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Abstract of the Dissertation

Quantum oscillations in cuprates and Cooper pairing

in half filled Landau level

by

Zhiqiang Wang

Doctor of Philosophy in Physics

University of California, Los Angeles, 2016

Professor Sudip Chakravarty, Chair

The observation of quantum oscillations in hole under-doped cuprate is a big break-

through to reveal its normal state nature. To understand the observed oscillation frequen-

cies, in chapter 2, we consider the normal state to be a Fermi liquid and in a symmetry

broken phase, whose order parameter is a novel period−8 d−density wave. This order

gives rise to a complex Fermi surface consisting of not only an electron pocket, which

can explain the major observed oscillation frequency F ∼ 530 T, but also a small hole

pocket, which corresponds to a newly predicted slower oscillation. This slower oscillation

has received some experimental supports recently.

In chapter 3, we study how superconductivity fluctuations, which exist in the form

of random vortices, could affect the normal state quasiparticle quantum oscillation. We

find that the Onsager rule, which connects extremal normal state Fermi surface areas

to quantum oscillation frequencies, remains intact to an excellent approximation in the

mixed-vortex state. We also show that the oscillations of the magnetic field B dependent

density of states, ρ(B), ride on top of a field independent background in the high field

quantum oscillation regime. This feature appears to agree with the most recent specific

heat measurement on YBa2Cu3O6+δ. At lower fields the superconductivity fluctuations

are quenched and form an ordered vortex lattice. We show that the density of states

follows ρ(B) ∝
√
B as B → 0, in agreement with the semiclassical results by Volovik.

In chapter 4, we turn to the Cooper pairing problem of composite fermions in the

half-filled Landau level. We apply a new pairing mechanism from repulsive forces to the
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Halperin-Lee-Read composite fermion liquid. This mechanism takes advantage of the

dynamical screening at finite frequency from the finite density composite fermions and

makes a net attraction possible. We show that the transition from the composite fermion

liquid state to a chiral Cooper pairing state, with odd angular momentum channels, is

continuous, in disagreement with the previous conclusion that the transition is discon-

tinuous if the bare interaction is short-ranged. We also construct the phase diagrams

for different angular momentum channels ` and show that the ` = 1 channel is quite

different from higher channels ` ≥ 3. Similar analysis has been carried out for the bilayer

Hall system with a total filling fraction ν = 1
2

+ 1
2

and it is found that the previously

established results remain qualitatively unaltered.

Finally, in chapter 5 we apply the above pairing mechanism to the recently proposed

particle-hole symmetric Dirac composite fermion liquid theory for the half-filled Landau

level. We find that a continuous transition to different chiral pairing states, with angular

momentum channels |`| ≥ 1, is possible. These include the Moore-Read Pfaffian and the

anti-Pfaffian state. However, the ` = 0 channel particle-hole symmetric pairing state,

turns out to be energetically impossible although it is symmetry allowed.
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CHAPTER 1

Introduction

The subject of this thesis consists of two most fascinating research topics in strongly

correlated electronic systems. One is the high temperature superconductor [3]; the other

is the fractional quantum Hall effect(FQHE) [4].

Among many open questions of high temperature superconductors the nature of the

normal state of hole underdoped cuprates(copper based high temperature superconduc-

tor) is especially puzzling [5]. Different experimental observations seem to point to con-

flicting physical pictures [6]. In this thesis we focus on a sub-set of these experiments,

namely the quantum oscillation experiments [7], which indicate that the concept of Fermi

liquid quasiparticles [8] is still valid in the normal state of hole underdoped cuprates de-

spite of strong electron electron interactions. The first half of this thesis will be devoted

to understanding these experiments. Specifically we address the following questions:

1. How to understand the quantum oscillation frequencies observed in hole underdoped

cuprates from a d−density wave perspective [9, 10]?

2. What are the possible effects of superconductivity fluctuations on the normal state

quasiparticle quantum oscillations?

In the FQHE field the odd denominator fractional quantum Hall plateaus have been

already understood well by Laughlin’s wavefunctions [11], Haldane’s hierarchy construc-

tion [12], and Jain’s composite fermion picture [13]. However our understanding of the

even denominator filling fraction states are still far from being satisfactory, although nu-

merous progress has been made in the past. These include both the compressible gapless

state [14, 15] and the incompressible gapped states [16] in the half filled Landau level.

The gapped states at ν = 1/2 has been proposed to be a Pfaffian state [17, 18], whose

quasiparticles posses exotic non-Abelian statistics and can be potentially useful for build-
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ing fault-tolerant quantum computers [19]. This state can be interpreted as a Cooper

pairing state of composite fermions developed from the compressible state [20, 21, 22].

The second half of this thesis will be devoted to understanding the pairing mechanism

behind this transition. In particular we answer the following questions:

1. What is the pairing mechanism behind this transition if the gapless state is described

by the Halperin-Lee-Read composite fermion liquid picture [23]? What’s the nature

of the transition?

2. What is the possible pairing mechanism for the transition if the gapless state is de-

scribed by the recently proposed particle-hole symmetric Dirac composite fermion-

s [2]? What are the possible pairing angular momentum channels?

1.1 Quantum oscillations in underdoped Cuprates

1.1.1 High temperature superconductor: a short introduction

The copper based high temperature superconductor(cuprates) was first discovered in

1986 by J. G. Bednorz and K. A. Müller [3]. Since 2008 a new generation of the iron-based

high temperature superconductor [24, 25, 26] has been discovered. In this thesis we only

discuss the cuprates and the term of high temperature superconductor will implicitly

mean cuprates.

Although conventional superconductors have been satisfactorily explained by Bardeen,

Cooper, and Schrieffer(BCS) [27], there is still no consensus [28] on the pairing mechanism

for high temperature superconductivity. One reason is that the normal state, from which

the superconductivity arises, is very complicated and difficult to understand. This can be

seen from the schematic temperature-hole doping phase diagram of cuprates in Fig. 1.1.

In this phase diagram the superconducting state itself is well understood as a Cooper

paired state and its superconducting order parameter has a d−wave symmetry [29, 30].

However, the normal state phases at temperatures above the superconducting transition

temperature Tc, including the pseudogap phase [31, 5] in the underdoped regime and the

strange metal phase [32] at around the optimal doping level, are notoriously difficult to

understand. Many anomalous features, such as Fermi arcs [33, 34, 35] in the pseudogap

2



regime, linear temperature dependent resistivity [36, 37] in the strange metal regime, and

etc., have been observed experimentally. They defy satisfactory explanation within the

conventional Fermi liquid framework and therefore point to a non-Fermi liquid picture [38,

39].

However, in 2007, to the surprise of the high−Tc community, quantum oscillations [7]

have been successfully observed in the hole under doped cuprates. These experiments

are preformed at very low temperatures and high magnetic fields are applied to kill the

superconductivity so that the normal state property could be revealed. Our conventional

understanding of quantum oscillation is that it is a direct consequence of Landau level

quantization of the cyclotron orbits of some conventional Fermi liquid quasiparticles.

Therefore the successful observations of quantum oscillations in cuprates indicate that

despite of enormously strong interactions, the physics of the normal state can still be

well described by Fermi liquid quasiparticles picture [52, 53], although to today it is still

unclear whether non-Fermi liquids can give rise to quantum oscillations or not [6]. In this

thesis we take a view that the observed quantum oscillations have truly revealed some

conventional Fermi liquid quasiparticles instead of originate from some non-Fermi liquid

physics.

Some key issues [6] such as how to reconcile the anomalous non-Fermi liquid physics,

observed in the high temperature normal state at zero magnetic field, with the conven-

tional Fermi liquid picture of the low temperature but high magnetic field normal state,

suggested by the quantum oscillation experiments, are still far from being well under-

stood. These issues are interesting in their own. However, in this thesis we only focus

on some particular issues pertinent to the understanding of the quantum oscillation ex-

periments themselves. In the next section we give a short introduction to the quantum

oscillation experiments.

1.1.2 Quantum oscillatioins

Quantum oscillations [54, 55] are periodic oscillations of physical quantities in the mag-

netic field inverse 1
B

when a strong field B is applied to a material at very low temperature

T . The measured physical quantities can be magnetization(de Haas-Van Alphen effect),

heat capacity, resistivity(Shubnikov-de Haas effect), Hall coefficient, etc.
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Figure 1.1: Schematic phase diagram of a hole doped cuprate. The vertical axis is tem-

perature T . The horizontal axis is hole doping percentage p. In this phase diagram there

are several lines dividing the diagram into different regimes. TN, the black line, is the

phase transition boundary for the anti-ferromagnetic(AFM) order [40, 41, 42]. Tc, the

blue line, is the superconductivity transition temperature line bounding the supercon-

ducting(SC) dome [43, 44], shaded in light blue. p1, p2 are the two critical hole doping

values at which the superconductivity order disappears. pc is the optimal doping level

at which Tc is maximum. In the regime p < pc, the cuprate is underdoped; while in the

regime p > pc it is overdoped. The solid pink line TCDW is the transition temperature

line for a charge density wave order [45, 46, 47, 48, 49], whose nature is still under hot

debate. The red dashed line Tp stands for a temperature scale for the pseudogap(PSG)

phase [31, 5]. Whether Tp should be understood as a genuine phase transition line or an

energy crossover is still controversial. In this thesis we take the position that Tp repre-

sents a transition line below which a novel kind of density wave order, the d−density wave

order [9, 10], is developed. The symbol “SM” stands for the strange metal phase [39],

which exhibits many anomalous behaviors that deviate from the Fermi liquid picture.

The orange dashed line is a crossover temperature scale below which the system behaves

like a conventional Fermi liquid(FL) metal [50, 51].
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1.1.2.1 Semi-classical picture

The quantum oscillation is a macroscopic manifestation of the Landau level quantization

of the underlying quasiparticles near the Fermi surface. It could be viewed as a precursor

of the quantum Hall effect(QHE), whose observation requires a much stronger magnetic

field and purer sample. Although understanding of the QHE requires a full quantum

theory, the quantum oscillation can be understood within a semi-classical quantization

scheme.

Consider applying a perpendicular magnetic field B = Bẑ to a two dimensional non-

interacting electron gas in a crystal. Then under the Lorentz force a quasiparticle, repre-

sented by a wavepacket with a crystal momentum k, will execute cyclotron motion. This

motion is described by the Newton equation [54]

~k̇ = −e
c
ṙ×B, (1.1)

where e is the fundamental electric charge and c is the light velocity. The group velocity

of the wavepacket is

ṙ =
1

~
∂ε(k)

∂k
, (1.2)

where ε(k) is the dispersion of the underlying quasiparticles. Integrating Equation (1.1)

over time gives

k− k0 = − e

~c
[r− r0]×B, (1.3)

where k0, r0 are the initial positions of the wavepacket’s trajectories in the momentum

and real space respectively. This equation shows that the trajectory in the momentum

space can be obtained by a rotation of the real space trajectory along the magnetic field

B direction by a 90 degree angle. Therefore the wavepacket’s motion in the momentum

space is also cyclotron and it is along a constant energy ε(k) contour because the Lorentz

force does not do any work. Furthermore the momentum space cyclotron orbit area Ak

is proportional to the real space orbit area Ar

Ak =
e2B2

~2c2
Ar. (1.4)

Therefore the quantization condition for Ak can be obtained from that of Ar. Within

the Bohr-Sommerfeld semi-classical quantization scheme, the real space motion satisfies
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the following condition ∮
[~k− eA/c] · dr = (n+ γ)2π~, (1.5)

where n is a non-negative integer, γ is a constant, and A is the vector potential that

satisfies B = ∇ × A = Bẑ. The integral contour in Equation (1.5) is along a closed

cyclotron orbit in real space. In this equation the left hand side bracket has two terms.

The first term can be rewritten as follows by using the Equation (1.3)∮
~k · dr =

eB

c
2

1

2
ẑ ·
∮

r× dr =
2e

c
BAr. (1.6)

The second term gives nothing but the Ahranov-Bohm phase accumulated along the orbit

and is equal to −eBAr/c. Adding the two terms together gives a net result of eBAr/c.

Substituting this result back into Equation (1.5) leads to

BAr = (n+ γ)
2π~c
e

= (n+ γ)Φ0, (1.7)

where Φ0 ≡ 2π~c/e is the magnetic flux quantum. This is the quantization condition for

Ar. Then from Equation (1.4), the cyclotron orbit area Ak in momentum space is also

quantized as

Ak `
2
B = (n+ γ) 2π, (1.8)

where

`B ≡
√

~c
eB

(1.9)

is the magnetic length. Because of this orbit quantization, as the magnetic field is varied,

the density of states at the Fermi energy level will have a peak whenever one of these

orbit areas Ak coincides with the extremal Fermi surface area, which in 2D is simply the

Fermi surface area AF . In other words the density of states at the Fermi energy oscillates

periodically and the period is determined by

∆
(
AF `2

B

)
= 2π ⇒ ∆

(
1

B

)
=

2πe

~c
1

AF
. (1.10)

So the oscillation is periodic in the magnetic field inverse 1
B

instead of the magnetic field

B itself. The oscillation frequency F is then given by

F ≡ 1

∆ (1/B)
=

~c
2πe
AF . (1.11)
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This is the well-known Onsager relation [56] which relates the area AF of an extremal

Fermi surface cross section perpendicular to the magnetic field to the quantum oscilla-

tion frequency F . This relation is remarkable because it directly relates a macroscopic

measurable quantity F to a microscopic quantity AF with some universal proportionality

constant. It makes the quantum oscillation experiment a powerful Fermiology analysis

tool [55, 57].

The above analysis applies to a single piece of closed Fermi surface sheet case. If

there are more than one piece, then each individual sheet contributes an oscillation with

a frequency that is proportional to its own Fermi surface area, as long as different Fermi

surface sheets are well separated in the momentum space so that tunneling effects such as

magnetic breakdown [55] between different sheets are absent. However, if a Fermi surface

sheet contains open orbits, the open orbits do not contribute to quantum oscillations.

This is because their corresponding motion in real space is not closed and therefore not

periodic. Hence the above semi-classical quantization scheme does not work.

1.1.2.2 Lifshitz-Kosevich formula

A more quantitative analysis of quantum oscillation experiments needs to go beyond the

above discussions in order to extract more information. Experimentally this is typically

done by fitting data to the Lifshitz-Kosevich(LK) formula [58].

The LK formula can be exactly derived for a free 2d electron gas with a dispersion

ε(k) = ~2(k2
x + k2

y)/2m. In the presence of a perpendicular magnetic field B = Bẑ,

the energy levels are quantized into discrete Landau levels En = (n + 1/2)~ωc, where

ωc = eB/mc is the cyclotron frequency. Then the thermodynamic free energy density

Ω can be computed by summing up the contribution from each Landau level. This

kind of derivation can be found in Shoenberg [55](also see the PhD thesis of Dr. Brad

Ramshaw [59]). The final result of the oscillatory part of Ω, denoted as Ω̃, is then given

by the LK formula which takes the following form

Ω̃ =
~ωc

2π`2
B

∞∑
s=1

(−1)s
1

π2s2
cos

(
2πs

F

B

)
(1.12)

at zero temperature and without disorder. F is identical to the frequency given in E-

quation (1.11). In the above summation the s = 1 term oscillates in 1
B

with a frequency
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F . Other s ≥ 2 terms are higher order harmonics of the fundamental mode s = 1. The

higher order terms are typically much less important, because their amplitudes are sup-

pressed by the factor 1/s2 in the above summation and are further damped much more

severely by the finite temperature and disorder effects compared with the s = 1 term.

When applied to particles with an arbitrary band dispersion ε(k) in a crystal, the

LK formula can not be derived exactly in general. However, with the help of the above

semi-classical quantization scheme, the LK formula can still be obtained approximately.

The major modification is that the bare electron mass m in ωc should be replaced by

an effective cyclotron mass m∗, which depends on the band dispersion ε(k) and is given

by [55]

m∗ =
~2

2π

∂Ak

∂ε

∣∣∣
ε=εF

, (1.13)

where ε is a short hand notation of ε(k) and εF is the Fermi energy. Ak is the k space

area bounded by the energy contour ε(k) = ε, as defined previously.

1.1.2.3 Disorder effects

If disorders are taken into account, then due to random incoherent scattering the Landau

levels are broadened and the quasiparticles will have a finite lifetime τ . The effects on

the quantum oscillations are two fold. First, the oscillation amplitude will get damped.

This can be accounted for by multiplying an additional Dingle damping factor RD:

RD = e−s π/ωcτ (1.14)

to each term of the LK formula in Equation (1.12). Again s is the harmonic order index.

Because of the exponential dependence of RD on s, the disorder has a much more serve

effect in suppressing the higher order(s ≥ 2) harmonics oscillations than in suppressing

the fundamental mode(s = 1) oscillation.

The disorder could also affect the quantum oscillation frequency F in principle. How-

ever, as is shown in Ref. [60], the correction is of order (~/εF τ)2. This is typically very

small and can be ignored.
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1.1.2.4 Finite temperature effects

Similar to the disorder effects, at finite temperature T , the random thermal fluctuations

can also broaden the Landau levels. They induce another damping factor

RT =
X

sinh(X)
with X ≡ s

2π2kBT

~ωc
, (1.15)

that should be multiplied to each term of the LK formula. At high temperature X � 1,

RT ≈ Xe−X . We see clearly that this factor damps the oscillation amplitude in a way

similar to the disorder effects.

1.1.2.5 Electron-electron interactions

So far all the analysis is based on a single particle picture and nothing has been said about

the electron-electron interaction effects. However, investigating the effects of electron-

electron interactions on quantum oscillations can be very important to fully understand

the quantum oscillations in cuprates as it is well known that the electron-electron inter-

action in cuprates is very strong. However, despite its great interest the current under-

standing of electron-electron interactions on quantum oscillations is very primitive. In

the case that the interaction can be treated as a weak perturbation without completely

destroying the underlying Landau levels it can be shown that the quantum oscillation

survives with a new frequency which is determined by the interaction renormalized s-

ingle particle energy dispersion( see Luttinger [61]). However, if the interaction is so

strong that the Landau qausi-particle concept breaks down, then whether the quantum

oscillations can still survive or not is not clear at all [6].

As emphasized previously, in this thesis we take the view that quantum oscillations

observed in underdoped cuprates truly reveal some well-defined Landau quasi-particles

despite of strong interactions.

1.1.2.6 Quantum oscillations in the hole doped cuprates

Back to the quantum oscillation problem in the hole doped cuprates, experimentally the

major frequency observed is F ∼ 530T [7]. From the Onsager relation this corresponds

to a closed Fermi surface pocket occupying only AF/(2π/a)2 ∼ 2% of the Brillouin
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zone if the lattice spacing constant is chosen to be a ∼ 3.8Å for a hole doped cuprate.

This small 2% does not agree with a single large hole like Fermi surface as we would

naively expected. This is because if we assume that the oscillations result from a single

large hole pocket that can be produced by bare band hoppings, then according to the

Luttinger volume counting [62] rule this hole pocket should occupy (1 + p)/2 ∼ 56%

of the first Brillouin zone, in contrast to the observed 2%. Notice that the nominal

hole doping percentage range within which quantum oscillations have been established

in underdoped curpates is p ∼ 11 − 14% [6]. The apparent contraction suggests that

the bare band structure must have been reconstructed by some mean field order. Since

the first observation of quantum oscillations in hole underdoped cuprates, many different

types of orders have been proposed to explain the experiments, such as the d−density

wave order [63, 6], bi-directional charge density wave order [52, 64], charge/spin stripe

order [65, 66], etc. Among these orders the d−density wave order is a natural choice

given that it not only can explain the observed oscillation in Hall coefficient well [63]

but also can be naturally connected to the high temperature pseudogap phase at zero

magnetic field [10]. In Chapter 2 we employ a particular type of the d−density wave order:

the period−8 stripe d−density wave order [67], to understand the quantum oscillation

frequencies observed in hole underdoped cuprates.

1.1.3 d−density wave orders

As its name suggests, the d−density wave(DDW) [9] is a generalization of the concept

of the charge density wave(CDW) and spin density wave(SDW). It is a condensate in

the particle-hole channel, in contrast to the superconductivity order parameter which is

a particle-particle channel condensate. The major difference of the DDW order from the

CDW and SDW order is that its orbital angular momentum channel is ` = 2 instead of

` = 1 as for the CDW and SDW case. The DDW order parameter can also have different

structures in the electron spin space. It can be transformed as either a singlet or a triplet

under the spin rotation. Among the different types of DDW order parameters, we shall

discuss singlet DDW orders only and consider two different kinds that are relevant to the

Chapter 2 and Chapter 3.
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1.1.3.1 The two-fold DDW order

The simplest DDW order order parameter is the two-fold DDW order. Defined on a square

lattice this order parameter can be written as follows(the spin indices are suppressed)

〈c†rcr′〉 = i(−1)x+y Φ {δr,r′+ax̂ + δr,r′−ax̂ − δr,r′+aŷ − δr,r′−aŷ} , (1.16)

where r = (x a, y a) is a site on the square lattice. Because of the pure imaginary i

factor on the right hand side this order parameter is a current and breaks the time

reversal symmetry locally. The factor (−1)x+y indicates that the ordering wavevector is

Q = (π/a, π/a). Therefore the order parameter has a period of 2a in each direction. This

explains its name “two-fold”. Φ is a spatial independent real constant that characterizes

the order parameter magnitude. The last factor {· · · } explicitly shows that the order

parameter is defined on a bond and has a local d−wave symmetry at each site. A

schematic diagram of the current pattern of this order parameter is given in Fig. 1.2.

The current plotted in this diagram is defined as

Jr,r′ =
1

2i

[
〈c†rcr′〉 − 〈c†r′cr〉

]
. (1.17)

Notice that the circulating current pattern in Fig. 1.2 is staggered from one square plaque-

tte to its neighboring ones so that globally the time reversal symmetry is still preserved.

In the momentum space the two-fold DDW order parameter can be obtained from Equa-

tion (1.2) by a Fourier transform and is given by

< c†k′ck >= iΦ 2 (cos kxa− cos kya) {δk′,k+Q + δk′,k−Q} . (1.18)

Again the factor (cos kxa − cos kya) explicitly shows that the two-fold DDW order pa-

rameter has a dx2−y2 symmetry.

1.1.3.2 Relevance of the DDW order to cuprates

The possible relevance of the DDW order to the high temperature superconductor was

first emphasized in Ref. [10]. In that paper the authors proposed the idea that the

pseudogap phase in the schematic phase diagram of Fig. 1.1 is a genuine symmetry broken

phase with the DDW order its order parameter. Under this picture many experiments

performed in the pseudogap regime can be understood. However, to today the direct
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Figure 1.2: Schematic diagram of the current pattern of a two-fold DDW order parameter

on a square lattice. The DDW order current is represented by the black arrows and defined

on bonds.

experimental establishment of the DDW order is still controversial. This could be due

to the d−wave current nature of the order parameter that makes it hidden from most

experimental probes which typically couple to either electric or magnetic dipole moments.

This point was emphasized in Ref. [10] as well.

Recently after the observation of quantum oscillations in the hole underdoped cuprates,

the DDW order revives its interest because it can provide a nice explanation for the Fermi

surface reconstruction inferred from the experiment. The two-fold DDW order was first

adopted to do such an analysis. The reconstructed Fermi surface [63] consists of an elec-

tron pocket which can explain not only the fact that the oscillation frequency F ∼ 530T

observed is small but also why the observed Hall coefficient [7] has a negative sign, al-

though the system is doped with holes. Remember that the sign of the Hall coefficient

is directly related to whether the underlying charge carriers are electron like or hole like.

Coming along with the small electron pocket is a larger hole pocket whose area is about

twice of that of the electron pocket. This kind of two band model can naturally explains

why quantum oscillations have been observed in the Hall coefficient while a single band

is difficult to give rise to quantum oscillations in Hall coefficient [63], if not impossible.

There are some recent efforts [68] exploring the possibility of observing the Hall coefficient

oscillation within a single band by using some nontrivial curvature effects of the Fermi

surface contour. However their derivations for the quantum oscillations are not correct
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and therefore the conclusions they obtained need to be further scrutinized. Although

the two-fold DDW explanation is so attractive, there is a problem: the predicted large

hole pocket oscillation has not been observed experimentally. This has motivated us to

consider a more exotic order—the period−8 DDW order [67], which can reconstruct the

bare band structure in a more complicated yet much more interesting way. This order

can provide a nice resolution to the dilemma with the two-fold DDW order explanation.

Detail analysis of the problem will be given in Chapter 2. In the following we only briefly

introduce the period−8 DDW order parameter.

1.1.3.3 The period−8 DDW order

The period−8 DDW order parameter in real space can be written as follows

〈c†rcr′〉 =
∑
r,r′

i
W0

2
sin

Q · (r− r′)

2
sin

Q · (r + r′)

2

×{δr,r′+ax̂ + δr,r′−ax̂ − δr,r′+aŷ − δr,r′−aŷ}, (1.19)

where the ordering wavevector is Q = (3π
4a
, π
a
) and W0 is a constant controling the overall

magnitude of the order parameter. Similar to the two-fold DDW order case the factor

i sin Q·(r−r′)
2

in the above indicates that the order is a current and the last factor in the

curly bracket {...} explicitly exhibits its local d−wave symmetry. The major difference

from the two-fold DDW order comes from the sin Q·(r+r′)
2

factor, which shows that the

order parameter magnitude is modulated with a wavevector Q, unlike the two-fold DDW

order case where the order parameter magnitude is a spatial independent constant. This

is most clearly illustrated by the current pattern diagram in Fig. 1.3. The current pattern

has a period of 8 lattice spacings in one direction and has a period of 2 lattice spacings

in the other direction. Locally at each site the current direction still has a d−wave

symmetry. This is why we name it period−8 DDW order. This order parameter can

reconstruct the bare band structure and give a much more complicated, yet much more

interesting, Fermi surface structure than the two-fold DDW order. Detail discussion will

be deferred to Chapter 2.
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Figure 1.3: Current pattern of a period−8 DDW order. The ordering wavevector is

Q = (3π
4a
, π
a
). The relative magnitudes of the currents are depicted by the arrows in the

legend. Note the antiphase domain wall structure.

1.1.4 Superconductivity fluctuations in the mixed vortex state

In the previous discussions, we have left out one piece of ingredient in the entire picture

of quantum oscillation experiments of hole doped cuprates. That is the superconductiv-

ity fluctuation. The quantum oscillation experiments are typically carried out along a

trajectory represented by the blue dashed arrow in the mean field H−T 1 phase diagram

in Fig. 1.4.

The cuprate is a strong type II superconductor with an upper critical field Hc2 widely

believed to be much higher [70, 71] than the typical magnetic fields applied in the quantum

oscillation experiments(in most experiments oscillations start to develop at H ∼ 30 T

while theHc2 is believed to be typically∼ 100 T or even higher). However, the value ofHc2

for the hole doped cuprate is still controversial. Counter claims have also been made in, for

example, Ref. [72]. The question we are interested in is that if the experimentally applied

H field is indeed less than Hc2, what is the effect of the superconductivity fluctuations

on normal state quasiparticles quantum oscillation.

In the mixed state phase of the mean field phase diagram in Fig. 1.4, the supercon-

ductivity vortex orders into an Abrikosov vortex lattice, which we will call a vortex solid

state. However, this mean field picture only holds within a finite regime below the Hc2(T )

line in the H−T phase diagram, if the superconductivity order parameter fluctuations are

1In this thesis we use B to denote magnetic fields most of the time, but in this section we use H
instead, conforming to the notation used in most literatures that discuss the magnetic field-temperature
phase diagram for a superconductor.
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Figure 1.4: Schematic mean field H − T phase diagram of a type II superconductor [69].

The horizontal axis is the temperature T , and the vertical axis is the applied magnetic

field H. Tc is the zero field superconductivity transition temperature. Hc1(T ) and Hc2(T )

are the temperature dependent lower and upper critical magnetic fields respectively. Hc1

and Hc2 are their zero temperature values. The two lines of Hc1(T ) and Hc2(T ) divide the

phase diagram into three different regimes: Meissner, Mixed, and Normal phases. In the

Meissner phase the magnetic filed is completely expelled out from the superconductor;

in the Mixed state phase the magnetic field can penetrate into the superconductor in

the form of quantized flux tubes and produces vortices in the superconductivity order

parameter; above Hc2(T ) the superconductivity order parameter is completely destroyed

and the system evolves into its normal state. The blue dashed arrow represents a typical

trajectory along which the quantum oscillation experiment is carried out. Notice that for

cuprates Hc1 is very small so that the Meissner phase regime in this diagram should be

very narrow.
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taken into account. As either the temperature or the magnetic field is increased towards

the Hc2(T ) line the vortex solid will melt into a vortex liquid state, due to either thermal

fluctuations or quantum fluctuations [69]. Because the quantum oscillation experiments

are performed at very low temperature, the quantum fluctuations are mainly responsible

for this melting process. The delineation between the vortex solid and vortex liquid state

can be pined down by measuring the resistivity. In the vortex liquid state the magnetic

flux tubes are free to move and lead to finite dissipation of energy [73]. Therefore it is a

resistive state. The vortex solid state, on the contrary, is dissipationless because the vor-

tices are frozen. Experimentally the quantum oscillations are observed in a resistive state

and therefore the system must have entered into a vortex liquid state. In this state the

superconductivity order parameter can fluctuate in both space and time. In Chapter 3

we model the vortex liquid state as a collection of quenched random superconductivity

order parameter vortices. This could be viewed as a snapshot of the vortex liquid state.

