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ABSTRACT OF THE THESIS 

 

Algorithmic Parameter Space Reduction of a Systems Biology Model: 

A Case Study 

 

by 

 

Celine Sin 

 

Master of Science in Biomedical Engineering 

University of California, Los Angeles, 2012 

Professor Joseph DiStefano III, Chair 

 

Ordinary differential equation (ODE) models are often used to quantitatively describe and 

predict the dynamic responses of biological and other systems.  Models with many parameters, 

limited measurement data and in need of quantification are typically unidentifiable from 

available input/output data.  Even models that are structurally identifiable can be difficult to 

quantify in practice from limited data.  For overparameterized models (OPMs), it is often helpful 

to simplify the model, by rationally reducing the dimensionality of the parameter space.  This is 

done by finding a set of “key parameters” to estimate, a subset that best represents the 

dominant model dynamic responses.  OPMs are often characterized by pairwise parameter 
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correlations close to 1 in magnitude and at least some unacceptably large parameter estimation 

variances.  The goal is to get the best fit possible with a smaller number of parameters, each 

with acceptable variances.  Several published methods for selecting the key parameter subset 

are based on parameter sensitivity analysis and/or analysis of the parameter covariance matrix 

estimated from the input/output data. 

  

We apply a combination of these methods to an overparameterized candidate model of tumor 

suppressor protein p53.  The model comprises of 4 ODEs, 23 unknown parameters, and noisy 

output measurements of the 4 state variables and the input.  Three least sensitive and highly 

correlated parameters were isolated from the analysis and fixed to nominal values.  This  

reduced the parameter search space and yielded substantially improved numerical identifiability 

properties for the resulting simplified model which fitted the data equally well, using both global 

and local search algorithms.  
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I. Introduction 
 

Mathematical models are quantitative representations of systems, using mathematical concepts 

and symbolic language.  Indispensible for systems biology, models can be used to better 

understand biological systems, study the effects of different stimuli and make predictions about 

their behavior.  Examples of fairly large systems biology models include: the JAK-STAT pathway 

(Quaiser, Dittrich et al. 2011), the IL-6 pathway (Daun, Rubin et al. 2008; Chu and Hahn 2009; 

Huang, Chu et al. 2010), the NF-κβ gene network (Yue, Brown et al. 2006), and the pentose 

phosphate pathway (Degenring, Froemel et al. 2004). 

 

Mathematical models are developed by translating physical phenomena into mathematical 

equations.  As details are uncovered about underlying physical phenomena (e.g. pathways, 

molecular interactions, rates, etc.), models to represent the system becomes more complex as 

the new information is integrated (Schmidt, Madsen et al. 2008; Chu and Hahn 2009; Quaiser, 

Dittrich et al. 2011).  When enough quantitative information becomes available, models can be 

simulated and analyzed.  However, complexity, can be quite troublesome for the quantification 

process.  Increases in model complexity usually involve even larger numbers of model 

parameters, which cannot be reliably estimated from available data (Chu and Hahn 2009). 
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Parameters usually cannot be measured directly.  They must be estimated from measured input-

output data.  This may not be possible or practical, for two reasons.  The model may not be 

structurally identifiable (SI), meaning some parameters cannot be solved for, even from perfect, 

unlimited, ideal data.  Even if the model IS structurally identifiable, it may not be numerically 

identifiable (NI), meaning parameter estimates from limited and noisy data might have too much 

variability to be useful (Distefano and Cobelli 1980).  Identifiability (or lack there of) often can be 

improved by simplifying the model, either through a reduction of state variable dimensionality 

or number of parameters to be estimated.  In this thesis, we address overparametized models 

(OPMs) rationally by reducing the dimensionality of the parameter space, choosing a subset of 

“key identifiable parameters” that best represents the dominant model dynamical responses. 

 

OPMs are often characterized by pairwise parameter correlations close to 1 in magnitude and at 

least some unacceptably large parameter estimation variances.  The goal here is to get the best 

fit possible with a smaller number of parameters, each with acceptable variances.  Many 

published methods for selecting the key parameter subset are based on parameter sensitivity 

analysis and/or analysis of the parameter covariance matrix estimated from input-output data 

(Brun, Kuhni et al. 2002; Smets, Bernaerts et al. 2002; Degenring, Froemel et al. 2004; Yue, Brown 

et al. 2006; Banks, Dediu et al. 2007; Daun, Rubin et al. 2008; De Pauw, Steppe et al. 2008; Chu 

and Hahn 2009; Cintron-Arias, Banks et al. 2009; Doherty and Hunt 2009; Huang, Chu et al. 2010; 

Quaiser, Dittrich et al. 2011).   
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We apply the methods developed by (Daun, Rubin et al. 2008; Chu and Hahn 2009) and a 

variant on that by (Cintron-Arias, Banks et al. 2009) to an overparametized candidate model of 

tumor suppressor protein p53 dynamics. 
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II. Model Description 
 

p53 is an essential protein for tumor suppression.  In stressful situations resulting in DNA 

damage, the role of p53 is to stop cell cycle progression (cell arrest) and start DNA repair.  In 

cases when DNA repair is not possible, p53 initiates apoptosis.  Cells without functional p53 give 

rise to progeny with increasing genetic abnormalities, often becoming cancers – mutations in 

the p53 gene account for half of human cancers (Wang, Wade et al. 2007)  

 

In normal unstressed conditions, p53 activity in the cell is low, negatively regulated by Hdm2 

and HdmX.   Hdm2 targets p53 for degradation, and both Hdm2 and HdmX antagonize the 

transactivation of p53 (Wang, Wade et al. 2007).   

antagonize

 



 

 5  

During times of stress (e.g. oxidative, osmotic, DNA damage, among others), the stability of 

Hdm2 and HdmX decreases, reducing the ability of Hdm2 and HdmX to antagonize p53.  p53 

activity is up-regulated and activated to induce cell repair / arrest / apoptosis (Wang, Wade et al. 

2007). 

Cell with DNA damage

radiation
Or NCS !

[Hdm2]
[HdmX]

Concentration of Hdm2/HdmX decreases

1

2

3 Hdm2
HdmX

-

p53

antagonize

Hdm2/HdmX are unable to 
continue antagonizing p53

[p53] increases

 

A Candidate Model for p53/Hdm2 dynamics 

This paper focuses on analysis and modification of a mathematical ordinary differential equation 

(ODE) model developed by DiStefano and coworkers (DiStefano unpublished).  It describes the 

protein and mRNA response of tumorigenic mammary epithelial (MCF7) cells following exposure 

to Neocarzinostatin (NCS), a small molecule-protein complex that causes double stranded DNA 

breaks.  The model is comprised of 4 ODEs and 25 parameters.  23 parameters are unknown.  
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The ODEs represent four of the species which comprise the p53 pathway:  Hdm2 (x1), HdmX (x2), 

p53 (x3) and Hdm2 mRNA (x4). 

