)

∣∣∣ ∣∣∣∣∣ 1n
n∑
i=1

(∫
Hit (θ0, αi0)uitdFi + op(1)

)∣∣∣∣∣ (A.38)

≤ sup
i
E
[
M(zit)

3
] ∣∣∣(θ̂nT − θ0)

∣∣∣ = Op

(
1

T

)
,

and

I2 =

∣∣∣∣∣ 1n
n∑
i=1

[
(α̂i(θ̂nT )− αi0)

∫
Hit (θ0, αi0) vit(θ̄2, ᾱi2)dFθ̄2,ᾱi2

]∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

(α̂i(θ̂nT )− αi0)

[∫
Hit (θ0, αi0) vit(θ0, αi0)dFi + op (1)

]∣∣∣∣∣ = Op

(
1

T

)
(A.39)
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using the argument similar to (A.35). Therefore,

BnT = Op

(
1

T

)
. (A.40)

Combining (A.36) and (A.40) yields:

1

n

n∑
i=1

I∗i =
1

n

n∑
i=1

Ii +Op

(
1

T

)
. (A.41)

Using the same procedure, we can show that

1

n

n∑
i=1

E∗ [V ∗2itU
∗
it]

E∗ [v∗2it ]
=

1

n

n∑
i=1

E [V2itUit]

E [v2
it]

+Op

(
1

T

)
. (A.42)

Therefore, from (A.41) and (A.42),

lim
n→∞

1

2

(
1

n

n∑
i=1

I∗i

)−1(
− 1

n

n∑
i=1

E∗ [V ∗2itU
∗
it]

E∗ [v∗2it ]

)

= lim
n→∞

1

2

(
1

n

n∑
i=1

Ii

)−1(
− 1

n

n∑
i=1

E [V2itUit]

E [v2
it]

)
+Op

(
1

T

)
. (A.43)

That is

B∗ = B +Op

(
1

T

)
completing the proof of (A.25).

2. Prove
√
nT
(
P ∗ lim
n→∞

θ̂∗nT − E∗
(
θ̂∗nT

))
p−→ 0

We write

√
nT
(
P ∗ lim
n→∞

θ̂∗nT − E∗
(
θ̂∗nT

))
=
√
nT
(
E∗
(
P ∗ lim
n→∞

θ̂∗nT

)
− E∗

(
θ̂∗nT

))
=
√
nT
(

lim
n→∞

E∗
(
θ̂∗nT

)
− E∗

(
θ̂∗nT

))
=
√
nT

(
lim
n→∞

E∗
(

1√
T
θ̂ε(0)

)
− E∗

(
1√
T
θ̂ε(0)

))
+

√
nT

2

(
lim
n→∞

E∗
(

1

T
θ̂εε(0)

)
− E∗

(
1

T
θ̂εε(0)

))
+ op(1).
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The second equality holds by the dominated convergence theorem and the last

equality follows from an argument similar to HN. Therefore, it suffices to show

that

√
nT

(
1√
T

lim
n→∞

E∗
(
θ̂ε(0)

)
− 1√

T
E∗
(
θ̂ε(0)

))
= 0, (A.44)

√
nT

(
1

T
lim
n→∞

E∗
(
θ̂εε(0)

)
− 1

T
E∗
(
θ̂εε(0)

))
= op(1). (A.45)

Equation (A.44) holds because

√
nT

(
1√
T

lim
n→∞

E∗
(
θ̂ε(0)

)
− 1√

T
E∗
(
θ̂ε(0)

))

=
√
n

 lim
n→∞

(
1

n

n∑
i=1

I∗i

)−1
1

n

n∑
i=1

E∗ (U∗i )−

(
1

n

n∑
i=1

I∗i

)−1
1

n

n∑
i=1

E∗ (U∗i )


= 0,

using E∗ (U∗i ) = 0.

