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Abstract

The Burning Index (BI) is part of the U.S. National Fire Danger Rating System and

is widely used as a tool for fire management and hazard assessment. While the usage

of such indices is widespread, assessment of these indices in their respective regions

of application is rare. We evaluate the effectiveness of the BI for predicting wildfire

occurrences in Los Angeles County, California using space-time point process models.

The models are based on an additive decomposition of the conditional intensity, with

separate terms to describe spatial and seasonal variability as well as contributions from

the BI. The models are fit to wildfire and BI data from the years 1976–2000 using a

combination of nonparametric kernel smoothing methods and parametric maximum like-

lihood. In addition to using AIC to compare competing models, new multi-dimensional

residual methods based on approximate random thinning are employed to detect depar-

tures from the models and to ascertain the precise contribution of the BI to predicting

wildfire occurrence. We find that while the BI appears to have a positive impact on

wildfire prediction, the contribution is relatively small after taking into account natu-

ral seasonal and spatial variation. In particular, the BI does not appear to take into

account increased activity during the years 1979–1981 and can overpredict during the

early months of the year.

Keywords: Point process residual analysis; Random thinning; Random rescaling; Con-

ditional intensity model; Model evaluation; Wildfire risk

1 Introduction

Fire departments all over the world often use numerical indices to aid in wildfire manage-

ment. These indices are designed to summarize local meteorological and fuel information

and provide an estimate of the current risk of fire. The many index systems in use today

have been developed both by national governments and various independent fire researchers.
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Some well-known indices in the United States include the Keetch-Byram Index, Palmer

Drought Severity Index, and the Fosberg Fire Weather Index. The variety of different in-

dex systems in some ways reflects the diversity of landscapes and wildfire settings in the

United States and the rest of the world.

The Burning Index is part of the U.S. National Fire-Danger Rating System, a collection

of numerical indices designed to be used for fire planning and management. In Los Angeles

County, California, the fire department uses the Burning Index for creating short-term

wildfire hazard maps of the County. These maps help managers make decisions involving

the allocation of resources and the coordination of various presuppression activities.

While the Burning Index is already in common use (by Los Angeles and other fire

departments), there have been relatively few attempts to assess the Index’s performance

in predicting wildfires. In the general area of index evaluation, there has been some work

in evaluating elements of the U.S. system (e.g. Haines et al., 1983), various national (non-

U.S.) systems (Viegas et al., 1999), and in using indices for prediction (Westerling et al.,

2000). However, the Burning Index’s ability to adapt to particular regions such as Los

Angeles County has yet to be fully scrutinized. Mandallaz and Ye (1997) have noted that

in general, wildfire hazard indices are developed on the basis of experience in a given area.

Therefore, one must take caution when adapting indices to other areas.

The aim of this paper is to evaluate the performance of the Burning Index in predicting

wildfires in Los Angeles County. Our approach is to evaluate the best-fitting conditional

intensity model both with and without the BI and other information, in order to deter-

mine not only the optimal use of the BI in point process prediction, but also to assess the

increase in prediction performance using the BI as compared to other information. The

various conditional intensity models are compared using the Akaike Information Criterion

(AIC) as well as multi-dimensional residual analysis methods based on approximate random
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thinning. While the AIC proves to be useful for finding the best model in set of possibili-

ties, residual analysis can identify specific areas where the performance is poor and suggest

directions for improvement.

In the sections to follow we briefly describe the U.S. National Fire-Danger Rating System

and provide a summary of the data used for this analysis. We then outline the point

process methodology used for evaluating the performance of the Burning Index and discuss

the method of multi-dimensional residual analysis employed for assessing the performance.

Finally, the results of applying these methods to the wildfire data from Los Angeles County,

California are discussed.

2 A Brief Summary of the National Fire-Danger Rating Sys-

tem

The U.S. National Fire-Danger Rating System (NFDRS) was developed by the U.S. De-

partment of Agriculture Forest Service in 1972 (Deeming et al., 1972) and was revised in

1978 (Deeming et al., 1977; Bradshaw et al., 1983). Since then there have been some ad-

justments (see e.g. Burgan, 1988). The NFDRS actually consists of multiple components

which can be combined in various ways. The three core components are the Ignition, Spread

and Energy Release Components. Using these components, three different indices can be

computed: the Lightning-caused Fire Occurrence Index, the Man-caused Fire Occurrence

Index, and the Burning Index. Furthermore, these three indices can be combined into an

overall Fire Load Index. Although this is a “national” system, there are many parameters

which can be calibrated to adapt the system to local environments. In particular, a fire

manager must choose a fuel model (from a set of 20 available models) which corresponds
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to the available fuel in the region. The fuel model is then incorporated into the index

computations to produce an index for a specific region (Bradshaw et al., 1983).