The spatial fluctuations of the superconductivity order parameter are taken into account

by averaging the computed quantity over many different random vortex configurations.

However, dynamic fluctuations in time are ignored in our treatment but are believed not

to alter our conclusion, as indicated by Ref. [74]. The detail discussions will be given in

detail in Chapter 3.

1.2 Pairing in half filled Landau level

The observations of the integer quantum Hall effect(IQHE) by Klitzing [75] in 1980 and

the fractional quantum Hall effect(FQHE) in 1982 by Tsui, Stormer, and Gossard [4] have

opened a new chapter in modern condensed matter physics. Before the discovery of QHE,

different states of matter can be classified and understood by the concept of spontaneous

symmetry broken (local) order parameter within the framework of Ginzburg-Landau

theory. However, to understand the QHE a completely new paradigm and a new concept

of topological order [76] is needed, which have recently evolved into the center stage of

condensed matter research due to the rise of topological insulators [77, 78].

Although the IQHE can be well understood within a single particle picture [79, 13],

with the help of the concept of Anderson localization [80], the FQHE is inherently a

16



many-particle problem due to the absence of a small energy scale and the massive degen-

eracy of a partially filled Landau level. To attack this problem different approaches have

been adopted such as Laughlin’s variational wavefunctions [11], Haldane’s hierarchy con-

struction [12], Jain’s composite fermions theory [81], and the Hamiltonian theory [82].

These approaches have been very fruitful in understanding the odd denominator frac-

tional quantum Hall states and have generated many fascinating ideas such as fractional

charges, fractional statistics, etc.

Among these approaches the composite fermion theory is unique in the sense that

it provides a simple unification of the IQHE and FQHE. In this theory the emergent

fundamental quasiparticle is not electron anymore but a composite object of an electron

and some even integer number 2n of magnetic field flux quanta (Φ0 = 2π~c
e

)2. The mutual

braiding statistic angle [76] between the composite fermions, which characterizes the

statistics of these quasiparticles, is given by

π +
1

2
× 1× 2n(2π) = (2n+ 1)π. (1.20)

In this equation on the left hand side the first π factor comes from the Fermi statistics

inherited from the original electrons; the second factor comes from the Aharonov-Bohm

phase picked up by a composite fermion when it traverses around the magnetic fluxes

carried by another composite fermion. The 1/2 factor is needed because adiabatically

moving one particle around another is equivalent to adiabatically exchanging the two par-

ticles twice. Then because ei(2n+1)π = −1, exchanging two composite fermion coordinates

produces a minus sign in their total wavefunction. In other words the composite fermions

still carry Fermi-Dirac statistics and are therefore fermions. Because the fluxes bound to

the composite fermions are in a direction opposite to the external magnetic field B, the

composite fermions feel an effective magnetic field B∗ = B − 2nρΦ0, whose strength is

weaker than the original external magnetic field B. Here ρ is the electron density. Due

to the field B∗ the composite fermions will execute cyclotron motion and their orbits are

quantized into Landau levels. However, the filling fraction of the composite fermions’

Landau levels is different from that of the original bare electrons’ Landau levels. If the

2Notice that this magnetic flux quanta Φ0 is different from the definition of the fundamental magnetic
flux quanta Φs = 2π~c/2e carried by superconductivity vortex. The difference lies in the fact that a
Cooper pair carries a charge of −2e while an electron carries a charge of −e.
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original electron Landau level has a filling fraction ν = p/(2n p+ 1) with n, p ∈ N, then

the composite fermions Landau level, whose spacing is determined by the effective field

B∗, has an integral filling fraction ν∗ = p [13]. In this way an odd denominator FQHE of

the original electrons can be understood as an IQHE of the composite fermions.

However, if the electron filling fraction is ν = 1/2n, which has an even denominator,

then B∗ = 0. In this case the composite fermions can form a Fermi sea(composite fermion

Fermi sea) if there is no Cooper pairing instability and the state should be gapless. From

the above IQHE picture of composite fermions, it seems a FQHE state at these even

denominator filling fractions is impossible since B∗ = 0. However, experimentally both

gapless and gapped states have been observed at even denominator filling fractions. The

most well-known even integer denominator Hall plateau is observed at the ν = 2 + 1/2 =

5/2 filling fraction, which has been well established since its first discovery by Willett

et al [16]. Other even denominator FQHE at ν = 7/2 and ν = 19/8 [83, 84, 85] have

also been observed but have received much less attention because of their more stringent

experimental requirements. In contrast to the ν = 5/2 filling fraction, the ν = 1/2 state

has been found to be gapless [16] in early experiments. Recently some experimental claims

of Hall plateaus at ν = 1/2 in wide quantum wells [86] have also appeared. However,

these are still controversial. But in principle we do not see any general rule excluding a

Hall plateau at ν = 1/2. In this thesis, we consider that both a compressible gapless state

and an incompressible state are possible at ν = 1/2. In the following by half filled Landau

level we mean ν = 1/2 filling fraction; but the discussions could be equally applied to

ν = 5/2 if we take the fully filled first Landau level to be completely inert.

To date, a full comprehension of both the gapless state and the gapped state in half

filled Landau level remains illusive. In the following we give a brief account of the current

understanding of these states from a theoretical perspective.

1.2.1 Half filled Landau level problem: a brief overview

1.2.1.1 Compressible states

The attention to the ν = 1/2 compressible state problem was first drawn by the anomalies

observed in transport by Jiang et al [14] and in the surface acoustic wave propagation
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by Willett et al [15]. The theoretical investigations of the gapless state start with the

pioneering work by Halperin, Lee, and Read(HLR) [23] and another work by Kalmeyer

and Zhang [87]. In the HLR paper, the authors applied the Chern-Simons gauge field

theory, which mathematically implements the flux attachment for composite fermions,

to the half filled Landau level. They proposed that the gapless state in the half-filled

Landau level has a sharp Fermi surface but do not have well-defined Landau quasipar-

ticles. In this theory within the mean field approximation the composite fermions feel

zero magnetic field and the state is described by a Fermi sea of free composite fermion-

s. However, when both the composite fermion-fermion (repulsive) interaction and the

Chern-Simons gauge field fluctuations are turned on, the composite fermion pick up a

self-energy Σ(k, ω), where k is the momentum and ω is the frequency. The derivative

of Σ(k, ω) with respect to the frequency ω diverges at the Fermi surface. Therefore the

composite fermion quasiparticle residue, which in the Landau Fermi liquid theory [8] is

given by Z(k, ω) = (1− ∂Σ(k, ω)/∂ω)−1, vanishes at the Fermi surface 3. The divergence

of ∂Σ(k, ω)/∂ω also leads to a divergent effective mass m∗. The specific form of the

divergence depends on the nature of the composite fermion-fermion interaction v(q). If

it is a Coulomb interaction v(q) ∝ 1/q, then the divergence is logarithmic and the com-

pressible state is a marginal Fermi liquid [32]; whereas if it is a short-range interaction

v(q) ≡ v(0) = const., then the divergence takes a power law form.

The HLR theory has explained the surface acoustic wave propagation experiments [15,

88, 89] very well. Its prediction of a diverging effective mass of the composite fermions

at ν = 1/2 was also supported by the magnetoresistance oscillation experiments by Du

et al [90]. Other experimental findings supporting the HLR picture can be found in

Ref. [91, 92, 93, 13].

Despite its great success the HLR theory has long suffered from the lacking of a

particle-hole symmetry defined for a single Landau level. This issue was first pointed out

in Ref. [94, 95] but did not get a satisfactory resolution. Very recently it was brought to

the focus of researches again by an ingenious proposal by Son [2]. In this proposal the

composite fermions are particle-hole symmetric. These new composite fermions are quite

3This limit is achieved by first setting ω = ξk in the expression of Z(k, ω), where ξk = εk − µ is the
noninteracting particle energy dispersion measured from the chemical potential µ. This is called the
on-shell limit. Then sending ξk → 0 gives the quasiparticle residue on the Fermi surface.
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different from the old composite fermions used in the HLR theory. To distinguish the

two we will call the old composite fermions “HLR composite fermions”. We leave further

discussions of the particle-hole symmetry issue to the Section 1.2.3 and turn to discuss

the incompressible state in half filled Landau level within the HLR composite fermion

picture.

1.2.1.2 Incompressible states

As intriguing as the compressible state is, the half-integral incompressible fractional quan-

tum Hall state is even more mysterious. Its theoretical understanding has experienced

several twists and even up till now remain unsettled.

The first theoretical attempt is the Haldane-Rezayi wavefunction proposed by Hal-

dane and Rezayi [96]. This wavefunction can be interpreted as a spin singlet d−wave

Cooper pairing state of the HLR composite fermions. The spin-singlet nature of the

Haldane-Rezayi state is consistent with the experimental observations that the observed

5/2 plateau can be destroyed by a parallel(to the 2d electron gas plane) component of

magnetic field [97] and makes it an attractive candidate. However, as later argued by

Read and Green in Ref. [22], the Haldane-Rezayi state corresponds to a critical point

between a weak paring phase and a strong pairing phase and therefore has gapless exci-

tations in its bulk spectrum. Hence it is not a good candidate for the half-integral FQHE

state whose bulk spectrum needs to be gapped.

Later on Moore and Read [17, 18] proposed another wavefunction—the Moore-Read

Pfaffian wavefunction, which can be viewed as a p−wave pairing state of spinless(or

spin-polarized) HLR composite fermions [20, 21]. This proposal was supported by later

numerical work by Morf [98] and Rezayi et al [99]. In the work by Morf [98] it was

shown that the ground state is spin polarized and therefore in favor of the Moore-Read

state rather than the singlet Haldane-Rezayi state. Recently in 2007 a new candidate,

the so-called anti-Pfaffian state which is the particle-hole symmetry conjugate of the

Moore-Read Pfaffian state, has also been put forward by Lee et al [100] and Levin et

al [101].

Other states [102, 103, 104, 105, 106, 107], such as the 331 state by Halperin [103],
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have also been suggested to explain the 5/2 gapped state.

Among these different theoretical proposals some of them are abelian; while others

are non-abelian [19]. Whether a state is abelian or non-abelian is determined by the

braiding statistics[108, 109] of its quasiparticle excitations above the ground state. In the

abelian case, when two indistinguishable quasiparticles are adiabatically exchanged the

total wavefunction picks up a phase factor: ψ(r1, r2)→ eiθψ(r2, r1). When there are more

than two particles, each braiding(adiabatically exchanging) of two particles produces an

additional phase factor. Because multiplication of the phase factors in different order

gives identical final results, the different braiding operations commute with each other.

Therefore the corresponding braiding statistics is called abelian. Examples of abelian

particles include our familiar θ = 0 bosons such as photons, and θ = π fermions such

as electrons. However, emergent quasiparticles with θ 6= 0, π can be also realized in odd

denominator fractional quantum Hall states.

More exotically the statistics between quasiparticles can be non-abelian. This can hap-

pen when there is a set of degenerate ortho-normal N indistinguishable particle ground

states ψα(r1, r2, · · · , rN), α = 1, 2, · · · , g. Then if two particles are interchanged: ri ↔ rj,

the resultant new wavefunction ψβ can be different from ψα not just by a phase factor but

by a unitary rotation in the degenerate ground state subspace: ψβ = T ijβαψα, where T ijβα

is a g× g rotation matrix and it depends on the ground state pair (α, β). Since different

matricies T ijβα typically do not commute with each other, exchanging pairs of particles

in different orders can lead to different final wavefunctions and therefore does not com-

mute with each other. Then the corresponding braiding statistics is called non-abelian.

Braiding non-abelian quasiparticles is a topological manipulation, which is immune to

any weak local perturbations. This makes the non-abelian particles very useful for build-

ing a fault-tolerant topological quantum computer. Therefore establishing the existence

of non-abelian quasiparticles has been a tremendously interesting endeavor in condensed

matter physics. In this regard the ν = 5/2 FQHE state is especially interesting because

it is believed to have provided a concrete realization of non-abelian quasiparticles [19],

although experimentally its non-abelian nature is still not established yet [13, 110].

Among the different candidate wavefunctions proposed, the Moore-Read Pfaffian

wavefunction, as well as its particle-hole conjugate —the anti-Pfaffian wavefunction, is
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one such kind of wavefunctions that support non-abelian quasiparticles. The Moore-Read

wavefunction for N particles is [17]

ΨMR(z1, · · · , zN) = A
{

1

z1 − z2

1

z3 − z4

· · · 1

zN−1 − zN

}∏
i<j

(zi − zj)2e−|zi|
2/4`B , (1.21)

where the subscript “MR” in ΨMR is a short hand notation for Moore-Read, zi = xi+iyi is

the complex spatial coordinate of the ith particle. `B =
√

~c/eB is the magnetic length.

In this wavefunction the Jastrow factor
∏

i<j(zi − zj)2e−|zi|
2/4`B contains the information

of attaching two magnetic flux quanta to each electron to form a composite fermion;

while the rest factor A{· · · } encodes the Pfaffian correlation between these composite

fermions. The Pfaffian of an anti-symmetrical N × N(N needs to be an even integer

number) dimensional matrix Mij is defined as

Pf(M) = A{M12M34 · · ·MN−1,N} (1.22)

≡ 1

2N/2(N/2)!

∑
σ∈SN

sgn(σ)
N−1∏

i=1,3,...

Mσi,σi+1
, (1.23)

where SN is the permutation group of degree N , σ is an element of the group SN , and

the sgn(σ) is ±1 depending on whether σ is different from the set {1, 2, · · · , N} by an

even number of permutations(+1) or odd number of permutations(−1). Mathematically

it can be easily shown that a Pfaffian of an antisymmetric matrix is equal to the square

root of the corresponding determinant of that matrix: Pf(M) =
√

det(M).

The connection between the Moore-Read wavefunction ΨMR and a Cooper pairing

state of composite fermions can be immediately established once we realize that the real

space BCS ground state wavefunction of a definite number of particles is also a Pfaffian,

as was first pointed out by Freeman Dyson [111]. To see this clearly we consider a mean

field superconductivity Hamiltonian in momentum space

H =
∑
k

ξkc
†
kck +

1

2

∑
k

[∆kc
†
kck + h.c.], (1.24)

where ξk = εk − µ and ∆k is the pairing order parameter. This quadratic Hamiltonian

can be diagonalized directly by Bogoliubov transformation [111]. The excitation energy

dispersion is Ek =
√
ξ2
k + |∆k|2 and the ground state is a coherent superposition of single

particle empty states and occupied states given by

|ΨBCS〉 =
∏
k

(uk + vkc
†
kc
†
−k)|0〉, (1.25)
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where |uk|2, |vk|2 are the BCS coherent factors that satisfy the condition |uk|2 + |vk|2 = 1.

The absolute phases of uk and vk are not important, but their relative phase needs

to be chosen in accordance with the phase of the pairing order parameter so that the

relation vk/uk = −(Ek − ξk)/∆∗k holds. From |ΨBCS〉 the real space BCS wavefunction

of N fermions(N even) can be obtained by projecting |ΨBCS〉 onto the N−fermion state

c†r1
c†r2
· · · c†rN |0〉. This gives the real space BCS wavefunction in its first quantization form

as follows [111]

ΨBCS(r1, · · · , rN) = A{g(r1 − r2) g(r3 − r4) · · · g(rN−1 − rN)} , (1.26)

where g(r) =
∫

dk
(2π)2 e

ik·r gk and gk ≡ vk/uk. As shown in Ref. [22], if the pairing order

parameter4 is in the chiral ` = −1 angular momentum channel: ∆k ' ∆ (kx− iky) ∝ ei`θ,

where ` = −1 and θ is the azimuthal angle of the vector k, then gk ∼ 1/(kx + iky) as

kx, ky → 0. Correspondingly g(r) has an asymptotic behavior g(r) ∼ 1/z as |r| → ∞
in real space. Here z = x + iy is the complex 2D space coordinate. The power law

decay of g(r) indicates that the state is in a weak pairing state, in contrast to the strong

pairing phase where g(r) decays exponentially [22]. If we take g(r) to be 1/z in ΨBCS for

all distances(not just the asymptotical large distance), then ΨBCS(r1, · · · , rN) in Equa-

tion (1.26) becomes exactly the Pfaffian factor appeared in the ΨMR in Equation (1.23).

Therefore as long as the low energy long distance behavior is concerned, the Moore-Read

wavefunction can be viewed as a chiral ` = −1 paring state of composite fermions. Es-

pecially their topological nature, which only depends on the global correlations encoded

in these two states, should be identical.

If we view ΨMR as a px − ipy
5(chiral ` = −1 channel) pairing state of composite

4We will try to avoid using “superconductivity order parameter” when we talk about the pairing
state of composite fermions, because the composite fermions are neutral to external magnetic field at
half filling and there is no true superconductivity for composite fermions. Instead the defining Meissner
effect of a regular superconductor for the composite fermions pairing condensate will be translated to an
incompressibility of FQHE states in terms of original electrons [22].

5In the literature, such as Ref. [19], it is often said ΨMR corresponds to px + ipy pairing state. The
convention here needs some clarifications. If we solve the Landau level problem with a Hamiltonian
H = 1

2m (p+ eA/c)2, where e is the magnitude of the charge of an electron and is therefore positive, the
lowest Landau level wavefunction will be an analytical function of z = x + iy complex variable only if
the external magnetic field direction is chosen to be in the negative ẑ direction: B = −Bẑ with B > 0.
Therefore with respect to the +ẑ direction, ΨMR corresponds to a chiral ` = −1 pairing channel, or
equivalently px − ipy channel; however, were the applied external magnetic field B = −Bẑ direction
chosen to be the positive direction, ΨMR would correspond to a px + ipy pairing state, which is the one
used a lot in literature. Here we are trying to be consistent by using the +ẑ as the single reference
direction when we talk about pairing channels.
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fermions, as argued in the previous paragraph, then there can be vortex excitations in

the pairing order parameter. As shown in Ref. [22], each single vortex supports one zero

energy Majorana mode(bound state) centered at that vortex. If there are several well

separated vortices, we can consider the braiding statistics between them. It turns out

that because of the Majorana zero mode captured by each vortex, the braiding statistics

between these vortices is non-abelian [19]. In the Moore-Read wavefunction case, the

corresponding elementary excitations are quasiholes [13] which carry a charge of e/4.

The braiding statistics of these quasiholes are argued by Moore and Read [17, 18] to be

non-abelian by identifying the ΨMR wavefunction as conformal blocks of two-dimensional

conformal field theory. That both ΨMR and the px − ipy pairing state of composite

fermions support non-abelian quasiparticles strongly support that they can be identified

with each other, at least if only the asymptotically large distance behavior is concerned.

1.2.1.3 Pairing transition from the composite fermion liquid state to a com-

posite fermions pairing state

Although the non-abelian statistics of a pairing state of composite fermions discussed

above is extremely interesting in its own, it is not our focus. Instead we are more in-

terested in understanding how a pairing state of composite fermions develops from the

compressible composite fermion liquid state. In other words we want to explore the

possible pairing mechanism behind this transition.

This problem is not trivial for at least the following several reasons:

1. The bare composite fermion-fermion interaction v(q) , which does not incorporate

the screening effects from the fluctuations of the emergent gauge fields, is repulsive

and therefore does not naturally lead to pairing.

2. Systematically studying the effects of the fluctuations of the emergent gauge fields

by perturbation is not well controlled at all. This is because the perturbation

expansion parameter in this problem is given by the number of flux quanta attached

to the electron and for half filling is equal to 1
ν

= 2 [21], which is by no means small.

This is in stark contrast to the (3+1)d QED, where the coupling of electrons to the

electro-magnetic gauge field is governed by the fine structure constant α ≈ 1/137,
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which is so small such that the perturbation calculations developed by Feynman,

Schwinger, and Tomonaga agree with experimental observations incredibly well.

3. When the interaction v(q) and the coupling to the emergent gauge fields are both

present, the pairing problem is even more complicated because, as is discussed

previously and shown in Ref. [23], the conspiring effect of interaction and gauge

field fluctuations tends to destroy the low energy quasiparticles which are supposed

to form a Cooper pair in the pairing state. Therefore there is a competition between

the non-Fermi liquid behavior(Landau quasiparticle residue vanishing) [23, 112, 113]

and the pairing instability in such a problem [114]. This makes a complete solution

to the problem even more challenging.

Despite of all these difficulties, attempts to explain the pairing instability have been

made before, albeit based on some uncontrolled approximations. Greiter, Wen and

Wilczek [21] first considered a bare interaction6 between one composite fermion and the

current carried by another composite fermion. Because the interaction depends on both

the number density and the current density of composite fermions, it is called density-

current interaction. This interaction is nothing but a Lorentz force between the magnetic

flux tubes carried by one composite fermion and a current of the electron carried by

another composite fermion. Remember that the composite fermions are bound states of

an electron and an even number of magnetic flux quanta. This interaction is attractive

in the chiral ` = 1, 3, · · · pairing channels 7 . The pairing gap has its largest value in the

` = 1 channel, which is the correct pairing channel that the Moore-Read Pfaffian state

corresponds to.

However, if both the interaction v(q) and the coupling to the gauge fields are taken

into account, then apart from the density-current interaction, another current-current

interaction can be generated between composite fermions. This interaction can be un-

6“Bare” in the sense that the screening effects of the finite density CFs on the gauge fields are not
included. In the field theoretical language, the interaction considered is a tree level interaction. Also
this interaction should not be confused with the interaction v(q)(which may be a Coulomb interaction
or a short range interaction) mentioned previously, which is present even in the absence of gauge field
fluctuations.

7The pairing angular momentum channel here is defined with respect to the external magnetic field
direction and therefore it is not ` = −1. We stick to the convention used in Ref. [21] here for the
convenience of discussion. This convention will be also used in Chapter 4.
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derstood by the following picture: a current of composite fermion can interact with the

density of another composite fermion by the above density-current interaction(a Lorentz

force); then the second composite fermion can interact with the third composite fermion

via the interaction v(q), which only depends on the density but not the current of com-

posite fermions; then the third composite fermion can interact again with a current of the

fourth composite fermion again by a Lorentz force. This kind of chain processes generate

a net current-current interaction between composite fermions. From this picture we see

that the current-current interaction appears only if we go to the second order perturba-

tion or even higher order in the couplings to the emergent gauge field. Therefore normally

we might think that these terms are small and can be discarded. However, as empha-

sized previously this does not need to be the case as the gauge field coupling constant

is not small in the current problem and the perturbation expansion is not trustworthy.

In fact, if we carry out the previous chain process of generating current-current inter-

action all the way to infinite order and sum up all these terms, which in the language

of Feynmann diagrams is equivalent to summing up all the so called bubble diagrams

only and is often called random phase approximation(RPA) [115, 116, 117, 118, 119], we

end up with a current-current interaction which depends on the frequency transfer and is

divergent in the zero frequency limit 8. This has been shown by Bonesteel in Ref. [120].

Furthermore, this current-current interaction is repulsive in the BCS channel 9. This

is easy to understand: because the Cooper pairs are formed by two composite fermions

with opposite momentum, then the electron charge current carried by them are also in

opposite directions. The current-current interaction is nothing but an emergent Ampere

force between these two composite fermion currents. It is well known that the Ampere

force between opposite static currents repel each other. Therefore the current-current in-

teraction should be repulsive in the zero frequency limit. This repulsive and singular low

frequency limit current-current interaction, together with the attractive density-current

interaction, has been used to solve the BCS gap equation in Ref. [120]. It was shown that

8 The generated current-current interaction depends on the frequency because of the energy exchange
between the composite fermions and the gauge fields. Throughout this whole thesis when analyzing the
half-filled Landau level problem, we work with Matsubara frequencies only. This is enough if we only
care about the thermodynamic properties. Working out the real frequency dynamics is a much harder
problem.

9BCS channel [121] means that the interaction scatters electron pair from {k,−k} → {k′,−k′} with
the momentum transfer q = k− k′.
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the gap equation can either have no solution or have a finite gap solution(at least when

the interaction v(q) is a short range interaction) depending on the relative strengths of

the two interaction. Therefore the transition from the composite fermion liquid state to

a pairing state is concluded to be of first order given that the gap function has a jump

at the transition point as a function of relevant tuning parameter.

In Chapter 4, we make a twist to this whole story by considering the full frequency

dependence of the current-current interaction, not just its small frequency limit. It turns

out that although the current-current interaction is repulsive and singular in the zero

Matsubara frequency limit, it has a considerable portion of attraction at higher frequen-

cies in certain angular momentum channels. Therefore if these attractions are included,

even the current-current interaction itself may result in a net pairing. If that is the case

this gives an example of pairing from repulsive forces in the sense that although the static

force is repulsive, the dynamic screened interaction can in fact give attraction and lead

to pairing. This alter some conclusions obtained in Ref. [120]. In the following we give

a short introduction to this new pairing mechanism and compare it with other similar

ideas.

1.2.2 New pairing mechanism from repulsive forces

The idea of pairing from repulsive forces is not new. Long time ago Kohn-Luttinger [122]

proposed a pairing mechanism from repulsive forces. Their idea is based on the obser-

vation that in a finite density fermion system, due to the Pauli exclusion, the Coulomb

interaction between particles is screened and has a long tail Friedel oscillation in real

space. Due to the oscillation there are attractions in some regime of the real space. If

somehow we can take advantage of attraction and avoid the repulsive portions, there can

be a chance of getting a net pairing. This obviously can not happen in the ` = 0 pairing

channel because of the divergent repulsion at zero distance. As shown in [122], indeed

there can be pairing at higher angular momentum channels. However, the pairing gap en-

ergy scale is extremely small [122] so that it is irrelevant to most of experiments(including

our half-filled Landau level problem). The key ingredient of this mechanism is a static

screening of the electron electron interaction from finite density fermions.

Recently Chung et al. [123] have came up with a new paring mechanism from a
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repulsive force. The idea is to consider the dynamic screening of a repulsive interaction

due to the finite density of fermions. To the lowest order, this screening is given by

the Landau damping. It turns out that the screened interaction can have significant

attractions at higher frequencies in some pairing angular momentum channels although

it is repulsive in the zero frequency limit. This is similar to the Kohn-Luttinger case

except that now the attraction is in the frequency domain. Typically the ` = 0 channel is

completely repulsive in the whole frequency range and therefore can not give any pairing.

In contrast to the Kohn-Luttinger case, the pairing gap energy can be some fraction of

the Fermi energy of composite fermions and is therefore not small and can be relevant to

half-filled Landau level experiments.

The other difference of this new mechanism from the Kohn-Luttinger’s idea is that

the new mechanism always needs a finite interaction coupling strength to trigger the

pairing instability; while in the Kohn-Luttinger case an infinitesimal coupling can result

in a pairing.

We have applied this new mechanism to the pairing problem of HLR composite

fermions in Chapter 4, as mentioned previously. In Chapter 5 this idea is further ex-

tended to a new particle-hole symmetric composite fermion theory for the half-filled Lan-

dau level. In the following we introduce this particle-hole symmetric composite fermion

theory.

1.2.3 Particle-hole symmetric composite fermion theory of the half filled

Landau level

Although the HLR theory has been very successful in explaining many experiments of

half-filled Landau level, there is a conflict of this theory with an emergent particle-hole

symmetry defined for a half filled single Landau level.

1.2.3.1 Definition of the particle-hole symmetry

The emergent particle-hole symmetry is defined in the vanishing Landau level mixing

limit. In this limit the lowest Landau level with an electron filling fraction ν can be
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equally well viewed as a full 10 Landau level filled with holes, with a corresponding hole

filling fraction 1−ν. Then a particle-hole transformation(PH) [124, 2, 125, 126, 127, 128]

can be defined for a single Landau level as follows

|ν = 0〉 PH−−→ |ν = 1〉 (1.27)

c†m
PH−−→ cm, (1.28)

where |ν = 0〉, |ν = 1〉 stand for a completely empty and a completely full Landau

level respectively and c†m, cm are the creation operator and annihilation operators of

the mth degenerate orbit of the lowest Landau level. From this definition we see that

the PH transformation differs from the single charge conjugation operation as defined

by Equation (1.28). Instead it also requires that the external magnetic field direction

to be reversed so that the ground state of an empty Landau level is properly trans-

formed into a ground state of completely filled Landau level for holes as shown in Equa-

tion (1.27)(ignoring all other Landau levels). Therefore the PH transformation involves

a simultaneous physical charge conjugation and physical time reverse.

1.2.3.2 Conflict of the PH symmetry with the HLR theory

If the electron filling fraction ν = 1/2, then the hole filling fraction of a full Landau level

is 1 − ν = ν = 1/2. In other words the system are equally well described by particles

and holes with the same filling fraction. In other words PH is a symmetry at half filling.