 1

2

61
1 4 3 1 4

5 1 7

( ) 1
x p udx

p x t p x p
dt p x p u

τ
  

= − − − +   + +  
 (1) 
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                            where p19 is constrained by the following equation 

            19 20 21 24 25

22

1
(1 )(1 ) 

1n
p p p p p

p

 
= − − − + 

 

NOTE:  We set n (the hill coefficient for p53-dependant mRNA transcription) = 4 

(DiStefano unpublished).  We do not estimate this parameter. 

Nominal parameter estimates from our best fit of the data to the full unreduced model are given 

below.  This is not a unique set, because parameter correlations are high for many combinations, 

with 4-6 clusters of different solutions dominating the results, all fitting the data equally well.  

This is strong evidence for overparameterization. 

Parameter Description Value CV (%) dimension 

p01 Hdm2 production rate 0.00910 33 time
-1

 

p02 Hdm2 transcription and transport time delay 0 n/a time 

p03 Hdm2 basal degradation rate 0.00316 114 time
-1

 

p04 Hdm2 degradation rate (by ubiquitination) 0.0506 1050 time
-1

 

p05 Hill K for Hdm2 ubiquitination 85.3 156 concentration 

p06 Hill V for Hdm2 ubiquitination 89.7 886 unitless 
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p07 Hill K for Hdm2 phosphorylation by kinase 1.77 270 concentration 

p08 HdmX production rate 0.0263 32.7 time
-1

 

p09 HdmX basal degradation rate 0.0244 47.9 time
-1

 

p10 HdmX degradation rate (Hdm2 dependent) 0.0217 272 time
-1

 

p11 Hill K for HdmX ubiquitination 2.91 199 concentration 

p12 Hill V for HdmX ubiquitination 4.29 136 unitless 

p13 Hill K for HdmX phosphorylation by kinase 0.931 236 concentration 

p14 p53 production rate 0.085 3.67 time
-1

 

p15 p53 basal degradation rate 0.00727 23.9 time
-1

 

p16 p53 degradation rate (Hdm2 dependent) 0.0411 14.9 time
-1

 

p17 Hill K for p53 kinase phosphorylation 3.13E-06 1.03E+07 concentration 

p18 Inhibition of p53 degradation by kinase phosphorylation 0.315 81.7 unitless 

p19 hdm2 mRNA production rate 0.0523 n/a time
-1

 

p20 hdm2 mRNA basal degradation rate 0.0486 90.9 time
-1

 

p21 hdm2 mRNA transcription rate (p53 dependent) 1.64 61.3 time
-1

 

p22 Hill K of hdm2 mRNA transcription (p53 dependent) 3.24 23.8 unitless 

p23 Stimulation of mRNA transcription by p53 phosphorylation 3.68E-06 2.36E+07 unitless 

p24 Inhibition of mRNA transcription by Hdm2 0.128 151 unitless 

p25 Inhibition of mRNA transcription by HdmX 1.29 8.84 unitless 
 

Input Data and Model 

Following DNA damage, damage-activated kinases are activated and 

protein complexes are formed with the damaged DNA.  One of the 

downstream effects is phosphorylation at the serine-15 epitope of p53.  

All input and output data were reported  by (Wang, Wade et al. 2007).  

They are normalized to total p53 and then to the maximum value of this 

ratio as our input signal (DiStefano unpublished). 

 

We used the MATLAB curve fitting tool to fit a polynomial 

to the Serine-15 p53 data.  The best fit, shown, was  a 6th 

degree polynomial:   

tttt    nSerineMCF7nSerineMCF7nSerineMCF7nSerineMCF7    

0 0.03549555 

60 1 

120 0.8970129 

180 0.65498729 

240 0.410385466 

300 0.32928888 

360 0.38482679 

420 0.24509552 

 

INPUT: Serine-15 of p53 
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-14 6 -11 5 -8 4 -6 3

7

2

( ) -1.39 10  1.846 10  -1.001 10  2.898 10  

 - 0.0004702 0.03574  0.03583

MCFu t t t t t

t t

= × + × × + ×

+ +
 (5) 

This input function corresponds to the u(t) input term in equations (1) - (4). 

Output Data  

 MCF7 (tumorigenic mammary epithelial cells) were treated with the radiomimetic drug 

neocarzinostatin (NCS) to induce double stranded DNA breaks without the side effect of 

oxidative stress.  Samples were collected every hour from t = 0 to 7.  Western blot was 

performed for the proteins Hdm2, HdmX and p53 and measured by the LiCor system.  Hdm2 

mRNA was measured by quantitative PCR 

(Wang, Wade et al. 2007).  Like the serine-

15 input data, this output data is 

normalized to the to the total p53 and 

again to the maximum value of the ratio , 

as shown below (DiStefano unpublished). 

 

minutes Hdm2 HdmX P53 mRNA 

0 1 1 1 1 

60 0.7698255 0.7306545 3.6565875 1.91 

120 1.3891844 0.5344698 4.7947678 4.92 

180 2.0677659 0.460153 4.6422326 9.47 

240 2.4781249 0.4504525 3.354605 7.43 

300 2.075068 0.4606971 2.2885615 3.51 

360 1.4535627  1.9228018 3.02 

420 1.628092 0.5065996 3.2462706 4.06 

 

DATA: measured from mcf7 cells in response to NCS 

All SDs estimated as constant = 0.25 for all output 

variables 
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MCF7 cell response to NCS
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III. Mathematical Methods and Definitions 

 

Parameter Estimation 

Local search using SAAMII software was inadequate to the task of generating solutions for the 

overparameterized p53 dynamics model (DiStefano unpublished).  We turned to global and local 

search algorithms in several other packages to address the problem.     Success was achieved 

with simulated annealing, a global search algorithm, which allows for occasional acceptance of 
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uphill (against the gradient) states, allowing minimums outside of local minimums to be found 

(Sun, Garibaldi et al. 2012).  

 

Parameter search by simulated annealing for our model took up to 10 hours per fitting attempt.  

We have also tried several other optimization methods (Steepest Descent, Levenberg-Marquardt, 

Nelder-Mead, Dynamic Hill Climbing, Evolution Strategy, Random Search) with varying degrees 

of success.  Simulated annealing most consistently gave good fits in the shortest time while 

other methods often failed or found the same fit in a longer time.  Local methods often failed to 

give statistics with any program, except for when started at parameter values given by our 

successful simulated annealing runs.   