2.1 Computing the Burning Index

Since the Los Angeles County Fire Department only uses the Burning Index portion of the

NFDRS for hazard assessment, we omit the details of the other indices here. The Burning

Index (BI) is computed from the Spread Component (SC) and the Energy Release Compo-

nent (ERC) of the NFDRS. Both the SC and the ERC are computed using meterological

and fuel data gathered by Remote Automatic Weather Stations (RAWS). The RAWS col-

lect data on precipitation, wind direction, wind speed, air temperature, fuel temperature,

and relative humidity (Warren and Vance, 1981). The RAWS also collect data relevant to

station maintenance which are not used in computing the BI. Collection of the data occurs

at approximately 1:00 PM when conditions for fire are considered to be most severe. Once

collected, the data are transmitted via satellite to a central station for archiving and can

be downloaded by fire managers.

The SC is simply the unmodified fire spread model of Rothermel (1972). Rothermel’s

spread model is a function of wind, slope, and various fuel properties such as the surface

area to volume ratio, heat of ignition, and others. The ERC is a function of the loading-

weighted reaction intensity and the surface area to volume ratio of the fuel bed. Given

values for the SC and the ERC, the BI itself is computed via the relation (Bradshaw et al.,

1983)

BI = 10× 0.45×
[(

SC
60

)
(25× ERC)

]0.46

.

The designers of the BI intended for it to be interpreted as 10 times the flame length (Byram,

1959; Albini, 1976). That is, if one observes a value X of the BI, then one might expect to

see X/10 foot flames, if a fire occurs (note that the BI itself is dimensionless). Given the

4



flame length interpretation, the BI is sometimes used as a measure of the “containability”

of a fire.

3 Data

For the our analysis of the BI we obtained wildfire data for Los Angeles County and mete-

orological data for computing the BI. In this section we describe the data and explore some

of their properties.

3.1 Wildfire Data

The wildfire data were collected and compiled by various agencies, including the Los Angeles

County Fire Department (LACFD), the Los Angeles County Department of Public Works,

the Santa Monica Mountains National Recreation Area, the Ventura County Fire Depart-

ment, and the California Department of Forestry and Fire Protection. The full dataset

consists of times (to the nearest day) and locations of wildfires between January 1878 and

September 2000. LACFD officials have noted that before 1950 (approximately), only fires

larger than 100 acres were mapped. After 1950, the Department began mapping some

fires as small as 1 acre. Based on work in Schoenberg et al. (2003a) and Schoenberg et al.

(2003b), as well as Fire Department guidance, a lower threshold of 10 acres was chosen for

determining which fires to include in the analysis. Finally, since BI data was only available

since 1976, fires prior to that year were excluded. These criteria produced a catalog of 592

fires between 1976 and 2000 for use in the analysis.

Figure 1 shows the spatial distribution of wildfires larger than 10 acres in LA County

for 1976–2000. The locations are represented with a (scaled) state-plane coordinate system

using the NAD 83 datum. For our dataset one spatial unit corresponds to approximately

18.9 miles. Much of the wildfire activity occurs in the eastern and northern parts of the
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County. These regions consist of the Angeles National Forest and parts of the Los Padres

National Forest. One exception to this general pattern is the Santa Monica Mountains area

(the protrusion in the western part of the County), which has also experienced significant

wildfire activity in the 25 year period. Figure 2 shows the times and areas burned for each

of the fires in the dataset. The times are measured to the nearest day and the area burned

for each fire is in acres. In the years 1979–1981, there appears to be some intense temporal

clustering of points, especially for fires in the 50–500 acre range. This is a feature of the

data to which we will return in Section 5.

3.2 Meteorological and Burning Index Data

Daily meteorological observations for eight RAWS around Los Angeles County were ob-

tained from the USDA Forest Service. The locations for each of the RAWS are shown in

Figure 1. For each of the 8 stations, daily values of the BI were then computed using the

FireFamily Plus software (freely available from the Forest Service). It should be noted that

not all of the stations contained data covering the entire 25 year span from 1976 to 2000.

Of the eight stations, only Stations 3 and 4 had data going back to 1976. However, each of

the stations had at least five years of daily data.

The data from each of the RAWS exhibit the natural seasonal patterns for weather

in Los Angeles County. Figure 3 shows the average computed BI value (averaged over

all available years) for each day in the year. There is an increase in the BI from February

through August and September and then a steady decrease through December and January.

Station 1 did not have any observations for the months of January, February, and March.

However, in the entire 25 year interval of interest, only 10 fires ever occurred in the months

of January, February, and March, representing less than 2% of the total number of fires.

