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Abstract

Recent Positron Emission Tomography (PET) and other
studies have produced detailed information about the
areas of the brain involved in word association tasks,
their functional roles in learning word associations, and
the changes in activity in these areas during learning.
We present a dynamic neuronal model that replicates
observed human cognitive behavior in learning word as-
sociations while satisfying salient neuroanatomical and
neuropsychological constraints. The model captures the
observed dynamics of cortico-thalamo-basal ganglionic
loops.

Introduction

Although “practice makes perfect” has been a long-
standing dictum of skill learning, it is only recently that
some light has been shed on the brain mechanisms in-
volved in the learning of skills with practice. By com-
bining information about the functional anatomy of the
brain obtained through Positron Emission Tomography
(PET) with other anatomical and physiological data, re-
searchers have been able to piece together a more com-
plete picture of the brain mechanisms involved in learn-
ing specific cognitive and motor tasks (e.g., (Raichle
et al., 1994; Wise & Houk, 1994)). This, in turn, has
facilitated the construction of realistic models of these
brain mechanisms.

Our focus in this paper is on modeling the brain mech-
anisms involved in iterative verbal response selection
tasks while satisfying known anatomical and functional
constraints. We present a heterogenous dynamic neu-
ronal model that integrates diverse areas of the brain at
a systems level. Our model replicates both the high-level
cognitive behavior and the micro-level neuroanatomical
characteristics of the diverse brain circuits involved.

Human cognitive behavior in iterated verbal response
selection tasks is a simple, yet interesting, example of
learning with practice. When subjects are asked to re-
spond, for example, with appropriate verbs for a visually
presented list of nouns, repeated presentation of the list
initially elicits varying responses to each noun, but with
practice, stereotypic responses develop. Practiced re-
sponses also are produced faster than those in the naive
condition. In addition to these basic characteristics, ver-
bal response selection also shows dependence on several
cognitive variables, which, when manipulated, can give
rise to priming, masking, interference, and other cogni-
tive phenomena.
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Related Research

In a recent set of studies, Raichle et al. (1994) and others
used PET scans to examine the differences in the func-
tional anatomy of the brain during naive and practiced
performance of verbal response selection. PET scans
over repeated presentations showed a shift in brain ac-
tivity from the anterior cingulate, the left prefrontal and
left posterior temporal cortices, and the right cerebellar
hemisphere in the naive condition to the sylvian-insular
cortex bilaterally and the left medial extrastriate cor-
tex after practice. Introduction of a novel stimulus after
practice reactivated the regions active in the naive con-
dition. Raichle et al. (1994) concluded that two dis-
tinct brain circuits were employed in verbal response
generation, one for controlled selection of responses and
the other for the production of learned or automatic re-
sponses.

Complementary to the broad overview provided by
the above-mentioned PET studies of the functionality
of the brain areas involved in response selection, more
focused studies have yielded fairly detailed information
about the neuroanatomy and neurophysiology of the ar-
eas involved. For example, while cortical areas in general
represent information regarding the internal state of the
organism or the external state of the environment (e.g.,
(Mountcastle, 1978)), there is evidence to suggest that
the cingulate cortex specifically represents information
pertaining to the task that is currently being performed
(Pardo et al., 1990; Vogt et al., 1992). Similarly, it is
suggested that the sylvian-insular cortex serves as an
associative store for learned responses to stimuli (Mitz
et al., 1991; Raichle et al., 1994).

Finally, the volume edited by Houk et al. (Houk et al.,
1995) (see also, Houk and Wise (Houk & Wise, 1993))
presents considerable evidence to indicate that the basal
ganglia are involved in the selection and latching of rel-
evant aspects of the current cortical state in a task-
dependent fashion. This volume also describes the pro-
jections between areas of the cortex, the basal ganglia,
and the thalamus in detail. In devising our model, which
is based on the modular architecture described by Houk
and Wise (Houk & Wise, 1993), we have adhered to the
above-mentioned and other known anatomical and func-
tional constraints.
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Neural Modeling of Verbal Response
Selection

Although verbal response selection is a high-level cogni-
tive behavior, our model is implemented at a neuron level
in order to enable us to incorporate our knowledge of the
neurophysiology of the brain areas participating in the
task. We have used lumped models of the neurons in our
implementation, primarily because little is known about
the impact of sub-neuronal dynamics on the high-level
cognitive behavior. However, one of our goals is to de-
termine the appropriate level of detail needed to model
all the relevant aspects of verbal response selection in
humans.