Equation (A.45) holds because

√
nT

(
1

T
lim
n→∞

E∗
(
θ̂εε(0)

)
− 1

T
E∗
(
θ̂εε(0)

))

=

√
n

T

 lim
n→∞

(
1

n

n∑
i=1

I∗i

)−1(
1

n

n∑
i=1

E∗(V ∗2itU
∗
it)

E∗(v∗it)

)

−

(
1

n

n∑
i=1

I∗i

)−1(
1

n

n∑
i=1

E∗(V ∗2itU
∗
ii)

E∗(v∗2it )

)+Op

(√
n

T 3

)
(A.46)

where the Op (·) terms come from Op∗ (·) in (A.30) and the leading term in (A.46)



174

is√
n

T

 lim
n→∞

(
n∑
i=1

Eθ,αiUit (θ, αi)U
′
it (θ, αi)

)−1( n∑
i=1

Eθ,αi(V2it (θ, αi)Uit (θ, αi))

Eθ,αi(v
2
it (θ, αi))

)

−

(
n∑
i=1

Eθ,αiUit (θ, αi)U
′
it (θ, αi)

)−1

×

(
n∑
i=1

Eθ,αi(V2it (θ, αi)Uit (θ, αi))

Eθ,αi(v
2
it (θ, αi))

)]∣∣∣∣∣
(θ,α)=(θ̂nT ,α̂(θ̂nT ))

=

√
n

T

(
Op

(
1√
n

))
= op(1)

using Assumption 6. In the above equation, we use the subscript θ, αi on Eθ,αi

to emphasize that it is the expectation under Fθ,αi. This completes the proof of

Theorem 1. �

II. Proof of Proposition 2

It is easy to show that

P ∗lim
n→∞

(
θ̂∗nT − θ̂nT

)2

= Op

(
1

nT

)
= Op

(
1

T 2

)
, (A.47)

and

P ∗lim
n→∞

(α̂∗i − α̂i)
2 = Op

(
1

T

)
. (A.48)

By the definition of the k-step bootstrap estimator: θ̂∗nT,k

α̂∗k

 =

 θ̂∗nT,k−1

α̂∗k−1

−H−1
k−1Sk−1.

For notational compactness, let β = (θ′, α′)′, β̂∗ = (θ̂∗′nT , α̂
∗′)′, β̂ = (θ̂′nT , α̂

′)′. Then

β̂∗k = β̂∗k−1 −
[
H(β̂∗k−1; z∗it)

]−1

S
(
β̂∗k−1; z∗it

)
for β̂∗0 = β̂. Using a Taylor expansion and the first order condition:

S
(
β̂∗; zit

)
= 0,
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we have

β̂∗k − β̂∗

= β̂∗k−1 −
[
H(β̂∗k−1; z∗it)

]−1

S
(
β̂∗k−1; z∗it

)
− β̂∗

=
[
H(β̂∗k−1; z∗it)

]−1 [
S
(
β̂∗; zit

)
− S

(
β̂∗k−1; z∗it

)
−H(β̂∗k−1; z∗it)

(
β̂∗ − β̂∗k−1

)]
=

1

2

[
H(β̂∗k−1; z∗it)

]−1

ξ

where β̂†k−1 lies between β̂∗ and β̂∗k−1, ξ =
(
ξ1, ..., ξu, ..., ξLβ

)
is a vector with u-th

element

ξu =
(
β̂∗ − β̂∗k−1

)′
Hβu(β̂†k−1; z∗it)

(
β̂∗ − β̂∗k−1

)
and

Hβu(β; z∗it) =
1

nT

n∑
i=1

T∑
t=1

∂

∂βu

∂2 log(β; z∗it)

∂β∂β′

:=

 Hθθβu (β; z∗it) Hθαβu (β; z∗it)

Hαθβu (β; z∗it) Hααβu (β; z∗it)

 .

A more explicit expression for ξu is

ξu =
(
θ̂∗nT,k−1 − θ̂∗nT

)′
Hθθβu

(
β̂†k−1; z∗it

)(
θ̂∗nT,k−1 − θ̂∗nT

)
+ 2

(
θ̂∗nT,k−1 − θ̂∗nT

)′
Hθαβu

(
β̂†k−1; z∗it

) (
α̂∗k−1 − α̂∗

)
+
(
α̂∗k−1 − α̂∗

)′
Hααβu

(
β̂†k−1; z∗it

) ((
α̂∗k−1 − α̂∗

))
.