Parameter Estimation Covariance Matrices 

COPASI software lacks functionality for specifying  measurement data errors or data-weights in 

their parameter search routines.   It does provide a covariance matrix estimate for the 

parameters estimated, based on computation of the Fisher information matrix (FIM),  COV(p) ≈ 

FIM-1,  but these are all based on the assumption of equal weights for the data.  To circumvent 

this limitation, we scalar multiply these covariance matrix results by the known variance of the 

data, σ2= 0.0625. and calculate the new %CV accordingly (Distefano Still In Publication) 

Building the Discretized Sensitivity Matrix (DSM) 

Most parameter reduction approaches based on sensitivity analysis involve building a 

discretized sensitivity matrix (DSM).  The term “parameter sensitivity” describes the effects of 

changes in parameter values on outputs of the model (Banks, Dediu et al. 2007).  An output is 

“more sensitive” to a parameter if perturbations to the parameter have larger effects on the 
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output.  It is “less sensitive” if perturbations of the parameter results in an indiscernible change 

in the output (Thomaseth and Cobelli 1999; Banks, Dediu et al. 2007; Zi, Zheng et al. 2008).  For 

a system with state variable xi, and parameter θj, we can write: 

 ( ) ( )i

ij

j

x t
s t

θ
∂

=
∂

 (6) 

Sensitivity functions are most readily computed by approximating finite differences: 

 ( ) ( ) ( ) ( ), ,i j j i ji

ij

j j

x t x tx t
s t

θ θ θ

θ θ

+ ∆ −∂
= =

∂ ∆
 (7) 

This is the method used most often to calculate sensitivities (Daun, Rubin et al. 2008). 

 

Our model consists of 4 equations corresponding to the 4 state variables (x1, x2, x3 and x4) and 

23 parameters (p1, …).  At each time point, we calculate the sensitivity of each output variable to 

each parameter (4 x 23 values).  We build these into a 4 x 23 matrix and this is our sensitivity 

matrix (Distefano Still In Publication). 

 

1 1 1 23

4 1 4 23

x p x p

x p x p

s s

s s

…

⋮ ⋱ ⋮

…

 (8) 

We build a discretized sensitivity matrix (DSM) by stacking the sensitivity matrix at each sample 

time point below the previous one (Distefano Still In Publication). 
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1 1 1 23

4 1 4 23

1 1 1 23

4 1 4 23

1 1

1 1

2 2

2 2

@ @

@ @

@ @

@ @

and so on...

x p x p

x p x p

x p x p

x p x p

s t s t

s t s t

s t s t

s t s t

…

⋮ ⋱ ⋮

…

…

⋮ ⋱ ⋮

…

 (9) 

The columns of this matrix, denoted by the vector si  are the sensitivity vectors for each 

parameter (i.e. 1st column is the sensitivity vector for p1).  The length of this vector, calculated as  

 2 2 2

1 2 ... 
s s s s= + + +
�

 (10) 

describes how sensitive the model is to that particular parameter (longer length = more 

sensitive).  The direction of the vectors describe the effect that this parameter has on the model.  

Two parameters with similar direction have similar effects on the model. 

 

As we have 23 parameters ( = 23 columns), 8 sampling time points (t = 0, 60, 120, 180, 240, 300, 

360, 420) and 4 state variables (8 x 4= 32 rows), the resulting discretized matrix for our model is 

32 x 23.  We used COPASI to generate the discretized sensitivity matrix DSM, given  in 

APPENDIX B. 
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IV.  Software Tools 
We used simulation, parameter estimation, statistics and sensitivity functionality in COPASI, 

AMIGO and MATLAB, as described below. 

COPASI (Complex Pathway Simulator) 

http://www.copasi.org/ 

COPASI is a software application for simulation and analysis of biochemical networks  (Hoops, 

Sahle et al. 2006; COPASI_Development_Team 2009).  In addition to simulation, COPASI can also 

perform a number of analyses pertinent to biochemical modeling: Steady-State analysis, 

Stoichiometry analysis, Metabolic Control analysis, Lyapunov Exponent calculation, Time Scale 

Separation analysis, parameter scan, optimization, parameter estimation and Sensitivity analysis 

(Hoops, Sahle et al. 2006; COPASI_Development_Team 2009).  We used Time Course calculation, 

Parameter Estimation and Sensitivity analysis tools in COPASI.  

MATLAB R2010a  

http://www.mathworks.com/products/matlab/ 

MATLAB (MATrix LABoratory) provides a comprehensive environment for computing, 

programming and visualizing (MathWorks 2011).  In addition to the many built in functions, the 

functionality of MATLAB can be increased by installation of toolboxes, packages of functions 
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designed to solve specific classes of problems.  We developed a few short routines in MATLAB 

and used the curve fitting and AMIGO toolboxes. 

AMIGO 

http://www.iim.csic.es/~amigo/ 

AMIGO (Advanced Model Identification using Global Optimization) is a MATLAB toolbox,  freely 

available to academic users.  Installation is simple:  unzip the file into your MATLAB directory, 

and add the folders (and all subfolders) to the MATLAB path.  To run, type “AMIGO_Startup” into 

the command window and all the paths will be linked automatically.  We found AMIGO to be a 

good alternative to SBML_SAT (Zi, Zheng et al. 2008) which is difficult to install and limited in 

application and options. 

 

AMIGO can be used for model simulation, sensitivity analysis and ranking of parameters (both 

globally and locally), parameter estimation, identifiability analysis and optimal experiment 

design.  AMIGO incorporates many numerical methods for simulation and optimization, plus 

multi-start and global algorithms.  While the model definition process is more difficult than 

other software, the flexibility gained is well worth the effort.  The p53 model implemented in 

AMIGO can be found in APPENDIX D. 

 

COPASI vs AMIGO 

We found AMIGO to be very fully featured with a lot of powerful analysis tools.  However, the 

user unfriendly interface  detracts greatly from the user experience.  So for processes that 

COPASI and AMIGO share, we used COPASI whenever possible.
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V.  Parameter Reduction Algorithms 
 

Overparametized ODE model (OPM) are characterized by unacceptably large parameter 

estimation variances, often with too many pairwise parameter correlations close to 1 in 

magnitude.  Our goal is to get the best fit possible with a smaller number of parameters, each 

with acceptable variances.  Several groups have recently developed methods to effectively 

reduce the number of parameters in OPMs (Brun, Kuhni et al. 2002; Smets, Bernaerts et al. 2002; 

Degenring, Froemel et al. 2004; Yue, Brown et al. 2006; Banks, Dediu et al. 2007; Daun, Rubin et 

al. 2008; De Pauw, Steppe et al. 2008; Chu and Hahn 2009; Cintron-Arias, Banks et al. 2009; 

Doherty and Hunt 2009; Huang, Chu et al. 2010; Quaiser, Dittrich et al. 2011).  We describe these 

below. 

A Sensitivity Based Parameter Reduction Approach (Cintron-Arias, 

Banks et al. 2009) 

This approach analyzes the CVs of the parameters and the sensitivity matrix generated by each 

possible subset of parameters.  First, all possible subsets of parameters are listed.  Parameter 

estimation is performed on each subset, fixing the parameters not in the subset to nominal 

values.  The parameter coefficient of variations (CV) are calculated and a discretized sensitivity 

matrix (DSM) is generated.  Using the CV vector and the DSM, the parameter selection score 
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(PSS) and the condition number, both 

defined below, are calculated.  