This symmetry puts a severe constraint on the possible value of composite fermion Hall

conductivity: σcfxy = −1
2
e2

h
11, where h = 2π~. However, this apparently contradicts the

HLR picture, as explicitly pointed out in Ref. [94]. Here we recapitulate some results

from Ref. [94] to exhibit the contradiction. Because a single Landau level with an electron

filling fraction ν can be equally described by a full Landau level filled with holes at a hole

filling fraction 1−ν, the electron Hall conductivity σexy(ν) and the hole Hall conductivity

σhxy(1− ν) are connected by

σexy(ν) =
e2

h
+ σhxy(1− ν). (1.29)

10 By “Full” we mean that the lowest Landau level is fully occupied by electrons.

11The minus sign here is defined with respect to the Hall conductivity σe
xy of the original electrons. In

other words the sign of σcf
xy is opposite to that of σe

xy.
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On the right hand side the first term comes from the contribution of the completely

electron filled Landau level. Because electrons and holes carry opposite charges we have

the following relation

σexy(ν) = −σhxy(ν). (1.30)

Combining Equation (1.29) with Equation (1.30) leads to

σexy(ν =
1

2
) =

1

2

e2

h
. (1.31)

To find out the value of σcfxy we use the following relation between the electron and

composite fermion resistivity [129]

ρexx = ρcfxx, ρeyx = ρcfyx + 2
h

e2
, (1.32)

where the superscript “e” and “cf ’ are used to denote the quantities defined for electrons

and composite fermions respectively. In the equation of Hall resistivity the second term

on the right hand side comes from the contribution from the two magnetic flux quanta

carried by each composite fermion. Then the composite fermion Hall conductivity can

be computed as follows

σcfxy =
ρcfyx

(ρcfxx)2 + (ρcfyx)2
=

ρeyx − 2h/e2

(ρexx)
2 + (ρeyx − 2h/e2)2

= −1

2

e2

h
. (1.33)

12 This large value of σcfxy implied from the PH symmetry is in a sharp contrast to the

HLR picture. In the HLR theory the composite fermions on average feels zero magnetic

field and therefore the Hall conductivity should vanish: σcfxy = 0, because at the mean

field level the external magnetic field is exactly cancelled out by the fluxes bounded to

composite fermions. Beyond the mean field approximation there can be fluctuations of

the emergent gauge fields, either due to thermal fluctuations, quantum fluctuations, or

disorder. However, including these fluctuations can only lead to a small correction and

can not explain the big value of σcfxy = −1
2
e2

h
. Experimentally the measured σxy magnitude

is very close to 1
2
e2

h
[130] and the emergent PH symmetry has also been supported by the

self duality found in the non-linear transport measurements [131, 132] and by the more

12In deriving this equation we have used σe
xy = −ρexy/[(ρexx)2+(ρexy)2] = e2/2h, and σe

xx = ρexx/[(ρ
e
xx)2+

(ρexy)2]. Also σe
xx 6= 0 is needed. This requires breaking of the Galilean invariance by disorder, which

is not a bad assumption given that in real experiments disorder is always unavoidable. In Ref. [94] the
zero disorder limit of σcf

xy is inconclusive.
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recent composite fermion Fermi wavevector measurements at half filling [133, 134]. These

measurements contradict the HLR picture, which apparently breaks the PH symmetry.

Early attempt to resolve this contradiction can be found in Ref. [95].

1.2.3.3 PH symmetric Dirac composite fermion theory

Very recently Son [2] has revisited this issue and proposed an ingenious new PH symmet-

ric composite fermion theory for the half-filled Landau level problem. In this proposal

the original non-relativistic electron Landau level at half filling is first mapped to a

Dirac fermion( which still carries electric charge) Landau level problem with the chem-

ical potential sitting at the neutrality point(Dirac point). Then the low energy physics

of the Dirac fermion Landau level problem is proposed to be described by a finite den-

sity Dirac composite fermion. The Dirac composite fermion carries an emergent two

component pseudo-spin degrees of freedom and its dynamics is described by a Rashba

pseudospin-orbital coupling Hamiltonian. Therefore its energy dispersion is given by a

single Dirac cone with two branches. The lower negative energy branch is inert and

completely filled with the composite fermions. The Dirac composite fermions density in

the upper positive energy branch is fixed by the external magnetic field such that one

composite fermion corresponds to two external magnetic flux quanta, similar to the HLR

picture. Furthermore, the particle hole symmetric composite fermions are electrically

neutral. Therefore the PH symmetric composite fermions are essentially the double flux

quanta object in the original electron theory and enjoys an electro-magnetic duality to the

original electron theory. This point is further discussed and elucidated in the following

up works [135, 136, 137, 125].

Because the new composite fermions are Dirac, there is a nontrivial φF = π Berry

phase picked up by composite fermions as they are traversed around the Fermi surface.

According to Ref [138] this Berry phase contributes an additional Hall conductivity to

the composite fermi liquid by an amount |σcfxy| = φF
2π

e2

h
= 1

2
e2

h
. This can reconcile the

constraint on σcfxy from the PH symmetry with the fact that the Dirac composite fermions

feel both zero external magnetic field and on average zero emergent magnetic field(see

following discussions).

Similar to the HLR theory the PH symmetric composite fermions also couple to an
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emergent gauge field aµ. However, there is a crucial difference. In the new theory the

Chern-Simons(CS) term of the gauge fields:
∫
d2xdt εµνσaµ∂νaσ, which is present in the

HLR theory, is absent. As shown in Ref. [2], in the HLR theory it is precisely the CS

term that breaks the PH symmetry. Therefore the absence of this term rescures the PH
symmetry in the new theory.

As another manifestation of the electro-magnetic duality, the strength of the emergent

magnetic field: b = ẑ · ∇ × a, where a is the spatial vector part of the gauge fields aµ,

is completely dictated by the deviation of the original electron charge density from its

value at a half-filled Landau level. Therefore if the original electron Landau level filling

fraction is right at ν = 1/2, then on average b is zero.

As argued in Ref. [2, 125], most of the phenomenology of the old HLR theory can be

carried over to the new particle hole symmetric Dirac composite fermion theory. These

include the small q linear dependence of the composite fermion conductivity σcfxx ∝ q

for q � l−1, where l is the disorder induced mean free path. This point is crucial to

explain the surface acoustic wave propagation experiments [88]. Also the new theory has

similar infrared logarithmic divergence as in the old HLR theory in the presence of a

Coulomb interaction. Some differences between the PH symmetric theory and the HLR

theory have been predicted for transport measurements [2, 125, 137]. However, these are

still waiting for experimental verification or falsification. So far, the most direct support

of this new PH symmetric theory comes from a density matrix renormalization group

numerical study by Geraedts et al [126], where a suppression of 2kF backscattering, which

is a characteristic of Dirac fermions, has been observed.

After Son’s proposal many works followed up [139, 140, 126, 136, 128, 125, 135, 137,

127, 141, 142]. In Ref. [125] the authors tried to develop an intuitive dipolar picture

for the Dirac composite fermions and also connect the Dirac composite fermions theory

to other seemingly completely unrelated fields such as the surface theory of strongly

correlated topological insulator, and spin liquid theory. There are also other particle-hole

symmetric theories proposed for the half filled Landau level that are different from Son’s

idea, such as those in Ref. [140, 141]. In these theories the particle hole symmetry is

assumed to be spontaneously broken on the two sides of half filling. The exact ν = 1/2

point corresponds to a critical transition point between the two symmetry broken states.
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Whether these theories describe the half-filled Landau level problem better than Son’s

proposal or vice versa needs much further investigation and can only be determined by

experiments. There are also criticisms from Haldane [143] on the Dirac character of the

composite fermions in Son’s proposal. He has argued that only the nontrivial π Berry

phase around the composite fermion Fermi surface is essential for a resolution to the

particle-hole symmetry problem in the half filled Landau level; while the Dirac character

itself of the composite fermions is unnecessary and inappropriate. To what extent the

Dirac nature of composite fermions is needed to describe the low energy physics of the

half filled Landau level is a debatable question and is beyond the scope of this thesis.

1.2.3.4 The focus and scope of Chapter 5

Instead of getting involved into any controversy mentioned above, we take Son’s proposal

as a good low energy effective field theory for the half filled Landau level, and based on it

we consider the pairing problem of the PH symmetric composite fermions. Specifically

we apply the new pairing mechanism discussed in Section 1.2.2 to the PH symmetric

composite fermions and consider the pairing phase transition. Detail discussions are

given in Chapter 5. Given that the essential ingredient in the new pairing mechanism is

a Landau damping given by the finite density Fermi sea of composite fermions and the

pairing angular momentum channels classification(such as which channel corresponds to

the Moore-Read Pfaffian state) only essentially depends on the π Berry phase around

the Fermi surface, we would expect that the conclusions obtained in Chapter 5 still hold

even if the Dirac nature(the singularity at the Dirac point far from the Fermi surface) is

not there, as long as the two essential ingredients mentioned are still present.

1.3 Outline of this thesis

In this thesis we study two sets of problems: the quantum oscillations observed in hole

underdoped cuprates and the pairing of composite fermions in half-filled Landau level. For

the quantum oscillation we focus on how to explain the observed oscillation frequencies

by Fermi surface reconstruction from a d−density wave perspective and the effects of

superconductivity fluctuations on the quantum oscillations; as to the half filled Landau
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level problem our primary interest is to understand the pairing mechanism behind the

transition from a composite fermion liquid state to different kinds of pairing states.

In Chapter 2 we address a question raised in previous explanations of the quantum

oscillation frequencices by a two-fold d−density wave order. In that explanation the

reconstructed Fermi surface consists of a small electron pocket Fermi surface, whose

area can explain the experimentally observed frequency F ∼ 530T well, and a large

hole pocket, which has not been observed in experiments. We show that the absence of

the large hole pocket oscillation frequency in experiments can be resolved if a period−8

stripe DDW order is behind the scene of the Fermi surface reconstruction. The new

reconstructed Fermi surface also contains an electron pocket and a hole pocket. However,

the hole pocket is much smaller than the electron pocket. Correspondingly the hole

pocket oscillation is very slow such that its experimental establishment requires a much

larger field range. We suggest this might explain its absence in previous experimental

observations. We demonstrate these oscillations in the presence of disorders explicitly

by analyzing the field dependent conductance, which is computed by using the Pichard-

Landauer formula and the transfer matrix method.

In Chapter 3 we investigate the effects of the superconductivity fluctuations on the

quantum oscillation of normal state quasiparticles. We consider a mixed-vortex state

where randomly distributed quenched superconductivity vortices coexist with normal

state quasiparticles. The model considered for the normal state consists of one of various

kinds of density wave orders. We show that the Onsager rule that connects the normal

state quasiparticle Fermi surface area to the quantum oscillation frequency remains intact

to an excellent approximation even in the mixed-vortex state of the underdoped cuprates.

We establish this conclusion by calculating the magnetic field dependent density of states

within the Bogoliubov-de Gennes Hamiltonian formalism, using the recursive Green’s

function method. We also show that the oscillations ride on top of a field independent

density of states, ρ(B), for higher fields. This feature appears to be consistent with

recent specific heat measurements [C. Marcenat, et al. Nature Comm. 6, 7927 (2015)].

At lower fields we model the system as an ordered vortex lattice, and show that its density

of states follows a dependence ρ(B) ∝
√
B in agreement with the semiclassical results

[G. E. Volovik, JETP Lett. 58, 469 (1993)].
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In Chapter 4 we turn to the pairing problem in the half-filled Landau level. We apply

the new pairing mechanism discussed in Section 1.2.2 to the composite fermion liquid

state described by the HLR picture. Both an emergent density-current and current-

current interaction have been included within the random phase approximation to pair

up the composite fermions. By numerically and self-consistently solving the pairing gap

equation we show that there can be a continuous transition from the Halperin-Lee-Read

state to a chiral odd angular momentum Cooper pair state regardless of whether the

bare interaction between composite fermions is a short-range contact interaction or a

Coulomb interaction. This is at odds with the previously established conclusion of first

order pairing transition for the bare short range interaction case. We construct the phase

diagrams and show that ` = 1 angular momentum channel is quite different from higher

angular momentum ` ≥ 3. Similar analysis has been carried out for the bilayer Hall

system with a total filling fraction ν = 1
2

+ 1
2
. We found that the qualitative features of

the previously established results remain unchanged.

In Chapter 5 the new pairing mechanism discussed in Section 1.2.2 is further applied

to the particle-hole symmetric Dirac composite fermion theory proposed very recently

by Son [2]. We consider a repulsive bare interaction and the dynamical screening of it

from the finite density Dirac composite fermions. Using the screened interaction we again

solve the self-consistent pairing gap equation as in Chapter 4. We show that there can be

nonzero pairing in angular momentum channels |`| ≥ 1 depending on the magnitude of a

coupling constant. These include the well known Moore-Read Pfaffian and anti-Pfaffian

states. There is a quantum phase transition from the Dirac composite fermi liquid state

to Cooper pairing states in angular momentum channels |`| ≥ 1 as the coupling constant

is tuned across its critical point value. Surprisingly the particle-hole symmetric ` = 0

channel pairing turns out to be energetically impossible irrespective of the size of the

coupling constant within the current pairing mechanism.
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CHAPTER 2

Quantum oscillations in YBa2Cu3O6+δ from period−8

d-density wave order

2.1 Introduction

The problem of pseudogap in high-temperature superconductors is one of the most chal-

lenging problems in condensed matter physics; see Ref. [5] and references therein. At

present there are two views: (i) it is either a form of particle-hole condensate reflecting

a density wave order, or (ii) it is a remnant of the fundamental superconducting order,

a particle-particle condensate, that occurs at a lower temperature. As mentioned in the

Chapter 1 we adopt the former view.

The discovery of quantum oscillations [7] in the Hall coefficient (RH) of hole-doped

high temperature superconductor YBa2Cu3O6+δ (YBCO) in high magnetic fields approx-

imately between 35T and 62T was an important event that is likely to shed light on the

origin of the pseudogap [53]. Although the original measurements were performed in the

underdoped regime, close to 10% hole doping, later measurements have also revealed clear

oscillations for YBa2Cu4O8 (Y248), which corresponds to about 14% doping [144, 145].

Fermi surface reconstruction due to a density wave order that could arise if supercon-

ductivity is effectively destroyed by high magnetic fields has been a promising focus of

attention [65, 63, 67, 146, 1, 66]. Similar quantum oscillations in the c-axis resistivi-

ty in Nd2−xCexCuO4 (NCCO) [147, 148, 149] have been easier to interpret in terms of

a two-fold commensurate density wave order, even quantitatively, including magnetic

breakdown effects [150, 151].

At this time, in YBCO, there appears to be no general agreement about the pre-

cise nature of the translational symmetry breaking. A pioneering idea invoked an order

corresponding to period-8 anti-phase spin stripes [65]. The emphasis there was to show
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how, over a reasonable range of parameters, the dominant Fermi pockets are electron

pockets, thus explaining the observed negative Hall coefficient. At around the same time

a two-fold commensurate d-density wave (DDW) order twas suggested to be able to ex-

plain the observations as well [53]. There are several reasons for such a choice. One of

them is that the presence of both hole and electron pockets with differing scattering rates

leads to a natural explanation [53] of oscillations of RH. An period-8 DDW was also

considered [67]. Fermi surfaces resulting from this order are very similar to those due to

spin stripes. The lack of Luttinger sum rule and a multitude of possible reconstructed

Fermi surfaces appeared to have little constraining power in a Hartree-Fock mean field

theory. However, since then many experiments that indicate the importance of stripe

physics [152] and even possible unidirectional charge order have led us to reconsider the

period-8 DDW.

Whereas commensurate models can explain measurements in NCCO, it appears to fail

to explain the measurements in YBCO. Luttinger sum rule leads to a concommitatnt hole

pocket with an oscillation frequency roughly about twice the frequency of the electron

pocket (∼ 500 T). Despite a motivated search no such frequency has been detected. In

contrast, for period-8 DDW the hole pockets can be quite small for a range of parameters.

To convincingly detect such an oscillation, it is necessary to perform experiments in much

higher fields than is currently practiced, which may have bearing on the absence of the

hole pocket in previous measurements. However, a tantalizing evidence of a frequency

(270 ± 20 T) has been reported in a recent 85 T measurement [153]. There is also a

more recent experimental work [154] showing that a small hole pocket oscillation with

a frequency ∼ 100T has been found. However, further experiments are still required

to firmly establish the small hole pocket. Another consequence of our work is that,

depending on disorder, one may even have a situation in which the slower frequency

arising from the hole pocket can be more prominent than the faster frequency from the

electron pocket.

A number of further considerations suggest that singlet DDW order is a good candi-

date. Tilted field measurements have revealed spin zeros in quantum oscillations, which

are indicative of a symmetry breaking order parameter that is a spin singlet rather than

a triplet [155, 156]. Also, NMR experiments in high fields indicate that there is no spin
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order but a period-4 charge order that develops at low temperatures [45] 1. This fact can

be easily incorporated in our theory because in Landau theory period−8 DDW order of

the wave vector Q can result in a period−4 2Q charge order. It is important to note that

DDW order is very effectively hidden [9, 10]. As long as the CuO-plane is square planar,

the currents induced by the DDW cannot induce net magnetic moment to couple to the

nuclei in a NMR measurement. Any deviation from the square planar character could

give rise to a NMR signal [157]. To the extent these deviations are small the effects will

be also small.

First, in Sec. 2.2, we describe our model. Second, in Sec. 2.3, we outline the transfer

matrix calculation of the conductivity. Third, in Sec. 2.4, we describe our results, most

importantly the quantum oscillation spectra. The final Section 2.5 contains a discussion

and an overall outlook.

2.2 The Model

2.2.1 Band structure

The parametrization of the single particle band structure for YBCO from angle resolved

photoemission spectroscopy (ARPES) is not entirely straightforward because cleaving at

any nominal doping leads to an overdoped surface. Nonetheless an interesting attempt

was made to reduce the doping by a potassium overlayer [158]. Further complications

arise from bilayer splitting and chain bands. Nonetheless, the inferred band structure

appears to be similar to other cuprates where ARPES is a more controlled probe [159].

Here we shall adopt a dispersion that has become common and has its origin in a local

density approximation (LDA) based calculation [160], which is as follows:

εk = −2t(cos kx + cos ky) + 4t′ cos kx cos ky

− 2t′′(cos 2kx + cos 2ky).
(2.1)

1 Since the time we wrote our paper in 2012 many more experiments have been conducted to reveal
the nature of this charge order and most experiments [46, 47, 48, 49] seem to suggest that the charge
order is incommensurate and bi-directional with a local d−wave symmetry, unlike the unidirectional
commensurate charge order proposed in Ref. [45]. However, the nature of this charge order is still under
debate. Our prediction of a small hole pocket in this chapter does not depend on the nature of this
charge order, which is much weaker than the dominant period−8 DDW order.
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The band parameters are chosen to be t = 0.15eV , t′ = 0.32t, and t′′ = 0.5t′ [160].

The only difference with the conventional LDA band structure is a rough renormalization

of t (from 0.38eV to 0.15eV ), which is supported by many ARPES experiments that find

that LDA overestimates the bandwidth. A more recent ARPES measurement on thin

films paints a somewhat more complex picture. [161]

2.2.2 Incommensurate DDW without disorder

An ansatz for period-eight incommensurate DDW [67] involves the wave vector Q =

(π
a
, π
a
) − π

a
(2η, 0) = π

a
(3

4
, 1) for η = 1/8. With the 8-component spinor defined by χ†k =

(c†k,α, c
†
k+Q,α, c

†
k+2Q,α, . . . c

†
k+7Q,α), the Hamiltonian without disorder can be written as

H =
∑
k,α

χ†kαZk,αχkα (2.2)

The up and down spin sector eigenvalues merely duplicate each other, and we can consider
simply one of them:

Zk =



εk − µ iGk Vc 0 0 0 Vc −iGk+7Q

c.c εk+Q − µ iGk+Q Vc 0 0 0 Vc

Vc c.c εk+2Q − µ iGk+2Q Vc 0 0 0

0 Vc c.c εk+3Q − µ iGk+3Q Vc 0 0

0 0 Vc c.c εk+4Q − µ iGk+4Q Vc 0

0 0 0 Vc c.c εk+5Q − µ iGk+5Q Vc

Vc 0 0 0 Vc c.c εk+6Q − µ iGk+6Q

iGk+7Q Vc 0 0 0 Vc c.c εk+7Q − µ



, (2.3)

where Gk = (Wk − Wk+Q)/2, and the DDW gap is Wk = W0

2
(cos kx − cos ky). On

symmetry grounds, one can quite generally expect that an incommensurate DDW with

wave vector Q will induce a charge density wave (CDW) of wave vector 2Q [9]. This fact

is taken into account by explicitly incorporating a period-4 CDW by introducing the real

matrix elements Vc. The chemical potential µ and the DDW gap amplitude W0 can be

adjusted to give the desired quantum oscillation frequency of the electron pocket as well

as the doping level. The Fermi surfaces corresponding to the spectra of Eq. (2.2) (an

example is shown in Fig. 2.1) are not essentially different from the mean field theory of

1/8 magnetic antiphase stripe order [65]. This higher order commensuration generically

produces complicated Fermi surfaces, involving open orbits, hole pockets, and electron

pockets.

To picture the current modulation and to define the order parameter of period-8 DDW

39



-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

a kx

a ky

Figure 2.1: Reconstructed Fermi surafces with Q = π
a
(3

4
, 1), W0 = 0.65t , Vc = 0.05t,

and µ = −0.83t. There are electron pockets, hole pockets and open orbits. The elec-

tron pocket frequency corresponds to 530T and the hole pockets to 280T. The doping

corresponds to 12.46%. Note that the figure is shown in the extended BZ for clarity.
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in the real space Hamiltonian we need to calculate 〈c†r′cr〉 for r′ 6= r. We get, correcting

here a mistake in Ref. [67],

〈c†r′cr〉 =
1

N

∑
k′k

〈c†k′ck〉 exp [−i(k′ · r′ − k · r)]

= ±iW0

2
(−1)n

′+m′Ṽr′,r,

(2.4)

where r′ = (m′a, n′a), and Ṽr′,r is

Ṽr′,r =

[
1 + cos 2πη

2
(δr′,r+ax̂ + δr′,r−ax̂)− (δr′,r+aŷ + δr′,r−aŷ)

]
cos 2m′πη (2.5)

+
sin 2πη sin 2m′πη

2
(δr′,r+ax̂ − δr′,r−ax̂). (2.6)

The current pattern is then

Jr′,r =
1

2i

[
〈c†rcr′〉 − 〈c†r′cr〉

]
= −W0

2
(−1)n

′+m′Ṽr′,r, (2.7)

which has already been shown previously in Fig. 1.3 of Section 1.1.3.3. The incommen-

surate d-density wave order parameter is proportional to

W̃r′,r =
iW0

2
(−1)n

′+m′Ṽr′,r. (2.8)

Notice that although at first glance the expression of W̃r′,r looks quite different from the

real space period−8 DDW order parameter given in Equation 1.19 of Section 1.1.3.3, they

are in fact identical to each other.

2.2.3 The real space Hamiltonian including disorder

In real space, the Hamiltonian in the presence of both disorder and magnetic field is

H =
∑
r

[V (r) + 2Vc cos(πm/2)] c†rcr

+
∑
r′,r

tr′,r eiar′,rc†r′cr

+
∑
r′,r

W̃r′,r eiar′,rc†r′cr + h.c.

(2.9)

Here tr′,r defines the band structure. The nearest neighbor, the next nearest neighbor,

and the third nearest neighbor hopping terms: t, t′, t′′. And 2Vc cos(π
2
m) is responsible
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for the period-4 charge stripe order, where m is r·x̂/a and a is lattice spacing. We include

correlated disorder in the form [162]

V (r) =
gV

2πl2D

∫
dx e

− |r−x|2
2l2
D u(x), (2.10)

where lD is the disorder correlation length and the disorder averages are 〈u(x)〉 = 0 and

〈u(x)u(y)〉 = δ(x− y); the disorder intensity is set by gV .

Whereas white noise disorder seems to be more appropriate for NCCO with intrinsic

disorder, correlated disorder may be more relevant to relatively cleaner YBCO samples

in the range of well ordered chain compositions. Thus, here we shall focus on correlated

disorder. A constant perpendicular magnetic field B is included via the Peierls phase

factor ar′,r = e
~c

∫ r′

r
A · dl, where A = (0,−Bx, 0) is the vector potential in the Landau

gauge; the lattice vector r′ = (m′a, n′a) is defined by an arbitrary set of integers.

2.3 The transfer matrix method

The transfer matrix technique is a powerful method to compute conductance oscillations.

It requires neither quasiclassical approximation nor ad hoc broadening of the Landau

level to incorporate the effect of disorder. Various models of disorder, both long and

short-ranged, can be studied ab initio. The mean field Hamiltonian, being a quadratic

non-interacting Hamiltonian, leads to a Schrödinger equation for the site amplitudes,

which is then recast in the form of a transfer matrix; the derivation has been discussed

in detail previously [162, 150]. The conductance is then calculated by a formula that is

well known in the area of mesoscopic physics, the Pichard-Landauer formula [163, 164].

This yields Shubnikov-de Haas oscillations of the ab-plane resistivity, ρab.

We consider a quasi one-dimensional system, N � M , with a periodic boundary

condition along y-direction. Here Na is the length in the x-direction and Ma is the length

in the y-direction. Let Ψn = (ψn,1, ψn,2, . . . , ψn,M)T , n = 1, . . . N , be the amplitudes on

the slice n for an eigenstate with a given energy. Then the amplitudes between the

successive slices depending on the Hamiltonian must form a given transfer matrix, T.

The complete set of Lyapunov exponents, γi, of limN→∞(TNT †N), where TN =
∏j=N

j=1 Tj
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determine the conductance, σab(B) from the Pichard-Landauer formula:

σab(B) =
e2

h
Tr

2M∑
j=1

2

(TNT †N) + (TNT †N)−1 + 2
. (2.11)

In this work we have chosen M = 30 and N of the order of 105. This guaranteed 4%

accuracy of the smallest Lyapunov exponent. Note that at each step we have to invert a

4M × 4M matrix and numerical errors prohibit much larger values of M .

2.4 Results

2.4.1 Specific heat without disorder

The coefficient of the linear specific heat is

γ =
π2

3
k2
B ρ(0). (2.12)

The density of states ρ(ω) measured with respect to the Fermi energy can be easily com-

puted by taking into account all eight bands in the irreducible part of the Full Brillouin

zone and a factor of 2 for spin. A Lorentzian broadening of the δ-functions was used in

computing the density of states. Although Lorentzian broadening is useful for numerical

computation, the smoothing is a rough way of incorporating the effect of disorder on the

density of states.

For a single CuO-layer we get,

γ ≈ 5.4
mJ

mole ·K2
, (2.13)

where we have used the density of states at the Fermi energy from numerical calculation

to be approximately 2.3 states/eV, as shown in the Figure 2.2. Including both layers

γ = 2× 5.4 = 10.8 mJ
mole.K2 , approximately a factor of 2 larger than the observed 5 mJ

mole.K2

at 45T [165].

2.4.2 Charge modulation without disorder

Before we carry out an explicit calculation it is useful to make a qualitative estimate. For

Vc = 0.05t, the total charge gap is 4Vc = 0.2t. To convert to modulation of the charge-

order parameter, we have to divide by a suitable coupling constant. In high temperature
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Figure 2.2: Total density of states, t = 0.15, including eight bands in the reduced Brillouin

zone per layer. The horizontal axis is in terms of electron volts and the vertical axis is

a pure number, that is, the number of states. The rounding at the tails is due to the

Lorentzian broadening of the δ-functions by Γ = 0.1t. The remaining parameters are the

same as in Fig. 2.1. Further smoothing will reduce the density of states at the Fermi

energy and lower the value of γ.

superconductors, all important coupling constants are of the order bandwidth, which is

8t = 1.2eV . Taking this as a rough estimate, we deduce that the charge modulation is

0.025e, expressed in terms of electronic charge.

To explicitly calculate charge modulation at a site, we diagonalize the 8×8 Hamiltoni-

an matrix Z(kx, ky) for each k in the reduced Brillouin zone (RBZ). We get 8 eigenvalues

and the corresponding eigenvectors: En,kx,ky and ψn,kx,ky for n = 1, 2, ..., 8. The eigenvec-

tor ψn,kx,ky has eight components of the form:

ψn,kx,ky = (αn,kx,ky(1), αn,kx,ky(2), ...., αn,kx,ky(8)) (2.14)

Then the wave function in the real space for each state {n, kx, ky} is

ψn,kx,ky(r) =
8∑
j=1

αn,kx,ky(j)
1√
N

exp i(k + (j − 1)Q) · r (2.15)

So, by definition, the local number density is

n(r) = 2
∑
n,kx,ky

′ ∣∣ψn,kx,ky(r)
∣∣2 (2.16)
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Here the prime in the sum means that all occupied states with energy below the chemical

potential are considered. The factor of 2 is for spin and the summation over kx, ky is

performed in the RBZ. For different parameter sets the numerical results are, as follows:

• Parameter set 1

W0 = 0.71t, Vc = 0.05t, µ = −0.78t, x = 11.73%

Averaged number density of electron is n = 0.882 per site, whereas the estimated

deviation is about δn = 0.029 per site. So δn/n = 3.2%. The cyclotron effective

mass calculated are 0.567 for the hole pocket and 1.98 for the electron pocket in

units of the free electron mass.

• Parameter set 2

W0 = 0.65t, Vc = 0.05t, µ = −0.83t, x = 12.46%

Averaged number density of electron is n = 0.877 per site, whereas the estimated

deviation is about δn = 0.031 per site. So δn/n = 3.58%. The cyclotron effective

masses calculated are 0.652 for the hole pocekt and 2.04 for the electron pocket in

units of the free electron mass.

Of course, for both cases, the period of the CDW modulation is 4a, where a is the lattice

spacing. It is also interesting to calculate the ratio of the modulation of the local density of

states to the average density of states at the Fermi energy; we find δρ(µ)/ρ(µ) ≈ 13−15%

depending on the parameters. As pointed out in Ref. [66], this leads to an estimate of

the corresponding variation of the Knight shift.