Hence

‖ξu‖ ≤
∥∥∥∥2
(
θ̂∗nT,k−1 − θ̂∗nT

)′
Hθθβu

(
β̂†k−1; z∗it

)(
θ̂∗nT,k−1 − θ̂∗nT

)∥∥∥∥
+
∥∥∥2
(
α̂∗k−1 − α̂∗

)′
Hααβu

(
β̂†k−1; z∗it

) (
α̂∗k−1 − α̂∗

)∥∥∥
≤ 2

∥∥∥Hθθβu

(
β̂†k−1; z∗it

)∥∥∥∥∥∥θ̂∗nT,k−1 − θ̂∗nT
∥∥∥2

+

∥∥∥∥∥ 2

n

n∑
i=1

1

T

T∑
t=1

∣∣∣Hαiαiβu

(
β̂†k−1; z∗it

)∣∣∣ (α̂∗i,k−1 − α̂∗i
)2

∥∥∥∥∥
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where ‖·‖ is the Euclidean norm, that is, for a symmetric matrix A,

‖A‖2 = trace(AA′). So∥∥∥β̂∗k − β̂∗∥∥∥ ≤ ζ∗θ,k−1

∥∥∥θ̂∗nT,k−1 − θ̂∗nT
∥∥∥2

+ ζ∗α,k−1, (A.49)

where

ζ∗θ,k−1 =
∥∥∥(H(β∗k−1; z∗it

)−1
∥∥∥ Lβ∑
u=1

∥∥∥Hθθβu(β̂†k−1; z∗it)
∥∥∥ , (A.50)

ζ∗α,k−1 =
∥∥∥(H(β∗k−1; z∗it

)−1
∥∥∥ Lβ∑
u=1

1

nT

n∑
i=1

T∑
t=1

∣∣∣Hαiαiβu

(
β̂†k−1; z∗it

)∣∣∣ (α̂∗i,k−1 − α̂∗i
)2
.

(A.51)

For k = 1, we have

P
(
TP ∗lim

n→∞

∥∥∥β̂∗k − β̂∗∥∥∥ > 2C1

)
≤ P

(
TP ∗lim

n→∞
ζ∗θ,k−1

∥∥∥θ̂∗nT,k−1 − θ̂∗nT
∥∥∥2

> C1

)
+ P

(
TP ∗lim

n→∞
ζ∗α,k−1 > C1

)
(A.52)

The first probability in (A.52) satisfies

P

(
TP ∗lim

n→∞
ζ∗θ,k−1

∥∥∥θ̂∗nT,k−1 − θ̂∗nT
∥∥∥2

> C1

)
≤ P

(
TP ∗lim

n→∞
ζ∗θ,k−1

∥∥∥θ̂∗nT,k−1 − θ̂∗nT
∥∥∥2

> C1, P
∗lim
n→∞

ζ∗θ,k−1 < C2

)
+ P

(
P ∗lim
n→∞

ζ∗θ,k−1 ≥ C2

)
≤ P

(
TP ∗lim

n→∞

∥∥∥θ̂∗nT,k−1 − θ̂∗nT
∥∥∥2

> C1/ (C2)

)
+ P

(
P ∗lim
n→∞

ζ∗θ,k−1 ≥ C2

)
= P

(
P ∗lim
n→∞

ζ∗θ,k−1 ≥ C2

)
+ o(1) (A.53)
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using (A.47) . We proceed to bound P
(
P ∗lim
n→∞

ζ∗θ,k−1 ≥ C2

)
. By definition,

P
(
P ∗lim
n→∞

ζ∗nT ≥ C2

)
= P

∥∥∥∥P ∗limn→∞

(
H(β̂∗k−1; z∗it

)−1
∥∥∥∥P ∗limn→∞

Lβ∑
u=1

∥∥∥Hθθβu(β̂†k−1; z∗it)
∥∥∥ ≥ C2


≤ P

P ∗lim
n→∞

Lβ∑
u=1

∥∥∥n−1Hθθβu(β̂†k−1; z∗it)
∥∥∥ ≥√C2


+ P

(∥∥∥∥P ∗limn→∞

(
n−1H(β̂k−1; z∗it

)−1
∥∥∥∥ ≥√C2

)
:= A+B, (A.54)

where

A = P

P ∗lim
n→∞

Lβ∑
u=1

∥∥∥n−1Hθθβu(β̂†k−1; z∗it)
∥∥∥ ≥√C2

 , (A.55)

and

B = P

(∥∥∥∥P ∗limn→∞

(
n−1H(β̂k−1; z∗it

)−1
∥∥∥∥ ≥√C2

)
.