Parameter sets with the lowest PSS 

and condition number are 

recommended.  

 

PSS is the length of the vector of 

parameter’s CVs.  For parameter sets 

with high uncertainty, the PSS is high, 

suggesting that the parameters in that 

set are less identifiable.  Parameter 

sets that are considered “best” for 

estimation should have low PSS (low 

CVs). 

 

The condition number is the ratio between the highest and lowest singular values of the DSM.  

This is a measure of dependency within the parameter set.  If the parameters are nearly 

dependent, the condition number of the DSM will be large.  The matrix is said to be “ill-

conditioned”, and it will be difficult to distinguish the parameters from each other.  Conversely, 

for sets where the parameters are more independent (more identifiable), the condition number 

will be small.  These parameter sets are good candidates for estimation. 

Parameter 
Estimation

Calculate Singular 
Values

Compute DSM

Parameter 
Selection Score 

(PSS)

List all parameter 
subsets

Calculate length of 
CV vector

Accept model with 
lowest PSS and 
lowest Cond#

#
highest SV

cond
lowest SV

=

CV: Coefficient of Variation

DSM: Discretized Sensitivity Matrix

Cintron-Arias Algorithm
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Sequential Adaptation of the Cintron-Arias Algorithm  

In their paper, the Cintron-Arias algorithm is demonstrated on a model consisting of 3 ODEs and 

11 parameters, and all reduction steps are done simultaneously on all parameters.  On physical 

grounds, they noted that 3 parameters that must be included in the reduced parameter set, 

reducing the problem space from 11 to 8 parameters.  Thus, 2^8 = 256 parameter sets 

remained to be analyzed simultaneoulsy.  For our model, we have with 23 parameters – this 

works out to 2^23 = 8,388,608 parameter sets to consider, which is too many.  For models with 

large numbers of parameters, it is often easier to reduce the model one parameter at a time and 

reevaluate the model after each removal.  Such “sequential” approaches generally take less time 

to evaluate and are easier to implement.  However, the best combination of parameters might 

be missed, due to parameters selected at earlier steps (Chu and Hahn 2009).   

 

Here we modify the (Cintron-Arias, Banks et al. 2009) algorithm, so it can be applied sequentially.  

Instead of evaluating all possible combinations, we reduce the search space by evaluating the 

combinations containing P-1 parameters, where P is the number of parameters in the unreduced 

model.  We accept the P-1 model with the lowest PSS and condition number and continue by 

evaluating the models with (P-1)-1 parameters.  We continue until a suitable model has been 

reached (definitions of suitability can be adapted to each application, examples include an upper 

limit for the magnitude of %CVs, lower limit for singular values, etc.)  Our proposed modification 

changes the simultaneous (Cintron-Arias, Banks et al. 2009) algorithm into a sequential process 

which can be completed in linear time.  Code for implementation of this method can be found 

in APPENDIX E and F.  
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Implement each 
reduced model

Parameter 
Estimation

Calculate Singular 
Values

Compute DSM

Parameter 
Selection Score 

(PSS)

List all possible 
models with p-1 

parameters

Calculate length of 
CV vector

Accept model with 
lowest PSS and 
lowest Cond#

#
highest SV

cond
lowest SV

=

Sequential Adaptation of the Cintron-Arias Algorithm

CV: Coefficient of Variation

DSM: Discretized Sensitivity Matrix
 

Another Sequential Method 

(Daun, Rubin et al. 2008; De Pauw, Steppe et al. 2008) use another sequential approach to 

reduce overparametized models.  The two methods are quite similar and both are based on 

analysis of the correlation matrix and individual parameter sensitivities.  These algorithms 

prioritize parameters with strong pairwise correlations (difficult to distinguish) that have minimal 
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effects on the output (low sensitivity) as candidates for reduction.  They differ essentially in the 

order of operations.  In (Daun, Rubin et al. 2008), parameter correlations are computed first.  

Starting from the most correlated pair of parameters, the sensitivity of each parameter is 

evaluated by finding the length of the sensitivity vector, using equation (10).  If the model is 

highly sensitive to both parameters, the next pair is considered.  If the model is not sensitive to 

at least one of the parameters, the one with lower sensitivity is fixed, parameter estimation is 

repeated, and a new correlation matrix is calculated.  This continues until the stopping criteria is 

reached.  The stopping criterion should be adjusted based on the problem.  Possible stopping 

criteria include:  a 

target number of 

parameters to be 

reduced, a lower 

bound on the 

length of the 

sensitivity vector, a 

upper bound on 

the correlation 

between two 

parameters, etc. 

 

Compute DSM

Calculate 
sensitivity vector 

lengths

Consider most 
correlated pair

Fix parameter with 
lower sensitivity

Consider next 
most correlated 

pair

System is highly 

sensitive to both 

parameters

System is insensitive 

to at least one 

parameter

Evaluate sensitivity 
of each parameter 

in the pair

Daun, Rubin, et.al Algorithm

DSM: Discretized Sensitivity Matrix

Calculate 
Correlation Matrix
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A Nonsequential Method  (Chu and Hahn 2009; Huang, Chu et al. 2010) 

The parameter reduction scheme used in these papers is based on the discretized sensitivity 

matrix.  This algorithm is surprisingly fast.  Parameters are sorted into a predetermined number 

of groups, and the best candidates for estimation in each group are chosen, without listing all 

the possible parameter combinations.  This method can quickly reduce a model with 100+ 

parameters into 10 or 20 parameters. 

 

To start, (Chu and Hahn 2009) compute the DSM for the unreduced model. They perform 

singular value decomposition on the DSM, and use the singular values to decide how many 

parameters (Ng) are to be estimated – the criteria for this is adjusted to match the 

dimensionality of the problem.  A sample criteria could be “count the number of singular values 

which are above 5% of the largest singular value.  They calculate the length of each sensitivity 

vector using equation (10) on the columns of the DSM.  Parameters with short vectors (e.g. <5% 

of the largest one), are fixed.  For the remaining parameters, the “similarity measure” (see 

equation (11), defined below) by finding the angle between each parameter (i.e. p1 and p2, p1 

and p3, etc.)  “Similar” parameters are clustered into Ng groups, and from each group, the 

parameter with the largest sensitivity vector to chosen to be representative of the group.  As this 

is a simultaneous method, there are no looping steps – this is the end of the process. 

Similarity Measure (Chu and Hahn 2009) 

The similarity measure defined by these authors is calculated by finding the cosine of the angle 

formed between two sensitivity vectors si and sk: 
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2 2

cos

T

i k

ik

i k

s s

s s
φ =  (11) 

Values close to 1 means that the angle between them is small, and the two parameters are very 

dependent.  Values close to 0 means that the angle between them is close to 90° (perpendicular), 

and are easily discerned from each other. 