2.4.3 Oscillation spectra in the presence of correlated disorder

Previously it was found from the consideration of 1/8 magnetic antiphase stripe order

that there is a remarkable variety of possible Fermi surface reconstructions depending on

the choice of parameters [65].This is also true for the incommensurate period-8 DDW.

In contrast, two-fold commensurate DDW order leads to much lesser variety. While this

is more satisfying, period-4 charge modulation observed in NMR measurements [45] and

the non-existence of the larger hole pocket commensurate with the Luttinger sum rule

have forced us to seriously consider the period-8 DDW.
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Although we cannot constrain the parameters uniquely, we have used a number of

guiding principles. First, disorder was chosen to be correlated with a length scale `D

smaller than the transverse width of the strip, Ma. Because the YBCO samples studied

appear to have lesser degree of disorder than the intrinsic disorder of NCCO, the white

noise disorder did not appear sensible. Because the experimentally measured charge

modulation in NMR is 0.03±0.01e, it is necessary to keep Vc small enough to be consistent

with experiments. A value of Vc in the neighborhood of 0.05t seemed reasonable. Of

course, this could be adjusted to agree precisely with experiments, but this would not

have been very meaningful.

The band structure parameter t was chosen to be 0.15 eV as opposed to LDA value of

0.38 eV. Although reliable ARPES measurements are not available for YBCO, measure-

ments in other cuprates have indicated that the bandwidth is renormalized by at least a

factor of 2. Had we chosen t = 0.38 eV, the agreement with specific heat measurements

would have been essentially perfect, but we could not see any justification for adopting

the bare band structure parameter. The parameters t′/t and t′′/t′ are the same as the

commonly used LDA values, as the shape of the Fermi surface in most cases appear to be

given correctly by LDA. We searched the remaining parameters, µ, gV and W0, extensive-

ly. There are a number of issues worth noting. Oscillation spectra hardly ever show any

substantial evidence of harmonics, which should be used as a constraining factor. More-

over, as we believe that it is the electron pocket that is dominant in producing negative

RH , it is necessary that we do not employ parameters that wipe out the electron pocket

altogether. The coexistence of electron and hole pockets give a simple explanation of the

oscillations of RH as a function of the magnetic field. We generically found hole pocket

frequencies in the range 150 − 300T. This is one of our crucial observations. It implies

that to resolve clearly such a slow frequency, one must go to much higher fields than are

currently possible. We argue that the absence of observations at higher magnetic fields

may be a plausible reason why the hole pocket has not been observed previously except

for one experiment which goes up to 85T; in this experiment some evidence of a 250T

frequency is observed [153]. 2

2As mentioned previously, in a more recent work [154] a small hole pocket oscillation frequency ∼ 100T
has been claimed to be observed.
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The DDW gap and the disorder level are consistent with the observed data. Overall

we find satisfactory consistency with doping levels between 11 − 12.5% within our cal-

culational scheme. Lower doping levels produce less satisfactory agreement, but can be

made better with further adjustment of parameters, but we have avoided fine-tuning as

much as possible. The broad brush picture can already be seen in the oscillation spectra

in Figs. 2.3, 2.4, 2.5, and 2.6. Two general trends are that electron pockets dominate at

higher doping levels within the range we have checked, and an increase in disorder inten-

sity reduces the intensity of the Fourier spectra of the electron pockets. A few harmonics

are still present. Interestingly, depending on disorder one may have a situation in which

the faster oscillations from the electron pocket can disappear leaving the slower frequency

from the hole pocket intact; see, for example, Figs. 2.4 and 2.6.
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Figure 2.3: Fourier transform of the oscillation spectra after a background subtraction

with a cubic polynomial. W0 = 0.71t, Vc = 0.05t, µ = −0.78t, M = 30 a, N = 105 a,

`D = 8 a, gV = 0.1t. Doping is 11.73%.

2.5 Discussion

The complex materials physics of high temperature superconductors lead to a fairly large

number of dimensionless parameters. Thus, it is not possible to frame a unique theory.

Tuning these parameters can indeed lead to many different phases. However, there may

be a general framework that could determine the overall picture. To be more specific, let
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Figure 2.4: Fourier transform of the oscillation spectra after a background subtraction

with a cubic polynomial. W0 = 0.71t, Vc = 0.05t, µ = −0.78t, M = 30 a, N = 105 a,

`D = 8 a, gV = 0.3t. Doping is 11.73%.
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Figure 2.5: Fourier transform of the oscillation spectra after a background subtraction

with a cubic polynomial. W0 = 0.65t, Vc = 0.05t, µ = −0.83t, M = 30 a, N = 105 a,

`D = 8 a, gV = 0.1t. Doping is 12.46%.
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Figure 2.6: Fourier transform of the oscillation spectra after a background subtraction

with a cubic polynomial. W0 = 0.65t, Vc = 0.05t, µ = −0.83t, M = 30 a, N = 105 a,

`D = 8 a, gV = 0.2t. Doping is 12.46%.

us consider the quantum oscillation measurements that we have been discussing here.

• Are the applied magnetic fields sufficiently large to essentially destroy all traces

of superconductivity and thereby reveal the underlying normal state from which

superconductivity develops? Whereas for NCCO Hc2 is less than 10T and the

quantum oscillation measurements are carried out between 30 − 65T, far above

Hc2, for YBCO lingering doubts remain. However, one may argue that the high

field measurements are such that one may be in a vortex liquid state where the

slower vortex degrees of freedom may simply act as quenched disorder to the nimble

electrons. This is the picture we have adopted here. The effects of these slower

vortex degrees of freedom on the quantum oscillations will be investigated in detail

in the next Chapter 3.

• The emergent picture of Fermi pockets are seemingly at odds with ARPES, unless

only half the pocket is visible in ARPES, as was previously argued [166]. On the

other hand, reliable ARPES in YBCO is not available. For electron-doped NCCO

the signature of pockets are quite strong [167].

• Quantum oscillations of RH are easier to explain if there are at least two closed

pockets in the Boltzmann picture [53]. Thus associated with the electron pocket
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there must be a hole pocket or vice versa. This is not a problem with NCCO,

as we have shown how magnetic breakdown [150], and a greater degree of intrinsic

disorder, provides a simple resolution as to why only one pocket, in this case a small

but prominent hole pocket is seen. In any case, oscillations of RH in NCCO are yet

to be measured. With respect to YBCO the apparent lack of two closed pockets

becomes a serious problem. Any commensurate picture would lead to a hole pocket

of frequency about twice that of the electron pocket frequency if the Luttinger

sum rule is to be satisfied. Despite motivated effort no evidence in this regard has

emerged. An escape from the dilemma discussed here is that the relevant electron

pocket is accompanied by by a much smaller hole pocket and some open orbits. To

convincingly observe such small hole pockets, one would require extending these

measurements to higher fields; see Ref. [153].

• All oscillation measurements to date have been convincingly interpreted in terms of

the Lifshitz-Kosevich theory for which the validity of Fermi liquid theory and the

associated Landau levels seem to be obligatory.

• The contrast between electron and hole doped cuprates is interesting. In NCCO

the crystal structure consists of a single CuO plane per unit cell, and, in contrast

to YBCO, there are no complicating chains, bilayers, ortho-II potential, stripes,

etc. [167]. Thus, it would appear to be ideal for gleaning the mechanism of quantum

oscillations. On the other hand, disorder in NCCO is significant. It is believed that

well-ordered chain materials of YBCO contain much less disorder by comparison.

• In YBCO, studies involving tilted field seem to rule out triplet order parameter,

hence SDW [155, 156]. Moreover, from NMR measurements at high fields, there ap-

pears to be no evidence of a static spin density wave order in YBCO [45]. Similarly

there is no evidence of SDW order in fields as high as 23.2T in YBa2Cu4O8 [168],

whereas quantum oscillations are clearly observed in this material [144, 145]. Also

no such evidence of SDW is found up to 44T in Bi2Sr2−xLaxCuO6+δ [169]. Ener-

getically a perturbation even as large as 45T field is weak [170].

• As to singlet order, relevant to quantum oscillations, [171, 172, 173] charge density

wave is a possibility which has recently found some support in the high field NMR
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measurements in YBCO [45]. But since the mechanism is helped by the oxygen

chains, it is unlikely that the corresponding NMR measurements in NCCO will find

such a charge order. Moreover, the observed charge order in YBCO sets in at a

much lower temperature (20− 50K) compared to the pseudogap. Thus the charge

order may be secondary phenomenon because its scale is significantly different from

the pseudogap scale, especially in the under doped regime. As to singlet DDW,

there are two neutron scattering measurements that seem to provide evidence for

it [174, 175]. However, these measurements have not been confirmed by further

independent experiments. However, DDW order should be considerably hidden in

NMR involving nuclei at high symmetry points, because the orbital currents should

cancel.

As mentioned above, a mysterious feature of quantum oscillations in YBCO is the fact

that only one type of Fermi pockets is observed. If two-fold commensurate density wave

is the mechanism, this will violate the Luttinger sum rule [62, 176, 177, 53]. We had

previously provided an explanation of this phenomenon in terms of disorder arising from

both defects and vortex scattering in the vortex liquid phase [162]; however, the argu-

ments are not unassailable. In contrast, for NCCO, the experimental results are quite

consistent with a simple theory presented previously [150, 151]. The present work, based

on incommensurate DDW, may provide another, if not a more plausible alternative in

YBCO.

The basic question as to why Fermi liquid concepts should apply remains an important

unsolved mystery [6]. It is possible that if the state revealed by applying a high magnetic

field has a broken symmetry with an order parameter (hence a gap), the low energy

excitations will be quasiparticle-like, not a spectra with a branch cut, as in variously

proposed strange metal phases.
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CHAPTER 3

Onsager rule, quantum oscillation frequencies, and

the density of states in the mixed-vortex state of

cuprates

3.1 Introduction

A breakthrough in the area of cuprate superconductivity is the observation of quantum

oscillations in cuprates [7, 178]. In these experiments a strong magnetic field is applied to

suppress the superconductivity, which most likely reveals the ground state [53] without

superconductivity. However, the understanding of this “normal state” may be a crucial

ingredient in the theory high temperature superconductivity. Standing in the way are at

least two important issues: (1) Does the quantum oscillation frequencies substantially de-

viate from the classic Onsager rule for which the oscillation frequency F = (~c/2πe)A(εF ),

where A(εF ) is equal to the extremal Fermi surface area normal to the magnetic field?

If so, it would lead to considerable uncertainty in the interpretation of the experiments.

(2) Do the oscillations ride on top of a magnetic field dependence of the density of s-

tates(DOS) ρ(B) ∼
√
B? [165] If so, it might indicate the presence of superconducting

fluctuations even in high magnetic fields at zero temperature, T = 0, from an extrapola-

tion of a result of Volovik [179], which is supposed to be asymptotically true as B → 0.

Therefore high field behavior requires careful analyses. Quantum oscillations require the

existence of Landau levels. If this is true, they might indicate the existence of normal

Fermi liquid quasiparticles [6].

It has been argued from a theoretical analysis that the Onsager rule could be violated

by as much as 30% [1]. We find that under reasonable set of parameters, to be defined

below, the violation is miniscule, ∼ 10−4. Even for extreme situations discussed in Ref. [1],
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it is less than 2%. If we are correct, one can use the Onsager rule to interpret the

experiments with impunity. The second encouraging result is that ρ(B) saturates in the

regime where oscillations are present. We interpret this to mean that there are generically

no superconducting fluctuations in high fields. A recent specific heat measurement [180]

shows that the specific heat indeed saturates at high fields, signifying that the normal

state is achieved.

To put our discussions in the context, note that in conventional s-wave superconduc-

tors, previous work has shown that for higher Landau level indices, and within coherent

potential approximation, vortices mainly damp the oscillation amplitude, but the shift in

the oscillation frequency [181, 182] is negligible; however, for d-wave underdoped cuprate

superconductors with small coherence length and high fields with Landau level indices

∼ 10 this calculation should not hold [1]. A more recent semi-classical analysis based

on an ansatz of gaussian phase fluctuations of the d−wave pairing [74] indicates that

the oscillation frequency is unchanged, as here. However, relatively undamped quantum

oscillations riding on top of
√
H was found in this dynamic Gaussian ansatz that does

not account for vortices, which must necessarily be present, as in Ref. [1], and the branch

cuts introduced by the vortices must also be taken into account.

We consider the vortices explicitly in the Bogoliubov-de Gennes (BdG) Hamiltonian,

as in Ref. [1], and model the vortex liquid state as quenched, randomly distributed vor-

tices, paying special attention to branch cuts. There are other important differences as

well, as we shall discuss below. To have a complete picture, we also consider the low field

regime where the quantum oscillations disappear. In this regime the vortices arrange

themselves into a vortex solid state and should be modeled as an ordered lattice instead.

We compute the DOS of such vortex lattices explicitly and find that ρ(B) ∝
√
B in the

asymptotically low field limit, consistent with Volovik’s semiclassical analysis [179].

In Section 3.2 we define the model Hamiltonian that includes d-wave superconducting

order parameter as well as a variety of density wave states. Our numerical method,

the recursive Green function method adapted for the present problem is discussed in

Section 3.3. The results are discussed in Section 3.4 and Section 3.5 contains discussion.

Appendices are included in Chapter A.
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3.2 The Model Hamiltonians

The starting point is the Bogoliubov-de Gennes (BdG) Hamiltonian

H =

 H − µ ∆ij

∆†ij −H + µ

 (3.1)

defined on a square lattice. Here µ is the chemical potential. H is the Hamiltonian that

describes the normal state electrons; while the off-diagonal pairing term ∆ij defines the

superconducting order parameter. For simplicity, we ignore self consistency, as we believe

that it cannot change the major striking conclusions.

3.2.1 The diagonal component H

Besides the hopping parameters, the normal state Hamiltonian H contains a variety of

mean field order parameters defined below. Although many different orders are suggested

to explain the normal state of the high-Tc superconductivity, for our purposes it is suf-

ficient to consider three different types: a period-2 d−density wave (DDW) [63, 6, 183],

a bi-directional charge density wave (CDW), and a period−8 DDW model [183]. We

believe that our major conclusions in this Chapter 3 do not depend on the nature of the

density wave that is responsible for Fermi surface reconstruction. The DDW is argued to

be able to account for many features of quantum oscillations, as well as the pseudogap

state [184, 185] in the cuprates. Among the many different versions of density waves of

higher angular momentum [9], the simplest period-2 singlet DDW, also the same as stag-

gered flux state in Ref. [1], and also a period−8 DDW order, proposed by us previously

to explain quantum oscillations[183], have been chosen here for illustration.

Recently a bi-directional CDW has been observed ubiquitously in the underdoped

cuprates [45, 46, 47, 48, 49]. It has ordering wavevectors Q1 ≈ 2π
a

(0.31, 0) and Q2 ≈
2π
a

(0, 0.31), which are incommensurate. This order has also been used to explain the

Fermi surface reconstructions and quantum oscillation experiments [186, 64], although a

recent numerical work [187] has demonstrated that the strict incommensurability of the

CDW can destroy strict quantum oscillations completely. For the purpose of illustration

we chose, instead, commensurate vectors Q1 = 2π
a

(1
3
, 0) and Q2 = 2π

a
(0, 1

3
).
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Therefore without the magnetic field, B, H is given by

H = −t∑
〈i,j〉

c†ricrj + t′
∑
〈〈i,j〉〉

c†ricrj

−t′′ ∑
〈〈〈i,j〉〉〉

c†ricrj + h.c.+Hd.w., (3.2)

where t,t′, and t′′ are the 1st, 2nd and the 3rd nearest neighbor hopping parameters

respectively. Hd.w. is various density wave orders specified below. The external uni-

form magnetic field B = Bẑ is included into H via the Peierls substitution: c†ricrj ⇒
exp[−i e~c

∫ ri
rj

A · dl]c†ricrj with the vector potential A = B x ŷ chosen, for simplicity, in

the Landau gauge.

1. Two-fold DDW order

Hd.w. =
∑
ri,δ

i
W0

4
(−1)xi+yi ηδ c

†
ri+δ

cri , (3.3)

where δ = x̂, ŷ denote the two nearest neighbors. ηδ = 1 for δ = x̂ while ηδ = −1

for δ = ŷ indicates the DDW order has a local d−wave symmetry.

2. Bi-directional CDW order

Hd.w. = Vc

∑
ri,δ

ηδ {cos[Q1 · (ri + δ/2)]

+ cos[Q2 · (ri + δ/2)]} c†ri+δcri . (3.4)

Again ηδ = ±1 is the local d−wave symmetry factor of the CDW order.

3. Period-8 DDW order

Hd.w. =
∑
k

iGk c
†
kck+Q + Vc c

†
kck+2Q + h.c. . (3.5)

where the iGk term is the period−8 DDW order

< c†k′ck >= iGk δk′,k+Q − iGk′ δk,k′+Q (3.6)

Here Gk = (Wk −Wk+Q)/2 with the DDW gap Wk = W0

2
(cos kx − cos ky), and the

ordering wavevector is Q = (3π
4a
, π
a
). The Vc term in Eq. (3.5) represents a period−4

unidirectional CDW with an ordering wavevector 2Q, which is consistent with the

symmetry of the period−8 DDW order. Notice that this CDW is different from the
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bi-directional CDW we considered in the previous section. Experimentally whether

the observed CDW in cuprates is unidirectional or bi-directional is still not fully

resolved.

Fourier transformed to the real space, the Hamiltonian Hd.w. becomes

Hd.w. =
∑
r,r′

i
W0

2
sin

Q · (r− r′)

2
sin

Q · (r + r′)

2

×{δr,r′+ax̂ + δr,r′−ax̂ − δr,r′+aŷ − δr,r′−aŷ}c†rcr′

+2Vc
∑
r

cos[2 Q · r] c†rcr. (3.7)

On the right hand side the first term gives the period−8 DDW order in real s-

pace, of which the physical meaning of each factor has already been discussed in

Section 1.1.3.3 of Chapter 1; while the second term is the 2 Q charge modulation.

Note that this CDW is defined on sites, differing from the bi-directional CDW

defined on bonds.

3.2.2 The off-diagonal component ∆ij

The off-diagonal pairing term ∆ij in the BdG Hamiltonian is defined on each bond con-

necting two nearest neighboring sites i and j. ∆ij = |∆ij|eiθij ηij, where ηij = +1 if the

bond is along x−direction and ηij = −1 if it is along y−direction so that ∆ij has a local

d−wave symmetry. The pairing amplitude is taken to be

|∆ij| = ∆
reff√
r2

eff + ξ2
(3.8)

where ∆ is the pairing amplitude far away from any vortex center. ξ is the vortex core

size. In our calculation ξ = 5a is adopted, where a is the lattice spacing. In the presence

of a single vortex, reff in the above is simply the distance from the center of our bond

ri+rj
2

to the center of that vortex. While in the presence of multiple vortices, following

the ansatz used in Ref. [1] we choose ( ξ
reff

)q =
∑

n( ξ
rn

)q where rn is the distance from the

bond center to the nth vortex center and q > 0 is some real number.

In this ansatz, reff is a monotonic increasing function of the parameter q for a given

vortex configuration. Therefore if q is large, the calculated reff as well as |∆ij| is also

larger, which means the vortex scattering is stronger. However our conclusions do not
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depend on the different choices of q (for more details see the Appendix A.3). Therefore

in this Chapter 3, if not specified otherwise, q = 2 will be chosen.

The bond phase variable θij contains the information of our quenched random vortex

configuration, but for the purpose of our calculation we need the site phase variables. We

use the ansatz for θij given in Refs. [188, 189, 190]

eiθij = ei
φi+φj

2 sgn[cos
φi − φj

2
] (3.9)

where φi is the pairing order parameter phase field defined on a site. In the above,

without the “sgn[...]” factor θij is simply the arithmetic mean of φi and φj. However

using θij =
φi+φj

2
is not enough because whenever the bond ij crosses a vortex branch

cut, the phase factor eiθij will be incorrect and different from the correct one by a minus

sign. This can be corrected by the additional “sgn[...]” factor(see the Appendix A.2).

Then φi can be further computed from the superfluid velocity field vs(ri) by

φi − φ0 =
∫ ri
r0

[m
∗vs(r)
~ + e∗

~cA(r)] · dl (3.10)

with m∗ = 2m and e∗ = −2e are the mass and the charge of the Cooper pairs respectively.

The path for this integral is chosen such as to avoid the branch cuts of all the vortices so

that the phase field φi is single valued on every site, as illustrated in Fig. 3.1.

r0

r

Figure 3.1: Illustrations of the vortices (circle) on the lattice (dashed lines). The arrows

show the path of the integral we have chosen in defining our phase field φ(r). To make

this phase definite, the branch cuts of all the vortices are chosen to extend from the vortex

center to the positive infinity (x =∞), represented by the magenta horizontal lines.
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We still need to compute the superfluid velocity vs(r). This can be done by following

Ref. [73]

mvs(r) = −iπ~
∫

d2k

(2π)2

k× ẑ
k2 + λ−2

∑
n

eik·(r−Rn), (3.11)

where m is the electron mass, λ is the penetration depth, and Rn gives the nth random

vortex position. In this integrand, because k × ẑ is odd in k, only the imaginary part

of eik·(r−Rn) will survive after the integration, so the whole expression on the right hand

side becomes real. We also make an approximation λ = ∞ so that we can ignore the

λ−2 term in the denominator. This is equivalent to replacing the magnetic field B(r) by

its spatial average, which is equal to the external magnetic field B = Bẑ. It is a good

approximation when B � Hc1, where Hc1 is the lower critical field. This condition is well

satisfied in the quantum oscillation experiments of cuprates. Also this approximation is

consistent with our initial choice of the vector potential A = Bxŷ, given completely by

the applied external field B.

For our square lattice calculation we discretize the above k integral and choose 2π/ξ

as its upper cutoff, since the vortex is only well defined over a length scale larger than

the vortex core size ξ. Therefore in the limit λ� ξ > a, vs(r) can be rewritten as follows

mvs(r) =
π~

LM a2

∑′

(kx,ky)

k× ẑ
k2

∑
n

sin[k · (r−Rn)]. (3.12)

In this summation kx = −2π
ξ
,−2π

ξ
+ 2π
La
, ...., 2π

ξ
− 2π
La
, 2π
ξ

, ky = −2π
ξ
,−2π

ξ
+ 2π
Ma
, ...., 2π

ξ
− 2π
Ma
, 2π
ξ

.

The prime superscript in the summation means the point (kx, ky) = (0, 0) is excluded to

be consistent with our approximation λ =∞.

3.3 The recursive Green function

Given the BdG Hamiltonian H defined above, we use the recursive Green’s function

method [191] to compute the local DOS(LDOS). We attach our central system, which

has a lattice size L × M , to two semi-infinite leads in the ±x directions. The leads

are normal metals described by t, t′, t′′ only. Then we can compute the retarded Green’s

function Gi(j, j
′;E+ iδ) at an energy E for the ith principal layer(see the Appendix A.1).

Here each ith principal layer contains two adjacent columns of the original square lattice
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sites. So there are L/2 principal layers and each of them contains 2M number of sites.

Therefore Gi(j, j
′;E + iδ) is a 4M × 4M matrix, with j, j′ = 1, 2, ..., 4M , because it has

both an electron part and a hole part. In calculating the LDOS at the jth site of the

ith layer only the imaginary part of the jth diagonal element in the electron part of

Gi is included. This is equivalent to treating the random vortices as some off-diagonal

scattering centers for the normal state electrons. To see smooth oscillations of the DOS

we also average the calculated LDOS over different sites and realizations of uncorrelated

vortices. In other words the quantity of our central interest is

ρ(B) =

〈
1

LM

L/2∑
i=1

2M∑
j=1

(− 1

π
)Im Gi(j, j; 0 + i δ)

〉
, (3.13)

where the angular brackets denote average over independent vortex realizations. In the

Green’s function we have already set the energy to the chemical potential E = 0. For

all the numerical results presented in the following, an infinitesimal energy broadening

δ = 0.005t will be chosen, if not specified otherwise, and the periodic boundary condition

is imposed in the y−direction.

3.4 Results

3.4.1 The Onsager rule for quantum oscillation frequencies

3.4.1.1 The two-fold DDW order case

With the parameters: t = 1, t′ = 0.30 t, t′′ = t′/9.0, µ = −0.8807 t,W0 = 0.26 t, Vc = 0,

the hole doping level is p ≈ 11%. Without vortices we can diagonalize the Hamilontian H

in the momentum space and obtain the normal state Fermi surface. This Fermi surface

consists of two closed orbits, see the inset of Fig. 3.2a. The bigger one centered around

the node point (π
2
, π

2
) is hole like. It has an area Ah

(2π/a)2 ≈ 3.47%. This corresponds to an

oscillation frequency Fh = Ah
(2π/a)2

2Φs
a2 = 966T from the Onsager relation, where Φs = hc/2e

is the fundamental flux quanta and the two lattice spacings a2 = 3.82Å × 3.89Å are

chosen for YBCO. At the antinodal point (0, π) there is an electron pocket with an area

Ae

(2π/a)2 ≈ 1.9%, corresponding to a frequency Fe = 525T (electron). We should notice

that the fast oscillation Fh (hole) is not observed in the experiments in cuprates. This

problem can be resolved if we consider a period−8 DDW model [183]; see below.
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We compute the ρ(B) as a function of the inverse of the magnetic field 1/B in the

presence of various ∆. In these calculations, the number of vortices are chosen such

that the total magnetic flux is equal to Φ = BLMa2. From the oscillatory part of ρ(B)

we perform Fast Fourier Transform(FFT) to get the spectrum. The result is shown in

Fig. 3.2b. In this spectrum the two oscillation frequency Fe = 525T and Fh = 966T

calculated from the normal state Fermi surface areas via the Onsager relation are also

shown by the two vertical dashed lines. We see clearly that as we increase ∆ the oscillation

amplitudes are damped. However, remarkably, the oscillation frequencies remain the

same within numerical errors. Thus, even in the presence of vortices, the Onsager rule

still holds to an excellent approximation.
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Figure 3.2: Plots of the Fermi surface(FS) and Fast Fourier transform(FFT) spectrum

for the two-fold DDW order case. The two vertical dashed lines in the subfig (b) denote

the two fundamental oscillation frequencies calculated from the Fermi surface area via

the Onsager relation. They are Fe = 525T, Fh = 966T. Other parameters used are

L = 1000,M = 100, δ = 0.005t.

3.4.1.2 The bi-directional CDW order case

We choose the following parameters: t = 1, t′ = 0.2t, t′′ = t′/8, Vc = 0.12t, µ = −0.73t so

that we can produce the right oscillation frequencies that are observed in experiments.

The hole doping level is p ≈ 11%. The Fermi surface of the normal state is plotted in

the inset of Fig. 3.3a (open orbits are not shown for clarity). There are two closed Fermi
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surface sheets. Centered around the point (π
3
, π

3
) and other symmetry related positions

there are diamond shaped electron pockets, highlighted in orange. This pocket has an

area Ae

(2π/a)2 = 1.9%. It corresponds to a frequency Fe = 529T from the Onsager relation.

Besides this electron pocket, there is an oval shaped hole pocket centered around (π
3
, 2π

3
),

highlighted in blue. The area of this hole pocket is Ah
(2π/a)2 = 0.33%. This corresponds to

an oscillation frequency Fh = 92T.

The oscillation spectrum of the ρ(B) is shown in Fig. 3.3b. From the spectrum we see

that when the vortex scattering is absent, ∆ = 0, the oscillation amplitudes peak at the

two frequencies Fe, Fh, as denoted by the two vertical dashed lines. These results agree

with our Fermi surface calculation, as we expected. When the vortices are included the

oscillation amplitude is gradually damped as the vortex scattering strength is increased

by increasing ∆. However whenever the oscillation frequency can be clearly resolved, we

see that their positions do not change with ∆. Again this means that the Onsager rule

survives in the presence of vortex scattering.
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Figure 3.3: Plots of the Fermi surface and Fast Fourier transform spectrum for the bi-di-

rectional CDW order. The two fundamental oscillation frequencies calculated from the

Fermi surface area via the Onsager relation are Fe = 529T, Fh = 92T. Other parameters

used are L = 1000,M = 102, δ = 0.005t.
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3.4.1.3 The period−8 DDW order case

In this subsection we present our quantum oscillation results for the period−8 DDW

model. In this model the period−8 stripe DDW order is considered as the major driv-

ing force behind the Fermi surface reconstructions; while a much weaker unidirectional

period−4 CDW is included as a subsidiary order.

We choose the parameter set t′ = 0.3t, t′′ = t′/2.0,W0 = 0.70t, Vc = 0.05t, µ = −0.70t

and estimate the hole doping level to be p ≈ 11.2%. We also obtain a Fermi surface

similar to the one we had in Ref.[183]. It has a large pocket of electron like with a

frequency Fe = 523T, a smaller pocket of hole like with a frequency Fh = 159T, and also

some open orbits which do not contribute to quantum oscillations.

The corresponding oscillation spectrum is presented in Fig. 3.4b, where we see the

oscillation amplitude decreases as we increase ∆, however, the frequencies do not change

with ∆. In other words the presence of vortex scattering does not alter the oscillation

frequencies.

The observations here, combined with the other two cases, strongly suggest that

the Onsager’s relation being intact in the presence of vortex scattering is generic and

independent of the order parameters that reconstruct the Fermi surface.