Note that β̂†k−1 is between β̂ and β̂∗ and

β̂∗ = β̂ + op∗ (1) . (A.56)

Using a uniform law of large numbers under the probability measure P ∗ and the

dominated convergence theorem, we have

P ∗ lim
n→∞

1

n

Lβ∑
u=1

∥∥∥Hθθβu(β̂†k−1; z∗it)
∥∥∥

= lim
n→∞

1

n

Lβ∑
u=1

P ∗ lim
n→∞

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
t=1

∂

∂βu

∂2 log(β̂†k−1; z∗it)

∂θ∂θ′

∥∥∥∥∥
= lim

n→∞

1

n

Lβ∑
u=1

∥∥∥∥∥ lim
n→∞

E∗
1

nT

n∑
i=1

T∑
t=1

∂

∂βu

∂2 log(β̂; z∗it)

∂θ∂θ′

∥∥∥∥∥
= lim

n→∞

1

n

Lβ∑
u=1

∥∥∥∥∥Eβ

[
1

T

T∑
t=1

∂

∂βu

∂2 log(β; zit)

∂θ∂θ′

]∥∥∥∥∥
β=β̂

(A.57)
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where the last equality follows because P ∗ conditional on the data (i.e. θ̂nT , α̂i) is

the same as P but with different model parameters. Hence,

A = P

 1

n

Lβ∑
u=1

∥∥∥∥∥Eβ

[
1

T

T∑
t=1

∂

∂βu

∂2 log(β; z∗it)

∂θ∂θ′

]∥∥∥∥∥
β=β̂

≥
√
C2


which can be made arbitrarily small if we choose a large C2.

Using the same argument, we can show that, when C2 is large enough,

B = o(1) as n and T go to ∞. We have therefore proved

P
(
P ∗lim
n→∞

ζ∗nT ≥ C2

)
= o(1). (A.58)

when C2 is large enough.

To show that the second probability in (A.52) is o (1) , it suffices to prove

P

T
n

Lβ∑
u=1

P ∗ lim
n→∞

1

nT

n∑
i=1

T∑
t=1

∣∣∣Hαiαiβu

(
β̂†k−1; z∗it

)∣∣∣ (α̂∗i,k−1 − α̂∗i
)2
>
√
C2


= o (1) .

But

1

n

Lβ∑
u=1

P ∗ lim
n→∞

1

nT

n∑
i=1

T∑
t=1

∣∣∣Hαiαiβu

(
β̂†k−1; z∗it

)∣∣∣ (α̂∗i,k−1 − α̂∗i
)2

=
1

n

Lβ∑
u=1

P ∗ lim
n→∞

1

nT

n∑
i=1

T∑
t=1

∣∣∣Hαiαiβu

(
β̂†k−1; z∗it

)∣∣∣(β∗i
T

+
1

T

T∑
t=1

ψ∗it

)2

× (1 + op (1))

=
1

n

Lβ∑
u=1

P ∗ lim
n→∞

1

nT

n∑
i=1

T∑
t=1

∣∣∣Hαiαiβu

(
β̂†k−1; z∗it

)∣∣∣
(β∗i )

2

T 2
+

1

T

(
1√
T

T∑
t=1

ψ∗it

)2


× (1 + op (1))

=
1

n

Lβ∑
u=1

P ∗ lim
n→∞

1

nT

n∑
i=1

T∑
t=1

∣∣∣Hαiαiβu

(
β̂†k−1; z∗it

)∣∣∣ [(β∗i )
2

T 2
+

1

T 2

T∑
t=1

(ψ∗it)
2

]
× (1 + op (1))

= Op

(
1

T

)
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where the last equality follows from the ULLN.

Combining (A.53) with (A.58), we have, for k = 1.