Build DSM
Sensitivity Analysis

of Unreduced 
Model

Group “similar” 
parameters 

together

Fix parameters 
with small 
sensitivites

# of non-zero SVs 
= # of param to 

be estimated

Similarity 
measure

Calculate 

length of 

vector

Calculate 

Singular 

Values (SV)

Calculate 

angle 

between 

columns of 

the DSM

From each group, select parameter with the longest 
sensitivity vector to be representative of the group 

(and estimated); fix other parameters

Chu, Hahn Algorithm

DSM: Discretized Sensitivity Matrix
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We applied these algorithms – the modified (Cintron-Arias, Banks et al. 2009) algorithm, the 

(Chu and Hahn 2009; Huang, Chu et al. 2010) algorithm and the (Daun, Rubin et al. 2008) 

algorithm – to the overparametized candidate model of tumor suppressor protein p53 dynamics.  

We found that fixing three parameters, p3 or p4, p17 and p23, gives the same goodness of fit 

for the model.  The resulting reduced model has an approximately 3-fold decrease in parameter 

estimation errors. 
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IV.  Results 

Best Fit 

The best fit of the complete model (23 parameters) to the data, shown below (without SDs 

=0.25 illustrated on the graph), was achieved with COPASI using the global search scheme, 

simulated annealing.  Search parameters were: Start Temp = 1, Cooling Factor = 0.85, Tolerance 

= 1e-6.  Total CPU time for fitting was ~ 10 hours.  Resulting objective Value = 1.88.   Local 

multistart methods using AMIGO were also run, using the final global search parameters as ICs, 

without achieving a better fit. 

 

Data for fitting was from 

(Wang, Wade et al. 2007), 

described earlier.  Initial 

starting parameter values 

were adapted from the best 

values from a SAAM II fitting 

run with slightly different 

p53 Parameter Estimation (5a)
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(simplified) equations from the current model (File name = P53 MCF7  6-30-10 - reconnected 

and refitted-joe-SD=0.25.stu).   Adaptations were calculations of parameter values previously 

combined and now separated for analysis of the full model. 

Results of 3 Parameter Reduction Techniques 

We used 3 different model reduction methods for simplifying the overparameterized p53 

dynamics model.  

Adapted (Cintron-Arias, Banks et al. 2009) method resulted in fixing p23, p17, p4 

(Daun, Rubin et al. 2008) method resulted in fixing p17, p3, p23 

(Chu and Hahn 2009) method resulted in fixing p3, p17, p23 

The (Chu and Hahn 2009) and (Daun, Rubin et al. 2008) algorithms recommend the same 

parameters for model reduction. 

 

The 2 reduced models result in nearly identical fits to the data: 

(Cintron-Arias, Banks et al. 2009)     

p53 Parameter Estimation (p4, 17, 23 fixed)
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(Daun, Rubin et al. 2008; De Pauw, Steppe et al. 2008) 

(Chu and Hahn 2009; Huang, Chu et al. 2010) 

p53 Parameter Estimation (p3, 17, 23 fixed)
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All 3 methods resulted in fixing p17 and p23.  p17 is the hill K for p53 kinase phosphorylation.  

p23 is the stimulation of mRNA transcription by phosphorylation of p53.  These values were 

computed as 0 or very close to 0 in the parameter estimation, thus the equations are simplified 

as follows: 
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 (15) 

For comparison, the original equations are: 

 1

2

61
1 4 3 1 4

5 1 7

( ) 1
x p udx

p x t p x p
dt p x p u

τ
  

= − − − +   + +  
 (1) 

 2 1 2 12
8 9 2 10

11 2 13

1
dx x x p u

p p x p
dt p x p u

  
= − − +   + +  

 (2) 

 3 1 3
14 15 3 16 18

17 3

(1 )
dx x x

p p x p p u
dt p x

= − − −
+

 (3) 

 34
19 20 4 21 23 24 1 25 2

22 3

(1 )(1 )(1 )
n

n n

xdx
p p x p p u p x p x

dt p x

 
= − + + − − + 

 (4) 

 

Final parameter estimates and their variabilities are given in the table below. 
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VI. Discussion 
We explored 3 methods for parameter subset selection in an overparametized model of  

p53/Hdm2/HdmX dynamics.  Analyzing candidate parameters sets using information from the 

discretized sensitivity matrix, correlation matrix, similarity matrix and coefficients of variation, 

these methods improve the quality of the model by reducing the uncertainty in the parameter 

estimation process. 

 

A shortfall of these methods is that the results are specific to the current nominal values of the 

parameters – if we find that the true parameter values are different from what we have reported 

here, it is likely that the “best” parameter subset would change.  Before finding the current 

solution, we had invested at least 200 hours of computational effort for parameter estimation, in 

global searches and local multistart methods. 

 

From the original model containing 23 parameters, we propose two candidate models of 20 

parameters each.  Each gives a large reduction in parameter variability measures, while 

maintaining the same objective value (i.e. an equally good fit to the data). 
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We emphasize that the following physiological interpretations of our results are for MCF7 cancer 

cells only.   

 

With p17 = 0, the hill function in Eqn. (3) is reduced to a linear term dependent only on x1, or 

Hdm2, and not on x3 or p53 as in the original equations.  This implies that the rate of 

degradation of p53 by Hdm2 is linearly proportional to Hdm2 in these MCF7 cancer cells – not 

necessarily in normal cells, not fully analyzed yet. 

  

With p23 = 0, the term 23(1 )p u+  drops out in the mRNA equation, removing any direct effect of 

the input u on x4 (mRNA).   This suggests that effects of DNA damage on mRNA via kinase are 

indirect via couplings with Hdm2, HdmX and p53. 

 

These interpretations may be different when the normal WS1 cells are fully analyzed. 

 

Nonzero Ambiguities:  The two resulting reduced models differ by whether p3 or p4 is estimated 

and the other fixed.  p3 is the Hdm2 basal degradation rate, and p4 is the Hdm2 degradation 

rate by ubiquitination.  Both parameters  are estimated as nonzero and thus both significantly 

affect Hdm2 degradation.  We conclude that the relative effects of these two mechanistic 

pathways cannot be distinguished from the (Wang, Wade et al. 2007) data.  

 

Files used to generate these results can be supplied, please write to csin@ucla.edu. 
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APPENDIX A: Parameter Space Reduction in the Recent 

Literature 
 

Author / 

Year / 

Model 

Reduction Scheme Stop Criterion 

(Quaiser, 

Dittrich et 

al. 2011) 

 

JAK-STAT 

1.  Calculate Hessian Matrix 

2.  Identify smallest eigenvalue of H 

3.  Search for largest component in corresponding eigenvector 

4.  Fixes the corresponding parameter to best estimated value 

(Similar to (Degenring, Froemel et al. 2004)’s METHOD 1) 

5.  Repeat 1-4 until all parameters are fixed.  The order that the 

parameters were fixed is the order that the parameters are 

identifiable. 