3.4.2 The Density of states at high fields

In the above we have examined the effects of random vortex scattering on the quantum

oscillations. Now we give an overview of the B dependence of the DOS for fields B & 10T,

at a representative value of ∆ = 0.1t. At lower fields, the vortex liquid model is not valid

any more, since vortices should order into a solid instead. Therefore we should use a vortex

lattice to model such a state. In the following we focus on the high field regime first and

defer our vortex lattice discussions for the low field regime to the later Section 3.4.3.

3.4.2.1 The period-2 DDW order case

In Fig. 3.5 we plot ρ(B)/ρn(0) as a function of the field B for the two-fold DDW order

case, where ρn(0) is the normal state DOS at zero field. In the following, the normal
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Figure 3.4: Plots of the Fermi surface and Fast Fourier transform spectrum for the

period−8 DDW order. The two fundamental oscillation frequencies calculated from the

Fermi surface area via the Onsager relation are Fe = 523T, Fh = 159T. There are

also other oscillation peaks in the spectrum, which are higher order harmonics of the

two frequencies Fe and Fh. They do not represent new pieces of Fermi surface.Other

parameters used are L = 1000,M = 200, δ = 0.002t.

state should be understood as a state, which does not have any superconductivity but

can have a particle-hole density wave order. And all the DOS value calculated is for one

electron in a single CuO plane, without including the spin degeneracy. From Fig. 3.5 we

see that as B decreases, the DOS oscillation gets suppressed gradually. This is because

the orbital quantization of electrons becomes dominated by the vortex scattering.

A noticeable feature of this plot is that when the field becomes large, the oscillation

of ρ(B) in 1/B gradually develops on top of a constant background. This constant

background of ρ(B) is different from the previous results obtained in Fig. 3(b) of the

Ref. [74] in the absence of vortices. We notice that this constant background value of

ρ(B) is still suppressed from the normal state DOS ρn(0). Recall that ρn(0) is calculated

for a state at B = 0 with the density wave order but without any superconductivity.

Presumably this suppression is due to the remaining superconductivity fluctuations which

are not completely killed by the applied magnetic field considered here. We expect this

suppression to vanish when the field becomes high enough. The size of this suppression

depends on the superconductivity order parameter ∆ value. For the parameters used in
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Fig. 3.5 it is ∼ 15%.
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Figure 3.5: The DOS ρ(B),normalized to the normal state DOS ρn(0) at zero field

B = 0 for the two-fold DDW order. The estimated values of the normal state DOS

is ρn(0) ≈ 0.23 states/t, where t is the nearest neighboring hopping. The data is averaged

over 108 different vortices configuration realizations.

3.4.2.2 The bi-directional CDW order case

The constant background of the DOS oscillation is not restricted to the two-fold DDW or-

der case. As we can see in Fig. 3.6, for the bi-directional CDW order, the ρ(B) oscillation

background is again a constant at high fields.

3.4.2.3 The period−8 DDW order case

We also confirm this constant ρ(B) background feature in the oscillation regime for the

period−8 DDW order case in Fig. 3.7.

Therefore we can conclude that the high field ρ(B) oscillation background being a

constant is generic.
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Figure 3.6: The DOS ρ(B),normalized to the normal state DOS ρn(0) at zero field B = 0

for the bi-directional CDW order. The estimated values of the normal state DOS is

ρn(0) ≈ 0.25 states/t. The data is averaged over 120 different vortices configuration.
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Figure 3.7: The DOS ρ(B),normalized to the normal state DOS ρn(0) at zero field

B = 0 for the period−8 DDW order. The estimated values of the normal state DOS

is ρn(0) ≈ 0.18 states/t. The data is averaged over 40 different vortices configuration.
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3.4.3 Vortex solid at low fields

Now we move on to the low field regime. In this regime when the field is low enough,

the vortices order into a lattice. Whether the lattice is square or triangular requires a

self-consistent computation of the system’s free energy, which is far beyond the scope

of this thesis. Instead we simply take a square lattice for illustration. But none of the

following qualitative features should depend on the vortex lattice type.

lx

ly

Figure 3.8: Schematic diagram of a square vortex lattice. The dashed lines represent the

original CuO lattice; while the full lines stand for the vortex lattice, with each vortex,

represented by the grey disks, sitting at the CuO plaquette center. And (lx, ly) are the

vortex lattice spacings, in units of the original CuO square lattice spacing a.

3.4.3.1 Implementation of the square vortex lattice

To put the square vortex lattice onto our original CuO lattice so that each vortex sits at

the CuO lattice plaquette center and the periodic boundary condition is still preserved

along the transverse direction, we require the vortex lattice to be commensurate with our

original CuO lattice, as schematically shown in Fig. 3.8. Namely, if the vortex lattice

spacings are (lx, ly), and the corresponding vortex lattice size is (Nx, Ny), we require that

the original CuO lattice size (L,M) satisfies L = Nx lx,M = Ny ly. For a particular value

of (L,M), this restricts the possible values of (lx, ly) and also the possible values of the

magnetic field, because the vortex lattice spacings (lx, ly) are connected to the magnetic

flux density via B = Φs/(lxlya
2), where Φs = hc/2e is the fundamental flux quanta. In

our following calculation we pick a particular value of the system size (L,M), find all
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the possible compatible values of the vortex lattice spacings lx = ly, and then for each of

them calculate the magnetic field B as well as the corresponding DOS.

However, we should calculate the DOS of the Bogoliubov quasiparticles instead of

the electrons, because the system is far from being in a normal state in such a low field

regime. Therefore now ρ(B) is computed from the following formula instead

ρ(B) =
1

2

1

LM

L/2∑
i=1

4M∑
j=1

(− 1

π
)Im Gi(j, j; 0 + i δ). (3.14)

The major differences here from the one we used in our quantum oscillation calculations

are: (1) the summation of the Green’s function’s diagonal matrix elements includes both

the electron part and the hole part: j runs from j = 1 to j = 4M instead of j = 2M ; (2)

there is no averaging over different vortices configurations because the vortex lattice is

ordered; (3) an additional prefactor of 1/2 is added to avoid double counting of degrees

of freedoms.

For such a vortex lattice calculation, the summation over different vortex positions in

the superfluid velocity calculation in Eq. (3.12) can be done exactly by using

∑
n

eik(r−Rn) = NxNy

∑
(n1,n2)

eiGn1,n2 ·r, (3.15)

where Gn1,n2 = (2n1π
lxa

, 2n2π
lya

) is a reciprocal Bragg vector of the square vortex lattice, with

n1, n2 ∈ Z. Then the Eq. (3.12) of vs becomes

mvs = π~
1

lxlya2

∑
(n1,n2)

′Gn1,n2 × ẑ
|Gn1,n2 |2

sin[Gn1,n2 · r] (3.16)

The summations of (n1, n2) are restricted to those values that satisfy 0 ≤ 2n1π
lxa

< 2π
a
, 0 ≤

2n2π
lya

< 2π
a

. Again the prime superscript in the summation means the point (n1, n2) =

(0, 0) is excluded.

3.4.3.2 DOS numerical results

According to Volovik [179], for a dx2−y2−wave vortex, the major contribution to the low

energy DOS comes from the extended states along the nodal direction. In his semiclassical

analysis this contribution is computed from the Doppler shift of the quasiparticle energy.

The conclusion is that the DOS for a single vortex is ρ(B) ∝ 1/
√
B. In the limit

67



that the number of vortices is proportional to B, which is not valid if B is near the

lower critical field Hc1, multiplying it by the number of vortices gives ρ(B) ∝
√
B.

Extrapolating this result to the high field regime and using the fact that near the upper

critical field Hc2, ρ(B) should roughly recover the normal state DOS ρn(0), he concluded

that ρ(B)/ρn(0) = κ
√
B/Hc2, with κ some constant of order unity. This type of analysis

is applicable only in the small field limit in the sense that B � Hc2 so that each vortex

is far apart from any others. This is exactly the field regime where the vortex solid state

develops. In the following we compute the DOS for a d−wave vortex lattice, for the cases

both with and without an additional particle-hole density wave order, and test them

against Volovik’s results. For our following comparisons we slightly rewrite the above

field dependence of ρ(B) as follows

ρ(B)

ρn(0)
= κ

√
B√
Hc2

= κ

√
2πξ2

Φs

√
B ≈ 0.1κ

√
B, (3.17)

where Φs
2πξ2 ≈ 90T, if ξ = 5a and a ≈ 3.83Å are used.

1. First we consider a square vortex lattice without any other additional density wave

order. We choose the band structure parameters to be t′/t = 0.3, t′′ = t′/9.0, µ =

−1.01t so that the estimated normal state hole doping level p ≈ 15% is at the

optimal doping. The computed DOS is shown in Fig. 3.9. At low enough fields, all

the data points follow the ρ(B)/ρn(0) = 0.3
√
B line, although there is some small

scatter in the data, which comes from the finite size effects of our vortex lattice.

This 0.3
√
B corresponds to κ ≈ 3 in Eq. (3.17). To make a comparison with the

specific heat measurements on YBCO123 at the optimal doping [192], we estimate

the field dependent electronic specific heat γ(B) from our DOS ρ(B) as follows

γ(B)

γn
=
ρ(B)

ρn(0)
≈ 0.1κ

√
B. (3.18)

The normal state specific heat can be estimated as γn = 4 π2

3
k2
Bρn(0). Here the

additional prefactor of 4 comes from the spin degeneracy and the fact that one

unit cell of YBCO123 contains two CuO planes. If we take t = 0.15eV, then γn ≈
15.7mJ/mol ·K2 and γ(B) = A

√
B with the coefficient A ≈ 4.7 mJ/mol ·K2 · T1/2.

Compared with the experimental value of A ≈ 0.9 mJ/mol ·K2 · T1/2 from Re-

f. [192], our numerical value is greater by a factor of about 5. This quantitative
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Figure 3.9: The density of states of a pure d−wave vortex solid without any particle-hole

density wave order coexisting. The parameter ∆ = 0.1t. The estimated normal state

DOS is ρn(0) ≈ 0.25 states/t.

discrepancy is not significant given our approximations. In fact, it is quite reason-

ably consistent.

2. Next we consider the coexistence of a square vortex lattice and an additional two-

fold DDW order in the underdoped regime. The parameters are the same as those

in our high field quantum oscillation calculations: t′/t = 0.3, t′′ = t′/9.0, µ =

−0.8807t,W0 = 0.26t, so the estimated normal state, with the DDW order but no

superconductivity, hole doping level is p ≈ 11%. Fig. 3.10 shows the corresponding

DOS results. The small field data follows ρ(B)/ρn(0) = 0.4
√
B, corresponding to

a value of κ ≈ 4 in Eq. (3.17).

The above two values of κ are consistent with the fact that in Volovik’s formula κ is of

order unity. Of course its precise value depends on the vortex lattice structure, on the

slope of the gap near the gap node (in the current case both the parameters ∆ and q),

and also on the normal state band structure.

From the above two scenarios we can conclude that irrespective of the existence of

an additional density wave order, the DOS of a clean vortex lattice always scales as

ρ(B) ∝
√
B in the low field limit.
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Figure 3.10: The density of states of a d−wave vortex solid coexisting with a two–

fold DDW order. The parameter ∆ = 0.1t. The estimated normal state DOS is

ρn(0) ≈ 0.23 states/t.

3.5 Conclusion

In summary we have shown that in the quenched vortex liquid state the quantum oscilla-

tions in cuprates can survive at large magnetic fields. Although the oscillation amplitude

can be heavily damped if the vortex scattering is strong, the oscillation frequency is given

by the Onsager rule to an excellent approximation. Of course, when the field is small

the quantum oscillations are destroyed by the vortices and ρ(B) gets heavily suppressed

due to the formation of Bogoliubov quasiparticles. When the field is small enough, a

vortex solid state forms instead and it can be modeled by an ordered vortex lattice. We

show the field dependence of the vortex lattice’s density of states follows ρ(B) ∝
√
B

in the asymptotically low field limit, in agreement with Volovik’s semiclassical predic-

tions. However in contrast to the previous suggestion our results show that this small

field limit does not extend to the high field oscillatory regime of the vortex liquid state.

Instead when the oscillations can be resolved, the non-oscillatory background of ρ(B)

flattens out, and becomes field independent consistent with the more recent specific heat

measurements [180].
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CHAPTER 4

Pairing in half-filled Landau level within the HLR

picture

4.1 Introduction

The concept of composite fermions was introduced to understand quantum Hall states. [81,

13] Using this concept, Halperin, Lee and Reed [23] (HLR) further developed the Com-

posite Fermi Liquid (CFL) theory to understand the gapless single layer half-filled Landau

level problem. In the mean field approximation, this theory predicts a compressible “met-

al” with a sharp Fermi surface, which has received some support from experiments[90,

14, 15, 91, 92, 93]. However, in such a gapless system, the emergent Chern-Simons (CS)

gauge field fluctuations can play an important role. In fact, these fluctuations can medi-

ate an attractive density-current interaction between the fluxes attached to a composite

fermion and the current associated with another composite fermion. As was shown by

Greiter, Wen and Wilczek [21] (GWW), the mean field Fermi surface is always unstable

to the formation of Cooper pairs in odd angular momentum channels. Thus at low tem-

peratures, the system ends up in a superconducting state with an order parameter that

is most likely a chiral p-wave.

However, Bonesteel[120] showed that if we go beyond GWW analysis and consider the

random phase approximation (RPA) [23] corrections, there will be an induced current-

current interaction mediated by the transverse CS gauge field. The current-current inter-

action is repulsive and divergent in the small Matsubara frequency limit for all angular

momentum channels. Using this small frequency limit for the entire range of Matsubara

frequencies, and assuming the gap to be weakly dependent on Matsubara frequencies, the

zero temperature (T = 0) BCS gap equation was solved analytically. The conclusion was

that with a bare short-range contact interaction, the repulsive current-current interaction
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always dominates over other interactions when the BCS gap is small. Therefore there

is no GWW pairing instablity. However the gap equation was found to have a solution

when the gap was finite. Thus the zero temperature pairing transition was conjectured

to be first order for short-range interaction, while for a long-range Coulomb interaction, a

continuous pairing transition was considered to be a possibility because of weaker gauge

field fluctuations.

The above analysis, based on the small frequency limit of the current-current interac-

tion needs to be reexamined. As mentioned and discussed in Section 1.2.2 of Chapter 1,

in a recent work [123] by Chung et al a new pairing mechanism has been proposed. In the

original work of Ref. [123] the authors considered a problem of non-relativistic fermions

coupled to a transverse gauge field. They suggest that although the current-current inter-

action is repulsive and singular in the small frequency limit, at higher frequencies it can

be attractive for angular momentum channels ` ≥ 2. This attractive part can outweigh

the repulsive part, thus changing the solution to the BCS equation completely. Therefore

it is crucial to consider the full Matsubara frequency dependence of the current-current

interaction and solve the BCS gap equation in a self-consistent manner.

In addition to the single layer case, we also consider the full frequency dependent

analysis of the double layer Hall system with a total filling fraction ν = 1
2

+ 1
2
. This

system is decoupled into two separate composite fermion metals with ν = 1
2

in each

layer if there are no disorder or inter-layer tunneling. If we include the most singular

interaction, namely the inter-layer current-current interaction, the interaction can be

attractive or repulsive depending on whether it is mediated by the out-of-phase or the

in-phase mode of the CS gauge field fluctuations. [193] The competition between these

two will determine the final fate of the double layer system. Bonesteel et al [194] showed

that this interaction always drives the system into a inter-layer paired state for any large

separation d between the two layers. However, this conclusion was also obtained from the

previously mentioned small frequency analysis. Therefore, for similar reasons, it must be

reexamined if only to put it on a firmer basis.

The major results of this Chapter 4 are as follows: (1) For the single layer system

with either short-range contact interaction or long-range Coulomb interaction, there can

be a continuous transition from the HLR state to a chiral odd `-wave Cooper pair state.
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(2) For the double layer system, there is always a non-zero pairing between inter-layer

composite fermions if the inter-layer spacing d is much greater than the magnetic length

`B. Thus, the small frequency analysis [194] does not qualitatively differ from the full

frequency dependent analysis, except for significant quantitative differences.

The structure of this Chapter 4 is as follows: in Section 4.2 we derive the BCS gap

equation for the ν = 1
2

single layer system; in Section 4.3 we present our numerical results

for the single layer system with short-range contact interaction and also briefly discuss

the results for the long-range Coulomb interaction; in Section 4.4 we write down the BCS

gap equation for the double layer system and present our numerical results; in Section 4.5

we summarize our conclusion and provide some further discussions.

4.2 The Effective action and the BCS gap equation for a single

layer system

Consider a two-dimensional (2D) electron gas with a perpendicular magnetic field B at

a filling fraction ν = 1/φ̃. For half-filling φ̃ = 2. In the CFL picture, φ̃, the emergent flux

is described by the CS gauge fields (a0, a) attached to an electron to form a composite

fermion. To describe this flux attachment, we need to add a CS term to the free electron

action. Thus, without interactions, the total Euclidian Lagrangian density is given by [23]

L = L0 + LCS with (~ = c = e = 1)

L0 = ψ∗(∂τ − a0 − µ)ψ − 1

2m∗
ψ∗(∂i − iai + iAi)

2ψ , (4.1)

LCS =
a0

2πφ̃
εij∂iaj , (4.2)

where ψ is the composite fermion field, m∗ is the composite fermion effective mass, and

∇ × A = Bẑ, the physical magnetic field. At the mean field level, εij∂iaj = 2πφ̃ <

ψ∗ψ >= Bẑ, B being the applied magnetic field. Then the CS gauge field exactly cancels

the external magnetic field. Therefore the system is a composite fermion metal with the

Fermi wave vector kF =
√

2
φ̃

1
`B

, where `B is the magnetic length. At half filling, kF = 1
`B

.

Beyond this mean field approximation, there will be fluctuations of the composite

fermion density, which also implies fluctuations of the CS gauge fields. These gauge field

fluctuations can in turn couple to the composite fermion currents, mediating a density-
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current interaction. Such an interaction is attractive in odd angular momentum channels,

leading to the GWW instability. In addition, we have additional four fermion interaction

term in the Lagrangian density,

Lint =
1

2

∫
d2x′ψ∗(τ,x)ψ(τ,x)v(r)ψ∗(τ,x′)ψ(τ,x′), (4.3)

where r = |x − x′| and the interaction is: v(r) = e2

εr
for a Coulomb interaction, ε being

the dielectric constant, while v(r) ∝ δ(r) for a short-range contact interaction.

Redefining (a0, a) as deviations from their mean field values, choosing the Coulomb

gauge[23], and using the constraint ψ∗ψ = (1/2πφ̃) εij∂iaj, we can rewrite the total action

in the momentum space as

S = S0 + SCS , (4.4)

S0 =

∫
dτ d2x

[
ψ∗(∂τ − ia0)ψ − 1

2m∗
ψ∗(∂i − iai)2 ψ − µψ∗ψ

]
, (4.5)

SCS =

∫
dτ d2x (LCS + Lint)

=
1

2β

∑
n,µ,ν

∫
d2q

(2π)2
a∗µ(iωn,q)D0

µ,ν
−1

(iωn,q) aν(iωn,q) . (4.6)

Here µ, ν = {0, 1}, ωn = 2nπ/β is a bosonic Matsubara frequency, and a0, a1 are the

time and transverse components of the CS gauge fields with the convention a1(iωn,q) =

ẑ ·(q×a). The CS gauge field action term SCS defines the bare CS gauge field propagator

to be

D0(iωn,q) =

 v(q) i2πφ̃
q

−i2πφ̃
q

0

 , (4.7)

where v(q) is the bare density-density interaction expressed in the momentum space.

Hence, v(q) = 2πe2/εq for long-range Coulomb interaction, and v(q) = const. for short-

range contact interaction. After RPA correction, the inverse gauge field propagator is

given by

[D(iωn,q)]−1 = [D0(iωn,q)]−1 +K0(iωn,q), (4.8)

where K0(iωn,q) is the electromagnetic response function of the non-interacting fermions

in 2D and has diagonal components only. In the limit q < 2kF and |ωn| � kF q
m

, we

K0
00 = N(εF ) = m∗

2π
and K0

11 = −χd q2 − kF |ωn|
2πq

, where χd = 1
12πm∗ is the free fermion

diamagnetic susceptibility. Inverting the matrix D−1, the RPA corrected gauge field
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≈
k −k k k′ −k′ −k

k′ − k

Figure 4.1: Diagrammatic representation of the Dyson equation for the off-diagonal com-

ponents of the anomalous self-energy ∆(iωn,k). The black blob denotes the proper

anomalous self-energy, and the gray blob (along with the associated fermion lines) de-

notes the corresponding component of the exact propagator of the fermions. The wiggly

line is the RPA corrected gauge field propagator. For compactness, we have used the

Euclidean vector notation: k ≡ (k0,k) = (ωn,k).

propagator is [23]

D(iωn,q) =
1

K0
00

[
K0

11 − q2 v(q)

(2πφ̃)2

]
−
(

q

2πφ̃

)2

 K0
11 − q2 v(q)

(2πφ̃)2 −i q

2πφ̃

i q

2πφ̃
K0

00

 . (4.9)

Therefore, the RPA correction not only renomalizes the density-density and density-

current interactions, but also generates a new current-current interaction, which turns

out to be repulsive and divergent at small frequencies but attractive at high frequencies.

Let φ1 and φ2 be the real and the imaginary parts of the anomalous self-energy respec-

tively, and Z(iωn,k) denote the mass renormalization. For our single layer problem we

will ignore the mass renormalization equation by simply taking Z(iωn,k) ' 1. This can

be safely done in the pairing state if the superconductivity forms at an energy scale higher

than the characteristic energy scale of the onset of the non-Fermi liquid behaviour. [195]

Therefore the complex anomalous self energy φ(iωn,k) = φ1(iωn,k)+iφ2(iωn,k) is simply

the gap function ∆(iωn,k)

Written out explicitly in terms of ∆(iωn,k), the anomalous self-energy equation in

Matsubara frequency is [111]

∆(iωn,k) = − 1

β

∑
m

∫
d2k′

(2π)2

∆(iωm,k
′)

|ωm|2 + ε̄2k′ + |∆(iωm,k′)|2
Veff(iωm − iωn; k′,k) , (4.10)

as shown diagrammatically in Fig. 4.1. Here ε̄k = εk − µ is the reduced kinetic energy.
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Now let us write ∆(iωn,k) =
∑

` ∆`(iωn,k) ei`θk , where only odd ` angular momentum

channels will be considered since the ν = 1/2 single layer system is spin-polarized. Being

a nonlinear integral equation involving the gap, we cannot strictly speaking decouple the

various angular momentum channels. However, we shall assume approximate decoupling.

Such decoupled gap equations for different channels can be considered as local minima

of the free energy. We will use the Fermi surface approximation |k| = kF , ignoring the

dependence on the magnitude of k, so that ∆`(iωn,k) ' ∆`(iωn). We will also consider

the zero temperature limit when the Matsubara frequencies become continuous: ωn → ω.

For the `-wave channel, we get

∆`(iω) =−
∫

d2k′

(2π)2

dω′

2π

∆`(iω
′) ei`θ

|ω′|2 + ε̄2k′ + |∆`(iω′)|2

× Veff(iω′ − iω; k′,k)
∣∣∣
|k|,|k′|=kF

, (4.11)

where θ is defined as ẑ · (k̂× k̂′) = sin θ.

At the Fermi surface,
∫

d2k′
(2π)2 ≈ N(εF )

∫∞
−∞ dε̄k′

∫
dθ
2π

, where N(εF ) = m∗
2π

is the 2D

density of states of spin-polarized fermions at the Fermi energy εF . Performing the

integration over ε̄k′ by the contour integral method, the BCS gap equation takes the

form:

∆`(iω) =

∫
dω′

∆`(iω
′)

2
√
|ω′|2 + |∆`(ω′)|2

Ṽeff,`(|ω − ω′|) , (4.12)

Ṽeff,`(|ω − ω′|) = −m
∗

2π

∫
dθ

2π
ei`θ Veff(iω′ − iω; k′,k)

∣∣∣
|k|,|k′|=kF

. (4.13)

The Fermi surface approximation is good in the BCS case, because the Debye frequency

ωD is much smaller than the typical Fermi energy. But in the present problem, there is

no similar small energy scale. There is, however, a rough high energy scale ω0 ∼ e2

ε`B
,

where `B is the magnetic length. On a length scale smaller than `B, the concept of

composite fermion is not well-defined. But this energy scale is not small compared with

εF ; in fact, ω0

εF
= 2m∗e2 `B

ε
' 20

3
. [120, 23] It has the same order of magnitude as the Fermi

energy of the free composite fermions. We assume that our Fermi surface approximation

to be qualitatively correct. To get the explicit form of Veff , we need to multiply Dµ,ν
by the appropriate vertex factors, as shown in the Feynman diagram in Fig. 4.1. As

we mentioned before, there will be density-density (associated with D00), density-current

(involving D01 and D10), and current-current interactions (involving D11).
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Correspondingly Ṽeff,`(iω), which characterizes the interaction, can be separated into

three pieces: the density-density interaction term λ`,00(iω), the density-current interaction

term λ`,10(iω), and the current-current interaction term γ`(iω):

Ṽeff,`(|ω|) = λ`,00(iω) + λ`,10(iω)− γ`(iω) (4.14)

with λ`,00, λ`,10 and γ` are defined by

λ`,00(iω) ≡ −m
∗

2π

∫ 2π

0

dθ

2π
ei`θ D00(iω, |k′ − k|)

∣∣∣
|k|,|k′|=kF

, (4.15)

λ`,10(iω) ≡ −m
∗

2π

∫ 2π

0

dθ

2π
ei`θ

{
2

ẑ · (k′ × k)

m∗|k′ − k| D01(iω, |k′ − k|)
} ∣∣∣
|k|,|k′|=kF

, (4.16)

γ`(iω) ≡ m∗

2π

∫ 2π

0

dθ

2π
ei`θ

{ |ẑ · (k′ × k)|2
m∗2|k′ − k|2 D11(iω, |k′ − k|)

} ∣∣∣
|k|,|k′|=kF

. (4.17)

In the density-current interaction term λ`,10(iω), there is a pre-factor of 2 inside the curly

brackets. This is because the two off-diagonal CS gauge field propagators D01 and D10

contribute identically to the density-current interaction.

It can be shown that for the short-range interaction v(q) = const

λ`,00(iω = 0) = 0 (4.18)

λ`,10(iω = 0) = ξ` sgn(`) (4.19)

with ξ` some positive constant [120]. From the expression of λ`,10(iω = 0) we see that it is

attractive in the positive `−wave channel while repulsive in the negative `−wave channel,

indicating the chirality of pairing if superconductivity is stabilized. Notice that because

of the Fermi surface approximation ξ` is independent of angular momentum channel `.

However as this approximation is relaxed, in general it should pick up an ` dependence. In

the following we are going to group the density-density and density-current interaction

together and use ξ` = λ`,00(iω = 0) + λ`,10(iω = 0) (for ` > 0) as a generic coupling

constant to characterize them.

The transverse component gauge field propagator is given by [120]:

D11(iω, q = |k′ − k|) ' 1

χ̃(q)q2 + kF |ω|
2πq

(4.20)

where χ̃(q) = v(q)/(2πφ̃)2 + (1 + 6/φ̃2)/(12πm∗). With short-range interaction v(q) '
v(0) = const, χ̃(q) ' χ̃(0) is a constant. Then γ`(iω) of Eq. (4.17) can be expressed as:

γ`(iω) = ζ`

∫ 2π

0

dθ

2π

| sin θ
2
| cos2 θ

2
cos(`θ)

2| sin3 θ
2
|+ ζ`

|ω|
4 εF

. (4.21)
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with the dimensionless constant ζ` defined by

ζ` ≡
1

4 πm∗ χ̃(0)
(4.22)

Similarly to ξ`, ζ` will be also treated as a generic coupling constant for the current-

current interaction.

In the small frequency limit

γ`(iω) ∝ (
εF
|ω|)

1/3 (4.23)

with a frequency independent prefactor. Bonesteel [120] used this small frequency expres-

sion for the whole frequency range and solved the BCS gap equation. However, according

to our previous experience [123] the behavior of γ`(iω) at high frequency is qualitatively

very different from that in the small frequency limit. In fact it changes sign at high

frequencies. Therefore, the full frequency dependence of γ`(iω) will be very important

for the final result. In other words, we will use Eq. 4.21 for γ`(iω).

Fig. 4.2 shows the dependence of γ`(iω) on frequency ω. From these plots it is trans-

parent that the current-current interaction term becomes attractive at high frequencies

for angular momentum channel ` > 1. Furthermore the attractive parts are considerable.

{=1{=3{=5
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Figure 4.2: γ`(iω)
α`

versus 2πα` ω for the short-range interaction case, where α` ≡ ζ`
4π
> 0.

The frequency ω has been expressed in units of εF .

In summary, the equation to be solved is

∆`(ω) = ξ`

∫ ωc1

−ωc1
dω′

∆`(ω
′)

2
√
ω′2 + |∆`(ω′)|2

−
∫ ωc2

−ωc2
dω′

∆`(ω
′)

2
√
ω′2 + |∆`(ω′)|2

γ`(iω) (4.24)
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where the full frequency dependence, Eq. 4.21 of γ`(iω), is used.

In the above gap equation we have set a frequency cut-off ωc1 for the term involving

ξ`. Using different values of ωc1 can in general change the non-universal critical constants

ξ` and ζ` of the phase transition. However, as far as the nature of the phase transition

is concerned, which is what we are interested in, the conclusions obtained here will be

independent of these specific values. For simplicity we will choose ωc1 = εF . As for the

current-current interaction term, we are going to choose the frequency integration cutoff

ωc2 to be large enough to include all significant contributions of γ`(iω). Typical value of

this cutoff for the displayed numerical results is ωc2 = 10 εF .