P
(
TP ∗lim

n→∞

∣∣∣β̂∗k − β̂∗∣∣∣ > C
)

= o (1)

when C is large enough. That is, when k = 1

P ∗lim
n→∞

β̂∗k = P ∗lim
n→∞

β̂∗ +Op

(
1

T

)
. (A.59)

For k ≥ 2, we note that∥∥∥β̂∗k − β̂∗∥∥∥ ≤ η∗nT

∥∥∥β̂∗k−1 − β̂∗
∥∥∥2

where

η∗nT =
1

2
max
k

∥∥∥∥[H(β̂∗k−1; z∗it)
]−1

Hβu(β̂†k−1; z∗it)

∥∥∥∥
Using the recursive relationship repeatedly, we have, for k ≥ 2,∥∥∥β̂∗k − β̂∗∥∥∥ ≤ (η∗nT )φ

∥∥∥β̂∗1 − β̂∗∥∥∥2k−1

(A.60)

where φ =
∑k

j=2 2j−1.

Using a similar argument, we can show that P ∗ limn→∞ η
∗
nT = Op (1) . Com-

bining this with (A.59) and (A.60), we have

P ∗lim
n→∞

(
β̂∗k − β̂∗

)
= Op

((
1

T

)2k−1
)
,

which implies that

P ∗lim
n→∞

(
θ̂∗nT,k − θ̂∗nT

)
= Op

((
1

T

)2k−1
)

as desired. �

III. Proof of Theorem 3

Define our truncated k-step bootstrap bias corrected estimator to be:

θ̌nT,k ≡ 2θ̂nT − E∗
(
θ̌∗nT,k

)
.
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Then

√
nT
(
θ̌nT,k − θ0

)
=
√
nT
(
θ̂nT − θT

)
+
√
nT
(
θT − θ0 −

[
E∗
(
θ̌∗nT,k

)
− θ̂nT

])
=
√
nT
(
θ̂nT − θT

)
+
√
nT
(
θT − θ0 −

[
P ∗ lim
n→∞

θ̂∗nT − θ̂nT
])

+
√
nT
(
P ∗ lim
n→∞

θ̂∗nT − P ∗ lim
n→∞

θ̂∗nT,k

)
+
√
nT
(
P ∗ lim
n→∞

θ̂∗nT,k − P ∗ lim
n→∞

θ̌∗nT,k

)
+
√
nT
(
P ∗ lim
n→∞

θ̌∗nT,k − E∗
(
θ̌∗nT,k

))
As HN has shown that

√
nT
(
θ̂nT − θT

)
d−→ N(0, E[Ii]−1)

and we have shown that

√
nT
(
θT − θ0 −

[
P ∗ lim
n→∞

θ̂∗nT − θ̂nT
])

= Op

(
1

T 2

)
and

P ∗ lim
n→∞

θ̂∗nT − P ∗ lim
n→∞

θ̂∗nT,k = Op

(
1

T 2

)
Therefore, it suffices to show

P ∗ lim
n→∞

θ̂∗nT,k − P ∗ lim
n→∞

θ̌∗nT,k = Op

(
1

T 2

)
(A.61)

P ∗ lim
n→∞

θ̌∗nT,k − E∗
(
θ̌∗nT,k

)
= Op

(
1

T 2

)
(A.62)

1. Prove P ∗ lim
n→∞

θ̂∗nT,k − P ∗ lim
n→∞

θ̌∗nT,k = Op

(
1
T 2

)
By definition (c.f. (A.17)) we have:

P ∗ lim
n→∞

θ̂∗nT,k − P ∗ lim
n→∞

θ̌∗nT,k = P ∗ lim
n→∞

(
θ̂nT − θ̂∗nT,k

)
1
(√

nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ > MnT

)
.

As ∣∣∣P ∗ lim
n→∞

(
θ̂nT − θ̂∗nT,k

)∣∣∣
≤
∣∣∣P ∗ lim
n→∞

(
θ̂nT − θ̂∗nT

)∣∣∣+
∣∣∣P ∗ lim
n→∞

(
θ̂∗nT − θ̂∗nT,k

)∣∣∣ = Op

(
1

T

)
,
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it suffices to show

P ∗ lim
n→∞

1
(√

nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ > MnT

)
= Op

(
1

T

)
.