6.  Evaluate each parameter in order from the list developed in 

5), check to see if the variance is > vp (a number you choose)  If 

so, go to step 7.  If variance is < vp for all parameters, terminate 

7.  Simplify parts of model that involve the least identifiable 

parameters. 

Continue until 

parameter 

estimation step 

results in SD < 

1% for all 

estimated 

parameters 

(Huang, 

Chu et al. 

2010) 

(Chu and 

Hahn 

2009) 

 

IL-6 

signaling 

1.  Calculate sensitivity vectors of outputs wrt the parameters 

2.  Perform SVD on the sensitivity matrix 

3.  Determine minimum number of parameters (NS) estimated 

4.  If a parameter’s sensitivity vector has small length (e.g. <5% 

of the largest one), fix them to the nominal values 

5.  Cluster the parameters into NG (where NG is ≥ NS) groups by 

clustering parameters with similar “similarity measure” together 

Similarity is calculated by finding the angle between two 

sensitivity vectors.  A value near 1 means that the two 

parameters have very similar effects on the OP.  A value 

near 0 means the two parameters are close to orthogonal, 

i.e. they should be able to be distinguished. 

6.  From each group, select the parameter with the largest 

sensitivity vector to be representative of the group. 

7.  Select the number of parameters NG representatives and refit. 

Minimum 

number of 

parameters 

selected using 

SVD analysis of 

the sensitivity 

matrix 

(Daun, 

Rubin et 

al. 2008) 

 

Bacterial 

lipopoly-

saccharid

e in rats 

1.  Calculate the correlation matrix 

2.  Rank parameter pairs in order of correlation 

3.  Identify one highly correlated pair 

- If model OP is highly sensitive to both parameters, skip 

and repeat step3 

- If model OP is not too sensitive to at least one of the 

parameters, fix the less sensitive parameter to nominal 

value and repeat step 1. 

Continue until 

no more highly 

correlated 

parameters to 

which model 

output is highly 

sensitive 

remain. 
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(De Pauw, 

Steppe et 

al. 2008) 

 

Tree 

water 

flow and 

storage 

 

1.  Rank parameters from highest sensitivity to lowest sensitivity 

2.  Perform collinearity analysis 

Choose lowest collinearity and highest sensitivity parameter sets 

Not specified 

(Schmidt, 

Madsen 

et al. 

2008) 

 

Yeast 

glycolysis 

Method inspects each individual (complex) kinetic rate reactions 

and simplifies them. 

1.  If rate expression contains a rational term (i.e. 

numerator/denominator), rewrite them to the vector description 

of the rate expression. 

2.  Construct linear system of equations with results from 1) and 

the measurement matrix (M). 

3.  Inspect M for linear combinations in the columns; if these 

exist, the original rate expression can be reduced without loss of 

accuracy. 

4.  Remove terms in rate expression which have negligible effect  

Not specified 

(Degenrin

g, 

Froemel 

et al. 

2004) 

 

Glucose 

metabolis

m 

1.  Calculate sensitivity vectors of outputs wrt the parameters 

2.  Calculate the eigenvalues and eigenvectors of the sensitivity 

matrix 

3.  Choose the # of parameters (p*) to be rejected 

- METHOD 1: Collect the p* eigenvectors corresponding 

to the smallest eigenvalues.  The parameter with the 

largest component in each considered vector is marked 

for rejection 

- METHOD 2: Collect the p* eigenvectors corresponding 

to the smallest eigenvalues.  For each parameter, 

calculate the sum of squares of their components in the 

p* vectors.  Reject parameters with the highest sum of 

squares. 

- METHOD 3: Collect the p-p* eigenvectors 

corresponding to the largest eigenvalues.  The 

parameter with the largest component in each of the 

vectors is selected to not be rejected (i.e reject all the 

others) 

Decided in step 

3, but no 

recommendatio

ns given by 

paper 
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APPENDIX B: Discretized Sensitivity Matrix for the Original 

Unreduced Model 
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APPENDIX C: Correlation Matrix for the Original Unreduced 

Model 
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APPENDIX D: AMIGO code for original p53 model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% TITLE: model using 2011.10.26 equations 
% 
% NOTE: code structure based on "The Hodgkin–Huxley model" given in AMIGO 
examples 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

  
%============================ 
% RESULTS PATHS RELATED DATA 
%============================ 
results.pathd.results_folder='p53model20120409'; 
    % Results in:  ...AMIGO_R2011a\Results\p53model 
results.pathd.short_name='AMIGO_model'; 
    % figures / reports will be titled with this string 
results.pathd.runident='20120421a'; 
    % update to keep current results from previous results 
                                                      
  
%============================ 
% MODEL RELATED DATA 
%============================ 
inputs.model.input_model_type='charmodelM'; 
    % choices: charmodelF, charmodelM, matlabmodel, sbmlmodel, 
    %          fortrammodel, blackboxmodel, blackboxcost 
    % 64bit system cannot use fortran models 
inputs.model.n_st=4;                % Number of states 
inputs.model.n_par=25;              % Number of model parameters 
inputs.model.n_stimulus=0;           
    % Number of inputs, stimuli or control variables    
inputs.model.names_type='custom';  
     
inputs.model.st_names=char('x1', 'x2', 'x3', 'x4'); 
inputs.model.par_names=char('p1', 'p2', 'p3', 'p4', 'p5', ... 
    'p6', 'p7', 'p8', 'p9', 'p10', ... 
    'p11', 'p12', 'p13', 'p14', 'p15', ... 
    'p16', 'p17', 'p18', 'p19', 'p20', ... 
    'p21', 'p22', 'p23', 'p24', 'p25'); 
  
% Equations describing system dynamics. Time derivatives are regarded 
% 'd'st_name'' 
inputs.model.eqns=...                
        char('ip= -1.39e-14*t^6 + 1.846e-11*t^5 - 1.001e-8*t^4 + 2.898e-6*t^3 
- 0.0004702*t^2 + 0.03574*t + 0.03583',... 
             'dx1= p1*x4 - p3*x1 - 
p4*((x1^2)/(p5+x1))*(1+(p6*ip/(p7+ip)))',... 
             'dx2= p8 - p9*x2 - 
p10*((x1*x2)/(p11+x2))*(1+(p12*ip/(p13+ip)))',... 
             'dx3= p14 - p15*x3 - p16*((x1*x3)/(p17+x3))*(1-(p18*ip))',... 
                    'p19 = p20 - p21*(1/(p22^4+1))*(1-p24)*(1-p25)',...     
%exact constraint on p19 
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             'dx4= p19 - p20*x4 + p21*(x3^4/(p22^4+x3^4))*(1+p23*ip)*(1-
p24*x1)*(1-p25*x2)'); 
  