4.3 Numerical results for single layer system
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Figure 4.3: Zero frequency gap ∆` versus ξ` for the short-range interaction, plotted for

` = 1, 3, 5. The other coupling constant ζ` = 1.

Fig. 4.3 shows the zero frequency gap ∆` ≡ ∆`(iω = 0) versus ξ` for different `’s,

with ζ` = 1 (fixed). There are several noticeable features in this graph: (1) When ξ`

is large enough, superconductivity exists. (2) The phase transition is continuous for all

odd values of `. (3) For ` = 1, pairing requires a larger value of ξ`, because in this case,

γ`(iω) is repulsive for all frequencies and a larger attraction from ξ` is required to produce

pairing, as is shown previously in Fig. 4.2.
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We have solved the gap equation for different values of ζ` to find the corresponding

critical values of ξ` and constructed the phase diagram in the ξ` − ζ` space. The phase

diagram for ` = 3 is shown in Fig. 4.4. The generic features for ` > 1 are as follows:
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Chiral {=3 Pairing
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Figure 4.4: Phase diagram for ` = 3 in the ξ`-ζ` plane, for the case of short-range

interaction. In the shaded region, we have an HLR state. In the other regions, the

system is unstable to a chiral ` = 3 pairing state. The transition from the pairing state

to the HLR state is continuous. We note that when ζ` is very small, the phase boundary

curve should be extrapolated to the origin point.

1. Pairing exists when ζ` is large, since each individual term of the gap equation leads

to pairing. The threshold value of ξ` for pairing increases as ζ` decreases.

2. When ζ` is small and ξ` is not large enough, the current-current interaction term is

pair breaking 1, while the density-current term is not powerful enough to overcome

this effect. Hence HLR state is stable against pairing in this region.

3. If ζ` is very small, we can ignore the current-current interaction term. Then even

small ξ` can give us a pairing state. This is because in the limit ζ` → 0, even

infinitesimal attraction, characterized by ξ`, will produce a pairing state. This is

1By “pair breaking” we simply mean that the net effect of that interaction is repulsive. It is different
from its traditional usage in the case of scattering of electrons in Cooper pairs from either impurities or
some bosonic modes, whose effect is to break Cooper pairs and reduce the superconductivity temperature.
Thanks to Elihu Abrahams for pointing out the difference.
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why in Fig. 4.4 when ζ` is very small, the phase boundary could be extrapolated to

the origin.

As the frequency dependence of γ`(iω) is similar for all ` ≥ 3, seen in Fig. 4.2 , the

phase diagrams for different ` ≥ 3 should also be similar. The ` = 1 phase diagram can be

quite different since the current-current interaction term for this channel is repulsive over

the entire frequency range. Only when the attractive term ξ` is large enough, overcoming

the repulsive current-current interaction, a chiral ` = 1 pairing state can exist. This is

explicitly shown in the ` = 1 phase diagram in Fig. 4.5.
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Figure 4.5: Phase diagram for ` = 1 in the ξ`-ζ` plane, for the case of short-range

interaction. The phase transition across the phase boundary is continuous.

Although all the above calculations are done with short-range contact interaction, we

have also checked the Coulomb interaction case. In this case, the attractive part from

the current-current interaction at high frequency is very small. So the current-current

interaction mostly serves as a pair breaking term. Therefore the conclusion is similar

to what Bonesteel [120] had in his paper: only when the density-current interaction

dominates over other interactions will we have the GWW instability and the system be

in a chiral odd ` pairing state; also the transition from the HLR state to the chiral pairing

state is continuous. We should remind the reader that in reality the long-range interaction

may take some different form, such as 1/qx, with x ≤ 2, some positive constant [23, 112].

Although we did not do explicit calculations for these cases, we expect that the general
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conclusions will be the same as that obtained for the Coulomb interaction.

4.4 BCS gap equation for the double layer system

The full frequency dependent analysis can also be applied to the double layered Landau

level system with a total filling fraction ν = 1
2
+ 1

2
without inter-layer tunneling. Originally

Bonesteel et al [194] used full Eliashberg equations in their analysis. But it turns out

that, as far as whether there is a BCS pairing state at zero temperature or not, the single

BCS gap equation is enough. Since this will be a qualitative discussion, to simplify our

numerical task, we are going to ignore the second Eliashberg equation. The numerical

solution of the coupled Eliashberg equations with the full frequency dependence is quite

complex.

In the zero temperature limit, the BCS gap equation for s-wave pairing in the Mat-

subara frequency space is [194]

∆(ω) =

∫ ωc

−ωc
dω′

∆(ω′)

2
√
ω′2 + |∆(ω′)|2

Ṽeff(|ω′ − ω|) (4.25)

where the effective interaction Veff has two terms

Ṽeff(|ω|) = λ(−)(iω)− λ(+)(iω) (4.26)

Here the two dimensionless coupling constants λ(±)(iω) are defined as the average of two

inter-layer current-current interactions in the Cooper channel over the Fermi surface

λ(±)(iω) =
m∗

2π

∫ 2π

0

dθ

2π

(
k× q̂

m∗

)2

D±(iω, q) (4.27)

with q = k− k′, q = |q|. The scattering angle θ is defined via ẑ · (k̂× k̂′) = sin θ, same

as before.

Here the superscript ± means that the interaction is mediated either by the inter-layer

in-phase (‘+’ sign) or the out-of-phase (‘−’ sign) modes of the gauge field fluctuations.

And D±(iω, q) are the two corresponding gauge field fluctuation propagators. Within

RPA and in the limit that the inter-layer spacing d� `B, they are given by

D+(iω, q) '
(
e2 q

4πε
+
|ω| kF
4πq

)−1

, (4.28)
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and

D−(iω, q) '


(
e2 d q2

4πε
+ |ω| kF

4πq

)−1

, for q . d−1 ,(
e2 q
4πε

+ |ω| kF
4πq

)−1

, for q & d−1 .
(4.29)

where ε is the dielectric constant. Now we can substitute these expressions into our

definitions of λ(±)(iω) in Eq. (4.27). Writing everything out in terms of the scattering

angle θ and making the Fermi surface approximation yields (with kF = `−1
B at half-filling)

λ(+)(iω) =

∫ 2π

0

dθ

2π

4 sin θ

β(2− 2 cos θ) + |ω|
εF

(4.30)

λ(−)(iω) =

[∫ θc

0

+

∫ 2π

2π−θc

]
dθ

2π

4 sin θ

β d
`B

(2− 2 cos θ)3/2 + |ω|
εF

+

∫ 2π−θc

θc

dθ

2π

4 sin θ

β(2− 2 cos θ) + |ω|
εF

, (4.31)

where θc = 2 arcsin( 1
2 d/`B

). In the expression of λ(−) above, the first term comes from

the propagator D−(iω, q) with q . d−1. We have also introduced the dimensionless

paramter of β ≡ e2/(ε`B)
εF

= e2m∗
εkF

. Direct inspections show that the
∫ 2π−θc
θc

part of integral

contribution is the same in both λ(±). Therefore they cancel out each other in the effective

interaction Ṽeff . This cancellation is vital to the explanations to our final numerical

results. After this cancellation Ṽeff = λ(−) − λ(+) is simply

Ṽeff(iω) =

∫ θc

0

dθ

π

{ 4 sin θ

β d
`B

(2− 2 cos θ)3/2 + |ω|
εF

− 4 sin θ

β(2− 2 cos θ) + |ω|
εF

}
. (4.32)

This gives the full-frequency dependent Ṽeff(iω). In the original analysis of Ref.[194], the

zero frequency limit ω → 0 expression of Ṽeff(iω) is used. Since we are going to make

a comparison between the solutions using these two different expressions of Ṽeff(iω), we

also give the small frequency limit expression of Ṽeff(iω) here. Taking the ω → 0 limit of

Eq. (4.32) and keeping the most singular part only in each term we obtain

Ṽeff(iω) ' 8

3
√

3
(

1

β d/`B
)2/3(

εF
|ω|)

1/3 − 2

π

1

β
ln
εF
|ω| (4.33)

From this expression it is obvious that the out-of-phase attraction ∼ ( εF|ω|)
1/3 is more

singular than, therefore dominates over, the in-phase repulsion ln εF
|ω| in the zero frequency

limit. Hence using this Ṽeff always gives us pairing. What we want to see here is whether

including the full frequency dependence of Ṽeff(iω) is going to change the conclusions or

not.
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The specific value of d does not change our conclusion as long as it satisfies d � `B,

which is the domain of validity for all the above discussions. As for the frequency cutoff

ωc in the BCS equation (4.25), ωc = 10εF is taken when the full frequency dependent

Ṽeff (4.32) is used. This value should be large enough to include all significant high

frequency contributions. When using the small frequency limit expression of Ṽeff (4.33)

we can still use a large frequency cutoff ωc = 10εF for the first term involving |ω|−1/3, as

it decays fast enough at high frequencies. However, the second term involving ln εF
|ω| does

not converge at high frequencies. Therefore we will set ωc = εF for it.

Numerical results for double layer Hall system

Fig. 4.6 shows the zero frequency gap ∆ ≡ ∆(iω = 0) as a function of β. Clearly,

we always get non-zero pairing, irrespective of whether the full frequency dependence is

considered or not. The explanation is as follows. As we mentioned before, the two gauge
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Figure 4.6: Pairing gap ∆ for different values of β ≡ e2/(ε`B)
εF

, in the s-wave channel.

The circles denote the data obtained by using full frequency dependent Ṽeff , Eq. (4.32),

while the squares denote the data obtained by using its small frequency limit expression,

Eq. (4.33). Inter-layer distance dkF = d
`B

= 10.

field propagators D±(iω, q) differ from each other only when q . d−1. This corresponds to

a small frequency range |ω| . ωc, with ωc estimated by equating the Coulomb interaction
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energy term with the Landau damping term in the denominator of D+(iωc, q = d−1)

e2 q

4πε
' ωc kF

4πq
⇒ ωc

εF
' e2/(ε `B)

εF
(q `B)2 ' β

(
`B
d

)2

� 1 . (4.34)

Therefore, λ(+)(iω) is significantly different from λ(−)(iω) only when |ω|/εF � 1. This

implies that Ṽeff,`(iω) is basically non-vanishing only in the range |ω|/εF . ωc/εF � 1.

Hence including the high frequency part of Ṽeff(iω) does not qualitatively change the

conclusion. Of course quantitatively there will be differences as we see in Fig. 4.6. In

fact this difference is bigger when β is smaller. This is because β comes into Ṽeff(iω)

in the form of ( 1
β
)x with x = 2/3, 1 in the prefactors. Therefore when β is smaller, the

quantitative difference is enhanced. Notice that we only present our numerical gap data

for β ≥ 1 when using the small frequency limit expression of the effective interaction

Eq. (4.33). This is because when β � 1, taking the frequency cutoff ωc = εF in the

BCS gap equation for the repulsive term ∝ ln εF
|ω| in Eq. (4.33) introduces considerable

net repulsive effective interactions. However these net repulsive effective interactions are

absent in the full frequency dependent expression of Eq. (4.32) and therefore unphysical.

In Fig. 4.6 we also see that when β is either very large or very small, the gap tends

to vanish. These two limiting cases can be understood as follows

• When β is very large, in the denominators of both D±, the Coulomb energy, domi-

nating over the Landau damping, controls the gauge field fluctuations. Then in the

effective interaction Eq. (4.32) both terms are proportional to 1
β
, vanishing in the

large β limit. Therefore the net effective interaction is very small and the pairing

gap tends to vanish in this limit.

• When β is very small, the Landau damping term dominates over the Coulomb

energy term and controls the gauge field fluctuations. However as Landau damping

is the same for both the inter-layer in-phase and out-of-phase modes, they tend

to cancel out each other in the effective interaction, as we can see in Eq. (4.32).

Therefore the gap should vanish in this limit too.

From the considerations of these two limiting cases, we conclude that the gap must reach
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the maximum at some finite β value. In fact this β value depends on the specific value

of the inter-layer distance d as we see in Fig. 4.7.
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Figure 4.7: The bilayer pairing gap ∆ as a function of the parameter β. The circles

denote the data for d = 10`B; while the squares denote the data for d = 50`B. Notice

that the two plots are using two different vertical axis scales, as indicated by the two

arrows.

4.5 Conclusion

To summarize, we have shown that the full frequency dependence of the effective inter-

action is important and alters the conclusion obtained by Bonesteel[120], which is based

on a small frequency analysis. For both short-ranged contact interaction and long-ranged

Coulomb interaction, there can be a continuous transitions (instead of a discontinuous

one) from the HLR state to a chiral pairing state in an odd angular momentum channel,

as we tune the two coupling constants which characterize the density-current and current-

current interactions. In practice, this tuning can be achieved by changing the width of

the quantum well or of the semiconductor inversion layer, although the precise control

of them can be difficult. This possible transition by changing the width of the electron

layer has been also discussed in previous variational Monte Carlo studies[99, 196]. In

fact, recent experiments have observed 1/2 and 1/4 fractional quantum Hall effects in

asymmetric wide quantum wells [197, 198, 86, 199], although they are absent in the o-
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riginal experiments performed in narrow quantum wells. These states can be interpreted

as chiral odd wave pairing state of composite fermions [22]. And correspondingly, the

change from a gapless state in narrow quantum wells to a fractional quantum Hall state

in wide wells is suggestive of a transition from the HLR state to a chiral odd wave pairing

state of composite fermions.

We have also constructed the phase diagrams for different angular momentum channels

and found that the phase diagram for ` = 1 channel pairing can be quite different from

that for higher angular momentum channels ` ≥ 3. For ` = 1 we always need large

enough density-current interaction to stabilize the chiral pairing state. But for ` ≥ 3,

even small density-current and large current-current interactions can result in a chiral

pairing state, because of the attractive nature of the current-current interaction at high

frequencies.

Although in all our above analysis we treat the composite fermions as point particles,

the finite size effect as well as the short-range part of the electron-electron interaction

might be important, [200, 201] to explain why the fractional quantum Hall state is stable

at ν = 5/2 while they are absent at other Landau level half fillings ν = 1/2 , 3/2 , 7/2 ....

Also the screening of the Coulomb interaction due to the filled Landau levels [202] may

play an important role in distinguishing ν = 5/2 from other half-filled Landau levels.

Another assumption we made in our current analysis is that the single layer lowest Lan-

dau level composite fermion system is spin-polarized. Therefore the resulting pairing is

in chiral odd-wave channel. But a recent numerical study showed that this incompress-

bile state could either be a Moore-Read spin polarized Pfaffian state or a Halperin spin

unpolarized 331 state[203]. Currently we do not have a definite answer to this. These

could be subjects of future studies.

There is also a recent experiment revealing some new features of the ν = 1/2 state

which is difficult to understand according to the existing theories[204].

We also applied the full frequency dependent analysis to the double layer half-filled

problem considered previously by. Bonesteel et al. [194] It turns out that the full frequency

dependence of the effective interaction does not change their qualitative conclusion. This

is because the two contributions to the effective interaction coming from the in-phase

and out-of-phase mode fluctuations of the CS gauge field cancel each other out at high
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frequencies. Thus the net effective interaction is non-zero only in a very small frequency

range near ω = 0. So the small frequency analysis is a good approximation. [194]

After our work was completed we noticed that similar conclusions were recently

reached by M. A. Metlitski et al. [114] from a renormalization group analysis. We also

note two interesting related papers. [205, 206] It is clear that a more complex treatment

of the coupled Eliashberg equations and fluctuation effects must be considered in the

future work.
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CHAPTER 5

Pairing of particle-hole symmetric composite

fermions in half-filled Landau level

5.1 Introduction

The nature of the compressible state at ν = 1/2 filling fraction in the fractional quantum

Hall regime has been a fascinating topic since the pioneering work by Halperin, Lee,

and Read(HLR) [23]. In the HLR picture this state is interpreted as a liquid of non-

relativisitc composite fermions(CFs) coupled to a fluctuating Chern-Simons(CS) gauge

field. It provides a nice explanation for the acoustic wave propagation experimental

observations [15].

However, the HLR theory has a long-standing issue in that it is incompatible with

the particle-hole symmetry defined for a single Landau level [94, 95] in the zero Landau

level mixing limit, as already discussed in Section 1.2.3 of Chapter 1. To resolve this issue

recently Dam Thanh Son [2] has proposed a particle-hole symmetric theory in which the

underlying composite fermions are taken to be Dirac particles. As in the HLR picture,

these Dirac CFs are electrical neutral and coupled to an emergent gauge field. However,

in this new picture the emergent gauge field does not have a Chern-Simons term. This

proposal has generated a great deal of interest [139, 140, 126, 136, 128, 125, 135, 137,

127, 141, 142] because it can not only resolve the old particle-hole symmetry issue but

also provide another avenue to study some seemingly completely unrelated topics such

as strongly-correlated topological insulator surface states [125].

Cooper pairing of the CFs can give rise to incompressible gapped states which possess

nonabelian braiding statistics [17, 22] and are potentially useful for topological quantum

computation [19], as discussed in Chapter 1. In the traditional HLR picture, pairing CFs

can lead to the Moore-Read Pfaffian state. However, because of lacking the particle-hole
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symmetry, the anti-Pfaffian state [100, 101] —the particle-hole conjugate of the Moore-

Read Pfaffian state —is impossible. In contrast, in Son’s new Dirac CF theory both the

Moore-Read Pfaffian and anti-Pfaffian states are put on equal footing. Furthermore, a

new putative particle-hole symmetric pairing state has also been proposed. However, the

possible underlying pairing mechanism for realizing these states is not clear at all. In

fact, in a recent work [136] the authors there considered an effective interaction, derived

from the original electron-electron Coulomb interaction, in the BCS pairing channel and

found that there is no pairing instability in any angular momentum channel `.

Here we apply the new paring mechanism from a repulsive force discussed in Sec-

tion 1.2.2 to the particle hole symmetric Dirac composite fermion theory. We show that

there can be nonzero pairing of Dirac CFs in angular momentum channels |`| ≥ 1, includ-

ing the Moore-Read Pfaffian and anti-Pfaffian states, which correspond to the ` = ∓2

channels. There is a quantum phase transition from the Dirac CF liquid state to the

|`| ≥ 1 pairing states as we tune the effective coupling constant. However, the ` = 0 chan-

nel pairing, which is particle-hole symmetric and corresponds to the putative particle-hole

symmetric Pfaffian state proposed in Ref. [2] previously, turns out to be impossible in

our current treatment.

5.2 Model

The low energy effective(Euclidean) action of the Dirac CF field ψ in 2 + 1d is [2]

SCF =

∫
dτd2x{ψ̄γµ(∂µ + iaµ)ψ − i B

4π
a0}, (5.1)

where ψ̄ = ψ†γ0 and the ψ field carries a 2-component pseudo-spin degrees of freedom.

The three gamma matrices are chosen to be {γ0, γ1, γ2} = {σ3, σ1, σ2} with σ1, σ2, σ3 the

three Pauli matrices. We have also set ~ = e = c = 1 and the Fermi velocity vF = 1. aµ is

the emergent gauge field that the Dirac CFs couple to. µ = 0, 1, 2 represent the imaginary

time τ and spatial x, y directions respectively. Throughout this whole Chapter 5 we will

use Greek letter subscripts to denote the time-spatial 3−vector components and Lattin

letter subscripts for the spatial vectors. In the 2nd term of Eq. (5.1), B is the external

physical magnetic field. As mentioned before, the key differences of SCF from the HLR

theory are: there is no Chern-Simons term for the gauge field aµ and the new CFs are
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relativistic particles. Differentiating SCF with respect to a0 gives ψ̄γ0ψ = B
4π

, which

shows that the Dirac CFs density is equal to twice of the B flux density. Therefore to

electrons, the Dirac CFs are double vortex objects. Furthermore the emergent magnetic

field strength is given by b(x) = ∇× a = 4πρ′e(x). Here ρ′e = ρe− ρν=1/2 is the deviation

of the original electric charge density ρe from its half filled Landau level value ρν=1/2. A

prime superscript is added to ρ′e to distinguish it from ρe. We see that the original electric

field and magnetic flux density interchange their roles in the new Dirac CF theory. In

this sense the new theory is electro-magnetic dual [136] to the original electron problem.

At mean field level < b(x) >= ρ′e = 0 because the electron Landau level is exactly at

half filling. Therefore the Dirac CFs are described by a free Dirac Hamiltonian

H = vFp · (ẑ × σ) (5.2)

at zero field b = 0. The dispersion is simply a Diarc cone with two branches εsk = s ~vF |k|
where s = ±. Because the Dirac CF has a finite density B/4π, the Fermi energy εF =

vFkF is finite with the Fermi wavevector given by kF =
√
B, same as that in the HLR

picture.

Beyond the mean field level there will be gauge fields aµ fluctuations. In general these

fluctuations can mediate some effective interaction and may provide the necessary pairing

glue between the Dirac CFs. To find out that answer we need one more ingredient: the

dynamics of the gauge fields. This could be given by an emergent Maxwell term in the

action: SMax ∝ − 1
4g2

∫
d3xf 2

µν , where fµν = ∂µaν−∂νaµ is the field strength and g is some

coupling constant. The other choice is to use the original Coulomb interaction between

electrons: e2

εr|x−x′|ρ
′
e(x)ρ′e(x

′), where εr is the background dielectric constant, and translate

it into an interaction between the emergent gauge fields aµ by using b(x) = 4πρ′e(x).

Written in the momentum space, the action of this term reads [136]

SCoulomb =
1

2

∫
dΩd2q

(2π)3
aT (Ω,q)

2πe2

εr|q|
|q|2
16π2

aT (−Ω,−q). (5.3)

The frequency Ω here and all frequencies defined throughout the rest of the paper should

be understood as Matsubara frequencies. The temperature has been already set to T = 0

so that all Matsubara frequencies are continuous. In the action SCoulomb only the spatial

transverse component of gauge fields is involved, as indicated by the subscript “T” on
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aT(Ω,q) = εij q̂iaj(Ω,q), where εij is the antisymmetric tensor and the summation conven-

tion is assumed. In Eq. (5.3) the 2πe2/εr|q| factor comes from the 2D Fourier transform

of the electron-electron Coulomb interaction. |q|
2

16π2 factor comes from the conversion from

ρ′e to aT. Now we see that the Lagrangian density of SCoulomb is ∝ |q| while that of the

Maxwell term SMax is ∝ f 2
µν ∝ |q|2. Therefore in the long wavelength limit, the Coulomb

term dominates and the Maxwell term [136] can be dropped. Taking SCoulomb as our bare

gauge field action we can readily read off the bare gauge field propagator inverse, which

has only a transverse component

[D(0)
T ]−1(Ω,q) =

e2

8πεr
|q|. (5.4)

We add a superscript “(0)” in D(0)
T to indicate that it is a bare gauge field propagator

without including the screening effects from the finite density Dirac CFs.

Integrating out the gauge fields aT gives a current-current interaction between Dirac

CFs described by the following action

Sint =
1

2

∫
dΩd2q

(2π)3
JT(Ω,q)D(0)

T (Ω,q)JT(−Ω,−q), (5.5)

where JT(Ω,q) = εij q̂iJj(Ω,q) is the transverse component of CF current operator. For

Dirac CFs the current density Ji(Ω,q) = vF
∫
dωd2k/(2π)3ψ†(ω + Ω,k + q) iγ0γiψ(ω,k)

is equivalent to the transverse pseudo-spin density. Therefore the transverse current can

be written as follows

JT(q) = vF

∫
d3k1

(2π)3

d3k2

(2π)3
(2π)3δ(3)(k2 − k1 − q) ψ†(k2)[εij q̂i iγ0γj]ψ(k1), (5.6)

where we have used the relativistic notation ki = (ωi,ki), q ≡ (Ω,q) for brevity. The

magnitude of the vector ki will be denoted by |ki| so that no confusion will be caused.

Because the gamma matrix γ0γj in Equation (5.6) does not commute with the Dirac

Hamiltonian in Equation (5.2), JT mixes eigenstates of the two branches of the Dirac cone

dispersion. In other words JT mixes particles near the CF Fermi surface, belonging to the

ε+k branch, with their anti-particle conjugates buried deep in the Dirac sea, belonging to

the ε−k branch. However, our theory is trustworthy only as a low energy effective theory

near the Fermi surface. Therefore we need to project out the interaction only between

those low energy degrees of freedom near the Fermi surface. This can be done by replacing
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ψ(ki) in Equation (5.6) with [136]

P
(+)
ki

ψ(ki) =
1√
2

ie−iθki
1

χ(ki). (5.7)

Here P
(+)
ki
≡ 1

2
[1 + iγ0γ · k̂i] is the projection operator for the energy branch ε+ki . θki is

the azimuthal angle of the momentum vector ki in the xy plane. χ(ki) is now a scalar

field representing quasiparticles near the Fermi surface.

Replacing ψ(ki) with P
(+)
ki

ψ(ki) in the integrand in Equation (5.6) leads to

ψ†(k2)P
(+)
k2

[εij q̂i iγ0γj]P
(+)
k1

ψ(k1)

= χ†(k2)
1√
2

(
−ieiθk2 1

) 0 e−iθq

eiθq 0

 1√
2

(
ie−iθk1 1

)
χ(k1) (5.8)

= χ†(k2)
i

2
[ei(θq−θk1

) − ei(θk2
−θq)]χ(k1). (5.9)

Then we make the Fermi surface approximation: |k2| = |k1| = kF so that for q = k2−k1

we have [136]

θq =
π

2
+
θk1 + θk2

2
. (5.10)

Substituting this result into Eq. (5.9) gives

ψ†(k2)P
(+)
k2

[εij q̂i iγ0γj]P
(+)
k1

ψ(k1) = −χ†(k2)ei
θk2
−θk1
2 χ(k1). (5.11)

Therefore the transverse component current is [136]

JT(q) = −vF
∫

d3k1

(2π)3

d3k2

(2π)3
(2π)3δ(3)(k2 − k1 − q) ei

θk2
−θk1
2 χ†(k2)χ(k1). (5.12)

In this expression the ei
θk2
−θk1
2 factor reflects the fact that for our Dirac CF described by

the Hamiltonian in Equation (5.2) the transverse pseudo-spin direction ẑ×σ is locked to

the momentum direction p. So there is a nontrivial π Berry phase picked up by JT(Ω,q),

which is nothing but the transverse spin density, if the momentum k2 is traversed around

k1 by 2π.

Substituting the expression of JT from Equation (5.12) into Equation (5.5) leads

to [136]

Sint =
1

2

∫ 4∏
i=1

d3ki
(2π)3

(2π)3δ(3)(k3 + k4 − k1 − k2)

× 8πεrv
2
F

e2

exp{− i
2
[θk1 + θk2 − θk3 − θk4 ]}
|k1 − k3|

χ†(k4)χ(k2)χ†(k3)χ(k1). (5.13)

93



Then consider the interaction in the BCS channel: k1 = −k2 = k ≡ (ω,k), and k3 =

−k4 = k′ ≡ (ω′,k′), and introduce the frequency and momentum transfer as: Ω = ω′−ω
and q = k′ − k. We make Fermi surface approximations: |k| = |k′| = kF . Then the

interaction in the BCS channel can be readily read off from Sint as

VBCS(q) =
8πv2

F εr
2kF e2

e−iθq

| sin θq
2
|
. (5.14)

It can be easily shown that this interaction is repulsive in all angular momentum channels

and therefore can not give any pairing[for details see Ref. [136]].

Now we incorporate the screening effects from the finite density Dirac CFs on the

gauge field within the random phase approximation(RPA). In the limit |Ω| < vF |q| �
εF , the transverse current-current response function RT of the Dirac CFs is given by

RT(Ω,q) = − εF
2π
|Ω|
vF |q|

(for details see the Appendix B.1.2) and the RPA renormalized

gauge field propagator can be obtained from the Dyson equation

DRPA
T (Ω,q) =

D(0)
T (Ω,q)

1−RT(Ω,q)D(0)
T (Ω,q)

. (5.15)

We can define a dynamic dielectric function as ε(Ω,q) = 1 − RT(Ω,q)D(0)
T (Ω,q) so

that DRPA
T (Ω,q) = D(0)

T (Ω,q)/ε(Ω,q). Similar to D(0)
T , DRPA

T will mediate a current-

current interaction between Dirac CFs, which is now frequency dependent and given by

Veff(Ω,q) = VBCS(q)/ε(Ω,q). Consider a pairing order parameter < χ(−k)χ(k) >∼ ei`
′θk

in the `′ = `+1 channel, which corresponds to pairing the original Dirac spinors P
(+)
k ψ in

the ` channel. Note that in this Chapter 5 by angular momentum channels `, `′ we mean

the angular momentum component along the ẑ direction is `, `′. The difference between

` and `′ comes from the nontrivial Berry phase factor carried by the spinor P
(+)
k ψ(k) [see

Eq. (5.7) and Section 5.4 for more details]. Integrating Veff over the Fermi surface in the

`′ = `+ 1 angular momentum channel gives a dimensionless quantity

Ṽ`(Ω̃) ≡ N0

∫
dθq
2π

Veff(Ω,q)ei`
′θq (5.16)

= α

∫ π

−π

dθ

2π

ei`θ

| sin θ
2
|

2

1 + α |Ω̃|
sin2 θ

2

, (5.17)

where |Ω̃| = |Ω|/εF . N0 = εF/2πv
2
F is the density of states of the free Dirac CFs at the

Fermi energy εF . In the above equation we have also introduced an effective coupling
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constant α = N04πv2
F εr/2kF e

2 = 1/α′, with α′ ≡ e2/εrvF the fine structure constant of

the Dirac CFs. That it is 1/α′, instead of α′, that serves as our coupling constant here

reflects the the electromagnetic duality [136] in our problem. Since we do not have a

good estimation of the vF for the composite fermions, in the following we treat α as a

generic tunning parameter. Without any confusion we will continue calling Ṽ` an effective

interaction. With Ṽ` we can solve the self-consistent equation of the pairing gap ∆`, which

is given by [123]

∆̃`(ω̃) = −
∫
dω̃′

2π
Ṽ`(ω̃ − ω̃′)

∆̃`(ω̃
′)√

(ω̃′)2 + |∆̃`(ω̃′)|2
, (5.18)

where all quantities with tilde are dimensionless: frequencies ω̃ = ω/εF , ω̃
′ = ω′/εF and

the pairing gap ∆̃` = ∆`/εF . As emphasized in our previous work [123, 207], a complete

solution to the paring problem needs to take into account the fermion wavefunction

renormalization factor Z(ω). This factor has an anomaly on the Fermi surface: Z(ω)→ 0

as ω → 0 in the Dirac CF liquid phase, similar to the HLR picture. However, in a pairing

phase this anomaly will be cutoff at frequencies of the order of the pairing gap if that

gap is large enough. In other words, setting Z(ω) ≈ 1 should be qualitatively correct as

long as the coupling constant α is not too close to its critical point value αc. Near the

critical point αc, this vanishing of quasiparticle residue Z(ω) → 0 competes against the

pairing instability and much more careful investigations are needed. We will leave that

for future work and simply set Z = 1 in the following.