Therefore, for Station 1, the BI values were set to zero during that three month span. The
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other stations also contained days with missing weather records. In this situation we filled

in a missing BI value on a given day with the average of that day across all the other

available years. The percentages of missing data are shown in Table 1 for the off-season

(January–April), the fire season (May–December) and overall. In Section 6 we will discuss

the possible impacts of missing data on the analysis.

4 Methodology

In evaluating the BI our approach involves considering the times and centroids of each

fire as points of a space-time point process. We consider a space-time point process N to

be a σ-finite counting measure on the spatial-temporal domain S × R+. Given a Borel set

B ⊂ S×R+, N(B) is the number of points in B. Let Ft be a filtration, that is, an increasing

family of σ-algebras, and take N(S × [0, t]) to be Ft-adapted for each Borel set S ∈ S. In

applications, S is usually taken to be a subset of R2.

The conditional intensity function of a point process is defined as a non-negative Ft-

predictable process λ(t, x, y) such that for each Borel set S ∈ S

N(S × [0, t])−
∫∫
S

t∫
0

λ(t, x, y) dtdxdy

is an Ft-martingale. It is well known that for point processes with simple ground processes

(i.e. with no two points at exactly the same time), the conditional intensity (when it exists)

uniquely characterizes all of the finite-dimensional distributions of the point process. For

a more thorough treatment of conditional intensities we refer the reader to Jacod (1975),

Brémaud (1981), and Daley and Vere-Jones (2003). Intuitively, one may consider the condi-

tional intensity function as describing the conditional expected rate of occurrence of points

at time t and location (x, y). In particular, a version of the conditional intensity may be
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given by the process

λ(t, x, y) = lim
∆t∆x∆y↓0

E [N((t, t + ∆t)× (x, x + ∆x)× (y, y + ∆y)) | Ft]
∆t∆x∆y

for (t, x, y) ∈ S, provided the limit exists (Schoenberg et al., 2002).

In prescribing a model for λ, we use a spatial background component m(x, y) which

takes into account the spatial inhomogeneity of the wildfire occurrences. This component

can be thought of as incorporating previous knowledge about where wildfires are more or

less likely to occur. For example, it would be undesirable for the model to predict a wildfire

occurrence in downtown Los Angeles. For this component a simple two-dimensional kernel

smoother is used,

m(x, y) =
1
n0

n0∑
j=1

K

(
x− x0j

φx

)
K

(
y − y0j

φy

)
.

where K is a suitable kernel function. Similar approaches using kernel smoothing have

been taken in the area of seismology (see e.g. Choi and Hall, 1998; Zhuang et al., 2002). In

estimating the spatial background m(x, y), the smoother is not computed using the 1976–

2000 data. Rather the spatial locations of the wildfires occurring before 1976 are smoothed.

Here, n0 is the number of wildfires in the full dataset occurring before 1976 and (x0j , y0j)

represents the spatial coordinates of the jth fire in that subset.

A seasonal component S(t) is used to describe the overall seasonal variation of the

wildfire activity. Here we smooth the times within each year of the pre-1976 fires,

S(t) =
1
n0

n0∑
j=1

K

(
t∗ − t∗0j

φseas

)
where t∗ indicates the time since the beginning of the year and t∗0j is the time since the

beginning of the year of the jth wildfire occurrence before 1976.

Finally, a BI component B(t, x, y) describes, for an arbitrary point (t, x, y), the con-

tribution to the conditional intensity from the values of the BI at each station. Since the
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BI values are only observed at fixed locations in the County, some form of interpolation is

required to compute values at other locations. The BI component is of the form

B(t, x, y) =
1
C

∑
s∈St

{
γsK

(
x− xs

βs

)
K

(
y − ys

βs

)
BI(t, s)

}
where BI(t, s) is the the BI value recorded at time t from the sth, (xs, ys) represents the

location of the sth station, and St is the index set of stations in use at time t. The

normalization constant C is simply the sum of the kernel weights,

C =
∑
s∈St

K

(
x− xs

βs

)
K

(
y − ys

βs

)
.

For each of the three components, the kernel function used is the normal density,

K(z) =
1√
2π

exp
(
−z2/2

)
.