% Parameter starting values 
inputs.model.par=[0.00909733 0 0.00316432 0.0505781 85.3301... 
        89.694 1.77318 0.0262511 0.0243828 0.0217436... 
        2.90862 4.29317 0.930501 0.0849594 0.00726627... 
        0.0411372 3.13E-06 0.315467 0.052283251 0.0486287... 
        1.64315 3.24445 3.68E-06 0.128005 1.28515];           %p21-25 
  
               
%================================== 
% EXPERIMENTAL SCHEME RELATED DATA 
%================================== 
  
 inputs.exps.n_exp=1;                 % #experiments = 1 (1 data set) 
  
 inputs.exps.n_obs{1}=4;                 
 inputs.exps.obs_names{1}=char('obs1','obs2','obs3','obs4'); 
        % Name of the observed quantities per experiment    
         
 inputs.exps.obs{1}=char('obs1=x1','obs2=x2','obs3=x3','obs4=x4');                        
 % all states in the model are observed 
  
 % Initial conditions for each experiment        
 inputs.exps.exp_y0{1}=[1 1 1 1];                    
 % Experiments duration 
 inputs.exps.t_f{1}=420;                             
 % Number of sampling times 
 inputs.exps.n_s{1}=8;                               
 % [] Sampling times, by default equidistant 
 inputs.exps.t_s{1}=[0:60:420];                      
                                                               
  
%================================== 
% EXPERIMENTAL DATA RELATED INFO 
%================================== 
  
inputs.exps.data_type='real';      % Type of data: 
'pseudo'|'pseudo_pos'|'real'              
inputs.exps.noise_type='homo';      
inputs.exps.exp_data{1}=[1 1 1 1 
    0.769825528 0.730654465 3.656587533 1.91 
    1.389184409 0.534469831 4.794767802 4.92 
    2.067765914 0.46015303 4.642232555 9.47 
    2.478124881 0.450452468 3.354605021 7.43 
    2.075068041 0.460697055 2.288561511 3.51 
    1.453562721 0.48 1.922801847 3.02     % NaN in 2nd column changed t0 0.48 
    1.628091967 0.50659958 3.246270642 4.06]; 
inputs.exps.std_dev{1}=0.25;                        % sd of experimental data 
  
  
%================================== 
% UNKNOWNS RELATED DATA 
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%================================== 
  
% GLOBAL UNKNOWNS (SAME VALUE FOR ALL EXPERIMENTS) 
                                    
inputs.PEsol.id_global_theta=char('all');            % 'all'|User selected  
  
% Minimum allowed values for the parameters 
inputs.PEsol.global_theta_min=[0 0 0 0 0 ...    %p1-5 
                               0 0 0 0 0 ...    %p6-10 
                               0 0 0 0 0 ...    %p10-15 
                               0 0 0 0 0 ...    %p16-20 
                               0 0 0 0 0];      %p21-25 
  
% Maximum allowed values for the paramters 
inputs.PEsol.global_theta_max=[1 0 1 1 100 ...       %p1-5 
                               100 10 1 1 1 ...     %p6-10 
                               5 200 5 1 1 ...       %p11-15 
                               1000 2000 2 1 100 ... %p16-20 
                               10 5 1 1 10];        %p21-25 
  
% Initial guess for parameters 
inputs.PEsol.global_theta_guess=[0.00909733 0 0.00316432 0.0505781 85.3301 ... 
    89.694 1.77318 0.0262511 0.0243828 0.0217436 ... 
    2.90862 4.29317 0.930501 0.0849594 0.00726627 ... 
    0.0411372 3.13E-06 0.315467 0.052283251 0.0486287 ... 
    1.64315 3.24445 3.68E-06 0.128005 1.28515]; 
            % by default, AMIGO will use the mean value btw min and max as 
            % the initial guess. values above are from 
            % 20120409 p53 model 20111006 eqns SAAM start sim anneal 5a.cps 
             
     
% GLOBAL INITIAL CONDITIONS 
inputs.PEsol.id_global_theta_y0='none';     % do not estimate initial states 
  
  
% LOCAL UNKNOWNS (DIFFERENT VALUES FOR DIFFERENT EXPERIMENTS) 
  
inputs.PEsol.id_local_theta{1}='none';      % [] 'all'|User selected| 'none' 
(default) 
inputs.PEsol.id_local_theta_y0{1}='none';   % [] 'all'|User selected| 'none' 
(default) 
  
  
%================================== 
% COST FUNCTION RELATED DATA 
%================================== 
          
inputs.PEsol.PEcost_type='llk';     % 'llk' (log likelihood) 
inputs.PEsol.llk_type='homo_var'; 
  
  
%================================== 
% NUMERICAL METHODS RELATED DATA 
%================================== 
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% SIMULATION 
  
% [] IVP solver: 'radau5'(default, fortran)|'rkf45'|'lsodes'| 
%                'lsodesst'|'lsoda'| 
%                'ode15s' (default, MATLAB, sbml)|'ode113' 
% [] Sensitivities solver: 'odessa' (default, fortran)| 
%                          'sensmat' (matlab) | 
%                          'fdsens' (finite differences) 
% [] IVP solver integration tolerances 
  
inputs.ivpsol.ivpsolver='ode15s';  
inputs.ivpsol.senssolver='sensmat'; 
inputs.ivpsol.rtol=1.0D-4; 
inputs.ivpsol.atol=1.0D-4;  
  
  
  
% OPTIMIZATION 
inputs.nlpsol.nlpsolver='ssm';                         
    % [] NLP solver: ssm (Scatter Search for global optimization in MATLAB 
  
  
%================================== 
% DISPLAY OF RESULTS 
%================================== 
  
% [] Display of figures: 'full'|'medium'(default)|'min' |'noplot'  
results.plotd.plotlevel='full';                        
% [] Figures may be saved in .eps (1) or only in .fig format (0) (default) 
results.plotd.epssave=0;                               
% [] Maximum number of states per figure 
results.plotd.number_max_states=8;                     
% [] Maximum number of observables per figure 
results.plotd.number_max_obs=8;                        
% [] Number of times to be used for observables and states plots 
results.plotd.n_t_plot=100;                            
% [] Integration tolerances for the contour plots.  
results.plotd.contour_rtol=1e-7;                       
%    ADVISE: These tolerances should be a little bit strict 
results.plotd.contour_atol=1e-7;                       
% [] Number of points for plotting the contours x and y direction 
results.plotd.nx_contour=60;                           
results.plotd.ny_contour=60;                          %    ADVISE: >=50 
% [] Maximum number of unknowns histograms per figure (multistart) 
results.plotd.number_max_hist=8;                       
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APPENDIX E: Code for Cintron et. al. Algorithm 
 
% input DSM 
% input parameters list 
% input CV vector 
  
%p53data20120409data5aglobal;           % CARE: if WARNING1 implemented, 
comment this out. 
  