In the next section we first plot out Ṽ`(Ω̃) to show that Ṽ` has a sizable attraction

at high frequencies for |`| ≥ 1; while it is repulsive in the whole frequency range for

` = 0. Then we present our numerical results to the above self-consistent gap equation

for different channels `.

5.3 Results

5.3.1 The effective interaction Ṽ`(Ω̃)

We first notice that Ṽ`(Ω̃) is identical for angular momentum channels ` and −`. This

reflects the fact that the interaction Ṽ` itself respects the particle-hole symmetry defined

for the ν = 1/2 Landau level problem, under which the ` channel pairing is transformed
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into the −` channel pairing[for details see Appendix B.2 and Ref. [2]. Therefore we only

need to plot out Ṽ`(Ω̃) for channels ` ≥ 0. This is shown in Fig. 5.1. From this plot first
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Figure 5.1: Loglinear plots of Ṽ`(Ω̃)/α as a function of α Ω̃ for ` = 0, 1, 2, 3, 4, 5. Notice

that the horizontal axis is in a logarithmic scale.

we see that the ` = 0 channel effective interaction is completely repulsive in the whole

frequency range. Therefore there can not be any pairing in this channel. Since ` = 0

channel pairing order parameter is invariant under the particle-hole symmetry transfor-

mation, this channel corresponds to the putative particle-hole symmetric Pfaffian state

proposed in Ref. [2]. Therefore in our pairing mechanism, the particle-hole symmetric

Pfaffian state does not exist.

For |`| ≥ 1, although Ṽ`(Ω̃) is repulsive and diverges logarithmically as Ṽ`(Ω̃) ∼
−α
π

log |Ω̃| in the small frequency limit Ω̃→ 0, it has considerable attractions at high fre-

quencies. The balance between the repulsion and attraction is controlled by the coupling

constant α. Depending on the magnitude of α, such a balance may be tipped over in

favor of a pairing state. In the next subsection we show that this is indeed the case by

solving the gap Equation (5.18) numerically.

5.3.2 Solution to the pairing gap equation

We first cut off the effective interaction Ṽ`(Ω̃) and the frequency integral at |Ω̃| ≥ 1 in the

gap Eq. (5.18). We choose the frequency grid to be 5 × 104 and solve the gap equation

by iteration until a desired convergence accuracy is achieved, following Ref. [123].
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Figure 5.2: The plot of gap ∆`(ω) as a function of the frequency ω for angular momentum

channel ` = 1. From top to bottom: α = 24, 22, 20, 18, 16, 14, 12, 10.
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Figure 5.3: Plot of gap ∆` = ∆`(ω = 0) as a function of α for angular momentum channel

` = 1. The critical value of α is estimated to be αc ≈ 8.

97



Fig. 5.2 shows the results of ∆`(ω) for angular momentum channel ` = 1. Different

curves in this figure correspond to different values of the coupling constant α. From these

curves we see that ∆`(ω) falls off rapidly as ω/εF → 1. This is due to our sharp cutoff

of Ṽ` at ω/εF = 1. As ω → 0, clearly ∆`(ω) reaches a finite constant ∆` ≡ ∆`(ω = 0).

Remember that we are working in Matsubara frequency space. Therefore ∆` gives the

T = 0 thermodynamic pairing gap. As we can see in Fig. 5.2 the size of ∆` decreases

progressively as we decrease the coupling constant from α = 24 to α = 10. Naturally

we would expect that ∆` eventually vanish at certain critical value of α = αc, below

which the Dirac CF liquid state is stabilized instead. This is explicitly shown for ` = 1

in Fig. 5.3, where we plot out the ∆` values extracted from Fig. 5.2 for different α values

considered there. An extrapolation to ∆` = 0 shows that the gap vanishes at αc ≈ 8.

Therefore indeed there is a quantum phase transition from the ` = 1 pairing state to the

Dirac CF liquid state as we decrease α across αc towards zero.

We can do similar analysis for other higher angular momentum channels `. The results

for ` = 1, 2, 3 are displayed in Fig. 5.4. From this plot we see that at the same coupling

constant value the gap size ∆` decreases as ` increases. This is understandable given

that the frequency range of sizable attraction in Ṽ`(Ω) decreases with `, as we can see

from Fig. 5.1 (notice that the horizontal frequency axis is in a logarithmic scale). This

feature is also similar to what have been found in the transverse gauge field problem in

Ref. [123]. However, unlike there the critical value αc for different channels are very close

to each other in our problem. For ` ≥ 2, αc ≈ 7 and we can not resolve the difference

between αc for different channels.

5.4 Discussion

As already mentioned before, the pairing angular momentum channel `′ for the order

parameter 〈χ(−k)χ(k)〉 is different from that of the pairing order parameter in terms of

pseudo-spinors P
(+)
k ψ(k) because of the spinor’s Berry phase factor. Now we discuss the

pairing order parameters ∆̂ in terms of the P
(+)
k ψ(k) field. A hat has been put onto ∆̂

to indicate that ∆̂ is a 2× 2 matrix. In general we can parametrize this matrix as

∆̂(k) = [∆s(k) + d(k) · σ]iσ2, (5.19)
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Figure 5.4: Plots of the gap ∆` = ∆`(ω = 0) as a function of the effective coupling

constant α for angular momentum channel ` = 1, 2, 3. The critical coupling constants for

different channels are very close to each other. For ` = 1,αc ≈ 8; while for ` ≥ 2, αc ≈ 7.

We can not resolve the different between αc for difference ` ≥ 2 channels.

where ∆s(k) gives the pairing order parameter in the pseudo-spin singlet channel while

the vector d(k) characterizes the triplet channel pairing. In the following discussion we

assume the Cooper pairing in these two channels are decoupled. This assumption is not

obvious given that the pseudo-spin is coupled to the orbital momentum and is therefore

not a conserved quantity for our Dirac CFs. But we will assume such a decoupling can be

approximately made when only the low energy degrees of freedom near the Fermi surface

participate the pairing.

The pseudo-spin singlet channel order parameter

∆̂(k) = 〈ψT (−k)P
(+)
−k iσ2P

(+)
k ψ(k)〉 (5.20)

is the one adopted in Ref. [2]. Substituting the definition of P
(+)
k ψ(k) from Eq. (5.7)

into this order parameter leads to ∆̂(k) ∝ iσ2 e
−iθk〈χ(k)χ(−k)〉. In other words ∆s(k) ∝

e−iθk〈χ(k)χ(−k)〉. This shows explicitly that if ∆s(k) ∝ iσ2 ∆` e
i`θk is in the ` channel,

then < χ(−k)χ(k) >∝ ei(`+1)θk is in a channel `′ = ` + 1, as mentioned before. Because

Fermi statistics requires ∆̂(k) to be antisymmetric and it is already antisymmetric in

the pseudo-spin space, then ∆s(k) needs to be symmetric; that is, only those even `

channels are possible. These include the Moore-Read Pfaffian state, corresponding to

the pairing channel ` = −2, and its particle-hole conjugate, the anti-Pfaffian state [100,
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101], corresponding the ` = 2 pairing channel(see Appendix B.3 and Ref. [2] for more

details). Although the ` = 0 channel pairing is also symmetry allowed, it is energetically

unfavorable in our pairing mechanism as emphasized previously.

If the order parameter is chosen in the pseudo-spin triplet channel instead: ∆̂(k) =

〈ψT (−k)P
(+)
−k d · σiσ2P

(+)
k ψ(k)〉, then the order parameter needs to be antisymmetric

functions of of the momentum. In other words, only odd ` pairing channels are allowed.

These include the |`| = 1 channels, which have the largest pairing gap among all channels

in our numerical solutions when α is large and not too close to αc, as seen in Fig. 5.4.

We consider that both the pseudo-spin singlet and triplet order parameters are allowed

so that the spatial pairing channel ` can be either even or odd. This is in contrast to

the Ref. [2], where only the pseudo-spin singlet order parameter was considered such

that only even ` channels were possible. The competition between different ` channels

requires much more careful analysis especially given that the αc we have found for different

channels are quite close to each other, although the largest pairing gap of |`| = 1 channel

for typical coupling constants in Fig. 5.4 tends to suggest that |`| = 1 channels are most

robust. If |`| = 1 channels, or other |`| 6= 2 channels, are indeed more favorable than

|`| = 2 channels, then interesting questions to ask would be: what is the nature of these

states? What do the corresponding lowest Landau level wavefunctions look like? Do they

support excitations possessing non-abelian statistics? These questions need to be further

investigated in the future.

5.5 Conclusion

To conclude we have constructed a specific pairing mechanism for the Dirac composite

fermions proposed recently for the half filled Landau levels. By taking advantages of the

attraction of a dynamically screened effective interaction at high Matsubara frequencies

we show that there can be nonzero pairing in angular momentum channels |`| ≥ 1 at

certain coupling constant values. As the coupling constant is varied, there can be a

quantum phase transition from the pairing state to the Dirac CF liquid state. Apart from

the well known Moore-Read Pfaffian state(` = −2) and its particle-hole conjugate(` = 2):

the anti-Pfaffian state, other Pfaffian states are also possible. However, in contrast to
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the channels |`| ≥ 1, the ` = 0 particle-hole symmetric channel effective interaction is

completely repulsive in the whole frequency range considered, which therefore renders the

putative particle-hole symmetric Pfaffian state impossible in our pairing mechanism.
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APPENDIX A

Appendices for Chapter 3

A.1 Recursive Green’s function method

The recursive Green’s function method studies a quasi-one-dimensional system, which is a

square lattice with a very long axis of length La along the x−direction and a shorter axis of

width Ma along the y−direction in our problem. The system can be built up recursively

in the x−direction by connecting many one-dimensional stripes together. Each stripe

has a direct coupling only to its nearest neighboring ones. This property is essential for

the recursion. In our Hamiltonian H the third nearest neighbor hopping t′′ provides the

farthest direct coupling along the x−direction. It connects two sites 2a apart. Therefore

each stripe necessarily contains two columns of the square lattice sites so that the direct

coupling exists only between two adjacent stripes. The blue dashed rectangle in Fig. A.1

shows one such stripe. We define each of such stripes as a principal layer, so each layer

contains 2M sites.

Our goal is to compute the diagonal matrix elements of the exact Green’s function G

in order to get the DOS. For this purpose we first calculate Gi ≡< i|G|i > for each layer

i. The ket |i > represents a state where the Bogoliubov quasiparticles are found in the

ith principal layer. It has 4M components, of which the first 2M ones give the electron

part wavefunction, while the rest 2M ones define the hole part. Therefore Gi = Gi(j, j
′)

is a 4M × 4M matrix with j, j′ = 1, 2, ..., 4M . For brevity we will suppress the matrix

element indices hereafter, if there is no confusion.

The exact Green’s function Gi can be computed by (for derivations see Ref.[191])

Gi = [G0
i
−1 −Hi,i−1G

L
i−1Hi−1,i −Hi,i+1G

R
i+1Hi+1,i]

−1 , (A.1)

as schematically shown in Fig. A.1. Here G0
i ≡ [E− < i|H|i >]−1 is the bare Green’s

function of the isolated ith principal layer, with the superscript 0 indicating it is defined
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i

ℋi,i-1 Gi-1
L ℋi-1,i ℋi,i+1 Gi+1

R ℋi+1,i

Figure A.1: Schematic diagram of the recursive Green’s function calculation. The sites

enclosed by the blue dashed rectangle define the ith principal layer. The exact Green’s

function Gi has two self-energy contributions from both the left semi-infinite stripe and

and the right one. The left stripe is characterized by its surface Green’s function GL
i−1

with the (i−1)th layer its surface; while the right one is characterized by another surface

Green’s function GR
i+1 with the (i+ 1)th layer its surface.

as if all other layers are deleted. The matrix Hi,i−1 ≡< i|H|i − 1 > contains all the

Hamiltonian matrix elements connecting sites in the layer i− 1 to the layer i. Similarly

GL
i−1 ≡< i− 1|GL|i− 1 > is a matrix defined on the (i− 1)th principal layer, where GL

is the exact Green’s function of a subsystem of our original lattice with all layers to the

right of the (i−1)th layer deleted, as shown in Fig. A.2. The superscript “L” here means

that this subsystem, including a left lead, is extended to the x = −∞. Since the (i−1)th

layer is the surface of this subsystem, we will call GL
i−1 the left surface Green’s function.

Similarly GR
i+1 ≡< i + 1|GR|i + 1 > is another surface Green’s function of a subsystem

of our original lattice with all the layers to the left of the (i + 1)th layer deleted. Once

GL
i−1, G

R
i+1 are known, Gi can be computed immediately from Eq. A.1.

The central task is then to compute GL
i−1 and GR

i+1. This can be done recursively.

Take GL
i−1 as an example. We start with the leftmost layer i = 1. There our central

system is connected to a semi-infinite lead, which contains infinite number of layers of

the same width M , numbered by i = ...,−2,−1, 0. We denote this left lead’s surface

Green’s function as GL
s , whose computation will be presented in the following Appendix

A.1.1. Then we add the i = 1st layer of our central system, but not other layers, to this

lead so that we get a new semi-infinite stripe. This new stripe has a new surface Green’s
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function denoted as GL
1 , which can be computed from GL

s by

GL
1 = [G0

1
−1 −H1,0 G

L
s H0,1]−1 (A.2)

where H1,0 connects sites in the surface layer i = 0 of the left lead to the i = 1st layer

of our central system. Similarly we can repeat this process by adding one more layer of

our central system to the semi-infinite stripe each time, and build up the whole system.

In general at an intermediate stage, we may have a semi-infinite stripe, whose surface is,

say, the (i − 2)th layer with a surface Green’s function GL
i−2. Then the (i − 1)th layer

is connected to that stripe to form a new semi-infinite system, which has a new surface

Green’s function GL
i−1. And GL

i−1 can be calculated from GL
i−2 by the following recursive

relation

GL
i−1 = [G0

i−1
−1 −Hi−1,i−2G

L
i−2Hi−2,i−1]−1 (A.3)

This is schematically illustrated in Fig. A.2.

i-1

ℋi-1,i-2 Gi-2
L ℋi-2,i-1

Figure A.2: Schematic diagram for the GL
i−1 computation. The sites enclosed by the blue

dashed rectangle belong to the (i− 1)th principal layer, which is also the surface layer of

this semi-infinite stripe.

Similarly the right surface Green’s function GR
i+1 can be computed from GR

i+2 via

GR
i+1 = [G0

i+1
−1 −Hi+1,i+2 G

R
i+2Hi+2,i+1]−1 (A.4)

This recursive relation starts with GR
L/2 at the rightmost layer i = L/2 of our central

system, where it is connected to another semi-infinite stripe lead extended to x = ∞.
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Note that the central system has only L/2 principal layers because each layer contains

two columns of the sites, and there are only L columns in total. The layers in this right

lead are numbered by i = L/2 + 1, L/2 + 2, .... We denote the right lead’s surface Green’s

function as GR
s . Then GR

L/2 can be computed from GR
s by

GR
L/2 = [G0

L/2
−1 −HL/2,L/2+1 G

R
s HL/2+1,L/2]−1 (A.5)

where HL/2,L/2+1 connects our central system to the right lead and contains t, t′, t′′ only.

A.1.1 Surface Green’s function GL
s , G

R
s of the leads

GL
s , G

R
s can be computed by solving a self-consistent 2× 2 matrix equation. We now give

a detail discussion on how to compute GL
s , but only briefly mention the final results for

GR
s at the end.

The left lead Hamiltonian contains only the hopping parameters t, t′, t′′

Hlead =
0∑

i=−∞

M∑
j=1

{−t[c†i−1,jci,j + c†i,j+1ci,j]

+ t′[c†i−1,j+1ci,j + c†i−1,j−1ci,j]

− t′′[c†i−2,jci,j + c†i,j+2ci,j] + h.c.− µ c†i,jci,j} (A.6)

To be compatible with our central system Hamiltonian, which contains superconduc-

tivity, our lead Hamiltonian should have both an electron part and a hole part so that

the full Hamiltonian Hlead is

Hlead =

 Hlead 0

0 −Hlead

 . (A.7)

Correspondingly the surface Green’s function takes a block diagonal form

Gs(E
+)

 [E+ −Hlead]−1 0

0 [E+ +Hlead]−1

 (A.8)

where for brevity we have introduced E+ = E + iδ. We will denote the two diagonal

terms as Gee = [E+−Hlead]−1 and Ghh = [E+ +Hlead]−1. Apparently Ghh can be obtained

from Gee by simple substitutions: {t, t′, t′′, µ} ⇒ {−t,−t′,−t′′,−µ}. Therefore we only

need to discuss how to compute Gee.
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Because of the periodic boundary condition along the y−direction, we can decompose

Gee(E
+) into different momentum ky channels

Gee(E
+) =

∑
ky

|χky >< χky | g(ky, E
+) (A.9)

with |χky >=
∑M

j=1
eikyja√
M
|j > , and ky = 2nπ

Ma
with n = 1, 2, 3, ...,M . Each channel is

described by a semi-infinite one dimensional chain effective Hamiltonian Heff(ky) ≡<
χky |Hlead|χky >, given by

Heff(ky) =
0∑

i=−∞

{(−2 t cos ky − 2 t′′ cos 2ky − µ) c†ici

+ [(−t+ 2 t′ cos ky) c
†
ici−1 − t′′c†ici−2 + h.c.]}. (A.10)

And g(ky, E
+) is the corresponding surface Green’s function of this one dimensional chain.

To compute g(ky, E
+) we group every two adjacent cites (c†i−1 , c

†
i ) of the one dimen-

sional chain together into a cell, indexed by the cell number n, so that Heff(ky) can be

rewritten in a form such that direct couplings exist only between two nearest neighboring

cells

Heff(ky) =
0∑

n=−∞

( c†2n−1 , c†2n )

 −t′′ −t+ 2t′ cos ky

0 −t′′

 c2n−3

c2n−2

+ h.c.

+
0∑

n=−∞

( c†2n−1 , c†2n )

 −2t cos ky − 2t′′ cos 2ky − µ
−t+ 2t′ cos ky

−t+ 2t′ cos ky

−2t cos ky − 2t′′ cos 2ky − µ

 c2n−1

c2n

 . (A.11)

Since g(ky, E
+) is a surface Green’s function, it should satisfy the same recursive

relation given in Eq. (A.3), which is rewritten here as

g = [G0
0
−1 − [Heff ]0,−1G

L
−1 [Heff ]−1,0]−1 (A.12)

The only difference from there is now all the matrix elements are defined between different

cells instead of layers. For clarity we have suppressed the ky and E+ dependence of all

the quantities in this equation. G0
0 is the bare Green’s function of the isolated single cell
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n = 0. Because each cell contains two sites, G0
0 is a 2× 2matrix, given by

G0
0
−1 ≡ E+ − [Heff ]0,0 = E+

−

 −2t cos ky − 2t′′ cos 2ky − µ −t+ 2t′ cos ky

−t+ 2t′ cos ky −2t cos ky − 2t′′ cos 2ky − µ

 . (A.13)

Similarly the effective hopping matrices between the cell n = 0 and cell n = −1 can

be read off directly from Eq. (A.11)

[Heff ]0,−1 =

 −t′′ −t+ 2t′ cos ky

0 −t′′

 , [Heff ]−1,0 = [Heff ]†0,−1 (A.14)

By definition GL
−1 in Eq. (A.12) is the surface Green’s function of the same chain but

with the cell n = 0 deleted. However, since the chain is semi-infinite, deleting the surface

cell only gives another identical semi-infinite chain. Therefore GL
−1 should be the same

as g. Then Eq. (A.12) becomes a self-consistent equation of g as

g−1 =

 E+ + 2t cos ky + 2t′′ cos 2ky + µ t− 2t′ cos ky

t− 2t′ cos ky E+ + 2t cos ky + 2t′′ cos 2ky + µ


−

 −t′′ −t+ 2t′ cos ky

0 −t′′

 g
 −t′′ 0

−t+ 2t′ cos ky −t′′

 . (A.15)

With this 2× 2 matrix equation, for each ky, we solve for g numerically by iterations

until the results converge. Then the computed g(ky, E) is substituted back into Eq. (A.9)

of Gee(E
+) to get GL

s .

Similar derivations can be carried out for the right lead Green’s function GR
s . It turns

out GR
s = (GL

s )T, where T is the transpose operation. This result is a manifestation of

the fact that the two semi-infinite leads can be connected to each other by a reflection

symmetry operation along the x−direction.

A.2 Bond phase field θij of ∆ij

The phase field θij is defined on the bond ij, which connects two nearest neighboring

sites i and j. Therefore it is natural to use the phase fields φi and φj, on the site i and
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site j respectively, to define θij =
φi+φj

2
. However this definition does not guarantee that

whenever a closed path encloses a vortex, θij along that path will pick up a 2π phase as the

vortex is winded once. Therefore this θij can not give the correct vortices configuration.

It is incorrect whenever a vortex branch cut is crossed. To see this clearly, we map the

phase field φi along a closed path that encloses a vortex onto a unit circle since φi is

defined only modulo 2π, as schematically shown in Fig. A.3. In this figure, the blue arc

segment corresponds to the bond ij on the closed path. Therefore an appropriate θij

should be equal to some value of the phase field on this segment. When the bond ij does

not cross any branch cut, θij =
φi+φj

2
is indeed on the blue segment and can be a good

definition of θij, as illustrated in Fig. A.3a ; however, if the bond ij crosses a branch cut,

we see that
φi+φj

2
, indicated by the red arrow in Fig. A.3b, is not on the blue segment

and can not be an appropriate definition of θij. In this latter case, θij =
φi+φj

2
−π instead

can be a good definition, since it falls onto the blue arc segment, as indicated by the blue

arrow in Fig. A.3b.

ϕi

ϕ j

Θij=
ϕi +ϕ j

2

(a) Bond ij does not cross the branch cut:

|φi − φj | < π

ϕi

ϕ j

Θijϕi +ϕ j

2

(b) Bond ij crosses the branch cut: |φi−φj | >
π

Figure A.3: The black dot in the center represents a vortex. The dashed line, extended

to the infinity, is its branch cut. The blue arc segment corresponds to the bond ij on a

closed path. The phases φi, φj are measured counter-clock wisely from the upper side of

the branch cut. In Fig. A.3a, the bond ij does not cross the branch cut, and (φi + φj)/2

is a good definition for θij ; however, if the bond ij crosses a branch cut, as in Fig. A.3b,

then (φi + φj)/2 can not be a correct definition of θij. Instead (φi + φj)/2 − π gives an

appropriate definition of θij.
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Based on these two scenarios, a good definition of θij will be

eiθij = ei
φi+φj

2 sgn[cos
φi − φj

2
] (A.16)

This definition of θij guarantees that whenever the phase field φi along a closed path

crosses a branch cut once, the defined θij crosses the same branch cut once as well. When

there are multiple vortices enclosed, we only need to linearly superpose the contributions

from each vortex together to the field φi and θij respectively. It is not difficult to see

that the above definition of θij is still good in these cases. For our numerical calculation

convenience, we rewrite the above definition of θij in a slightly different way

eiθij =
eiφi + eiφj

|eiφi + eiφj | (A.17)

A.3 The ansatz ( ξ
reff

)q =
∑
n

( ξ
rn

)q

The pairing amplitude on the bond, that connects two nearest neighboring sites ri and

rj, is calculated by the following ansatz:

|∆ij| = ∆
reff√
ξ2 + r2

eff

(A.18)

with reff given by

(
ξ

reff

)q =
Nv∑
n=1

(
ξ

rn
)q (A.19)

where rn = |ri+rj
2
− Rn| is the distance from the bond center

ri+rj
2

to the nth vortex

center Rn, q is some positive number, and Nv is the total number of vortices.

If we consider a special case that there is only one vortex, for instance the nth vortex,

then Eq. (A.19) is reduced to reff = rn, and

|∆ij| = ∆
rn√
r2
n + ξ2

(A.20)

In other words, we can define the pairing amplitude |∆n| for the case when only the nth

vortex is present as follows

|∆n| ≡ ∆
rn√
r2
n + ξ2

(A.21)
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so that |∆ij| = |∆n|.

When more than the nth vortex is present, |∆ij| should become smaller than |∆n|.
This requires reff < rn because |∆ij| is an increasing function of reff , as seen in Eq. (A.18).

We sum the contributions from each vortex to |∆ij| simply by adding the qth inverse

moment(q > 0) of all rn together to define an effective distance reff as in Eq. (A.19).

Using the qth inverse moment, instead of the qth moment guarantees that reff < rn when

there is more than one vortex. Furthermore it ensures that the terms ( ξ
rn

)q with small rn

on the right hand side of Eq. (A.19) contribute more significantly than those with larger

rn. This is consistent with the physical intuition that vortices nearby are more important

in determining reff , and therefore |∆ij|, than those that are far away. Also when there

are more vortices present, Nv becomes larger and the resultant |∆ij| from Eq. (A.19)

becomes smaller. This again agrees with our expectation.

The |∆ij| defined above increases monotonically with the parameter q for a given

vortices configuration. To see this we only need to show reff increases with q. For that

purpose we can rewrite Eq. (A.19) as follows

log
rmin

reff

=
1

q
log{1 +

∑′

n

(
rmin

rn
)q} (A.22)

where rmin = min{rn} is the distance between the closest vortex and the bond, and the

prime sign in the summation means this closest vortex is excluded. The right hand side

of Eq. (A.22) is a monotonic decreasing function of q because in the summation each

rmin

rn
< 1. Therefore reff increases monotonically with q, so does |∆ij|.

An appropriate value of q can not be determined without solving the whole problem

self-consistently, therefore we performed simulations for different q to see if our conclusions

depend on q or not. One example data of the oscillation spectrum for the two-fold DDW

order case is shown in Fig. A.4. From this figure, we observe that the oscillation amplitude

decreases as q is increased from q = 1 to q = 3. This is consistent with the analyses that

|∆ij| is a monotonic increasing function of q, since larger q gives larger |∆ij|, which

means stronger vortex scattering and therefore stronger suppression of the oscillation

amplitudes.

Although the oscillation amplitudes can depend significantly on q, the oscillation fre-

quencies remain unaffected by varying the q values, therefore the conclusion of Onsager’s
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Figure A.4: Oscillation spectrum of the DOS for the two fold DDW order model with

different q values but a fixed ∆. Note that the vertical axis scale for q = 1 is different

from those for other q values. The two vertical dashed lines mark the two frequencies

Fe = 525T, Fh = 966T.

relation being robust against the vortex scattering does not depend on the value of q.

A.4 Check of the results in Ref.[1]

We have checked the Fig.1 and Fig.3 of Ref.[1], using the same parameter sets, and find

our conclusions remain the same. For both these two cases, the normal state, without

magnetic field, can be described by the following Hamiltonian

H = −t
∑
<i,j>

c†icj + t′
∑

<<i,j>>

c†icj

+
∑
<i,j>

i (−1)xi+yiηij
W0

4
c†icj − µ

∑
i

c†ici . (A.23)

In this Hamiltonian the third term is a two-fold DDW order(or the staggered flux state

order), and ηij = ±1 is again the local d−wave symmetry factor.

1. First consider the Fig.1 of Ref.[1]. We use the same parameters t = 1, t′ =

0.3t,W0 = 1.0t, µ = −0.949t. The normal state Fermi surface consists of four

hole pockets with an area AF
(2π/a)2 ≈ 2.5% each. Fig. A.5 shows the computed DOS.

We see there is no noticeable shift in the oscillation frequency when the vortex
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scattering is present.
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Figure A.5: DOS oscillation for t = 1, t′ = 0.3t,W0 = 1.0t, µ = −0.949t. The unit for

the field B is Φ0

2πa2 , with Φ0 = hc/e the full flux quantum and a the lattice spacing. And

the DOS unit is states/t . In the legends the “normal” means ∆ = 0. The lattice size is

L = 2000,M = 80, and in the Eq. (A.19) of reff , q = 1 rather than q = 2 has been chosen

here.