One may consider as a basis of comparison simple baseline models such as a homogeneous

Poisson model

λH(t, x, y) = µ (1)

and the following,

λ0(t, x, y) = ν m(x, y) + α S(t). (2)

where µ, ν and α are parameters to be estimated. The model in (2) does not include

any information from the BI and serves as a model against which we can compare models

incorporating BI information from each station. We take

λ(t, x, y) = ν m(x, y) + α S(t) + B(t, x, y) (3)

as our “BI model” and inspect the usefulness of the BI by assessing the performance of both

λ and λ0.
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4.1 Parameter Estimation

All parameters for each of the models were estimated by maximizing the log-likelihood

function

`(θ) =
n∑

i=1

log λ(ti, xi, yi;θ)−
T2∫

T1

∫∫
S

λ(t, x, y;θ) dxdydt

where θ is a vector of free parameters and n is the total number of events (ti, xi, yi) in

the dataset, observed in the time interval [T1, T2] over the area S. The parameters to be

estimated are ν, α, φx, φy, and φseas, as well as the BI parameters γs and βs (s = 1, . . . , 8).

Under fairly general conditions, the maximum likelihood estimates (MLEs) have been

shown to be consistent and asymptotically normal (Ogata, 1978; Rathbun and Cressie, 1994;

Rathbun, 1996). For the homogeneous Poisson model, the MLE can be written in closed

form and is simply

λH(t, x, y; θ̂) = µ̂ =
n

‖S‖(T2 − T1)

where ‖S‖ is the total area of the observation region. For models other than the homo-

geneous Poisson model, one must resort to numerical optimization methods for estimating

the parameters.

When optimizing the log-likelihood some restrictions had to be placed on the parameters

in order to maintain a positive conditional intensity function and numerical stability of

the optimization procedure. We restricted the parameters in each of the models to be

positive. In addition, the bandwidth parameters in the spatial and seasonal components

were bounded away from zero. The inclusion of the βs parameters in the BI component

increased the complexity of the likelihood surface considerably and created some difficulty

with the numerical optimization. Ogata et al. (1982) and Ogata and Akaike (1982) handled

a similar problem with a single bandwidth parameter by restricting that parameter to a

finite grid and repeating the maximum likelihood procedure for each value of the bandwidth
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parameter on the grid. Unfortunately for our situation, with 8 separate parameters (one

for each weather station), constructing a reasonable grid over which to optimize the log-

likelihood was computationally infeasible. Rather, we chose to restrict the βs parameters

to be less than 3.0 spatial units (about 56 miles). This upper limit seemed reasonable in

the sense that a particular weather station should not have influence over points with a

distance of over 50 miles from the station (see e.g. Haines et al., 1983).

4.2 Residual Analysis via Approximate Random Thinning

Various methods for constructing a residual point process have been proposed based on

random rescaling (Merzbach and Nualart, 1986; Nair, 1990; Schoenberg, 1999) and random

thinning (Schoenberg, 2003). One-dimensional residual analysis via the rescaling method

has been successfully applied in a wide variety of applications (e.g. Berman, 1983; Ogata,

1988; Diggle, 1990; Rathbun, 1993; Brown et al., 2001). However, rescaling can be awkward

to use for multi-dimensional residual analysis. In practice, when the points are rescaled

(especially along spatial dimensions) the domain of observation is also rescaled and can

become uninterpretable or irregular (see Schoenberg, 1997, for examples). In particular,

many standard tests for homogeneity can be severely biased if the domain is very irregu-

lar (Diggle, 1983). Schoenberg (2003) proposed a method based on approximate random

thinning of the observed points. This method has the advantage that the resulting residual

process lies in the same domain as the observed point process.

The algorithm for approximate random thinning is conceptually straightforward and

easy to implement:

1. Choose a positive integer K such that K < n, where n is the total number of points

observed.
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2. For i = 1, . . . , n, compute

pi =
1/λ(ti, xi, yi; θ̂)∑n

j=1 1/λ(tj , xj , yj ; θ̂)

where λθ̂(t, x, y) is the estimated conditional intensity function.

3. Using probability weights p1, . . . , pn, take a subsample of size K from the original

points {(ti, xi, yi)} to produce points {(t∗j , x∗j , y∗j )} (j = 1, . . . ,K).

4. The points (t∗1, x
∗
1, y

∗
1), . . . , (t

∗
K , x∗K , y∗K) form the residual process.

The algorithm attempts to “thin out” points in areas with high intensity and retain points

in areas of low intensity. One may choose to repeat the algorithm many times to produce

multiple random realizations of approximate thinned residuals.

If K is chosen to be relatively small compared to n and the fitted conditional intensity

approximates closely the true conditional intensity governing the point process, then the

residual process should resemble a homogeneous Poisson process with rate K/(‖S‖(T2−T1))

over the original domain of the process. The approximate nature of the residuals is in

contrast with residual methods based on ordinary random thinning where the residual

process is exactly homogeneous Poisson if the model is known. These methods use modified

versions of the algorithms of Lewis and Shedler (1979) and Ogata (1981). With approximate

random thinning, even if the true model is known, the residual process will not be exactly

homogeneous Poisson. However, as noted in Schoenberg (2003), ordinary random thinning

is not possible with some models where the minimum of the conditional intensity is very

close to zero.