%    check that DSM is the same width as parameters list 
%    count # of columns (i.e. the # of parameters being considered) 
  
numparam = length(parameters); 
  
if numparam ~= length(CVs) 
    error('parameters list and CVs list are not the same size'); 
elseif numparam ~= size(DSM, 2) 
    error('DSM width is not the same size as the # of parameters'); 
else 
    disp('data size OK'); 
end 
     
  
%    for loop to remove column in DSM one at a time 
%                remove CV value for the appropriate parameter 
%                remove parameter fr parameter list one at a time 
%       calc cond# 
%       calc pss 
%       keep track of parameter vector 
%       ------------------------------------------- 
%       | Parameter Vector |   cond#    |    pss   | 
%       ------------------------------------------- 
%       |     ...          |    ...     |    ...   | 
% 
%    result is #parameter x 3 matrix 
% 
% output matrix from above 
  
% note: row x column 
  
% create matrix for info storage 
  
results = []; 
setlist = []; 
  
for index = 1:numparam 
    % copy matrices into matrices for manipulation 
    candDSM = DSM; 
    candCVs = CVs; 
    % remove "index" column from candidate matrices 
    candDSM(:, index) = []; 
    candCVs(:, index) = []; 
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    setlist{index, 1} = char(strcat('no_', parameters(index))); 
     
    % make calculations and fill in results matrix 
    % calculate condition # (highest sing value / lowest sing val) 
    calcCond = condNum(candDSM); 
    % calculate pss (magnitude of CV vector) 
    calcPss = pss(candCVs); 
     
    % fill out table and analyze 
    results(index, 1) = calcCond; 
    results(index, 2) = calcPss; 
    results(index, 3) = calcCond + calcPss; 
    results(index, 4) = calcCond*calcPss; 
end 
  
  
% what is minimum condition #? 
[minCond, mCondLoc] = min(results(:, 1)); 
% what is minimum pss? 
[minPss, mPssLoc] = min(results(:, 2)); 
% min additive 
[minAdd, mAddLoc] = min(results(:, 3)); 
% min multiplicative 
[minMult, mMultLoc] = min(results(:, 4)); 
  
% WARNING1 
% if we can decide on criteria of what is the "lowest" (either by summing 
% or multiplying), we can write in code here to remove the appropriate 
% columns in the data, and just simply run this script again. 
  
% Also, we should consider generating a new DSM matrix with the previously 
% worst parameters fixed. 
  
  
disp('Lowest Condition#') 
disp(['Parameter set: ', setlist{mCondLoc}, '          line ', 
num2str(mCondLoc)]) 
disp('Lowest Parameter Selection Score') 
disp(['Parameter set: ', setlist{mPssLoc}, '          line ', 
num2str(mPssLoc)]) 
  
disp('Lowest cond# + PSS') 
disp(['Parameter set: ', setlist{mAddLoc}, '          line ', 
num2str(mAddLoc)]) 
disp('Lowest cond# x PSS') 
disp(['Parameter set: ', setlist{mMultLoc}, '          line ', 
num2str(mMultLoc)]) 
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APPENDIX F: Auxiliary functions for Cintron et. al. Algorithm 
 
% pss(CVvector) 
% ============= 
 
% IP:  Vector of coefficient of variances for the parameters 
% OP:  Parameter Selection Score (pss) as described in the Cintron, Banks, 
% Capaaldi, Lloyd 2009 paper 
  
% input vector 
%    pss = magnitude of CV vector 
% output parameter selection score 
  
  
function length = pss(CVvector) 
% FUNCTION NAME: pss 
% INPUT: Vector containing Coefficients of Variation for the parameters 
% OUTPUT: Length of vector 
  
length = norm(CVvector); 
 

 

 

 

% condNum(DSMatrix) 
% ================ 
 
% input sensitivity vectors 
%            SVD of matrix created with vectors 
%            S matrix, find smallest and largest #s 
%            cond# = highest singular / lowest singular 
% output condition number 
  
  
function value = condNum(DSMatrix) 
% FUNCTION NAME: condNum 
% INPUT: Discretized Sensitivity Matrix (matrix) 
% OUTPUT: condition number (double) 
  
% calculate singular values using matlab function svd 
% OP of svd is a matrix containing the singular values 
singValues = svd(DSMatrix); 
  
% calculate condition number 
value = max(singValues) / min(singValues); 
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APPENDIX G: Code for Daun Rubin Algorithm 

 

This code calculates the length of the parameter sensitivity vectors from the DSM. 

psens = []; 
DSM = DSM5a;        % discretized sensitivity matrix, preloaded into 
workspace 
numparam = 24; 
for index = 1:numparam 
    psens(index, 1) = norm(DSM(:,index),2); 
end 
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APPENDIX H: Code for Chu Hahn Algorithm 
% Load DSM 
DSM = DSM5a; 
  
% Load Parameter list 
parameters = {'p1' 'p2' 'p3' 'p4' 'p5'... 
    'p6' 'p7' 'p8' 'p9' 'p10'... 
    'p11' 'p12' 'p13' 'p14' 'p15'... 
    'p16' 'p17' 'p18' 'p20'... 
    'p21' 'p22' 'p23' 'p24' 'p25'}; 
  
% Remove low sensitivity parameters from consideration 
% low sens = <5% of high sens 
sensLength = []; 
for i = 1:size(DSM, 2) 
    sensLength(i) = norm(DSM(:, i),2); 
end 
  
minSens = max(sensLength)*0.05; 
  
i = 1; 
while i < size(sensLength, 2) 
    if sensLength(i) < minSens 
        sensLength(i) = []; 
        parameters(i) = []; 
        DSM(:, i) = []; 
    else 
        i = i+1; 
    end 
end 
  
numParam = size(DSM, 2); 
  
% Preform SVD 
[U,S,V] = svd(DSM); 
  
% Calculate the cut off criteria for singular values 
minsing = max(max(S))/1000; 
  
% Count number of sing values > ____ 
% This becomes ns, the # of parameter estimated 
  
ns = size(find(S > minsing),1);    % counts # of entries larger than minsing 
  
% Make matrix to keep information 
pAngles = zeros(numParam, numParam); 
  
% calculating angle 
% cos phi = Si Transpose Sk / ||Si||^2 * ||Sk||^2 
% For loop for first parameter 
for i = 1:numParam 
    % For loop for 2nd parameter 
    for k = i+1:numParam 
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        Si = DSM(:, i); 
        Sk = DSM(:, k); 
        % calculate angle btw sens vectors and fill in table 
        pAngles(i, k) = abs(Si.'*Sk) / (norm(Si,2)^2 * norm(Sk,2)^2); 
    end  
end 
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