The most important feature of our model is that it
incorporates the dynamical characteristics of the brain
circuits involved. This allows us to replicate the tem-
poral characteristics of the observed cognitive behavior,
which is essential for any meaningful study of the phe-
nomenon of learning. It will also enable us to compare
the dynamic behavior of the model in simulations with

the temporal characteristics of neuronal activations re-
vealed by ERP data.

Description of the Model

The architecture used for our preliminary model is de-
picted in Figure 1. A primary feature of this architecture
is the presence of two processing streams. The controlled
stream consists of the cingulate cortex, the cortical mod-
ules representing the input words, the frontal cortex, the
basal ganglia, and the thalamus. There is also an auto-
matic stream, which consists of the sylvian-insular cor-
tex. In the PET studies, these were the areas whose
excitation differed significantly in the naive and prac-
ticed performance of the response selection task (e.g.,
(Raichle et al., 1994)). Both these streams receive com-
mon inputs from the sensory areas and send outputs to
the motor areas.

The cortical modules representing the anterior cin-
gulate and the sensory and language areas are orga-
nized as columns of neurons that correspond to corti-
cal columns, each functioning as a relatively coherent
information processing unit as discussed by Mountcas-
tle (1978). Each cortical module forms a distributed
representation of some internal state of the organism or
external state of the environment. Cortico-cortical in-
terconnections formed through Hebbian learning (Hebb,
1949) make it possible for the cortical modules to develop
robust representations.

The representations used clearly have a significant im-
pact on the functioning of a model. In the current model,
we used a distributed representation over the sensory
and language cortical modules to encode stimulus words,
with each module denoting a “feature” or “category” of
words (e.g., “colors” or “verbs”). The rationale for this
representation is presented in the next section. These
cortical representations are input to the basal ganglia,
the sylvian-insular cortex, and the frontal cortex. Addi-
tionally, the cingulate module stores a representation of
the task (e.g., “generate a color response”), and provides
it to the basal ganglia and the sylvian-insular cortex.
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We postulate that there would be a projection from the
cingulate to the cerebellum as well and this will be im-
plemented in future work as described in the discussion
section.

Phasic activity in the sensory/language cortical mod-
ules is passed on to the frontal cortex through direct pro-
jections as shown in Figure 1. In addition, the frontal
cortex also has highly specific reciprocal projections with
the thalamus, resulting in local cortico-thalamic loops
that, when active, may sustain activity in frontal cortex
neurons (Houk & Wise, 1993). These loops could be ac-
tivated through selective disinhibition by the basal gan-
glia (for review, see (Chevalier & Deniau, 1990)), which
acts as a pattern-recognizer as suggested by Houk and
Wise (Houk & Wise, 1993). We have modeled these in-
teractions of the frontal cortex, the thalamus and the
basal ganglia, which together form the controlled re-
sponse pathway. Based on inputs from the cortical mod-
ules and the cingulate, the basal ganglia selectively dis-
inhibit the frontal cortex—thalamus loops corresponding
to the word features appropriate for the task, resulting
in sustained activation of these features in the frontal
cortex. Thus the output of the controlled circuit is an
appropriate word represented by the tonically selected
features in the frontal cortex.

In parallel with the controlled circuit, the sylvian-
insular cortex module, which forms the automatic cir-
cuit, produces a response associated with the cortical in-
puts. Because of a lack of concrete anatomical evidence
at this point, we simply modeled the insular learning as
a linear associative network. Although this is not biolog-
ically faithful, it does have the property of incrementally
learning the correct output response based on examples
given by the performance of the controlled pathway and
thus allows us to observe the overall dynamics of the
model. Depending upon previous experience, the re-
sponse given by the associative network simulating the
sylvian-insular cortex may not be appropriate for the
specified task. Therefore there is a need for deciding
which response generation circuit to rely on. As men-
tioned in the discussion, we hypothesize that this role is
played by the cerebellum, which would inhibit the inap-
propriate response.