The primary advantage of generating a residual process is that the problem of evaluating

the fit of a possibly complex model is reduced to examining whether the residual process

is similar to a homogeneous Poisson process, a task for which there are many tests and
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diagnostics. Once the residuals have been produced one can simply display them in resid-

ual plots or compute summary statistics. The summary statistics can be compared with

corresponding quantities from a homogeneous Poisson process. For example, one may wish

to test for residual clustering or inhibition via a statistic such as the K-function (Ripley,

1981). In Section 5.1.1 we use a spatial-temporal version of the K-function to quantify the

clustering in the approximate thinned residual process.

5 Application to Wildfire and Burning Index Data

Each of the models in (1)–(3) were fit to the data by maximum likelihood. The maximum

likelihood estimates for the parameters in the spatial and seasonal components of each of

the models are shown in Table 2. The homogeneous Poisson model is described in (1) and

the “Spatial+Seasonal” model is from (2). The model denoted as “BI model” is described

in (3) and incorporates data from the eight weather stations.

The estimate for µ̂ in the homogeneous Poisson model (shown in Table 2) was 0.0041

events/(spatial unit2 × day), indicating an average of 24 fires per year in the County.

The bandwidth parameters for the spatial background component of the Spatial+Seasonal

model were estimated as φ̂x = 0.0440 spatial units (0.83 miles) in the x direction (east-

west) and φ̂y = 0.0259 spatial units (0.49 miles) in the y direction (north-south) for the

Spatial+Seasonal model. For the best-fitting BI model, the estimates for the spatial band-

width parameters were similar, although somewhat smaller. The estimate for the bandwidth

parameter of the seasonal component was approximately 8 days for both models. The BI

model gives less weight to both the spatial background and the seasonal component, as is

evident from the smaller estimates for both ν and α. The estimates of the station multiplier

coefficients (γs, s = 1, . . . , 8) and the βs’s in the BI component are shown in Table 3. Many

of the coefficients are estimated to be zero, likely resulting from the high correlation of the
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BI values between different stations. The stations receiving non-zero weight are Stations 1,

4, 5, and 7.

To compare the overall fit of each of the models we used the Akaike Information Cri-

terion (AIC). Not unexpectedly, there is a dramatic decrease in AIC from 7693.9 for the

homogeneous Poisson model to 6741.1 for the Spatial+Seasonal model. The addition of

the weather stations in the BI model decreased the AIC to 6704.6. The decrease in AIC

between the Spatial+Seasonal and BI model indicates that the BI component is in fact

improving the fit of the model, even with the addition of 16 parameters (2 for each station).

However, the relative decrease in AIC is somewhat smaller than the decrease between the

homogeneous Poisson and the Spatial+Seasonal models, suggesting that the impact of the

BI component (if any) is more subtle.

One can test the significance of the added BI component with a likelihood ratio test.

The likelihood ratio statistic is of the form AIC(θ̂0)−AIC(θ̂)+2k where k is the difference

in the number of paremeters between the two models and AIC(θ̂0) and AIC(θ̂) are the AIC

values of the Spatial+Seasonal and BI model, respectively. Since the BI model contains

the Spatial+Seasonal model as a restricted case, the test statistic has an asymptotic χ2
k

distribution under the null hypothesis (Ogata, 1988). For these two models, the difference

in parameters is 16 and the likelihood ratio test statistic has a value of 35.2, which is

significant at the 5% level (p-value of 0.0037).

Figure 4 shows the estimated conditional intensity function for the BI model on the 15th

of each month in 1999. The year 1999 is a typical year in the dataset, containing a total

of 21 fires. For this year the intensity reaches its lowest point around March and generally

increases through August. The conditional intensity is generally high in the northwest

region of the County where much of the wildfire activity takes place.
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5.1 Residual Analysis

While AIC is useful for determining the relative improvement of fit for competing models,

one may be interested in a more refined analysis of a particular model. Residual analysis

of the Spatial+Seasonal and BI models was conducted using both approximate random

thinning and the rescaling method in order to identify possible departures of the models

from the data

5.1.1 Approximate Thinned Residuals

For the approximate random thinning procedure we chose a subsample size of K = 50 for

each thinning and generated 1000 thinnings from each model. Figure 5 shows the spatial

coordinates for eight typical realizations of thinned residuals for the BI model. In each plot

the residuals appear to be spread uniformly across the County. Recall that in Figure 1 the

data were highly clustered in the northwest region near weather stations 1 and 2 and there

were relatively few points in the northeast corner. The thinned residuals in Figure 5 appear

to have corrected this imbalance somewhat.