2. Then consider the Fig.3 of Ref.[1]. In this case, the normal state does not have

DDW, so W0 = 0. For t = 1, t′ = 0.14t, µ = −2.267t, the obtained Fermi surface

contains only a large hole pocket with an area AF
(2π/a)2 ≈ 14% at the Brillouin zone

center. Fig. A.6 shows the corresponding DOS results. We see the oscillation

amplitude gets heavily damped as ∆ increases. Moreover, a small frequency shift

δF/F ≈ 2% becomes noticeable. However, this is different from a large 30% shift

found in Ref.[1]. Also this 2% shift does not contradict our previous conclusion of no

noticeable frequency shift. Because the shift here is obtained at magnetic fields that

are larger than the experimentally applied fields(∼ 50T) by an order of magnitude.

In Fig. A.6, 1
B

= 10 corresponds to B = 1
10

Φ0

2πa2 ≈ 450T, since Φ0/2πa
2 ≈ 4500T if

we take a = 3.83Å for YBCO.

Now we comment on some differences/equivalences between Ref.[1] and the Chapter 2

of this thesis on how to determine the superconductivity order parameter phase field φi.
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Figure A.6: DOS oscillation for t = 1, t′ = 0.14t,W0 = 0, µ = −2.267t. In this simulation

the system size is L = 1000,M = 100.

• Without vortices, the superfluid velocity vs(r) can be obtained by minimizing the

Ginzburg-Landau free energy, which in its continuum limit is

F =

∫
d2r

{
C

1

2
|∆(r)|2|vs(r)|2 +

h2

8π

}
, (A.24)

where vs(r) = 1
m∗ [~∇φ(r) − e∗A/c] and h = ∇ × A is the magnetic field. The

constant C is an r independent constant, which is needed there to ensure that the

first term in the curly braces has the correct dimension of a free energy density. In

both Ref.[1] and our calculation the field h is approximated by the external magnetic

field B. In Ref.[1] this is enforced by the constraint
∑

plaquette Aij = Ba2, where

Aij =
∫ rj
ri

A · dl and the summation is over all four bonds of a square plaquette. As

a consequence of such an approximation, the second term of F becomes a constant

and can be dropped out. Then after the above integral being converted into a

discrete sum for a lattice calculation, the free energy takes the following form

F =
∑
ij

C
1

2
|∆ij|2|vs(rij)|2, (A.25)

where the summation is over all bonds ij, ∆ij and vs(rij) are all defined on the

bond ij, and rij = (ri + rj)/2. This is the free energy used in Ref.[1]. However, the

expression of vs(rij) needs some further clarifications. In its discretized form,(setting
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~ = e = c = me = a = 1 for better comparison with Ref.[1]), vs(rij) is given by

vs(rij) =

∫ ri

rj

vs(r) · dl =
φi − φj

2
− Aij. (A.26)

Comparing this expression with the formula vs = (φi−φj)−Aij used in Ref.[1], we

see that there is a factor of 1/2 difference in the first term of vs. The factor of 1/2

in the first term of vs comes from the fact that the superconductivity momentum is

carried by a Cooper pair which has a mass twice of that of an electron: m∗ = 2me.

There is no factor of 1/2 in front of Aij because the Cooper pair also carries a charge

which is twice of that of an electron: e∗ = 2(−e) so that e∗A/m∗c = (−e)A/mec.

Therefore Eq. (A.26) should be the correct one for vs.

In our case the superfluid velocity vs is obtained by solving the London equation

instead, plus the Maxwell equations. However we know that minimizing the su-

perconductor Ginzburg-Landau free energy will just give us the London equation.

Therefore solving the London equation

4πλ2

c
∇× Js + h = 0 (A.27)

for the superfluid velocity mvs(r) is equivalent to the free energy minimization in

Ref.[1].

• When there are vortices, the free energy minimization in Ref.[1] is subjected to an

additional constraint
∑

loop ∆φi = 2πn, where n is the number of vortices enclosed

in the loop. While in our case, this constraint has been taken care of by augmenting

the London equation with an additional vortex core term on the right hand side:

4πλ2

c
∇× Js + h = ẑ Φs

∑
n

δ(r−Rn). (A.28)

Our expression of mvs(r) in Eq. (3.11) is an explicit solution to this equation [73].

Therefore our calculation of mvs is equivalent to the free energy minimization

scheme in Ref.[1] even in the presence of vortices.

• In Ref.[1] the random vortex configurations are determined by a Monte Carlo an-

nealing process which takes repulsion between vortices into account. We did not do

such an annealing. Instead we simply take the vortex positions to be purely random,

but we average our quantities over many different vortex realizations. However, we
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do not think that this difference should alter our conclusions, given that the shift in

the oscillation frequency we found for the physically reasonable parameter regime

is negligibly small.

To summarize, using our mvs(r) in Eq. (3.11) is equivalent to the free energy min-

imization scheme used in Ref.[1]. There is some difference between Ref.[1] and us on

how the random vortex positions are simulated. However, we do not think this kind of

difference can change our conclusions qualitatively.
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APPENDIX B

Appendices for Chapter 5

B.1 The transverse current-current response function RT(Ω,q)

B.1.1 The RPA equation

We define our gauge field propagator as

D(0)
µν = 〈Tτaµaν〉, (B.1)

where Tτ is the chronological time ordering operator and aµ is the µ th component gauge

field. µ = 0, 1, 2 represents the imaginary time, and spatial x, y directions respectively.

The average 〈...〉 is taken with respect to the bare gauge field action SCoulomb defined in the

main text. The superscript “(0)” on D(0) shows that it is a bare gauge field propagator.

From the action SCF the current operator is

Jµ =
δSCF

δaµ
= vF ψ̄iγµψ. (B.2)

Then the current-current response function can be defined as

Rµν ≡ 〈TτJµ Jν〉 = −〈Tτ ψ̄vFγµψ ψ̄vFγνψ〉. (B.3)

Here the average is taken with respect to the mean field finite density Dirac Fermi sea.

In defining Rµν we have only considered the paramagnetic contribution while ignored the

diamagnetic contribution. However, this is justified. As shown in Ref. [208], for Dirac

fermions the obital diamagnetic susceptibility is identically zero if the Fermi energy is not

at the Dirac point. Fourier transformed into the momentum space the response function

can be rewritten as

Rµν(q) = v2
F

∫
dωd2k

(2π)3
Tr[γµG(k)γνG(k + q)], (B.4)
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where k ≡ (ω,k) and q = (Ω,q). Remember that we have already taken the T = 0 limit

so that the Matsubara frequencies ω,Ω are continuous. The trace “Tr” is taken with

respect to the pseudo-spin indices. G(k) is the free Dirac CF propagator given by

G(k) ≡ 〈Tτψ(k)ψ̄(−k)〉 = γ0
∑
s=±

1

iω − εsk + εF
P

(s)
k , (B.5)

where εsk = svF |k|, with s = ±, are the two branch energy dispersions of the noninteract-

ing Dirac CFs. Correspondingly P
(s)
k = 1

2
[1 + s iγ0γ · k̂] are the two projection operators

for those two branches.

With these definitions of gauge field propagator and response functions we can write

down the RPA equation as

[DRPA]−1 = [D(0)]−1 −R, (B.6)

which is a matrix equation. However, since D(0) has only a spatial transverse component,

we only need to consider the transverse current-current response function: RT(Ω,q) =

[δij − q̂iq̂j]Rij(Ω,q). Its computation is given in the following subsection B.1.2.

B.1.2 The computation of RT (Ω,q)

The computation of Rµν(Ω,q) has been done before and can be found in, for example,

Ref. [208, 209]. Here we recapitulate the derivation of RT using our own notations and

conventions by following Ref. [209].

Substituting the definition of G into Rij gives

Rij(Ω,q) = v2
F

∑
s,s′=±

∫
dωd2k

(2π)3

Tr[γiγ0P
(s)
k γjγ0P

(s′)
k+q]

{iω − εsk + εF}
{
iω + iΩ− εs′k+q + εF

} (B.7)

= R++
ij +R+−

ij +R−+
ij . (B.8)

In the above we have introduced Rss′
ij with {s, s′} = ++,+−,−+,−− to denote the four

terms from the summation in the first line. The term R−−ij , describing the particle-hole

processes within the ε−k = −vF |k| energy band, is zero because that band is fully occupied.

We first compute R++
ij . In the limit |q| � |k| ∼ kF , P

(s′)
k+q ≈ P

(s′)
k in the denominator.

Then by using the following trace identity for the gamma matrices(which are simply Pauli
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matrices in our case)

Tr[γµγνγργσ] = 2[δµνδρσ − δµρδνσ + δµσδνρ], (B.9)

we can obtain: Tr[γiγ0P
(+)
k γjγ0P

(+)
k ] = −k̂ik̂j. Therefore

R++
ij ≈ v2

F

∫
dωd2k

(2π)3
(−k̂ik̂j)

1

iω − ε+k + εF

1

iω + iΩ− ε+k+q + εF
. (B.10)

The above integration over ω can be complete by using the residue theorem. Then

multiplying the obtained result by [δij − k̂ik̂j] projects out the transverse component

R++
T , which is given by

R++
T ≈ −v2

F

∫
d2k

(2π)2
[1− (k̂ · q̂)2]

{
θ(εF − vF |k|)θ(vF |k + q| − εF )

iΩ− vF |k + q|+ vF |k|

−θ(vF |k| − εF )θ(εF − vF |k + q|)
iΩ− vF |k + q|+ vF |k|

}
, (B.11)

where θ(x) is the Heaviside step function. By making use of the approximation that

|k+q| ≈ |k|+ k̂ ·q and working out the restrictions on |k| from the product of Heaviside

functions we can perform the integration over |k| easily. The final result is

R++
T ≈ − εF

2π

∫ π/2

−π/2

dφ

2π
sin2 φ

{
vF |q| cosφ

iΩ− vF |q| cosφ
− vF |q| cosφ

iΩ + vF |q| cosφ

}
(B.12)

=
εF
4π

∫ π/2

−π/2

dφ

π

2 cos2 φ sin2 φ

Ω2/(vF |q|)2 + cos2 φ
. (B.13)

To complete the rest angular integration we first change the integration variable from

φ to φ′ = 2φ and then rewrite the integral as a contour integral over the complex variable

z = exp(iφ′) along the contour |z| = 1. Then the integral can be done again by using the

residue theorem. The result is∫ π/2

−π/2

dφ

π

2 cos2 φ sin2 φ

Ω2/(vF |q|)2 + cos2 φ
=

1

2πi

∮
|z|=1

dz

z

( z−z
−1

2
)2

β + z+z−1

2

= −β +
√
β2 − 1, (B.14)

where we have introduced β = 2Ω2/(vF |q|)2 + 1 for clarity. Substituting this result back

into R++
T we have

R++
T (Ω,q) =

εF
2π

[−1

2
− Ω2

v2
F |q|2

+

√
1 +

Ω2

v2
F |q|2

|Ω|
vF |q|

]. (B.15)

The other two terms R+−
ij and R−+

ij can be computed similarly. We first work out the

two traces

Tr[γiγ0P
(+)
k γjγ0P

(−)
k ] = Tr[γiγ0P

(−)
k γjγ0P

(+)
k ] = k̂ik̂j − δij. (B.16)
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Next we perform the Matsubara frequency integration and then project out the transverse

components. The results are as follows

R+−
T +R−+

T ≈ −v2
F

∫
d2k

(2π)2
(k̂ · q̂)2

{
θ(vF |k| − εF )

iΩ + vF |k|+ vF |k + q|

+
θ(vF |k + q| − εF )

−iΩ + vF |k|+ vF |k + q|

}
(B.17)

≈ −v2
F

∫
d2k

(2π)2
(k̂ · q̂)2 θ(vF |k| − εF )

vF |k|
(B.18)

= −
∫ ∞
εF

d(vF |k|)
2π

∫ 2π

0

dφ

2π
cos2 φ (B.19)

=
εF
4π
. (B.20)

In the above from the first line to the second line we have used the approximation

|Ω|, vF |q| � vF |k| ∼ εF . From the 2nd line to the last line we have dropped a linear

ultraviolet divergent term, which originates from the Dirac sea being infinitely deep and

will disappear if the ultraviolet behavior is properly regularized, as discussed in Ref. [208]

and mentioned in Ref. [209].

Combining the above results of R++
T ,R+−

T and R−+
T , we have, in the limit |Ω| <

vF |q| � εF ,

RT(Ω,q) =
εF
2π

[− Ω2

v2
F |q|2

+

√
1 +

Ω2

v2
F |q|2

|Ω|
vF |q|

] ≈ εF
2π

|Ω|
vF |q|

. (B.21)

B.2 Particle-hole symmetry transformation of the order param-

eter ∆̂

How the Dirac CF fields ψ transform under the three symmetry operations: the physi-

cal charge conjugation C, the time reversal T , and a 2d parity symmetry operation P ,

has been discussed in detail in Ref. [2]. For a half-filled Landau level the particle-hole

transformation not only flips the sign of physical charges but also inverse the external

magnetic field direction. Therefore it is a combination of C and T : CT . Under this

transformation [2],

CT ψ(t,x)(CT )−1 = −iσ2ψ(−t,x). (B.22)

In other words the Dirac CF fields ψ(t,x) behaves like Kramers doublets under CT .

From this we can deduce how the pairing order parameter transforms. Since there can

119



be different types of pairing order parameter, we discuss how each of them transforms

under CT .

1. Pseudo-spin singlet channel: ∆̂(t1,x1; t2,x2) = 〈ψT (t1,x1)iσ2ψ(t2,x2)〉. For clarity

we have simply abbreviated the projected pseudo-spinor field P+
k ψ as ψ here. Under

the CT ,

CT ∆̂(x1; x2)(CT )−1 = 〈ψT (x1)(iσ2)iσ2(−iσ2)ψ(x2))〉∗ = ∆̂∗(x1; x2), (B.23)

where the complex conjugation comes from the fact that CT is an anti-unitary

operation. Since we are only interested in how the spatial part of the pairing gap

transforms under CT , we have ignored the time dependence in this equation. We

see that as far as the spatial part of ∆(x1; x2) is concerned, the particle-hole trans-

formation is equivalent to a complex conjugation. Therefore the `−wave channel

pairing order parameter ∆̂(k) ∝ ei`θk will be transformed into the −` channel by

the CT operation. Hence the ` = 0 channel is particle-hole symmetric; also the

Moore-Read Pfaffian state, corresponding to ` = −2 channel, and the anti-Pfaffian

state proposed in Ref. [100, 101], corresponding to ` = +2 pairing, are particle hole

conjugates of each other.

2. Pseudo-spin triplet channel: ∆̂ = 〈ψTd · σiσ2ψ〉, where d is some vector which

might be position dependent. From the above singlet discussions we see that if we

only care about how the spatial part of the order parameter ∆̂ transforms under CT ,

there is no difference between the singlet and triplet case. It is simply a complex

conjugation.

To summarize, under CT , the ` wave angular momentum channel pairing will be trans-

formed into the −` channel pairing, regardless of the form of the order parameter ∆̂.

B.3 Pairing channels ` of particle hole symmetric CFs for the

Moore-Read Pfaffian and anti-Pfaffian wavefunctions

The strategy to identify which pairing channel ` of the Dirac composite fermions cor-

responds to the Moore-Read Pfaffian wavefunction and its particle-hole conjugate, the
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anti-Pfaffian wavefunctions [100, 101], is to consider the response of each of them to some

perturbations. This response can not be electronic because the Dirac CFs are neutral. A

natural choice will be the spatial curvature because topologically distinct states couple to

the curvature differently. In the current case, the pairing condensate of Dirac CFs is chi-

ral and different pairing channels ` are topologically distinct. Therefore we can consider

how a chiral `−wave pairing state of the Dirac CFs and the Moore-Read Pfaffian/anti-

Pfaffian wavefunction respond to the curvature. If they were to describe the same state,

their response to the curvature should be the same. This can be done by considering

the so-called shift [210, 211, 2], which is a topological number that characterizes how a

state responds to the nontrivial curvature on a sphere. Originally this concept of shift is

introduced for quantum Hall states but has been recently generalized to chiral superfluid

condensates as well. Another approach could be comparing the chiral central charge [140]

of the boundary theory of the chiral `−wave Dirac CFs pairing state with that of the

Moore-Read Pfaffian/anti-Pfaffian wavefunction. In the following we follow the first ap-

proach and compute the shift. The following discussions closely follow those of Ref. [2]

but are expanded in more detail.

To establish the connection between Dirac CF pairing states and the Moore-Read

Pfaffian/anti-Pfaffian wavefunctions we first recapitulate what D. T. Son has done in

constructing the particle-hole symmetric CF theory in Ref. [2]. This is schematically

shown in the Fig. B.1. Corresponding to those three steps we are going to do the following

three steps to complete our identification:

(1) Compute the shift S of the Moore-Read Pfaffian and anti-Pfaffian wavefunctions,

which are written in terms of the non-relativistic electron coordinates.

(2) Map the shift S to the so-called relativistic shift κ defined for the Dirac fermions in

its zero-th Landau level, as shown in the second box of Fig. B.1. Precise definition

of κ will come later.

(3) Compute the same quantity shift κ for the Dirac CF pairing condensates in different

` channels and compare it with the shift value obtained in the step (2).

In this way we can identify which channel corresponds to Moore-Read Pfaffian/anti-

Pfaffian wavefunction.
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electrons
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LLL at
ν = 1/2

Dirac
fermions

in the
0th LL

at ν′ = 0

Finite
density

Dirac CFs
coupled

to aµ field

Figure B.1: The three steps construction of the Dirac CF theory in Ref. [2]. In the 1st

box “NR” stands for non-relativistic and “LLL” is the abbreviation of lowest Landau

level. In the 2nd box ‘LL” means Landau level. Notice that the Dirac fermions in the

2nd box still carry electric charge and are different from the Dirac CFs in the 3rd box.

In box 3, “zero field” means zero emergent magnetic field. Notice that the filling fraction

ν, ν ′ are related to each other by ν ′ = ν − 1/2.

B.3.1 The shift S of the Moore-Read Pfaffian and anti-Pfaffian wavefunctions

B.3.1.1 The Moore-Read Pfaffian wavefunction

The Moore-Read Pfaffian wavefunction is given by

ΨMR(z1, ..., zNe) =Pf

(
1

zi − zj

)∏
i<j

(zi − zj)2e−
∑
|zi|2/4`2B , (B.24)

where `B is the magnetic length, zi = xi + iyi is the ith electron coordinate and Ne gives

the total number of electrons. And the Pfaffian in the above is defined as

Pf

(
1

zi − zj

)
≡ A

{
1

z1 − z2

1

z3 − z4

· · · 1

zNe−1 − zNe

}
, (B.25)

where the anti-symmetrizing signAmeans summing over all permutations of {1, 2, ..., Ne},
which produce distinct pairs of 1

zi−zj in the product, and multiplying the product by the

corresponding permutation sign.

The shift S of a lowest Landau level wavefunction on certain manifold is defined as

the mismatch between Nφ, the total number of magnetic flux quanta applied, and the

total number of electrons Ne divided by the filling fraction ν, as follows

Nφ =
1

ν
Ne − S. (B.26)

S results from a nontrivial coupling of the wavefunction to the curvature of the mani-

fold and therefore depends on both the topological nature of the wavefunction and the
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topology of the manifold. Since a flat plane has zero Gauss curvature everywhere, it is

topological trivial and S = 0 as expected. However, a sphere has a nonzero net Gauss

curvature. Therefore if the wavefunction is topologically nontrivial, then the shift S can

be nonzero. Put onto the sphere, the above Pfaffian wavefunction ΨMR can be written in

terms of spinor coordinates (u, v) = (cos θeiφ/2, sin θe−iφ/2) as

ΨMR = Pf

(
1

uivj − viuj

) ∏
1≤i<j≤Ne

(uivj − viuj)2.

Here θ and φ are the spherical polar and azimuthal angles respectively. As a lowest

Landau level wavefunction on the sphere, ΨMR needs to be homogeneous of degree Nφ in

the spinor variables (ui, vi) [12]. This leads to

Nφ = −1 + 2(Ne − 1) = 2Ne − 3. (B.27)

Comparing it with the Equation (B.26), we can immediately read off the filling fraction

ν = 1/2, as expected, and the shift value S = 3 [20].

B.3.1.2 The Anti-Pfaffian wavefunction

The anti-Pfaffian wavefunction was first introduced in Ref. [101, 100]. It is construct-

ed by the particle-hole transformation from the Moore-Read wavefunction ΨMR. This

transformation has been implemented explicitly for a lowest Landau level wavefunction

by S. M. Girvin in Ref. [124]. Applying the transformation procedure to the Moore-Read

wavefunction leads to [100]

ΨPf(zi) =

∫ Nh∏
α=1

dηαdη̄αΨMR(η̄α)

Nh∏
β<γ

(ηβ − ηγ)
Ne∏
i=1

Nh∏
α=1

(ηα − zi)

×
Ne∏
i<j

(zi − zj)e−
∑Nh
α |ηα|2/4`2B−

∑Ne
i |zi|

2/4`2B , (B.28)

where the subscript Pf is used to denote the anti-Pfaffian wavefunction. The physical

meaning of this wavefunction can be understood as follows:

1. First, fill up the lowest Landau level with Ne electrons. This is represented by the

factor
∏Ne

i<j(zi − zj)(ignoring the Gaussian factor).

2. Then create Nh holes at arbitrary positions ηα in the filled Landau level by the

factor
∏Ne

i=1

∏Nh
α=1(ηα − zi).
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3. Next insert the factor
∏Nh

β<γ(ηβ − ηγ) to ensure the Fermi statistics between those

created Nh holes.

4. Then build in the Pfaffian correlations for the Nh holes and pair them up into the

“Moore-Read” state ΨMR(η̄α). We put a quotation mark here because the argument

η̄α in this function is anti-analytical instead of analytical. Therefore it is different

from the Moore-Read wavefunction defined in the previous section by a sign flip of

the pairing angular momentum channel `.

5. At last, as an electron wavefunction, the hole variables ηα, η̄α need to be integrated

out.

To summarize, there are two key differences in the ΨPf wavefunction from the ΨMR wave-

function: (1) ΨPf can be interpreted as pairing of (composite)holes instead of electrons;

(2) the pairing channel that ΨPf corresponds to is opposite to that of the ΨMR. These

two features are consistent with the fact that the particle-hole transformation defined

for the lowest Landau level not only flip the sign of electric charges but also inverse the

direction of the external field which flips the sign of paring channel.

In the wavefunction ΨPf , Nh and Ne need to satisfy certain constraint [212]: the degree

of each hole coordinate ηα needs to match with that of its complex-conjugate η̄α so that

the integral over ηα and η̄α is non-vanishing. This gives

Nh − 1 +Ne =
1

ν
Nh − SMR. (B.29)

In this formula the right hand side counts the degree of η̄α in the wavefunction ΨMR(η̄α)

appeared in the above integrand in Equation (B.28). As have been already computed

in the previous section, for the Moore-Read wavefunction, the shift is SMR = 3 and the

filling fraction factor is ν = 1/2. As in the Moore-Read wavefunction ΨMR case, we can

put ΨPf onto a sphere. Then ΨPf(zi) will be a homogeneous polynomial in each spinor

variable. The degree of this polynomial is equal to the degree of the polynomial of zi

variable in the Equation (B.28): Ne − 1 +Nh. Again as a legitimate lowest Landau level

wavefunction this degree needs to be equal to the number of magnetic flux quanta Nφ

pierced through the sphere. In other words

Nφ = Ne − 1 +Nh. (B.30)
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Combing Eq. (B.29) and Eq. (B.30) and eliminating Nh we obtain

Nφ = 2Ne + SMR − 2 ≡ ν−1Ne − SPf . (B.31)

Therefore for an anti-Pfaffian state, the filling fraction is ν = 1/2, as expected, and

the shift is SPf = 2 − SMR = −1. Since SPf 6= SMR, the Moore-Read and anti-Pfaffian

wavefunctions must be topologically distinct from each other.

B.3.2 The relativistic shift κ of the Dirac fermions in the 0th Landau level

The relativistic shift κ [213] of the Dirac fermions is defined as the mismatch between

the total number of electric charge N ′e and the magnetic flux quanta N ′φ multiplied by

the filling fraction ν ′ on a sphere as

N ′e = ν ′N ′φ + κ. (B.32)

We have added a prime superscript on ν ′, N ′e, N
′
φ to distinguish the quantities defined

for the Dirac fermions in the 0th Landau level from those ν,Ne, Nφ, that are defined for

the non-relativistic electrons in the LLL. For Dirac fermions ν ′ can be negative and zero.

When the filling fraction is ν ′ = 0, the definition of S in Eq. (B.26) is impossible. That

is why a new definition of the shift κ is necessary.

The relation between ν ′, N ′e, N
′
φ and ν,Ne, Nφ are outlined as follows

1. Ne = N ′e + 1
2
N ′φ. The 2nd term on the right hand side comes from the Dirac sea

contribution which is finite.

2. ν = ν ′ + 1/2. The 1/2 term comes from the fact that in D. T. Son’s construction,

a half-filled electron Landau level corresponds to the Dirac fermions at neutrality

point ν ′ = 0.

3. The relation between Nφ and N ′φ depends on the curvature of the space.

• On a flat plane, Nφ = N ′φ. This is because the zeroth Dirac Landau orbitals

described by

Ψm(z) =

zme−|z|2/4`2B
0

 (B.33)
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are the same as the LLL orbitals of non-relativistic fermions [2], if the second

component “0” is ignored in the above. Therefore to describe the same state

Nφ = N ′φ is necessary.

• However, on a sphere, Nφ = N ′φ − 1 [2, 214], because on a sphere the lowest

Landau level of the Dirac fermion with N ′φ magnetic flux quanta, is identical to

the Landau levels of a non-relativistic electrons with Nφ = N ′φ−1 magnetic flux

quanta. To describe the same state, we demand Nφ = N ′φ− 1. This additional

−1 shift comes from the fact that the Dirac fermions carry a pseudo-spin

degree of freedom which can directly couple to the curvature of the sphere.

Substituting the above three relations Ne = N ′e + 1
2
N ′φ, ν = ν ′ + 1/2, and Nφ = N ′φ − 1

into the definition of S: Nφ = 1
ν
Ne − S, we obtain the following relation

N ′e = ν ′N ′φ + ν(S − 1). (B.34)

Comparing it with the definition of κ we conclude that

κ = ν(S − 1).

Therefore the relativistic shift κ for the Moore-Read Pfaffian and anti-Pfaffian wavefunc-

tions are

ΨMR → S = 3 → κ = +1, (B.35)

ΨPf → S = −1 → κ = −1. (B.36)

Notice that because for both ΨMR and ΨPf states ν ′ = 0, we have

N ′e = κ = ±1 (B.37)

on a sphere, in contrast to the N ′e = κ = 0 on a plane. In other words, on a sphere, we

need to add an additional net charge N ′e = κ = ±1 to maintain the ΨMR or ΨPf ground

state wavefunction without inducing any fractional quasiparticle excitatioins.

B.3.3 The shift κ of chiral Dirac CF pairing condensates

The above concept of shift κ can be also generalized to chiral pairing condensates [213].

In the following we obtain the κ value for our chiral Dirac CF pairing condensates by

some physical arguments [2].
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Because the wavefunction ΨMR/ΨPf is smooth in space, it should correspond to a

chiral pairing state of Dirac CFs with a smooth order parameter texture, i. e. without

any topological defects. However, if we try to put a chiral ` wave pairing condensate onto

a sphere without applying any magnetic field(for the CFs it is the emergent magnetic

field), the ground state pairing order parameter can not be smooth [17, 215] due to

the nonzero net curvature of the sphere. Mathematically this conclusion comes from the

Poincare-Hopf theorem [215]. If we want to maintain a smooth texture of the pairing

order parameter, a magnetic monopole with a strength −`/2 at the origin of the sphere

needs to be added to compensate for the curvature effect. That the monopole strength

needed is −`/2 instead of `/2 is because the direction of the applied magnetic field needs

to be opposite to the Gauss curvature of the sphere so that their effects cancel out each

other. A monopole of strength −`/2 would correspond to −` flux quanta of the emergent

magnetic field b. Piercing −` flux quanta of b through the sphere is equivalent to inducing

additional physical charges of the amount N ′e = −`× 1
2

= −`/2, because b/4π = ρ′e gives

the physical charge density, as emphasized at the beginning of the main text.

Therefore if the ` wave chiral pairing condensate of Dirac CFs were to describe the

same state as the wavefunction ΨMR or ΨPf , the induced physical charge amount N ′e =

−`/2 needs to be identical to the N ′e found in Eq. (B.37). In other words, the following

relation

N ′e = κ = −`/2 (B.38)

needs to be satisfied. Therefore the ΨMR wavefunction corresponds to ` = −2κ = −2

channel; while the ΨPf wavefunction corresponds to ` = −2κ = +2 channel. These results

are summarized in Table B.1.

S κ `

ΨMR 3 +1 −2

ΨPf −1 −1 +2

Table B.1: Summary of the shift values and the corresponding pairing channels ` for the

Moore-Read Pfaffian wavefunction ΨMR and the anti-Pfaffian wavefunction ΨPf .
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