In the current implementation, learning of synaptic
weights takes place in the intra- and inter-cortical mod-
ule connections, and in the sylvian-insular cortex. Al-
though the other connections are currently hard-wired,
we plan to incorporate learning in both the cerebellum
and the basal ganglia in order to replicate the develop-
ment of their pattern matching abilities. Considerable
evidence regarding the presence of training signals and
their operation in these areas is already available to guide
this work.

Representation of words

Our use of a distributed representation over the sen-
sory and language cortical modular array (Wise &
Houk, 1994) to encode stimuli is inspired by the func-
tional anatomy of the cortex (e.g., (Mountcastle, 1978,;
Asanuma, 1975)). The general organization of cortical
circuits appears to be in the form of a distributed set
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Figure 1: The architecture of the verbal response selection model.

of functionally specific regions or columns interactively
involved in the execution of a given task. Each function-
ally specific region extracts from its inputs higher level
information regarding a particular aspect of the task.

Sharing of processed information through reciprocal
cortico-cortical projections between regions enables in-
formation extracted in one region to influence the pro-
cessing of information in other regions concerned with
the execution of the task. Cortical organization in
columns with reciprocal projections between columns
has been observed, for example, in the primary and sec-
ondary visual areas (Mountcastle, 1978), as well as in
the motor cortex (Asanuma, 1975).

The cortical modular array (Wise & Houk, 1994) in
our implementation corresponds to the local informa-
tion processing regions of the cortex, with each module
concerned with the representation of a “feature” or “cat-
egory” of words. For example, a module might represent
a color or colors associated with the stimulus word, or
the fact that it is a verb. As a result, each word is
represented as a distributed activation of the features
associated with that word.

Currently, the nominal level of this distributed acti-
vation is predetermined for each stimulus word in our
model. The levels of activation are given in Table 1.
Thus, presentation of a stimulus word is effected by
adding the activations indicated in the table to the cor-
responding neurons in the cortical modules. If no value
is specified in the table for a neuron, its activity is not
changed.

For example, when the stimulus “APPLE” is pre-
sented, (among others) the activations of the neurons
representing “EAT” are increased by 0.5 and those of the
neurons representing “SWEET” by 0.7, while the acti-
vations of the neurons representing “PET”, for instance,
are not changed at all. These changes in activation val-
ues were selected to reflect the degree of association be-
tween the stimulus and the corresponding word. Thus,
for instance, while “APPLE” is highly associated with
both “RED” (1.0) and “FRUIT” (1.0), it is associated
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to a lesser extent with “EAT” (0.5), and not at all with
“BLACK?” (0.0).

Two factors influence the temporal dynamics of these
distributed activations. First, shunting-type lateral inhi-
bition (e.g., (Pinter, 1983)) among the neurons in a cor-
tical module results in a winner-take-all type selection of
the feature represented by that module. Modeling neu-
rons as leaky integrators with shunting-type inhibition
leads to dynamic interactions between the new activity
due to presentation of a stimulus and the previously ex-
isting activity of neurons in a module. These interactions
play a significant role in determining what is represented
in each module: previous strong activity of other features
might inhibit weak new activity of a feature, resulting
in suppression of a feature in the predetermined repre-
sentation of the stimulus word. Alternatively, previous
activation of the same feature might lead to priming of
the new feature, increasing its prominence in the repre-
sentation.

In contrast to this, the cortical modules attempt to
maintain a coherent set of features in a representation
by filling in missing features that were often active in the
past in conjunction with those that are currently active.
This is accomplished by mutually excitatory projections
between modules in the cortical modular array whose
strengths are determined via Hebbian learning (Hebb,
1949). Due to the dynamic nature of the representation
of stimulus words, presenting the same word in different
historical contexts can elicit different responses due to
priming effects, much as in the case of human subjects.

Simulation Results

In this section, we present simulation results that demon-
strate the features of our model. For these simulations,
we selected a list of 20 words to represent in our model.
Of these, six were used as stimuli, while the responses
could be selected from all 20. The responses were classi-
fied into four groups, namely, stimuli, color names, verbs,
and miscellaneous. A separate cortical module was used
to represent words in each group. In Table 1, we present



Table 1: Representation of the stimulus words in the preliminary model as activations of cortical modular array
neurons representing the features that comprise potential responses.