Figure 6 shows the same thinned residuals but with the time and y-coordinates. Here

we see a more interesting pattern. In many of the plots there is a cluster of points around

the years 1979–1981, for instance in realizations number 5 and 8. In Section 3 it was noted

that the original data had some increased activity in this same time period. The residual

clustering indicates that the BI model is not adequately taking into account the clustering

in the data around this specific time period. One possible explanation for this lack of fit is

that the increased activity was not due to purely meteorological phenomena or changes in

fuel properties. Indeed, the BI model for those years appears close to the Spatial+Seasonal

model (this is discussed further in Section 5.1.2).

While visual inspection of the residuals can be a useful method of model evaluation, it
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may be desirable to have a more systematic test available. Existing second-order methods

for analyzing point patterns are largely two-dimensional, although there have been some

extensions (e.g. Baddeley et al., 1993; Diggle et al., 1995). In order to test the homogeneity

of the residual process, we used a space-time version of the K-function. The K-function

evaluated at distance h is the proportion of pairs of points per unit area that are within

distance h of each other. In order to evaluate the K-function, a distance function must

be specified, which in spatial settings is typically Euclidean distance. For our application,

we chose the following distance function, which is defined for two points (t1, x1, y1) and

(t2, x2, y2) as

Distance{(t1, x1, y1), (t2, x2, y2)} =
√

(x1 − x2)2 + (y1 − y2)2 + δ|t1 − t2|

where δ is chosen so that the temporal and spatial scales are commensurate. Here this

corresponds δ = 1/5475 days, which sets a spatial distance of 5 miles roughly equivalent to

a temporal distance of 4 years. Rather than plot the raw K-function, we use a normalized

version of the L-function (Ripley, 1979) which is centered around zero for a homogeneous

Poisson process.

Figure 7 shows the mean estimated L-functions for the 1000 approximate thinned resid-

uals from both the Spatial+Seasonal model and the BI model. Note that the figure omits

the negative range of the K-function. The estimated L-function for the BI model (solid

black line) appears to decrease to zero faster than that of the Spatial+Seasonal model (gray

line). However, there is significant clustering for smaller distances up to 1.0, which cor-

responds to about 18.9 miles in the spatial domain and 15 years in the temporal domain.

This residual clustering indicates a lack of fit in the BI model. In the following section we

explore further the temporal clustering in the residual process.
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5.1.2 Rescaled Temporal Residuals

The fit of the BI model in the temporal domain can be assessed using the rescaling method (Meyer,

1971) to create a residual process on the line. Each original event time ti (i = 1, . . . , n) is

mapped to a new time

τi =

ti∫
T1

∫∫
S

λ(t, x, y; θ̂) dxdydt.

where T1 is equal to January 1, 1976 and S is the spatial observation window. We can then

check whether the residuals τ1 < · · · < τn appear as a homogeneous Poisson process of rate

1 on the line. Figure 8(a) shows a histogram of the rescaled points and Figure 8(b) shows

the empirical log-survivor function for the interevent times of the residual process. These

plots exhibit two interesting phenomena. In Figure 8(a) we see that there are a very large

number of points in the period 50–150 in transformed time. Since each histogram bin is of

length 50, the number of points in each bin would be an i.i.d. Poisson random variable with

mean and variance equal to 50 if the BI model fit perfectly. However, for the period 50–150

we observe 79 and 101 points in the two corresponding bins. On the original time scale the

interval 50–150 corresponds approximately to the years 1978–1982. This result along with

the clustering in the thinned residuals (observed in Figure 6) confirms that the increased

wildfire activity during the years 1979–1981 is not captured by the BI model.

For a homogeneous Poisson process with rate 1, the interevent times have an exponential

distribution with mean 1. In Figure 8(b) the distribution of the interevent times in the

residual process seems to deviate considerably from exponential (dashed line). In particular,

the tail of the distribution appears to be heavier than expected – the largest observation is

more than 15 transformed time units.

The above mentioned anomalies can be examined with the original data to check for

specific problems with the BI model. An entity that is of use in this task is the temporal
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intensity function,

r(t) =
∫∫
S

λ(t, x, y; θ̂) dxdy.

Figure 9 shows r(t) over two different time intervals in the 25 year study period for the

Spatial+Seasonal and BI model. Figure 9(a) shows r(t) for the years 1979–1981, the period

in which we observe an unusually high level of wildfire activity. If the BI were adequately

representing the risk of fire due to severe weather, then one might expect the BI model to

have a somewhat higher intensity during this time period, given the dependence of the BI

on local weather and fuel properties. However, the BI model (gray line) appears to be quite

close the Spatial+Seasonal model (black line) and significantly underestimates the rate of

activity during these three years.