For any given δ > 0, we have

P
(
T · P ∗ lim

n→∞
1
(√

nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ > MnT

)
> δ
)

= P
(
P ∗ lim
n→∞

1
(√

nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ > MnT

)
= 1
)

= P
(

1
(
P ∗ lim
n→∞

√
nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ > MnT

)
= 1
)

= P
((
P ∗ lim
n→∞

√
nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣) > MnT

)
≤ P

((
P ∗ lim
n→∞

√
nT
∣∣∣θ̂∗nT,k − θ̂∗nT ∣∣∣+ P ∗ lim

n→∞

√
nT
∣∣∣θ̂nT − θ̂∗nT ∣∣∣) > MnT

)
= P

(√
nT

[
Op

(
1

T

)
+Op

(
1

T 2

)]
> MnT

)
= o (1)

using the condition that
√

n
T

= o (MnT ) and MnT →∞. Here we have used

P ∗ lim
n→∞

∣∣∣θ̂∗nT,k − θ̂∗nT ∣∣∣ = Op

(
1
T 2

)
and P ∗ lim

n→∞

√
nT
∣∣∣θ̂nT − θ̂∗nT ∣∣∣ /MnT = op (1).

Combining the above results yields

P ∗ lim
n→∞

θ̂∗nT,k − P ∗ lim
n→∞

θ̌∗nT,k = Op

(
1

T 2

)
as desired.

2. Prove
√
nT
(
P ∗ lim
n→∞

θ̌∗nT,k − E∗
(
θ̌∗nT,k

))
= op(1)

We write
√
nT
(
P ∗ lim
n→∞

θ̌∗nT,k − E∗
(
θ̌∗nT,k

))
as

√
nT
(
P ∗ lim
n→∞

θ̌∗nT,k − E∗
(
θ̌∗nT,k

))
=
√
nT

(
P ∗ lim
n→∞

[(
θ̂∗nT,k − θ̂nT

)
1
(√

nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ ≤MnT

)]
− E∗

[(
θ̂∗nT,k − θ̂nT

)
1
(√

nT
∣∣∣θ̂∗nT,k − θ̂nT ∣∣∣ ≤MnT

)])
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We consider only the case that k = 1 as the proof for other cases is similar. Let

DnT (θ, α) =

(
1

nT

n∑
i=1

T∑
t=1

Uitθ(θ, α)

)−1(
1

nT

n∑
i=1

T∑
t=1

Uit(θ, α)

)
,

then

√
nT
(
P ∗ lim
n→∞

θ̌∗nT,k − E∗
(
θ̌∗nT,k

))
= −P ∗ lim

n→∞

[√
nTD∗nT (θ̂nT , α̂(θ̂nT ))1

(∣∣∣√nTD∗nT (θ̂nT , α̂(θ̂nT ))
∣∣∣ ≤MnT

)]
+ E∗

[√
nTD∗nT (θ̂nT , α̂(θ̂nT ))1

(∣∣∣√nTD∗nT (θ̂nT , α̂(θ̂nT ))
∣∣∣ ≤MnT

)]
= E

[√
nTDnT (θ, α)1

(√
nT |DnT (θ, α))| ≤MnT

)]∣∣∣
θ=θ̂nT ,α=α̂(θ̂nT )

− P lim
n→∞

√
nTDnT (θ, α)1

(√
nT |DnT (θ, α))| ≤MnT

)∣∣∣
θ=θ̂nT ,α=α̂(θ̂nT )

= op (1)

where the last equality follows from the dominated convergence theorem.

Finally,

√
nT
(
θ̃nT,k − θ0

)
=
√
nT
(
θ̂nT − θT

)
+
√
nT
(
θT − θ0 −

[
E∗
(
θ̌∗nT,k

)
− θ̂nT

])
=
√
nT
(
θ̂nT − θT

)
+
√
nT
(
θT − θ0 −

[
P ∗ lim
n→∞

θ̂∗nT − θ̂nT
])

+
√
nT
(
P ∗ lim
n→∞

θ̂∗nT − P ∗ lim
n→∞

θ̂∗nT,k

)
+
√
nT
(
P ∗ lim
n→∞

θ̂∗nT,k − P ∗ lim
n→∞

θ̌∗nT,k

)
+
√
nT
[
P ∗ lim
n→∞

θ̌∗nT,k − E∗
(
θ̌∗nT,k

)]
=
√
nT
(
θ̂nT − θT

)
+ op (1)

d→ N(0, Ē [Ii]−1)

as n/T 3 → 0. Thus, Theorem 3 is proved. �
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