Stimulus APPLE | BANANA | GRAPE | CAT | DOG | MOUSE
Potential Responses

APPLE 1.0

BANANA 1.0

GRAPE 1.0

CAT 1.0 0.2
DOG 0.5 1.0
MOUSE 0.6 1.0
BLACK 0.8 0.7 0.9
BROWN 0.5 0.5 0.9 0.7
RED 1.0 0.3

YELLOW 1.0

BUY 0.9 0.9 0.9

EAT 0.5 0.2

FALL 0.8 0.8 0.7 0.2 0.3 0.1
RUN 0.8 0.9 0.9
HOUSE 0.3 0.3 0.2
FRUIT 1.0 0.8 0.9

PET 1.0 1.0 1.0
SWEET 0.7 0.4 0.5

SOUR 0.5 0.1 0.9

TREE 0.4 0.1

the (predetermined) activations of the words in each sen-
sory/language cortical module when each of the stimulus
words is presented.

The model captures the dynamics of cortico-thalamo-
basal ganglionic loops suggested by Houk and Wise
(1993) based on neurophysiological evidence gathered
by several researchers (e.g., (Chevalier & Deniau, 1990;
Fuster & Alexander, 1973; Goldman-Rakic & Friedman,
1991)). An example of this is presented in Figure 2.
The first plot shows the activity of frontal cortex neu-
rons when no task is specified. As can be seen, the initial
activity of the neurons due to stimulus word presentation
decays with time. When a “COLOR” task is specified,
the activity of neurons representing a color associated
with the stimulus word is sustained through selective
activation of the corresponding loops, while the activ-
ity of the other neurons decays away. Similarly, when
a “VERB?” task is specified, activity of neurons repre-
senting actions associated with the stimulus word gets
selectively sustained.

As reported by Raichle et al. (1994), the median re-
sponse times of human subjects decreases significantly
over successive blocks of presentation of the same set of
stimuli. If a novel stimulus set is presented immediately
following these repeated blocks, the response time re-
turns to about the same level as in the naive condition
for the original stimulus set. We ran a similar experiment
with our system. We presented three stimuli, APPLE,
DOG, and MOUSE, for 10 successive blocks, followed by
10 more blocks with the stimuli BANANA, GRAPE, and
CAT. As illustrated in Figure 3, the response time of the
system also decreased with repeated presentations of the
same stimulus set for 10 blocks. Moreover, as with hu-
man subjects, presentation of a novel stimulus set caused
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a significant increase in the response time, which further
repetitions caused to decrease.

Discussion

The results given in the last section indicate that a model
which is based upon the anatomical and functional fea-
tures of the areas of the brain observed to participate
in learning word association tasks does indeed exhibit
the cognitive behaviour observed in humans. The model
raises many important questions which suggest several
directions for future research. Two major issues are dis-
cussed below.

A primary issue for investigation is the existence of
dual (controlled and automatic) pathways for verbal re-
sponse selection. Although the PET data from Raichle
et al.’s study (1994) supports such a model, additional
functional evidence obtained using alternative methods
such as event related potentials (ERP) is needed to con-
firm or refute the conclusions of the PET study.

An important aspect requiring study is the functional
role of the cerebellum. As mentioned above, increased
right cerebellar activity has been observed in the naive
condition of the word association task. We hypothe-
size that the cerebellum facilitates verbal response selec-
tion in two important ways: it arbitrates between the
controlled and the automatic circuits, and it facilitates
learning in the automatic pathway. This hypothesis is
based on data from Feiz et al. (Feiz et al., 1992), who
found that damage to the right cerebellar hemisphere of
a human subject due to a stroke resulted the patient’s
inability to select appropriate word association responses
to words as well as his ability to learn at this task. We
are in the process of incorporating this function of the
cerebellum in our model.
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Figure 2: Example of selection of an appropriate response for different tasks by the controlled circuit. The color and
verb task plots are activations of neurons in the cingulate cortex representing those tasks. The response activations

(e.g., “RED”, “BUY”, “TREE”) are of neurons in the prefrontal cortex.
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Figure 3: Learning verbal responses. Stimuliswitched from (APPLE, DOG, MOUSE) to (BANANA, GRAPE, CAT)

in block 11.
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