For comparison, Figure 9(b) shows the period 1990–1991, which contains the largest

interevent time observed in Figure 8(b). The two vertical dotted lines indicate the two events

which generated the large interevent time when rescaled. These two events correspond to

the last fire in 1990 and the first fire in 1991. The first fire in 1991 comes on August 23rd,

which is much later in the year than is typical for the first fire. Figure 9(b) shows that the

BI model deviates considerably from the Spatial+Seasonal model. The estimated temporal

intensity for the BI model is much lower than the Spatial+Seasonal model in the months

between May and September. It seems that the BI model is reflecting a local change in

weather or fuel conditions which is different from the usual seasonal pattern. However, it

seems that the BI model is not compensating enough, thus creating the larger than expected

interevent time. Nevertheless, Figure 9(b) illustrates a period of time where the BI model

appears to be making a useful improvement over the Spatial+Seasonal model.
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5.2 Model Predictions

Given a model for the conditional intensity of a point process, the process can be simulated

via the random thinning algorithm of Lewis and Shedler (1979). We simulated one year’s

worth of events to see if features of the simulations matched those of the observed events.

The BI model was re-fit using the wildfire and BI data from 1976 through 1998 and the

Lewis-Shedler algorithm was applied to generate random realizations of wildfire events for

1999. The spatial distribution of the simulations (not shown) appeared to match the con-

figuration of the observed fires fairly well. Figure 10 shows the the time and y-coordinates

for eight typical simulations, where the “+” symbols represent the 21 fires actually observed

in 1999. In Figure 10 we see that the BI model tends to predict more fires during the

period between January and April than were actually observed. The first fire of 1999 was

on January 3rd followed by a fire on April 23rd. However, in each simulation the BI model

predicts some fires in the intervening months.

6 Summary and Discussion

In this article we have developed an approach for evaluating a wildfire hazard index using

multi-dimensional point process models. This approach has allowed for a detailed analysis

of the performance of the Burning Index in predicting wildfire occurrence in Los Angeles

County. Our conclusions about the BI are based on an assessment of conditional intensity

models which incorporate spatial, seasonal, and BI information. We find that the best-

fitting model that incorporates BI information does not perform substantially better than

a simple model which only takes into account natural spatial and seasonal variation.

Two point process residual analysis techniques were employed to supplement a standard

likelihood based model evaluation criterion (AIC). Although the development and applica-
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tion of residual methods for point processes is still an active area of research, their usefulness

here has been clearly demonstrated. The random thinning method enabled us to check for

residual space-time clustering on the same temporal and spatial scales as the data, while the

rescaling method allowed for the closer inspection of temporal clustering in the residuals.

Together, the methods provided insight into precisely where the BI model fit poorly and

where it was making some (minimal) improvement.

In Section 5, we saw that the homogeneous Poisson model provides a rather poor fit to

the data. This was expected, as the model does not take into account any spatial or seasonal

variation and omits information about fuel and meteorological conditions. The BI model

incorporates all of this information and clearly does much better than the homogeneous

Poisson model. However, we found that the Spatial+Seasonal model (which does not contain

any meteorological information) performs nearly as well as the BI model.

The values of the AIC indicate that the inclusion of BI information into the conditional

intensity does improve the fit of the model to the data. However, both the residual analysis

and the model predictions indicate that the BI model is far from adequate for predicting

wildfire occurrence. In particular, we have identified two specific areas where the BI model

provides a poor fit to the data. The first is the three year period between 1979 and 1981

and the second is the first quarter of 1999. Between 1979 and 1981 we observe an increased

level of wildfire activity and the clustering in the thinned residuals during that time pe-

riod indicates that the BI is doing little to account for this increased activity. In fact,

the temporal intensity for the BI model tracks fairly closely the temporal intensity of the

Spatial+Seasonal model for the entire three year period.

In Section 5.2 we saw that for 1999, a typical year, the BI model tends to overpredict in

the months of January, February, and March. On average each of the simulations placed at

least one fire in each of those months. The problem is that the BI values can in fact be high
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during the winter. Figure 3 shows that on average many of the stations do not reach their

lowest point until the middle of March or even April. Therefore, even though we do not

observe many actual fires in January, February, and March, the BI model tends to produce

a higher intensity because of the high BI values.

It is important to note the possible biases that may result from the missing data and

the procedure used to fill in missing BI values. In Section 3 we replaced a missing value

on a given day with the average of the non-missing values for that day across all years. If

the non-missing values do not accurately represent the non-missing data, then the resulting

estimated conditional intensity could be biased. In our initial examination of the BI data

we found that stations with relatively low percentages of missing data had very regular

seasonal patterns from year to year. While one would expect some natural variation between

stations, we see no reason why the other stations should not exhibit the same strong seasonal

patterns. Therefore, we feel that the biases resulting from the missing data are likely to

be small. Determining the optimal use of station data, including developing methods for

imputing missing values, is an important subject for future work.

Other possibilities for further investigation remain in both the areas of wildfire research

and point processes. It may be of interest to wildfire researchers to examine the perfor-

mance of other hazard indices in Los Angeles County, having already identified some specific

deficiencies with the BI. In the area of point processes, the application of residual methods

is still an active area of research. In particular, specific properties of thinned and rescaled

residuals (and the behavior of corresponding test statistics) are not generally well known

when model parameters have to be estimated (see e.g. Schoenberg, 2002). In addition, the

development of visualization techniques and summary statistics for multi-dimensional point

process data is an important topic for future research.
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A Tables

Station # 1 2 3 4 5 6 7 8
Jan–Apr 99.8 49.2 34.3 60.8 33.3 32.5 23.3 26.1
May–Dec 46.4 36.3 17.8 32.0 14.5 18.6 6.7 14.2
Overall 64.0 40.5 23.2 41.5 20.7 23.2 12.2 18.1

Table 1: Percentage of missing values for each weather station during the off-season (Jan–
Apr), the fire season (May–Dec), and overall.

Model µ̂ ν̂ φ̂x φ̂y α̂ φ̂seas

H. Poisson 0.0041
Spatial+Seasonal 0.0348 0.0440 0.0259 0.7053 8.44
BI model 0.0293 0.0339 0.0200 0.5570 8.27

Table 2: Maximum likelihood estimates of parameters for non-BI components. “H. Poisson”
refers to the homogeneous Poisson model in (1).

s = 1 2 3 4 5 6 7 8
γ̂s (×10−5) 2.2 0.0 0.0 17.4 3.1 0.0 25.6 0.0
β̂s 0.001 3.000 3.000 0.387 0.001 0.442 0.520 0.816

Table 3: Maximum likelihood estimates for parameters in the BI component.
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B Figure Captions

1. Spatial distribution of wildfires larger than 10 acres in Los Angeles County (1976–

2000). Locations of the 8 Remote Automatic Weather Stations in Los Angeles County

are indicated by the numbers above the solid cirlces. One spatial unit is approximately

18.9 miles.

2. Dates of occurrence and areas burned for fires larger than 10 acres (1976–2000).

3. Average yearly BI pattern.

4. Estimated conditional intensity function for the BI model on the 15th of each month

in 1999. The units are in events / (spatial unit2 × day) where one spatial unit is

approximately 18.9 miles.

5. Eight random realizations of thinned residuals for the BI model (spatial coordinates).

6. Residuals for the BI model (time and y-coordinate).

7. Normalized K-function for the Spatial+Seasonal (solid gray line) and BI (solid black

line) models. The dotted line is the upper 95th percentile (pointwise) for the K-

function applied to 1000 realizations of a homogeneous Poisson process.

8. (a) Histogram of the rescaled residual process; (b) Log-survivor plot of the interevent

times for the rescaled residual process. The dashed line represents the theoretical

log-survivor function for the exponential distribution.

9. Temporal intensity functions r(t) for the Spatial+Seasonal (black line) and BI model

(gray line) for (a) 1979–1981; and (b) 1990–1991.

10. Simulations from the BI model (“o”) and observed wildfires (“+”) for the year 1999.
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Figure 1: Spatial distribution of wildfires larger than 10 acres in Los Angeles County (1976–
2000). Locations of the 8 Remote Automatic Weather Stations in Los Angeles County are
indicated by the numbers above the solid cirlces. One spatial unit is approximately 18.9
miles.
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Figure 2: Dates of occurrence and areas burned for fires larger than 10 acres (1976–2000).
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Figure 4: Estimated conditional intensity function for the BI model on the 15th of each
month in 1999. The units are in events / (spatial unit2 × day) where one spatial unit is
approximately 18.9 miles.
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Figure 7: Normalized K-function for the Spatial+Seasonal (solid gray line) and BI (solid
black line) models. The dotted line is the upper 95th percentile (pointwise) for the K-
function applied to 1000 realizations of a homogeneous Poisson process.
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Figure 8: (a) Histogram of the rescaled residual process; (b) Log-survivor plot of the in-
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model (gray line) for (a) 1979–1981; and (b) 1990–1991.
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